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Abstract 55 

Glioblastoma’s (GBM) origin, recurrence and resistance to treatment are driven by GBM 56 

cancer stem cells (GSCs). Existing transcriptomic characterisations of GBM classify the 57 

tumours to three subtypes: classical, proneural, and mesenchymal. The comprehension of 58 

how expression patterns of the GBM subtypes are reflected at global proteome level in 59 

GSCs is limited.  60 

To characterise protein expression in GSCs, we performed in-depth proteogenomic analysis 61 

of patient-derived GSCs by RNA-sequencing and mass-spectrometry proteomics. We 62 

identified and quantified over 10,000 proteins in two independent GSCs panels, and propose 63 

a GSC-associated proteomic signature (GSAPS) that defines two distinct morphological 64 

conditions; one defined by a set of proteins expressed in non-mesenchymal - proneural and 65 

classical - GSCs (GPC-like), and another expressed in mesenchymal GSCs (GM-like). The 66 

expression of GM-like protein set in GBM tissue was associated with hypoxia, necrosis, 67 

recurrence, and worse overall survival in GBM patients.  68 

In a proof-of-concept proteogenomic approach, we discovered 252 non-canonical peptides 69 

expressed in GSCs, i.e., protein sequences that are variant or derive from genome regions 70 

previously considered protein-non-coding. We report new variants of the heterogeneous 71 

ribonucleoproteins (HNRNPs), which are implicated in mRNA splicing. Furthermore, we 72 

show that per-gene mRNA-protein correlations in GSCs are moderate and vary compared to 73 

GBM tissue. 74 

 75 
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Introduction 90 

Glioblastoma (GBM) is the most common malignant primary brain tumour, inevitably 91 

fatal, and characterised by short survival after diagnosis with median overall survival (OS) at 92 

15 months (Louis et al., 2016; Weller et al., 2015; Wen and Kesari, 2008). A widely accepted 93 

GBM classification, proposed by Verhaak et al. (2010), is based on mRNA expression 94 

patterns that distinguish four GBM subtypes: classical, mesenchymal, proneural, and neural 95 

(Roel G.W. Verhaak et al., 2010). More recently, the classification was revised by removing 96 

the neural subtype, and highlighting subtypes’ plasticity, i.e. the ability to switch from one to 97 

another (Wang et al., 2017). The CPTAC consortium has recently explored the protein 98 

expression in adult GBM tumours and proposed a multiomic classification of GBM tumour 99 

subtypes to nmf1 (proneural-like), nmf2 (mesenchymal-like), and nmf3 (classical-like) (Wang 100 

et al., 2021).  101 

Extensive research about the origin of GBM has established the theory that cancer stem 102 

cells drive the development and progression of GBM, contribute to resistance to chemo- and 103 

radio-therapy, and induce GBM recurrence (Galli et al., 2004; Singh et al., 2003). Primary 104 

GBM stem cells (GSCs) have shown to reflect the diversity of GBM, recapitulate the tumour 105 

subtypes at mRNA level, and represent a good model to study the molecular profile of this 106 

cancer and explore new therapeutic targets (Johansson et al., 2020). Many efforts were 107 

undertaken to uncover gene expression signatures that are pivotal for GSC functions, 108 

expanding our understanding of the transcriptome and proteome of GBM and GSCs (Asif et 109 

al., 2019; Guardia et al., 2020; Johansson et al., 2020; Kozuka-Hata et al., 2012; MacLeod 110 

et al., 2019; Marziali et al., 2016; Mostovenko et al., 2018; Rheinbay et al., 2013; Song et al., 111 

2017; Yanovich-Arad et al., 2021). Single-cell RNA-sequencing (scRNAseq) studies have 112 

demonstrated that GSCs are plastic and can switch between different subtypes8. Despite 113 

these efforts to characterize the transcriptional programs responsible for GSCs’ plasticity 114 

and stemness, no study has provided in-depth proteomic or proteogenomic profiling of 115 

primary GBM stem cells. Furthermore, it is not known how well GBM subtypes are 116 

recapitulated in GSCs at protein level. 117 

The aim of this study was to explore the proteomic and proteogenomic landscape of GSCs, 118 

to enhance our comprehension on: (i) the molecular GSC phenotype at protein level; (ii) the 119 

relation between mRNA and protein levels in GSCs; (iii) whether GSC proteome expression 120 

is detectable at tissue level; and (iv) non-canonical peptides originating from genome 121 

regions previously considered as non-protein-coding. 122 

Here, we report deep transcriptome and proteome profiling of patient-derived GSCs, by 123 

