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The formation of amyloid filaments is characteristic of various degenerative diseases. Recent breakthroughs in electron cryo-
microscopy (cryo-EM) have led to atomic structure determination of multiple amyloid filaments, both of filaments 
assembled in vitro from recombinant proteins, and of filaments extracted from diseased tissue. These observations revealed 
that a single protein may adopt multiple different amyloid folds, and that in vitro assembly does not necessarily lead to the 
same filaments as those observed in disease. In order to develop relevant model systems for disease, and ultimately to 
better understand the molecular mechanisms of disease, it will be important to determine which factors determine the 
formation of distinct amyloid folds. High-throughput cryo-EM, in which structure determination becomes a tool rather than 
a project in itself, will facilitate the screening of large numbers of in vitro assembly conditions. To this end, we describe a 
new filament picking algorithm based on the Topaz approach, and we outline image processing strategies in Relion that 
enable atomic structure determination of amyloids within days. 

Introduction 
Amyloids are filamentous, helical aggregates of proteins that 
are characterised by a cross-b-sheet quaternary structure. 
Amyloid formation of a few dozen proteins in the human 
genome is associated with more than 50 diseases (Knowles, 
Vendruscolo and Dobson, 2014) 

Historically, structure determination of amyloids has been 
more difficult than for globular proteins. Many globular 
proteins can form crystals, making them amenable for X-ray 
diffraction studies. Alternatively, solution-state nuclear 
magnetic resonance (NMR) can be used for relatively small 
proteins. However, often the helical symmetry of amyloids is 
incompatible with crystallisation, and their size precludes 
solution-state NMR. Before the advent of atomic structure 
determination by cryo-EM, amyloids were mainly studied by 
solid-state NMR, which requires large amounts of 13C 15N 
labelled protein (Tycko, 2006; Tuttle et al., 2016). 
  Atomic structure determination of globular proteins by 
cryo-EM became mainstream through direct electron detectors 
and statistical image processing software (Bai et al., 2013; Li et 
al., 2013). Application of the same technique to amyloids wasn’t 
successful until the implementation of helical symmetry in the 
Relion program (He and Scheres, 2017). Using this approach, 
the first cryo-EM structure of an amyloid was reported for 
filaments of the protein tau that were extracted from the brain 
of an individual with Alzheimer’s disease (Fitzpatrick et al., 
2017).  
 Besides Alzheimer’s disease, tau amyloid formation defines 
more than a dozen neurodegenerative diseases, which are 
collectively called tauopathies. Cryo-EM structures of tau 
filaments extracted from the brains of individuals with 13 
different tauopathies revealed 8 different tau folds, and showed 
that different folds characterise different tauopathies (Falcon et 

al., 2018a/b, 2019; Zhang et al., 2020; Shi et al., 2021) . Multiple 
individuals with the same tauopathy showed the same folds. 
The factors that determine the remarkable structural specificity 
of tau folds among the different diseases remain unknown. 
Post-translational modifications, isoform composition, protein 
truncations, and protein or other co-factors may all play a role 
(Scheres et al., 2020; Wesseling et al., 2020; Limorenko and 
Lashuel, 2021).  
 Laboratory-based models, amenable to experimental 
perturbation, will be crucial to further our understanding of the 
molecular mechanisms of amyloid formation, which factors 
drive the formation of the different folds, and which role they 
play in disease.  Full-length recombinant tau is extremely 
soluble, but it readily forms amyloids upon the addition of 
anionic cofactors such as heparin (Goedert et al., 1996). Cryo-
EM structures of heparin-induced recombinant tau showed that 
the resulting filaments are different from those observed in 
disease (Zhang et al., 2019). Similar observations have also been 
made for other proteins. Filaments of amyloid-b (Kollmer et al., 
2019; Yang et al., 2022) a-synuclein (Schweighauser et al., 
2020), serum amyloid A (Liberta et al., 2019; Radamaker et al., 
2021) protein, TAR DNA-binding protein 43 (TDP-43) (Arseni et 
al., 2021) and the prion protein (Kraus et al., 2021; Manka et al., 
2021) that were extracted from diseased tissue were different 
from those assembled in vitro.  
 Recently, in vitro assembly conditions to replicate tau 
filaments of Alzheimer’s disease and chronic traumatic 
encephalopathy (CTE) were identified (Lövestam et al., 2021). 
This effort involved solving 76 cryo-EM structures of 
recombinant tau filaments, including 29 structures that had not 
been observed previously. Different construct lengths, buffer 
conditions, shaking speeds and mutations mimicking post-
translational modifications all affected the amyloid folds. Many 
of these folds could not be distinguished from the filaments 
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observed in disease by negative stain EM or by cryo-EM two-
dimensional (2D) class averaging.  
 We thus envision that large numbers of three-dimensional 
(3D) cryo-EM reconstructions will be required to further our 
understanding of the factors that drive the formation of specific 
amyloid folds, for tau as well as for other proteins. High-
throughput methods for cryo-EM structure determination of 
amyloids will enable such studies. The first cryo-EM structures 
of tau filaments from the brain of an individual with Alzheimer’s 
disease (Fitzpatrick et al., 2017) took over a year. Although the 
time required for amyloid structure determination has reduced 
since 2017, manual picking of filaments in the micrographs 
remained an important bottle neck in our recent work (Shi et 
al., 2021; Yang et al., 2022). Several automated approaches for 
helical filament picking have been proposed (He and Scheres, 
2017; Huber, Kuhm and Sachse, 2018; Wagner et al., 2019), but 
we find that manual picking often leads to better structures.  

