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Summary

Next generation sequencing technologies have revolutionized the study of T cell biology, capturing
previously unrecognized diversity in cellular states and functions. Pathway analysis is a key analytical
stage in the interpretation of such transcriptomic data, providing a powerful method for detecting
alterations in important biological processes. Current pathway analysis tools are built on models
developed for bulk-RNA sequencing, limiting their effectiveness when applied to more complex single
cell RNA-sequencing (scRNA-seq) datasets. We recently developed a sensitive and distribution-free
statistical framework for multisample distribution testing, which we implement here in the open-source
R package Single Cell Pathway Analysis (SCPA). After demonstrating the effectiveness of SCPA over
commonly used methods, we generate a scRNA-seq T cell dataset and characterize pathway activity
over early cellular activation and between T cell populations. This revealed unexpected regulatory
pathways in T cells, such as an intrinsic type | interferon system regulating T cell survival and a
reliance on arachidonic acid metabolism throughout T cell activation. A systems level characterization
of pathway activity in T cells across multiple human tissues also revealed alpha defensin expression
as a hallmark of bone marrow derived T cells. Overall, our work here provides a widely applicable tool
for single cell pathway analysis, and highlights unexpected regulatory mechanisms of T cells using a

novel T cell dataset.
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Introduction

Dysregulation of T cell responses is a hallmark of a large spectrum human disorders, including
autoimmunity, cancer and infectious diseases (Kumar et al., 2018). Dissecting the molecular events
that underly T cell activation, lineage specification and effector function is therefore paramount to the
therapeutic targeting of T cell-mediated disease. The advent of transcriptomics, and particularly single
cell RNA sequencing (scRNA-seq), has provided the opportunity to link large transcriptional networks
to specific cellular activation states and biological functions (Nayak and Hasija, 2021). Although gene
level changes upon T cell activation and/or lineage induction have been well studied, systematic
pathway level analyses of T cell populations are lacking. Given the power of pathway analysis to
uncover specific biological processes in sequencing data, a systems level analysis of pathway activity
applied to many T cell lineages and across stimulation conditions provides the opportunity to reveal

novel and key regulatory pathways.

Many approaches have been developed that attempt to untangle the complexity of scRNA-seq data,
such as methods for integration (Hie et al., 2019; Stuart et al., 2019; Tran et al., 2020; Welch et al.,
2019), trajectory inference (Saelens et al., 2019; Street et al., 2018; Wolf et al., 2019), and
dimensionality reduction (Mclnnes et al., 2008; van der Maaten and Hinton, 2008). This being said,
biological pathway analysis methods are uniquely underdeveloped. Current approaches rely on
models from bulk RNA-sequencing, wherein the central focus is on the quantification of signals from
individual genes to generate an enrichment or overrepresentation score (Huang da et al., 2009;
Kuleshov et al., 2016; Ma et al., 2020; Subramanian et al., 2005). These methods are based on the
assumption that enrichment of a given gene set is the most meaningful statistic when understanding
pathway importance. However, these approaches significantly under-utilize the information in the
multivariate distribution that a pathway can exhibit in single cell data. Moreover, conventional pathway
analysis methods rely on the input of a filtered list of differentially expressed genes (e.g. DAVID,
Enrichr) and/or are all currently limited to two-sample comparisons (e.g. GSEA). This means that not
only are large quantities of potentially relevant data discarded or ignored, but also tracking pathways
over more complex experimental designs, such as multiple time points, is difficult to achieve in a
robust way. Therefore, methods that can utilize the multivariate complexity and increasingly
multisample design of scRNA-seq studies provide the potential for a more nuanced understanding of

gene set behavior.

Here we present Single Cell Pathway Analysis (SCPA), an open-source R package for pathway
analysis, and apply it to characterize pathway activity over early T cell activation. SCPA is built
around a graph-based nonparametric statistical model (Mukherjee et al., 2020) that aims to fully
capture the multivariate complexity of single cell data without imposing parametric assumptions on
the gene expression distribution. This represents a fundamentally different approach to pathway
analysis, whereby gene set activity or perturbation is primarily understood as a change in the

multivariate distribution of a given pathway. To gain insights into gene set dynamics underlying early
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T cell activation and differentiation, we generate a T cell scRNA-seq dataset across early activation
and apply SCPA, uncovering unexpected pathway signatures across time and between T cell
populations. This includes revealing an intrinsic IFNa. pathway that maintains T cell survival upon
stimulation, and demonstrating T cell reliance on arachidonic acid metabolism for effective cellular
activation and cytokine production. We also perform a systems level characterization of pathway
activity across multiple tissue sites to reveal tissue specific features of T cells. In carrying out this
analysis, we highlight multiple features of SCPA, including classical two-sample comparisons,
multisample pathway analysis, and tracking gene set perturbations over a pseudotime trajectory.
Finally, we demonstrate the scalability of SCPA and its ability to comprehensively characterize
pathway level changes across multiple conditions. Overall, we present a user-friendly and highly
sensitive tool for pathway analysis in scRNA-seq data along with several new insights into the gene
set changes driving early human T cell activation. All documentation and tutorials for SCPA can be
found at https://jackbibby1.github.io/SCPA.
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Results
105 Single Cell Pathway Analysis (SCPA) outperforms current pathway analysis tools
We recently developed a nonparametric graph-based statistical framework (Mukherjee et al., 2020)
for comparing multivariate distributions in high dimensional data. Here we implement this framework
in Single Cell Pathway Analysis (SCPA); an open-source R package for the analysis of pathway
activity in scRNA-seq data. In brief, this statistic assesses the multivariate, joint distribution of a set of
110 genes belonging to a given pathway to infer whether this pathway is differentially regulated across

conditions (see methods). The stepwise outline for SCPA is shown in Figure 1A.

SCPA takes total normalized count matrices from two or more conditions (Figure 1Ai), preserving the
complete dataset. We extract pathway matrices for any given number of pathways, based on

115 manually curated or existing annotation databases (Figure 1Aii). Next, based on the joint distribution
for all the genes of a given pathway, cells are paired based on optimal matching in the
multidimensional space (Figure 1Aiii), where the number of dimensions is derived from the number of
genes. Whether cell pairings occur between cells belonging to the same or different condition
determines whether that pathway is differentially distributed or not. For instance, a high number of

120  within-sample matches for a given condition suggests differential distribution of a pathway (left side
Figure 1Aiii). Conversely, many inter-sample matches would suggest that a pathway is not
differentially distributed across the groups or conditions (right side Figure 1Aiii). This analysis
provides a statistic, here termed the Q value, which measures the size of distribution change for a
given pathway and can be used for the ranking of pathways in order of biological relevance (Figure

125 1Aiv). This method therefore provides a fundamentally different definition of pathway activity when
compared to current tools that typically rely on enrichment of overrepresentation of genes in a given
pathway. By design, this method is robust to outliers and is shift- and scale-invariant, i.e. the Q value
does not change if the expression values of all genes in a given pathway were scaled up or shifted by
a constant factor.

130
Before using SCPA to analyze T cell biology, we first benchmarked the sensitivity and accuracy of
SCPA against commonly used pathway analysis tools; notably DAVID and Enrichr that use
differentially expressed genes as an input, and GSEA that uses total count matrices as an input
(Figure 1B). We analyzed four publicly available scRNA-seq datasets generated from mock or virally

135 infected — either influenza or SARS-CoV — cell lines. This allowed us to define positive controls for
expected virus-induced gene signatures in a dataset, and then quantify the ability of different pathway
analysis methods to detect these expected viral signatures. For the analysis, we used the GO
Biological Process gene sets, given that they contain a large range of cellular pathways, and within
this, a large range of viral signatures (see methods).

140
We first quantified how many viral related pathways were detected as differentially regulated using

each method. We found that SCPA outperformed analytical tools that utilize lists of differentially
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Figure 1. SCPA provides a sensitive and accurate reflection of pathway activity

(A) Overview of the methodology implemented in the Single Cell Pathway Analysis (SCPA) R package. SCPA takes count matrices generated from the desired cell
populations, generates nested matrices based on the genes of a pathway, and then performs graph based multivariate distribution analysis to assess pathway
perturbation. The Q value output produced by SCPA can then be visualized for interpretation.

(B) Overview of pathway analysis benchmarking. Briefly, publicly available scRNAseq data (GSE122031, GSE148729, GSE156760) that included cell lines infected
with viruses were collated. Pathway analysis was then conducted comparing mock versus infected cell lines with either DAVID, Enrichr, GSEA, or SCPA, using ‘GO
Biological Process’ gene sets. The number of significant viral pathways, and how many viral pathways are present in the top 100 pathways, were then compared
across methods.

(C) The number of viral pathways reaching significance when comparing mock to virally infected cells, across four publicly available datasets using the indicated
method.

