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46  Abstract

47 Transposable elements (TEs) are an extensive source of genetic polymorphisms and play
48  an indispensable role in chromatin architecture, transcriptional regulatory networks, and
49  genomic evolution. The pig is an important source of animal protein and serves as a
50  biomedical model for humans, yet the functional role of TEs in pigs and their contributions to
51  complex traits are largely unknown. Here, we built a comprehensive catalog of TEs (n =
52 3,087,929) in pigs by a newly developed pipeline. Through integrating multi-omics data from
53 21 tissues, we found that SINEs with different ages were significantly associated with
54  genomic regions with distinct functions across tissues. The majority of young SINEs were
55  predominantly silenced by histone modifications, DNA methylation, and decreased
56  accessibility. However, the expression of transcripts that were derived from the remaining
57 active young SINEs exhibited strong tissue specificity through cross-examining 3,570
58 RNA-seq from 79 tissues and cell types. Furthermore, we detected 211,067 polymorphic
59  SINEs (polySINEs) in 374 individuals genome-wide and found that they clearly recapitulated
60  known patterns of population admixture in pigs. Out of them, 340 population-specific
61  polySINEs were associated with local adaptation. Mapping these polySINEs to genome-wide
62  associations of 97 complex traits in pigs, we found 54 candidate genes (e.g., ANK2 and VRTN)
63  that might be mediated by TEs. Our findings highlight the important roles of young SINEs in
64  functional genomics and provide a supplement for genotype-to-phenotype associations and

65  modern breeding in pigs.
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71  Introduction

72 Transposable elements (TEs) or common repeats are ubiquitous sequences that can copy
73 and insert themselves throughout the eukaryotic and prokaryotic genome!-’. The movement of
74  TEs is often accompanied by an increase in their abundance, comprising a large fraction of
75  genomic sequence®®. According to the mechanism of transposition, TEs can be generally
76  classified into 1) RNA-mediated class I elements (retrotransposons), including long terminal
77  repeats (LTRs), long interspersed nuclear elements (LINEs), and short interspersed nuclear
78  elements (SINEs); and 2) RNA-independent class II elements (DNA transposons)'’. TE
79  classes could be further divided into distinct families or subfamilies in terms of their age
80  (active period) and DNA sequence characteristics.

81 At the predominant view of the 1960s -1990s, TEs were described as “selfish” or “junk”
82  DNA!! Thanks to the availability of whole-genome sequences of various species and the
83  ongoing development of bioinformatics tools'?!3, our knowledge of TEs has progressed at a
84  fast pace. TEs are known to play an essential role in shaping genomic sequences and
85  contributing to the diversity in genome size and chromosome structure!!!7. Most of TEs, in
86  fact, are fixed, inactive, and not randomly distributed in the genome!®!°. However, several TE
87  families are still actively transposing and serving as a major source of genetic polymorphisms
88  between individuals, such as the Alu, L1, and SVA TE families in the human genome?®. It is
89  evident in many species (e.g., human, rice and bird) the impacts of active TEs on genome
90  evolution are wide-ranged, including admixture, adaption, footprints of selection, and
91  population structure*'*. For example, the polymorphic TEs (polyTEs) detected in the 1000
92  Genomes Project, consisting of 16,192 loci in 2,504 individuals across 26 human populations,
93  successfully recapitulated the human evolution and captured the sign for positive selection on
94  recent human TE insertions?%23-26,

95 In addition to their direct influences on DNA sequence, there is also emerging evidence
96  that TEs have important functional contributions to gene regulatory networks and epigenome
97  variation. For instance, TEs can directly affect gene transcriptional structure by provoking
98  various forms of alternative splicing, including exonization, exon skipping, and intron
99  retention (3’S and 5°S), to generate novel protein-coding sequences or premature ends?’-.
100 TEs can disrupt the existing cis-regulatory elements, e.g., promoter, enhancer, and insulator,
101 or provide novel ones*'3*. They can also serve as a rich source of non-coding RNAs,
102 including LncRNAs, circRNA, small RNA, and microRNA targets’>-38, Moreover, the silence
103 of TEs has a close connection with epigenetic regulatory mechanisms, such as DNA
104  methylation, piRNA, histone modifications, and RNA interference (RNAi)'®3%42, These
105  epigenomic landscapes, together with the TE landscapes, vary from breed to breed in plants,
106  e.g., angiosperms*. Importantly, it has been reported that the complex interactions between

107  TEs and epigenetic elements could allow a rapid phenotypic adaptation to environmental
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108  changes*042:44,

109 Pig (Sus scrofa), one of the earliest domestic animals, is estimated to be domesticated
110  approximately 10,000 years ago in Asia and Europe independently®. It serves as an
111 indispensable source of animal protein and an important biomedical model for humans**+7.
112 Currently, a total of 22 pig assemblies are publicly available in NCBI**-*2, accompanied by the
113 availability of massive high-throughput whole-genome sequences (WGS), providing
114 researchers with ideal materials to boost the current development of genomic research in pigs.
115  However, the study of TEs in the pig genome is still in its infancy. A few previous studies

116  mainly focused on its diversity and distribution**->

, yet the functional and evolutionary
117  significance of TEs is largely overlooked in pigs. In our recent study>?, we identified novel
118  introgressions in Eurasian boars from Asian and European pig populations using the SINE
119  (PRE-1 subfamily) polymorphisms, suggesting that a part of TEs are still active in the current
120  pig genome. Nevertheless, these studies are far from sufficient to comprehensively understand
121  the important roles of TEs in pigs.

