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Summary 
Next generation sequencing technologies have revolutionized the study of T cell biology, capturing 

previously unrecognized diversity in cellular states and functions. Pathway analysis is a key analytical 

stage in the interpretation of such transcriptomic data, providing a powerful method for detecting 

alterations in important biological processes. Current pathway analysis tools are built on models 30 
developed for bulk-RNA sequencing, limiting their effectiveness when applied to more complex single 

cell RNA-sequencing (scRNA-seq) datasets. We recently developed a sensitive and distribution-free 

statistical framework for multisample distribution testing, which we implement here in the open-source 

R package Single Cell Pathway Analysis (SCPA). After demonstrating the effectiveness of SCPA over 

commonly used methods, we generate a scRNA-seq T cell dataset and characterize pathway activity 35 
over early cellular activation and between T cell populations. This revealed unexpected regulatory 

pathways in T cells, such as an intrinsic type I interferon system regulating T cell survival and a 

reliance on arachidonic acid metabolism throughout T cell activation. A systems level characterization 

of pathway activity in T cells across multiple human tissues also revealed alpha defensin expression 

as a hallmark of bone marrow derived T cells. Overall, our work here provides a widely applicable tool 40 
for single cell pathway analysis, and highlights unexpected regulatory mechanisms of T cells using a 

novel T cell dataset. 
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Introduction 
Dysregulation of T cell responses is a hallmark of a large spectrum human disorders, including 

autoimmunity, cancer and infectious diseases (Kumar et al., 2018). Dissecting the molecular events 

that underly T cell activation, lineage specification and effector function is therefore paramount to the 

therapeutic targeting of T cell-mediated disease. The advent of transcriptomics, and particularly single 55 
cell RNA sequencing (scRNA-seq), has provided the opportunity to link large transcriptional networks 

to specific cellular activation states and biological functions (Nayak and Hasija, 2021). Although gene 

level changes upon T cell activation and/or lineage induction have been well studied, systematic 

pathway level analyses of T cell populations are lacking. Given the power of pathway analysis to 

uncover specific biological processes in sequencing data, a systems level analysis of pathway activity 60 
applied to many T cell lineages and across stimulation conditions provides the opportunity to reveal 

novel and key regulatory pathways. 

 

Many approaches have been developed that attempt to untangle the complexity of scRNA-seq data, 

such as methods for integration (Hie et al., 2019; Stuart et al., 2019; Tran et al., 2020; Welch et al., 65 
2019), trajectory inference (Saelens et al., 2019; Street et al., 2018; Wolf et al., 2019), and 

dimensionality reduction (McInnes et al., 2008; van der Maaten and Hinton, 2008). This being said, 

biological pathway analysis methods are uniquely underdeveloped. Current approaches rely on 

models from bulk RNA-sequencing, wherein the central focus is on the quantification of signals from 

individual genes to generate an enrichment or overrepresentation score (Huang da et al., 2009; 70 
Kuleshov et al., 2016; Ma et al., 2020; Subramanian et al., 2005). These methods are based on the 

assumption that enrichment of a given gene set is the most meaningful statistic when understanding 

pathway importance. However, these approaches significantly under-utilize the information in the 

multivariate distribution that a pathway can exhibit in single cell data. Moreover, conventional pathway 

analysis methods rely on the input of a filtered list of differentially expressed genes (e.g. DAVID, 75 
Enrichr) and/or are all currently limited to two-sample comparisons (e.g. GSEA). This means that not 

only are large quantities of potentially relevant data discarded or ignored, but also tracking pathways 

over more complex experimental designs, such as multiple time points, is difficult to achieve in a 

robust way. Therefore, methods that can utilize the multivariate complexity and increasingly 

multisample design of scRNA-seq studies provide the potential for a more nuanced understanding of 80 
gene set behavior. 

  

Here we present Single Cell Pathway Analysis (SCPA), an open-source R package for pathway 

analysis, and apply it to characterize pathway activity over early T cell activation. SCPA is built 

around a graph-based nonparametric statistical model (Mukherjee et al., 2020) that aims to fully 85 
capture the multivariate complexity of single cell data without imposing parametric assumptions on 

the gene expression distribution. This represents a fundamentally different approach to pathway 

analysis, whereby gene set activity or perturbation is primarily understood as a change in the 

multivariate distribution of a given pathway. To gain insights into gene set dynamics underlying early 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.07.478807doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.07.478807
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

T cell activation and differentiation, we generate a T cell scRNA-seq dataset across early activation 90 
and apply SCPA, uncovering unexpected pathway signatures across time and between T cell 

populations. This includes revealing an intrinsic IFND pathway that maintains T cell survival upon 

stimulation, and demonstrating T cell reliance on arachidonic acid metabolism for effective cellular 

activation and cytokine production. We also perform a systems level characterization of pathway 

activity across multiple tissue sites to reveal tissue specific features of T cells. In carrying out this 95 
analysis, we highlight multiple features of SCPA, including classical two-sample comparisons, 

multisample pathway analysis, and tracking gene set perturbations over a pseudotime trajectory. 

Finally, we demonstrate the scalability of SCPA and its ability to comprehensively characterize 

pathway level changes across multiple conditions. Overall, we present a user-friendly and highly 

sensitive tool for pathway analysis in scRNA-seq data along with several new insights into the gene 100 
set changes driving early human T cell activation. All documentation and tutorials for SCPA can be 

found at https://jackbibby1.github.io/SCPA.   
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Results 

Single Cell Pathway Analysis (SCPA) outperforms current pathway analysis tools 105 
We recently developed a nonparametric graph-based statistical framework (Mukherjee et al., 2020) 

for comparing multivariate distributions in high dimensional data. Here we implement this framework 

in Single Cell Pathway Analysis (SCPA); an open-source R package for the analysis of pathway 

activity in scRNA-seq data. In brief, this statistic assesses the multivariate, joint distribution of a set of 

genes belonging to a given pathway to infer whether this pathway is differentially regulated across 110 
conditions (see methods). The stepwise outline for SCPA is shown in Figure 1A. 

 

SCPA takes total normalized count matrices from two or more conditions (Figure 1Ai), preserving the 

complete dataset. We extract pathway matrices for any given number of pathways, based on 

manually curated or existing annotation databases (Figure 1Aii). Next, based on the joint distribution 115 
for all the genes of a given pathway, cells are paired based on optimal matching in the 

multidimensional space (Figure 1Aiii), where the number of dimensions is derived from the number of 

genes. Whether cell pairings occur between cells belonging to the same or different condition 

determines whether that pathway is differentially distributed or not. For instance, a high number of 

within-sample matches for a given condition suggests differential distribution of a pathway (left side 120 
Figure 1Aiii). Conversely, many inter-sample matches would suggest that a pathway is not 

differentially distributed across the groups or conditions (right side Figure 1Aiii). This analysis 

provides a statistic, here termed the Q value, which measures the size of distribution change for a 

given pathway and can be used for the ranking of pathways in order of biological relevance (Figure 

1Aiv). This method therefore provides a fundamentally different definition of pathway activity when 125 
compared to current tools that typically rely on enrichment of overrepresentation of genes in a given 

pathway. By design, this method is robust to outliers and is shift- and scale-invariant, i.e. the Q value 

does not change if the expression values of all genes in a given pathway were scaled up or shifted by 

a constant factor. 

 130 
Before using SCPA to analyze T cell biology, we first benchmarked the sensitivity and accuracy of 

SCPA against commonly used pathway analysis tools; notably DAVID and Enrichr that use 

differentially expressed genes as an input, and GSEA that uses total count matrices as an input 

(Figure 1B). We analyzed four publicly available scRNA-seq datasets generated from mock or virally 

infected – either influenza or SARS-CoV – cell lines. This allowed us to define positive controls for 135 
expected virus-induced gene signatures in a dataset, and then quantify the ability of different pathway 

analysis methods to detect these expected viral signatures. For the analysis, we used the GO 

Biological Process gene sets, given that they contain a large range of cellular pathways, and within 

this, a large range of viral signatures (see methods).  

 140 
We first quantified how many viral related pathways were detected as differentially regulated using 

each method. We found that SCPA outperformed analytical tools that utilize lists of differentially 
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Figure 1. SCPA provides a sensitive and accurate reflection of pathway activity
(A) Overview of the methodology implemented in the Single Cell Pathway Analysis (SCPA) R package. SCPA takes count matrices generated from the desired cell 
populations, generates nested matrices based on the genes of a pathway, and then performs graph based multivariate distribution analysis to assess pathway 
perturbation. The Q value output produced by SCPA can then be visualized for interpretation.
(B) Overview of pathway analysis benchmarking. Briefly, publicly available scRNAseq data (GSE122031, GSE148729, GSE156760) that included cell lines infected 
with viruses were collated. Pathway analysis was then conducted comparing mock versus infected cell lines with either DAVID, Enrichr, GSEA, or SCPA, using ‘GO 
Biological Process’ gene sets. The number of significant viral pathways, and how many viral pathways are present in the top 100 pathways, were then compared 
across methods.
(C) The number of viral pathways reaching significance when comparing mock to virally infected cells, across four publicly available datasets using the indicated 
method.
(D) The number of viral pathways that rank in the top 100 pathways. Dot plot shows the rank of viral pathways relative to all GO Biological Process pathways 
across methods. The number below each method represents how many viral pathways were identified in the top 100 as mean ± SD. All viral pathways are shown in 
red, and non-viral pathways are shown in grey.
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expressed genes, detecting significantly more viral signatures in virally infected cells than DAVID and 

Enrichr. GSEA and SCPA were able to identify larger numbers of significant viral signatures, although 

