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Abstract

Several emerging influenza viruses, including H7N9 and H5NG viruses, trace their origins to
reassortment with HON2 viruses that contributed internal gene segments. However, the
evolutionary constraints governing reassortment of HON2 viruses remain unknown. In seasonal
human influenza A viruses, gene segments evolve in parallel at both the gene and protein levels.
Here, we demonstrate that parallel evolution in human H3N2 viruses differs from avian H9 viruses,
with both genes and proteins of avian H9 viruses characterized by high phylogenetic divergence.
Strikingly, protein trees corresponding to avian H9 polymerase subunits diverge despite known
functional constraints on polymerase evolution. Gene divergence was consistent across avian H9
isolates from different continents, suggesting that parallel evolution between H9 gene segments
is not dependent on regionally defined lineages. Instead, parallel evolution in H9 viruses was
dependent upon host origin. Our study reveals the role of the host in parallel evolution of influenza
gene segments and suggests that high reassortment potential in avian species may be a

consequence of evolutionary flexibility between gene segments.
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Introduction

Host range is an important factor in viral emergence (1, 2). Influenza A viruses are found in a
wide range of hosts, but the natural reservoirs are wild aquatic waterfowl and shorebirds (3, 4).
Spillover of avian influenza viruses into humans is rare, but serious zoonotic outbreaks can occur
when host range restrictions are overcome (4). In just one example, the H7N9 outbreak on
mainland China, a result of reassortment between H7, N9, and HION2 avian influenza viruses,
caused five successive epidemics between 2013 and 2017 with over 1,500 human infections and
a mortality rate of 39 percent (5, 6). It is therefore of paramount importance to understand the
evolutionary mechanisms that promote emergence of avian influenza viruses in mammalian
hosts.

Ecological challenges imposed by the host profoundly impact the spatiotemporal dynamics of
viral evolution and emergence (1). Within migratory birds, avian influenza lineages are restricted
by host species as well as the migratory routes frequented by these hosts, with little interhost
reassortment detected (3, 7). In contrast, in domestic landfowl such as chickens and turkeys,
influenza virus subtypes frequently cocirculate and efficiently reassort (8, 9). Adaptation and
reassortment of HON2 viruses in vaccinated farm chickens led to the emergence of the G57
genotype in 2007 with increased antigenicity that overtook all other genotypes by 2013 (10). HON2
viruses in turn contributed gene segments to other cocirculating influenza viruses, including
H7N9, H5N6, and H10N8 viruses (5, 10-13). As of 2016, HON2 viruses became the dominant
subtype in both chickens and ducks in China (14). Therefore, it is critical to consider such factors
as geographical restrictions imposed by migratory routes and host species in guiding the
evolutionary mechanisms of avian influenza viruses.

Factors intrinsic to viruses are also central to questions of viral evolution and emergence (1).
Host range in influenza virus is impacted by several viral properties, including receptor binding
specificity and glycosylation of hemagglutinin (HA), stalk length of neuraminidase (NA), and

compatibility of the viral ribonucleoprotein complex with host nuclear translocation machinery (15).
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Interactions such as those between the viral glycoproteins (HA and NA) or between polymerase
subunits (PB2, PB1, PA) functionally constrain influenza virus evolution and may contribute to
viral emergence (16, 17). Similarly, packaging signals constrain evolution of the gene segments
themselves (18-20). We recently demonstrated that such gene-driven constraints contribute to
parallel evolution between gene segments in seasonal human influenza A viruses (21). However,
whether evolutionary constraints imposed by interactions between viral genes or proteins extend
to the evolution and emergence of avian influenza viruses remains unknown.

We theorized that parallel evolution in influenza viruses was driven by the host. Here, we
performed comparative genomics and phylogeography to investigate how the evolution of gene
segments differs between human and avian influenza virus strains. We use our established
methods to estimate evolutionary convergence between genes and proteins through a proxy tree
distance calculation (21). Unexpectedly, we found minimal indication of parallel evolution between
gene segments of avian H9 viruses. Instead we provide evidence that the evolution of H9 gene
segments converges in a host-specific manner. Our study highlights the role of host origin in

shaping influenza virus evolution.