122 In this study, we built the most comprehensive and high-quality atlas of TEs so far in
123 pigs using the newly built pipelines and further defined the SINE families into four categories
124 based on their ages. We then systematically explored the functional aspects of these SINE
125  categories by combining large-scale multi-omics data from 21 tissues, including
126  three-dimensional (3D) chromatin architecture, chromatin accessibility, histone modifications,
127  transcription factor binding sites (TFBS), and DNA methylation. We estimated the
128  contribution of active SINEs to tissue-specific gene expression by cross-examining 3,570
129  published RNA-seq samples from 52 tissues and 27 cell types. Furthermore, we built a
130  comprehensive atlas of polymorphic SINEs using 374 publicly available WGS data to
131  investigate the roles of young SINEs in pig population admixture and local adaptation. The
132 TE-mediated adaptation has been found in functional regions, such as the almost fixed
133 polySINEs observed in laboratory-inbred Bama Xiang pigs at the upstream region of the LEP
134 gene. Finally, by mapping these polySINEs to 4,072 loci associated with 97 complex traits in
135  pigs, we proposed 54 candidate genes that might regulate complex traits through TEs.

136  Results

137  Composition of young SINE families in the pig genome

138 To detect TEs as thoroughly as possible, we developed the Pig TE Detection and
139  Classification (PigTEDC) pipeline (Fig. 1a, Supplementary Information) and applied it to the
140  high-quality pig genome (Sus scrofa 11.1). The PigTEDC pipeline employed a combination of
141  similarity-, structure-, and de novo-based methods. Based on the existing TE repository
142 (RepBase update and Dfam 2.0 databases), we further classified all potential pig TEs into

143 classes/superfamilies and families and derived their consensus sequences.
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144 Excluding the nested TEs, we detected a total of 3,087,929 TEs, occupying 37.9% (947
145  MB) of the total pig genome. Two-thirds of those TEs were assigned to a specific family.
146 Similar to previous studies***2, the most abundant TEs in the pig genome were
147  retrotransposons (~90% of TEs), including LTR (9.25%), LINE (27.57%), and SINE
148 (54.95%), whereas DNA transposons only accounted for 8.12% of TEs (Fig. 1b). Although
149  SINE had the largest count, its genome coverage was still less than LINE’s (Fig. 1¢). Out of
150 532 families of TE, 65 (more than 3,000 TE copies in each family) consisted of 84.6%
151  classified TEs (Fig. 1d), particularly for PRE1f in SINE/ARNA (170,511 copies), MIR in
152 SINE/MIR (45,927 copies), L1B-SSc in LINE/L1 (35,819 copies), and MLTID in
153  LTR/ERVL-MaLR (7,866 copies).

154 We performed the divergence analysis for all classified TEs using RepeatMasker after the
155 CpG content correction. The stacking plots show the divergence distribution for either
156  superfamilies or families (Fig. 1e). Similar to the divergence distribution of TEs in the human
157  genome*, we observed two bursts at 10% and 30% in pig TE amplification that were
158  estimated to occur 20 and 60 million years ago (Mya), assuming a substitution rate of 5x10
159  substitutions/site per year>>. Obviously, the amplification of most TE families occurred 70-50
160  Mya (divergence at 30 + 5%), consistent with that the Paleocene Epoch (65-54 Mya) opened
161  up vast ecological niches for surviving mammals, birds, reptiles, and marine animals®. The
162 latest obvious burst of TEs was mainly concerned with SINE/tRNA, LINE/L1, and
163  LTR/ERVI1 families, of which SINE/tRNA was still most active in the modern pig
164  genome®’™°. Further exploring the ages of highly homologous subfamilies in SINE classes
165  (Fig. 1f with an average divergence of 4%, labelled in purple), we found that 3 out of 26
166  SINE families (PRE1-SS, PREO-SS, and PRE1a) were recently active and had been proved to
167  be polymorphic within pig breeds in a previous study*, and thus can be viewed as the young
168  SINE families.

169 We next focused on these young SINE families (PRE1-SS, PREO-SS, and PREIla) to
170  further reclassify them into subfamilies at a high resolution. After processing all of the
171  full-length young SINEs from 14 publicly available pig genomes (Supplementary
172 Information), we retained 978,506 non-redundant young SINEs and created their consensus
173 sequence by multiple sequence alignment (Fig. S1-S2). Subsequently, a minimum spanning
174  (MS) tree analysis recategorized them into 90 new SINE subfamilies, including 17 large
175  (size > 10000), 12 medium (size > 3000 and < 10,000), and 61 small (size < 3000)
176  subfamilies, with P-values for subfamily partition ranging from 1x10-3!8¢ to 1x10* (Fig.
177  S3-S4, Table S1).

178 When we compared locations of the polymorphic young SINEs with those of
179  medium-length structure variants (SVs, range from 200 bp to 300 bp) detected from the 14

180  assemblies as compared to the pig reference assembly (Supplementary Information), we


https://doi.org/10.1101/2022.02.07.479475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.07.479475; this version posted February 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

181  found that polymorphic SINEs mainly belonged to PRE1-SS, PRE1a, and PREO-SS families
182 (Fig. 1g) (on average 90.75% of the medium-length SVs), especially for the L13 subfamily
183 (Fig. 1h) (on average 36.15% of the medium-length SVs). This suggests that only a specific
184  set of recently active SINE subfamilies was predominant in contributing to SVs (around 250
185  bp length) among diverse breeds during the recent evolution in pigs. We therefore further
186  classified all SINEs into four categories of youngest (L13 subfamilies), younger (young SINE
187  families except for L13 subfamilies, non-L13), older (non-young PRE families), and oldest
188  (non-PRE families; ancient families) SINEs. (Fig. 1i, Fig. S5).

189  Widespread roles of young SINEs in gene regulatory networks

190 Previous studies proposed that TEs might be co-opted into regulatory sequences of genes
191  via diverse epigenetic mechanisms®%. To test this, we explored the impact of SINE
192 subfamilies on the genome features regarding three-dimensional (3D) chromatin architecture
193  (FR-AgENCODE®), chromatin accessibility, histone modifications, transcription factor
194  binding sites (TFBS), and DNA methylation (Fig. 2a).