SCPA significantly outperformed GSEA, identifying ~30% more significant viral signatures (Figure 145 
1C), demonstrating that SCPA is a highly sensitive method for detecting pathway perturbations in 

scRNA-seq data. In addition to quantifying the number of significantly altered viral pathways, we also 

asked where these viral pathways rank relative to other differentially regulated pathways in the 

analysis. Here, as a measure of methodological accuracy, we expected that viral pathways should 

rank highly, given that this was the only treatment variable across the two conditions (mock vs 150 
infected). To measure this, we assessed how many viral pathways were present within the top 100 

significant pathways. Here, SCPA consistently identified a greater number of viral pathways present 

within the top 100 pathways relative to other methods (Figure 1D); on average, SCPA identified 12 

viral pathways in the top 100, compared to 9.5, 8, and 4.5 for GSEA, EnrichR, and DAVID 

respectively. 155 
 

In sum, we provide a novel package for pathway analysis that is specifically powered to detect 

pathway perturbations in single cell data, which is both highly sensitive and accurate. SCPA was able 

to detect more significant viral pathways, and these pathways were also more likely to be present in 

the top 100 significant pathways when compared to other methods. 160 
 

Single cell sequencing on sorted and stimulated T cell populations 
We next utilized a systems level approach with SCPA to understand early signals required for the 

generation of effective human CD4+ and CD8+ T cell responses. We first purified human naïve and 

memory CD4+ and CD8+ T cells via magnetic bead enrichment and subsequent FACS sorting, and 165 
cells were then either left unstimulated, or stimulated for 12 or 24 hours via anti-CD3 and anti-CD28 

antibodies (Supplementary Figure 1). scRNA-seq was then performed on each T cell population, 

capturing a total of over 40,000 live cells (Figure 2A). 

 

Within the scRNA-seq data generated here, we identified well defined T cell populations, both in the 170 
resting and activated states. All samples, populations, and time points identified in the sequencing are 

depicted in the UMAP projections (Figure 2B), proportional fractions of cell populations are shown in 

Figure 2C, and an unbiased selection of top 7 markers (as sorted by false discovery rate) from each 

cluster are shown in the corresponding dotplots (Figure 2D). All markers for each population can also 

be found in Supplementary Table 1. 175 
 

Unsupervised clustering identified between 4 to 7 sub-populations within the different samples, which 

are indicated in the UMAP projections (Figures 2B-D). In the naïve populations, both CD4+ and CD8+ 

T cells contained a relatively homogenous resting population, expressing high levels of quiescence 

markers (IL7R, KLF2, and PIK3IP1). We also identified natural regulatory T cells (Tregs, expressing 180 
FOXP3, IL2RA, and CTLA4) and T effector memory cells re-expressing CD45RA (TEMRA, 
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Figure 2. Single cell sequencing on sorted and stimulated T cell populations
(A) Overview of experimental design for generation of the T cell scRNA-seq resource. CD4+ and CD8+ T cells were magnetically isolated from the peripheral blood 
in parallel, stained for CD45RA or CD45RO, FACS sorted to distinguish naïve from memory T cells, and left unstimulated, or stimulated with anti-CD3 and anti-
CD28 for either 12 or 24 hours. Cells then underwent single cell sequencing and subsequent downstream analysis.
(B) UMAP representations of T cell subtypes identified in the peripheral blood. Data were integrated separately across time points for each of the four cell types e.g. 
integration across naïve CD4+ T cells at 0, 12, 24 hours. Conditions were then split by time point for visualization.
(C) Proportions of each identified cell type across each condition. Colors for bars are matched with colors in UMAP representations.
(D) Dot plot representations of the markers from each cell cluster. Marker identification was done by combining data across stimulation time points for each cell 
type. An unbiased selection of markers was then generated by taking the top 7 genes sorted by false discovery rate from each population.
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expressing CCL3, CCL4, GZMB, and IFNG) populations in the CD4+ and CD8+ samples, respectively. 

Naïve CD8+ T cells also included two small populations of unidentified cells. Upon stimulation, both 

CD4+ and CD8+ T cells generated two distinct populations corresponding to early and late phases of 

naïve T cell activation (left panels, Figure 2B). These data, in combination with trajectory inference 185 
modelling, showed that these activation phases included: 1) early expression of many guanylate-

binding proteins alongside IRF1 and IRF4, and 2) subsequent expression of several heat shock 

proteins, a high number of metabolic genes, and effector molecules such as TNFD (Supplementary 

Figure 2).  

 190 
As anticipated, circulating CD4+ and CD8+ T cell memory populations were less homogenous than 

circulating naive T cells, clustering into 6 and 7 sub-populations respectively. Clusters of effector cells 

were evident in resting and activated memory T cells. In memory CD4+ T cells, we identified T central 

memory (Tcm), T helper 1 (Th1), Th2, T cells with a high expression of CD69 and IL2 (here termed 

Teff), and Tregs, based on their canonical markers shown in Figure 2D. Tcm cells represented a large 195 
fraction (~65%) of resting memory T cells, expressing markers very similar to resting naïve 

populations (IL7R, KLF2, and TCF7). Similar to CD45RA+ Tregs, CD45RO+ Tregs expressed high 

levels of FOXP3, but also effector molecules such as IL32, HLA-DRB1, HLA-DRA, and the HLA class 

II molecule CD74. Upon activation of memory CD4+ T cells, we observed a large proportional 

expansion of Teff cells, expressing high levels of IL2 and CD69. In the differentiated effector 200 
populations, Th1 cells showed high expression of IFNG, IL10, CCL3, CCL4, and GZMB upon 

activation, whereas Th2 cells expressed high levels of IL3, IL4, IL5, IL9, IL10, and GATA3. In the 

memory CD8+ T cell compartment, we identified Tcm cells expressing quiescence markers such as 

KLF2. Similar to CD4+ T cells, we identified effector populations including Tem1/2 cells expressing 

GZM and LT genes, Type 1 CD8+ T cells (Tc1) expressing XCL1, XCL2, IFNG, CCL3, and CCL4, and 205 
Tc2 cells expressing IL3, IL4, IL5, IL9, and IL13. We also identified a population (here termed GZM+) 

that expressed high levels of all GZM genes (Supplementary Figure 3), and also multiple HLA 

molecules. Finally, and similar to memory CD4+ T cells, we detected a cell population dominated by 

proliferation markers at 24 hours post stimulation. 

 210 
Overall, this analysis identifies well resolved T cell populations, with cell types being stratified by 

canonical markers. These data therefore provided a resource for characterization of pathway level 

transcriptomic signatures through early activation, and across a range of human CD4+ and CD8+ T 

cell populations, as detailed below. 

 215 
Intrinsic IFND signaling as a regulator of T cell survival 

We next applied SCPA to map gene set dynamics throughout T cell activation. To gain a global view 

of pathway activity within each of the four major T cell populations, we first used the multisample 

capability of SCPA – a technique not possible using current methods – to characterize pathway 

distributions over the three time points simultaneously for each sorted population (0, 12, and 24 hours 220 
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Figure 3. Intrinsic IFNa signaling as a key regulator of T cell survival
(A) Schematic representation of the SCPA analysis conducted across time points for each sorted T cell population. Cells were split across time and SCPA was used to 
conduct a multisample analysis across the three time points simultaneously.
(B) Heatmap representation of pathway perturbations generated from the comparisons outlined in (A), with classifications of core pathways into broad categories. The 
pathways from the topmost cluster (k-means clustering) were manually categorized into broad pathway classes, and the frequency of each class is visualized in the 
bar plot.
(C) Boxplots representing the extent of distribution changes, per pathway, for all 1790 pathways across cell types and stimulation.
(D) Heatmap showing FDR values of specific cytokines within the ‘cytokine response’ class derived from core pathways. ‘General’ refers to cytokine response gene 
sets that do not mention a specific cytokine e.g. ‘cytokine signaling’.
(E) Ranking of all pathway Qvals in naïve CD4+ T cells across activation. Interferon (IFN) pathways are highlighted in red
(F) Heatmap representation of interferon response gene expression with genes taken from the ‘Reactome interferon signaling’ gene set.
(G) qPCR for IFNA genes in CD4+ T cells after stimulation with αCD3+ αCD28 for the indicated time with 0hr representing unstimulated cells. Data are relative to RPL7 
as an internal reference, calculated as 2-Δct. Ct values represent the mean over 4 donors ± sd in the 0hr condition
(H) IFNα measured in the supernatant of CD4+ T cells after stimulation with αCD3+ αCD28 for the indicated time. 0hr represents unstimulated cells, and red dotted line 
represents the detection limit
(I-J) CRISPR-cas9 mediated deletion of IFNα in CD4+ T cells, showing IFN editing efficiency in (I) and flow cytometry analysis of cell viability after IFNα knockdown in 
CD4+ T cells (J). CD4+ T cells were isolated, and CRISPR mediated knockdown of IFNα was performed. Cells were then stimulated with αCD3+ αCD28 for 24 hours 
before analysis by flow cytometry.
(K) Viability staining of splenic CD4+ T cells from wild type (WT) or Ifnar1-/- mice. CD4+ T cells were purified and stimulated with anti-CD3 + anti-CD28 for the indicated 
time before assessment of viability. Embedded panel shows representative live-dead staining taken from the 48hr time point, n = 3 mice per genotype
(L) Heatmap representation of STAT1 target gene expression over naïve CD4+ T cell activation. STAT1 targets, taken from the transcription factor targets available on 
MSigDB were plotted over a trajectory of naïve CD4+ T cell activation. Trajectory inference model calculated using slingshot is shown in supplementary figure 2A.
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for naïve CD4+, memory CD4+, naïve CD8+, and memory CD8+ populations, Figure 3A). We used a 

comprehensive gene set list that included all pathways from the Hallmark, Reactome, and KEGG 

databases from MSigDB, comprising 1790 pathways in total (Supplementary Table 2). Utilizing this 

gene set list, we identified a set of ‘core pathways¶ defined as common gene sets showing significant 

activity in response to stimulation across all cell types (Figure 3B). After categorizing these gene sets 225 
into broad classes, the most abundant pathway classes were, as expected, those involved in 

response to stimuli, including cell signaling, cell cycle, cytokine response, metabolism, and 

transcription (Figure 3B). In addition to this core signature, we also observed a cluster of pathways 

that typically showed greater activity in memory T cells versus naïve populations upon stimulation, 

such as unfolded protein response and autophagy (Supplementary Figure 4). Further, certain 230 
pathways showed little or no change in distribution upon activation, including pathways not expected 

to change, such as digestion (Supplementary Figure 4). Interestingly, across pathways, memory cells 

showed a larger magnitude of change in their pathway distribution upon activation, suggesting that 

memory populations undergo a more extensive remodeling of their transcriptional profile, per 

pathway, relative to naïve cells (Figure 3C). Overall, we validate the multisample capability of SCPA 235 
in accurately recapitulating known core pathway signatures of T cell activation over time. 