RNA-sequencing (RNAseq) and high-resolution isoelectric focusing coupled with liquid 124 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.06.479313doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479313
http://creativecommons.org/licenses/by/4.0/


 5 

chromatography and mass-spectrometry (HiRIEF LC-MS/MS), respectively. We discovered 125 

a new GSC-associated protein signature (GSAPS), which we validated in an independent 126 

panel of GSCs from the HGCC cohort (Johansson et al., 2020), in primary and recurrent 127 

GBM tissue, and in another set of tumour tissue from the CPTAC GBM cohort (Wang et al., 128 

2021) (Figure 1A). We demonstrate that the GSAPS recapitulates key features of GSCs, 129 

such as proneural-to-mesenchymal axis and hypoxic metabolism, consists of protein drug 130 

targets and has a potential association with OS in GBM. Furthermore, we report mRNA-131 

protein correlations and non-canonical protein sequences expressed in GSCs, discovering 132 

potentially new protein-coding targets for research and treatment.  133 

 134 

Results 135 

Protein identification and GBM proteome subtyping 136 

To extract GSC-specific features, we selected six primary GSCs (hereafter referred 137 

to as BT GSCs) for RNAseq analysis and in-depth proteomic profiling (Figure 1A). Three 138 

GSCs were previously classified as expressing the classical subtype and three expressing 139 

the proneural subtype (Wang 2017 mRNA classification, Table S1) (De Bacco et al., 2021, 140 

2012; Patanè et al., 2013). All samples were run in biological triplicates. For comparison, in 141 

the proteomic experiments we included primary human healthy astrocytes with three 142 

technical replicates representing normal brain cells, and three biological replicates of the 143 

T98G human glioblastoma cell line, representing a non-stem glioblastoma cell line (hereafter 144 

defined as controls). Across all samples, we identified 11,140 proteins, of which 9,161 145 

proteins (82.24%) had no missing values and were included in the analyses. This is, so far, 146 

the most in-depth proteomic characterisation of GSCs. 147 

Based on total proteome expression, the GSCs clearly clustered away from the normal brain 148 

cells as well as the T98G GBM cell line, and the GSC biological replicates clustered very 149 

close to each other (Figure 1B). Clustering the samples with proteins corresponding to 150 

genes previously implicated in GSC biology (Table S2) (Behnan et al., 2019; Codrici et al., 151 

2016; De Bacco et al., 2012; Gimple et al., 2019; He et al., 2012; Lathia et al., 2015; Pointer 152 

et al., 2014; Prager et al., 2019; Saygin et al., 2019) showed clear separation of GSCs from 153 

the astrocyte and the T98G line (Figure S1A). Performing single-sample gene-set 154 

enrichment analysis (ssGSEA) to define the Verhaak GBM subtype at protein level showed 155 

that three cell lines overexpressed a different subtype at protein level compared to their 156 

initial mRNA subtype classification; some GSCs initially classified as proneural had 157 

enrichment for the classical subtype and vice versa. In addition, the proteins included in the 158 
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proneural gene set projected closer to the classical gene set, suggesting that they were 159 

coexpressed in the GSCs (Figure 1C-D). This also implied that classical GSCs are more 160 

closely related to the proneural GSCs in human samples, as suggested in a mouse cell-of-161 

origin gene signature in mouse GSCs (Jiang et al., 2017). The GSCs showed higher 162 

expression of protein products of genes included in both the proneural and classical 163 

subtype, but had a consistently lower expression of proteins deriving from mesenchymal 164 

gene sets, as compared to the non-stem cell lines (Figure S1B). Based on ssGSEA, we did 165 

not detect an activation of the Wang proneural and classical gene sets at protein level, 166 

possibly because these gene sets are smaller than the Verhaak GBM gene sets. However, 167 

all GSCs had a suppression for the Wang mesenchymal subtype, in agreement with the 168 

Verhaak gene sets (Figure S2A & S2B). Furthermore, the MET gene had consistent 169 

downregulation in BT GSCs, and all GSCs had higher EGFR to MET ratio compared to 170 

controls (Figure S2A & S2C), suggesting that higher EGFR-to-MET ratio and a 171 

downregulated MET could be biomarkers of the non-mesenchymal subtypes. The 172 

downregulation of MET in classical GSCs is in agreement with previous findings (De Bacco 173 

et al., 2012), however, we found that MET is downregulated in proneural GSCs at protein 174 

level opposing the findings of De Bacco et al. (2012). 175 

 176 

Protein-mRNA correlations in GSCs  177 

Due to the variable protein expression of the gene sets used to classify GBM subtypes in the 178 