195 We observed a highly significant enrichment of all SINEs in the A compartments (active),
196  whereas a depletion in the B compartments (inactive) (Wilcoxon test, P-values < 107'®, Fig.
197  2b, Fig. S6). After the further separation of A/B compartments into topologically associating
198  domains (TADs), as expected, we observed CTCF binding sites were significantly enriched in
199  the boundary regions of TADs. SINEs showed a similar but slightly weaker trend of
200  enrichment, while the young SINEs showed a higher but more variable enrichment than the
201  old ones (Fig. 2b, Fig. S7).

202 Next, we explored the distribution of SINE families on the chromatin accessibility and
203  nucleosome positioning near transcripts using the published ATAC-seq (14 tissues) and
204  MNase-seq (five tissues) datasets, respectively®>®. TE enrichment in open and closed
205  chromatin exhibited strong age-specific patterns, mainly reflecting that the youngest and
206  younger SINE families were significantly depleted from open chromatin regions and enriched
207  near the nucleosome (Fig. 2¢). Whereas the older SINE families showed relatively high
208  enrichment for open chromatin, particularly in the stomach, followed by adipose and
209  cerebellum.

210 We further explored the relationship of SINE families with four active epigenetic marks
211  (H3K4mel - primed enhancers, H3K4me3 - enriched in transcriptionally active promoters,
212 H3K27ac - distinguishes active enhancers from poised enhancers, and H3K36me3 - actively
213 transcribed gene bodies) and two repressive marks (H3K9me3 - constitutively repressed
214 genes and H3K27me3 - facultatively repressed genes). In Fig. 2¢, we found that the majority
215  of SINE families were underrepresented in all four active marks, consistent across tissues.

216  Whereas SINE families, particularly for young SINEs, were highly enriched for H3K9me3
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217  but not for H3K27me3. H3K27me3 has development-dependent repressed characteristics,
218  while H3K9me3 indicates permanent repression®’. In general, compared to older or oldest
219  SINE groups, younger and youngest SINE groups (especially the youngest group) showed a
220  much higher over-/under-representation for all types of histone modifications. In addition, we
221  further investigated the enrichment of SINE families in 15 distinct chromatin states across 14
222 tissues (Fig. 2d, Supplementary Information)®®. We observed that young SINE groups
223 (youngest and younger) show lower enrichment in most of the functional chromatin states
224 than old SINE groups (older and oldest), and the enrichment degree of SINE in chromatin
225  states was roughly similar across 14 tissues. These enrichment characteristics can be further
226  divided into four distinct enrichment patterns according to the enrichment degree of different
227  SINE groups (Fig. 3a). We observed that the oldest SINE’s highly enriched pattern accounted
228  for the vast majority (80%, 168 of 210 combinations of 14 tissues and 15 states), while the
229  young SINE group showed the three enrichment patterns in remaining combinations (the
230  enlarged inset). In two of them, only the youngest SINE group showed high enrichment for
231  TssAHet (flanking active TSS without ATAC) and EnhAWk (weakly active enhancer). In
232 general, all SINE groups were significantly depleted from active promoters and enhancers,
233 except for weak TSS and enhancers, and the young SINE groups showed a higher depletion
234 than old ones. All these together indicated that young SINEs as new invaders might be
235  silenced by histone modifications and DNA methylation, while the old SINEs might be
236  tolerated by the pig genome.

237 It has been proposed that TEs carrying TFBS repertoire may indirectly contribute to the
238  transcriptional regulation of genes®7°. We thus performed the motif enrichment analysis of
239  SINEs to determine their possible contributions (Fig. 3b). In total, 31 known TFBS were
240  predicted to have the binding motifs in at least one SINE family, 30 of which (96.8%) were
241  found in old ones and 26 (83.9%) were related to the open chromatin, revealing that the recent
242  exaptation of young SINEs into regulatory regions was relatively rare’! and was repressed by
243 less chromatin accessibility. The youngest SINE-specific TFBS related to the ZNF 148 gene
244 has been proven to drive the formation of a muscle phenotype’®. Besides, three members of
245  the RFX transcription factor family were observed to be amplified in young and older SINEs
246  and involved in the immune, reproductive, and nervous pathways’. For example, RFX1 and
247  RFX3 were the candidate major histocompatibility complex (MHC) class Il promoter binding
248  proteins that were found to function as a frans-activator of the hepatitis B virus enhancer’*7>,
249 Given that TEs may play major roles in the regulation of gene expression by shaping the
250  epigenetic modifications’®, we further assessed the epigenetic states of SINE families in terms
251  of DNA methylation (MeDIP), the density of CG (CpG) sequence contexts, and AT:GC
252 content (CpG islands) (Fig. 3¢; Supplementary Information). The results showed that almost
253 all SINE families exhibited a significant depletion of CpG islands, and the young SINE
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254  families were more highly methylated than the old ones. Similarly, we observed that the
255  average CG methylation levels within SINE bodies, especially for the young SINEs, were
256  significantly higher than their flanking regions across 10 different tissues, which
257  corresponded to the enrichment of SINE families in H3K9me3 (Fig. 3d). A previous study
258  revealed that Piwi-interacting RNAs (piRNAs) played a major role in TE silencing via the
259  ping-pong cycle in pig germline’’. We further distinguished three classes of small non-coding
260  RNAs to test the relationship between piRNA density and SINE families (Fig. S8,
261  Supplementary Information). In contrast to siRNA and miRNA, piRNAs were significantly
262  enriched for SINE-related sequences or sequence flanks, and there was a significant negative
263  correlation between piRNA density and the age of SINE subfamily. Our result was in line
264  with the findings in humans that young SINE families were more likely to be targeted by
265  piRNAs’®, which can be regarded as the major reason leading to the high methylation levels

266  of young SINE families, as we observed above.