Results
Parallel evolution is observed between gene segments of seasonal human H3N2 viruses
but not avian H9 viruses.

We recently studied whether gene segments of seasonal human influenza A viruses evolve
in parallel (21). To achieve this, we examined convergence between gene trees in publicly
available human H1N1 and H3N2 virus sequences (Figure 1A). We used tree distance as a proxy
for convergent evolution between genes, with two gene segments considered converging if the
tree distance between them was low. The extent of convergence between pairs of genes varied
widely, from robust convergence with tree distances approaching zero to no detectable parallel

evolution (21). Parallel evolution between pairs of gene segments differed between viral subtypes
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79  but was relatively consistent over time in H3N2 viruses. We therefore examined whether parallel
80  evolution between gene segments of H9 viruses differs from H3N2 viruses found seasonally in
81 human populations.
82 To explore whether parallel evolution between gene segments differs in H3N2 and H9 viruses,
83  we took a similar approach to our previous study (Figure 1A), comparing seasonal human H3N2
84  viruses to avian H9 viruses. In this approach, representative sequences are selected from
85 genomic trees (i.e., species trees) by a sequence similarity threshold (see Methods for additional
86  details). This approach significantly improves gene tree reconstruction by pruning highly similar
87 sequences that don’t resolve well (21). In this study, this approach offered the additional
88 advantage of capturing similar degrees of diversity despite differing sequence availability in
89  human and avian influenza sequences. When a 95% sequence similarity threshold was applied
90 to both human H3N2 and avian H9 viruses, far more sequences remained in avian H9 virus
91 alignments than in human H3N2 virus alignments (200 and 15 respective sequences). Therefore,
92  we examined parallel evolution in avian H9 viruses using trees built from two different sequence
93  similarity thresholds (90% or 95%) to ensure that differences in tree size didn’t artificially inflate
94  differences in tree distance.
95 Following a modified version of our previously established workflow (21), gene trees were
96 constructed for each of the eight gene segments of each set of viruses (Figures S1-S2 and data
97 not shown). Evolutionary convergence between genes was determined by the clustering
98 information distance (CID) between each pair of gene trees, where CID is inversely correlated to
99 tree similarity and evolutionary convergence. Similar to what we have previously reported (21),
100 tree distances from seasonal human H3N2 viruses ranged from 0 — indicating two identical trees
101 —t00.63 (Figure 1B). In contrast, gene trees derived from avian H9 viruses exhibited significantly
102  higher tree distances than gene trees derived from human H3N2 viruses, ranging from 0.53 to
103 0.76 (Figure 1B). We found no correlation between pairwise CID from avian H9 viruses and

104  human H3N2 viruses (R? = 0.03 to 0.04, Figure 1C). These differences were independent of the
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105 sequence similarity threshold applied during avian H9 virus gene tree reconstruction (Figure 1B-
106  1C). Additionally, tree distances from avian H9 viruses lacked the variation seen in human H3N2
107  viruses, suggesting little to no preferential evolutionary relationships have formed between
108 individual pairs of gene segments in avian H9 viruses. These data suggest that convergent
109 evolution occurs between gene segments of influenza viruses isolated from human H3N2 viruses,

110 but not avian H9 viruses.
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Figure 1. Minimal parallel evolution is found between avian H9 virus gene segments
compared to human H3N2 viruses. A, Sequences from avian H9 or human H3N2 virus
gene segments were obtained from the Influenza Research Database. Gene segment
sequences were concatenated into full-length genomes and highly similar sequences were
pruned. Maximum likelihood trees of each gene segment were reconstructed from represen-
tative strains. Protein trees were reconstructed from coding sequences. Tree similarity was
assessed by quantifying the clustering information distance (CID) and used as a proxy for
parallel evolution. B, CID from avian H9 viruses (90% or 95% similarity thresholds as indicat-
ed; purple) compared to human H3N2 viruses (95% similarity threshold; yellow). Each point
designates the distance between one pair of gene segment trees. Asterisks (*) indicate P <
0.05 (Mann-Whitney U test). C, Linear regression was performed on pairwise CID. Solid line,
best fit. Shaded region, 95% confidence interval. Dotted line, line of identity.
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113  High divergence is found between avian H9 polymerase subunits.