 

To more deeply understand these global profiles, we next looked for enrichment of specific signatures 

in the core pathways. As cell signaling and cell cycle events have been well characterized upon T cell 

activation, we chose to investigate cytokine response signatures. Within this pathway class we noted 240 
a presence of interferon (IFN) response gene sets across all four naïve and memory CD4+ and CD8+ 

T cell populations (Figure 3D). To further explore this, we focused on CD4+ T cells to assess if a 

particular cell type was driving this interferon response signature, and whether this pathway was 

being positively or negatively regulated upon activation. We used SCPA to conduct a two-sample 

comparison of each cell type, comparing 0hr to 24hr activated populations identified in the UMAP 245 
clustering (Figure 2B). Unexpectedly, IFN response genes were broadly enriched after activation in all 

CD4+ T cell populations (Supplementary Figure 5A). Taking naïve CD4+ T cells as an example, IFN 

response pathways also ranked amongst the most significantly altered pathways upon T cell 

activation (Figure 3E), suggesting that IFN signaling is a central component of T cell activation. 

However, we observed that T cells induce a distinct IFN response signature, which is dependent on 250 
cell lineage. Most CD4+ T cells show a broadly similar profile in their resting state with only memory 

Tregs expressing a slightly altered signature. Cellular activation induced a divergence of this 

signature, with significant differences between memory Treg and non-Treg populations. For example, 

Tregs show enrichment of IFN response genes such as ISG15, ISG20, IFI30, and SOCS3, whereas 

non-Treg populations in the naïve and memory pool show enrichment of IRF4, PTPN11, and several 255 
NUP genes (Figure 3F). These data suggest that, even though all CD4+ T cells induce an interferon 

response signature upon activation, these signatures diverge depending on Treg versus non-Treg cell 

identity.  
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As these were sorted T cell populations, maintained in media without polarizing cytokines, and naïve 260 
CD4+ T cells do not produce type II IFNG transcript or IFNJ protein (Supplementary Figure 5B-C), 

these data suggested possible involvement of a cell-intrinsic type I interferon signaling. The significant 

overlap of genes between type I and type II response gene sets makes it difficult to define the exact 

interferon subtype driving the observed signature, but the above analysis with SCPA did reveal type I 

interferon signatures in both naïve and memory T cells (Supplementary Figure 5D). Although it is 265 
known that type I IFNs, IFND and IFNE, regulate CD4+ and CD8+ T cell cytokine production, 

proliferation, survival, and/or migration (Crouse et al., 2015; Marrack et al., 1999), T cells themselves 

are not considered to be a source of type I IFNs. Rather, it is thought that type I IFNs are largely 

derived from innate immune lineages during viral infections (Ivashkiv and Donlin, 2014). Therefore, 

we explored the possibility that T cells may produce their own type I IFN upon stimulation. Likely 270 
given the relatively low sensitivity of scRNA-seq, we did not detect IFNA expression in our dataset. 

We therefore analyzed three RNA-seq/microarray datasets from the literature for expression of IFNA 

genes in CD4+ T cells either ex vivo or after in vitro activation. Here we observed low but consistent 

levels of IFNA expression in both resting and activated T cells, with the most consistent expression of 

IFNA4, IFNA7, IFNA17, and IFNA21 across datasets (Supplementary Figure 5E). Given the 275 
increased sensitivity of qPCR over RNA-sequencing methods, we next measured expression of these 

four IFNA genes upon T cell activation using qPCR. We observed robust expression of IFNA1/13/21 

in CD4+ T cells and low levels of IFNA17, whereas we detected little or no expression of IFNA4, 

IFNA7 (Figure 3G). Additionally, and in agreement with our qPCR data, we noted that CD4+ T cells 

secrete low levels of IFND protein upon stimulation at around 12-24 hours post activation with anti-280 
CD3 and anti-CD28 (Figure 3H, Supplementary Figure 6E).  

 

Given that we observed IFND production by CD4+ T cells, we next asked if an absence of T cell-

derived IFND resulted in an altered T cell phenotype. We therefore used CRISPR-Cas9 mediated 

deletion of IFND in purified CD4+ T cells, targeting multiple IFNA genes, afforded by the high 285 
sequence similarity (see methods, Supplementary Figure 5G-H), demonstrating good editing 

efficiency (Figure 3I). Deletion of IFND significantly reduced T cell viability upon stimulation, when 

compared to a mock control (Figure 3J). In agreement with this observation, purified CD4+ T cells 

from Ifnar-/- mice – in lieu of Ifna-/- mice not existing – showed a similar reduction in cell viability after 

activation in vitro with anti-CD3 + anti-CD28 (Figure 3K). Finally, IFNAR1 signaling engages 290 
downstream STAT1 signaling, and in a pseudotime trajectory analysis of naive CD4+ T cell activation, 

we observed a large increase in the expression of STAT1 responsive genes (Figure 3L, 

Supplementary Figure 5I), corresponding to ‘intermediate¶ and ‘activated‘ cells states identified in the 

UMAP representations (Figure 2B), and also correlated with the upregulation of IFNAR1/2 by T cells 

(Supplementary Figure 5J). Together these data indicate that T cells require IFND to maintain survival 295 
upon activation and that they possess the ability to produce IFND in an autocrine/paracrine fashion. 
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Mapping metabolic reprogramming upon T cell activation 
After cytokine response pathways, our analysis with SCPA demonstrated that the gene set class with 

the next largest distribution change was that of metabolism (Figure 3B). Although context-dependent 300 
metabolic programs have been linked to specific T cell functions, a systematic assessment of 

transcriptional metabolic reprogramming in T cells has yet to be done. We therefore sought to 

characterize the landscape of transcriptional metabolic reprogramming upon T cell activation across 

comprehensive list of metabolic pathways. 

 305 
SCPA¶s unique capability to analyze multiple groups/conditions simultaneously lends itself to novel 

analyses of pseudotime trajectories with multiple intermediate populations. To exhibit this, we first 

reconstructed the trajectory of naïve CD4+ T cell activation, using slingshot (Street et al., 2018), to 

recapitulate the progression of these cells through activation phases. To generate distinct populations 

across activation, we split this trajectory across pseudotime into multiple nodes (using milestones as 310 
explained in methods, Figure 4A). Using a manually curated list of 243 metabolic pathways (gathered 

from Hallmark, KEGG and Reactome databases, Supplementary Table 3), we conducted a 

multisample pathway analysis across the pseudotime trajectory to identify metabolic pathways 

showing significant changes in distribution through naïve CD4+ T cell activation. Overall, we saw a 

gradation in the transcriptional changes of metabolic pathways, from pathways with little change to 315 
those with large changes in distribution (Figure 4B). The largest alterations were evident glycolytic, 

oxidative phosphorylation (OXPHOS), and amino acid metabolism pathways (Figure 4B, n.b multiple 

glycolysis and OXPHOS gene sets from different databases were present in the top 10 pathways, so 

only the topmost significant are annotated), indicating that these pathways are critically regulated at 

the transcriptional level in T cells. Indeed, as expected, glycolysis and OXPHOS were both enhanced 320 
following naïve and memory CD4+ T activation in vitro (Supplementary Figure 6A-B), consistent with 

current literature (Chapman et al., 2020). Interestingly, metabolic change, both relating to magnitude 

and pathway specificity in naïve T cells, was very similar to that seen upon memory T cell activation, 

suggesting a similar utilization of metabolic pathways in both populations (Supplementary Figure 6C). 

Conversely, perturbations in activity of other pathways, such as linoleic acid and nitrogen metabolism, 325 
were comparatively modest following T cell activation, possibly indicating that these pathways play a 

less significant role in the biology of activated T cells or that they are not regulated principally through 

transcription. Indeed, the pathway expression of linoleic acid metabolism over pseudotime is 

substantially different from glycolysis (Figure 4C). Additionally, we discovered several metabolic 

pathways that have so far not been linked as intrinsic regulators of T cell biology, such as propanoate 330 
metabolism and arachidonic acid metabolism (Figure 4B). Although undergoing smaller changes 

relative to pathways such as glycolysis and OXPHOS, these pathways showed statistically significant 

changes in pathway perturbation, possibly suggestive an important role in T cell function.  