267  Young SINE-derived transcriptome profiling in pigs
268 In addition to their interactions with epigenetic modifications, TEs can directly modify
269  the transcription of host genes by remodeling new alternative splice events”-%, To test this,

270  we analyzed the PacBio long-read isoform sequences (Iso-Seq) from 38 pig tissues®!?

using
271  auniform pipeline to detect the transcripts of SINE-derived exonization and alternative splice
272 sites. We estimated the contribution of TEs to gene expression across 52 tissues and 27 cell
273  types by analyzing 3,570 published RNA-seq samples (Fig. 4a, Table S2) from the EBI
274  database (https://www.ebi.ac.uk/).

275 After processing raw data by LORDEC®, we obtained 30,331,870 error-corrected Iso-seq
276  reads with a mean length of 2,797 bp, of which 7.48% (2,267,973) was defined as TE-derived
277  transcripts. Importantly, 68.81% (1,560,568) of TE-derived transcripts were recognized to be
278  inserted by nearly full-length SINE (average coverage of 87.76%), indicating that SINE plays
279  an important role in regulating gene expression.

280 Similar to a previous study®?, we next classified 337,746 young (younger and youngest)
281  SINE-derived transcripts into four categories by comparing their genomic location with
282  known transcripts in the currently available pig genome annotations (Fig. S9). Out of those,
283 1,028 young SINE-derived transcripts perfectly matched with 517 PCGs and 47 LncRNAs
284  (Table S3), and 62,304 young SINE-derived transcripts potentially offered the novel
285  alternative splice events for 8,103 PCGs and 405 LncRNAs (overlapping with at least one
286  splice junction of a known transcript). The remaining young SINE-derived transcripts with no
287  complete structural similarity with the currently available transcript annotation were classified
288  as either 150,469 exon-covered (exonic overlap without any splice junction on the same or

289  opposite strands) or 130,180 intronic transcripts (felled in a reference intron).
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290 To understand the cis-functionality of young SINE-derived transcripts, we used the
291  transcriptome data from 52 tissues and 27 cell types to quantify the abundance (RNA-seq
292 counts) of PCGs and SINE-derived transcripts by Salmon tools®. A total of 3,138
293  protein-coding transcripts (3,112 PCGs) had significant associations with young
294 SINE-derived transcripts at a Bonferroni significance threshold of 1.42x10(0.05/35,135). Of
295  those, 84 PCGs showed that the young SINE-derived exonization and their SINE-derived
296  exons were involved in the expression of PCGs (Table S4). Interestingly, we found that the
297  majority of SINE-derived exons (81.52%) were presented in mRNA 3'-untranslated regions
298  (3'-UTRs) (Fig. 4b), suggesting that young SINEs can directly insert into the regulatory
299  region to influence gene expression by the mechanism similar to Staufen-mediated decay
300  (SMD)®. For example, we found that a full-length PREO-SS (sus-specific SINE) was inserted
301  in the 3’-UTR of the pig PDKI gene, which was in agreement with the previous report that
302  the Alu and B1 (primate-specific and rodent-specific SINEs, respectively) regulated both
303  human and mouse orthologs of PDKI by SMD?*. This provides further supports for the
304  convergent evolution of SINE-directed SMD. In contrast, a higher relative proportion of
305 young SINEs was found in the CDS regions of exon-covered and intronic SINE-derived
306  transcripts (10.03% and 11.15%, respectively) (Fig. 4b), suggesting that the selections against
307 the young SINEs might be more relaxed in these two types of SINE-derived transcripts.
308  However, it was consistent that most young SINEs do not directly participate in the protein
309 translation but indirectly influence gene expression by affecting the UTRs of their derived
310  transcripts®’.

311 We then retrieved young SINEs involved in SINE-derived transcripts and named them
312 young-D SINEs. We observed that the average CG methylation levels of young-D SINEs that
313 derived transcripts were significantly lower than the entire young SINEs in most tissues (Fig.
314  4c¢). Similarly, young-D SINEs were more significant enrichment in open chromatin and
315  histone modifications than the entire young SINEs, especially the H3K4me3, providing more
316  evidence that young-D SINEs and their derived transcripts were more likely active and
317  functional across tissues (Fig. 4d).

318 Based on the normalized expression of PCGs by DESeq2®, the #-SNE plots of
319  unsupervised clustering of 3,570 samples clearly reflected tissue types (Fig. 5a). We further
320  performed a co-expression network analysis of 14,403 PCGs using WGCNA R package®’ to
321  explore the function of young SINE-derived transcripts across this wide range of tissues and
322 cell types (Fig. S10). As a result, a total of 13,872 PCGs were grouped into 40 modules with
323  the gene size ranging from 30 to 1,694 (Fig. S11, Table S5), and most of the modules showed
324 high tissue specificity and likely play key roles in particular organ systems in pigs (Fig.
325  S12-S13). The results were also supported by the gene-to-gene networks of topological
326  clustering, which was performed using the Markov clustering (MCL) algorithm®® (Fig. S14).
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327  Importantly, 17.9% of co-expressed PCGs (2,744) were related to young SINE-derived
328  transcripts and were mainly enriched in modules M38 (Trachea), M7 (Adipose), M18 (Fetal
329  thymus), and M12 (Alveolar macrophages) (Z-score > 1), and the expression of all those
330  modules showed high tissue specificity (Fig. S15).

331 In addition, as shown in Figure 5b, these young SINE-related PCGs were significantly
332 enriched in the neural development, cellular metabolism, muscle development, and immune
333 response, which may be responsible for the natural selection and domestication of modern

o193 For instance, 186 PCGs were significantly enriched in the chemical synaptic

334 pigs
335  transmission (GO:0007268), brain development (GO:0007420), and neuron projection
336 morphogenesis (GO:0048812), which were mainly in the module M2 with a high expression
337 in brain tissues (Fig. S16). Correspondingly, a total of 248 young-D SINEs, whose
338  SINE-derived transcripts had significant associations with these 186 PCGs, were more
339  significantly enriched in the active epigenetic marks (H3K4mel, H3K4me3, and H3K27ac)
340 and depleted from the repressive mark (H3K27me3) at the nervous system (cerebellum,
341  cortex, and hypothalamus) than other tissues, suggesting that young SINEs exhibited strong

342 and concordant tissue specificity in both transcript expression and epigenetic regulation (Fig.