114 Our initial examination of nucleotide sequences captures evolutionary constraints driven by
115 interactions between protein complexes as well as RNA-RNA interactions. It is surprising that we
116  observed uniformly high divergence between all gene segments in avian H9 viruses, particularly
117  between genes encoding the viral polymerase subunits: PB2, PB1, and PA. Evolution of these
118 three segments is thought to be functionally constrained by protein-protein interactions essential
119  to polymerase function (16, 22, 23). To confirm that parallel evolution does not occur between
120  polymerase subunits in avian H9 viruses, we examined similarity between protein trees. Trees
121 from amino acid sequences of PB2, PB1, and PA from either human H3N2 or avian H9 viruses
122 were constructed (Figure 2). As expected, protein trees corresponding to human influenza
123  polymerase subunits were characterized by high convergence, with tree distances ranging from
124  0.10to 0.46 (Figure 2B-C). In contrast, avian polymerase tree distances were quite high, ranging
125 from 0.76 to 0.78 (Figure 2A, 2C). Thus, the polymerase subunits of avian H9 viruses do not
126  exhibit parallel evolution, suggesting that greater flexibility in this complex may be tolerated in

127 avian hosts.
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Figure 2. Avian H9 polymerase subunits do not exhibit parallel
evolution. Coding sequences corresponding to the gene trees of avian
H9 viruses and human H3N2 viruses were used to construct protein
trees. A-B, Tanglegrams visualizing tree similarity were constructed
from the PB2 and PA protein trees for avian H9 (A) or human H3N2 (B)
viruses. Strain names are coded by cluster number. C, Pairwise CID for

128 all combinations of polymerase protein trees.
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131  Divergence of H9 gene segments is consistent across geographical regions.

132 Our investigation takes advantage of the breadth of avian influenza virus sequences available
133  in public databases, but such broad analyses are not without disadvantages. Surveillance of avian
134  H9 viruses is much lower than human H3N2 viruses (Table S1). Therefore, sampling bias could
135  distort phylogenetic interpretation. Sampling of avian H9 viruses over time in our dataset was
136 inconsistent, with an inordinately high proportion of sequences coming from 2013 (Figure S3A).
137 The disproportionately high representation of sequences from this year coincides with the
138 emergence of H7N9 viruses in China, reflecting heightened poultry surveillance efforts (5, 11).
139  However, our strategy to select sequences from clustering mitigates this sampling bias, with 2013
140 isolates dropping from 25% of the overall dataset to 13% of sequences selected for phylogenetic
141  reconstruction (Figure S3B). Therefore, it is unlikely that our results were greatly impacted by
142  inconsistent surveillance over time.

143 Another important consideration for avian H9 virus evolution is geographical region. One
144  plausible explanation for the apparent lack of convergence between gene trees in H9 viruses is
145 that parallel evolution between gene segments is lineage specific. We previously reported a
146  similar observation in H1N1 viruses isolated before and after the 2009 pandemic (21). Two
147  geographically distinct HON2 lineages have emerged from North America and Eurasia (8).
148  Therefore, we examined whether parallel evolution between avian H9 virus gene segments is
149  regionally defined. The vast majority of avian H9 viruses were isolated from Asia (85%), primarily
150 China (Figure 3A). Of the remainder, roughly 9% of sequences were isolated from North America,
151 3% from Africa, 2% from Europe, and less than 1% from South America. We subset avian H9
152  viruses by continent of origin, excluding viruses from continents with fewer than ten clusters (see
153  Methods for additional details and Figures S4-S6 for representative trees). When avian H9
154  viruses were subdivided in this manner, no regional patterns in parallel evolution were detected
155  (Figure 3B). However, tree distances were in fact significantly higher in some regions compared

156 to the global dataset. This observation suggests that while lineage-specific differences in tree
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157  distances exist, minimal evidence of parallel evolution between gene segments is found in avian

158  H9 viruses from any geographical location.

Global{ | { 0
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Europe_ *P= 004@
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000 025 050 075  1.00
Tree Distances (CID)

