

1 **Host origin is a determinant of parallel evolution between influenza virus gene segments.**

2 Jennifer E. Jones^{1,2,3}, Seema S. Lakdawala^{1,2,3*}

3

4 ¹Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA

5 ²Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA

6 ³Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA

7

8 * Send all correspondence to lakdawala@pitt.edu

9

10 **Abstract**

11 Several emerging influenza viruses, including H7N9 and H5N6 viruses, trace their origins to
12 reassortment with H9N2 viruses that contributed internal gene segments. However, the
13 evolutionary constraints governing reassortment of H9N2 viruses remain unknown. In seasonal
14 human influenza A viruses, gene segments evolve in parallel at both the gene and protein levels.
15 Here, we demonstrate that parallel evolution in human H3N2 viruses differs from avian H9 viruses,
16 with both genes and proteins of avian H9 viruses characterized by high phylogenetic divergence.
17 Strikingly, protein trees corresponding to avian H9 polymerase subunits diverge despite known
18 functional constraints on polymerase evolution. Gene divergence was consistent across avian H9
19 isolates from different continents, suggesting that parallel evolution between H9 gene segments
20 is not dependent on regionally defined lineages. Instead, parallel evolution in H9 viruses was
21 dependent upon host origin. Our study reveals the role of the host in parallel evolution of influenza
22 gene segments and suggests that high reassortment potential in avian species may be a
23 consequence of evolutionary flexibility between gene segments.

24

25

26

27 **Introduction**

28 Host range is an important factor in viral emergence (1, 2). Influenza A viruses are found in a
29 wide range of hosts, but the natural reservoirs are wild aquatic waterfowl and shorebirds (3, 4).
30 Spillover of avian influenza viruses into humans is rare, but serious zoonotic outbreaks can occur
31 when host range restrictions are overcome (4). In just one example, the H7N9 outbreak on
32 mainland China, a result of reassortment between H7, N9, and H9N2 avian influenza viruses,
33 caused five successive epidemics between 2013 and 2017 with over 1,500 human infections and
34 a mortality rate of 39 percent (5, 6). It is therefore of paramount importance to understand the
35 evolutionary mechanisms that promote emergence of avian influenza viruses in mammalian
36 hosts.

37 Ecological challenges imposed by the host profoundly impact the spatiotemporal dynamics of
38 viral evolution and emergence (1). Within migratory birds, avian influenza lineages are restricted
39 by host species as well as the migratory routes frequented by these hosts, with little interhost
40 reassortment detected (3, 7). In contrast, in domestic landfowl such as chickens and turkeys,
41 influenza virus subtypes frequently cocirculate and efficiently reassort (8, 9). Adaptation and
42 reassortment of H9N2 viruses in vaccinated farm chickens led to the emergence of the G57
43 genotype in 2007 with increased antigenicity that overtook all other genotypes by 2013 (10). H9N2
44 viruses in turn contributed gene segments to other cocirculating influenza viruses, including
45 H7N9, H5N6, and H10N8 viruses (5, 10-13). As of 2016, H9N2 viruses became the dominant
46 subtype in both chickens and ducks in China (14). Therefore, it is critical to consider such factors
47 as geographical restrictions imposed by migratory routes and host species in guiding the
48 evolutionary mechanisms of avian influenza viruses.

49 Factors intrinsic to viruses are also central to questions of viral evolution and emergence (1).
50 Host range in influenza virus is impacted by several viral properties, including receptor binding
51 specificity and glycosylation of hemagglutinin (HA), stalk length of neuraminidase (NA), and
52 compatibility of the viral ribonucleoprotein complex with host nuclear translocation machinery (15).

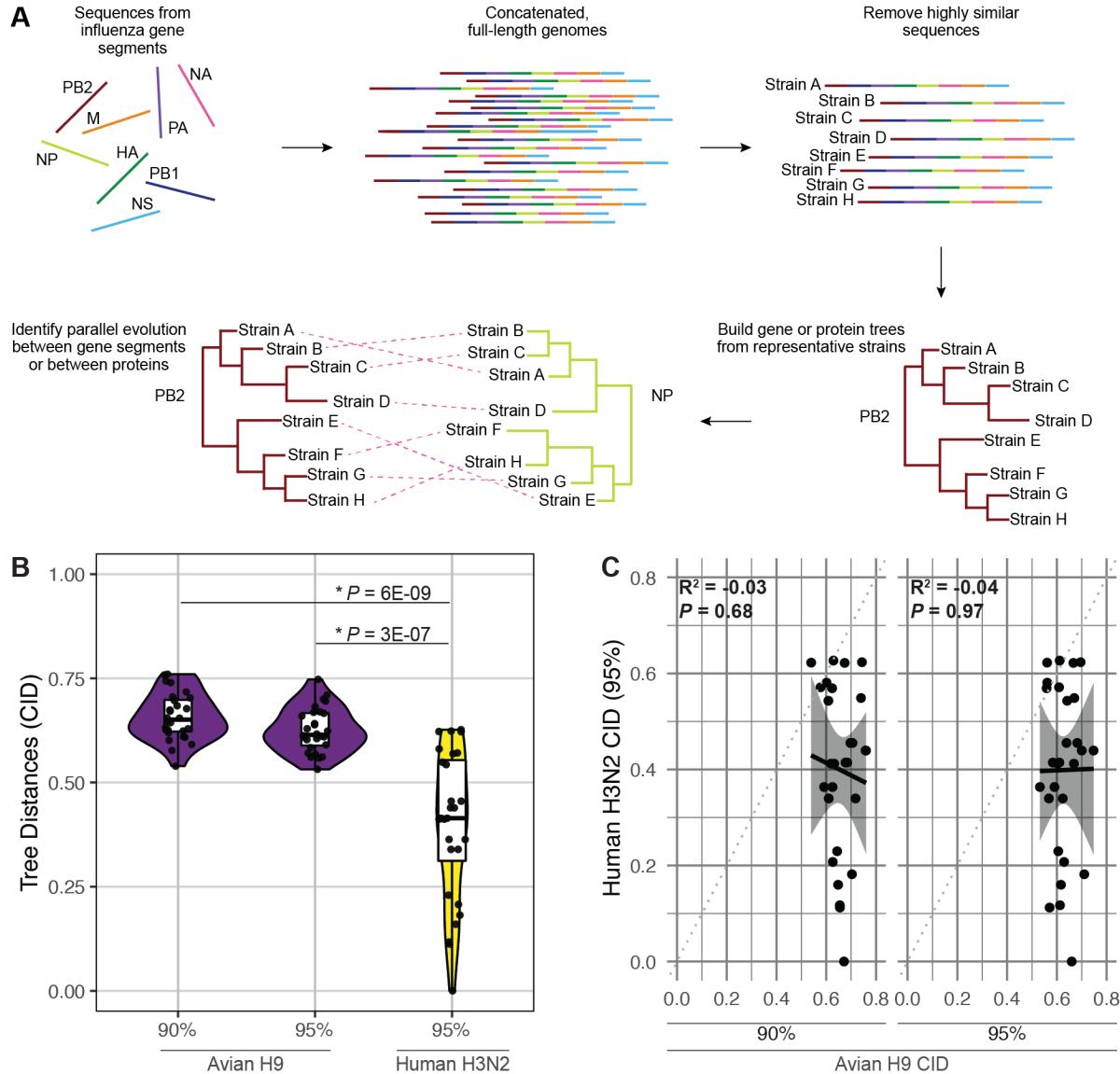
53 Interactions such as those between the viral glycoproteins (HA and NA) or between polymerase
54 subunits (PB2, PB1, PA) functionally constrain influenza virus evolution and may contribute to
55 viral emergence (16, 17). Similarly, packaging signals constrain evolution of the gene segments
56 themselves (18-20). We recently demonstrated that such gene-driven constraints contribute to
57 parallel evolution between gene segments in seasonal human influenza A viruses (21). However,
58 whether evolutionary constraints imposed by interactions between viral genes or proteins extend
59 to the evolution and emergence of avian influenza viruses remains unknown.

60 We theorized that parallel evolution in influenza viruses was driven by the host. Here, we
61 performed comparative genomics and phylogeography to investigate how the evolution of gene
62 segments differs between human and avian influenza virus strains. We use our established
63 methods to estimate evolutionary convergence between genes and proteins through a proxy tree
64 distance calculation (21). Unexpectedly, we found minimal indication of parallel evolution between
65 gene segments of avian H9 viruses. Instead we provide evidence that the evolution of H9 gene
66 segments converges in a host-specific manner. Our study highlights the role of host origin in
67 shaping influenza virus evolution.