BT GSCs, we have continued with analysing the agreement between mRNA and protein 179 

per-gene products in GSCs. Per-gene correlation analysis of mRNA and protein matching to 180 

9,007 genes showed an overall moderate agreement between mRNA and protein level 181 

(median Spearman’s ρ = 0.49, 5% FDR, Figure 2A, Table S3). Analysing several 182 

established GBM and splicing gene sets of interest (Beier et al., 2007; Uhlen et al., 2017; 183 

Roel G W Verhaak et al., 2010; Wang et al., 2017) showed similar mRNA-protein 184 

correlations as observed in the entire proteome identified in the GSCs (Figure 2B). Genes 185 

upregulated in glioma stem cells (Beier et al., 2007) and glioma-elevated genes (obtained 186 

from the Human Protein Atlas – HPA (Uhlen et al., 2017)) had a higher than overall mRNA-187 

protein correlation, whereas genes involved in splicing and heterogeneous 188 

ribonucleoproteins (HNRNPs) had lower than overall correlation in GSCs.  189 

In order to verify whether the overall moderate mRNA-protein correlations are observable at 190 

GBM tissue level as well, we downloaded proteomic and transcriptomic data from the 191 

recently published CPTAC GBM cohort, which includes proteomic profiling of 99 treatment-192 

naïve GBM cancer tissues (Wang et al., 2021). Based on an analysis of mRNA and protein 193 
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products deriving from 8,292 genes, GBM tissue also had a moderate overall mRNA-protein 194 

correlation (median Spearman’s ρ = 0.51, 5% FDR, Figure 2C, Table S4). GBM tissue had 195 

more statistically-significant correlations and less skewed distribution of mRNA-protein 196 

correlations compared to the GSCs, which is most likely due to the larger sample size of the 197 

GBM cohort that provided better estimates. The selected gene sets of interest showed 198 

mRNA-protein correlation patterns in tissue similar to those in GSCs (Figure 2D), and the 199 

majority of the genes had similar correlation between mRNA and protein in GSCs and GBM 200 

tissue (Figure 2E). Although most of the estimates in GSCs and GBM were in the same 201 

direction, a proportion of genes had varying mRNA-protein correlation in GSCs compared to 202 

GBM tissue. Comparing the agreement between correlations’ estimates by a Bland-Altman 203 

plot analysis showed that proteins involved in RNA splicing and protein-folding had lower 204 

and higher mRNA-protein correlation in the GSC lines compared to GBM tissue, respectively 205 

(Figure 2F, Figure S3), suggesting that GSCs have a higher degree of impaired splicing 206 

regulation but are less likely to accumulate unfolded proteins than GBM tissue due to better 207 

translation of proteins that regulate protein folding. 208 

The mesenchymal gene sets had the highest concordance between mRNA and protein level 209 

in GBM tissue, with median correlation of r = 0.823 and r = 0.803 for the Verhaak and Wang 210 

mesenchymal gene sets, respectively (Figure 2D). This was much higher compared to the 211 

median mRNA-protein correlation in GSCs of r = 0.544 and r = 0.474 for the Verhaak and 212 

Wang mesenchymal gene sets, respectively (Figure 2B). The classical and proneural gene 213 

sets also had higher mRNA-protein correlation in GBM tissue, compared to GSCs, 214 

confirming that these gene sets might perform better at subtyping GBM tumours than 215 

subtyping GSCs. However, one limitation in our study is that the discovery panel did not 216 

include mesenchymal GSCs, which has possibly limited the variance in protein expression 217 

for the subtypes’ gene sets. Calculating the per-protein standard deviation in protein 218 

expression of genes included in the mesenchymal and classical gene sets showed higher 219 

variance in protein levels in GBM tissue than the GSCs, which could have driven the higher 220 

mRNA-protein correlations (Figure S4A & S4B). However, we found no such association for 221 

the proneural gene sets (Figure S4C), and the difference in the variance explained only 6-222 

11% of the differences in the mRNA-protein correlations of the mesenchymal gene sets, 223 

which does not sufficiently explain the large overall difference between GBM tissue and 224 

