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Abstract

Copy number variations (CNV) are believed to play an important role in a wide range of
complex traits but discovering such associations remains challenging. Whilst whole genome
sequencing (WGS) is the gold standard approach for CNV detection, there are several orders
of magnitude more samples with available genotyping microarray data. Such array data can be
exploited for CNV detection using dedicated software (e.g., PennCNV), however these calls
suffer from elevated false positive and negative rates. In this study, we developed a CNV
quality score that weights PennCNV calls (pCNV) based on their likelihood of being true
positive. First, we established a measure of pCNV reliability by leveraging evidence from
multiple omics data (WGS, transcriptomics and methylomics) obtained from the same samples.
Next, we built a predictor of omics-confirmed pCNVs, termed omics-informed quality score
(0OQS), using only PennCNV software output parameters. Promisingly, OQS assigned to
pCNVs detected in close family members was up to 35% higher than the OQS of pCNVs not
carried by other relatives (P < 3.0x10"?), outperforming other scores. Finally, in an association
study of four anthropometric traits in 89,516 Estonian Biobank samples, the use of OQS led to
a relative increase in the trait variance explained by CNVs of up to 34% compared to raw
pCNVs or previous quality scores. Overall, we put forward a flexible framework to improve
any CNV detection method leveraging multi-omics evidence, applied it to improve PennCNV
calls and demonstrated its utility by improving the statistical power for downstream association

analyses.

Keywords: anthropometric traits, copy number variation, gene expression, methylation, multi-

omics, PennCNYV, structural variation, whole genome sequencing
Introduction

Copy number variations (CNV) are unbalanced structural variations that alter the dosage of
genomic regions via deletion and duplication events. Approximately 9.5% of the human
genome is subject to CNVs!, which vary in length, ranging from a few dozens to several
millions of base pairs (bp) in length. CNVs tend to have more severe phenotypic consequences
compared to single nucleotide variations (SNV) as, due to their larger size, they can encompass

entire coding regions.

CNVs have been associated with a number of conditions including autism?, schizophrenia’,
neurodegenerative disorders*®, and cancer’. A number of large recurrent deletions and
duplications have been combined into the DECIPHER CNV syndromes list’. Importantly,
incomplete penetrance of several syndromic CNVs has been established by studying large
population biobanks, where CNV load was shown to increase the risk of obesity, physical or
cognitive impairment, and congenital malformations while lowering educational attainment

and socio-economic status®!!. In parallel, CNV genome-wide association studies (GWANS)
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have been conducted on numerous diagnoses'>!?

11,14,15

and medically relevant continuous
traits , including a large meta-analysis on anthropometric measurements!®, revealing the

important role of CNVs in shaping the human phenome.

Over the years, multiple CNV detection algorithms have been developed for CNV detection
from SNV genotyping microarray probe intensities'’. Currently, PennCNV!8 is the most widely
used software for genotyping array-based calling. For each sample, a Hidden Markov Model
(HMM)-based algorithm uses overall signal intensity and continuous allelic intensity at
polymorphic probes to estimate the probability of a hidden copy number state at this genomic
location. Unfortunately, CNV regions found by different array-based detection methods only
agree in about 20% of cases'®, indicating the high likelihood of false positive calls. To counter
this, various filtering strategies have been employed, usually by setting cut-off values to
combinations of parameters including number of CNVs per sample, minimum CNV length,
probe-density and PennCNV confidence score®!%18:2021 Filtering based on arbitrary thresholds
is suboptimal and a continuous CNV quality score that predicts the probability that a CNV
region is a consensus call between PennCNV, QuantiSNP?? and CNVpartition (an Illumina
developed GenomeStudio software plug-in,

https://support.illumina.com/downloads/genomestudio-2-0-plug-ins.html) has been

proposed!®. We refer to this as consensus-based quality score (cQS).

Still, cQS relies only on a single input dataset (i.e., microarray data). An alternative strategy to
improve CNV calling can be to incorporate various types of omics datasets. Previously,
software have been developed to infer CNVs from high-density DNA methylation arrays?*->*
or RNA sequencing data of highly and stably expressed genes®. While promising, none of
these approaches were developed with the intent of performing scalable and reliable genome-
wide CNV detection in large biobanks.