In this paper, we introduce a new method for automated 
picking of helical filaments. Our approach is a modification of 
the Topaz program, which employs a positive unlabelled deep-
learning method that requires only few sparsely labelled 
particles for training and no labelled negatives (Bepler et al., 
2019). The Topaz program has been used successfully for cryo-
EM structure determination of globular proteins, and it has 
recently been incorporated (through a wrapper) in Relion-4.0 
(Kimanius et al., 2021). We used the modified Topaz approach 
in our most recent work to automatically pick filaments for 38 
out of the 76 in vitro assembled tau structures (Lövestam et al., 
2021).  

Another bottle neck in cryo-EM structure determination of 
amyloids is initial model generation. Because of multiple local 
minima in the energy landscape of helical refinement, 
suboptimal initial models can lead to incorrect structures. We 
previously introduced a method that reconstructs initial 3D 
models from assembled 2D class averages and outlined the 
pitfalls of getting stuck in local minima during refinement 
(Scheres, 2020). Still, various users of our software have 
reported difficulties in solving amyloid structures. To facilitate 
high-throughput amyloid structure determination in more labs, 
we outline general processing strategies and highlight examples 
from three representative data sets of our recent work on 
recombinant tau (Lövestam et al., 2021).  

Approach 
 
Automated filament picking in Topaz 
 
The Topaz pipeline is composed of three steps (Bepler et al., 
2019). First, the micrographs are preprocessed. Relion’s 
wrapper performs a down-sampling and a normalisation 
operation that is equivalent to providing the --affine 
argument in Topaz. Second, a convolutional neural network is 
trained based on a small number of labelled particles and many 
unlabelled micrograph regions. Third, a sliding window is passed 
over the micrographs for classification with the trained 
network, and particle coordinates are extracted by non-

maximum suppression. Our approach modifies only the 
coordinate extraction part of the third step and leaves the first 
two steps and the sliding-window part of the third step intact. 
The modified version outputs start-end coordinate pairs of 
straight segments of the filaments, which define the lines along 
which individual particle images are extracted and provide 
information for their orientational priors in Relion.  

The sliding-window operation outputs an image with 
predicted scores for each position in the down-sampled 
micrograph. Our modification consists of four steps that 
operate on this image. First, the score image is binarized at a 
user-specified threshold (through the existing -t argument in 
Topaz). Second, the binarized image is skeletonised, using the 
skeletonize function (Zhang and Suen, 1984) from the scikit-
image python package (Walt et al., 2014). Third, straight lines 
are detected in the skeletonised image using the 
probabilistic_hough_line function (Galamhos, Matas 
and Kittler, 1999), again from scikit-image. This function takes 
three parameters: a threshold, a line length and a line gap. The 
line length can be controlled by the user through the newly 
implemented Topaz argument --fl. By default, the line length 
is set to twice the user-provided Topaz radius (which is set 
through the existing -r argument in Topaz). The threshold and 
the line gap parameters are fixed at 0.1 times the line length 
and the user-provided radius, respectively. Fourth, a custom-
built algorithm merges lines into longer ones. Two lines are 
merged if the angle between them is smaller than 10° and two 
of their start or end coordinates lie within a distance from the 
other line that is smaller than the user-provided radius. The 
resulting start-end coordinate pairs can be used directly in 
Relion’s ‘Particle extraction’ jobtype.  

Within Relion-4.0, training of the Topaz convolutional neural 
network and picking micrographs with the trained network are 
both performed with the ‘Auto-picking’ jobtype on the main 
graphical user interface (GUI). The Topaz radius (-r) is 
calculated as half the ‘Particle diameter’ that is specified on the 
Topaz tab of the GUI, taking the down-sampled pixel size into 
account. This diameter should reflect the average width of the 
filaments to be picked. When providing coordinates for the 
neural network training, it is important to provide coordinates 
for segments along the entire filaments, not only start-end 
coordinates. We recommend to manually pick start-end 
coordinates in a subset of the micrographs and to extract 
segments along these filaments using the ‘Particle extraction’ 
jobtype. The extracted particles.star file can then be used 
as the set of particles for Topaz training. If manual picking is not 
done precisely, or if individual segments along the lines defined 
by the start-end coordinates are not accurate because of curves 
in the filaments, a preliminary alignment of the extracted 
particles through the ‘2D classification’ jobtype may be used. In 
that case, the resulting data.star file is used as the set of 
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particles for Topaz training. It is then important to check that 
the filaments are centred in the Y-direction of the 2D class 
averages. 