(D) The number of viral pathways that rank in the top 100 pathways. Dot plot shows the rank of viral pathways relative to all GO Biological Process pathways
across methods. The number below each method represents how many viral pathways were identified in the top 100 as mean + SD. All viral pathways are shown in
red, and non-viral pathways are shown in grey.
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expressed genes, detecting significantly more viral signatures in virally infected cells than DAVID and
Enrichr. GSEA and SCPA were able to identify larger numbers of significant viral signatures, although

145 SCPA significantly outperformed GSEA, identifying ~30% more significant viral signatures (Figure
1C), demonstrating that SCPA is a highly sensitive method for detecting pathway perturbations in
scRNA-seq data. In addition to quantifying the number of significantly altered viral pathways, we also
asked where these viral pathways rank relative to other differentially regulated pathways in the
analysis. Here, as a measure of methodological accuracy, we expected that viral pathways should

150 rank highly, given that this was the only treatment variable across the two conditions (mock vs
infected). To measure this, we assessed how many viral pathways were present within the top 100
significant pathways. Here, SCPA consistently identified a greater number of viral pathways present
within the top 100 pathways relative to other methods (Figure 1D); on average, SCPA identified 12
viral pathways in the top 100, compared to 9.5, 8, and 4.5 for GSEA, EnrichR, and DAVID

155  respectively.

In sum, we provide a novel package for pathway analysis that is specifically powered to detect
pathway perturbations in single cell data, which is both highly sensitive and accurate. SCPA was able
to detect more significant viral pathways, and these pathways were also more likely to be present in

160 the top 100 significant pathways when compared to other methods.

Single cell sequencing on sorted and stimulated T cell populations

We next utilized a systems level approach with SCPA to understand early signals required for the

generation of effective human CD4* and CD8* T cell responses. We first purified human naive and
165 memory CD4* and CD8* T cells via magnetic bead enrichment and subsequent FACS sorting, and

cells were then either left unstimulated, or stimulated for 12 or 24 hours via anti-CD3 and anti-CD28

antibodies (Supplementary Figure 1). scRNA-seq was then performed on each T cell population,

capturing a total of over 40,000 live cells (Figure 2A).

170  Within the scRNA-seq data generated here, we identified well defined T cell populations, both in the
resting and activated states. All samples, populations, and time points identified in the sequencing are
depicted in the UMAP projections (Figure 2B), proportional fractions of cell populations are shown in
Figure 2C, and an unbiased selection of top 7 markers (as sorted by false discovery rate) from each
cluster are shown in the corresponding dotplots (Figure 2D). All markers for each population can also

175  be found in Supplementary Table 1.

Unsupervised clustering identified between 4 to 7 sub-populations within the different samples, which
are indicated in the UMAP projections (Figures 2B-D). In the naive populations, both CD4* and CD8*
T cells contained a relatively homogenous resting population, expressing high levels of quiescence

180 markers (IL7R, KLF2, and PIK3IP1). We also identified natural regulatory T cells (Tregs, expressing
FOXP3, IL2RA, and CTLA4) and T effector memory cells re-expressing CD45RA (TEMRA,
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Figure 2. Single cell sequencing on sorted and stimulated T cell populations

(A) Overview of experimental design for generation of the T cell scRNA-seq resource. CD4* and CD8"* T cells were magnetically isolated from the peripheral blood
in parallel, stained for CD45RA or CD45R0O, FACS sorted to distinguish naive from memory T cells, and left unstimulated, or stimulated with anti-CD3 and anti-
CD28 for either 12 or 24 hours. Cells then underwent single cell sequencing and subsequent downstream analysis.

(B) UMAP representations of T cell subtypes identified in the peripheral blood. Data were integrated separately across time points for each of the four cell types e.g.
integration across naive CD4* T cells at 0, 12, 24 hours. Conditions were then split by time point for visualization.

(C) Proportions of each identified cell type across each condition. Colors for bars are matched with colors in UMAP representations.

(D) Dot plot representations of the markers from each cell cluster. Marker identification was done by combining data across stimulation time points for each cell
type. An unbiased selection of markers was then generated by taking the top 7 genes sorted by false discovery rate from each population.
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expressing CCL3, CCL4, GZMB, and IFNG) populations in the CD4* and CD8* samples, respectively.
Naive CD8* T cells also included two small populations of unidentified cells. Upon stimulation, both
CD4* and CD8" T cells generated two distinct populations corresponding to early and late phases of

185 naive T cell activation (left panels, Figure 2B). These data, in combination with trajectory inference
modelling, showed that these activation phases included: 1) early expression of many guanylate-
binding proteins alongside IRF1 and IRF4, and 2) subsequent expression of several heat shock
proteins, a high number of metabolic genes, and effector molecules such as TNFa (Supplementary
Figure 2).

190
As anticipated, circulating CD4* and CD8* T cell memory populations were less homogenous than
circulating naive T cells, clustering into 6 and 7 sub-populations respectively. Clusters of effector cells
were evident in resting and activated memory T cells. In memory CD4* T cells, we identified T central
memory (Tcm), T helper 1 (Th1), Th2, T cells with a high expression of CD69 and IL2 (here termed

195 Teff), and Tregs, based on their canonical markers shown in Figure 2D. Tcm cells represented a large
fraction (~65%) of resting memory T cells, expressing markers very similar to resting naive
populations (IL7R, KLF2, and TCF7). Similar to CD45RA" Tregs, CD45RO" Tregs expressed high
levels of FOXP3, but also effector molecules such as IL32, HLA-DRB1, HLA-DRA, and the HLA class
Il molecule CD74. Upon activation of memory CD4* T cells, we observed a large proportional

200 expansion of Teff cells, expressing high levels of /L2 and CD69. In the differentiated effector
populations, Th1 cells showed high expression of IFNG, IL10, CCL3, CCL4, and GZMB upon
activation, whereas Th2 cells expressed high levels of IL3, IL4, IL5, IL9, IL10, and GATAS. In the
memory CD8* T cell compartment, we identified Tcm cells expressing quiescence markers such as
KLF2. Similar to CD4* T cells, we identified effector populations including Tem1/2 cells expressing

205 GZM and LT genes, Type 1 CD8* T cells (Tc1) expressing XCL1, XCL2, IFNG, CCL3, and CCL4, and
Tc2 cells expressing IL3, IL4, IL5, IL9, and IL13. We also identified a population (here termed GZM™*)
that expressed high levels of all GZM genes (Supplementary Figure 3), and also multiple HLA
molecules. Finally, and similar to memory CD4* T cells, we detected a cell population dominated by

proliferation markers at 24 hours post stimulation.

210
Overall, this analysis identifies well resolved T cell populations, with cell types being stratified by
canonical markers. These data therefore provided a resource for characterization of pathway level
transcriptomic signatures through early activation, and across a range of human CD4* and CD8* T
cell populations, as detailed below.

215

Intrinsic IFNa signaling as a regulator of T cell survival

We next applied SCPA to map gene set dynamics throughout T cell activation. To gain a global view
of pathway activity within each of the four major T cell populations, we first used the multisample
capability of SCPA — a technique not possible using current methods — to characterize pathway

220  distributions over the three time points simultaneously for each sorted population (0, 12, and 24 hours
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(A) Schematic representation of the SCPA analysis conducted across time points for each sorted T cell population. Cells were split across time and SCPA was used to
conduct a multisample analysis across the three time points simultaneously.

(B) Heatmap representation of pathway perturbations generated from the comparisons outlined in (A), with classifications of core pathways into broad categories. The
pathways from the topmost cluster (k-means clustering) were manually categorized into broad pathway classes, and the frequency of each class is visualized in the

bar plot.

(C) Boxplots representing the extent of distribution changes, per pathway, for all 1790 pathways across cell types and stimulation.

(D) Heatmap showing FDR values of specific cytokines within the ‘cytokine response’ class derived from core pathways. ‘General’ refers to cytokine response gene
sets that do not mention a specific cytokine e.g. ‘cytokine signaling’.

(E) Ranking of all pathway Qvals in naive CD4* T cells across activation. Interferon (IFN) pathways are highlighted in red
(F) Heatmap representation of interferon response gene expression with genes taken from the ‘Reactome interferon signaling’ gene set.

(G) gPCR for IFNA genes in CD4* T cells after stimulation with aCD3+ aCD28 for the indicated time with Ohr representing unstimulated cells. Data are relative to RPL7
as an internal reference, calculated as 22, Ct values represent the mean over 4 donors * sd in the Ohr condition

(H) IFNa measured in the supernatant of CD4* T cells after stimulation with aCD3+ aCD28 for the indicated time. Ohr represents unstimulated cells, and red dotted line

represents the detection limit

(I-J) CRISPR-cas9 mediated deletion of IFNa in CD4* T cells, showing IFN editing efficiency in (I) and flow cytometry analysis of cell viability after IFNa knockdown in
CD4+ T cells (J). CD4* T cells were isolated, and CRISPR mediated knockdown of IFNa was performed. Cells were then stimulated with aCD3+ aCD28 for 24 hours

before analysis by flow cytometry.