To fill this gap, we propose a method to improve the detection of false positive CNV calls
amongst PennCNV output by discriminating between high quality (true) and low quality (false)
CNV regions based on multi-omics data (Figure 1A). Specifically, we checked if PennCNV
calls (pCNV) (1) are detectable by WGS, (2) alter the expression levels of overlapping genes
in the expected direction (i.e., decreased by deletions, increased by duplications) and/or (3)
alter the total methylation probe intensity of overlapping CpG sites in the expected direction.
We built a predictor of CNV quality inferred from WGS, transcriptomics and methylomics,
solely based on PennCNV software output parameters in these samples assayed by multiple
omics technologies. Predicted omics-informed quality scores (OQS) distinguish high from low
quality CN'Vs even in samples for which only SNV genotyping microarray data are available.
We show that OQS reduces false discovery rate and improves CNV-trait association discovery

compared to both raw PennCNV calls and cQS!? in regions with variable CNV quality.
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Figure 1. (A) Quality estimation and modelling pipeline for PennCNV copy number variation
calls (pCNV). The pCNV quality metrics are estimated based on (B) whole genome sequencing
(WGS) data and (C) gene expression (GE) and/or overall methylation intensity (MET) of
genes/CpG sites overlapping the corresponding CNV call. (B) WGS metric is a fraction of
pCNYV that can be mapped to WGS CNVs of the same individual. (C) To calculate GE/MET
metrics, the reference distribution of expression/intensity based on non-carriers (pink area) is
approximated to standard normal distribution (red dashed line) and the Z score of the
expression/intensity of each pCNV carrier (x;) is compared to it one at a time. The metric is a
difference between the fraction of non-carriers with the corresponding value <x; and those with
the corresponding value >x; and captures how extreme x; is compared to the reference
distribution of non-carriers. In case a pCNV overlaps with several genes/CpG sites, the metric

values are averaged over them.

Methods

Cohorts

Estonian Biobank (EstBB; data freeze 2021/01/08; Supplementary Note S1, Table 1) is an
Estonian population-based cohort that consists of ~200,000 adults (=18 years of age at
recruitment)?®. About 7,750 individuals are genotyped on Illumina Infinium OmniExpress-24
genotyping array. A subset of these samples (referred to as EstBB-MO) has one or more of the
following omics datasets available: 30x coverage whole-genome sequencing (WGS), RNA
sequencing?’ and/or methylation data (Illumina Infinium Human Methylation 450k Beadchip).
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Additionally, the full EstBB cohort is genotyped on Illumina Global Screening Array (GSA).
All participants signed a broad informed consent and analyses were carried out under ethical

approval 1.1-12/624 from the Estonian Committee on Bioethics and Human Research and data
release NO5 from the EstBB.

LifeLines Deep (LLDeep; Supplementary Note S2, Table 1) is a deeply phenotyped ~1,500
individual subset of the Dutch population cohort LifeLines?®. LLDeep samples are genotyped
on HumanCytoSNP-12 array and the majority of them have either RNA sequencing?® or
methylation data (Illumina Infinium Human Methylation 450k Beadchip)®® available. The
LifeLines DEEP study was approved by the ethics committee of the University Medical Centre

Groningen. All participants provided a written informed consent.

Swiss Kidney Project on Genes in Hypertension (SkiPOGH; Supplementary Note S3, Table
1) is a Swiss family and population-based cohort of 1,128 individuals from 273 families
recruited to study the genetic determinants of blood pressure?!. The samples were genotyped
on Illumina 2.5 array. RNA sequencing and methylation array (Illumina Infinium Human
Methylation 450k) data were available for a subset of participants®2. The study was approved
by the competent institutional ethics committees in Bern, Geneva and Lausanne. All

participants signed a written informed consent.

UK Biobank (UKB; phenotype data freeze 2018/03/22; Supplementary Note S4, Table 1) is
a cohort of ~500,000 individuals from the United Kingdom*. The majority of samples
(~450,000) are genotyped on Affymetrix UK Biobank Axiom array while the rest (~50,000)
are genotyped on Affymetrix UK BiLEVE Axiom array. Participants signed a broad informed
consent, and the data are accessed through application numbers 17085 and 16389.