The trained network may be used to auto-pick the rest of 
the micrographs. Filament picking is invoked through the --f 
argument. The most important parameter to tune is the 
binarization threshold (--t), with useful values in our work on 
recombinant tau ranging from -4 to -7. Tuning of the line length 
parameter of the Hough transform (--fl) is typically not 
necessary. These arguments are specified on the Relion-4.0 GUI 
in the ‘Additional Topaz arguments’ entry of the Topaz tab of 
the ‘Auto-picking’ jobtype. The resulting coordinates may be 
displayed using the ‘Display’ pull-down menu. In difficult cases, 
the argument --fp may be provided to launch a window that 
visualises the output of the four separate steps (binarization, 
skeletonization, Hough transform and line merging) for each 
micrograph (Figure 1). Based on these images, the user may 
then decide to tune the -t, -r or --fl arguments. If parameter 
tuning does not give satisfactory results, the network may need 
to be retrained. 

The modified Topaz code is distributed under Topaz’s 
original GNU General Public Licence 3.0, as a fork of the original 
code at https://github.com/3dem/topaz.   
 
General strategy of amyloid structure determination in Relion 
 

Structure determination of amyloids in Relion follows a 
broadly similar workflow as in conventional single-particle 
analysis of globular proteins. This section provides an overview 
of the general strategy and relevant differences between the 
two modalities. However, every data set is different, and it is 
hard to provide one approach that is suitable for all. Therefore, 
in the Results section we also describe in more detail relevant 
aspects of the processing of three of the data sets from our 

recent work on recombinant tau (Lövestam et al., 2021). The 
first data set represents an easy case. Its structure was solved 
within 2 hours, while the data were still being acquired. The 
second data was more difficult due to the presence of different 
filament types with misleading crossover distances.  The third 
data was the hardest, as it showed various filament types with 
almost identical 2D slices, encumbering their identification and 
separation. For each of these data sets, we share the original 
micrograph movies, together with all relevant intermediate 
results from their processing through the EMPIAR data base 
(Iudin et al., 2016) (entries EMPIAR-10940, EMPIAR-10943 and 
EMPIAR-10944 respectively). 
  
Micrograph inspection. Some data sets are not worth acquiring. 
Compared to many globular protein complexes, amyloids are 
relatively sturdy objects, but sometimes they do get damaged 
during sample preparation. Processing images of such filaments 
is likely to fail. One feature to look out for when acquiring data 
are what we call ‘swollen filaments’, which appear “blobby” 
with inconsistent widths along the filament axis, and result in 
poor 2D class averages. In addition, although it is in principle 
possible to solve the structure of filaments that do not twist, in 
practice this is often hampered by strong preferred 
orientations. Figure 2 shows an example of good filaments, 
swollen filaments and non-twisting, flat ribbons.  
 
Micrograph pre-processing and filament picking. Once suitable 
images have been recorded, micrograph movies are motion-
corrected. We recommend using Relion’s own implementation 
of the UCSF MotionCor2 program (Zheng et al., 2017; Zivanov 
et al., 2018), which communicates metadata with particle 
polishing. Next, contrast transfer function (CTF) parameters are 

Figure 1: Automated filament picking. Rows A and B show the results for two different micrographs. The four panels from the left show 
the visualisation windows from the modified Topaz approach for the binarization, skeletonization, Hough transform and line merging 
steps, respectively. The panels on the right show the final start-end coordinates in the original micrograph. 
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estimated, preferably using the open-source CTFFIND4 program 
(Rohou and Grigorieff, 2015). Filaments are picked manually in 
the micrographs by clicking start-end coordinate pairs or picked 
automatically using the modified Topaz approach described 
above. The start-end coordinate pairs define straight lines. 
Curved filaments are picked as multiple shorter lines. Individual 
particles images are extracted along these lines with an inter-
particle distance that is defined by the helical rise (at this point 
one can provide a value of 4.75 Å) and the number of unique 
asymmetrical units (a value of 3 works well in most cases). It is 
often better to pick fewer, good filaments than larger numbers 
of suboptimal filaments. Filaments with anisotropically shaped 
cross-sections display alternatingly strong and weak signals in 
the micrographs. To avoid missing the weaker parts, relatively 
low Topaz threshold may be necessary. We recommend to 
visually check auto-picking results in several micrographs. 
 
2D classification. 2D class averaging serves to assess the quality 
of the data, to remove suboptimal particles, and to detect the 
presence of multiple filament types. The latter requires user 
expertise if the filament types are similar. To aid novel users, we 
elaborate on this step for the second and third data sets that 
are described in the Results section. The mask diameter for 2D 
classification is set close to the box size; the angular sampling 
rate to 1-2°. The VDAM algorithm in Relion-4.0 (Kimanius et al., 
2021) works less well for amyloids as it does for globular 
proteins and better results are often obtained with the (slower) 
default algorithm. 

It is often useful to calculate 2D class averages with a few 
different box sizes. Many final reconstructions are calculated in 
box sizes of approximately 250-300 Å, but earlier 2D 
classifications with box sizes in the range of 500-1000 Å are also 
useful. Although typically of lower resolution, larger 2D class 
averages facilitate identification of distinct filament types, can 
help measuring cross-over distances, and reduce the number of 
variables to optimise in the relion_helix_inimodel2d 
program for initial model generation.  
 
Initial model generation. Subsets of 2D class averages that 
correspond to a single filament type are used to calculate initial 

3D models in the relion_helix_inimodel2d program. This 
approach has been described in detail (Scheres, 2020). 
Nevertheless, reliable initial model generation remains the 
biggest hurdle in many amyloid structure determination 
projects. 

The initial model generation consists of a 2D reconstruction 
of the XY cross-section of the filaments. Therefore, the results 
are best assessed by visual inspection of 2D images, rather than 
the 3D model. The output files rec.spi (the 2D 
reconstruction), before_reproject.spi (the summed 2D 
class averages along the cross-over) and 
after_reproject.spi (the projected 2D reconstruction 
along the cross-over) are over-written at every iteration and can 
be monitored with a display program that re-reads the images 
every time they change on disk (we use Xmipp-2.4 (Scheres et 
al., 2008)). The algorithm should converge, with few changes to 
these images in the last iteration. The rec.spi image of good 
models typically has higher contrast (white signal against a black 
background) than that of suboptimal models. Good models also 
show continuous main-chain density, possibly even with density 
for bulky side chains. Multiple disconnected densities and 
streaks of density that extend into the solvent area are typical 
of suboptimal solutions. The before_reproject.spi image 
should have 2D class average images along the entire cross-
over, without large discontinuities between them, and the 
after_reproject.spi image should resemble the 
before_reproject.spi image.   

2D class averages displaying filaments that are not centred 
in the Y-direction or that are not oriented horizontally can be 
aligned during the 2D reconstruction process using the 
arguments --search_shift, --search_angle and --
step_angle. In difficult cases, pre-alignment of the images (in 
Relion or other software) may give better results (Scheres, 
2020). If the rec.spi image appears symmetrical, rotational 
symmetry can be imposed (using the --sym argument) to aid 
convergence. Using a mask on the 2D reconstruction (--
mask_diameter) and limiting the resolution of the 2D 
reconstruction (--maxres) speed up the calculations and may 
facilitate convergence. The program has also been parallelised 
(--j), with multiple threads each aligning subsets of the 2D 

 
Figure 2: Representative micrographs. An example of micrographs is shown for good filaments (A), swollen filaments (B) and 
non-twisting ribbons (C). Insets on the top right show representative 2D class averages for the filaments shown. 
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class averages. Quickly performing multiple runs and 
interactively monitoring their results facilitates parameter 
tuning. The most important variables to tune are the --
crossover_distance parameter (because it may be difficult 
to estimate the cross-over distance from the micrographs or the 
2D class averages) and the selection of which 2D class averages 
to use (because it may be difficult to recognise distinct filament 
types).  
 
3D refinement. Next, the initial model is used for 3D auto-
refinement. The initial low-pass filter applied to the initial 
model varies with the quality of the model, but is typically 
around 10 Å. The initial model is not on the same grey scale as 
the particles extracted for the refinement. At this stage, a helical 
rise of 4.75 Å (or the adjusted value if the pixel size calibration 
was off, see the Pitfalls section below) is used, together with a 
helical twist that is calculated as (4.75 Å ×	180°)	 / d, with d 
being the cross-over distance (in Å) as measured in the 
micrographs. Typically, no point group symmetry is applied 
during the first refinement. Because the resolution of the model 
does not yet extend beyond 4.75 Å, helical twist and rise 
parameters are also not refined at this stage.  

Refinement should result in a substantial gain in resolution 
over the initial model and, more importantly, result in amyloid-
like features in the map, including separated b-strands and 
connected main-chain density with convincing side chains. If 
this is not the case, a better initial model may be necessary.  

If additional symmetry is present in the map, the symmetry 
operators need to be determined. For example, if two 
symmetrical protofilaments are visible, the individual molecules 
could be related by C2 point group symmetry, or by pseudo-21 
helical screw symmetry. If these symmetries cannot be 
distinguished from the reconstruction, subsequent refinements 
with either of these options should be explored. The correct 
symmetry will lead to an increase in resolution, whereas the 
incorrect symmetry will prevent the map from acquiring good 
separation of the b-strands.  

Once refinement with good b-strand separation is achieved, 
the helical twist and rise may be optimised. For this purpose, an 
initial reference with good b-strand separation is used for 
another 3D auto-refinement job with an initial low-pass filter 
close to 5 Å. To avoid overfitting, one needs to provide one of 
the two half-maps from a previous refinement as the initial 
reference. How initial models are dealt with in 3D auto-
refinement has changed in Relion-4.0. If the filename contains 
the substring half1 or half2, then both half-maps are read 
and set as the initial models for the two separate half-map 
refinements. In previous versions of Relion, the same initial 
model was always used for both halves. This could lead to 
severe overfitting, as explained in the Pitfalls section below. 

In rare cases, typically with relatively noisy data, the 
Sidesplitter program (Ramlaul et al., 2020), which is invoked 
through the --external_reconstruct argument, leads to 
better reconstructions than the default auto-refinement 
algorithm. 