343 Se).

344  The roles of young SINEs in population admixture and local adaptation in pigs
345 TEs produce abundant raw materials for evolution in natural populations, and the burst of
346  TEs was tightly related to significant evolutionary events such as the population admixture
347  and local adaptation?*4°. Young SINE polymorphisms represented the vast majority of TE
348  polymorphisms in the pig genome*-75%%, Therefore, we developed a comprehensive map of
349  polySINE from WGS of over 300 pigs, representing the majority of Eurasian pig breeds, to
350  explore the roles of young SINEs and their derived genes in pig population admixture and
351  local adaptation.

352 To investigate whether the sequencing depth and polySINE detection tools had a
353  prominent effect on the detection of polySINEs, we first benchmarked the polySINE
354  detection tools that showed superior performances in previous human projects'>*’ under
355  different sequencing depths (Fig. S17-S25). Based on the results of benchmarking, we
356  customized the Pig TE Polymorphism (PigTEP) pipeline to maximize its performance in the
357  current pig WGS datasets (Fig. 6a). We then applied it to identify polySINEs from 374
358  individuals with the uniform sequencing depth of 10x (Fig. S26, Table S6, average mapped
359  Dbases: 27.18 GB and average mapping rates: 99.44%). The analyzed 374 individuals from 25
360  diverse populations (N > 5) were further assigned into 10 major groups, i.e., PYGMY, ISEA,
361 CHD, KOD, AWB, TWB, EUD, EWB, MINI, and COM (Fig. 6b).


https://doi.org/10.1101/2022.02.07.479475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.07.479475; this version posted February 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

362 In total, we identified 211,067 polySINEs (189,966 Ref+ and 21,101 Ref-) in pig genome,
363 49.64% of which were located in non-intergenic regions. As expected, the vast majority of
364  polySINEs were found at a low frequency (64.89% of polySINEs with < 5% minor allele
365  frequencies, MAF) in the whole pig population (Fig. S27), but showed variable MAF among
366  groups (Fig. S28). We found 85.58% of polySINEs were shared among groups, while only
367 30,441 polySINEs (PYGMY and ISEA accounted for 60.83% and 26.01%, respectively) were
368  exclusively presented within a single group (Fig. 6c¢).

369 The principal component analysis (PCA) of samples using polySINE genotypes clearly
370  reflected the four species of the Suidae (Fig. 6d). PC1 separated the Porcula slavania from
371  Sus-species, while PC2 (19.41%) and PC3 (13.67%) showed the genetic separation between
372 Asian and Western breeds (Fig. 6e). Interestingly, the Korean domestic pigs (KOD) separated
373  from the Asian breeds and were closer to Western breeds than to Chinese breeds, suggesting
374  the presence of gene flow and introgression from Western pig breeds to Korean domestic pigs
375  and most likely mediated by humans.

376 The results were further supported by the TE-based phylogenetic tree and genetic
377  admixture (Fig. 6f and g; Fig. S29), whose evolutionary relationships were basically
378  consistent with previous studies on SNP-based genotypes**®. The comparison of Chinese and
379  European domestic pigs confirmed our previous findings on the TE-based introgression
380  between Northern Chinese domestic pigs and European domestic pigs®’. Specially, we found
381  that Korean wild boars, unlike the Korean domestic pigs, clustered together with other Asian
382  wild boars instead of European pigs.

383 To detect polySINEs associated with local adaptation, we calculated the pairwise Fist;
384  value for each polySINE between cluster i and the remaining clusters to measure its
385  locus-specific divergence in allele frequencies. The polySINEs with extreme Fst; (top 1%; n
386  =337) were observed in functional regions (exonic, splicing, UTRS, UTR3, and upstream) of
387 330 PCGs (Table S7). While 77.94% of these PCGs existed in PYGMY (n = 223) and ISEA
388  (n=42), and the remaining 75 were likely associated with the breed-restricted phenotypes of
389  domestic pigs (Sus scrofa) (Fig. 7a). For instance, a PRE1 insertion in the promoter of the
390  IGFBP7 gene, which was associated with tumor suppressor®, was widespread in Chinese
391  indigenous breeds rather than in commercial breeds!®”. The upstream (high signals in
392  H3K4mel and H3K27ac) of FRZB was inserted by a population-specific polySINE from
393  Southern Chinese domestic pigs, which was associated with pig growth traits'’! (Fig. 7b).

394 Importantly, we found a fixed polySINE at the first exon of RUNX3 in the Goettingen
395  miniature pigs and MiniLEWE, which was also detected in Southern Chinese domestic pigs,
396  particularly in the Luchuan pigs (Fig. 7c¢). The RUNX3 gene was famous as a tumor
397  suppressor in a human T-cell malignancy!®? and was a key part of the TGF-§ induced

398  signaling pathway'®. In addition, 30 PCGs showed the extreme Fs¢ in the long-term
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399  laboratory-inbred Bama Xiang pigs'®and were significantly enriched in the AMPK signaling
400  pathway (Corrected P-values = 0.00295, Table S8), and especially the SLC342 (upstream)
401  and SIRTI (UTR3) genes had the polySINEs with a perfectly fixed frequency.

402 Nine of 75 candidate genes could be mapped to known QTX (Quantitative Trait
403  Loci/Gene/Nucleotide) data that were potentially associated with the phenotypic traits'®® (Fig.
404  7d). We observed that four PCGs related to laboratory-inbred Bama Xiang pigs were
405  associated with fat content and body weight, which was consistent with the direction of
406  selective breeding in laboratory'*. Especially, the LEP gene was highly expressed in adipose
407  tissue and can produce a hormone called leptin, which was involved in the regulation of
408  appetite, fat storage, and body weight'%. Overall, these findings demonstrate that polySINEs
409  can serve as a valuable source for studying genomic ancestry and local adaptive evolution in

410  pigs.