GSCs in the mRNA-protein correlation for these gene sets. It is also likely that non-cancer 225 

cells, such as stromal and immune cells, could have contributed to a larger variance in 226 

protein expression of genes included in the GBM subtypes, suggesting that the GBM 227 

subtypes expression patterns might not be fully reflected at GSC level. The higher 228 

correlations in tissue for the mesenchymal gene sets are expected, because it has been 229 
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recently shown that this subtype has a larger infiltration of immune cells (Wang et al., 2021).  230 

Still, other factors, such as gene sets’ size, mRNA decay, protein degradation, study sample 231 

size, protein identification and technical measurement errors could have all contributed to 232 

the disagreement in estimating mRNA and protein correlations in both GSCs and GBM 233 

tissue. 234 

Overall, our findings demonstrate that the regulation of mRNA translation to protein follows 235 

similar patterns in GSCs as in GBM, and that GSCs can be a representative cell model for 236 

GBM to some degree. However, there was a notable disagreement between mRNA and 237 

protein levels, which warrants investigating the GSCs at the phenotypic level by analysing 238 

the proteome. 239 

 240 

GSC-associated protein signature reflects the proneural-mesenchymal axis 241 

The plasticity between the classical and proneural subtype, flanked by the lack of consistent 242 

enrichment of the GBM gene sets at protein level, prompted us to hypothesise that gene 243 

programs associated with the proneural and classical subtype are coactivated in one type of 244 

GSCs. The suppression of the GBM mesenchymal subtype seemed a more consistent 245 

predictor for GSCs at protein level, leading to the hypothesis that GSCs at phenotypic 246 

(proteome) level express two exclusive programmes – either a mesenchymal-like or a 247 

proneural-classical-like. 248 

To select a set of proteins that describes the hypothesised GSC phenotypes, we 249 

performed a differential expression analysis, to define a GSC-associated protein signature 250 

(GSAPS). We compared each GSC triplicate to each non-stem triplicate (astrocyte or 251 

T98G), to encompass the defining stem expression signature of each cell line, and selected 252 

the overlapping proteins that were consistently differentially expressed in the same direction 253 

in all BT GSCs and in all comparisons (Figure S5). This led to a core set of 524 proteins that 254 

we define as GSAPS (Figure 3A, Table S5).  255 

As expected, gene set enrichment analysis (GSEA) of GSAPS showed upregulation of the 256 

Verhaak proneural subtype gene set and downregulation of the mesenchymal subtype and 257 

the epithelial-to-mesenchymal transition (EMT) gene sets (Figure S6). Gliomas are not 258 

tumours derived from the epithelium, therefore the EMT is not directly applicable to them. 259 

However, a similar process, proneural-to-mesenchymal transition (PMT), has been 260 

described in GBM and is associated with worse prognosis and therapy resistance (Behnan 261 

et al., 2019; Bhat et al., 2013; Halliday et al., 2014; Phillips et al., 2006; Segerman et al., 262 

2016; Wang et al., 2017). A predominant part of GSAPS consisted of upregulated proneural 263 

and downregulated mesenchymal markers, suggesting that the GSAPS is reflective of the 264 
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PMT. The GSAPS also had the hallmark hypoxia gene set downregulated, along with 265 

several other hypoxia gene sets (Figure S6B), indicating that the BT GSCs were not 266 

hypoxic. The hypoxic metabolism has been associated with the mesenchymal subtype 267 

(Behnan et al., 2019; Tejero et al., 2019), suggesting that GSAPS can reflect the subtype-268 

driven cellular metabolic condition.  269 

Based on the differences in gene sets enriched among the upregulated and downregulated 270 

GSAPS proteins, we split it into two protein sets. The first consisted of the upregulated 271 

GSAPS proteins associated with the proneural signature, proliferation and non-hypoxic 272 

metabolism, henceforth referred to as GSAPS Proneural and Classical-like protein set 273 