(K) Viability staining of splenic CD4* T cells from wild type (WT) or Ifnar1-- mice. CD4* T cells were purified and stimulated with anti-CD3 + anti-CD28 for the indicated
time before assessment of viability. Embedded panel shows representative live-dead staining taken from the 48hr time point, n = 3 mice per genotype

(L) Heatmap representation of STAT1 target gene expression over naive CD4* T cell activation. STAT1 targets, taken from the transcription factor targets available on
MSigDB were plotted over a trajectory of naive CD4+ T cell activation. Trajectory inference model calculated using slingshot is shown in supplementary figure 2A.
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for naive CD4*, memory CD4*, naive CD8*, and memory CD8* populations, Figure 3A). We used a
comprehensive gene set list that included all pathways from the Hallmark, Reactome, and KEGG
databases from MSigDB, comprising 1790 pathways in total (Supplementary Table 2). Utilizing this
gene set list, we identified a set of ‘core pathways’ defined as common gene sets showing significant

225 activity in response to stimulation across all cell types (Figure 3B). After categorizing these gene sets
into broad classes, the most abundant pathway classes were, as expected, those involved in
response to stimuli, including cell signaling, cell cycle, cytokine response, metabolism, and
transcription (Figure 3B). In addition to this core signature, we also observed a cluster of pathways
that typically showed greater activity in memory T cells versus naive populations upon stimulation,

230  such as unfolded protein response and autophagy (Supplementary Figure 4). Further, certain
pathways showed little or no change in distribution upon activation, including pathways not expected
to change, such as digestion (Supplementary Figure 4). Interestingly, across pathways, memory cells
showed a larger magnitude of change in their pathway distribution upon activation, suggesting that
memory populations undergo a more extensive remodeling of their transcriptional profile, per

235 pathway, relative to naive cells (Figure 3C). Overall, we validate the multisample capability of SCPA

in accurately recapitulating known core pathway signatures of T cell activation over time.

To more deeply understand these global profiles, we next looked for enrichment of specific signatures
in the core pathways. As cell signaling and cell cycle events have been well characterized upon T cell
240  activation, we chose to investigate cytokine response signatures. Within this pathway class we noted
a presence of interferon (IFN) response gene sets across all four naive and memory CD4*and CD8*
T cell populations (Figure 3D). To further explore this, we focused on CD4* T cells to assess if a
particular cell type was driving this interferon response signature, and whether this pathway was
being positively or negatively regulated upon activation. We used SCPA to conduct a two-sample
245 comparison of each cell type, comparing Ohr to 24hr activated populations identified in the UMAP
clustering (Figure 2B). Unexpectedly, IFN response genes were broadly enriched after activation in all
CD4* T cell populations (Supplementary Figure 5A). Taking naive CD4* T cells as an example, IFN
response pathways also ranked amongst the most significantly altered pathways upon T cell
activation (Figure 3E), suggesting that IFN signaling is a central component of T cell activation.
250 However, we observed that T cells induce a distinct IFN response signature, which is dependent on
cell lineage. Most CD4" T cells show a broadly similar profile in their resting state with only memory
Tregs expressing a slightly altered signature. Cellular activation induced a divergence of this
signature, with significant differences between memory Treg and non-Treg populations. For example,
Tregs show enrichment of IFN response genes such as ISG15, ISG20, IFI30, and SOCS3, whereas
255 non-Treg populations in the naive and memory pool show enrichment of IRF4, PTPN11, and several
NUP genes (Figure 3F). These data suggest that, even though all CD4* T cells induce an interferon
response signature upon activation, these signatures diverge depending on Treg versus non-Treg cell

identity.
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260  As these were sorted T cell populations, maintained in media without polarizing cytokines, and naive
CD4* T cells do not produce type Il IFNG transcript or IFNy protein (Supplementary Figure 5B-C),
these data suggested possible involvement of a cell-intrinsic type | interferon signaling. The significant
overlap of genes between type | and type Il response gene sets makes it difficult to define the exact
interferon subtype driving the observed signature, but the above analysis with SCPA did reveal type |

265 interferon signatures in both naive and memory T cells (Supplementary Figure 5D). Although it is
known that type | IFNs, IFNa and IFN, regulate CD4* and CD8* T cell cytokine production,
proliferation, survival, and/or migration (Crouse et al., 2015; Marrack et al., 1999), T cells themselves
are not considered to be a source of type | IFNs. Rather, it is thought that type | IFNs are largely
derived from innate immune lineages during viral infections (lvashkiv and Donlin, 2014). Therefore,

270 we explored the possibility that T cells may produce their own type | IFN upon stimulation. Likely
given the relatively low sensitivity of sScRNA-seq, we did not detect IFNA expression in our dataset.
We therefore analyzed three RNA-seg/microarray datasets from the literature for expression of IFNA
genes in CD4* T cells either ex vivo or after in vitro activation. Here we observed low but consistent
levels of IFNA expression in both resting and activated T cells, with the most consistent expression of

275  IFNA4, IFNA7, IFNA17, and IFNA21 across datasets (Supplementary Figure 5E). Given the
increased sensitivity of gJPCR over RNA-sequencing methods, we next measured expression of these
four IFNA genes upon T cell activation using gPCR. We observed robust expression of IFNA1/13/21
in CD4* T cells and low levels of IFNA17, whereas we detected little or no expression of IFNA4,
IFNA?Y (Figure 3G). Additionally, and in agreement with our qPCR data, we noted that CD4* T cells

280  secrete low levels of IFNa protein upon stimulation at around 12-24 hours post activation with anti-
CD3 and anti-CD28 (Figure 3H, Supplementary Figure 6E).

Given that we observed IFNa production by CD4* T cells, we next asked if an absence of T cell-
derived IFNa resulted in an altered T cell phenotype. We therefore used CRISPR-Cas9 mediated
285 deletion of IFNa in purified CD4* T cells, targeting multiple IFNA genes, afforded by the high
sequence similarity (see methods, Supplementary Figure 5G-H), demonstrating good editing
efficiency (Figure 3l). Deletion of IFNa significantly reduced T cell viability upon stimulation, when
compared to a mock control (Figure 3J). In agreement with this observation, purified CD4* T cells
from Ifnar’”- mice — in lieu of Ifna’~ mice not existing — showed a similar reduction in cell viability after
290  activation in vitro with anti-CD3 + anti-CD28 (Figure 3K). Finally, IFNAR1 signaling engages
downstream STAT1 signaling, and in a pseudotime trajectory analysis of naive CD4* T cell activation,
we observed a large increase in the expression of STAT1 responsive genes (Figure 3L,
Supplementary Figure 5l), corresponding to ‘intermediate’ and ‘activated’ cells states identified in the
UMAP representations (Figure 2B), and also correlated with the upregulation of IFNAR1/2 by T cells
295 (Supplementary Figure 5J). Together these data indicate that T cells require IFNa to maintain survival

upon activation and that they possess the ability to produce IFNa in an autocrine/paracrine fashion.
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Mapping metabolic reprogramming upon T cell activation
After cytokine response pathways, our analysis with SCPA demonstrated that the gene set class with
300 the next largest distribution change was that of metabolism (Figure 3B). Although context-dependent
metabolic programs have been linked to specific T cell functions, a systematic assessment of
transcriptional metabolic reprogramming in T cells has yet to be done. We therefore sought to
characterize the landscape of transcriptional metabolic reprogramming upon T cell activation across
comprehensive list of metabolic pathways.
305
SCPA’s unique capability to analyze multiple groups/conditions simultaneously lends itself to novel
analyses of pseudotime trajectories with multiple intermediate populations. To exhibit this, we first
reconstructed the trajectory of naive CD4* T cell activation, using slingshot (Street et al., 2018), to
recapitulate the progression of these cells through activation phases. To generate distinct populations
310 across activation, we split this trajectory across pseudotime into multiple nodes (using milestones as
explained in methods, Figure 4A). Using a manually curated list of 243 metabolic pathways (gathered
from Hallmark, KEGG and Reactome databases, Supplementary Table 3), we conducted a
multisample pathway analysis across the pseudotime trajectory to identify metabolic pathways
showing significant changes in distribution through naive CD4* T cell activation. Overall, we saw a
315  gradation in the transcriptional changes of metabolic pathways, from pathways with little change to
those with large changes in distribution (Figure 4B). The largest alterations were evident glycolytic,
oxidative phosphorylation (OXPHOS), and amino acid metabolism pathways (Figure 4B, n.b multiple
glycolysis and OXPHOS gene sets from different databases were present in the top 10 pathways, so
only the topmost significant are annotated), indicating that these pathways are critically regulated at
320 the transcriptional level in T cells. Indeed, as expected, glycolysis and OXPHOS were both enhanced
following naive and memory CD4* T activation in vitro (Supplementary Figure 6A-B), consistent with
current literature (Chapman et al., 2020). Interestingly, metabolic change, both relating to magnitude
and pathway specificity in naive T cells, was very similar to that seen upon memory T cell activation,
suggesting a similar utilization of metabolic pathways in both populations (Supplementary Figure 6C).
325 Conversely, perturbations in activity of other pathways, such as linoleic acid and nitrogen metabolism,
were comparatively modest following T cell activation, possibly indicating that these pathways play a
less significant role in the biology of activated T cells or that they are not regulated principally through
transcription. Indeed, the pathway expression of linoleic acid metabolism over pseudotime is
substantially different from glycolysis (Figure 4C). Additionally, we discovered several metabolic
330 pathways that have so far not been linked as intrinsic regulators of T cell biology, such as propanoate
metabolism and arachidonic acid metabolism (Figure 4B). Although undergoing smaller changes
relative to pathways such as glycolysis and OXPHOS, these pathways showed statistically significant

changes in pathway perturbation, possibly suggestive an important role in T cell function.

335  As aninternal control of the pseudotime pathway analysis, we correlated the results above with a

more classical 2-sample comparison using our real time data. We compared Ohr resting cells, to
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Figure 4. Arachidonic acid metabolism regulates CD4* T cell activation
(A) Trajectory analysis of naive CD4* T cell activation. Naive CD4* T cells were subjected to trajectory inference modelling using slingshot, and subsequently split into
nodes across the trajectory using dyno (see methods).
(B) SCPA analysis outline (above) and output (below) using a manually curated list of metabolic pathways across pseudotime populations. 186 manually curated
metabolic pathways were used with SCPA to categorize metabolic reprogramming across the four identified activation phases in native CD4* T cell activation.

(C) Mean pathway expression of glycolysis and linoleic acid metabolism over naive CD4* T cell activation. Mean gene expression for ‘Hallmark glycolysis’ and 'KEGG
linoleic acid metabolism’ were plotted against pseudotime values calculated in (A).
(D) Volcano plot showing Qval output from SCPA plotted against pathway enrichment, measured as mean pathway change when comparing 0 to 24 hours conditions.
Black points show non significant pathways, blue points show significant pathways with no enrichment, and green points show significant pathways that also show
enrichment. Arachidonic acid metabolism (AA) is highlighted in red
(E) Gene set enrichment analysis (GSEA) across T cell activation, using metabolic pathways when comparing 0 to 24 hours conditions. Dot plot shows ranking of
metabolic pathways by FDR g-val, with arachidonic acid metabolism highlighted in red. Embedded plot shows enrichment plot for arachidonic acid metabolism.
(F) Outline of key enzymes of the arachidonic acid metabolism pathway and their expression across activation.
(G) Arachidonic acid production measured in the supernatants of purified CD4* T cells after stimulation with anti-CD3+28 antibodies
(H) CD69 expression in CD4* T cells after inhibition of a PLA2 using pyrrophenone at varying concentrations. Representative plot taken from 1uM.
(I-J) Cytokine expression (I) and cell viability (J) after anti-CD3+28 stimulation with PLA2 inhibition (1uM) in CD4+ T cells
(K) Heatmap of Qvals generated by SCPA after comparing the indicated resting CD4* memory T cell population with resting naive CD4* T cells

(L-M) Volcano plot of amino acid metabolism genes compared between Tcm and Th1 cells. Ribosomal (RPS/L) and proteasomal (PSM) genes are highlighted in blue

and red respectively.

(N) Schematic summary of T cell metabolism over cellular differentiation
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either 12hr intermediate or 24hr activated naive CD4* T cell populations (populations derived from the
UMAP in Figure 2B). In line with our pseudotime trajectory pathway analysis (Figure 4B), OXPHOS,
glycolysis, and amino acid metabolism pathways were highly significant and also positively enriched

340 in activated cells (Figure 4D, Supplementary Figure 6D). Interestingly, and an important unique
aspect of our tool, many pathways showed significant changes in multivariate distribution, but no
overall enrichment (Figure 4D, blue dots). Thus, these pathways show changes in transcriptional
regulation detected by SCPA, that are independent of overall pathway enrichment. One such highly
significant pathway showing this trend, outside of metabolic pathways already defined as important to

345 T cell function, was arachidonic acid metabolism. We compared this finding to GSEA to see if such a
signature would be missed using classical approaches, and indeed, given the lack of pathway
enrichment, arachidonic acid metabolism was not significant, ranking poorly at both 12 (FDR g-val =
0.7) and 24 (FDR g-val = 0.4) hours after stimulation (Figure 4E, Supplementary Figure 6E). Given
that the intrinsic regulation of arachidonic acid metabolism has not been described in T cells, we

350  sought to confirm our finding with exploratory functional experiments. We noted upregulation of key
enzymes involved in the generation of arachidonic acid and downstream metabolites upon T cell
activation (Figure 4F), and found that T cells secrete arachidonic acid upon activation (Figure 4G). To
understand the functional consequences of arachidonic acid synthesis in T cells, we used a
Phospholipase A2 (PLA2) inhibitor, pyrrophenone, which blocks arachidonic acid synthesis from

355  phospholipids. PLA2 inhibition resulted in a blunted upregulation of CD69 (Figure 4H), suggestive of
decreased T cell activation. Furthermore, PLA2 antagonism resulted in decreased expression of IFNy
and IL-10, but showed no effect on TNFa production or cell viability (Figure 41-J). Overall, these data
demonstrate the benefit of understanding pathway activity in terms of changes in multivariate
distribution in contrast to enrichment, and we validate this approach by showing the importance of

360 PLAZ2 and downstream arachidonic acid-derived metabolites for T cell activation, effector function,

and production of selected cytokines.

Having analyzed the transcriptional regulation of metabolic pathways upon activation, we next
decided to investigate how metabolic pathways are maintained across CD4* T cell differentiation.

365  Although it is known that naive and memory CD4* T cells maintain different standards of glycolysis
and OXPHOS (Dimeloe et al., 2016; Gubser et al., 2013), a more systematic approach into the
landscape of metabolic gene expression, or how memory T cell populations differ, is unknown. For
example, whether transcriptional regulation of metabolic pathways among Th1, Th2, and Tcm cells
differs remains uncharacterized. We therefore performed a systematic pathway analysis across

370 resting memory T cell populations (Th1, Th2, Treg, and Tcm) focusing on metabolic pathways, and
considering naive resting CD4* T cells as a comparative baseline (Figure 4K). Here we observed two
prominent features. First, we noted an extensive perturbation of metabolic pathways outside of
glycolysis and OXPHOS in resting memory T cells, including pathways regulating amino acid
metabolism, fatty acid metabolism, nucleotide synthesis, purine metabolism, cholesterol metabolism,

375  glycogen synthesis, and arachidonic acid metabolism. This amounted to 0-15% of all annotated
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metabolic pathways being differentially regulated in resting memory populations versus resting naive
T cells (Supplementary Figure 6F). Second, we observed substantial differences between resting
memory T cell subtypes, specifically effector subsets (Th1, Th2, and Tregs) and Tcm cells, with Tcm
cells showing a broadly similar profile to resting naive T cells (Figure 4K). Highlighting specifics,

380 looking at topmost differentially regulated pathway, amino acid metabolism, we saw that a defining
feature of Tcm vs Th1 cells is their relative expression of ribosomal versus proteasomal genes (Figure
41). Here Tcm cells were defined by relatively high expression of ribosomal subunit (RPL/RPS) genes
whereas Th1 cells showed higher levels of proteosome subunit (PSM) genes. Furthermore Th1 cells
were characterized by higher expression of genes regulating polyamine synthesis (OAZ1, ODC1,

385  SRM), asparagine synthesis (ASNS), and amino acid transport (SLC3A2, SLC7A5), suggesting that
Tcm and Th1 cells differ significantly in their utilization and synthesis of amino acids (Figure 4M).
Taken together, these data demonstrate that quiescent Th1, Th2, and Treg populations differ
significantly in their transcriptional regulation across a wide range of metabolic pathways when
compared to Tcm and resting naive CD4* T cells (Figure 4N).

390
Overall, these data demonstrate the multisample pseudotime capability of SCPA and highlight the
power of a systematic approach identify new pathways underlying metabolic regulation of cellular

activity.

395 Alpha defensin expression defines bone marrow derived T cells
Having characterized T cell pathways in an in vitro setting, we next aimed to understand how
pathways are regulated when T cells migrate into tissue. For this, we analyzed a dataset from Szabo
et al. (2019) whereby single cell sequencing was performed on unstimulated or anti-CD3 + anti-CD28
stimulated CD3* T cells sorted from blood, bone marrow, lymph node, or lung of healthy donors. We

400 identified 15 T cell types across the four tissue sites, with all annotated cells types and their markers
shown in Figures 5A-B (Supplementary Figure 7). Given the scalability of SCPA, we then aimed to
systematically characterize pathway activity in all T cell populations across all tissues and stimulation
conditions to identify novel features of tissue derived T cells. For this, we used ~3000 pathways taken
from the Hallmark, KEGG, Reactome, Biocarta, PID, and Wikipathways database, comparing T cells

405 from each tissue site to equivalent populations found in the blood, either in unstimulated or stimulated
conditions. For example, unstimulated CD8" Tem cells from the blood were compared to

unstimulated CD8* Tem cells from the lung, lymph node, and bone marrow, and so on (Figure 5C).

We were therefore able to characterize the changes in pathway activity when T cells are present in
410 each tissue, as well as how they respond to stimulation. Globally, we observed that T cells present in
the lung show the largest alteration in pathway activity compared to those from the lymph node and
bone marrow (Figure 5D). Interestingly, a large source of variance within the data originated from the
tissue site T cells were derived from, in addition to stimulation, suggesting that tissue migration

imprints significant altered transcriptional profiles on cells even prior to activation (Figure 5E).

12
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Figure 5. Alpha defensin expression defines bone marrow derived T cells
(A) UMAP representations of stimulation effect and T cell subtypes across the indicated tissues.

(B) Heatmap representation of markers from each cell subtype indicated in the UMAP plots

(C) Outline of SCPA comparisons of cell types between tissues. Each cell type in each tissue was compared to the equivalent population found in the blood,
both under resting and activated conditions.
(D) Heatmap of Qvals generated by SCPA after pathway comparisons outlined in (C), with tiles above the heatmap representing selected metadata features of

each column.

(E) PCA of Qvals generated in (D), highlighting the effect of stimulation and tissue location of each cell type.
(F) Dot plot showing the variance of all pathways across tissue sites and stimulation conditions

(G) DEFA1 and DEFAS3 expression in all T cell subtypes grouped together, split by tissue site.