Figure 3. Avian H9 gene tree divergence is independent of region. A, Global prevalence of
avian H9 viruses. The total number of full-length sequences were log-transformed for visualiza-
tion. Highest prevalence: China, 861; Vietnam, 120; USA, 118; Bangladesh, 72; Pakistan, 51;
Egypt, 34; Japan, 25. B, Avian H9 viruses were subset by continent and representative
sequences were chosen from each dataset. Maximum likelihood trees of each gene segment
were reconstructed from representative sequences. Continents with fewer than ten clusters
were excluded. Tree similarity was assessed as described in Figure 1A. Each point designates
the distance between one pair of gene segment trees. Asterisks (*) indicate P < 0.05
159 (Mann-Whitney U test with Benjamini-Hochberg post-hoc correction).

North America
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160 Parallel evolution between H9 virus gene segments is dependent upon host origin.

161 Given that geographical region didn’t contribute to evolutionary convergence between gene
162  segments in avian H9 viruses, we examined whether host origin impacts parallel evolution. Host
163  origin could play a role in the overall differences we observed in parallel evolution between gene
164  segments in human H3N2 and avian H9 viruses (Figure 1B-1C). Additionally, previous studies
165  suggest that reassortment in wild birds is restricted by host species (7). Therefore, we examined
166 parallel evolution between gene segments of H9 viruses isolated from different hosts, including
167 humans, landfowl, and aquatic birds. Aquatic birds are the natural reservoir of influenza viruses
168  (4), but a sizeable maijority of H9 viruses are also found in landfowl such as chickens, turkeys,
169 and quail (Figure 4A). Given that tree distances differed in H9 viruses isolated from different
170  continents (Figure 3B), we focused our analysis on H9 viruses isolated from Asia, where H9

171  sequences from humans, landfowl, aquatic birds were all available. Tree distances from human
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172 H9 viruses were significantly lower than those obtained from H9 viruses from either set of avian
173  hosts (Figure 4B and Figures S7-S9). In addition, only tree distances from H9 viruses isolated
174  from humans exhibited the wide range seen in human H3N2 viruses, suggesting evolutionary
175  convergence between gene segments is host dependent. We used linear regression to examine
176  the degree of similarity between individual pairs of gene segments in H9 viruses from different
177  hosts. To our surprise, tree distances from H9 viruses from landfowl were more robustly correlated
178  with those from human hosts than with those from aquatic birds (R? = 0.55 vs. 0.25) (Figure 4C).
179 In contrast, tree distances from H9 viruses from aquatic birds were not correlated with tree
180 distances from H9 viruses from human hosts (R? = 0.05) (Figure 4D), suggesting that parallel
181  evolution between gene segments in human H9 viruses more closely reflects H9 viruses in
182 landfowl than in aquatic birds. Altogether, these data suggest that parallel evolution between gene

183  segments is dependent on host origin.
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Discussion

The mechanistic underpinnings of viral evolution are complex. In the present study, we
investigated the interplay between the host niche and functional constraints on influenza A virus
evolution. Our results reveal that evolutionary constraints imposed by interactions between viral

polymerase subunits in seasonal human influenza viruses do not extend broadly to avian H9
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191  viruses. Instead, the avian H9 polymerase subunits are highly divergent. Surprisingly, the spatial
192  structure of avian influenza lineages established by host migratory routes contributes minimally
193 to parallel evolution of avian influenza gene segments. Instead, gene segment evolution
194  converges in H9 viruses in a host dependent manner. These results highlight the impact of the
195 host niche on influenza virus evolution.

196 Interactions between viral proteins have long been theorized to impose functional constraints
197  on influenza virus evolution. Coordinated roles between the viral polymerase subunits are well-
198  described and functionally constrain the evolution of each subunit in human influenza viruses (16,
199 21, 24). Surprisingly, we did not find evidence of parallel evolution between polymerase subunits
200 inavian H9 influenza viruses in this study. Given the success of H9 viruses in the avian population,
201  ourdata suggest that influenza polymerases may be less evolutionarily constrained in avian hosts
202 than in human hosts. These results are consistent with prior studies demonstrating that the
203  stability of the association between nucleoprotein and the viral polymerase in viral
204  ribonucleoprotein complexes is critical for the evasion of innate immune sensing in human, but
205 not avian, cells (25-27). Overall, these studies may suggest a greater flexibility between viral
206  polymerase subunits in avian hosts that allows for greater success of evolutionarily divergent
207  viruses than in other species.