(GPC-like), and the other consisted of the downregulated GSAPS proteins, associated with 274 

the mesenchymal signature, hypoxia, and EMT, henceforth referred to as GSAPS 275 

Mesenchymal-like protein set (GM-like). We hypothesised that these two protein sets define 276 

two different GSC conditions, which are mutually exclusive and would better define the 277 

specific stem phenotypes in GSCs than the previously established Verhaak and Wang gene 278 

signatures established for GBM tissue. Worth noticing is that 107 of the GSAPS proteins are 279 

targetable by FDA-approved drugs (31 in the GPC-like and 76 in GM-like set, Table S6), 280 

with some drugs targeting more than one protein in the signature and 33 drugs ongoing 281 

clinical trials in GBM (Table S7). 282 

The overall protein-mRNA correlation of genes encoding for the GSAPS proteins was 283 

moderately positive (Spearman’s median r = 0.459), indicating that some features should be 284 

detectable at mRNA level but a large proportion of the GSC phenotype variance will be 285 

observable only at protein level. We detected a higher mRNA-protein agreement for genes 286 

included in the GM-like set in GSCs (Figure 3B), but this was not observed in GBM tissue 287 

(Figure 3C), which had higher mRNA-protein agreement for the GSAPS sets than GSCs. 288 

 289 

GSAPS defines two phenotypic conditions that differ in hypoxic metabolism 290 

In order to confirm the GSAPS ability to define GSC conditions along the PMT axis, 291 

we performed proteomic expression profiling on another GSC panel consisting of GSCs of 292 

all GBM subtypes (Verhaak and Wang classification, based on mRNA expression). The 293 

extended cohort included 11 patient-derived GSC lines from the HGCC cohort, identifying 294 

10,169 proteins across the cell lines, including cell lines classified as mesenchymal based 295 

on mRNA expression (Johansson et al., 2020). Subtyping the cell lines with single-sample 296 

GSEA (ssGSEA) at protein level showed that all GSCs that expressed the classical subtype 297 

also expressed the proneural subtype, and had a suppression for the mesenchymal subtype 298 

(Figure 3D), in line with previous observation from the BT GSCs. Clustering the proteins 299 
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corresponding to the subtype-specific genes included in Verhaak (Roel G W Verhaak et al., 300 

2010) and Wang (Wang et al., 2017) GBM gene sets showed again that the proteins 301 

included in the classical gene set projected closer to the proteins included in the proneural 302 

gene set and apart from the mesenchymal proteins (Figure 3E & 3F).  303 

Applying GSAPS to the HGCC panel clustered the mesenchymal GSCs separately 304 

from proneural-classical GSCs (Figure S7). To further validate whether the GSAPS is 305 

reflective of PMT, we performed GSEA on the two GSAPS protein sets comparing the 306 

proneural-classical HGCC GSC lines to the mesenchymal GSC lines. As hypothesised, we 307 

detected a strong enrichment of both GSAPS protein sets (NES>3, p < 0.001), with the 308 

GPC-like set upregulated in the proneural-classical GSCs and the GM-like upregulated in 309 

the mesenchymal GSCs (Figure 4A and 4B). ssGSEA analyses showed that GSCs 310 

expressing the GPC-like phenotype had suppression of the GM-like phenotype, and vice 311 

versa, confirming the hypothesis that these conditions are mutually exclusive. GSEA 312 

comparing the protein expression of GPC-like GSCs to GM-like GSCs on hallmark gene sets 313 

showed metabolic differences between the cell lines, with GM-like GSCs enriched for 314 

hypoxia (Figure S8).  315 

Considering that mesenchymal gene expression has been consistently associated with 316 

hypoxia, we hypothesised that the GM-like GSCs could be enriched in hypoxic regions of 317 

GBM tumour tissue, in proximity to necrosis, such as regions of tumour cells palisading 318 

around necrosis (CTpan) and tumour cells involved in microvascular proliferation (CTmvp). 319 

We then performed enrichment analysis comparing protein expression between GPC-like 320 

and GM-like GSCs to genes enriched in different GBM anatomical regions at mRNA level, 321 

based on the Ivy GBM Atlas (Puchalski et al., 2018) consisting of genes enriched at mRNA 322 

level in different GBM regions. Neither GSAPS set had enrichment in the leading edge (LE) 323 

region of GBM (OR = 1.058, Fisher’s test p = 0.485). However, genes overexpressed in the 324 

GM-like GSCs at protein level were enriched in regions of CTmvp (OR = 3.883, Fisher’s test 325 

< 2.2-16) and CTpan (OR = 2.115, Fisher’s test p = 1.19-05, Figure 4C). Oppositely, genes 326 

overexpressed in GPC-like GSCs at protein level were enriched in regions of cellular tumour 327 