 

As an internal control of the pseudotime pathway analysis, we correlated the results above with a 335 
more classical 2-sample comparison using our real time data. We compared 0hr resting cells, to 
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Figure 4. Arachidonic acid metabolism regulates CD4+ T cell activation
(A) Trajectory analysis of naïve CD4+ T cell activation. Naïve CD4+ T cells were subjected to trajectory inference modelling using slingshot, and subsequently split into 
nodes across the trajectory using dyno (see methods).
(B) SCPA analysis outline (above) and output (below) using a manually curated list of metabolic pathways across pseudotime populations. 186 manually curated 
metabolic pathways were used with SCPA to categorize metabolic reprogramming across the four identified activation phases in native CD4+ T cell activation.
(C) Mean pathway expression of glycolysis and linoleic acid metabolism over naïve CD4+ T cell activation. Mean gene expression for ‘Hallmark glycolysis’ and ’KEGG 
linoleic acid metabolism’ were plotted against pseudotime values calculated in (A).
(D) Volcano plot showing Qval output from SCPA plotted against pathway enrichment, measured as mean pathway change when comparing 0 to 24 hours conditions. 
Black points show non significant pathways, blue points show significant pathways with no enrichment, and green points show significant pathways that also show 
enrichment. Arachidonic acid metabolism (AA) is highlighted in red
(E) Gene set enrichment analysis (GSEA) across T cell activation, using metabolic pathways when comparing 0 to 24 hours conditions. Dot plot shows ranking of 
metabolic pathways by FDR q-val, with arachidonic acid metabolism highlighted in red. Embedded plot shows enrichment plot for arachidonic acid metabolism.
(F) Outline of key enzymes of the arachidonic acid metabolism pathway and their expression across activation.
(G) Arachidonic acid production measured in the supernatants of purified CD4+ T cells after stimulation with anti-CD3+28 antibodies
(H) CD69 expression in CD4+ T cells after inhibition of a PLA2 using pyrrophenone at varying concentrations. Representative plot taken from 1μM.
(I-J) Cytokine expression (I) and cell viability (J) after anti-CD3+28 stimulation with PLA2 inhibition (1μM) in CD4+ T cells
(K) Heatmap of Qvals generated by SCPA after comparing the indicated resting CD4+ memory T cell population with resting naïve CD4+ T cells
(L-M) Volcano plot of amino acid metabolism genes compared between Tcm and Th1 cells. Ribosomal (RPS/L) and proteasomal (PSM) genes are highlighted in blue 
and red respectively.
(N) Schematic summary of T cell metabolism over cellular differentiation
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either 12hr intermediate or 24hr activated naïve CD4+ T cell populations (populations derived from the 

UMAP in Figure 2B). In line with our pseudotime trajectory pathway analysis (Figure 4B), OXPHOS, 

glycolysis, and amino acid metabolism pathways were highly significant and also positively enriched 

in activated cells (Figure 4D, Supplementary Figure 6D). Interestingly, and an important unique 340 
aspect of our tool, many pathways showed significant changes in multivariate distribution, but no 

overall enrichment (Figure 4D, blue dots). Thus, these pathways show changes in transcriptional 

regulation detected by SCPA, that are independent of overall pathway enrichment. One such highly 

significant pathway showing this trend, outside of metabolic pathways already defined as important to 

T cell function, was arachidonic acid metabolism. We compared this finding to GSEA to see if such a 345 
signature would be missed using classical approaches, and indeed, given the lack of pathway 

enrichment, arachidonic acid metabolism was not significant, ranking poorly at both 12 (FDR q-val = 

0.7) and 24 (FDR q-val = 0.4) hours after stimulation (Figure 4E, Supplementary Figure 6E). Given 

that the intrinsic regulation of arachidonic acid metabolism has not been described in T cells, we 

sought to confirm our finding with exploratory functional experiments. We noted upregulation of key 350 
enzymes involved in the generation of arachidonic acid and downstream metabolites upon T cell 

activation (Figure 4F), and found that T cells secrete arachidonic acid upon activation (Figure 4G). To 

understand the functional consequences of arachidonic acid synthesis in T cells, we used a 

Phospholipase A2 (PLA2) inhibitor, pyrrophenone, which blocks arachidonic acid synthesis from 

phospholipids. PLA2 inhibition resulted in a blunted upregulation of CD69 (Figure 4H), suggestive of 355 
decreased T cell activation. Furthermore, PLA2 antagonism resulted in decreased expression of IFNJ 

and IL-10, but showed no effect on TNFD production or cell viability (Figure 4I-J). Overall, these data 

demonstrate the benefit of understanding pathway activity in terms of changes in multivariate 

distribution in contrast to enrichment, and we validate this approach by showing the importance of 

PLA2 and downstream arachidonic acid-derived metabolites for T cell activation, effector function, 360 
and production of selected cytokines. 

 

Having analyzed the transcriptional regulation of metabolic pathways upon activation, we next 

decided to investigate how metabolic pathways are maintained across CD4+ T cell differentiation. 

Although it is known that naïve and memory CD4+ T cells maintain different standards of glycolysis 365 
and OXPHOS (Dimeloe et al., 2016; Gubser et al., 2013), a more systematic approach into the 

landscape of metabolic gene expression, or how memory T cell populations differ, is unknown. For 

example, whether transcriptional regulation of metabolic pathways among Th1, Th2, and Tcm cells 

differs remains uncharacterized. We therefore performed a systematic pathway analysis across 

resting memory T cell populations (Th1, Th2, Treg, and Tcm) focusing on metabolic pathways, and 370 
considering naïve resting CD4+ T cells as a comparative baseline (Figure 4K). Here we observed two 

prominent features. First, we noted an extensive perturbation of metabolic pathways outside of 

glycolysis and OXPHOS in resting memory T cells, including pathways regulating amino acid 

metabolism, fatty acid metabolism, nucleotide synthesis, purine metabolism, cholesterol metabolism, 

glycogen synthesis, and arachidonic acid metabolism. This amounted to 0-15% of all annotated 375 
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metabolic pathways being differentially regulated in resting memory populations versus resting naïve 

T cells (Supplementary Figure 6F). Second, we observed substantial differences between resting 

memory T cell subtypes, specifically effector subsets (Th1, Th2, and Tregs) and Tcm cells, with Tcm 

cells showing a broadly similar profile to resting naïve T cells (Figure 4K). Highlighting specifics, 

looking at topmost differentially regulated pathway, amino acid metabolism, we saw that a defining 380 
feature of Tcm vs Th1 cells is their relative expression of ribosomal versus proteasomal genes (Figure 

4L). Here Tcm cells were defined by relatively high expression of ribosomal subunit (RPL/RPS) genes 

whereas Th1 cells showed higher levels of proteosome subunit (PSM) genes. Furthermore Th1 cells 

were characterized by higher expression of genes regulating polyamine synthesis (OAZ1, ODC1, 

SRM), asparagine synthesis (ASNS), and amino acid transport (SLC3A2, SLC7A5), suggesting that 385 
Tcm and Th1 cells differ significantly in their utilization and synthesis of amino acids (Figure 4M). 

Taken together, these data demonstrate that quiescent Th1, Th2, and Treg populations differ 

significantly in their transcriptional regulation across a wide range of metabolic pathways when 

compared to Tcm and resting naïve CD4+ T cells (Figure 4N). 

 390 
Overall, these data demonstrate the multisample pseudotime capability of SCPA and highlight the 

power of a systematic approach identify new pathways underlying metabolic regulation of cellular 

activity. 

 

Alpha defensin expression defines bone marrow derived T cells 395 
Having characterized T cell pathways in an in vitro setting, we next aimed to understand how 

pathways are regulated when T cells migrate into tissue. For this, we analyzed a dataset from Szabo 

et al. (2019) whereby single cell sequencing was performed on unstimulated or anti-CD3 + anti-CD28 

stimulated CD3+ T cells sorted from blood, bone marrow, lymph node, or lung of healthy donors. We 

identified 15 T cell types across the four tissue sites, with all annotated cells types and their markers 400 
shown in Figures 5A-B (Supplementary Figure 7). Given the scalability of SCPA, we then aimed to 

systematically characterize pathway activity in all T cell populations across all tissues and stimulation 

conditions to identify novel features of tissue derived T cells. For this, we used ~3000 pathways taken 

from the Hallmark, KEGG, Reactome, Biocarta, PID, and Wikipathways database, comparing T cells 

from each tissue site to equivalent populations found in the blood, either in unstimulated or stimulated 405 
conditions. For example, unstimulated CD8+ Tem cells from the blood were compared to 

unstimulated CD8+ Tem cells from the lung, lymph node, and bone marrow, and so on (Figure 5C). 

 

We were therefore able to characterize the changes in pathway activity when T cells are present in 

each tissue, as well as how they respond to stimulation. Globally, we observed that T cells present in 410 
the lung show the largest alteration in pathway activity compared to those from the lymph node and 

bone marrow (Figure 5D). Interestingly, a large source of variance within the data originated from the 

tissue site T cells were derived from, in addition to stimulation, suggesting that tissue migration 

imprints significant altered transcriptional profiles on cells even prior to activation (Figure 5E).  
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 415 
Having first mapped the global pathway signatures of tissue-derived T cells, we next aimed to identify 

pathways that were specific to T cells residing within the distinct tissue sites. To do this, we calculated 

the variance in the SCPA Q-values of each pathway across tissues and cell type (variance of rows in 

Figure 5D heatmap) to identify the pathways with the most variable effect sizes across the T-cell 

populations being compared. One of the pathways showing the largest perturbation were those 420 
involved in translation and ribosome assembly, with cells from the lung showing a broad 

downregulation of ribosomal subunit genes when compared to cells from other tissue sites 

(Supplementary Figure 7B). Furthermore, T cells from the tissue also showed high variance in 

arachidonic acid-derived prostaglandin synthesis and regulation, largely driven by expression of 

annexin family genes (ANXA1-2) that inhibit PLA2 activity, but also S100A10 and S100A6 that 425 
regulate annexin activity (Supplementary Figure 7C). However, the pathway with the most variable 

effect size was, unexpectedly, involved in antimicrobial peptide production. In assessing expression of 

genes from this pathway, this signature was driven by alpha defensin molecules DEFA1 and DEFA3, 

whose expression is currently thought to be limited mainly to neutrophils and mucosal epithelia. 