208 A lack of parallel evolution between influenza virus gene segments in avian H9 viruses may
209 also have implications for genomic assembly. Selective packaging of all eight influenza gene
210 segments is thought to occur through RNA-RNA interactions between gene segments (18-20,
211 28). We previously demonstrated that putative intersegmental RNA-RNA interactions could
212  account for some parallel evolution observed between gene segments in human H3N2 viruses
213 (21). Unlike in human H3N2 viruses, gene segments of avian H9 viruses are highly divergent.
214  These results suggest that flexibility may exist in genomic packaging of avian influenza viruses.

215 Evolutionary plasticity in avian influenza gene segments could account for the increased
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216 reassortment frequency observed in influenza viruses in avian hosts. Further investigation may
217  reveal a different mechanism of selective packaging of avian influenza gene segments altogether.
218 The problems posed by the unique ecological niche that domestic landfowl afford to avian
219 influenza viruses are a growing concern. Influenza A viruses cocirculate in domestic landfowl and
220 reassort efficiently in these hosts (8, 9). Moreover, the high incidence of coinfection of domestic
221 landfowl with multiple influenza virus subtypes likely influences host range fitness trade-offs.
222  Similar effects have been reported during coinfection with pepper mild mottle virus (1). Here, we
223  discovered that convergence between gene segments in H9 viruses isolated from landfowl more
224  closely mirrors H9 viruses isolated from human hosts than aquatic birds. Our data could be
225 indicative of a role for gene segment convergence in adaptive niches such as landfowl and
226  humans. However, it may instead be the case that evolutionary convergence between gene
227  segments in the aquatic bird reservoir is species-specific. Improved surveillance of H9 viruses in
228  migratory birds will be necessary to discern between these potential mechanisms.

229 In conclusion, our study reveals the importance of the host niche in influenza virus evolution.
230 It is clear that properties intrinsic to viruses do not shape parallel evolution between gene
231 segments in isolation, but that the host environment can alter the evolutionary trajectories taken.
232 Further investigation of viral evolution in the context of virus-host coadaptation could reveal
233  mechanistic insights into the factors governing viral evolution and emergence.
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242  Supplemental Information

243  Table S1. Strains analyzed in this study.

Sequences Similarity Sequences

Subtype Host

After QC Threshold Analyzed

H3N2 Human 9,096 95% 15

90% 56

Avian (all) 1,258

95% 200

Avian (Asia) 1,036 96% 171

Avian (Europe) 19 96% 12

H9

Avian (North America) 115 96% 61

Landfowl (Asia) 1,018 94% 56

Aquatic birds (Asia) 139 94% 31

Human (Asia) 10 N/A 10
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Figure S1. Human H3N2 gene trees. All human H3N2 virus sequences for which full-length
genomic sequences were available were downloaded from the Influenza Research Database.
A genome tree (i.e., species tree) was constructed from concatenated full-length sequences.
Representative sequences were selected by clustering with a sequence identity cutoff of 95%.
Maximume-likelihood gene trees were built from these sequences with 1,000 bootstrap repli-
cates. PB2 and NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale
bars indicate substitutions per site.
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Figure S2. Avian H9 gene trees built with a 90% sequence identity threshold. All avian
H9 virus sequences for which full-length genomic sequences were available were download-
ed from the Influenza Research Database. A genome tree (i.e., species tree) was constructed
from concatenated full-length sequences. Representative sequences were selected by clus-
tering with a sequence identity cutoff of 90%. Maximum-likelihood gene trees were built from
these sequences with 1,000 bootstrap replicates. PB2 and NP trees are shown. Bootstrap

246 values greater than 70 are shown in red. Scale bars indicate substitutions per site.
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Figure S3. Sampling of avian H9 viruses over time. Frequency of full-length avian H9 virus
sequences over time in A, all available sequences in the Influenza Research Database, and in
B, representative sequences selected for construction of gene trees (90% sequence identity