– CT (OR = 5.259, Fisher’ test p = 4.149-10, Figure 4C). The findings suggest that GSCs 328 

adapt their phenotypic expression and thereby their subtype to local conditions, driving 329 

different elements of tumorigenesis and that the plasticity in itself is involved in driving the 330 

tumorigenesis. This is in line with previous observations within the Ivy GBM Atlas (Puchalski 331 

et al., 2018). However, one limitation is that the gene sets of the Ivy Atlas are derived by 332 

transcriptomic methods, leaving a gap to explore the regional protein expression in GBM for 333 

future endeavours. 334 
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In summary, these findings confirm that GSAPS is associated with PMT and that cultured 335 

GSCs exist in two mutually-exclusive phenotypic conditions, one characterised by the GPC-336 

like protein set and another characterised by the GM-like protein set. The GSC phenotypes 337 

appeared enriched in different regions of the tumour. 338 

 339 

GSAPS is enriched in recurrent GBM tissue 340 

Recurrent GBM tumours tend to have worse outcome and faster progression. 341 

Several studies have linked this to PMT, suggesting that proneural and classical GSCs are 342 

more sensitive to chemotherapy and radiotherapy, which eventually leads to selection and 343 

enrichment of the mesenchymal subtype within recurrent tumours (Behnan et al., 2019; 344 

Wang et al., 2017). To further demonstrate that GSAPS reflects PMT, we analysed 7 345 

primary and 3 recurrent GBM tissue samples on proteomic level with HiRIEF LC-MS/MS, 346 

identifying 7,810 proteins, with 7,378 proteins quantified in all samples. One primary GBM 347 

tumour was excluded from analyses because it was highly necrotic on H&E staining and 348 

clustered separately from the other tumours (Figure S9A & S9B). GSEA between non-paired 349 

recurrent and primary tumours showed activation of the mesenchymal GBM gene set and 350 

suppression of pathways associated with GPC-like GSCs in recurrent tumours (Figure S9C 351 

& 9D). As hypothesised, GSEA on the GSAPS gene sets, comparing recurrent to primary 352 

GBM, showed a suppressed GPC-like and activated GM-like protein set in recurrent GBM 353 

tumours (Figure 5A). The GM-like protein set was also enriched in the necrotic GBM sample 354 

in ssGSEA (Figure S10), further indicating that the GM-like signature is associated with 355 

necrosis.  356 

 357 

GSAPS protein signatures are associated with overall survival in GBM tissue 358 

 To demonstrate whether the GSAPS protein expression is maintained at tissue level, 359 

we explored its expression in GBM tumours from the CPTAC cohort. PCA analysis of 99 360 

GBM tumours and 10 normal brain samples from the CPTAC cohort (Wang et al., 2021) 361 

based on GSAPS expression showed clear separation of GBM from normal brain and 362 

separated mesenchymal from non-mesenchymal cancer tissue (Figure 5B). The GPC-like 363 

protein set was enriched in GBM tumours of the classical or proneural subtype (Wang 364 

classification, mRNA (Wang et al., 2017)) and the multiomic nmf1 (proneural-like) or nmf3 365 

(classical-like) subtype (Wang et al., 2021), whereas the GM-like protein set was enriched in 366 

GBM tumours of mesenchymal (Wang et al., 2017) and nmf2 (mesenchymal-like) multiomic 367 

subtype (Wang et al., 2021) (Figure 5C and 5D). This confirms that the previous 368 

observations in the CPTAC cohort are recapitulated in GSCs, i.e., mesenchymal GBM 369 
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tumours exhibited a different proteomic and metabolomic profile from non-mesenchymal 370 

GBM tumours. 371 

Considering that the GM-like signature was associated with hypoxia, necrosis and 372 

recurrence in GBM tissue, we hypothesised that it might be associated with worse OS in 373 

GBM. To prove the hypothesis, we calculated GPC and GM protein sum scores, by 374 

summarising relative expression of the proteins included in the corresponding GSAPS 375 

protein sets, and performed survival analysis. Adjusting for age, which was associated with 376 

worse OS in this GBM cohort, higher GPC protein sum scores had a statistically-non-377 

significant association with longer OS (HR = 0.278, 95% CI: 0.067-1.15, likelihood ratio test 378 

(LRT), p=0.003, Table S8), whereas higher GM protein sum scores were associated with 379 

shorter OS (HR = 4.162, 95% CI: 1.181-14.662, LRT, p=0.001) in Cox proportional hazards 380 

models. This was also confirmed with KM survival analysis (Figure S11C & S11D, logrank 381 

test, p < 0.05). To incorporate both protein sets, we then calculated a log2 ratio of the GM to 382 

GPC protein sum score (log2 GM/GPC), which showed that higher log2 GM/GPC ratios 383 

were associated with worse OS (HR = 2.183, 95% CI: 1.063-4.481, LRT=0.002), adjusted 384 

for age in Cox models. This association remained consistent by categorising log2 GM/GPC 385 

ratio to higher (> third quartile) and medium/lower ratio (≤ third quartile) in KM curves (Figure 386 

5E, logrank test, p = 0.028).  387 

Overall, these results show that GSAPS describes a GSC cellular signal that can categorise 388 

tumours across the PMT axis, and that higher protein expression of the GM-like signature 389 

may be associated with worse OS in GBM. 390 

 391 

New protein-coding targets in GSCs 392 

 Stem cells often utilize parts of the genome that mature cells do not, such as early 393 

developmental genes, to obtain pluripotency. To explore if GSCs express non-canonical 394 

proteins, i.e. proteins expressed from genome regions considered as non-protein-coding, we 395 

employed a previously established proteogenomics pipeline (Umer et al., 2021; Zhu et al., 396 

2018), to search for non-canonical peptides in BT GSCs. For this aim, we created an 397 

RNAseq-based database of predicted protein sequences, by translating the detected 398 

transcript sequences obtained from RNAseq of BT GSCs to protein sequences, and 399 

predicting corresponding tryptic peptides by in silico tryptic cleavage. We then appended the 400 

non-canonical database to a canonical database of protein sequences and searched for 401 

non-canonical peptides among the identified peptide spectra matches (PSMs). This 402 

approach allowed us to discover novel non-canonical peptides matching to novel protein 403 

sequences corresponding to genome regions predicted to be non-protein-coding, such as 404 
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pseudogenes and lncRNAs, as well as non-canonical peptides matching to canonical 405 

protein-coding genes that have not been previously described, such as novel start sites, 406 

splice variants, gene extensions, etc. 407 

We detected 252 non-canonical peptides expressed in the BT GSCs, half of them with 2 or 408 

more peptide spectral matches (>=2 PSMs, n = 118, 53.17%, Figure 6A, Table S9). More 409 

than half (53.97%) were novel peptides, whereas the remaining peptides matched to non-410 

canonical sequences of protein-coding genes (Figure 6B & 6C).  411 

One tenth of the non-canonical peptides (n=23) matched to protein-coding genes included in 412 

the GSAPS, as expected mostly the GPC-like protein set (n=19), including exon variants of 413 

HNRNPA2B1, QKI, CUX1, EPHB3 and GAB1 (GPC-like) and 5’-UTR extensions of SOX2, 414 

TRIM24, QKI, and MSI2 (GPC-like), further highlighting their potential importance in GSC 415 

biology.  416 

A recent screen of non-canonical open-reading frames characterised hundreds of new 417 

proteins in human induced pluripotent stem cells (iPSC) and human foreskin fibroblasts 418 

(HFF) (Chen et al., 2020). To validate the novel peptides discovered in our study, we 419 

downloaded the novel amino-acid sequences reported by Chen et. al, and found that 40 of 420 

the non-canonical peptides discovered in our study overlapped with their non-canonical 421 

protein sequences, providing independent support for these sequences (Table S9). Most of 422 

the non-canonical peptides were extensions of protein-coding genes (n = 33, 82.5%).  423 

Sixteen non-canonical peptides found in GSCs matched to a family of ubiquitously 424 

expressed heterogenous nuclear ribonucleoproteins (HNRNP), which are involved in mRNA 425 

splicing, processing and metabolism41. Half of these peptides matched to processed 426 

pseudogenes (HNRNPA1-P8, -P12, - P14, -P16, and -P59), and the remaining half to 427 

variants of the isoforms A2 and B1. Among the non-canonical peptides matching to protein-428 

coding genes, several matched to two novel protein-coding isoforms of HNRNPA2B1 429 

reported by Chen et al. (2020), which have upstream extensions of the canonical protein 430 

isoforms’ sequences (Figure 6D) (Chen et al., 2020). The canonical HNRNPA2B1 protein 431 

had a higher expression in BT GSCs compared to non-stem controls and was part of the 432 

GPC-like protein set, along with other HNRNPs (HNRNP-U, -D, -DL, and -LL). