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High-throughput cryo-EM structure determination of amyloids

Sofia Lovestam?® and Sjors H.W. Scheres*?

The formation of amyloid filaments is characteristic of various degenerative diseases. Recent breakthroughs in electron cryo-

microscopy (cryo-EM) have led to atomic structure determination of multiple amyloid filaments, both of filaments

assembled in vitro from recombinant proteins, and of filaments extracted from diseased tissue. These observations revealed

that a single protein may adopt multiple different amyloid folds, and that in vitro assembly does not necessarily lead to the

same filaments as those observed in disease. In order to develop relevant model systems for disease, and ultimately to

better understand the molecular mechanisms of disease, it will be important to determine which factors determine the

formation of distinct amyloid folds. High-throughput cryo-EM, in which structure determination becomes a tool rather than

a project in itself, will facilitate the screening of large numbers of in vitro assembly conditions. To this end, we describe a

new filament picking algorithm based on the Topaz approach, and we outline image processing strategies in Relion that

enable atomic structure determination of amyloids within days.

Introduction

Amyloids are filamentous, helical aggregates of proteins that
are characterised by a cross-B-sheet quaternary structure.
Amyloid formation of a few dozen proteins in the human
genome is associated with more than 50 diseases (Knowles,
Vendruscolo and Dobson, 2014)

Historically, structure determination of amyloids has been
more difficult than for globular proteins. Many globular
proteins can form crystals, making them amenable for X-ray
Alternatively, solution-state nuclear
magnetic resonance (NMR) can be used for relatively small

diffraction studies.
proteins. However, often the helical symmetry of amyloids is
incompatible with crystallisation, and their size precludes
solution-state NMR. Before the advent of atomic structure
determination by cryo-EM, amyloids were mainly studied by
solid-state NMR, which requires large amounts of 13C 15N
labelled protein (Tycko, 2006; Tuttle et al., 2016).

Atomic structure determination of globular proteins by
cryo-EM became mainstream through direct electron detectors
and statistical image processing software (Bai et al., 2013; Li et
al., 2013). Application of the same technique to amyloids wasn’t
successful until the implementation of helical symmetry in the
Relion program (He and Scheres, 2017). Using this approach,
the first cryo-EM structure of an amyloid was reported for
filaments of the protein tau that were extracted from the brain
of an individual with Alzheimer’s disease (Fitzpatrick et al.,
2017).

Besides Alzheimer’s disease, tau amyloid formation defines
more than a dozen neurodegenerative diseases, which are
collectively called tauopathies. Cryo-EM structures of tau
filaments extracted from the brains of individuals with 13
different tauopathies revealed 8 different tau folds, and showed
that different folds characterise different tauopathies (Falcon et

al., 2018a/b, 2019; Zhang et al., 2020; Shi et al., 2021) . Multiple
individuals with the same tauopathy showed the same folds.
The factors that determine the remarkable structural specificity
of tau folds among the different diseases remain unknown.
Post-translational modifications, isoform composition, protein
truncations, and protein or other co-factors may all play a role
(Scheres et al., 2020; Wesseling et al., 2020; Limorenko and
Lashuel, 2021).

Laboratory-based models, to experimental
perturbation, will be crucial to further our understanding of the

amenable

molecular mechanisms of amyloid formation, which factors
drive the formation of the different folds, and which role they
play in disease. Full-length recombinant tau is extremely
soluble, but it readily forms amyloids upon the addition of
anionic cofactors such as heparin (Goedert et al., 1996). Cryo-
EM structures of heparin-induced recombinant tau showed that
the resulting filaments are different from those observed in
disease (Zhang et al., 2019). Similar observations have also been
made for other proteins. Filaments of amyloid-3 (Kollmer et al.,
2019; Yang et al., 2022) a-synuclein (Schweighauser et al.,
2020), serum amyloid A (Liberta et al., 2019; Radamaker et al.,
2021) protein, TAR DNA-binding protein 43 (TDP-43) (Arseni et
al., 2021) and the prion protein (Kraus et al., 2021; Manka et al.,
2021) that were extracted from diseased tissue were different
from those assembled in vitro.

Recently, in vitro assembly conditions to replicate tau
filaments of Alzheimer’s disease and chronic traumatic
encephalopathy (CTE) were identified (Lovestam et al., 2021).
This effort solving 76 cryo-EM structures of
recombinant tau filaments, including 29 structures that had not

involved

been observed previously. Different construct lengths, buffer
conditions, shaking speeds and mutations mimicking post-
translational modifications all affected the amyloid folds. Many
of these folds could not be distinguished from the filaments
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observed in disease by negative stain EM or by cryo-EM two-
dimensional (2D) class averaging.