 

3D classification. The separation of particle images into 
structurally homogeneous subsets does not work as well for 
amyloids as it does for single-particle analysis of globular 
proteins. Nevertheless, 3D classification is useful for the 
separation of filaments types that are relatively similar to each 
other, in particular when used without further alignment of the 
individual particle images. Varying the regularisation parameter 
(T=4-100) may help. One particularly useful application of 3D 
classification is the identification of suboptimal particles, which 
tend to separate from the good particles into different classes. 
Again, including fewer, better particles often yields better 
reconstructions than using more, suboptimal ones. 
 
Particle polishing and CTF refinement. Beam-induced motion 
correction by particle polishing is typically done earlier in the 
structure determination process of amyloids than it is for 
globular proteins. The rationale behind this is that beam-
induced motions can often be detected even when the 
reference map does not yet show all the expected features of 
an amyloid. If b-strand separation in early refinements is 
suboptimal, it is often helpful to perform polishing prior to 3D 
classification. Early polishing results in an early increase in the 
signal-to-noise ratio of the particles, which facilitates 
subsequent refinements. If deemed necessary, the polishing 
can be repeated once a better map is available.  

CTF refinement, in particular optimisation of the defoci of 
individual particles and astigmatism for micrographs may lead 
to further increases in resolution. Optimisation of higher-order 
optical aberrations may be affected by the absence of signal at 
spatial frequencies in between the helical layer lines and may 
require better data than for globular proteins. If attempted, 
visual inspection of the colourful phase difference images in the 
log files is recommended.  If a large gain in resolution is achieved 
in the 3D refinement after CTF refinement, executing a second 
CTF refinement, in particular optimising the defoci of individual 
particles, may further improve resolution.  

 
Post-processing. Resolution estimation based on Fourier Shell 
Correlation (FSC) between the two independently refined half-
maps and sharpening of the final map are performed in the 
post-processing step. A soft mask is generated using the ‘Mask 
creation’ jobtype, with the central Z length set to 20 or 30% of 
the box size. Post-processing for amyloids is run in the same 
automated manner as for globular proteins. However, although 
the resulting map will have some helical averaging applied in the 
Fourier domain, the real-space map will not obey helical 
symmetry. To impose the latter, the post-processed map is 
symmetrised using the relion_helix_toolbox program. 
 Because real-space symmetrisation leads to a further 
increase in the signal-to-noise ratio of the map, the estimated 
resolution from the post-processing tends to be somewhat 
under-estimated. This is preferred to over-estimating the 
resolution, which would result from convolution effects if one 
would attempt to measure resolution from half-maps that are 
symmetrised in real-space. To maximise the information 
content in the map, it is sometimes useful to run additional 
post-processing jobs, fixing the map sharpening B-factor to the 
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value obtained from the first, automated run, but applying a 
higher-resolution ad-hoc low-pass filter than the resolution 
estimated in the automated procedure. Caution is needed when 
interpreting these maps, as under-filtering may lead to high 
noise levels. The reported resolution of the map should be the 
one estimated by the automated procedure. 

 
Pitfalls  

 
Getting stuck in local minima. This probably continues to be the 
largest pitfall of amyloid structure determination. How to 
recognise and circumvent getting stuck in local minima has been 
described in detail previously (Scheres, 2020). The possibility of 
ending up in local minima of refinement means that the user 
needs to remain highly critical of unexpected features in the 
map. Although this is equally true for single-particle analysis of 
globular proteins, artefacts with important implications for 
their interpretation are much more common with amyloid 
reconstructions. Continuing developments in the field, like 
better detectors or more robust optimisation techniques, will 
hopefully ameliorate this situation in the future.  
 
Incorrectly calibrated pixel size. In many electron microscopes, 
the calibrated pixel size deviates from the correct value by 
several percent. Incorrectly calibrated pixel sizes will lead to 
deviations from the expected helical rise of 4.75 Å. Such 
deviations can be detected from 2D class averages with 
sufficient resolution to separate the b-strands (looking for a 
peak in the spectral signal-to-noise of those images in the 
model.star file), or from the optimised helical rise in 3D auto-
refinements. If an incorrectly calibrated pixel size is suspected, 
processing may be continued with the incorrect pixel size, but 
the helical rise in subsequent steps will need to be adjusted 
accordingly. The correct pixel size can be provided at the end of 
processing, through the ‘Post-processing’ jobtype, to generate 
a final map at the correct scale. Only for cases where the 
resolution extends substantially beyond 2 Å would this 
procedure be suboptimal, as at those resolutions higher-order 
effects start to become significant. Another, computationally 
more expensive option would be to restart processing with the 
correct pixel size from the beginning (although picking results 
could be re-used). 
 
Estimating cross-over distances with higher-order symmetries. 
For filaments with higher than 2-fold additional symmetry, it 
may be difficult to estimate the cross-over distance from 
alternating patterns of the width of the filaments in the 
micrographs. An example of this is shown for the second data 
set described in the Results section. Therefore, when calculating 
the initial model in the relion_helix_inimodel2d 
program, it may be useful to attempt a wider range of cross-
over distances than suggested by the micrographs. 
 