Data preparation

Sample sets. We included three independent datasets — LL.Deep, SkKiPOGH and a subset of
Estonian samples (EstBB-MO) — in CNV quality calculations and modelling. Each of these
datasets had additional omics data (WGS, methylation arrays and/or RNA sequencing)
available. For model selection and validation steps we extracted monozygotic (MZ) twins and
first-degree relatives from the EstBB and the UKB, and parent-child pairs from the SkiPOGH.
Finally, we extracted unrelated quality-controlled EstBB-GSA and UKB samples for CNV
association analyses. Datasets and their usage for various analyses are summarised in Table 1.

Sample quality control steps are summarised in Supplementary Notes S1-S4.

CNV detection. We used PennCNV!® as our main CNV detection algorithm due to its popularity
(PubMed citations: PennCNV: 885; QuantiSNP??: 279; Birdsuite**: 466; 2021/09/08). We
detected putative autosomal CNV regions (pCNV) for EstBB, LLDeep, SkiPOGH, and UKB
datasets as previously described'” (Supplementary Notes S1-S4). For each sample, we
obtained the pCNV together with the values of four CNV-specific and nine sample-specific

parameters described in Table S1. In all datasets, we filtered out samples with more than 200
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pCNVs and pCNVs larger than 10Mbp, as these are likely to be either samples with poor
genotyping quality or extreme cases that might distort the analysis. Additionally, we detected
CNVs from EstBB WGS reads (WGS-CNVs) using the Genome STRiP* discovery pipeline
(version 2.00.1611; Supplementary Note S5). All genomic coordinates are in GRCh37 build

version.

Methylation and RNA-sequencing data pre-processing. We obtained methylation intensities
(Infintum Human Methylation 450k Beadchip) and RNA-sequencing data for EstBB-MO,
LLDeep and SkiPOGH datasets. The data preparation is in detail described in Supplementary
Notes S6-S7. Briefly, after quality control step we corrected for age, sex, batch, blood cell
counts and genotype principal components (PCs) where applicable. Additionally, we corrected
for PCs calculated based on methylation/gene expression data (Figures S1 and S2). Gene
expression residuals were further corrected for independent expression quantitative trait loci

(eQTL) within 500kbp of the gene.

Table 1. Overview of datasets and final sample sizes used in the analyses. *Estonian

OmniExpress first-degree relatives do not overlap with EstBB-MO samples.

Sample counts per data type Analysis steps
£ <
= 5 @
E ¥ 5
s 3 3. ¢
38 £ i &
g3 32 22 >
5 S c3 7
Dataset N WGS Methyl. RNAseq ©s = =z o
Estonian OmniExpress sample set (N=7,750)
EstBB-MO 1,066 983 295 382 | + + - -
first-degree relatives 504* - - + -
Lifelines Deep (N=~1,500)
LLDeep | 1,383 | 768 1,098 | + + - -
Swiss Kidney Project on Genes in Hypertension (N=1,128)
SkiPOGH 466 148 405 | + - - -
parent-child pairs 319 - - + -
Estonian Biobank GSA sample set (N=~200,000)
EstBB-GSA (unrelated) 89,516 - - - +
MZ twins 312 - - + -
first-degree relatives 79,903 - - + -
UK Biobank (N=~500,000)
UKB (unrelated British) | 331,522 - - - +
MZ twins 302 - - + -
first-degree relatives 42,032 - - + -
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CNYV (quality metrics based on multi-omics data

WGS quality metric. WGS data were available for a subset of EstBB-MO samples (N=979).
For each pCNV in these individuals, we defined a WGS metric as the fraction of the pCNV (in
bps) overlapping with WGS-CNVs in the same sample (Figure 1B). Metric calculation was
restricted to pCNV deletions and duplications longer than 1kb and 2kb, respectively, as we did
not detect shorter WGS-CNVs (Supplementary Note S5).