We thus envision that large numbers of three-dimensional
(3D) cryo-EM reconstructions will be required to further our
understanding of the factors that drive the formation of specific
amyloid folds, for tau as well as for other proteins. High-
throughput methods for cryo-EM structure determination of
amyloids will enable such studies. The first cryo-EM structures
of tau filaments from the brain of an individual with Alzheimer’s
disease (Fitzpatrick et al., 2017) took over a year. Although the
time required for amyloid structure determination has reduced
since 2017, manual picking of filaments in the micrographs
remained an important bottle neck in our recent work (Shi et
al., 2021; Yang et al., 2022). Several automated approaches for
helical filament picking have been proposed (He and Scheres,
2017; Huber, Kuhm and Sachse, 2018; Wagner et al., 2019), but
we find that manual picking often leads to better structures.

In this paper, we introduce a new method for automated
picking of helical filaments. Our approach is a modification of
the Topaz program, which employs a positive unlabelled deep-
learning method that requires only few sparsely labelled
particles for training and no labelled negatives (Bepler et al.,
2019). The Topaz program has been used successfully for cryo-
EM structure determination of globular proteins, and it has
recently been incorporated (through a wrapper) in Relion-4.0
(Kimanius et al., 2021). We used the modified Topaz approach
in our most recent work to automatically pick filaments for 38
out of the 76 in vitro assembled tau structures (Lévestam et al.,
2021).

Another bottle neck in cryo-EM structure determination of
amyloids is initial model generation. Because of multiple local
minima in the energy landscape of helical refinement,
suboptimal initial models can lead to incorrect structures. We
previously introduced a method that reconstructs initial 3D
models from assembled 2D class averages and outlined the
pitfalls of getting stuck in local minima during refinement
(Scheres, 2020). Still, various users of our software have
reported difficulties in solving amyloid structures. To facilitate
high-throughput amyloid structure determination in more labs,
we outline general processing strategies and highlight examples
from three representative data sets of our recent work on
recombinant tau (Lovestam et al., 2021).

Approach

Automated filament picking in Topaz

The Topaz pipeline is composed of three steps (Bepler et al.,
2019). First, the micrographs are preprocessed. Relion’s
wrapper performs a down-sampling and a normalisation
operation that is equivalent to providing the --affine
argument in Topaz. Second, a convolutional neural network is
trained based on a small number of labelled particles and many
unlabelled micrograph regions. Third, a sliding window is passed
over the micrographs for classification with the trained
network, and particle coordinates are extracted by non-
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maximum suppression. Our approach modifies only the
coordinate extraction part of the third step and leaves the first
two steps and the sliding-window part of the third step intact.
The modified version outputs start-end coordinate pairs of
straight segments of the filaments, which define the lines along
which individual particle images are extracted and provide
information for their orientational priors in Relion.

The sliding-window operation outputs an image with
predicted scores for each position in the down-sampled
micrograph. Our modification consists of four steps that
operate on this image. First, the score image is binarized at a
user-specified threshold (through the existing -t argument in
Topaz). Second, the binarized image is skeletonised, using the
skeletonize function (Zhang and Suen, 1984) from the scikit-
image python package (Walt et al., 2014). Third, straight lines
are detected in the skeletonised image using the
probabilistic_hough_line function (Galamhos, Matas
and Kittler, 1999), again from scikit-image. This function takes
three parameters: a threshold, a line length and a line gap. The
line length can be controlled by the user through the newly
implemented Topaz argument —-£1. By default, the line length
is set to twice the user-provided Topaz radius (which is set
through the existing -r argument in Topaz). The threshold and
the line gap parameters are fixed at 0.1 times the line length
and the user-provided radius, respectively. Fourth, a custom-
built algorithm merges lines into longer ones. Two lines are
merged if the angle between them is smaller than 10° and two
of their start or end coordinates lie within a distance from the
other line that is smaller than the user-provided radius. The
resulting start-end coordinate pairs can be used directly in
Relion’s ‘Particle extraction’ jobtype.

Within Relion-4.0, training of the Topaz convolutional neural
network and picking micrographs with the trained network are
both performed with the ‘Auto-picking’ jobtype on the main
graphical user interface (GUI). The Topaz radius (-r) is
calculated as half the ‘Particle diameter’ that is specified on the
Topaz tab of the GUI, taking the down-sampled pixel size into
account. This diameter should reflect the average width of the
filaments to be picked. When providing coordinates for the
neural network training, it is important to provide coordinates
for segments along the entire filaments, not only start-end
coordinates. We recommend to manually pick start-end
coordinates in a subset of the micrographs and to extract
segments along these filaments using the ‘Particle extraction’
jobtype. The extracted particles.star file can then be used
as the set of particles for Topaz training. If manual picking is not
done precisely, or if individual segments along the lines defined
by the start-end coordinates are not accurate because of curves
in the filaments, a preliminary alignment of the extracted
particles through the ‘2D classification’ jobtype may be used. In
that case, the resulting data.star file is used as the set of
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Figure 1: Automated filament picking. Rows A and B show the results for two different micrographs. The four panels from the left show
the visualisation windows from the modified Topaz approach for the binarization, skeletonization, Hough transform and line merging
steps, respectively. The panels on the right show the final start-end coordinates in the original micrograph.
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particles for Topaz training. It is then important to check that
the filaments are centred in the Y-direction of the 2D class
averages.