Overfitting. In overfitting, noise artefacts in the reference map 
lead to systematic errors in the particle orientations. The 
artefacts are then enhanced in subsequent reconstructions with 
the incorrect orientations. Artefacts are most likely to appear at  

high spatial frequencies, where signal-to-noise ratios are low. In 
3D auto-refinement, the iterative deterioration of the 
reconstruction is prevented by refining two maps 
independently against two halves of the data and low-pass 
filtering both half-maps at every iteration based on the FSC 
between them (Scheres and Chen, 2012). 

Previous versions of Relion used the provided initial model 
as the reference for both half-sets and relied on the user to 
choose a suitably low-resolution initial low-pass filter to prevent 
overfitting. However, as described above, it is often necessary 
to provide relatively high-resolution initial models for successful 
optimisation of the helical twist and rise parameters. By 
providing a single, high-resolution initial model, the benefits of 
refining two half-sets are diminished. To address this problem, 
Relion-4.0 sets pairs of independently refined half-maps as 
initial models for the two half-sets, provided the input filename 
contains a half1 or half2 substring. Because procedures in 
the previous versions of Relion are amenable to accumulating 
high-resolution artefacts in the maps, users are urged to 
upgrade to Relion-4.0 and use only half-map references going 
forward. 

A related problem exists with performing 3D classification 
with a single class as an alternative to 3D auto-refinement 
(Guenther et al., 2018). In 3D classification, iterative overfitting 
is not prevented by separation of the data set into two halves. 
Instead, resolution is estimated from the power spectrum of the 
map itself, with higher values of the regularisation parameter T 
leading to higher resolution estimates. Thereby, high-resolution 
artefacts in the map may lead to inflated resolution estimates 
and the further accumulation of noise. We therefore strongly 
advice against this use of 3D classification. If 3D auto-
refinement does not give the expected resolution of the final 
map, we note that the 3D auto-refinement job also responds to 
the regularisation parameter (through providing --tau_fudge 
as an additional argument). Using values higher than 1 will lead 
to higher resolution estimates during refinement, which in rare 
cases may improve convergence. However, as both half-maps 
are still refined independently, an estimate of the true 
resolution may still be obtained by post-processing. 
 
Z-shifted half-maps. Independent refinement of two halves of 
the data may lead to a shift between the two maps in the (Z-) 
direction of the helical axis. This will lower the FSC between the 
two maps and thus hamper convergence onto a high-resolution 
solution. When the two half-maps are provided again as initial 
models for subsequent refinements (as described above), it will 
be difficult to escape from this situation. In such cases, one may 
align the two half-maps with respect to each other and replace 
one of the original half-maps with the aligned version before 
performing the next refinement. We use UCSF Chimera 
(Pettersen et al., 2004) or ChimeraX (Pettersen et al., 2021) for 
this alignment. 
 
Handedness. Because cryo-EM reconstruction does not provide 
information on the absolute hand, the final map may need to 
be inverted. Most amyloid filaments solved to date have a left-
handed twist, but filaments with right-handed twists have also 
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been observed, including for filaments extracted from diseased 
tissue (Kollmer et al., 2019; Arseni et al., 2021). At resolutions 
beyond 2.9 Å, the handedness may be determined directly from 
the map through densities for the carbonyl oxygens of the main 
chain. For maps at lower resolutions, handedness may be 
inferred from the conformation of parts of the structure that 
have been observed previously, or from additional experiments, 
like atomic force microscopy or rotary shadowing electron 
microscopy. If this is not possible, one may also build a model in 
maps of both hands and compare the corresponding FSCs 
between the models and the maps, but it may be safer to 
explicitly state that the handedness remains unclear.  

Results 
 
Automated filament picking for in vitro assembled tau filaments 

 
We used the modified version of Topaz for automated picking 
of 38 data sets in our work on in vitro assembly of recombinant 
tau (Lövestam et al., 2021). For training the Topaz neural 
network, we manually picked 305 filaments from 44 
micrographs of a data set on a tau construct spanning residues 
305-379. From the resulting start-end coordinate pairs 18,094 
individual particle images were extracted, using an inter-
particle distance of three b-rungs, i.e. 14.2 Å. The coordinates 
of the individual particles were used for training the Topaz 
neural network, specifying a particle diameter of 120 Å and 300 
expected particles per micrograph. Example micrographs with 
manually picked filaments used for training and automatically 
picked filaments by the modified Topaz approach are shown in 
Figure 1. The resulting neural network model was not only used 
to auto-pick the remainder of the micrographs of that same 
data set, but also for 37 other data sets, leading to 
reconstructions with resolutions ranging from 3.5 to 1.9 Å. 
Datasets where Topaz failed typically had large numbers of non-
twisting filaments or low contrast due to thick ice or imaging too 
close to focus. Although non-twisting filaments may be 
separated by 2D classification, picking the twisted filaments 

might require lower thresholds, which would result in picking 
empty regions or the rim of the hole of the grid.    
 