411  Mapping young SINEs to the genetic associations of complex traits

412 To explore the association of polySINEs with complex traits, we first collected a total of
413 4,072 trait-associated SNPs (T-SNPs) from 79 published GWAS studies of 97 complex traits
414  of economic value in pigs, including 18 reproduction, 22 production, 36 meat and carcass, six
415  health, and two exterior traits (Fig. S30). As shown in Fig. 7e, we identified 127
416 trait-associated polySINEs (T-polySINEs) that were in linkage disequilibrium (LD, r?>>0.3)
417  with T-SNPs among 296 domestic pigs (109 Asian and 187 European domestic pigs). In
418  particular, it was found that these T-polySINEs were more likely to be enriched in the
419  TxFInkWk (Weak transcribed at gene), indicating that they have the potential for gene
420  regulation (Fig. 8a).

421 A total of 54 genes were affected by these T-polySINEs, which were associated with the
422  intramuscular fat composition and teat number. The majority of them showed specific
423  expression in certain tissues (Z-score > 2), particularly in the nervous system (plasmacytoid
424 dendritic cells, choroid plexus, hypothalamus, and brain), reproductive system (testis, oviduct,
425  and oocyte), and muscle satellite cells (Fig. S31, Table S9). Importantly, most of the intronic
426  T-polySINEs exhibited breed-specific MAF between Chinese and Western pigs, which was in
427  agreement with their differences in fatty acid content and teat number (Fig. 8b).

428 We identified a 320kb T-polySINE hotspots (chr14:112,965,840-113,285,513; r> > 0.3),
429  including six T-polySINEs and eight genes, which were significantly associated with
430  intramuscular fat composition (Fig. S32). Among these hotspot genes, C14H100rf76 (ARMH3,
431  r2=0.89) and GBF'I (r* = 0.86) have been reported to be essential for Golgi maintenance and
432 secretion'”’. The ELOVL3 gene was a strong candidate gene for fatty acid composition!%3-1%,
433 A low-frequency polySINE was in the intron region of ELOVL3, while multiple T-polySINEs
434 within its upstream region of 15kb to 50kb. In particular, the T-polySINE (chr14:113,199,425)
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435  near 27 kb upstream was at high frequency in Chinese domestic pigs, especially Southern
436  Chinese domestic pigs (Fig. 8c).

437 Furthermore, there was a high level of pairwise LD (+* = 0.88) between the T-polySINE
438  (chr8:109,447,835) in the intron of ANK2 and the T-SNP that had a significant association
439  with the fatty acid content of C14:0, C16:0, and C16:1n7 in backfat!!®. It was reported that
440  ankyrin-B (AnkB) was a neuron-specific alternatively spliced variant of ANK2 that was
441  associated with obesity susceptibility in humans'!!. We found that the insertion of this
442 T-polySINE was located in an LD block of 15kb (1> > 0.5, chr8:109,439,023-109,454,866, Fig.
443  S33) and almost fixed in the Western domestic pig populations (Fig. 8d). ANK2 gene was
444  observed to be ubiquitously expressed in pig bodies and highly enhanced in the nervous
445  system (Fig. 8e). We noticed that two predicted SINE-derived transcripts (supported by
446  Iso-seq reads) overlapped with exons of ANK2 had a significant correlation with the
447  expression of ANK2 (Table S10). The expression of ANK2 was significantly upregulated in
448  cultivars with high-fat deposition compared with those with low-fat deposition, such as
449  Songliao black pigs vs. Landrace pigs'"?
450  chickens!'®,

451 In addition, we found a high LD (1> = 0.75) between a T-SNP (chr7:97,606,621) and a
452 T-polySINE (chr7:97,615,896) in the first intron of VRTN gene, which was significantly

, and fast-growing chickens vs. slow-growing

453  associated with teat number''%. The VRTN was proposed as the most promising candidate
454  gene to increase the number of thoracic vertebrae (ribs) in pigs''4, which was highly and
455  specifically expressed in embryonic stem cells, embryo, and ovary (Fig. 8f), suggesting that
456  VRTN functions at the early embryonic stage of pig development. We found that this
457  T-polySINE showed the obvious difference in frequency between Chinese indigenous breeds
458  and commercial breeds (Fig. 8g). Especially, a novel transcript (length = 2,191bp) derived by
459  this T-polySINE and covered the first exon of VRTN, which was significantly correlated with
460  the expression of VRTN (Fig. 8h, P-values = 3.03x10-2°!, Table S10), and this transcript was
461  supported by the RNA-seq exon coverage in NCBI annotation (Fig. S34). Of particular note,
462  this region exhibited the open chromatin and enhancer signals (H3K4mel) while was
463  facultatively repressed in most tissues (H3K27me3) (Fig. 8i). We clearly observed a
464  significant decline in the repressed states at the stem cells and embryo-related tissues, which
465  corresponded to the tissue-specific expression in VRTN, suggesting that this region was

466  crucial for VRTN, and this T-polySINE was more likely to affect its expression.
467  Discussion

468  TEs are major, abundant, and polymorphic in the pig genome
469 In this study, we built a comprehensive atlas of TEs in the pig genome by using the
470  newly developed PigTEDC pipeline, which combined the similarity-, structure-, and de


https://doi.org/10.1101/2022.02.07.479475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.07.479475; this version posted February 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

471  novo-based methods. Our results demonstrated that nearly a third (947 MB) of the pig
472  genome was made up of TEs, and the majority of them were non-LTR retrotransposons
473  (SINE and LINE). SINE was shorter and more complete than LINE. Similar to our previous
474  findings®’, SINE, especially the PRE1-SS, PREO-SS, and PREla families in SINE/tRNA,
475  displayed the most recent ages and most polymorphic insertions. These polymorphic SINEs
476  contributed nearly 90% of medium-length SVs among different assemblies, especially the
477  L13 subfamilies, with 36.15% that were classified as the youngest SINEs in the pig genome.