247 shown).
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Figure S4. Asian-origin avian H9 gene trees. Avian H9 virus sequences isolated from Asia
were selected from all avian H9 viruses described in Figure S2. Representative sequences
were selected by clustering with a sequence identity cutoff of 96%. Maximum-likelihood gene
trees were built from these sequences with 1,000 bootstrap replicates. PB2 and NP trees are
shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate substitutions

248 per site.
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Figure S5. European-origin avian H9 gene trees. Avian H9 virus sequences isolated from
Europe were selected from all avian H9 viruses described in Figure S2. Representative
sequences were selected by clustering with a sequence identity cutoff of 96%. Maximum-like-
lihood gene trees were built from these sequences with 1,000 bootstrap replicates. PB2 and

NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate
249 substitutions per site.
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Figure S6. North American-origin avian H9 gene trees. Avian H9 virus sequences isolated
from North America were selected from all avian H9 viruses described in Figure S2. Repre-
sentative sequences were selected by clustering with a sequence identity cutoff of 96%. Maxi-
mume-likelihood gene trees were built from these sequences with 1,000 bootstrap replicates.
PB2 and NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale bars

indicate substitutions per site.
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Figure S7. Landfowl-origin H9 gene trees. Landfowl-origin H9 virus sequences isolated
from Asia were selected from all avian H9 viruses described in Figure S2. Representative
sequences were selected by clustering with a sequence identity cutoff of 94%. Maximum-like-
lihood gene trees were built from these sequences with 1,000 bootstrap replicates. PB2 and
NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate

251 substitutions per site.
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Figure S8. Aquatic bird-origin H9 gene trees. Aquatic bird-origin H9 virus sequences isolat-
ed from Asia were selected from all avian H9 viruses described in Figure S2. Representative
sequences were selected by clustering with a sequence identity cutoff of 94%. Maximum-like-
lihood gene trees were built from these sequences with 1,000 bootstrap replicates. PB2 and
NP trees are shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate
substitutions per site.
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Figure S9. Human-origin H9 gene trees. Human-origin H9 virus sequences isolated from
Asia were obtained from the Influenza Research Database. Maximum-likelihood gene trees
were built from these sequences with 1,000 bootstrap replicates. PB2 and NP trees are
shown. Bootstrap values greater than 70 are shown in red. Scale bars indicate substitutions
per site.
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258 Materials and Methods

259 Data Mining and Subsampling

260 Influenza A virus sequences were mined and sampled as previously described (21). Briefly,
261 FASTA files of genomic segments from avian H9 virus sequences were downloaded from the

262 Influenza Research Database (IRD, http://www.fludb.org) (29) on March 2, 2021. FASTA files of

263  protein coding sequences (CDS) for PB2, PB1, and PA from selected avian H9 virus sequences
264  were downloaded from IRD on June 30, 2021. FASTA files of gene segments from human H9
265  virus sequences were downloaded from IRD on September 24, 2021. Human H3N2 virus
266  sequences from the dataset described in Jones et al were used for comparative genomic analysis
267  of avian H9 and human H3N2 viruses.

268 Sequences were read into R (version 4.1.0) using the DECIPHER package (version 2.20.0)
269  (30). CDS sequences were translated into amino acid sequences prior to alignment. QC was
270  performed to ensure that sequence duplication, sequencing ambiguity, and incomplete genomes
271  were excluded from analysis. Concatenated alignments comprising all eight gene segments were
272  used to construct species trees for avian H9 and human H3N2 virus sequences by clustering
273  strains into taxonomic units by sequence identity (Figure 1A). A sequence identity cutoff of 95%
274  was selected for human H3N2 virus sequences on the basis that this yielded at least ten clusters
275 in the species tree (Figure S1). Significant disparities were noted between human H3N2 and
276  avian H9 virus cluster sizes at all cutoffs (e.g., 15 vs. 200 respective clusters in human H3N2 and
277  avian H9 viruses at a cutoff of 95%), so cutoffs of 90% and 95% identity was chosen for avian
278  viruses to ensure that these studies were not biased by tree size. Sampling bias among avian H9
279  virus sequences was assessed by the year of isolation specified in the FASTA files of sequences
280 after QC and again among sequences used to construct trees (Figure S3). Gene and protein
281 trees were built from randomly chosen cluster representatives. Gene trees can be found in
282  Figures S1-S2.
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284 Phylogeography