Processing of data set EMPIAR-10940 
 
We consider this dataset to be relatively easy, due to a readily 
discernible cross-over distance, and the presence of a single 
filament type with additional pseudo-21 symmetry. 
Micrographs were processed as described above; auto-picked 
using the Topaz module with a threshold of -6 (job007 in the 
EMPIAR entry); and extracted using a box size of 768 pixels, 
downscaled to 128 pixels, with a downscaled pixel size of 4.94 Å 
(job009). 2D classification indicated the presence of a single 
filament type (job010). Four images from the 2D classification 
were selected (job011) to generate the initial model using a 
cross-over distance of 720 Å (Figure 3 and the inimodel/ 
directory in the EMPIAR entry). The initial model was rescaled 
to a box size of 384 pixels and the original pixel size of 0.824 Å 
using relion_image_handler and used for 3D refinement, 
with a twist and rise fixed to -1.19° and 4.75 Å, respectively 
(job014). The resulting map showed clear b-strand	separation 
and the presence of two protofilaments related by pseudo-21 
helical symmetry. Subsequent 3D refinements with 
optimisation of the twist and rise and imposed symmetry 
(job017, job019), polishing (job022) and CTF refinements 
(job025, job026, job027) further increased the resolution. The 
resolution of the final map was calculated by applying a soft 
mask consisting of 20% of the box size (job015) and estimated 
to be 2.2 Å using standard post-processing (job033).  
 
Processing of data set EMPIAR-10943 
 
We consider this dataset to be of moderate difficulty, due to the 
presence of two filament types. The first type consists of two 
protofilaments without symmetry; the second type consists of three 
protofilaments related by C3 symmetry. Micrographs were 
processed as described above, auto-picked using the Topaz module 
with a threshold of -7 and -5 (job008 and job033 in the EMPIAR entry) 
and extracted using a box size of 768 pixels, downscaled to 128 pixels 

 
Figure 3: Results for data set EMPIAR-10940. A. 2D class averages from job010, with selected 2D class averages from job011 
highlighted in yellow. The selected 2D class averages were used for initial model generation. B. Reconstructed cross-over from 
the initial model generation program. C. Reconstructed xy-slice from the initial model generation program (left); xy-slice from 
the refined map of job014 (middle) and xy-slice from the final, postprocessed map of job033 (right.) 
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with a downscaled pixel size of 4.94 Å. 2D classification (job035) 
indicated the presence of two types of filaments, with the majority 
type containing a fast-twisting morphology (type A), likely with 
symmetry, and the other type twisting more slowly, without 
indications of symmetry from the 2D class averages (type B). The two 
different types were selected and processed separately.  
 
Type A: Three 2D class averages were selected (job054) to generate 
an initial model using a crossover distance of 700 Å (Figure 4 and the 
inimodel/ directory in the EMPIAR entry).  The initial model 
indicated that this filament is related by three-fold symmetry. As 
such, an additional inimodel was generated using the previous 
inimodel as a reference (using the --iniref argument), imposing 
three-fold symmetry (--sym 3) and adjusting the crossover 
distance to 750 Å. The resulting initial model was rescaled to a box 
of 384 pixels and the original pixel size of 0.824 Å using 
relion_image_handler. This model was used for 3D 
refinement, without additional symmetry and with a twist and rise 
fixed to -1.14° and 4.75 Å, respectively (job057). The resulting map 
showed clear b-strand	 separation and the presence of three 
protofilaments related by C3 helical symmetry. Subsequent 
refinements with optimisation of the twist, rise and imposed 

symmetry (job057, job066), 3D classification (job072), polishing 
(job083) and CTF refinements (job096, job097, job098) further 
increased the resolution. The resolution of the final map was 
estimated to be 2.1 Å using standard post-processing (job101). 
 
Type B: Type B filaments were selected (job051) from the 2D 
classification (job035), re-extracted in a box size of 512 and 
downscaled to 128 pixels for further 2D classification (job053). 
Twelve 2D class averages were selected (job060) to generate an 
initial model using a crossover distance of 900 Å. The initial model 
was rescaled to a box of 384 pixels and the original pixel size of 0.824 
Å using relion_image_handler. This model was used for 3D 
refinement without additional symmetry, with a twist and rise fixed 
to -0.9° and 4.75 Å, respectively (job065). The resulting map showed 
clear b-strand	 separation and the presence of two 
protofilaments that were not related by symmetry. Subsequent 
refinements with optimisation of the twist and rise (job068, 
job069), and polishing were performed (job078). However, the 
map showed discontinuities in the main chain (job079). 
Performing a 3D refinement with local angular searches for the 
rot, tilt and psi angles were set to 5°, 7° and 10° respectively, 
and a range factor for local averaging of 3 (job086) improved 

 
Figure 4: Results for EMPIAR-10943 dataset. A. 2D class averages from job035, with selected 2D class averages for type A 
filaments from job054 highlighted in yellow. The selected 2D class averages were used for initial model generation. B. 
Reconstructed cross-over for type A filaments from the initial model generation program. C. Reconstructed xy-slice from the 
initial model generation program for type A filaments (left); xy-slice from the refined map of job057 (middle) and xy-slice from 
the final, postprocessed map of job101 (right.) D. 2D class averages from job053, with selected 2D class averages for type B 
filaments from job060 highlighted in yellow. The selected 2D class averages were used for initial model generation. E. 
Reconstructed cross-over for type B filaments from the initial model generation program. C. Reconstructed xy-slice from the 
initial model generation program for type B filaments (left); xy-slice from the refined map of job065 (middle) and xy-slice from 
the final, postprocessed map of job094 (right.) 
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the map. Subsequent CTF refinements (job090, job091, job092) 
further increased the resolution. The resolution of the final map 

was estimated to be 2.6 Å using standard post-processing 
(job094).  
 