(H) DEFA1 expression in CD4*CD45RO* T cells derived from blood or bone marrow, acquired from dataset GSE50677

(I-J) Flow cytometry analysis of DEFA1 expression in CD3* T cells from bone marrow compared to blood derived CD3* T Cells from age and sex matched
healthy donors. Iso = isotype control. Data were acquired across three independent experiments


https://doi.org/10.1101/2022.02.07.478807
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.07.478807; this version posted February 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

415
Having first mapped the global pathway signatures of tissue-derived T cells, we next aimed to identify
pathways that were specific to T cells residing within the distinct tissue sites. To do this, we calculated
the variance in the SCPA Q-values of each pathway across tissues and cell type (variance of rows in
Figure 5D heatmap) to identify the pathways with the most variable effect sizes across the T-cell

420  populations being compared. One of the pathways showing the largest perturbation were those
involved in translation and ribosome assembly, with cells from the lung showing a broad
downregulation of ribosomal subunit genes when compared to cells from other tissue sites
(Supplementary Figure 7B). Furthermore, T cells from the tissue also showed high variance in
arachidonic acid-derived prostaglandin synthesis and regulation, largely driven by expression of

425  annexin family genes (ANXA17-2) that inhibit PLA2 activity, but also ST00A10 and S700A6 that
regulate annexin activity (Supplementary Figure 7C). However, the pathway with the most variable
effect size was, unexpectedly, involved in antimicrobial peptide production. In assessing expression of
genes from this pathway, this signature was driven by alpha defensin molecules DEFA1 and DEFAS3,
whose expression is currently thought to be limited mainly to neutrophils and mucosal epithelia.

430 Moreover, assessing tissue specificity, this signature was exclusive to bone marrow-derived T cells,
suggesting a tightly controlled tissue specific feature of T cells. To further validate our finding, we
analyzed a previously published microarray dataset from Okhrimenko et al. (2014) of T cells sorted
from the bone marrow and blood of healthy donors. In agreement with our data, we saw significantly
increased transcript expression of DEFA1/3 in T cells from the bone marrow when compared to the

435 blood (Figure 5H). Furthermore, to confirm this signature at the protein level, we sourced bone
marrow of healthy human donors and compared DEFA1 expression to blood derived T cells from age
and sex matched controls. DEFA1 was expressed almost exclusively in CD3* T cells from the bone
marrow when compared to CD3* T cells from the blood (Figures 5I-J). These data therefore uncover a

novel feature of bone marrow derived T cells; namely the expression of alpha defensin molecules.

440
In sum, we generate a global map of pathway activity in tissue derived T cells, identify a broad
perturbation of pathway activity in T cells from the tissue, especially in lung derived T cells, and
further discover a previously unrecognized alpha defensin expression profile in T cells from the bone
marrow.

445
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Discussion
Here we introduced SCPA as a novel and effective approach to pathway analysis in scRNA-seq data.
We utilized SCPA to systematically map pathway activity in T cells across time, between T cell

450 populations, and across tissues, uncovering novel regulatory mechanisms of T cells.

Our approach to pathway analysis described in this work harnesses a statistical framework that
considers changes in the multivariate distribution of all the genes of a given pathway as the primary
statistic for judging biological relevance. This approach is highly robust, and does not depend on
455 parametric assumptions on the gene expression distribution. By design, it is sensitive to distribution
changes (Mukherjee et al., 2020) that would otherwise be missed using enrichment profiles. As an
illustration, when considering a situation in comparing healthy and disease samples, whereby a
pathway shows significant changes in its multivariate distribution but lacks enrichment of pathway
genes in any given sample; this would still indicate substantial pathway perturbation. However, given
460 the lack of mean differences, this would not be identified using current enrichment methods. We
highlighted this unique feature of SCPA when we identified the requirement of cell-intrinsic
arachidonic acid metabolism for T cell activation and effector function, which was not considered
significant by GSEA. Of note, we found that many additional pathways demonstrated similar profiles
(e.g. Figure 4D), which provides candidate pathways for future work. Further still, even though our
465 statistical framework assesses distribution changes, gene sets that do show enrichment also
necessarily show alterations in multivariate distribution, meaning that SCPA captures both aspects of
pathway activity. This is also likely the reason why SCPA was able to identify a greater number of
significant viral pathways when compared to other pathway analysis tools in our benchmarking
(Figure 1). We therefore argue that assessing changes in multivariate distribution more accurately

470 reflects what should be considered interesting when addressing pathway level gene signatures.

Employing SCPA to our scRNA-seq resource provided a systems level view of T cell transcriptional
regulation upon activation, highlighting a number of interesting signatures. In contrast to current
approaches that are largely restricted to two-sample comparisons, SCPA can assess gene set

475 distributions across a multisample input simultaneously and is well suited to addressing experimental
designs with greater than two conditions. Here we used SCPA over such a multisample design,
assessing three early time points across T cell activation. We identified a core set of pathways that
are shared upon T cell activation across naive and memory CD4* and CD8"* T cells. This led to the
discovery of type | IFN signaling as a central transcriptional module in CD4* T cell populations. T cells

480 are responsive to exogenous IFNa (Huber and Farrar, 2011) but are not known to produce IFNa
themselves. As the design of our T cell activation experiments excluded an exogenous source of
IFNa, we concluded that the type | IFN signature must be rooted in an autocrine mechanism.
Although limited in scope, our functional experiments supported such an idea as proof-of-principle: we
demonstrated IFNo secretion upon T cell activation and a dependency on intrinsic IFNa for survival,

485 at least in vitro. Indeed, we had previously established such a concept for another cytokine that was
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thought not to be produced by T cells; namely IL-1B. T cells produce IL-1B in very low amounts, yet
intrinsic IL-1B controls the magnitude of Th1 responses (Arbore et al., 2016) and exogenous IL-1$
cannot compensate for this function. Though IFNa is known to aid T cell survival (Marrack et al.,
1999), a role for T cell-autocrine type | IFN may have previously been overlooked, as human T cells

490 produce also only small quantities of this cytokine (Figure 3I). Additionally, /fna”~ mice do not exist,
with IFNa targeted studies instead utilizing /fnar1~~ animals, or depleting classical sources of IFNa,
such as pDCs, which makes it unsuitable to pinpoint T cell-autocrine IFNa functions. Two additional
observations we made with regards to IFN biology will be worthy to investigate further. First, our data
indicated that T cells produce IFNA with at least some specificity toward IFN21 — though our primers

495  also showed an overlap with IFNA1/13 — and not other IFNA genes including IFNA4, IFNA7 or
IFNA17. This is interesting in view the of emerging realization that different type | IFN subtypes can
have diverse effects on CD8* T cell antiviral responses (Dickow et al., 2019). Furthermore, we
showed that while all T cells harbor or acquire a strong IFN pathway signature, the respective gene
transcription profiles induced are distinct among T cell subpopulations. We noted a specific

500 demarcation between (memory) Tregs and non-regulatory T cells, suggesting tailored and selective

responses downstream of the IFN receptor between lineages of inflammatory and regulatory T cells.

SCPA also highlighted metabolism as a pathway class with large distribution changes upon T cell
activation. Although it is well established that all aspects of the T cell life cycle are controlled by

505 metabolic events (Buck et al., 2015) most existing works focus on the analysis of one or a few select
metabolic pathways in a given study. Here we provided a means for comprehensive pathway
analyses of scRNA-seq data that can distinguish changes in the landscape of metabolic pathways
upon cell activation, over time, or across stimulation conditions. Across naive CD4* T cell activation
we confirmed that fundamental metabolic pathways, such as glycolysis and OXPHOS, featured

510 prominently as expected. However, we also uncovered several metabolic pathways previously not
associated with T cell metabolism. One such pathway was that of arachidonic acid metabolism, which
we showed was necessary for proper T cell activation and IFNy/IL-10 production. Though we did not
define the exact mechanism of this regulation, downstream metabolites of arachidonic acid generated
by immune cells, including as prostaglandins, prostacyclins, and leukotrienes, impact T cell function

515 at several levels (Maseda et al., 2019). Much of the literature on arachidonic acid metabolite
production focuses on innate immune cells, though our work here shows that T cells produce and
utilize arachidonic acid via phospholipase A2 to induce proper T cell activation in vitro. In addition, we
also observed upregulation of genes involved in the inhibition of PLA2 (ANXA and S100 family
members) in T cells from the tissue, suggesting that inhibition of arachidonic acid metabolism in vivo

520 could contribute towards confining T cell activation in vivo. Indeed, a recent paper has demonstrated
that T cells from patients with rheumatoid arthritis are hyper-responsive to exogenous arachidonic
acid, resulting in increased calcium flux and pERK signaling (Ye et al., 2021), hinting that

dysregulation of this pathway in T cells could play a role in inflammatory disease.
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In addition to mapping metabolic pathways across T cell activation, we compared metabolic
transcription across quiescent T cell subpopulations and demonstrated that memory CD4* T cell
lineages maintain different levels of metabolic poise. We found that whilst Tcm cells display a broadly
similar metabolic profile relative to naive T cells, quiescent Th1 and Th2 cells maintain altered levels
of metabolic transcription across a broad range of metabolic pathways. Whilst previous work has
shown that bulk memory T cells exhibit higher levels of glycolysis and OXPHOS relative to naive cells
(Gubser et al., 2013), our findings here suggests that this heightened metabolic activity may be
predominantly driven by a minority of memory CD4* T cell subpopulations, rather than memory T cells
as a whole. Further, we suggest that the metabolic distinction between naive and memory T cells may
be larger than previously appreciated, noting that a broad range of metabolic pathways outside of
glycolysis and OXPHOS were differentially regulated. One such observation was that a number of
glycogen-related metabolic pathways were active in CD4* effector memory populations relative to
Tcm cells. The generation of glycogen stores in dendritic cells supports their early effector functions
via contributions to glycolytic reprogramming and mitochondrial respiration after toll-like receptor
ligation (Thwe et al., 2017). Further, glycogen breakdown has been shown to support CD8* T cell
memory homeostasis and survival (Ma et al., 2018). Although speculative at this point, the glycogen
signature in effector memory T cells could represent an important component of the heightened
metabolic poise that enables these cells to respond rapidly to stimulation. Overall, our work here
focused on T cells, though we anticipate similar systematic approaches to immune metabolism using
scRNA-seq will reveal important and previously undiscovered aspects of immune regulation across

other cell types.