Moreover, assessing tissue specificity, this signature was exclusive to bone marrow-derived T cells, 430 
suggesting a tightly controlled tissue specific feature of T cells. To further validate our finding, we 

analyzed a previously published microarray dataset from Okhrimenko et al. (2014) of T cells sorted 

from the bone marrow and blood of healthy donors. In agreement with our data, we saw significantly 

increased transcript expression of DEFA1/3 in T cells from the bone marrow when compared to the 

blood (Figure 5H). Furthermore, to confirm this signature at the protein level, we sourced bone 435 
marrow of healthy human donors and compared DEFA1 expression to blood derived T cells from age 

and sex matched controls. DEFA1 was expressed almost exclusively in CD3+ T cells from the bone 

marrow when compared to CD3+ T cells from the blood (Figures 5I-J). These data therefore uncover a 

novel feature of bone marrow derived T cells; namely the expression of alpha defensin molecules. 

 440 
In sum, we generate a global map of pathway activity in tissue derived T cells, identify a broad 

perturbation of pathway activity in T cells from the tissue, especially in lung derived T cells, and 

further discover a previously unrecognized alpha defensin expression profile in T cells from the bone 

marrow. 

 445 
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Discussion 
Here we introduced SCPA as a novel and effective approach to pathway analysis in scRNA-seq data. 

We utilized SCPA to systematically map pathway activity in T cells across time, between T cell 

populations, and across tissues, uncovering novel regulatory mechanisms of T cells. 450 
 

Our approach to pathway analysis described in this work harnesses a statistical framework that 

considers changes in the multivariate distribution of all the genes of a given pathway as the primary 

statistic for judging biological relevance. This approach is highly robust, and does not depend on 

parametric assumptions on the gene expression distribution. By design, it is sensitive to distribution 455 
changes (Mukherjee et al., 2020) that would otherwise be missed using enrichment profiles. As an 

illustration, when considering a situation in comparing healthy and disease samples, whereby a 

pathway shows significant changes in its multivariate distribution but lacks enrichment of pathway 

genes in any given sample; this would still indicate substantial pathway perturbation. However, given 

the lack of mean differences, this would not be identified using current enrichment methods. We 460 
highlighted this unique feature of SCPA when we identified the requirement of cell-intrinsic 

arachidonic acid metabolism for T cell activation and effector function, which was not considered 

significant by GSEA. Of note, we found that many additional pathways demonstrated similar profiles 

(e.g. Figure 4D), which provides candidate pathways for future work. Further still, even though our 

statistical framework assesses distribution changes, gene sets that do show enrichment also 465 
necessarily show alterations in multivariate distribution, meaning that SCPA captures both aspects of 

pathway activity. This is also likely the reason why SCPA was able to identify a greater number of 

significant viral pathways when compared to other pathway analysis tools in our benchmarking 

(Figure 1). We therefore argue that assessing changes in multivariate distribution more accurately 

reflects what should be considered interesting when addressing pathway level gene signatures. 470 
 

Employing SCPA to our scRNA-seq resource provided a systems level view of T cell transcriptional 

regulation upon activation, highlighting a number of interesting signatures. In contrast to current 

approaches that are largely restricted to two-sample comparisons, SCPA can assess gene set 

distributions across a multisample input simultaneously and is well suited to addressing experimental 475 
designs with greater than two conditions. Here we used SCPA over such a multisample design, 

assessing three early time points across T cell activation. We identified a core set of pathways that 

are shared upon T cell activation across naïve and memory CD4+ and CD8+ T cells. This led to the 

discovery of type I IFN signaling as a central transcriptional module in CD4+ T cell populations. T cells 

are responsive to exogenous IFND (Huber and Farrar, 2011) but are not known to produce IFND 480 
themselves. As the design of our T cell activation experiments excluded an exogenous source of 

IFND, we concluded that the type I IFN signature must be rooted in an autocrine mechanism. 

Although limited in scope, our functional experiments supported such an idea as proof-of-principle: we 

demonstrated IFND secretion upon T cell activation and a dependency on intrinsic IFND for survival, 

at least in vitro. Indeed, we had previously established such a concept for another cytokine that was 485 
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thought not to be produced by T cells; namely IL-1E. T cells produce IL-1E in very low amounts, yet 

intrinsic IL-1E controls the magnitude of Th1 responses (Arbore et al., 2016) and exogenous IL-1E 

cannot compensate for this function. Though IFND is known to aid T cell survival (Marrack et al., 

1999), a role for T cell-autocrine type I IFN may have previously been overlooked, as human T cells 

produce also only small quantities of this cytokine (Figure 3I). Additionally, Ifna–/– mice do not exist, 490 
with IFND targeted studies instead utilizing Ifnar1–/– animals, or depleting classical sources of IFND, 

such as pDCs, which makes it unsuitable to pinpoint T cell-autocrine IFND functions. Two additional 

observations we made with regards to IFN biology will be worthy to investigate further. First, our data 

indicated that T cells produce IFNA with at least some specificity toward IFN21 – though our primers 

also showed an overlap with IFNA1/13 – and not other IFNA genes including IFNA4, IFNA7 or 495 
IFNA17. This is interesting in view the of emerging realization that different type I IFN subtypes can 

have diverse effects on CD8+ T cell antiviral responses (Dickow et al., 2019). Furthermore, we 

showed that while all T cells harbor or acquire a strong IFN pathway signature, the respective gene 

transcription profiles induced are distinct among T cell subpopulations. We noted a specific 

demarcation between (memory) Tregs and non-regulatory T cells, suggesting tailored and selective 500 
responses downstream of the IFN receptor between lineages of inflammatory and regulatory T cells. 

 

SCPA also highlighted metabolism as a pathway class with large distribution changes upon T cell 

activation. Although it is well established that all aspects of the T cell life cycle are controlled by 

metabolic events (Buck et al., 2015) most existing works focus on the analysis of one or a few select 505 
metabolic pathways in a given study. Here we provided a means for comprehensive pathway 

analyses of scRNA-seq data that can distinguish changes in the landscape of metabolic pathways 

upon cell activation, over time, or across stimulation conditions. Across naïve CD4+ T cell activation 

we confirmed that fundamental metabolic pathways, such as glycolysis and OXPHOS, featured 

prominently as expected. However, we also uncovered several metabolic pathways previously not 510 
associated with T cell metabolism. One such pathway was that of arachidonic acid metabolism, which 

we showed was necessary for proper T cell activation and IFNJ/IL-10 production. Though we did not 

define the exact mechanism of this regulation, downstream metabolites of arachidonic acid generated 

by immune cells, including as prostaglandins, prostacyclins, and leukotrienes, impact T cell function 

at several levels (Maseda et al., 2019). Much of the literature on arachidonic acid metabolite 515 
production focuses on innate immune cells, though our work here shows that T cells produce and 

utilize arachidonic acid via phospholipase A2 to induce proper T cell activation in vitro. In addition, we 

also observed upregulation of genes involved in the inhibition of PLA2 (ANXA and S100 family 

members) in T cells from the tissue, suggesting that inhibition of arachidonic acid metabolism in vivo 

could contribute towards confining T cell activation in vivo. Indeed, a recent paper has demonstrated 520 
that T cells from patients with rheumatoid arthritis are hyper-responsive to exogenous arachidonic 

acid, resulting in increased calcium flux and pERK signaling (Ye et al., 2021), hinting that 

dysregulation of this pathway in T cells could play a role in inflammatory disease.  
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In addition to mapping metabolic pathways across T cell activation, we compared metabolic 525 
transcription across quiescent T cell subpopulations and demonstrated that memory CD4+ T cell 

lineages maintain different levels of metabolic poise. We found that whilst Tcm cells display a broadly 

similar metabolic profile relative to naïve T cells, quiescent Th1 and Th2 cells maintain altered levels 

of metabolic transcription across a broad range of metabolic pathways. Whilst previous work has 

shown that bulk memory T cells exhibit higher levels of glycolysis and OXPHOS relative to naïve cells 530 
(Gubser et al., 2013), our findings here suggests that this heightened metabolic activity may be 

predominantly driven by a minority of memory CD4+ T cell subpopulations, rather than memory T cells 

as a whole. Further, we suggest that the metabolic distinction between naïve and memory T cells may 

be larger than previously appreciated, noting that a broad range of metabolic pathways outside of 

glycolysis and OXPHOS were differentially regulated. One such observation was that a number of 535 
glycogen-related metabolic pathways were active in CD4+ effector memory populations relative to 

Tcm cells. The generation of glycogen stores in dendritic cells supports their early effector functions 

via contributions to glycolytic reprogramming and mitochondrial respiration after toll-like receptor 

ligation (Thwe et al., 2017). Further, glycogen breakdown has been shown to support CD8+ T cell 

memory homeostasis and survival (Ma et al., 2018). Although speculative at this point, the glycogen 540 
signature in effector memory T cells could represent an important component of the heightened 

metabolic poise that enables these cells to respond rapidly to stimulation. Overall, our work here 

focused on T cells, though we anticipate similar systematic approaches to immune metabolism using 

scRNA-seq will reveal important and previously undiscovered aspects of immune regulation across 

other cell types. 545 
 

In addition to our in vitro work, we performed a systems level analysis of pathways in ex vivo T cells 

derived from different tissue sites. This was possible given that SCPA provides a computationally 

scalable approach to identify pathway signatures in vast amounts of multisample transcriptomic data. 