Processing of data set EMPIAR-10944 
 
We consider this dataset to be relatively difficult, due to the 
presence of four filament types. Although auto-picking did work 
for this dataset (job126, job127, job128), a low topaz threshold 
was required to all filament types, resulting in large numbers of 
false positives. Therefore, we resorted to manual picking 

(job005). Segments were extracted using a box size of 768 Å, 
downscaled to 128 pixels with a downscaled pixel size of 4.94 Å 
(job006). 2D classification (job008) indicated the presence of at 
least three types of filaments, but two of these were hard to 
distinguish. Two selections (job009 and job012) were used to 
process the filaments. The particles in job009 contained three 
filament types consisting of two protofilaments; the particles in 
job012 contained a single filament type consisting of three 
protofilaments. The processing of these two selections is 
described separately below. 
 
Select job009: Initial model generation was unable to create a 
sensible initial model, due to (in hindsight) the presence of 
multiple filament types (Figure 5). However, as we were unable 
to discern the different filament types by 2D classification, we 
performed several refinements with different initial models 
(job011, job022, job029), for which the resulting maps 
appeared blurred, again indicative of a mixture of filament 
types. Therefore, we then performed a 3D classification with 
alignment and optimising for the twist and rise (job055), which 
resulted in a separation of three distinct filament types. The 
particles for each type were selected (job056, job057, job058) 
and refined with the maps generated by the 3D classification as 
initial model. Subsequent refinements for each polymorph were 
performed as described above, optimising for the helical twist 
and rise as well as symmetry for each type (job059, job060, 
job061), again followed by polishing (job080, job093, job118) 
and CTF refinement (job088, job089, job090, job101, job102, 
job103, job121, job122). The resolutions for the final maps were 
estimated to be 3.1 Å (job092), 3.2 Å (job111) and 3.8 Å (job124) 
using standard post-processing. 
  
Select job012: Initial model generation indicated this filament 
type consisted of three protofilaments related by three-fold 
symmetry, similar to the EMPIAR-10943 data set described 
above. This initial model was used for refinements (job014 and 
job020). Subsequent refinements optimising for twist and rise, 
and symmetry was performed (job028 and job033). The 
symmetry was determined by visual inspection in Chimera. 
Subsequent 3D classification (job036) indicated a mixture of 
particles containing three or two protofilaments (the latter 
being the same ones as selected in job092). Only particles 
containing three protofilaments were selected (job040) and 
further refined (job041). Polishing (job044) and CTF-
refinements (job050, job051, job052) further improved the 
resolution.   The resolution of the final map was estimated to be 
3.2 Å using standard post-processing (job054). 

Conclusion 
Amyloid structure determination is often more difficult than 
single-particle analysis of globular proteins. Complicated energy 
landscapes result in refinements getting stuck in incorrect 
solutions and detecting and separating multiple filament types 
in a data set is not straightforward. It is therefore difficult to 
provide a single, fail-safe procedure for automated amyloid 
structure determination.  

Figure 5: Results for EMPIAR-10944 dataset. A. 2D class 
averages from job008. 2D class averages selected in job009 
are highlighted in yellow; 2D class averages selected in 
job012 in red. B. Reconstructed xy-slice from the initial 
model generation program for the 2D class averages 
selected in job009 (left); xy-slice from the refined map of 
job011 (second left); xy-slice of final, post-processed map 
of job 092 (middle), job111 (second right) and job124 
(right). C. Reconstructed xy-slice from the initial model 
generation program for the 2D class averages selected in 
job012 (left); xy-slice from the refined map of job014 
(second left); xy-slice of two classes from 3D classification 
job012 (middle and second right) and final, post-processed 
map of job054 (right). 
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But amyloids have their advantages too. They are typically 
more sturdy than other multi-component protein complexes 
objects and do not fall apart during cryo-EM grid preparation; 
their helical symmetry ensures excellent orientational 
distributions, provided the filaments twist; and every 4.75 Å of 
amyloid filament will yield at least one asymmetric unit for 
averaging. As a result, for many samples, and in particular those 
of recombinant protein, making grids is relatively easy and few 
hours of data collection often suffice for calculating 
reconstructions to sufficient resolution for atomic modelling. 

In our experience, with some training and using the 
developments described in this paper, individual users can solve 
multiple amyloid structures per week. The automated filament 
picking approach described in this paper allows for full 
automation up to 2D class averaging using relion_it.py in 
Relion-4.0 (Kimanius et al., 2021). Combined with detailed 
descriptions of three example data sets from our own work, we 
hope this will enable the use of amyloid structure determination 
as a high-throughput tool in many labs and look forward to the 
insights that these structures will bring. 
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