In addition to our in vitro work, we performed a systems level analysis of pathways in ex vivo T cells
derived from different tissue sites. This was possible given that SCPA provides a computationally
scalable approach to identify pathway signatures in vast amounts of multisample transcriptomic data.
In this, we analyzed around 3000 pathways in 15 cell types across multiple tissues and stimulation
conditions. Surprisingly — as it is currently thought that defensin production is mainly restricted to
innate immune cells and epithelial cells (Xu and Lu, 2020) — we identified alpha defensin expression,
through DEFA1 and DEFAS3, as a unique feature of T cells from the bone marrow. To our knowledge,
there is no precedent for alpha defensin expression by apT cells. Previous work has been unable to
detect alpha defensin expression in CD8* T cells from the blood by mass spectrometry (Mackewicz et
al., 2003), with similar results in two a3 T cell lines (Agerberth et al., 2000), but did detect alpha
defensin in CD3* T cells, likely coming from the yd fraction. These findings are in line with our data,
suggesting that alpha defensin expression seems to only be upregulated in o8 T cells after migration
into the bone marrow, and not in other tissues. We did not uncover the reason for alpha defensin
expression in aff T cells, however, the antimicrobial nature of defensins possibly contributes to
general sterility of the bone marrow microenvironment. Nonetheless, the immune regulatory

properties of defensins are broad, meaning defensin expression could influence a multitude of
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processes such as cell migration, cytokine release, and proliferation (Fruitwala et al., 2019; Xu and
Lu, 2020), and future work defining the precise role of T cell derived alpha defensins is required.
565
In summary, by developing and employing SCPA, we uncovered novel cytokine and metabolic
pathways engaged during early T cell stimulation and provided comprehensive global signatures of
pathway alterations among distinct T cell subpopulations. Overall, this work outlines the power of
systematic approaches to uncover novel regulatory pathways across a wide range of cell types and
570 tissues. Furthermore, though our work here focused on T cells from healthy donors, this approach will
be invaluable in characterizing pathway perturbations in a disease setting, generating an unbiased
analysis of the relative cell specific dysfunctions contributing to disease pathogenesis, alongside

providing therapeutic targets.

575

580
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Methods

Human CD4* and CD8* T cell Purification and In Vitro Activation
Human bulk CD4* or CD8* T cells were isolated from PBMCs, obtained from freshly drawn blood after
centrifugation using Lymphoprep separation medium (Corning, Vienna, VA) using either the MACS

585 Human CD8" T cell Isolation Kit (130-096-495) from Miltenyi Biotech, (Bergisch Gladbach, Germany),
the Negative Selection EasySep CD4* T cell kit (17951) or RosetteSep Human CD4* Cell Isolation Kit
(15062) from Stemcell Technologies (Vancouver, Canada) according to the manufacturers’
instructions. Enriched purified CD4" or CD8" T cells were then stained with a combination of
antibodies to CD45RA-FITC, CD45R0O-, CD4-PE, CD8-PercpCy5.5, CD56-APC for 30 min at 4°C and

590 subsequently sorted into naive or memory CD4* or CD8* T cell subpopulations using the Cell Sorter
SHB800S (Sony Biotechnology, Inc., San Jose, CA). Cell purity was consistently > 99 %. Purified naive
or memory CD4* or CD8* T cells were activated for indicated time points in 48-well culture plates
(Greiner, Monroe, NC) at 2.5 — 3.0 x 10° cells/well in media containing 25 U/ml recombinant human
IL-2 in an incubator at 37°C and 5 % CO2. Plate bound anti-CD3 and anti-CD28 were used to

595  stimulate CD4* (2ug/ml both), and CD8* (0.25 and 2 ug/ml, respectively) T cells.

Bone marrow samples
Human bone marrow aspirates were obtained from healthy volunteers after informed consent in
accordance with the Declaration of Helsinki, under an Institutional Review Board-approved clinical
600 protocol (NCT00442195). Mononuclear cells were separated using Ficoll-Hypaque density gradient
centrifugation (MP Biomedicals) and stored in CryoStor CS5 freezing medium (Biolife Solutions)
under liquid nitrogen vapor phase until use. For analysis, cells were thawed in PBS supplemented
with 2mM EDTA, 0.5% HSA (Baxter Healthcare Corporation), 10 units/mL DNase (Genentech, Inc.)
and 2.5mM MgClo.
605
Mice
Both wild-type and IFNAR1”- mice were on a C57BL/6 background, with IFNAR1-- mice previously
described in (REF). Splenic single cell suspensions were generated, and red blood cells lysed using
ACK lysis buffer (Life Technologies). CD4* T cells were isolated by negative selection using the Stem
610  Cell Technologies EasySep Mouse CD4* T Cell Isolation Kit (Tukwila, WA), resulting in a CD4* purity
of 95-98%, and a CD3" purity of ~99%. CD4* T cells were then plated at 180,000 cells per well in a
96-well plate and activated with plate-bound anti-CD3 (2ug/ml) and soluble anti-CD28 (1ug/ml) for the

indicated time before harvesting and staining with near-IR fluorescent reactive dye (Invitrogen).

615  Flow cytometry and cell sorting
Cells were harvested after stimulation and viability of cells post activation was measured using the
LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit (Thermo Fisher Scientific). Surface staining of

antigen was performed at 4°C for 20 minutes. For intracellular antigens, cells were fixed and
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permeabilized using the FOXP3/Transcription factor staining kit (eBioscience), and incubated with the
620  appropriate antibody for 1 hour at 4°C. Acquisition of cells was performed using the BD
FACSCantoTM Il Flow Cytometer and subsequent analysis was performed using FlowJo (v9 or v10).
The clone and dilution of antibodies used for flow cytometry were as follows: CD4-Pacific Blue
(Biolegend, OKT4, 1:200), CD69-APC (Biolegend, FN50, 1:200), CD45RA-APC (Biolegend, HI100,
1:200), CD45RO-FITC (Biolegend, UCHL1, 1:200), DEFA1 (R&D Systems, 2ug/ml), anti-sheep 1gG-
625 NL557 (R&D Systems, 1:500). IFNy expression was analyzed using the IFN-y Secretion Assay (PE,

Miltenyi Biotec) following manufacturers instruction.

Library sequencing and preprocessing steps for the single cell transcriptomics data

We prepared single cell transcriptome libraries using the 10xGenomics Chromium Single Cell v3 kit,
630 in accordance with the company’s manual. Subsequently, the single cell libraries were sequenced by

the NovaSeq 6000 sequencing system (lllumina, Inc., San Diego, CA, USA) with reads per cell

targeted to be at a mean of 50,000 reads for each sample sequenced. Initial quality control was

performed on the resulting scRNAseq data from each sample using Cell Ranger (Version 2.1.0). All

data processing parameters and scripts used for processing all samples can be found at

635 https://github.com/jackbibby1/scpa_paper. Briefly, we excluded any cells with > 10% of reads

mapping to mitochondrial genes, and filtered cells based on number of genes expressed. Filtered
count matrices were then normalized by total UMI counts, multiplied by 10,000 and transformed to
natural log space. The top 2000 variable features were determined based on the variance stabilizing
transformation function (FindVariableFeatures) by Seurat with default parameters. Any cycle genes

640  were removed from the variable features list to reduce cell-cycle associated variation, prior to
downstream analysis. For each sorted T cell population, samples were integrated across time points
using canonical correlation analysis (CCA), resulting in four integrated datasets. For example, naive
CD4* T cells at 0, 12, and 24 hours were integrated, followed by memory CD4* T cells, and so
on for CD8* T cells. Variants arising from cell cycle phases and the percentage of mitochondrial

645  genes were regressed using by the ScaleData function in Seurat. Principal component analysis (PCA)
was then performed, and the top 30 Principal components (PCs) were included in a Uniform Manifold
Approximation and Projection (UMAP) dimensionality reduction. Clusters were identified by canonical
marker genes on a shared nearest neighbor (SNN) modularity graph using the top 30 PCs and the
original Louvain algorithm. Markers for each population were calculated using the FindAlIMarkers()

650 function within Seurat, with parameters: min.pct = 0.1, logfc.threshold = 0.25, only.pos = T. Definition
of each cell population was done using literature associated markers, and all markers for each

population can be found in Supplementary Table 1.