In this, we analyzed around 3000 pathways in 15 cell types across multiple tissues and stimulation 550 
conditions. Surprisingly – as it is currently thought that defensin production is mainly restricted to 

innate immune cells and epithelial cells (Xu and Lu, 2020) – we identified alpha defensin expression, 

through DEFA1 and DEFA3, as a unique feature of T cells from the bone marrow. To our knowledge, 

there is no precedent for alpha defensin expression by DET cells. Previous work has been unable to 

detect alpha defensin expression in CD8+ T cells from the blood by mass spectrometry (Mackewicz et 555 
al., 2003), with similar results in two DE T cell lines (Agerberth et al., 2000), but did detect alpha 

defensin in CD3+ T cells, likely coming from the JG fraction. These findings are in line with our data, 

suggesting that alpha defensin expression seems to only be upregulated in DE T cells after migration 

into the bone marrow, and not in other tissues. We did not uncover the reason for alpha defensin 

expression in DE T cells, however, the antimicrobial nature of defensins possibly contributes to 560 
general sterility of the bone marrow microenvironment. Nonetheless, the immune regulatory 

properties of defensins are broad, meaning defensin expression could influence a multitude of 
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processes such as cell migration, cytokine release, and proliferation (Fruitwala et al., 2019; Xu and 

Lu, 2020), and future work defining the precise role of T cell derived alpha defensins is required.  

 565 
In summary, by developing and employing SCPA, we uncovered novel cytokine and metabolic 

pathways engaged during early T cell stimulation and provided comprehensive global signatures of 

pathway alterations among distinct T cell subpopulations. Overall, this work outlines the power of 

systematic approaches to uncover novel regulatory pathways across a wide range of cell types and 

tissues. Furthermore, though our work here focused on T cells from healthy donors, this approach will 570 
be invaluable in characterizing pathway perturbations in a disease setting, generating an unbiased 

analysis of the relative cell specific dysfunctions contributing to disease pathogenesis, alongside 

providing therapeutic targets. 

 

 575 
 

 

 

 

  580 
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Methods 
Human CD4+ and CD8+ T cell Purification and In Vitro Activation 
Human bulk CD4+ or CD8+ T cells were isolated from PBMCs, obtained from freshly drawn blood after 

centrifugation using Lymphoprep separation medium (Corning, Vienna, VA) using either the MACS 

Human CD8+ T cell Isolation Kit (130-096-495) from Miltenyi Biotech, (Bergisch Gladbach, Germany), 585 
the Negative Selection EasySep CD4+ T cell kit (17951) or RosetteSep Human CD4+ Cell Isolation Kit 

(15062) from Stemcell Technologies (Vancouver, Canada) according to the manufacturers¶ 

instructions. Enriched purified CD4+ or CD8+ T cells were then stained with a combination of 

antibodies to CD45RA-FITC, CD45RO-, CD4-PE, CD8-PercpCy5.5, CD56-APC for 30 min at 4qC and 

subsequently sorted into naive or memory CD4+ or CD8+ T cell subpopulations using the Cell Sorter 590 
SH800S (Sony Biotechnology, Inc., San Jose, CA). Cell purity was consistently > 99 %. Purified naive 

or memory CD4+ or CD8+ T cells were activated for indicated time points in 48-well culture plates 

(Greiner, Monroe, NC) at 2.5 – 3.0 x 105 cells/well in media containing 25 U/ml recombinant human 

IL-2 in an incubator at 37qC and 5 % CO2. Plate bound anti-CD3 and anti-CD28 were used to 

stimulate CD4+ (2Pg/ml both), and CD8+ (0.25 and 2 Pg/ml, respectively) T cells.  595 
 

Bone marrow samples 
Human bone marrow aspirates were obtained from healthy volunteers after informed consent in 

accordance with the Declaration of Helsinki, under an Institutional Review Board-approved clinical 

protocol (NCT00442195). Mononuclear cells  were separated using Ficoll-Hypaque density gradient 600 
centrifugation (MP Biomedicals) and stored in CryoStor CS5 freezing medium (Biolife Solutions) 

under liquid nitrogen vapor phase until use. For analysis, cells were thawed in PBS supplemented 

with 2mM EDTA, 0.5% HSA (Baxter Healthcare Corporation), 10 units/mL DNase (Genentech, Inc.) 

and 2.5mM MgCl2.   

 605 
Mice 
Both wild-type and IFNAR1-/- mice were on a C57BL/6 background, with IFNAR1-/- mice previously 

described in (REF). Splenic single cell suspensions were generated, and red blood cells lysed using 

ACK lysis buffer (Life Technologies). CD4+ T cells were isolated by negative selection using the Stem 

Cell Technologies EasySep Mouse CD4+ T Cell Isolation Kit (Tukwila, WA), resulting in a CD4+ purity 610 
of 95-98%, and a CD3+ purity of ~99%. CD4+ T cells were then plated at 180,000 cells per well in a 

96-well plate and activated with plate-bound anti-CD3 (2Pg/ml) and soluble anti-CD28 (1Pg/ml) for the 

indicated time before harvesting and staining with near-IR fluorescent reactive dye (Invitrogen). 

 

Flow cytometry and cell sorting  615 
Cells were harvested after stimulation and viability of cells post activation was measured using the 

LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit (Thermo Fisher Scientific). Surface staining of 

antigen was performed at 4qC for 20 minutes. For intracellular antigens, cells were fixed and 
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permeabilized using the FOXP3/Transcription factor staining kit (eBioscience), and incubated with the 

appropriate antibody for 1 hour at 4qC. Acquisition of cells was performed using the BD 620 
FACSCantoTM II Flow Cytometer and subsequent analysis was performed using FlowJo (v9 or v10). 

The clone and dilution of antibodies used for flow cytometry were as follows: CD4-Pacific Blue 

(Biolegend, OKT4, 1:200), CD69-APC (Biolegend, FN50, 1:200), CD45RA-APC (Biolegend, HI100, 

1:200), CD45RO-FITC (Biolegend, UCHL1, 1:200), DEFA1 (R&D Systems, 2Pg/ml), anti-sheep IgG-

NL557 (R&D Systems, 1:500). IFNJ expression was analyzed using the IFN-J Secretion Assay (PE, 625 
Miltenyi Biotec) following manufacturers instruction. 

 

Library sequencing and preprocessing steps for the single cell transcriptomics data 
We prepared single cell transcriptome libraries using the 10xGenomics Chromium Single Cell v3 kit, 

in accordance with the company¶s manual. Subsequently, the single cell libraries were sequenced by 630 
the NovaSeq 6000 sequencing system (Illumina, Inc., San Diego, CA, USA) with reads per cell 

targeted to be at a mean of 50,000 reads for each sample sequenced. Initial quality control was 

performed on the resulting scRNAseq data from each sample using Cell Ranger (Version 2.1.0). All 

data processing parameters and scripts used for processing all samples can be found at 

https://github.com/jackbibby1/scpa_paper. Briefly, we excluded any cells with > 10% of reads 635 
mapping to mitochondrial genes, and filtered cells based on number of genes expressed. Filtered 

count matrices were then normalized by total UMI counts, multiplied by 10,000 and transformed to 

natural log space. The top 2000 variable features were determined based on the variance stabilizing 

transformation function (FindVariableFeatures) by Seurat with default parameters. Any cycle genes 

were removed from the variable features list to reduce cell-cycle associated variation, prior to 640 
downstream analysis. For each sorted T cell population, samples were integrated across time points 

using canonical correlation analysis (CCA), resulting in four integrated datasets. For example, naïve 

CD4+ T cells at 0, 12, and 24 hours were integrated, followed by memory CD4+ T cells, and so 

on for CD8+ T cells. Variants arising from cell cycle phases and the percentage of mitochondrial 

genes were regressed using by the ScaleData function in Seurat. Principal component analysis (PCA) 645 
was then performed, and the top 30 Principal components (PCs) were included in a Uniform Manifold 

Approximation and Projection (UMAP) dimensionality reduction. Clusters were identified by canonical 

marker genes on a shared nearest neighbor (SNN) modularity graph using the top 30 PCs and the 

original Louvain algorithm. Markers for each population were calculated using the FindAllMarkers() 

function within Seurat, with parameters: min.pct = 0.1, logfc.threshold = 0.25, only.pos = T. Definition 650 
of each cell population was done using literature associated markers, and all markers for each 

population can be found in Supplementary Table 1.  

 

Pathway analysis using SCPA 
Scripts for replicating all figures in the paper can be found at 655 
https://github.com/jackbibby1/scpa_paper. For pathway analysis, log1p normalized data was 

extracted from each relevant population and pathways were pulled from the molecular signatures 
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database using the msigdbr package within R. Comparisons were then done using the 

compare_pathways() function within SCPA using default parameters. Data processing and 

visualization was then performed using Seurat (Satija et al., 2015), ggplot2 (Wickham, 2016), 660 
ComplexHeatmap (Gu et al., 2016), and dyno (Saelens et al., 2019) R packages. 