68

69 **Results**

70 **Parallel evolution is observed between gene segments of seasonal human H3N2 viruses 71 but not avian H9 viruses.**


72 We recently studied whether gene segments of seasonal human influenza A viruses evolve
73 in parallel (21). To achieve this, we examined convergence between gene trees in publicly
74 available human H1N1 and H3N2 virus sequences (**Figure 1A**). We used tree distance as a proxy
75 for convergent evolution between genes, with two gene segments considered converging if the
76 tree distance between them was low. The extent of convergence between pairs of genes varied
77 widely, from robust convergence with tree distances approaching zero to no detectable parallel
78 evolution (21). Parallel evolution between pairs of gene segments differed between viral subtypes

79 but was relatively consistent over time in H3N2 viruses. We therefore examined whether parallel
80 evolution between gene segments of H9 viruses differs from H3N2 viruses found seasonally in
81 human populations.

82 To explore whether parallel evolution between gene segments differs in H3N2 and H9 viruses,
83 we took a similar approach to our previous study (**Figure 1A**), comparing seasonal human H3N2
84 viruses to avian H9 viruses. In this approach, representative sequences are selected from
85 genomic trees (i.e., species trees) by a sequence similarity threshold (see Methods for additional
86 details). This approach significantly improves gene tree reconstruction by pruning highly similar
87 sequences that don't resolve well (21). In this study, this approach offered the additional
88 advantage of capturing similar degrees of diversity despite differing sequence availability in
89 human and avian influenza sequences. When a 95% sequence similarity threshold was applied
90 to both human H3N2 and avian H9 viruses, far more sequences remained in avian H9 virus
91 alignments than in human H3N2 virus alignments (200 and 15 respective sequences). Therefore,
92 we examined parallel evolution in avian H9 viruses using trees built from two different sequence
93 similarity thresholds (90% or 95%) to ensure that differences in tree size didn't artificially inflate
94 differences in tree distance.

95 Following a modified version of our previously established workflow (21), gene trees were
96 constructed for each of the eight gene segments of each set of viruses (**Figures S1-S2** and **data**
97 **not shown**). Evolutionary convergence between genes was determined by the clustering
98 information distance (CID) between each pair of gene trees, where CID is inversely correlated to
99 tree similarity and evolutionary convergence. Similar to what we have previously reported (21),
100 tree distances from seasonal human H3N2 viruses ranged from 0 – indicating two identical trees
101 – to 0.63 (**Figure 1B**). In contrast, gene trees derived from avian H9 viruses exhibited significantly
102 higher tree distances than gene trees derived from human H3N2 viruses, ranging from 0.53 to
103 0.76 (**Figure 1B**). We found no correlation between pairwise CID from avian H9 viruses and
104 human H3N2 viruses ($R^2 = 0.03$ to 0.04, **Figure 1C**). These differences were independent of the

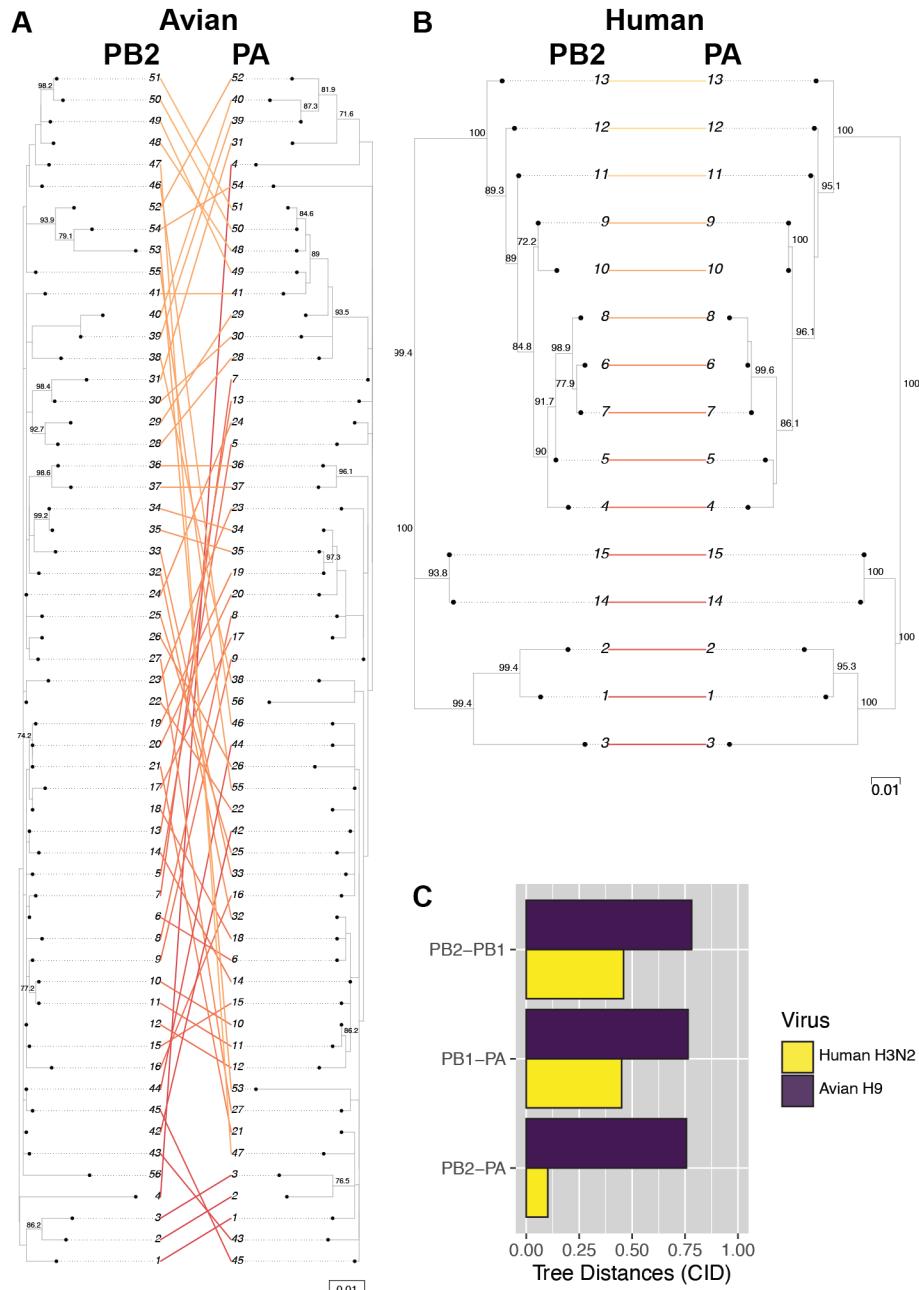

105 sequence similarity threshold applied during avian H9 virus gene tree reconstruction (**Figure 1B-**
106 **1C**). Additionally, tree distances from avian H9 viruses lacked the variation seen in human H3N2
107 viruses, suggesting little to no preferential evolutionary relationships have formed between
108 individual pairs of gene segments in avian H9 viruses. These data suggest that convergent
109 evolution occurs between gene segments of influenza viruses isolated from human H3N2 viruses,
110 but not avian H9 viruses.

Figure 1. Minimal parallel evolution is found between avian H9 virus gene segments compared to human H3N2 viruses. A, Sequences from avian H9 or human H3N2 virus gene segments were obtained from the Influenza Research Database. Gene segment sequences were concatenated into full-length genomes and highly similar sequences were pruned. Maximum likelihood trees of each gene segment were reconstructed from representative strains. Protein trees were reconstructed from coding sequences. Tree similarity was assessed by quantifying the clustering information distance (CID) and used as a proxy for parallel evolution. B, CID from avian H9 viruses (90% or 95% similarity thresholds as indicated; purple) compared to human H3N2 viruses (95% similarity threshold; yellow). Each point designates the distance between one pair of gene segment trees. Asterisks (*) indicate $P < 0.05$ (Mann-Whitney U test). C, Linear regression was performed on pairwise CID. Solid line, best fit. Shaded region, 95% confidence interval. Dotted line, line of identity.