Pathway analysis using SCPA
655 Scripts for replicating all figures in the paper can be found at

https://github.com/jackbibby1/scpa_paper. For pathway analysis, log1p normalized data was

extracted from each relevant population and pathways were pulled from the molecular signatures
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database using the msigdbr package within R. Comparisons were then done using the

compare_pathways() function within SCPA using default parameters. Data processing and
660 visualization was then performed using Seurat (Satija et al., 2015), ggplot2 (Wickham, 2016),

ComplexHeatmap (Gu et al., 2016), and dyno (Saelens et al., 2019) R packages.

Benchmarking pathway analysis methods
3 publicly available datasets were used for comparisons, under the accession numbers: GSE122031,
665 GSE148729, and GSE156760 (containing 2 datasets used here). For Enrichr and DAVID, data were
split between mock or virally infected cells, and differentially expressed genes were calculated using
the FindMarkers() function within Seurat, using a logFC threshold of 0.4. Differentially expressed
genes were then input into DAVID and Enrichr, and results were filtered to include GO Biological
Process gene sets. For SCPA and GSEA, data were split by between mock and virally infected cells,
670 cell numbers were downsampled to 500 cells per sample, and then expression files were directly
used downstream. GSEA was ran using default parameters: ‘phenotype’ permutation, ‘weighted’
enrichment statistic, Signal2Noise ranking metric, and gene sets with < 15 genes or > 500 genes
were excluded. SCPA was ran using default parameters, excluding gene sets with < 15 genes or >
500 genes. Viral gene sets were defined by any pathways containing the string “VIR” in their pathway
675  name, within the GO Biological Process gene set list, and all viral pathways can be found in

Supplementary Table 4.

Trajectory inference analysis and pseudotime SCPA
All scripts for the trajectory inference analysis can be found at

680  https://github.com/jackbibby1/scpa_paper. The R package dyno was used to calculate trajectories

and discrete nodes across pseudotime. Briefly, the top 1000 most variable genes were taken from
naive T cells across 0, 12, and 24 hours (after excluding regulatory T cells) and used in the
downstream analysis. The naive CD4* T cell trajectory was then calculated using the infer_trajectory()
function within dyno, using the ti_slingshot() method. Milestones along the trajectory were calculated
685 using the group_onto_nearest_milestones function within dyno. After assignment, cells were then
extracted based on their milestone identifier, and these discrete populations were subsequently used
for input into SCPA. A list of manually curated 243 metabolic pathways were used for the pseudotime

pathway analysis, which can be found in Supplementary Table 3.

690 Graph-based test used in SCPA
Given K multivariate probability distributions F1, F2, ... , Fk, the K-sample problem is to test the
hypotheses
Ho: Fi=--=Fg versus Hi:Fs# F:, forsomel<s<t<K
based on collections of independent observations — y;, x5, ... , xx — coming from F4,F2,...,Fk

695  respectively. In the single cell setting, F’s correspond to the tissue samples, and y’s denote the
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number of cells sequenced for a given condition K. For example, in this work we are interested in
comparing the multivariate distribution of a gene set (corresponding to a particular pathway)
across K=3 conditions, F1 (Oh), F2 (12h) and F3 (24h), for a given cell type.

700  Several tests exist for nonparametric testing in the 2-sample framework that are based on the
idea of constructing graphs on the pooled sample y; U x, U ... U g, such as nearest neighbor
graphs (Henze, 1988; Schilling, 1986), minimal spanning trees (Friedman and Rafsky, 1979) or
graphs based on optimal non-bipartite matching (Rosenbaum, 2005). Inspired by the latter
method and ideas developed in another recent paper (Chen and Friedman, 2017), we developed

705 a universally consistent and distribution-free multisample test, i.e. the null distribution of the test
statistic does not depend on the distribution of the data (Mukherjee et al., 2020). Briefly, our
novel multisample crossmatch test, based on the Mahalanobis disparity, begins by pooling the
samples y;,x2, .- , Xk corresponding to the distributions F1,F2,...,Fk (respectively) together. We
then construct a minimum non-bipartite matching graph on the pooled sample, i.e., a matching

710 on{x; U x, U ... Uk}, which minimizes the sum of the Euclidean lengths of all the edges. For
each 1 <s <t <K, the (s,t)-cross count (ay,), is then defined as the number of matched edges in
the pooled sample {y; U x, U ... U xx} with one endpoint in ys and the other endpoint in y:. The

test statistic is then defined as:
S= (A— By, 4) Covi! (4)(A~Ey, 4),

K
715  where A:= (ag) 1<5<t<k € R(z) denotes the vector of cross-counts, and Ey A and
Covy! (A) denote the null mean vector and the null covariance matrix of 4, respectively.

S is distribution free under HO, and exact expressions for the entries of A can be computed from
a given dataset. Instead of using the exact null distribution of S its weak limit, the chi-squared
720  distribution with (%) degrees of freedom can be used for computing the test cut-off. Since S is a
measure of distance between Ey A and A4, the null hypothesis is rejected when S is “sufficiently
large”, i.e. exceeds a certain null hypothesis p-value cut-off. Additional theoretical details are

described and proved in the associated statistical work {Mukherjee, 2020 #6}.

725  The S test statistic above is used to construct the Q value used in this paper and in scpa for
ranking of pathways by degree of distributional change. First, the p-value p of S is computed as
p=1=F(S),
where F is the x? distribution with (¥) degrees of freedom. The @ value is then the

transformation

730 Q =+ —logp.

qRT-PCR
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CD4* T cells were either left unstimulated or stimulated for 12 or 24 hours with antiCD3 + anti-
CD28 (both 2ug/ml). Cells were harvested, washed in PBS, lysed in TRIzol (Ambion), and stored
at -80°C until used. RNA was extracted using the Direct-zol RNA MiniPrep kit (Zymo research),
and subsequent reverse transcription was performed with 200ng of RNA using the High-Capacity
RNA-to-cDNA kit (applied biosystems). qPCR analysis was then performed using the TagMan
Universal Master Mix Il, no UNG (applied biosystems), with FAM labelled primers for
IFNA1/13/21 (Hs04190680_gH), IFNA4 (Hs01681284_sH), IFNA7 (Hs01652729_s1), IFNA17
(Hs00819693_sH), and a VIC labelled primer for RPL7 (Hs02596927 _g1) following

manufacturer’s instructions.

CRISPR-Cas9 deletion of IFNa

crRNA selection: Due to potential for gene redundancy, we designed a total of four crRNA targeting
four IFNA genes using the Benchling (www.benchling.com) online platform (See Table 1). In order to
target as many IFNA genes as possible, we considered using crRNA with a relatively high on-target
potency against other IFNA genes, explaining the low off-target score. crRNA suspected to have off-
target effects directed against genes other than /IFNA family members were excluded. As a result, we
targeted 4 main IFNA genes, but this includes overlap with all IFNA genes apart from IFNA8. crRNAs
were ordered from Integrated DNA Technologies (www.idtdna.com/CRISPR-Cas9) in their proprietary
Alt-R format.

Target crRNA sequence On-target | Off-target | Off-target potential

IFNA1 GTTCGGTGCAGAATTTGTCT 62.6 42.4 IFNA2, IFNA13, IFNA16

IFNA4 TGATTTCGGATTCCCCGAGG | 63.1 39.9 IFNA7, IFNA10, IFNA16, IFNA21

IFNA5 CCTGGAAGCCTGTATGATGC | 59.0 40.4 IFNA1, IFNAB, IFNA13

IFNA17 | TGTGATACAGGAGGTTGGGA | 60.6 21.9 IFNA4, IFNA7, IFNA10, IFNA14, IFNA16, IFNA21

Table1. crRNA design including on and off target scores generated by Benchling

Preparation of cells: Human CD4" cells were isolated from buffy coats using EasySep™ Human CD4*
T Cell Isolation Kit (Stemcell Tech, # 17952), resuspended with complete RPMI (cRPMI) media
(supplemented with P/S, L-Glu, 10% FCS) and kept on ice until needed.

Preparation of crRNA—tracrRNA duplex: Each crRNA and tracrRNA (IDT, #1072534) were
reconstituted at a final concentration of 160uM using nuclease-free duplex buffer (IDT, #1072570).
For one electroporation, 1uL of crRNA was mixed to 1uL of tracrRNA in a sterile, RNAse-free PCR
tube. Oligos were annealed at 95°C for 5 min in PCR thermocycler and slowly cooled down to 4°C.
Precomplexing of Cas9/RNP: In the same PCR tube, 1.2uL of Cas9 nuclease (IDT, #1081059) was
added, and the mixture was incubated 15 min at 37°C to form RNP complexes. The four RNP
complexes against IFNA1, IFNA4, IFNA5 and IFNA17 were pooled and further kept on ice until
needed.