 

Benchmarking pathway analysis methods 
3 publicly available datasets were used for comparisons, under the accession numbers: GSE122031, 

GSE148729, and GSE156760 (containing 2 datasets used here). For Enrichr and DAVID, data were 665 
split between mock or virally infected cells, and differentially expressed genes were calculated using 

the FindMarkers() function within Seurat, using a logFC threshold of 0.4. Differentially expressed 

genes were then input into DAVID and Enrichr, and results were filtered to include GO Biological 

Process gene sets. For SCPA and GSEA, data were split by between mock and virally infected cells, 

cell numbers were downsampled to 500 cells per sample, and then expression files were directly 670 
used downstream. GSEA was ran using default parameters: ‘phenotype¶ permutation, ‘weighted¶ 

enrichment statistic, Signal2Noise ranking metric, and gene sets with < 15 genes or > 500 genes 

were excluded. SCPA was ran using default parameters, excluding gene sets with < 15 genes or > 

500 genes. Viral gene sets were defined by any pathways containing the string “VIR” in their pathway 

name, within the GO Biological Process gene set list, and all viral pathways can be found in 675 
Supplementary Table 4. 

 

Trajectory inference analysis and pseudotime SCPA 
All scripts for the trajectory inference analysis can be found at 

https://github.com/jackbibby1/scpa_paper. The R package dyno was used to calculate trajectories 680 
and discrete nodes across pseudotime. Briefly, the top 1000 most variable genes were taken from 

naïve T cells across 0, 12, and 24 hours (after excluding regulatory T cells) and used in the 

downstream analysis. The naïve CD4+ T cell trajectory was then calculated using the infer_trajectory() 

function within dyno, using the ti_slingshot() method. Milestones along the trajectory were calculated 

using the group_onto_nearest_milestones function within dyno. After assignment, cells were then 685 
extracted based on their milestone identifier, and these discrete populations were subsequently used 

for input into SCPA. A list of manually curated 243 metabolic pathways were used for the pseudotime 

pathway analysis, which can be found in Supplementary Table 3. 

 

Graph-based test used in SCPA 690 
Given K multivariate probability distributions F1, F2, ... , FK, the K-sample problem is to test the 

hypotheses 

 H0 : F1 = ··· = FK versus H1 : Fs ് Ft , for some 1 ч s < t ч K 

based on collections of independent observations – 𝜒1, 𝜒ଶ, … , 𝜒௄ – coming from F1,F2,...,FK 

respectively. In the single cell setting, F¶s correspond to the tissue samples, and 𝜒¶s denote the 695 
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number of cells sequenced for a given condition K. For example, in this work we are interested in 

comparing the multivariate distribution of a gene set (corresponding to a particular pathway) 

across K=3 conditions, F1 (0h), F2 (12h) and F3 (24h), for a given cell type. 

 
Several tests exist for nonparametric testing in the 2-sample framework that are based on the 700 
idea of constructing graphs on the pooled sample 𝜒1  ∪ 𝜒ଶ ∪ … ∪ 𝜒௄, such as nearest neighbor 

graphs (Henze, 1988; Schilling, 1986), minimal spanning trees (Friedman and Rafsky, 1979) or 

graphs based on optimal non-bipartite matching (Rosenbaum, 2005). Inspired by the latter 

method and ideas developed in another recent paper (Chen and Friedman, 2017), we developed 

a universally consistent and distribution-free multisample test, i.e. the null distribution of the test 705 
statistic does not depend on the distribution of the data (Mukherjee et al., 2020). Briefly, our 

novel multisample crossmatch test, based on the Mahalanobis disparity, begins by pooling the 

samples 𝜒1, 𝜒ଶ, … , 𝜒௄  corresponding to the distributions F1,F2,...,FK (respectively) together. We 

then construct a minimum non-bipartite matching graph on the pooled sample, i.e., a matching 

on ሼ𝜒1  ∪ 𝜒ଶ ∪ … ∪ 𝜒௄ሽ, which minimizes the sum of the Euclidean lengths of all the edges. For 710 
each 1 ≤ s < t ≤ K, the (s,t)-cross count (𝑎௦௧ሻ,  is then defined as the number of matched edges in 

the pooled sample ሼ𝜒1  ∪  𝜒ଶ ∪ … ∪ 𝜒௄ሽ  with one endpoint in 𝜒s and the other endpoint in 𝜒t. The 

test statistic is then defined as: 

𝑆 ≔  ൫𝐴 െ 𝔼ுబ 𝐴൯் 𝐶𝑜𝑣ுబ
−1 ൫𝐴൯൫𝐴 െ 𝔼ுబ 𝐴൯, 

where  𝐴: ൌ ሺ𝑎௦௧ሻ 1ஸ௦ழ௧ஸ௄  ∈  ℝ൫಼
మ ൯ denotes the vector of cross-counts, and 𝔼ுబ 𝐴 and 715 

𝐶𝑜𝑣ுబ
−1 ൫𝐴൯ denote the null mean vector and the null covariance matrix of 𝐴, respectively.  

 
𝑆 is distribution free under H0, and exact expressions for the entries of 𝐴 can be computed from 

a given dataset. Instead of using the exact null distribution of 𝑆 its weak limit, the chi-squared 

distribution with ൫௄
ଶ൯ degrees of freedom can be used for computing the test cut-off. Since 𝑆 is a 720 

measure of distance between 𝔼ுబ  𝐴  and  𝐴, the null hypothesis is rejected when 𝑆 is “sufficiently 

large”, i.e. exceeds a certain null hypothesis p-value cut-off. Additional theoretical details are 

described and proved in the associated statistical work {Mukherjee, 2020 #6}. 

 

The 𝑆 test statistic above is used to construct the 𝑄 value used in this paper and in scpa for 725 
ranking of pathways by degree of distributional change.  First, the p-value 𝑝 of 𝑆 is computed as 

𝑝 ൌ 1 െ 𝐹ሺ𝑆ሻ,  

where 𝐹 is the 𝜒ଶ distribution with ൫௄
ଶ൯ degrees of freedom.  The 𝑄 value is then the 

transformation 

𝑄 ൌ ඥെ log 𝑝. 730 
 

qRT-PCR 
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CD4+ T cells were either left unstimulated or stimulated for 12 or 24 hours with antiCD3 + anti-

CD28 (both 2Pg/ml). Cells were harvested, washed in PBS, lysed in TRIzol (Ambion), and stored 

at -80qC until used. RNA was extracted using the Direct-zol RNA MiniPrep kit (Zymo research), 735 
and subsequent reverse transcription was performed with 200ng of RNA using the High-Capacity 

RNA-to-cDNA kit (applied biosystems). qPCR analysis was then performed using the TaqMan 

Universal Master Mix II, no UNG (applied biosystems), with FAM labelled primers for 

IFNA1/13/21 (Hs04190680_gH), IFNA4 (Hs01681284_sH), IFNA7 (Hs01652729_s1), IFNA17 

(Hs00819693_sH), and a VIC labelled primer for RPL7 (Hs02596927_g1) following 740 
manufacturer¶s instructions. 

 

CRISPR-Cas9 deletion of IFND 

crRNA selection: Due to potential for gene redundancy, we designed a total of four crRNA targeting 

four IFNA genes using the Benchling (www.benchling.com) online platform (See Table 1). In order to 745 
target as many IFNA genes as possible, we considered using crRNA with a relatively high on-target 

potency against other IFNA genes, explaining the low off-target score. crRNA suspected to have off-

target effects directed against genes other than IFNA family members were excluded. As a result, we 

targeted 4 main IFNA genes, but this includes overlap with all IFNA genes apart from IFNA8. crRNAs 

were ordered from Integrated DNA Technologies (www.idtdna.com/CRISPR-Cas9) in their proprietary 750 
Alt-R format. 

 
Target crRNA sequence On-target Off-target Off-target potential 

IFNA1 GTTCGGTGCAGAATTTGTCT 62.6 42.4 IFNA2, IFNA13, IFNA16 

IFNA4 TGATTTCGGATTCCCCGAGG 63.1 39.9 IFNA7, IFNA10, IFNA16, IFNA21 

IFNA5 CCTGGAAGCCTGTATGATGC 59.0 40.4 IFNA1, IFNA6, IFNA13 

IFNA17 TGTGATACAGGAGGTTGGGA 60.6 21.9 IFNA4, IFNA7, IFNA10, IFNA14, IFNA16, IFNA21 

Table1. crRNA design including on and off target scores generated by Benchling 

 

Preparation of cells: Human CD4+ cells were isolated from buffy coats using EasySep™ Human CD4+ 755 
T Cell Isolation Kit (Stemcell Tech, # 17952), resuspended with complete RPMI (cRPMI) media 

(supplemented with P/S, L-Glu, 10% FCS) and kept on ice until needed.  

Preparation of crRNA–tracrRNA duplex: Each crRNA and tracrRNA (IDT, #1072534) were 

reconstituted at a final concentration of 160PM using nuclease-free duplex buffer (IDT, #1072570). 

For one electroporation, 1PL of crRNA was mixed to 1PL of tracrRNA in a sterile, RNAse-free PCR 760 
tube. Oligos were annealed at 95°C for 5 min in PCR thermocycler and slowly cooled down to 4°C.  

Precomplexing of Cas9/RNP: In the same PCR tube, 1.2PL of Cas9 nuclease (IDT, #1081059) was 

added, and the mixture was incubated 15 min at 37°C to form RNP complexes.  The four RNP 

complexes against IFNA1, IFNA4, IFNA5 and IFNA17 were pooled and further kept on ice until 

needed. 765 
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Nucleofection: Up to 10 x 106 of freshly isolated human CD4+ T cells were used per electroporation. 

Cells were transferred in 1.5 mL Eppendorf tubes and washed twice with PBS 1X (Gibco) to remove 

all trace of FCS. Immediately before electroporation, cells were resuspended with 10PL of primary cell 

nucleofection solution (P3 primary Cell 4D-Nucleofector X kit S (Lonza, # V4XP-3032), and mixed 770 
with RNP complexes. The mixture cells/RNP complex was then transferred into electroporation strip. 