MET quality metric. Methylation intensity data were used to assess CNV quality in EstBB-
MO, LLDeep and SkiPOGH datasets. For each methylation probe passing the pre-processing
steps (Supplementary Note S6), we used the samples with no pCNVs overlapping the
corresponding CpQG site (i.e., non-carriers) to construct the approximately Gaussian reference
distribution of site overall intensity (sum of the methylated and un-methylated intensities). For
each carrier, we then transformed its CpG site overall intensity into a Z score by using the mean
and standard deviation of the constructed reference distribution. We denoted the quality metric
based on the methylation data for the i-th pCNV (pCNV;) across all its overlapping CpG sites
as MET; € [—1; 1] and calculated its value as:

—c (@(m,) - '(1 - cp(ml-,-))),

where n; is the total number of CpG sites overlapping pCNV;, @ is the cumulative distribution
function of the standard normal distribution, and m;; is the Z score calculated for the j-th CpG
site overlapping pCNV; (Figure 1C). The proposed measure captures how extreme an observed
methylation intensity is compared to that of the bulk of the samples (assumed to be copy-
neutral), equivalent to a signed 2-sided tail-probability. We expected MET; < 0 for deletions
and MET; > 0 for duplications. If this was not the case, MET; was set to zero. Finally, MET;
was converted to its absolute value such that MET; € [0; 1].

GE quality metric. Gene expression levels from RNA sequencing data were used to assess
CNV quality in the EstBB-MO, LLDeep and SkiPOGH datasets. We extracted all the genic
regions from Ensemble database (GRCh37) using biomaRt®. We retained 10,786 genes
passing the pre-processing steps (Supplementary Note S7) and having expression correlated
to the copy number of the gene (Pearson R > 0.1) in an independent dataset®®. Additionally,
over 80% of the genic region was required to overlap the pCNV for the gene to be included in
the quality calculations of that pPCNV. Expression values of genes with pCNV; overlap below
80% were marked as missing. Analogously to MET;, we constructed the expression reference
distribution based on non-carriers and used its mean and standard deviation to calculate an
expression Z score for each carrier. We calculated GE; € [—1; 1], the pCNV; quality metric
based on gene expression across all its overlapping genes (analogously to the metric for
methylations), as:
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e ((ey) - '(1 - cp(el-,-)))’

where n; is the number of genes overlapping at least 80% of the pCNV; and e;; is the Z score
calculated for the j-th gene overlapping pCNV; (Figure 1C). We set to zero GE; values for
deletions with GE; > 0 and duplications with GE; < 0 and converted all GE; scores to their
absolute values such that GE; € [0; 1].

Combined metric. Let us define the collection of quality metrics Q; = {MET;, GE;, WGS;}.
Further metrics can be defined by their mean, maximum and the measure furthest away from
0.5 (i.e., most extreme; denoted as EXTR(Q;)). We chose EXTR(Q;) as our final combined
metric, the motivation being that if one metric clearly indicated the truth status of a pCNV then
we would use that metric (even if other metrics are unsure) (Figure S3). Note that EXTR values

are only calculated for pCN'Vs that have at least two out of three Q; metrics available.
CNYV (quality prediction models

In order to assess CNV quality in samples with no complementary omics data, we fitted
prediction models for the values of the previously defined four omics metrics, summarized by
Yi == {METL, GEi, WGSi, EXTR(QI)}

The set of possible explanatory variables X = {X;, X,,..., X,;} included CNV and sample-
specific parameters from PennCNV output (CNV length, number of overlapping probes,
PennCNV-specific CNV confidence score, number of pCNVs per sample (and its derivations,
see Figure S4) mean and standard deviation of the allelic intensity ratios and B allele
frequencies of a sample, signal waviness factor; Table S1) and their interaction terms. We

fitted a generalized linear regression model separately on each column of ¥:

P(Yj|X) =f(Bo + Lik=1XiBr),
where Y/ is the j-th column of Y (representing one of the four quality metrics), S, is the
intercept term and f3; is the effect estimate of explanatory variable X,. We used a quasi-
binomial link function f, since instead of being strictly binary, our response was a bimodal

continuous variable ranging from zero to one.

In order to choose the best subset of X, we implemented a forward stepwise model selection
(starting with an empty parameter set) using custom R scripts. Briefly, in each round, a
parameter was added if the resulting model minimized the 10-fold cross-validation mean
square error (MSE). If adding any of the remaining parameters did not improve the average
MSE, the algorithm stopped and returned the existing model. We tested model building with
eight different sets of conditions/parameters {X°: X®* c X} to choose from and repeated the
procedure separately for deletions and duplications. The modelling process and the eight
parameter sets are characterized in detail in Supplementary Note S8 and Table S2.
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The model coefficients B can be used to predict omics-informed CNV quality scores (OQS)

as:

1
1+ exp (—(Bo+X =1 XkBr))’

0QS =
For X} not included in the final model, [y, is set to be equal to zero.
Selection of the best omics-informed quality score and comparison to other CNV calls

CNV quality models were fitted as described above for each multi-omics dataset separately
(Table 1). Altogether, we fitted 24-32 (not necessarily unique) models for both deletions and

duplications per dataset (3-4 omics measures x 8 model parameter sets).

To determine the best models, we incorporated family information. We reasoned that the set of
‘familial’ pCNVs present in at least two close family-members (Jaccard index based on
overlapping bp count of at least 0.9) contains a higher fraction of true positive CNV calls than
the ‘non-familial’ set (no overlap in a relative). Partially overlapping pCNVs with Jaccard
index lower than 0.9 were discarded from the calculations. We predicted and compared the
OQS values of all familial and non-familial pCNV's from MZ twins from the UKB and EstBB-
GSA and parent-child pairs from the SkiPOGH. To select the best models, we maximised the
difference of mean OQS values between the two groups, averaged over the three datasets. We
validated our best models on first-degree relative pCNVs from Estonian OmniExpress samples,
EstBB-GSA and UKB. As a comparison, we calculated these differences for the previously

published consensus-based quality score (cQS)™.
CNYV association analyses

We compared OQS to raw PennCNV calls and cQS in an association analysis setting by
incorporating them into the association models analogously to SNV dosages'®. We used 89,516
and 331,522 quality-controlled unrelated European individuals from the EstBB-GSA and UKB
data, respectively (Supplementary Note S1 and S4). We considered 21 CNV-trait pairs
(Table S3) involving four continuous anthropometric traits — body mass index (BMI), height,
weight and waist-to-hip ratio (WHR) — and 13 CNV regions which had previously'® shown
association P-value <I1x10. Importantly, these associations were obtained using cQS in the
first wave of UKB genotype data samples (N=119,873). All phenotypes were inverse normal
transformed and corrected for batch, sex, age, age’ and PCs prior further analysis
(Supplementary Notes S1 and S4).

We calculated association Z statistics (estimated effect size over its standard error) and P-
values in a probe-by-probe manner across all probes that overlapped with >5 pCNVs inside the
13 regions of interest. The analysis was conducted separately for deletions, duplications and
mirroring effects. To model the mirroring effect (i.e., both deletions and duplications have

similar effects but in opposite directions), the OQS values for deletions were negated.
9
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Associations were run using linear regression (/m function) in custom R scripts. We used a
Bonferroni-corrected P-value threshold of 0.05/21=2.38x1073 to determine significance. All
regions containing significantly associated probes - except for the 18q21.32 region, which in
the EstBB-GSA did not contain the previously reported CNV (Figure S5) - were included in

the final association comparison step.

Finally, for both datasets (i.e., UKB and EstBB-GSA) and all four phenotypes we estimated
the change in explained variance when applying the OQS model, as compared to raw PennCNV
values or cQS model. We started by clumping probes originating from significant CNV regions
with R? > 0.5 using snp_clumping from the bigsnpr R package®’. Clumping usually prioritizes
probes based on association summary statistics or allele frequencies, which in our case are
heavily dependent on the applied CNV quality measure. To avoid any bias, we generated a
random probe priority order instead. If after clumping we retained m probes, we calculated

73571z,
zy871zy’

F

where Z, is an array of Z statistics (of clumped probes) from association analysis using OQS,
Z, is the corresponding array from the comparison analysis (either raw PennCNV or cQS) and
S is a probe correlation matrix calculated based on raw PennCNV calls. Under the null
hypothesis, F follows an F distribution with both degrees of freedom equal to m. Since F
depends on the probes retained after the randomised clumping process, we repeated the random

clumping 20 times and used the average F-value.