285 Phylogeography was performed by analyzing gene trees of avian H9 viruses by continent of
286  origin. All avian H9 strains that remained after QC (1,418 full-length sequences) were assigned
287  to their continent of origin based of the isolation location specified in the FASTA file. Strains from
288 ambiguous locations (e.g., ‘ALB’) were excluded. Sequences were available from all seven
289  continents except Antarctica. These were mapped further to their country of origin and visualized
290 on aworld map using the following packages in R: rnaturalearth (version 0.1.0), rnaturalearthdata
291  (version 0.1.0), rgeos (version 0.5-8), and sf (version 1.0-4). Only one sequence was available
292  from Australia and was not analyzed further. Clustering was performed on avian H9 strains from
293  the remaining five continents (Asia, Africa, Europe, North America, South America) as described
294  above, with a sequence identity cutoff of 96% selected for each. South American and African
295 strains each clustered into fewer than ten distinct clusters, so these continents were not analyzed
296 further. Gene trees from the remaining three continents (Asia, Europe, North America) were
297  constructed from randomly chosen cluster representatives (Figures S$4-S6).

298 Host origin

299 Taxonomical orders represented in avian H9 virus sequences were determined based on
300 hosts specified in FASTA files. Thirteen orders of the Aves class were identified: Galliformes,
301 Anseriformes, Charadriiformes, Pelicaniformes, Gruiformes, Accipitriformes, Passeriformes,
302  Strigiformes, Columbiformes, Falconiformes, Otidiformes, Struthioniformes, Psittaciformes.
303 Sequences with ambiguous or unspecified host species (e.g., ‘Avian’) were excluded. Sequences
304 isolated from Galliformes spp. (including chickens, turkeys, quail, pheasant, guineafowl and
305 Chinese francolin) were designated landfowl-derived (1,065 sequences). Sequences isolated
306 from Anseriformes, Charadriiformes, Pelicaniformes, and Gruiformes spp. were collectively
307 designated aquatic bird-derived (300 sequences). Analysis of landfowl- and aquatic bird-derived
308 H9 virus sequences was restricted to isolates from the Asian continent. Clustering was performed

309 on landfowl-derived and aquatic bird-derived avian H9 sequences as described above, with a
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310 sequence identity cutoff of 94% selected for each. Similar numbers of clusters were found despite
311 the considerable differences in overall strain numbers in each group (18 and 33 clusters for
312 landfowl-derived and aquatic bird-derived species trees, respectively). Based on the low number
313 of sequences available for human H9 viruses, all available sequences were used in the
314  reconstruction of gene trees. Representative gene trees are shown in Figures S7-S9.

315 Tree Reconstruction

316 Maximum likelihood gene trees were built assuming a general time reversible model of
317 nucleotide substitution using the ape (version 5.5) and phangorn (version 2.7.1) packages.
318 Maximum-likelihood protein trees were built assuming the HIV between-patient model (avian and
319 human PB2 trees, human PA tree) or the FLU model (avian and human PB1 trees, avian PA tree)
320 of amino acid substitution. Best-fit models were approximated by model testing using the AIC
321  criteria. Where indicated by the best-fit model, rates were assumed to vary according to the
322  proportion of invariant sites and/or the discrete Gamma distribution with four rate categories. All
323  trees were assessed for bootstrap support using 1,000 replicates.

324  Analysis of Tree Similarity

325 Tanglegrams, or back-to-back trees matching tips of two trees, were built from pairs of trees
326 using the phytools package (version 0.7-80). The Clustering Information Distance (CID) was
327 calculated with the TreeDist package (version 2.1.1) (31). Statistical significance between tree
328 distances was determined by Mann-Whitney U test. Where multiple testing was performed,
329 adjusted P values are reported after Benjamini-Hochberg post-hoc correction.

330 Code availability

331 Revised code for analysis of parallel evolution in concatenated, full-length genomic influenza

332  virus sequences is available on GitHub (https://github.com/Lakdawala-Lab/Host-Origin-and-

333  Parallel-Evolution/).

334

335
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