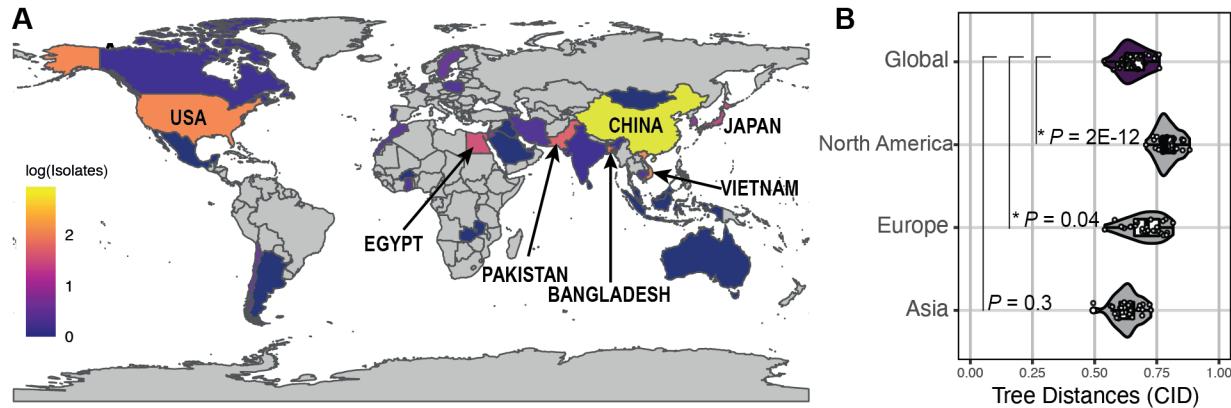
113 **High divergence is found between avian H9 polymerase subunits.**

114 Our initial examination of nucleotide sequences captures evolutionary constraints driven by
115 interactions between protein complexes as well as RNA-RNA interactions. It is surprising that we
116 observed uniformly high divergence between all gene segments in avian H9 viruses, particularly
117 between genes encoding the viral polymerase subunits: PB2, PB1, and PA. Evolution of these
118 three segments is thought to be functionally constrained by protein-protein interactions essential
119 to polymerase function (16, 22, 23). To confirm that parallel evolution does not occur between
120 polymerase subunits in avian H9 viruses, we examined similarity between protein trees. Trees
121 from amino acid sequences of PB2, PB1, and PA from either human H3N2 or avian H9 viruses
122 were constructed (**Figure 2**). As expected, protein trees corresponding to human influenza
123 polymerase subunits were characterized by high convergence, with tree distances ranging from
124 0.10 to 0.46 (**Figure 2B-C**). In contrast, avian polymerase tree distances were quite high, ranging
125 from 0.76 to 0.78 (**Figure 2A, 2C**). Thus, the polymerase subunits of avian H9 viruses do not
126 exhibit parallel evolution, suggesting that greater flexibility in this complex may be tolerated in
127 avian hosts.

Figure 2. Avian H9 polymerase subunits do not exhibit parallel evolution. Coding sequences corresponding to the gene trees of avian H9 viruses and human H3N2 viruses were used to construct protein trees. **A-B**, Tanglegrams visualizing tree similarity were constructed from the PB2 and PA protein trees for avian H9 (**A**) or human H3N2 (**B**) viruses. Strain names are coded by cluster number. **C**, Pairwise CID for all combinations of polymerase protein trees.

128

129

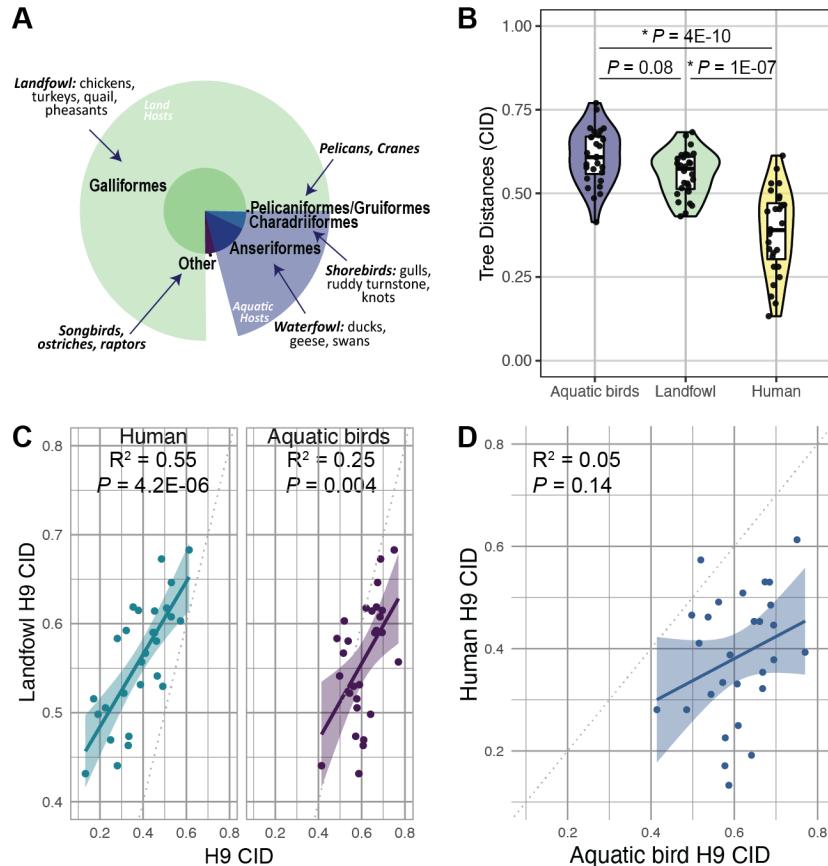

130

131 **Divergence of H9 gene segments is consistent across geographical regions.**

132 Our investigation takes advantage of the breadth of avian influenza virus sequences available
133 in public databases, but such broad analyses are not without disadvantages. Surveillance of avian
134 H9 viruses is much lower than human H3N2 viruses (**Table S1**). Therefore, sampling bias could
135 distort phylogenetic interpretation. Sampling of avian H9 viruses over time in our dataset was
136 inconsistent, with an inordinately high proportion of sequences coming from 2013 (**Figure S3A**).
137 The disproportionately high representation of sequences from this year coincides with the
138 emergence of H7N9 viruses in China, reflecting heightened poultry surveillance efforts (5, 11).
139 However, our strategy to select sequences from clustering mitigates this sampling bias, with 2013
140 isolates dropping from 25% of the overall dataset to 13% of sequences selected for phylogenetic
141 reconstruction (**Figure S3B**). Therefore, it is unlikely that our results were greatly impacted by
142 inconsistent surveillance over time.

143 Another important consideration for avian H9 virus evolution is geographical region. One
144 plausible explanation for the apparent lack of convergence between gene trees in H9 viruses is
145 that parallel evolution between gene segments is lineage specific. We previously reported a
146 similar observation in H1N1 viruses isolated before and after the 2009 pandemic (21). Two
147 geographically distinct H9N2 lineages have emerged from North America and Eurasia (8).
148 Therefore, we examined whether parallel evolution between avian H9 virus gene segments is
149 regionally defined. The vast majority of avian H9 viruses were isolated from Asia (85%), primarily
150 China (**Figure 3A**). Of the remainder, roughly 9% of sequences were isolated from North America,
151 3% from Africa, 2% from Europe, and less than 1% from South America. We subset avian H9
152 viruses by continent of origin, excluding viruses from continents with fewer than ten clusters (see
153 Methods for additional details and **Figures S4-S6** for representative trees). When avian H9
154 viruses were subdivided in this manner, no regional patterns in parallel evolution were detected
155 (**Figure 3B**). However, tree distances were in fact significantly higher in some regions compared
156 to the global dataset. This observation suggests that while lineage-specific differences in tree

157 distances exist, minimal evidence of parallel evolution between gene segments is found in avian
158 H9 viruses from any geographical location.


Figure 3. Avian H9 gene tree divergence is independent of region. **A**, Global prevalence of avian H9 viruses. The total number of full-length sequences were log-transformed for visualization. Highest prevalence: China, 861; Vietnam, 120; USA, 118; Bangladesh, 72; Pakistan, 51; Egypt, 34; Japan, 25. **B**, Avian H9 viruses were subset by continent and representative sequences were chosen from each dataset. Maximum likelihood trees of each gene segment were reconstructed from representative sequences. Continents with fewer than ten clusters were excluded. Tree similarity was assessed as described in Figure 1A. Each point designates the distance between one pair of gene segment trees. Asterisks (*) indicate $P < 0.05$ (Mann-Whitney U test with Benjamini-Hochberg post-hoc correction).

159

160 **Parallel evolution between H9 virus gene segments is dependent upon host origin.**

161 Given that geographical region didn't contribute to evolutionary convergence between gene
162 segments in avian H9 viruses, we examined whether host origin impacts parallel evolution. Host
163 origin could play a role in the overall differences we observed in parallel evolution between gene
164 segments in human H3N2 and avian H9 viruses (Figure 1B-1C). Additionally, previous studies
165 suggest that reassortment in wild birds is restricted by host species (7). Therefore, we examined
166 parallel evolution between gene segments of H9 viruses isolated from different hosts, including
167 humans, landfowl, and aquatic birds. Aquatic birds are the natural reservoir of influenza viruses
168 (4), but a sizeable majority of H9 viruses are also found in landfowl such as chickens, turkeys,
169 and quail (Figure 4A). Given that tree distances differed in H9 viruses isolated from different
170 continents (Figure 3B), we focused our analysis on H9 viruses isolated from Asia, where H9
171 sequences from humans, landfowl, aquatic birds were all available. Tree distances from human

172 H9 viruses were significantly lower than those obtained from H9 viruses from either set of avian
173 hosts (**Figure 4B** and **Figures S7-S9**). In addition, only tree distances from H9 viruses isolated
174 from humans exhibited the wide range seen in human H3N2 viruses, suggesting evolutionary
175 convergence between gene segments is host dependent. We used linear regression to examine
176 the degree of similarity between individual pairs of gene segments in H9 viruses from different
177 hosts. To our surprise, tree distances from H9 viruses from landfowl were more robustly correlated
178 with those from human hosts than with those from aquatic birds ($R^2 = 0.55$ vs. 0.25) (**Figure 4C**).
179 In contrast, tree distances from H9 viruses from aquatic birds were not correlated with tree
180 distances from H9 viruses from human hosts ($R^2 = 0.05$) (**Figure 4D**), suggesting that parallel
181 evolution between gene segments in human H9 viruses more closely reflects H9 viruses in
182 landfowl than in aquatic birds. Altogether, these data suggest that parallel evolution between gene
183 segments is dependent on host origin.