Within 5 minutes, cells were electroporated using “EH-100” pulse on 4D-nucleofectore core unit 

(Lonza). Immediately after electroporation, 100 PL of pre-heated cRPMI + 20 UI/mL IL-2 was carefully 

added directly into each well of the nucleofection strip, and the strip was placed in tissue culture 

incubator for 15-30 min to allow for cell recovery. Cells were then transferred into a culture plate, 775 
resuspended at 2 x 106 / mL in cRPMI + 20 UI/mL IL-2 and incubated at 37qC for 3 days before 

stimulation. 

 

T7 endonuclease assay 
DNA extraction: DNA was extracted from control-RNP and IFNA-targeted cells using Quick-DNATM 780 
Microprep kit (Zymo Research, # D3021), and DNA concentration was calculated on Nanodrop OneC 

(Thermofisher).  

PCR amplification: PCR primers were designed on Primer designing tool (NCBI platform) and 

purchased from IDT. Primer sequences were as follows: fwd: TGATCTCCCTGAGACCCACA rev: 

CAGGGGTGAGAGTCTTTGAAATG. PCR amplification was performed using the Q5® Hot Start 785 
High-Fidelity 2X Master Mix (NEB, M0494) following the protocol provided by the manufacturer. The 

hybridization temperature for each forward/reverse couple was calculated using the NEB Tm 

Calculator. PCR amplification products were later purified using DNA Clean & ConcentratorTM -5 

(Zymo Research, # D4004) following the protocol provided by the manufacturer. 

T7 endonuclease I digestion: 200 ng of purified DNA amplicons were annealed with 1X NEBuffer 2 790 
(NEB, # B7002S) and total volume was brought up to 19 uL. Hybridization step was performed 

following manufacturer¶s protocol on thermocycler machine. Upon hybridization step completion, 

mismatch double strand DNA was detected by adding 1 uL of T7 endonuclease I in the mixture and 

incubated 15 min at 37°C. The reaction was stopped by adding 1.5 uL of 0.25 M EDTA. The digested 

product was diluted 1:5 in molecular biology grade water and migrated on E-Gel™ EX Agarose Gels, 795 
2% (Invitrogen, # G401002) for 10 minutes. Bands were revealed with ChemiDocTM Imaging System 

(BIO-RAD) using SYBR safe filter. 

Gene modification was estimated using the following formula:  

% gene modification = 100 x (1 - (1 - fraction cleaved)1/2) 

 800 
Measurement of T cell supernatants 

Supernatants from cultured T cells were harvested and stored at -20qC until analysis. Arachidonic 

acid measurement was done using the human arachidonic acid ELISA kit (Novus biologicals) 

following manufacturer¶s instructions. Measurement of cytokines was done using the legendplex 
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inflammation panel mix and match (IFNJ, TNFD, IL-10, Biolegend) or VeriKine-HS Human IFND all 805 
subtype TCM ELISA (PLB assay science), following manufacturer¶s instructions. 

 

OCR and ECAR Measurements 
For analysis of OCR (in pMoles/min) and ECAR (in mpH/min), the Seahorse XF-96 metabolic 

extracellular flux analyzer was used (Seahorse Bioscience, North Billerica, MA). Naive or memory 810 
CD4+ or CD8+ T cells were resuspended in serum-free unbuffered RPMI-1640 medium (R1383; 

Sigma Aldrich) post activation and were plated onto Seahorse cell plates at 4 × 105 cells per well 

coated with Cell-Tak (CB-40241; Corning, Reinach, Switzerland) to enhance T cell attachment. 

Perturbation profiling of the use of metabolic pathways by T cells was achieved by the addition of 

oligomycin (O4876; 1 ȝM), Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP, C2920; 2 815 
ȝM) and rotenone (R8875; 1 ȝM - all from Sigma Aldrich, St. Louis, MO). Metabolic parameters were 

then calculated based on the following formulas:  

 

(1) basal respiration =[OCR(basal-nc)] – [OCR(rotenone)] 

(2) ATP coupled respiration = [OCR(basal-nc)] – [OCR(oligomycin)] 820 
(3) maximal respiratory capacity = [OCR(peak-FCCP)] – [OCR(rotenone)] 

 

Data availability 
All single cell data generated in the paper is available at [upload data]. We have included all raw files, 

and processed files containing count tables and annotation information for each sorted population, 825 
and processed R objects for each population. Single cell data using tissue derived T cells was taken 

from GSE126030. Microarray expression data from bone marrow T cells was taken from GSE50677. 

Datasets used in benchmarking was taken from GSE122031, GSE148729, and GSE156760. 

 

Code availability 830 
Code used to generate all figures in the paper can be found at 

https://github.com/jackbibby1/scpa_paper. Tutorials and reference documentation for SCPA can be 

found at https://jackbibby1.github.io/SCPA  
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Supplementary Figure 1. Flow cytometry gating and purity of T cell populations. T cells were gated as follows: FSC-A vs 

SSC-A for cells > FSC-W vs FSC-A for single cells > CD4+ vs CD8+ for T cell populations > CD45RA+ vs CD45RO+ for naïve and memory 

populations. Purity was then assessed post sort, showing high purity of T cell populations.
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Supplementary Figure 2. Pseudotime analysis of naïve CD4+ and CD8+ T cell activation
(A) Pseudotime trajectory of naïve CD4+ and CD8+ T cells modelled using slingshot.

(B) Heatmap representation of defining genes across pseudotime. Bars above the heatmap represent pseudotime value and cell identities 

taken from the UMAP: blue = resting, gray = intermediate, red = activated.
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Supplementary Figure 3. GZM and HLA expression in GZM+ CD8+ T cells
Relative expression of GZM and HLA family member genes in memory CD8+ T cell populations
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Supplementary Figure 4. Global analysis of pathways upon T cell activation
(A) Qvals for each pathway across T cell activation in naïve and memory CD4+ and CD8+ T cell populations. The four broad cell types were 

split across 0, 12, and 24 time points, and SCPA was used to compare pathway activity.
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GSE143153: microarray analysis of peripheral blood CD4+ T cells ex vivo

GSE102005: microarray analysis of salivary gland T cells ex vivo

EGAS00001003823 : RNA-seq analysis of CD4+ T cells after stimulation and polarization with cytokines
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Supplementary Figure 5. CRISPR mediated knockdown of IFNA in CD4+ T cells
(A) Mean pathway expression change using genes from the gene set ‘Reactome interferon signaling’ in unstimulated versus 24 hour 

stimulated CD4+ T cell subtypes.

(B) IFNG expression across naïve CD4+ T cell populations

(C) IFNg expression in naïve (CD45RA+) and memory (CD45RO+) T cells

(D) Qvals of type 1 interferon signatures (red dots) in T cells after activation

(E) Boxplots show expression of all IFNA genes detected in each public dataset. Data were taken from each indicated repository, 

normalized, and filtered to show all IFNA genes present.

(F) IFNα production by CD4+ T cells upon activation. CD4+ T cells were stimulated using anti CD3 + anti CD28 for the indicated time, and 

cell supernatants were measured for the presence of IFNα

(G) Outline of CRISPR protocol. Cells were stimulated using 2ug/ml anti-CD3 + anti-CD28

(H) T7 assay for analysis of CRISPR efficiency. WT band of IFNA is expected at 589, with fragments in the CRISPR-Cas9 edited samples 

expected to be at: 346, 302, 284, and 240. L = ladder, Scr = scrambled, IFN = IFNA1 CRISPR-Cas9 targeted deletion

(I) Average expression of STAT1 targets over naïve T cell activation, calculated through mean gene expression per cell. STAT1 targets 

were taken from the STAT1_01, STAT1_02, and STAT1_03 gene sets available on MSigDB. 

(J) Expression of IFNAR1 and IFNAR2 across T cell subsets. Subsets correspond to those highlighted in the UMAP in Figure 2B.
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Supplementary Figure 6. Metabolic analysis of CD4+ T cell activation
(A) Seahorse analysis of naïve (left panel) and memory (right panel) CD4+ T cells. Cells were activated with anti-CD3 and anti-CD28 for the 
indicated amount of time, after which, oxygen consumption rate (OCR) was measured. OM = oligomycin, FCPP = carbonyl cyanide-p-
trifluoromethoxyphenyl-hydrazon, ROT = rotenone.
(B) Seahorse analysis of naïve (left panel) and memory (right panel) CD4+ T cells. . Cells were activated with anti-CD3 and anti-CD28 for the 
indicated amount of time, after which, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) was measured.
(C) Qvals for metabolic pathways upon naïve and memory CD4+ T cell activation. SCPA was used to assess pathway distribution changes 
in naïve and memory CD4+ T cells over 0 and 24 hours of stimulation.
(D) Volcano plot showing Qval output from SCPA plotted against pathway enrichment at 12 and 24 hours post stimulation. Black points 

show non significant pathways, gray points show significant pathways with no enrichment, and blue points show significant pathways that 

also show enrichment.

(E) Gene set enrichment analysis of metabolic pathways in naïve CD4+ T cells. Metabolic pathways in 0hr resting CD4+ T cells were 

compared to 12hr (left panel) and 24hr (right panel) stimulated CD4+ T cells, with arachidonic acid metabolism highlighted in red.

(F) Number of significantly perturbed metabolic pathways in resting naïve cells versus resting memory population indicated. Significance 

was classed as a Qval > 5. Percentages indicate the proportion of significant pathways
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Supplementary Figure 7. Characterizing T cells across tissue sites
(A) Proportional frequencies of T cell lineages across tissue sites
(B) Heatmap of ribosomal gene family member expression across tissue sites in CD8+ Tem cells
(C) Expression of prostaglandin family genes across tissue sites
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