Results

Omics-based metrics for CNV quality

We estimated pCNV quality based on methylation (MET), gene expression (GE) and whole-
genome sequencing (WGS, only available in EstBB-MO dataset) data, which resulted in up to
three independent omics-based CNV quality metrics in three independent datasets (EstBB-MO,
LLDeep and SkiPOGH; Tables 1 and S4). Within all datasets the metrics were positively
correlated with each other (Figures 2A-B, S6 and S7). Both MET and GE metrics had high
correlations (Pearson R = 0.7) with the WGS metric. The correlations between MET and GE
metrics ranged between 0.59 and 0.80 for deletions and 0.33 and 0.57 for duplications. The
correlations between all three metrics and previously published consensus-based quality score
(cQS)" ranged between 0.17 and 0.55 for deletions and 0.21 and 0.63 for duplications
depending on the dataset.

All three metrics had bimodal distributions with modes near 0 and 1, which indicates clear
differentiation between true and false calls for the majority of pCNVs (Figures 2C, S6 and
S7). To retain just one quality metric per pCNV (i.e., combined metric, Figure 2D), we retained
the metric that was ‘furthest’ from 0.5 (denoted as EXTR in Methods).
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Figure 2. Omics-based metrics — sequencing (WGS), methylation (MET) and gene expression
(GE) — and cQS"° Pearson correlations for EstBB-MO deletions (A) and duplication (B). Note
that the number of pCNVs used in correlation calculations is not identical in each group of
metric pairs (Figure S§8). Bimodal distribution of WGS, MET and GE metrics (C), as well as
their combined metric (see Methods) (D) for duplications (blue) and deletions (yellow). The
combined metric is calculated for pCNVs that have at least two omics-based metrics available
(N=3,496) and the fractions of high confidence false (combined metric <0.1) and true

(combined metric >0.9) calls are reported.

We estimated the precision of PennCNV calls based on the combined metric. In the EstBB-
MO dataset, out of 3,496 pCNVs evaluated with the combined metric (1,750 deletions, 1,746
duplications), 47.3% of deletions and 47.5% of duplications had values inferior to 0.1, most
likely reflecting false positive calls. In LLDeep and SkiPOGH, the corresponding percentages
were 50.5%/28.3% and 70.9%/59.4% for deletions/duplications, respectively (Table S5),
illustrating the need for CNV quality filtering prior further analyses.

Prediction models for omics-informed CNV quality scores (OQS)

We built logistic regression models to predict the previously calculated CNV quality metrics
based solely on PennCNV output parameters to enable pCNV evaluation in samples lacking

multi-omics measurements. Due to a smaller fraction of true positive calls when compared to
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other datasets, we omitted SkiPOGH from the model-building step but retained it for model
validations. Models were evaluated based on their ability to discriminate between pCNVs that
were shared (‘familial’, assumed to be true calls) or not (‘non-familial’) between MZ twins in
the UKB, EstBB-GSA and parent-child pairs in the SkiPOGH (Tables S6 and S7). For both
deletions and duplications, the best model was built based on the LLDeep dataset using the
combined metric. Models are characterised in Tables S8 and S9. We refer to the CNV quality
measure (ranging from 0 to 1) predicted by the best models as the omics-informed CNV quality
score (OQS).

To validate the OQS, we performed a ‘familial’ versus ‘non-familial’ pCNV comparison on
first-degree relatives from the Estonian OmniExpress, EstBB-GSA and UKB that did not
overlap with individuals used for the CNV quality estimation and model building steps (i.e.,
samples with other omics data; Figures 3 and S9). The average OQS for familial calls ranged
between 0.67 and 0.82 for deletions, and between 0.48 and 0.70 for duplications, which was
significantly higher (paired Wilcoxon test P < 1.4 X 10721) than for c¢QS (0.27-0.32 in
deletions and 0.42-0.53 in duplications). Furthermore, OQS distinguished well between
familial and non-familial pCNVs. The difference in OQS between two groups were between
0.22 and 0.35 depending on the dataset (0.16-0.25 for deletions and 0.12-0.48 for duplications;
Wilcoxon P < 3.0 X 10799). Only in case of EstBB-GSA duplications was the average
difference larger with cQS.