Figure 4. Parallel evolution between gene segments of H9 viruses is dependent upon host origin. A, The distribution of H9 viruses across avian taxonomic orders. **B**, CID from Asian-origin H9 viruses isolated from aquatic birds, landfowl, or humans. Asterisks (*) indicate $P < 0.05$ (Mann-Whitney U test with Benjamini-Hochberg post-hoc correction). **C-D**, Linear regression was performed on pairwise CID. Solid line, best fit. Shaded region, 95% confidence interval. Dotted line, line of identity. **C**, Comparison of CID in H9 viruses isolated from landfowl to CID in H9 viruses isolated from either humans or aquatic birds. **D**, Comparison of CID in H9 viruses isolated from humans to H9 viruses isolated from aquatic birds.

184

185

186 **Discussion**

187 The mechanistic underpinnings of viral evolution are complex. In the present study, we
 188 investigated the interplay between the host niche and functional constraints on influenza A virus
 189 evolution. Our results reveal that evolutionary constraints imposed by interactions between viral
 190 polymerase subunits in seasonal human influenza viruses do not extend broadly to avian H9

191 viruses. Instead, the avian H9 polymerase subunits are highly divergent. Surprisingly, the spatial
192 structure of avian influenza lineages established by host migratory routes contributes minimally
193 to parallel evolution of avian influenza gene segments. Instead, gene segment evolution
194 converges in H9 viruses in a host dependent manner. These results highlight the impact of the
195 host niche on influenza virus evolution.

196 Interactions between viral proteins have long been theorized to impose functional constraints
197 on influenza virus evolution. Coordinated roles between the viral polymerase subunits are well-
198 described and functionally constrain the evolution of each subunit in human influenza viruses (16,
199 21, 24). Surprisingly, we did not find evidence of parallel evolution between polymerase subunits
200 in avian H9 influenza viruses in this study. Given the success of H9 viruses in the avian population,
201 our data suggest that influenza polymerases may be less evolutionarily constrained in avian hosts
202 than in human hosts. These results are consistent with prior studies demonstrating that the
203 stability of the association between nucleoprotein and the viral polymerase in viral
204 ribonucleoprotein complexes is critical for the evasion of innate immune sensing in human, but
205 not avian, cells (25-27). Overall, these studies may suggest a greater flexibility between viral
206 polymerase subunits in avian hosts that allows for greater success of evolutionarily divergent
207 viruses than in other species.

208 A lack of parallel evolution between influenza virus gene segments in avian H9 viruses may
209 also have implications for genomic assembly. Selective packaging of all eight influenza gene
210 segments is thought to occur through RNA-RNA interactions between gene segments (18-20,
211 28). We previously demonstrated that putative intersegmental RNA-RNA interactions could
212 account for some parallel evolution observed between gene segments in human H3N2 viruses
213 (21). Unlike in human H3N2 viruses, gene segments of avian H9 viruses are highly divergent.
214 These results suggest that flexibility may exist in genomic packaging of avian influenza viruses.
215 Evolutionary plasticity in avian influenza gene segments could account for the increased

216 reassortment frequency observed in influenza viruses in avian hosts. Further investigation may
217 reveal a different mechanism of selective packaging of avian influenza gene segments altogether.

218 The problems posed by the unique ecological niche that domestic landfowl afford to avian
219 influenza viruses are a growing concern. Influenza A viruses cocirculate in domestic landfowl and
220 reassort efficiently in these hosts (8, 9). Moreover, the high incidence of coinfection of domestic
221 landfowl with multiple influenza virus subtypes likely influences host range fitness trade-offs.
222 Similar effects have been reported during coinfection with pepper mild mottle virus (1). Here, we
223 discovered that convergence between gene segments in H9 viruses isolated from landfowl more
224 closely mirrors H9 viruses isolated from human hosts than aquatic birds. Our data could be
225 indicative of a role for gene segment convergence in adaptive niches such as landfowl and
226 humans. However, it may instead be the case that evolutionary convergence between gene
227 segments in the aquatic bird reservoir is species-specific. Improved surveillance of H9 viruses in
228 migratory birds will be necessary to discern between these potential mechanisms.

229 In conclusion, our study reveals the importance of the host niche in influenza virus evolution.
230 It is clear that properties intrinsic to viruses do not shape parallel evolution between gene
231 segments in isolation, but that the host environment can alter the evolutionary trajectories taken.
232 Further investigation of viral evolution in the context of virus-host coadaptation could reveal
233 mechanistic insights into the factors governing viral evolution and emergence.