478  The influence of SINEs on transcriptional networks are associated with their ages

479 Gene regulatory network is influenced by genomic components, chromatin accessibility,
480  histone modifications, DNA methylation, and cis-regulatory elements (e.g., TFBS, promoters,
481  and enhancers). TEs associated with unique chromosome features can contribute to gene
482  regulatory networks in a variety of the above ways. This is the first time, to our knowledge, to
483  use large-scale multi-omics data to fully explore the relationships between TEs and
484  chromosome features in the pig genome. Our findings showed that SINEs were significantly
485  enriched in the A compartment, and the enrichment of SINE in open or closed chromatin
486  regions was associated with their ages. For example, young SINE families were frequently
487  enriched in close chromatin-like nucleosomes but highly depleted from open chromatin.

488 As expected, SINEs were highly depleted from all active chromatin tags, and more
489  signals of constitutive heterochromatin tags (H3K9me3 peaks) were observed on SINE. The
490  exception was H3K27me3, which was associated with facultative suppressor genes and
491  cannot make permanent silence on SINEs. Almost all signals of histone modifications in
492  SINE showed a tendency to decay as the age of TE increased, which was in line with the
493  contribution of SINE to TFBS and the distribution of DNA methylation on SINE. However,
494 there is still evidence that some young SINEs enrichment in weak functional regions, such as
495  the youngest SINEs families, were highly enriched in the regions of weak active enhancer at
496  hypothalamus tissue (Fold >1.5). We speculate that the relationship between SINE and its
497  host genome is a combination of both “arms race” and “co-evolution,” depending on how the
498  symbiosis turned out. In the former case of parasitism, the young SINEs were more likely to
499  be treated as new invaders that were constitutively silenced by histone modifications and
500  DNA methylation of the host genome (e.g., PIWI -piRNA pathway during the TE in testis),
501  while the old SINEs were mutated and gained new regulatory potential, and thus tolerated or
502  even co-opted by the pig genome. In the latter case of mutualism, there might be rare cases
503  where the SINEs were positively selected by nature thereby help the host genome better adapt

504  to the local environment in the long run.

505  The non-coding RNAs derived from young SINEs may affect tissue-specific genes

506 The use of long-read isoform sequencing provided us a more complete characterization
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507  of full-length transcripts, which made it possible to identify the young SINE-derived
508  transcripts. Meanwhile, the Iso-seq reads we used here were collected from about 40 pig
509  tissues, which ensured the investigation of abundance and tissue specificity of young
510  SINE-derived transcripts.

511 Our findings showed that the vast majority of young SINE-derived transcripts were
512 non-coding RNAs that covered exons or felled in the introns. A total of 3,112 PCGs were
513  found to be associated with young SINE-derived transcripts, and nearly 88% of them were
514  enriched in co-expressed modules with high tissue specificity. The young SINEs that derived
515  transcripts exhibited lower CG methylation levels and were more significant enrichment in
516  open chromatin and histone modifications than whole young SINEs. Especially, some young
517  SINEs exhibited strong and accordance tissue specificity in both transcript expression and
518  epigenetic regulation. This was consistent with previous findings in other species'!'>!!7,
519  suggesting that SINE insertions may be a crucial component of genes and regulate

520  tissue-specific expression of their target genes.

521  The detection of polySINE is significantly affected by detection tools and sequencing

522 depth

523 PolySINEs belong to SVs that were more sensitive to sequencing depth than SNPs. In
524  this study, to ensure the unbiased detection of polySINEs, we benchmarked the four
525  polySINE detection tools under different sequencing depths. Our findings showed that MELT
526  had robust performance in both ref+ and ref- detection (Fig. S17-S18). As expected, we found
527  that the detected number of polySINEs increased significantly with the sequencing depth,
528  especially from 5x to 10x that nearly doubled the average number of polySINEs (Fig. S19).
529  Considering the sequencing depth in the current 838 publicly available whole-genome
530  sequence datasets in pigs, we retained 374 individuals whose sequencing depth was greater
531  than 10x and down-sampled their sequencing depth to ~10x through a strategy of randomly
532  removing reads (average mapped bases: 27.17 GB and average mapping rates: 99.43%).
533  Finally, the PigTEP pipeline was developed to identify both polySINEs and SNPs in
534  individuals simultaneously. This pipeline will help other researchers to explore the role of

535  polySINEs in pig genomic study and breeding.

536  TEs are non-negligible genetic markers for genetic diversity and complex traits

537 In pig genomic researches, the contribution of TEs to genetic diversity and complex traits
538  was underestimated, even though SINEs can be more active when the pig is under selective
539  pressure. The lack of a comprehensive map of polySINEs based on the large-scale
540  re-sequencing dataset has limited our understanding of SINEs in pig population genetics.

541 Here, we genotyped and analyzed 211,067 polySINE loci in 374 individuals across 25
542  pig populations and found that polySINE loci were highly variable in polySINE allele
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543  frequencies among populations. The genetic relationships of samples based on polySINEs
544  were consistent with previous studies based on SNP genotypes''®, revealing that polySINE
545  loci were informative in studying population genetics. Especially, we observed that ten major
546  clusters representing 25 pig populations well corresponded to the geographic differentiation.
547  These polySINEs with high pairwise Fst value were useful resources to understand local
548  adaptation in domestic pigs. Our findings confirmed the results of previous studies (e.g.,
549  IGFBP7) and provided novel candidate genes that are potential to contribute to economically
550  complex traits in pigs.

551 The genome-wide association studies (GWAS) based on SNPs have discovered
552 thousands of QTLs of important economic traits in pigs, but most of these loci have not been
553  functionally characterized. One possible reason is that what really affects phenotypic changes
554  is not SNPs but SVs (MEIs) that were in linkage disequilibrium (LD) with them. In this study,
555 127 polySINEs were found to be LD with significant GWAS SNPs of complex traits, and
556  nearly a third of them showed high tissue specificity in terms of expression. Importantly, a
557  part of these polySINEs has been found to have the ability to derive novel functional
558  transcripts (in H3K4mel and H3K27me3), as the exon-covered transcript was found in the
559  upstream of the VRTN gene. Future researches will be required to functionally validate
560  whether and how these polySINEs affect complex traits by regulating their target genes in

561  particular tissues (e.g., VRTN gene in embryonic stem cells).
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FIGURE LEGENDS

Figure 1. Transposable elements annotation and SINE classification in the pig genome. a
A schematic of the Pig Transposable Element Detection and Classification (PigTEDC)
pipeline. It is composed of three TE detection approaches, using the similarity-, structure-, and
de novo-based algorithms. b The proportion of TEs from different superfamilies in the count.

¢ The proportion of TEs from different superfamilies in length. d Classification of pig TE
superfamilies and families (> 3,000 TE copies in each family). e Sequence divergence
distribution for TE superfamilies (upper panel) and families (bottom panel) in the pig genome.
Sequence divergence distributions are plotted in bins of 0.01 increments. f Phylogenetic tree
and sequence divergence distribution for SINE families in the pig genome. On the right panel,
the x-axis represents the divergence, and the y-axis represents the counts of the SINE families.
g Boxplots displays the proportion of genomic SVs formed by different SINE families. h
Boxplots displays the proportion of genomic SVs formed by different SINE new subfamilies.

See Table S1 for their definitions. i Classification of pig SINE families based on their ages.

Figure 2. Distribution of SINE on pig genome and functional regions. a The five types of
genomic features used in this study included 3D chromatin architecture, chromatin
accessibility, histone modifications, DNA methylation, and transcription factor binding sites.

b The distribution of SINE families between 3D chromatin architectures (Compartments A vs.
B), as well as near topologically associating domain (TAD). ¢ The reads density distributions
of chromatin accessibility and histone modifications near transcripts across four different
SINE groups. d Boxplots displays the enrichment of four SINE groups in 15 distinct

chromatin states across 14 tissues.

Figure 3. Enrichment of SINE in functional elements and methylation modification. a
Hierarchical clustering of enrichment patterns in 15 chromatin states for four SINE groups
across 14 tissues (left panel). The Heatmap of three distinct enrichment patterns for the high
enrichment in the young SINE group (right panel). b A heatmap for the enrichment of

transcription factor binding motifs in SINE families, chromatin accessibility, and histone
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848  modifications. ¢ The signal density of MeDIP-seq and CpG island within different SINE
849  families. d Boxplots displays the DNA methylation levels on different SINE families. L and
850 R represent the upstream and downstream directions of the SINE body. E.g., L250 represents

851  0to 250 bp, and L500 represents 250 to 500 bp window upstream of SINE.

852  Figure 4. Young SINE-derived transcriptome landscape. a Overview of RNA-seq libraries
853  in 3570 samples across 52 tissues and 27 types of cells. b The bar plot indicates the

854  proportion of functional regions affected by SINE across four different categories of

855  SINE-derived transcripts. ¢ Boxplots display CG methylation levels on young SINE families.
856  Young-D group represents the SINE families that derived the young SINE-derived transcripts.
857  The Younger and Youngest groups represent all the younger and youngest SINEs in the entire
858  genome, respectively. d Boxplots displays the reads density of chromatin accessibility and

859  histone modifications on Young-D, Younger, and Youngest groups.

860  Figure 5. Functional enrichment of young SINE-derived transcripts. a The tSNE plots
861  display the expression differentiation among different tissues and cells. b Top 20 results of
862  functional enrichment analysis for young SINE-derived genes. ¢ The bar plot indicates the
863  enrichment of 248 young-D SINEs in chromatin states and histone modifications across

864  different tissues.

865  Figure 6. Young SINE-derived genetic diversity of pigs. a The Pig TE polymorphism

866  pipeline. The pipeline was constructed to identify both polySINEs and SNPs for each

867  individual simultaneously. b Overviews of whole-genome re-sequencings in 374 individuals.
868 ¢ Venn plot represents the distribution of polySINEs among different populations. d PCA plot
869  displays the genetic relationship based on polySINEs among 374 individuals. e PCA plot

870  displays the genetic relationship based on polySINEs among 364 individuals from the modern
871  pigs (Sus scrofa). f Phylogenetic tree based on polySINEs for 374 individuals. h Population
872  structure based on polySINEs for 374 individuals when K was 3 and 10.

873  Figure 7. Potential candidate genes for young SINE-derived local adaptation. a The

874  scatter diagram displays the 75 PCGs that are possibly associated with local adaptation. The
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x-axis represents the Fst, and the y-axis represents population frequency. b Chromatin
accessibility and histone modifications for FRZB and their ploySINE. ¢ Bar plot displays the
population frequency of the polySINEs in the first exon of RUNX3. d Overviews of nine
candidate genes under local adaptation. Bar charts indicate the population frequency of
candidate polySINEs and the average TPM values of their corresponding candidate genes
across tissues. e The scatter diagram displays the linkage disequilibrium between T-SNPs and
polySINEs. The x-axis represents the chromosome, and the y-axis represents the r2 values.
Figure 8. Mapping young SINEs to the complex traits. a Bar plot displays the enrichment
of T-ploySINEs in different chromatin states. b Heatmap displays the frequency of
T-polySINEs among different pig populations. The darker red color represents a higher
population frequency for T-polySINEs. ¢ Population frequency of T-polySINEs in ELOVL3
gene among different pig populations. d Population frequency of T-polySINEs in ANK2 gene
among different pig populations. e The expression of the ANK2 gene at the top 10 tissues
sorted by gene expression. f The expression of the VRTN gene at the top 10 tissues sorted by
gene expression. g Population frequency of T-polySINEs in VRTN gene among different pig
populations. h The VRTN gene structure and the neighboring SINE-derived transcript. i
Chromatin accessibility and histone modifications for the upstream of VRTN gene.

H3K27me3 signals for the upstream of VRTN gene.
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