Difference

of means: 0.13 0.25 0.27 0.33
Mean score ] [
in group: 0.27 0.14 0.67 0.42 0.50 0.23 0.61 0.28
1
0.9 | ‘
|
0.6 1

Score value

0.3

[ - T

0.01

familial non-familial familial non-familial familial non-familial familial non-familial
cQS (Macé et al, 2016) 0Qs ¢QS (Macé et al, 2016) 0QS
Deletions Deletions Duplications Duplications

Figure 3. Consensus-based (cQS)" and omics-informed (OQS) CNV quality scores of familial
(found in two or more family members) and non-familial deletions (yellow) and duplications
(blue) calculated on a subset of Estonian OmniExpress samples (N=504; do not overlap with
EstBB-MO). Familial pCNVs are likely true positives while non-familial group contains both
true and false positives. The mean score of each pCNV group and their pairwise difference is
shown on top of the figure. Compared to cQS the OQS shows higher values for familial pCNVs
and larger differences between non-familial and familial pCNV quality. All differences for both

scores are significant with P-value < 1x107'° (Wilcoxon test).
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As the best models were built on LLDeep dataset, we could use EstBB-MO for out-of-sample
validations (Figure S10). We found that Pearson correlation coefficients between the
combined metric and predicted OQS were 0.70 and 0.57 for deletions and duplication,
respectively. The AUC values were 0.91 for deletions and 0.87 for duplications (Figure S11).

Associations between CNV and anthropometric traits

We compared the association results obtained using raw PennCNV calls, cQS'’ and OQS. Of
21 previously established associations between CNVs and four anthropometric traits (body
mass index (BMI), height, weight and waist-to-hip ratio (WHR))'®, we replicated (P <2.38x10
3) 10 in the EstBB-GSA and 18 in the UKB cohort (Tables S3, S10 and S11). For both datasets
we calculated the change in variance explained per phenotype when using OQS compared to
the other two approaches.

First, we tested mirror type associations where deletions and duplications have similar effects
but opposite effect directions. We found that in the EstBB-GSA, OQS led to a relative increase
of 2%-34% and 23%-55% in the explained variance compared to raw PennCNV and cQS,
respectively, depending on the phenotype (Figure 4A and Table S12). A good example is an
association between the 16p11.2 BP4-BP5 CNV status and BMI (Figure 4B), for which alone
the relative variance explained increased by 26% and 40% compared to raw PennCNV and
cQS, respectively. For deletion-only associations, the relative increase was equally good, up to
33% and 46% compared to raw PennCNV and cQS, respectively (Figure S12). For
duplication-only analysis, only one BMI-associated region was included and it showed 43%
relative increase in explained variance compared to the other approaches. In the UKB, OQS
showed improvement compared to raw PennCNV in three out of four phenotypes. However,
compared to the cQS the explained variance was decreased in most cases. This was to be
expected as the associations incorporated in this study were originally detected using the cQS
in a dataset where over 60% of samples were from UKB!. None of the changes were
statistically significant as the number of independent CNV regions per phenotype was very

low, ranging from one to seven.
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Figure 4. (A): The change of variance explained in mirror type model when using OQS over
raw PennCNV or cQS" in both EstBB-GSA and UKB depicted as distribution of F statistics
calculated by randomising the probe pruning priority order 20 times (see Methods). Explained
variance is increased when F>1 and decreased when F<I. (B) Locus plot of a CNV region in
16p11.2 BP4-BP5 (red dashed lines — chri16:29,590,000-30,200,000 in GRCh37) associated
with BMI in EstBB-GSA dataset. The lines indicate the —logl( association P-values using
mirror model with raw PennCNV calls (green), cQS (blue) and OQS (orange). The yellow and
light blue areas illustrate the frequency of PennCNV deletion and duplication counts,

respectively, across the region.

Discussion

Genotyping microarray data are frequently used for CNV calling and analyses but up to 48%
of the calls from commonly used software, such as PennCNV, are not supported by other omics
measures and are, therefore, likely false positives. To counter this, a quality score based on
results overlap between three detection software tools has been developed (cQS)!'°. We aimed
at improving the discriminatory capacity of this score by devising an omics-informed CNV
quality score — OQS — that incorporates independent omics-based sources of evidence to
identify high quality PennCNV CNYV calls (pCNVs).

Datasets included in the development of our OQS include gene expression levels from RNA

sequencing (GE metric), summed methylated and unmethylated intensities at CpG sites (MET
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metric), as well as CNVs detected from WGS reads (WGS metric). Each of these three
approaches yielded a quality metric between 0 and 1 for every pCNV, all of which showed
high concordance. We found that the correlation between WGS and the other two metrics were
> 0.7, suggesting that the use of methylation and gene expression data for CNV quality
assessment is a suitable alternative if WGS data are not available. Interestingly, the correlation
between WGS and previously published cQS is quite low for comparison (0.17 for deletions,
0.43 for duplications) illustrating the potential benefit of incorporating omics data in CNV
quality assessment compared to simple overlap between several detection software (which are
all prone to same weaknesses, such as prioritisation of longer and discarding shorter CNV

regions).

Using GE, MET and WGS metrics, we built predictive models relying only on output
parameters of PennCNYV that allow estimating CNV quality in datasets where no additional
omics data are available. Although larger omics data sizes can lead to better CNV quality
models, we believe that even modest sample sizes can be used in case the assessed set of CNVs
are a good representative of the final CNV set in the analysis. In our study, the best quality
models were built only on 441 pCNVs from LLDeep dataset having both GE and MET metrics
calculated.

In validation sets of close relatives, OQS clearly discriminated between ‘familial’ (true
positives) and ‘non-familial” pCNVs, the former being attributed higher OQS compared to
cQS. This effect was consistent over all independent tested datasets. Based on out-of-sample
AUC and correlations, predicting quality of deletions was easier than predicting that of
duplications. Possible explanations include better detection of deletions by PennCNV due to
larger relative difference in allelic intensity ratio between one and two copies compared to two
and three copies, or stronger effect of deletions on gene expression and methylation. In a second
step, we compared OQS to raw PennCNV calls and cQS through an association analysis
exercise aiming at replicating previously established CNV-trait associations. We found that
OQS systematically increases (up to 34% in the EstBB-GSA and 10% in the UKB) the amount
of explained variance when compared to raw PennCNV. Compared to cQS, we observed a
strong improvement in explained variance in the EstBB-GSA (up to 55%) but not so in the
UKB (down by 18%). As the associations we aimed at replicating were originally detected in
the UKB using cQS approach, cQS-based associations suffer from Winner’s curse, which
distorts the effect magnitudes in favour of the cQS. Alternatively, different quality scores might
perform better in different datasets and combining the two might be a good option (e.g., by

incorporating the maximum of the two scores in the analyses).

It is to be expected that the improvements offered by the OQS is small when studying strong
associations in well-known and -detectable genomic region, as we have done. We expect to see
greater improvement in intermediate-quality CNV regions for which previous studies have

lacked statistical power for CNV-trait association detection. Additionally, as false pCNVs
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should be distributed randomly and uniformly across the genome, they only introduce a modest
amount of noise per probe/region. However, given the difficulty to detect CNVs, which
themselves tend to be rare, even slight improvement in statistical power to detect CNV

associations can be beneficial.

Although we strived to optimise our models for different genotyping array types and densities,
our results may still be specific to the arrays we explored. Furthermore, while the OQS helps
to reduce false positive calls, it does not improve the false negative rate. Using only PennCNV
output parameters as predictors is a limiting factor in itself as their prediction ability can vary
from dataset to dataset. Furthermore, PennCNV detection algorithm considers each sample
separately and does not exploit between-sample similarities which was shown to improve the
detection of short (and frequent) CNV considerably!>. Still, our omics-informed CNV quality
assessment approach is not limited to PennCNV but can be used with any CNV detection

method that produces multiple output parameters.

In conclusion, we developed a modular and customizable omics-based quality score framework
that can be used for both genome-wide and smaller-scale CNV analyses. The OQS developed
in the current study can be applied directly to filter out high confidence false positive pCNVs
using a hard cut-off (i.e., OQS<0.5) or plugged into dosage-based association models,
eliminating the need for an arbitrary CNV quality threshold. In turn, lower false negative rates
increase statistical power to detect associations between CNVs and complex traits.
Alternatively, with at least one suitable multi-omics measurements available for a subset of the
samples, researchers can use our framework to build their own custom models, which could be
applied to any CNV detection software, leading to further improved results for follow-up

analyses.
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