22


https://doi.org/10.1101/2022.02.07.478807
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.07.478807; this version posted February 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Nucleofection: Up to 10 x 10° of freshly isolated human CD4* T cells were used per electroporation.
Cells were transferred in 1.5 mL Eppendorf tubes and washed twice with PBS 1X (Gibco) to remove
all trace of FCS. Immediately before electroporation, cells were resuspended with 10uL of primary cell

770 nucleofection solution (P3 primary Cell 4D-Nucleofector X kit S (Lonza, # V4XP-3032), and mixed
with RNP complexes. The mixture cellsfRNP complex was then transferred into electroporation strip.
Within 5 minutes, cells were electroporated using “EH-100" pulse on 4D-nucleofectore core unit
(Lonza). Immediately after electroporation, 100 uL of pre-heated cRPMI + 20 Ul/mL IL-2 was carefully
added directly into each well of the nucleofection strip, and the strip was placed in tissue culture

775 incubator for 15-30 min to allow for cell recovery. Cells were then transferred into a culture plate,
resuspended at 2 x 108 / mL in cRPMI + 20 Ul/mL IL-2 and incubated at 37°C for 3 days before

stimulation.

T7 endonuclease assay

780  DNA extraction: DNA was extracted from control-RNP and IFNA-targeted cells using Quick-DNATM
Microprep kit (Zymo Research, # D3021), and DNA concentration was calculated on Nanodrop OneC
(Thermofisher).

PCR amplification: PCR primers were designed on Primer designing tool (NCBI platform) and
purchased from IDT. Primer sequences were as follows: fwd: TGATCTCCCTGAGACCCACA rev:

785 CAGGGGTGAGAGTCTTTGAAATG. PCR amplification was performed using the Q5® Hot Start
High-Fidelity 2X Master Mix (NEB, M0494) following the protocol provided by the manufacturer. The
hybridization temperature for each forward/reverse couple was calculated using the NEB Tm
Calculator. PCR ampilification products were later purified using DNA Clean & ConcentratorTM -5
(Zymo Research, # D4004) following the protocol provided by the manufacturer.

790  T7 endonuclease | digestion: 200 ng of purified DNA amplicons were annealed with 1X NEBuffer 2
(NEB, # B7002S) and total volume was brought up to 19 uL. Hybridization step was performed
following manufacturer’s protocol on thermocycler machine. Upon hybridization step completion,
mismatch double strand DNA was detected by adding 1 uL of T7 endonuclease | in the mixture and
incubated 15 min at 37°C. The reaction was stopped by adding 1.5 uL of 0.25 M EDTA. The digested

795  product was diluted 1:5 in molecular biology grade water and migrated on E-Gel™ EX Agarose Gels,
2% (Invitrogen, # G401002) for 10 minutes. Bands were revealed with ChemiDocTM Imaging System
(BIO-RAD) using SYBR safe filter.

Gene modification was estimated using the following formula:
% gene modification = 100 x (1 - (1 - fraction cleaved)"?)

800
Measurement of T cell supernatants
Supernatants from cultured T cells were harvested and stored at -20°C until analysis. Arachidonic
acid measurement was done using the human arachidonic acid ELISA kit (Novus biologicals)

following manufacturer’s instructions. Measurement of cytokines was done using the legendplex
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805 inflammation panel mix and match (IFNy, TNFa, IL-10, Biolegend) or VeriKine-HS Human IFNq. all

subtype TCM ELISA (PLB assay science), following manufacturer’s instructions.

OCR and ECAR Measurements
For analysis of OCR (in pMoles/min) and ECAR (in mpH/min), the Seahorse XF-96 metabolic
810  extracellular flux analyzer was used (Seahorse Bioscience, North Billerica, MA). Naive or memory
CD4* or CD8* T cells were resuspended in serum-free unbuffered RPMI-1640 medium (R1383;
Sigma Aldrich) post activation and were plated onto Seahorse cell plates at 4 x 105 cells per well
coated with Cell-Tak (CB-40241; Corning, Reinach, Switzerland) to enhance T cell attachment.
Perturbation profiling of the use of metabolic pathways by T cells was achieved by the addition of
815 oligomycin (04876; 1 uM), Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP, C2920; 2
pM) and rotenone (R8875; 1 uM - all from Sigma Aldrich, St. Louis, MO). Metabolic parameters were

then calculated based on the following formulas:

(1) basal respiration =[OCR(basal-nc)] — [OCR(rotenone)]
820  (2) ATP coupled respiration = [OCR(basal-nc)] — [OCR(oligomycin)]
(3) maximal respiratory capacity = [OCR(peak-FCCP)] — [OCR(rotenone)]

Data availability

All single cell data generated in the paper is available at [upload data]. We have included all raw files,
825  and processed files containing count tables and annotation information for each sorted population,

and processed R objects for each population. Single cell data using tissue derived T cells was taken

from GSE126030. Microarray expression data from bone marrow T cells was taken from GSE50677.

Datasets used in benchmarking was taken from GSE122031, GSE148729, and GSE156760.

830  Code availability
Code used to generate all figures in the paper can be found at
https://github.com/jackbibby1/scpa paper. Tutorials and reference documentation for SCPA can be
found at https://jackbibby1.github.io/SCPA
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Supplementary Figure 1. Flow cytometry gating and purity of T cell populations. T cells were gated as follows: FSC-A vs
SSC-A for cells > FSC-W vs FSC-A for single cells > CD4* vs CD8* for T cell populations > CD45RA* vs CD45R0O* for naive and memory
populations. Purity was then assessed post sort, showing high purity of T cell populations.
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Supplementary Figure 2. Pseudotime analysis of naive CD4* and CD8* T cell activation

(A) Pseudotime trajectory of naive CD4* and CD8* T cells modelled using slingshot.

(B) Heatmap representation of defining genes across pseudotime. Bars above the heatmap represent pseudotime value and cell identities
taken from the UMAP: blue = resting, gray = intermediate, red = activated.
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Supplementary Figure 3. GZM and HLA expression in GZM* CD8* T cells
Relative expression of GZM and HLA family member genes in memory CD8* T cell populations
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Supplementary Figure 4. Global analysis of pathways upon T cell activation

(A) Quals for each pathway across T cell activation in naive and memory CD4* and CD8* T cell populations. The four broad cell types were
split across 0, 12, and 24 time points, and SCPA was used to compare pathway activity.
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Supplementary Figure 5. CRISPR mediated knockdown of IFNA in CD4* T cells

(A) Mean pathway expression change using genes from the gene set ‘Reactome interferon signaling’ in unstimulated versus 24 hour
stimulated CD4* T cell subtypes.

(B) IFNG expression across naive CD4* T cell populations

(C) IFNy expression in naive (CD45RA*) and memory (CD45RO*) T cells

(D) Qvals of type 1 interferon signatures (red dots) in T cells after activation

(E) Boxplots show expression of all IFNA genes detected in each public dataset. Data were taken from each indicated repository,
normalized, and filtered to show all IFNA genes present.

(F) IFNa production by CD4+ T cells upon activation. CD4+ T cells were stimulated using anti CD3 + anti CD28 for the indicated time, and
cell supernatants were measured for the presence of IFNa

(G) Outline of CRISPR protocol. Cells were stimulated using 2ug/ml anti-CD3 + anti-CD28

(H) T7 assay for analysis of CRISPR efficiency. WT band of IFNA is expected at 589, with fragments in the CRISPR-Cas9 edited samples
expected to be at: 346, 302, 284, and 240. L = ladder, Scr = scrambled, IFN = IFNA1 CRISPR-Cas9 targeted deletion

(I) Average expression of STAT1 targets over naive T cell activation, calculated through mean gene expression per cell. STAT1 targets
were taken from the STAT1_01, STAT1_02, and STAT1_03 gene sets available on MSigDB.

(J) Expression of IFNAR1 and IFNAR2 across T cell subsets. Subsets correspond to those highlighted in the UMAP in Figure 2B.
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Supplementary Figure 6. Metabolic analysis of CD4* T cell activation
(A) Seahorse analysis of naive (left panel) and memory (right panel) CD4+ T cells. Cells were activated with anti-CD3 and anti-CD28 for the
indicated amount of time, after which, oxygen consumption rate (OCR) was measured. OM = oligomycin, FCPP = carbonyl cyanide-p-

trifluoromethoxyphenyl-hydrazon, ROT = rotenone.

(B) Seahorse analysis of naive (left panel) and memory (right panel) CD4+ T cells. . Cells were activated with anti-CD3 and anti-CD28 for the

indicated amount of time, after which, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) was measured.
(C) Quvals for metabolic pathways upon naive and memory CD4+ T cell activation. SCPA was used to assess pathway distribution changes

in naive and memory CD4+ T cells over 0 and 24 hours of stimulation.

(D) Volcano plot showing Qval output from SCPA plotted against pathway enrichment at 12 and 24 hours post stimulation. Black points
show non significant pathways, gray points show significant pathways with no enrichment, and blue points show significant pathways that

also show enrichment.

(E) Gene set enrichment analysis of metabolic pathways in naive CD4+ T cells. Metabolic pathways in Ohr resting CD4+ T cells were
compared to 12hr (left panel) and 24hr (right panel) stimulated CD4+ T cells, with arachidonic acid metabolism highlighted in red.

(F) Number of significantly perturbed metabolic pathways in resting naive cells versus resting memory population indicated. Significance
was classed as a Qval > 5. Percentages indicate the proportion of significant pathways
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Supplementary Figure 7. Characterizing T cells across tissue sites
(A) Proportional frequencies of T cell lineages across tissue sites

(B) Heatmap of ribosomal gene family member expression across tissue sites in CD8* Tem cells
(C) Expression of prostaglandin family genes across tissue sites
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