The trained network may be used to auto-pick the rest of
the micrographs. Filament picking is invoked through the —-f
argument. The most important parameter to tune is the
binarization threshold (--t), with useful values in our work on
recombinant tau ranging from -4 to -7. Tuning of the line length
parameter of the Hough transform (--£f1) is typically not
necessary. These arguments are specified on the Relion-4.0 GUI
in the ‘Additional Topaz arguments’ entry of the Topaz tab of
the ‘Auto-picking’ jobtype. The resulting coordinates may be
displayed using the ‘Display’ pull-down menu. In difficult cases,
the argument —-£fp may be provided to launch a window that
visualises the output of the four separate steps (binarization,
skeletonization, Hough transform and line merging) for each
micrograph (Figure 1). Based on these images, the user may
then decide to tune the -t, —r or —-—f1 arguments. If parameter
tuning does not give satisfactory results, the network may need
to be retrained.

The modified Topaz code is distributed under Topaz’'s
original GNU General Public Licence 3.0, as a fork of the original
code at https://github.com/3dem/topaz.

General strategy of amyloid structure determination in Relion

Structure determination of amyloids in Relion follows a
broadly similar workflow as in conventional single-particle
analysis of globular proteins. This section provides an overview
of the general strategy and relevant differences between the
two modalities. However, every data set is different, and it is
hard to provide one approach that is suitable for all. Therefore,
in the Results section we also describe in more detail relevant
aspects of the processing of three of the data sets from our

recent work on recombinant tau (Lovestam et al., 2021). The
first data set represents an easy case. Its structure was solved
within 2 hours, while the data were still being acquired. The
second data was more difficult due to the presence of different
filament types with misleading crossover distances. The third
data was the hardest, as it showed various filament types with
almost identical 2D slices, encumbering their identification and
separation. For each of these data sets, we share the original
micrograph movies, together with all relevant intermediate
results from their processing through the EMPIAR data base
(ludin et al., 2016) (entries EMPIAR-10940, EMPIAR-10943 and
EMPIAR-10944 respectively).

Micrograph inspection. Some data sets are not worth acquiring.
Compared to many globular protein complexes, amyloids are
relatively sturdy objects, but sometimes they do get damaged
during sample preparation. Processing images of such filaments
is likely to fail. One feature to look out for when acquiring data
are what we call ‘swollen filaments’, which appear “blobby”
with inconsistent widths along the filament axis, and result in
poor 2D class averages. In addition, although it is in principle
possible to solve the structure of filaments that do not twist, in
practice this is often hampered by strong preferred
orientations. Figure 2 shows an example of good filaments,
swollen filaments and non-twisting, flat ribbons.

Micrograph pre-processing and filament picking. Once suitable
images have been recorded, micrograph movies are motion-
corrected. We recommend using Relion’s own implementation
of the UCSF MotionCor2 program (Zheng et al., 2017; Zivanov
et al., 2018), which communicates metadata with particle
polishing. Next, contrast transfer function (CTF) parameters are
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estimated, preferably using the open-source CTFFIND4 program
(Rohou and Grigorieff, 2015). Filaments are picked manually in
the micrographs by clicking start-end coordinate pairs or picked
automatically using the modified Topaz approach described
above. The start-end coordinate pairs define straight lines.
Curved filaments are picked as multiple shorter lines. Individual
particles images are extracted along these lines with an inter-
particle distance that is defined by the helical rise (at this point
one can provide a value of 4.75 A) and the number of unique
asymmetrical units (a value of 3 works well in most cases). It is
often better to pick fewer, good filaments than larger numbers
of suboptimal filaments. Filaments with anisotropically shaped
cross-sections display alternatingly strong and weak signals in
the micrographs. To avoid missing the weaker parts, relatively
low Topaz threshold may be necessary. We recommend to
visually check auto-picking results in several micrographs.

2D classification. 2D class averaging serves to assess the quality
of the data, to remove suboptimal particles, and to detect the
presence of multiple filament types. The latter requires user
expertise if the filament types are similar. To aid novel users, we
elaborate on this step for the second and third data sets that
are described in the Results section. The mask diameter for 2D
classification is set close to the box size; the angular sampling
rate to 1-2°. The VDAM algorithm in Relion-4.0 (Kimanius et al.,
2021) works less well for amyloids as it does for globular
proteins and better results are often obtained with the (slower)
default algorithm.

It is often useful to calculate 2D class averages with a few
different box sizes. Many final reconstructions are calculated in
box sizes of approximately 250-300 A, but earlier 2D
classifications with box sizes in the range of 500-1000 A are also
useful. Although typically of lower resolution, larger 2D class
averages facilitate identification of distinct filament types, can
help measuring cross-over distances, and reduce the number of
variables to optimise in the relion_helix inimodel2d
program for initial model generation.

Initial model generation. Subsets of 2D class averages that
correspond to a single filament type are used to calculate initial
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3D models in the relion_helix_inimodel2d program. This
approach has been described in detail (Scheres, 2020).
Nevertheless, reliable initial model generation remains the
biggest hurdle in many amyloid structure determination
projects.

The initial model generation consists of a 2D reconstruction
of the XY cross-section of the filaments. Therefore, the results
are best assessed by visual inspection of 2D images, rather than
the 3D model. The output files rec.spi (the 2D
reconstruction), before reproject.spi (the summed 2D
class averages along the cross-over) and
after reproject.spi (the projected 2D reconstruction
along the cross-over) are over-written at every iteration and can
be monitored with a display program that re-reads the images
every time they change on disk (we use Xmipp-2.4 (Scheres et
al., 2008)). The algorithm should converge, with few changes to
these images in the last iteration. The rec.spi image of good
models typically has higher contrast (white signal against a black
background) than that of suboptimal models. Good models also
show continuous main-chain density, possibly even with density
for bulky side chains. Multiple disconnected densities and
streaks of density that extend into the solvent area are typical
of suboptimal solutions. The before_reproject.spi image
should have 2D class average images along the entire cross-
over, without large discontinuities between them, and the
after reproject.spi image should resemble the
before reproject.spiimage.

2D class averages displaying filaments that are not centred
in the Y-direction or that are not oriented horizontally can be
aligned during the 2D reconstruction process using the
arguments --search _shift, --search _angle and --
step_angle. In difficult cases, pre-alignment of the images (in
Relion or other software) may give better results (Scheres,
2020). If the rec.spi image appears symmetrical, rotational
symmetry can be imposed (using the ——-sym argument) to aid
convergence. Using a mask on the 2D reconstruction (--
mask diameter) and limiting the resolution of the 2D
reconstruction (--maxres) speed up the calculations and may
facilitate convergence. The program has also been parallelised
(--7), with multiple threads each aligning subsets of the 2D
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class averages. Quickly performing multiple and
interactively monitoring their results facilitates parameter
tuning. The most important variables to tune are the --
crossover_distance parameter (because it may be difficult
to estimate the cross-over distance from the micrographs or the
2D class averages) and the selection of which 2D class averages

to use (because it may be difficult to recognise distinct filament
types).

runs

3D refinement. Next, the initial model is used for 3D auto-
refinement. The initial low-pass filter applied to the initial
model varies with the quality of the model, but is typically
around 10 A. The initial model is not on the same grey scale as
the particles extracted for the refinement. At this stage, a helical
rise of 4.75 A (or the adjusted value if the pixel size calibration
was off, see the Pitfalls section below) is used, together with a
helical twist that is calculated as (4.75 A x 180°) / d, with d
being the cross-over distance (in A) as measured in the
micrographs. Typically, no point group symmetry is applied
during the first refinement. Because the resolution of the model
does not yet extend beyond 4.75 A, helical twist and rise
parameters are also not refined at this stage.

Refinement should result in a substantial gain in resolution
over the initial model and, more importantly, result in amyloid-
like features in the map, including separated [-strands and
connected main-chain density with convincing side chains. If
this is not the case, a better initial model may be necessary.

If additional symmetry is present in the map, the symmetry
operators need to be determined. For example, if two
symmetrical protofilaments are visible, the individual molecules
could be related by C2 point group symmetry, or by pseudo-2;
helical screw symmetry. If these symmetries cannot be
distinguished from the reconstruction, subsequent refinements
with either of these options should be explored. The correct
symmetry will lead to an increase in resolution, whereas the
incorrect symmetry will prevent the map from acquiring good
separation of the B-strands.

Once refinement with good 3-strand separation is achieved,
the helical twist and rise may be optimised. For this purpose, an
initial reference with good B-strand separation is used for
another 3D auto-refinement job with an initial low-pass filter
close to 5 A. To avoid overfitting, one needs to provide one of
the two half-maps from a previous refinement as the initial
reference. How initial models are dealt with in 3D auto-
refinement has changed in Relion-4.0. If the filename contains
the substring halfl or half2, then both half-maps are read
and set as the initial models for the two separate half-map
refinements. In previous versions of Relion, the same initial
model was always used for both halves. This could lead to
severe overfitting, as explained in the Pitfalls section below.

In rare cases, typically with relatively noisy data, the
Sidesplitter program (Ramlaul et al., 2020), which is invoked
through the --external reconstruct argument, leads to
better reconstructions than the default auto-refinement
algorithm.

3D classification. The separation of particle images into
structurally homogeneous subsets does not work as well for
amyloids as it does for single-particle analysis of globular
proteins. Nevertheless, 3D classification is useful for the
separation of filaments types that are relatively similar to each
other, in particular when used without further alignment of the
individual particle images. Varying the regularisation parameter
(T=4-100) may help. One particularly useful application of 3D
classification is the identification of suboptimal particles, which
tend to separate from the good particles into different classes.
Again, including fewer, better particles often yields better
reconstructions than using more, suboptimal ones.

Particle polishing and CTF refinement. Beam-induced motion
correction by particle polishing is typically done earlier in the
structure determination process of amyloids than it is for
globular proteins. The rationale behind this is that beam-
induced motions can often be detected even when the
reference map does not yet show all the expected features of
an amyloid. If B-strand separation in early refinements is
suboptimal, it is often helpful to perform polishing prior to 3D
classification. Early polishing results in an early increase in the
signal-to-noise ratio of the particles, which facilitates
subsequent refinements. If deemed necessary, the polishing
can be repeated once a better map is available.

CTF refinement, in particular optimisation of the defoci of
individual particles and astigmatism for micrographs may lead
to further increases in resolution. Optimisation of higher-order
optical aberrations may be affected by the absence of signal at
spatial frequencies in between the helical layer lines and may
require better data than for globular proteins. If attempted,
visual inspection of the colourful phase difference images in the
log files is recommended. If alarge gain in resolution is achieved
in the 3D refinement after CTF refinement, executing a second
CTF refinement, in particular optimising the defoci of individual
particles, may further improve resolution.

Post-processing. Resolution estimation based on Fourier Shell
Correlation (FSC) between the two independently refined half-
maps and sharpening of the final map are performed in the
post-processing step. A soft mask is generated using the ‘Mask
creation’ jobtype, with the central Z length set to 20 or 30% of
the box size. Post-processing for amyloids is run in the same
automated manner as for globular proteins. However, although
the resulting map will have some helical averaging applied in the
Fourier domain, the real-space map will not obey helical
symmetry. To impose the latter, the post-processed map is
symmetrised using the relion_helix toolbox program.
Because real-space symmetrisation leads to a further
increase in the signal-to-noise ratio of the map, the estimated
resolution from the post-processing tends to be somewhat
under-estimated. This is preferred to over-estimating the
resolution, which would result from convolution effects if one
would attempt to measure resolution from half-maps that are
symmetrised in real-space. To maximise the information
content in the map, it is sometimes useful to run additional
post-processing jobs, fixing the map sharpening B-factor to the
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value obtained from the first, automated run, but applying a
higher-resolution ad-hoc low-pass filter than the resolution
estimated in the automated procedure. Caution is needed when
interpreting these maps, as under-filtering may lead to high
noise levels. The reported resolution of the map should be the
one estimated by the automated procedure.

Pitfalls

Getting stuck in local minima. This probably continues to be the
largest pitfall of amyloid structure determination. How to
recognise and circumvent getting stuck in local minima has been
described in detail previously (Scheres, 2020). The possibility of
ending up in local minima of refinement means that the user
needs to remain highly critical of unexpected features in the
map. Although this is equally true for single-particle analysis of
globular proteins, artefacts with important implications for
their interpretation are much more common with amyloid
reconstructions. Continuing developments in the field, like
better detectors or more robust optimisation techniques, will
hopefully ameliorate this situation in the future.

Incorrectly calibrated pixel size. In many electron microscopes,
the calibrated pixel size deviates from the correct value by
several percent. Incorrectly calibrated pixel sizes will lead to
deviations from the expected helical rise of 4.75 A. Such
deviations can be detected from 2D class averages with
sufficient resolution to separate the B-strands (looking for a
peak in the spectral signal-to-noise of those images in the
model.star file), or from the optimised helical rise in 3D auto-
refinements. If an incorrectly calibrated pixel size is suspected,
processing may be continued with the incorrect pixel size, but
the helical rise in subsequent steps will need to be adjusted
accordingly. The correct pixel size can be provided at the end of
processing, through the ‘Post-processing’ jobtype, to generate
a final map at the correct scale. Only for cases where the
resolution extends substantially beyond 2 A would this
procedure be suboptimal, as at those resolutions higher-order
effects start to become significant. Another, computationally
more expensive option would be to restart processing with the
correct pixel size from the beginning (although picking results
could be re-used).

Estimating cross-over distances with higher-order symmetries.
For filaments with higher than 2-fold additional symmetry, it
may be difficult to estimate the cross-over distance from
alternating patterns of the width of the filaments in the
micrographs. An example of this is shown for the second data
set described in the Results section. Therefore, when calculating
the initial model in the relion_helix inimodel2d
program, it may be useful to attempt a wider range of cross-
over distances than suggested by the micrographs.

Overfitting. In overfitting, noise artefacts in the reference map
lead to systematic errors in the particle orientations. The
artefacts are then enhanced in subsequent reconstructions with
the incorrect orientations. Artefacts are most likely to appear at
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high spatial frequencies, where signal-to-noise ratios are low. In
3D auto-refinement, the iterative deterioration of the
reconstruction is prevented by refining maps
independently against two halves of the data and low-pass
filtering both half-maps at every iteration based on the FSC
between them (Scheres and Chen, 2012).

Previous versions of Relion used the provided initial model
as the reference for both half-sets and relied on the user to
choose a suitably low-resolution initial low-pass filter to prevent
overfitting. However, as described above, it is often necessary
to provide relatively high-resolution initial models for successful
optimisation of the helical twist and rise parameters. By
providing a single, high-resolution initial model, the benefits of
refining two half-sets are diminished. To address this problem,
Relion-4.0 sets pairs of independently refined half-maps as
initial models for the two half-sets, provided the input filename
contains a halfl or half2 substring. Because procedures in
the previous versions of Relion are amenable to accumulating
high-resolution artefacts in the maps, users are urged to
upgrade to Relion-4.0 and use only half-map references going
forward.

A related problem exists with performing 3D classification
with a single class as an alternative to 3D auto-refinement
(Guenther et al., 2018). In 3D classification, iterative overfitting
is not prevented by separation of the data set into two halves.
Instead, resolution is estimated from the power spectrum of the
map itself, with higher values of the regularisation parameter T
leading to higher resolution estimates. Thereby, high-resolution
artefacts in the map may lead to inflated resolution estimates
and the further accumulation of noise. We therefore strongly
advice against this use of 3D classification. If 3D auto-
refinement does not give the expected resolution of the final
map, we note that the 3D auto-refinement job also responds to
the regularisation parameter (through providing —-tau_fudge
as an additional argument). Using values higher than 1 will lead
to higher resolution estimates during refinement, which in rare
cases may improve convergence. However, as both half-maps
are still refined independently, an estimate of the true
resolution may still be obtained by post-processing.

two

Z-shifted half-maps. Independent refinement of two halves of
the data may lead to a shift between the two maps in the (Z-)
direction of the helical axis. This will lower the FSC between the
two maps and thus hamper convergence onto a high-resolution
solution. When the two half-maps are provided again as initial
models for subsequent refinements (as described above), it will
be difficult to escape from this situation. In such cases, one may
align the two half-maps with respect to each other and replace
one of the original half-maps with the aligned version before
performing the next refinement. We use UCSF Chimera
(Pettersen et al., 2004) or ChimeraX (Pettersen et al., 2021) for
this alignment.

Handedness. Because cryo-EM reconstruction does not provide
information on the absolute hand, the final map may need to
be inverted. Most amyloid filaments solved to date have a left-
handed twist, but filaments with right-handed twists have also
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Figure 3: Results for data set EMPIAR-10940. A. 2D class averages from job010, with selected 2D class averages from job011
highlighted in yellow. The selected 2D class averages were used for initial model generation. B. Reconstructed cross-over from
the initial model generation program. C. Reconstructed xy-slice from the initial model generation program (left); xy-slice from
the refined map of job014 (middle) and xy-slice from the final, postprocessed map of job033 (right.)

reprojected.spi

job033

been observed, including for filaments extracted from diseased
tissue (Kollmer et al., 2019; Arseni et al., 2021). At resolutions
beyond 2.9 A, the handedness may be determined directly from
the map through densities for the carbonyl oxygens of the main
chain. For maps at lower resolutions, handedness may be
inferred from the conformation of parts of the structure that
have been observed previously, or from additional experiments,
like atomic force microscopy or rotary shadowing electron
microscopy. If this is not possible, one may also build a model in
maps of both hands and compare the corresponding FSCs
between the models and the maps, but it may be safer to
explicitly state that the handedness remains unclear.

Results

Automated filament picking for in vitro assembled tau filaments

We used the modified version of Topaz for automated picking
of 38 data sets in our work on in vitro assembly of recombinant
tau (Lovestam et al., 2021). For training the Topaz neural
network, we manually picked 305 filaments from 44
micrographs of a data set on a tau construct spanning residues
305-379. From the resulting start-end coordinate pairs 18,094
individual particle images were extracted, using an inter-
particle distance of three B-rungs, i.e. 14.2 A. The coordinates
of the individual particles were used for training the Topaz
neural network, specifying a particle diameter of 120 A and 300
expected particles per micrograph. Example micrographs with
manually picked filaments used for training and automatically
picked filaments by the modified Topaz approach are shown in
Figure 1. The resulting neural network model was not only used
to auto-pick the remainder of the micrographs of that same
data set, but also for 37 other data sets, leading to
reconstructions with resolutions ranging from 3.5 to 1.9 A.
Datasets where Topaz failed typically had large numbers of non-
twisting filaments or low contrast due to thick ice orimaging too
close to focus. Although non-twisting filaments may be
separated by 2D classification, picking the twisted filaments

might require lower thresholds, which would result in picking
empty regions or the rim of the hole of the grid.

Processing of data set EMPIAR-10940

We consider this dataset to be relatively easy, due to a readily
discernible cross-over distance, and the presence of a single
filament type with additional pseudo-2; symmetry.
Micrographs were processed as described above; auto-picked
using the Topaz module with a threshold of -6 (job007 in the
EMPIAR entry); and extracted using a box size of 768 pixels,
downscaled to 128 pixels, with a downscaled pixel size of 4.94 A
(job009). 2D classification indicated the presence of a single
filament type (job010). Four images from the 2D classification
were selected (job011) to generate the initial model using a
cross-over distance of 720 A (Figure 3 and the inimodel/
directory in the EMPIAR entry). The initial model was rescaled
to a box size of 384 pixels and the original pixel size of 0.824 A
using relion_image_handler and used for 3D refinement,
with a twist and rise fixed to -1.19° and 4.75 A, respectively
(job014). The resulting map showed clear B-strand separation
and the presence of two protofilaments related by pseudo-2;
helical symmetry. Subsequent 3D refinements with
optimisation of the twist and rise and imposed symmetry
(job017, job019), polishing (job022) and CTF refinements
(job025, job026, job027) further increased the resolution. The
resolution of the final map was calculated by applying a soft
mask consisting of 20% of the box size (job015) and estimated
to be 2.2 A using standard post-processing (job033).

Processing of data set EMPIAR-10943

We consider this dataset to be of moderate difficulty, due to the
presence of two filament types. The first type consists of two
protofilaments without symmetry; the second type consists of three
protofilaments related by C3 symmetry. Micrographs were
processed as described above, auto-picked using the Topaz module
with a threshold of -7 and -5 (job008 and job033 in the EMPIAR entry)
and extracted using a box size of 768 pixels, downscaled to 128 pixels
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the final, postprocessed map of job094 (right.)

Figure 4: Results for EMPIAR-10943 dataset. A. 2D class averages from job035, with selected 2D class averages for type A
filaments from job054 highlighted in yellow. The selected 2D class averages were used for initial model generation. B.
Reconstructed cross-over for type A filaments from the initial model generation program. C. Reconstructed xy-slice from the
initial model generation program for type A filaments (left); xy-slice from the refined map of job057 (middle) and xy-slice from
the final, postprocessed map of job101 (right.) D. 2D class averages from job053, with selected 2D class averages for type B
filaments from job0O60 highlighted in yellow. The selected 2D class averages were used for initial model generation. E.
Reconstructed cross-over for type B filaments from the initial model generation program. C. Reconstructed xy-slice from the
initial model generation program for type B filaments (left); xy-slice from the refined map of job065 (middle) and xy-slice from

reprojected.spi

with a downscaled pixel size of 4.94 A. 2D classification (job035)
indicated the presence of two types of filaments, with the majority
type containing a fast-twisting morphology (type A), likely with
symmetry, and the other type twisting more slowly, without
indications of symmetry from the 2D class averages (type B). The two
different types were selected and processed separately.

Type A: Three 2D class averages were selected (job054) to generate
an initial model using a crossover distance of 700 A (Figure 4 and the
inimodel/ directory in the EMPIAR entry). The initial model
indicated that this filament is related by three-fold symmetry. As
such, an additional inimodel was generated using the previous
inimodel as a reference (using the ——iniref argument), imposing
three-fold symmetry (--sym 3) and adjusting the crossover
distance to 750 A. The resulting initial model was rescaled to a box
of 384 pixels and the original pixel size of 0.824 A using
relion_image_handler. This model was used for 3D
refinement, without additional symmetry and with a twist and rise
fixed to -1.14° and 4.75 A, respectively (job057). The resulting map
showed clear -strand separation and the presence of three
protofilaments related by C3 helical symmetry. Subsequent
refinements with optimisation of the twist, rise and imposed

8 | bioRxiv

symmetry (job057, job066), 3D classification (job072), polishing
(job083) and CTF refinements (job096, job097, job098) further
increased the resolution. The resolution of the final map was
estimated to be 2.1 A using standard post-processing (job101).