234

235

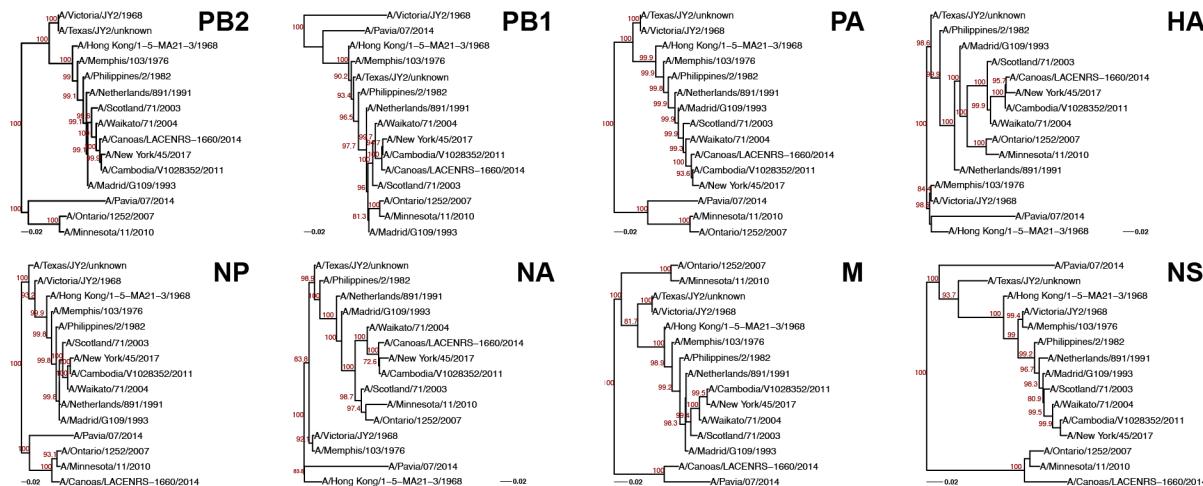
236

237

238

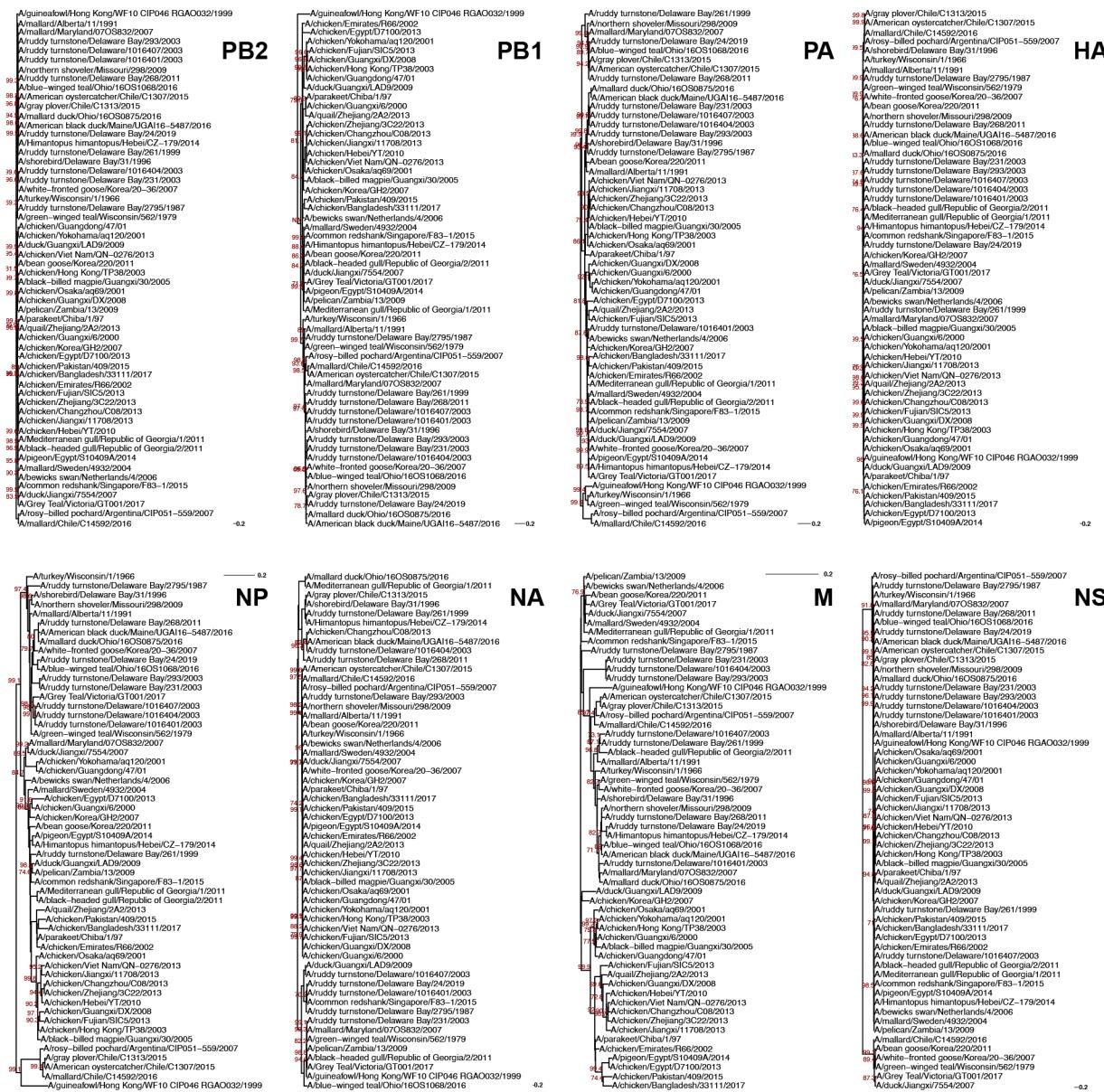
239

240


241

242 **Supplemental Information**

243 **Table S1. Strains analyzed in this study.**


Subtype	Host	Sequences After QC	Similarity Threshold	Sequences Analyzed
H3N2	Human	9,096	95%	15
	Avian (all)	1,258	90%	56
			95%	200
	Avian (Asia)	1,036	96%	171
	Avian (Europe)	19	96%	12
	Avian (North America)	115	96%	61
	Landfowl (Asia)	1,018	94%	56
	Aquatic birds (Asia)	139	94%	31
	Human (Asia)	10	N/A	10

244

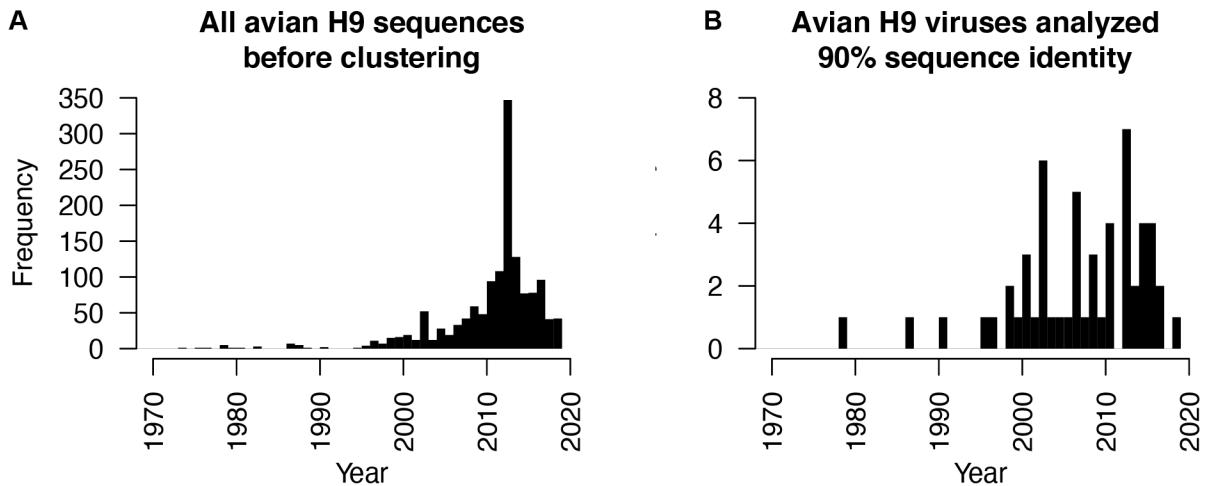
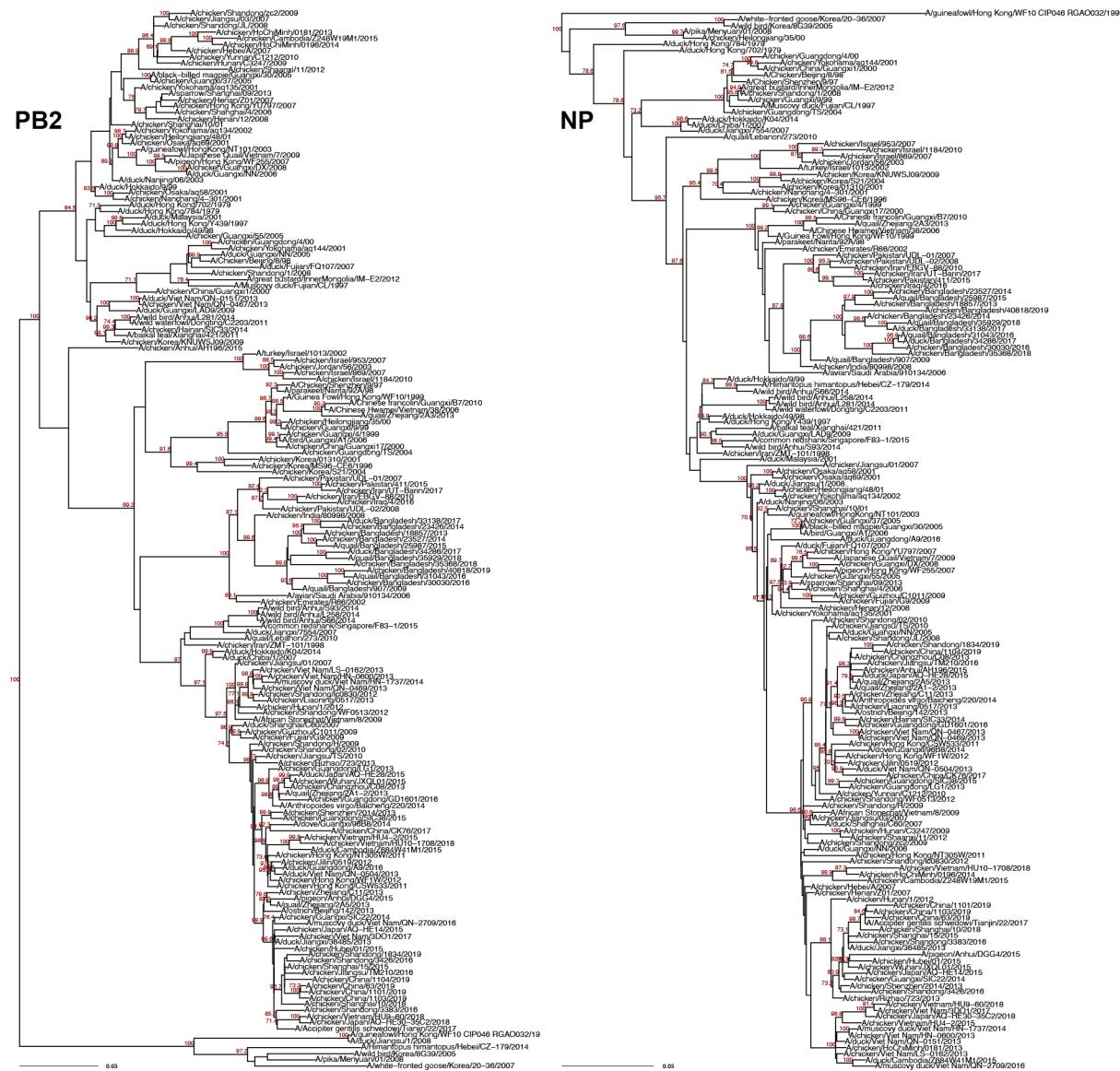
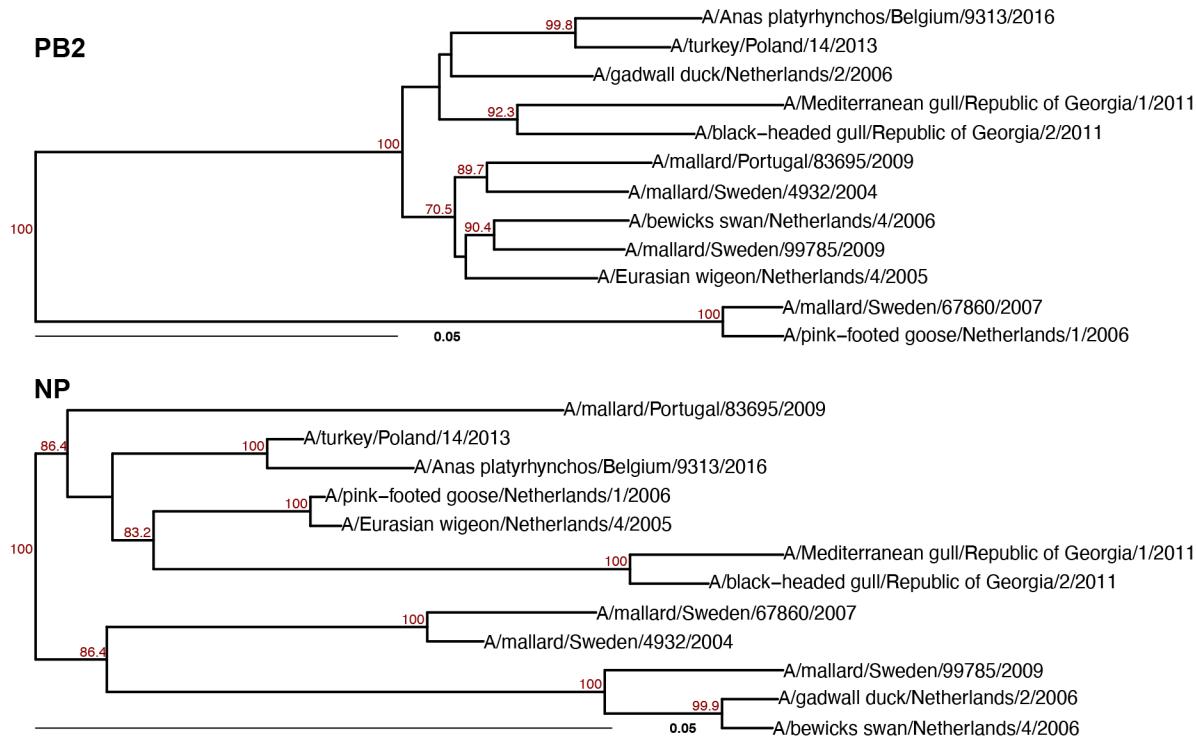


Figure S1. Human H3N2 gene trees. All human H3N2 virus sequences for which full-length genomic sequences were available were downloaded from the Influenza Research Database. A genome tree (i.e., species tree) was constructed from concatenated full-length sequences. Representative sequences were selected by clustering with a sequence identity cutoff of 95%. Maximum-likelihood gene trees were built from these sequences with 1,000 bootstrap replicates. PB2 and NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate substitutions per site.


245


Figure S2. Avian H9 gene trees built with a 90% sequence identity threshold. All avian H9 virus sequences for which full-length genomic sequences were available were downloaded from the Influenza Research Database. A genome tree (i.e., species tree) was constructed from concatenated full-length sequences. Representative sequences were selected by clustering with a sequence identity cutoff of 90%. Maximum-likelihood gene trees were built from these sequences with 1,000 bootstrap replicates. PB2 and NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate substitutions per site.

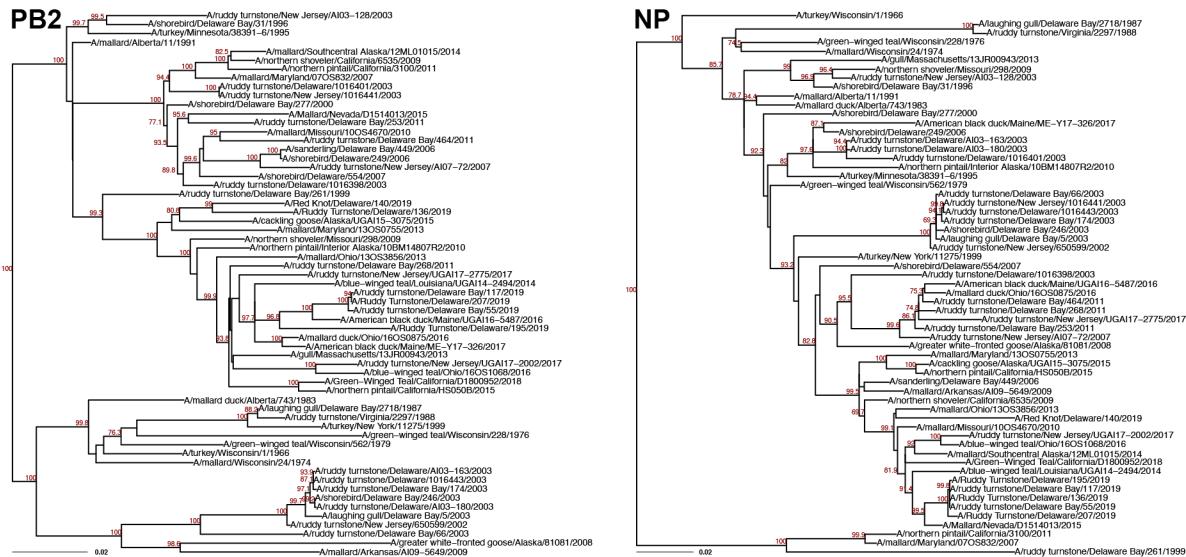

Figure S3. Sampling of avian H9 viruses over time. Frequency of full-length avian H9 virus sequences over time in A, all available sequences in the Influenza Research Database, and in B, representative sequences selected for construction of gene trees (90% sequence identity shown).

Figure S4. Asian-origin avian H9 gene trees. Avian H9 virus sequences isolated from Asia were selected from all avian H9 viruses described in Figure S2. Representative sequences were selected by clustering with a sequence identity cutoff of 96%. Maximum-likelihood gene trees were built from these sequences with 1,000 bootstrap replicates. PB2 and NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate substitutions per site.

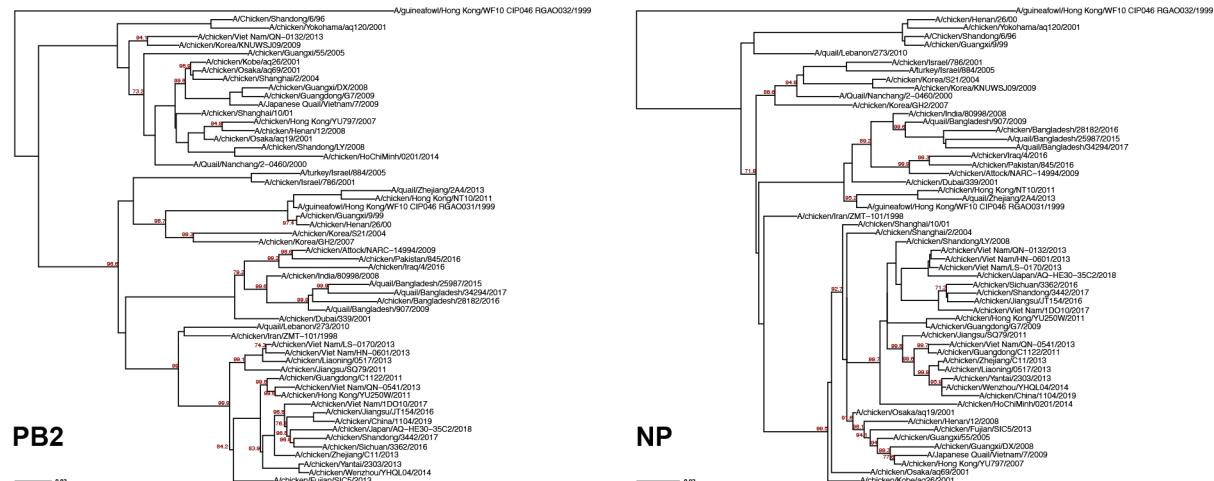
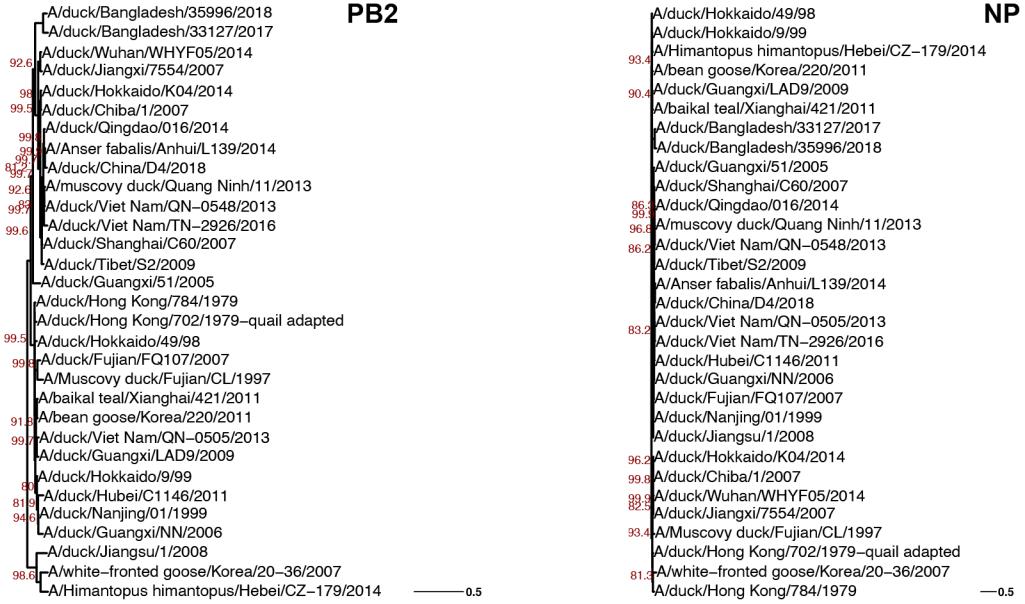
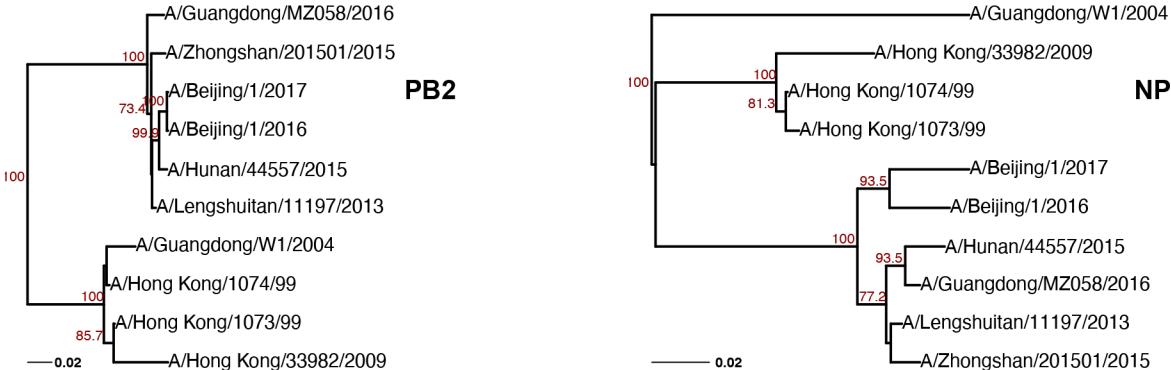


Figure S5. European-origin avian H9 gene trees. Avian H9 virus sequences isolated from Europe were selected from all avian H9 viruses described in Figure S2. Representative sequences were selected by clustering with a sequence identity cutoff of 96%. Maximum likelihood gene trees were built from these sequences with 1,000 bootstrap replicates. PB2 and NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate substitutions per site.


Figure S6. North American-origin avian H9 gene trees. Avian H9 virus sequences isolated from North America were selected from all avian H9 viruses described in Figure S2. Representative sequences were selected by clustering with a sequence identity cutoff of 96%. Maximum-likelihood gene trees were built from these sequences with 1,000 bootstrap replicates. PB2 and NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate substitutions per site.

250


Figure S7. Landfowl-origin H9 gene trees. Landfowl-origin H9 virus sequences isolated from Asia were selected from all avian H9 viruses described in Figure S2. Representative sequences were selected by clustering with a sequence identity cutoff of 94%. Maximum-likelihood gene trees were built from these sequences with 1,000 bootstrap replicates. PB2 and NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate substitutions per site.

251

Figure S8. Aquatic bird-origin H9 gene trees. Aquatic bird-origin H9 virus sequences isolated from Asia were selected from all avian H9 viruses described in Figure S2. Representative sequences were selected by clustering with a sequence identity cutoff of 94%. Maximum-likelihood gene trees were built from these sequences with 1,000 bootstrap replicates. PB2 and NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate substitutions per site.

252

Figure S9. Human-origin H9 gene trees. Human-origin H9 virus sequences isolated from Asia were obtained from the Influenza Research Database. Maximum-likelihood gene trees were built from these sequences with 1,000 bootstrap replicates. PB2 and NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate substitutions per site.

253

254

255

256

257

258 **Materials and Methods**

259 **Data Mining and Subsampling**

260 Influenza A virus sequences were mined and sampled as previously described (21). Briefly,
261 FASTA files of genomic segments from avian H9 virus sequences were downloaded from the
262 Influenza Research Database (IRD, <http://www.fludb.org>) (29) on March 2, 2021. FASTA files of
263 protein coding sequences (CDS) for PB2, PB1, and PA from selected avian H9 virus sequences
264 were downloaded from IRD on June 30, 2021. FASTA files of gene segments from human H9
265 virus sequences were downloaded from IRD on September 24, 2021. Human H3N2 virus
266 sequences from the dataset described in Jones *et al* were used for comparative genomic analysis
267 of avian H9 and human H3N2 viruses.

268 Sequences were read into R (version 4.1.0) using the DECIPHER package (version 2.20.0)
269 (30). CDS sequences were translated into amino acid sequences prior to alignment. QC was
270 performed to ensure that sequence duplication, sequencing ambiguity, and incomplete genomes
271 were excluded from analysis. Concatenated alignments comprising all eight gene segments were
272 used to construct species trees for avian H9 and human H3N2 virus sequences by clustering
273 strains into taxonomic units by sequence identity (**Figure 1A**). A sequence identity cutoff of 95%
274 was selected for human H3N2 virus sequences on the basis that this yielded at least ten clusters
275 in the species tree (**Figure S1**). Significant disparities were noted between human H3N2 and
276 avian H9 virus cluster sizes at all cutoffs (e.g., 15 vs. 200 respective clusters in human H3N2 and
277 avian H9 viruses at a cutoff of 95%), so cutoffs of 90% and 95% identity was chosen for avian
278 viruses to ensure that these studies were not biased by tree size. Sampling bias among avian H9
279 virus sequences was assessed by the year of isolation specified in the FASTA files of sequences
280 after QC and again among sequences used to construct trees (**Figure S3**). Gene and protein
281 trees were built from randomly chosen cluster representatives. Gene trees can be found in
282 **Figures S1-S2**.

283

284 **Phylogeography**

285 Phylogeography was performed by analyzing gene trees of avian H9 viruses by continent of
286 origin. All avian H9 strains that remained after QC (1,418 full-length sequences) were assigned
287 to their continent of origin based of the isolation location specified in the FASTA file. Strains from
288 ambiguous locations (e.g., 'ALB') were excluded. Sequences were available from all seven
289 continents except Antarctica. These were mapped further to their country of origin and visualized
290 on a world map using the following packages in R: rnaturalearth (version 0.1.0), rnaturalearthdata
291 (version 0.1.0), rgeos (version 0.5-8), and sf (version 1.0-4). Only one sequence was available
292 from Australia and was not analyzed further. Clustering was performed on avian H9 strains from
293 the remaining five continents (Asia, Africa, Europe, North America, South America) as described
294 above, with a sequence identity cutoff of 96% selected for each. South American and African
295 strains each clustered into fewer than ten distinct clusters, so these continents were not analyzed
296 further. Gene trees from the remaining three continents (Asia, Europe, North America) were
297 constructed from randomly chosen cluster representatives (**Figures S4-S6**).

298 **Host origin**

299 Taxonomical orders represented in avian H9 virus sequences were determined based on
300 hosts specified in FASTA files. Thirteen orders of the Aves class were identified: Galliformes,
301 Anseriformes, Charadriiformes, Pelicaniformes, Gruiformes, Accipitriformes, Passeriformes,
302 Strigiformes, Columbiformes, Falconiformes, Otidiformes, Struthioniformes, Psittaciformes.
303 Sequences with ambiguous or unspecified host species (e.g., 'Avian') were excluded. Sequences
304 isolated from Galliformes spp. (including chickens, turkeys, quail, pheasant, guineafowl and
305 Chinese francolin) were designated landfowl-derived (1,065 sequences). Sequences isolated
306 from Anseriformes, Charadriiformes, Pelicaniformes, and Gruiformes spp. were collectively
307 designated aquatic bird-derived (300 sequences). Analysis of landfowl- and aquatic bird-derived
308 H9 virus sequences was restricted to isolates from the Asian continent. Clustering was performed
309 on landfowl-derived and aquatic bird-derived avian H9 sequences as described above, with a

310 sequence identity cutoff of 94% selected for each. Similar numbers of clusters were found despite
311 the considerable differences in overall strain numbers in each group (18 and 33 clusters for
312 landfowl-derived and aquatic bird-derived species trees, respectively). Based on the low number
313 of sequences available for human H9 viruses, all available sequences were used in the
314 reconstruction of gene trees. Representative gene trees are shown in **Figures S7-S9**.

315 **Tree Reconstruction**

316 Maximum likelihood gene trees were built assuming a general time reversible model of
317 nucleotide substitution using the ape (version 5.5) and phangorn (version 2.7.1) packages.
318 Maximum-likelihood protein trees were built assuming the HIV between-patient model (avian and
319 human PB2 trees, human PA tree) or the FLU model (avian and human PB1 trees, avian PA tree)
320 of amino acid substitution. Best-fit models were approximated by model testing using the AIC
321 criteria. Where indicated by the best-fit model, rates were assumed to vary according to the
322 proportion of invariant sites and/or the discrete Gamma distribution with four rate categories. All
323 trees were assessed for bootstrap support using 1,000 replicates.

324 **Analysis of Tree Similarity**

325 Tanglegrams, or back-to-back trees matching tips of two trees, were built from pairs of trees
326 using the phytools package (version 0.7-80). The Clustering Information Distance (CID) was
327 calculated with the TreeDist package (version 2.1.1) (31). Statistical significance between tree
328 distances was determined by Mann-Whitney *U* test. Where multiple testing was performed,
329 adjusted *P* values are reported after Benjamini-Hochberg post-hoc correction.

330 **Code availability**

331 Revised code for analysis of parallel evolution in concatenated, full-length genomic influenza
332 virus sequences is available on GitHub (<https://github.com/Lakdawala-Lab/Host-Origin-and-Parallel-Evolution/>).

334

335

336 **Acknowledgments**

337 JEJ is supported by a T32 (T32 AI049820) and the Catalyst Award (University of Pittsburgh
338 Center for Evolutionary Biology and Medicine). This work is funded by the National Institutes of
339 Health NIAID (R01 AI139063) and in part with Federal funds from the National Institute of Allergy
340 and Infectious Diseases, National Institutes of Health, Department of Health and Human Services,
341 under Contract No. 75N93021C00015. We thank members of the Lakdawala lab for constructive
342 feedback on this manuscript.

343

344 **References**

345

- 346 1. McLeish MJ, Fraile A, García-Arenal F. Evolution of plant–virus interactions: host range and
347 virus emergence. *Curr Opin Virol.* 2019;34:50-5.
- 348 2. Woolhouse MEJ, Haydon DT, Antia R. Emerging pathogens: the epidemiology and evolution
349 of species jumps. *Trends in Ecology & Evolution.* 2005;20(5):238-44.
- 350 3. Webby RJ, Webster RG. Emergence of influenza A viruses. *Philosophical transactions of the
351 Royal Society of London Series B, Biological sciences.* 2001;356(1416):1817-28.
- 352 4. Subbarao K. The Critical Interspecies Transmission Barrier at the Animal–Human Interface.
353 *Tropical Medicine and Infectious Disease.* 2019;4(2).
- 354 5. Lam TT-Y, Wang J, Shen Y, Zhou B, Duan L, Cheung C-L, et al. The genesis and source of
355 the H7N9 influenza viruses causing human infections in China. *Nature.* 2013;502(7470):241-
356 4.
- 357 6. Centers for Disease Control and Prevention (National Center for Immunization and
358 Respiratory Diseases). Asian Lineage Avian Influenza A(H7N9) Virus 2018 [Available from:
359 <https://www.cdc.gov/flu/avianflu/h7n9-virus.htm>].
- 360 7. Venkatesh D, Poen Marjolein J, Besteboer Theo M, Scheuer Rachel D, Vuong O, Chkhaidze
361 M, et al. Avian Influenza Viruses in Wild Birds: Virus Evolution in a Multihost Ecosystem.
362 *Journal of Virology.* 92(15):e00433-18.
- 363 8. Peacock THP, James J, Sealy JE, Iqbal M. A Global Perspective on H9N2 Avian Influenza
364 Virus. *Viruses.* 2019;11(7):620.
- 365 9. Sun X, Belser JA, Maines TR. Adaptation of H9N2 Influenza Viruses to Mammalian Hosts: A
366 Review of Molecular Markers. *Viruses.* 2020;12(5).
- 367 10. Pu J, Wang S, Yin Y, Zhang G, Carter RA, Wang J, et al. Evolution of the H9N2 influenza
368 genotype that facilitated the genesis of the novel H7N9 virus. *Proceedings of the National
369 Academy of Sciences.* 2015;112(2):548.
- 370 11. Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, et al. Origin and diversity of novel avian influenza
371 A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses.
372 *The Lancet.* 2013;381(9881):1926-32.
- 373 12. Wu A, Su C, Wang D, Peng Y, Liu M, Hua S, et al. Sequential Reassortments Underlie Diverse
374 Influenza H7N9 Genotypes in China. *Cell Host Microbe.* 2013;14(4):446-52.
- 375 13. Bi Y, Chen Q, Wang Q, Chen J, Jin T, Wong G, et al. Genesis, Evolution and Prevalence of
376 H5N6 Avian Influenza Viruses in China. *Cell Host Microbe.* 2016;20(6):810-21.
- 377 14. Bi Y, Li J, Li S, Fu G, Jin T, Zhang C, et al. Dominant subtype switch in avian influenza viruses
378 during 2016–2019 in China. *Nature Communications.* 2020;11(1):5909.

379 15. Long JS, Mistry B, Haslam SM, Barclay WS. Host and viral determinants of influenza A virus
380 species specificity. *Nature Reviews Microbiology*. 2019;17(2):67-81.

381 16. Li C, Hatta M, Watanabe S, Neumann G, Kawaoka Y. Compatibility among Polymerase
382 Subunit Proteins Is a Restricting Factor in Reassortment between Equine H7N7 and Human
383 H3N2 Influenza Viruses. *Journal of Virology*. 2008;82(23):11880.

384 17. Neverov AD, Kryazhimskiy S, Plotkin JB, Bazykin GA. Coordinated Evolution of Influenza A
385 Surface Proteins. *PLOS Genetics*. 2015;11(8):e1005404.

386 18. Marshall N, Priyamvada L, Ende Z, Steel J, Lowen AC. Influenza Virus Reassortment Occurs
387 with High Frequency in the Absence of Segment Mismatch. *PLOS Pathogens*.
388 2013;9(6):e1003421.

389 19. White MC, Lowen AC. Implications of segment mismatch for influenza A virus evolution. *The
390 Journal of General Virology*. 2018;99(1):3-16.

391 20. Baker SF, Nogales A, Finch C, Tuffy KM, Domm W, Perez DR, et al. Influenza A and B Virus
392 Intertypic Reassortment through Compatible Viral Packaging Signals. *Journal of Virology*.
393 2014;88(18):10778-91.

394 21. Jones JE, Le Sage V, Padovani GH, Calderon M, Wright ES, Lakdawala SS. Parallel evolution
395 between genomic segments of seasonal human influenza viruses reveals RNA-RNA
396 relationships. *eLife*. 2021;10:e66525.

397 22. Te Velthuis AJW, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of
398 viral RNA synthesis. *Nat Rev Microbiol*. 2016;14(8):479-93.

399 23. Gorman OT, Donis RO, Kawaoka Y, Webster RG. Evolution of influenza A virus PB2 genes:
400 implications for evolution of the ribonucleoprotein complex and origin of human influenza A
401 virus. *Journal of Virology*. 1990;64(10):4893.

402 24. Fodor E. The RNA polymerase of influenza a virus: mechanisms of viral transcription and
403 replication. *Acta virologica*. 2013;57(2):113-22.

404 25. Mehle A, Doudna JA. An Inhibitory Activity in Human Cells Restricts the Function of an Avian-
405 like Influenza Virus Polymerase. *Cell Host Microbe*. 2008;4(2):111-22.

406 26. Rameix-Welti M-A, Tomoiu A, Dos Santos Afonso E, van der Werf S, Naffakh N. Avian
407 Influenza A Virus Polymerase Association with Nucleoprotein, but Not Polymerase Assembly,
408 Is Impaired in Human Cells during the Course of Infection. *Journal of Virology*.
409 2009;83(3):1320-31.

410 27. Weber M, Sediri H, Felgenhauer U, Binzen I, Bänfer S, Jacob R, et al. Influenza Virus
411 Adaptation PB2-627K Modulates Nucleocapsid Inhibition by the Pathogen Sensor RIG-I. *Cell
412 Host Microbe*. 2015;17(3):309-19.

413 28. Marsh GA, Rabadán R, Levine AJ, Palese P. Highly Conserved Regions of Influenza A Virus
414 Polymerase Gene Segments Are Critical for Efficient Viral RNA Packaging. *Journal of
415 Virology*. 2008;82(5):2295.

416 29. Zhang Y, Aevermann BD, Anderson TK, Burke DF, Dauphin G, Gu Z, et al. Influenza
417 Research Database: An integrated bioinformatics resource for influenza virus research.
418 *Nucleic Acids Research*. 2016;45(D1):D466-D74.

419 30. Wright ES. DECIPHER: harnessing local sequence context to improve protein multiple
420 sequence alignment. *BMC Bioinformatics*. 2015;16(1):322.

421 31. Smith MR. Information theoretic generalized Robinson-Foulds metrics for comparing
422 phylogenetic trees. *Bioinformatics*. 2020;36(20):5007-13.

423