Type B: Type B filaments were selected (job051) from the 2D
classification (job035), re-extracted in a box size of 512 and
downscaled to 128 pixels for further 2D classification (job053).
Twelve 2D class averages were selected (job060) to generate an
initial model using a crossover distance of 900 A. The initial model
was rescaled to a box of 384 pixels and the original pixel size of 0.824
A using relion image handler. This model was used for 3D
refinement without additional symmetry, with a twist and rise fixed
t0-0.9° and 4.75 A, respectively (job065). The resulting map showed
clear B-strand separation and the presence of two
protofilaments that were not related by symmetry. Subsequent
refinements with optimisation of the twist and rise (job068,
job069), and polishing were performed (job078). However, the
map showed discontinuities in the main chain (job079).
Performing a 3D refinement with local angular searches for the
rot, tilt and psi angles were set to 5°, 7° and 10° respectively,
and a range factor for local averaging of 3 (job086) improved
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the map. Subsequent CTF refinements (job090, job091, job092)
further increased the resolution. The resolution of the final map

Figure 5: Results for EMPIAR-10944 dataset. A. 2D class
averages from job008. 2D class averages selected in job009
are highlighted in yellow; 2D class averages selected in
job012 in red. B. Reconstructed xy-slice from the initial
model generation program for the 2D class averages
selected in job009 (left); xy-slice from the refined map of
job011 (second left); xy-slice of final, post-processed map
of job 092 (middle), job111l (second right) and job124
(right). C. Reconstructed xy-slice from the initial model
generation program for the 2D class averages selected in
job012 (left); xy-slice from the refined map of job014
(second left); xy-slice of two classes from 3D classification
job012 (middle and second right) and final, post-processed
map of job054 (right).

was estimated to be 2.6 A using standard post-processing
(job094).

Processing of data set EMPIAR-10944

We consider this dataset to be relatively difficult, due to the
presence of four filament types. Although auto-picking did work
for this dataset (job126, job127, job128), a low topaz threshold
was required to all filament types, resulting in large numbers of
false positives. Therefore, we resorted to manual picking

ARTICLE

(job005). Segments were extracted using a box size of 768 A,
downscaled to 128 pixels with a downscaled pixel size of 4.94 A
(job006). 2D classification (job008) indicated the presence of at
least three types of filaments, but two of these were hard to
distinguish. Two selections (job009 and job012) were used to
process the filaments. The particles in job009 contained three
filament types consisting of two protofilaments; the particles in
job012 contained a single filament type consisting of three
protofilaments. The processing of these two selections is
described separately below.

Select job009: Initial model generation was unable to create a
sensible initial model, due to (in hindsight) the presence of
multiple filament types (Figure 5). However, as we were unable
to discern the different filament types by 2D classification, we
performed several refinements with different initial models
(job011, job022, job029), for which the resulting maps
appeared blurred, again indicative of a mixture of filament
types. Therefore, we then performed a 3D classification with
alignment and optimising for the twist and rise (job055), which
resulted in a separation of three distinct filament types. The
particles for each type were selected (job056, job057, job058)
and refined with the maps generated by the 3D classification as
initial model. Subsequent refinements for each polymorph were
performed as described above, optimising for the helical twist
and rise as well as symmetry for each type (job059, job060,
job061), again followed by polishing (job080, job093, job118)
and CTF refinement (job088, job089, job090, job101, job102,
job103, job121, job122). The resolutions for the final maps were
estimated to be 3.1 A (job092), 3.2 A (job111) and 3.8 A (job124)
using standard post-processing.

Select job012: Initial model generation indicated this filament
type consisted of three protofilaments related by three-fold
symmetry, similar to the EMPIAR-10943 data set described
above. This initial model was used for refinements (job014 and
job020). Subsequent refinements optimising for twist and rise,
and symmetry was performed (job028 and job033). The
symmetry was determined by visual inspection in Chimera.
Subsequent 3D classification (job036) indicated a mixture of
particles containing three or two protofilaments (the latter
being the same ones as selected in job092). Only particles
containing three protofilaments were selected (job040) and
further refined (job041). Polishing (job044) and CTF-
refinements (job050, job051, job052) further improved the
resolution. The resolution of the final map was estimated to be
3.2 A using standard post-processing (job054).

Conclusion

Amyloid structure determination is often more difficult than
single-particle analysis of globular proteins. Complicated energy
landscapes result in refinements getting stuck in incorrect
solutions and detecting and separating multiple filament types
in a data set is not straightforward. It is therefore difficult to
provide a single, fail-safe procedure for automated amyloid
structure determination.
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But amyloids have their advantages too. They are typically
more sturdy than other multi-component protein complexes
objects and do not fall apart during cryo-EM grid preparation;
their helical symmetry ensures excellent orientational
distributions, provided the filaments twist; and every 4.75 A of
amyloid filament will yield at least one asymmetric unit for
averaging. As a result, for many samples, and in particular those
of recombinant protein, making grids is relatively easy and few
hours of data collection often suffice for calculating
reconstructions to sufficient resolution for atomic modelling.

In our experience, with some training and using the
developments described in this paper, individual users can solve
multiple amyloid structures per week. The automated filament
picking approach described in this paper allows for full
automation up to 2D class averaging using relion_it.py in
Relion-4.0 (Kimanius et al., 2021). Combined with detailed
descriptions of three example data sets from our own work, we
hope this will enable the use of amyloid structure determination
as a high-throughput tool in many labs and look forward to the
insights that these structures will bring.
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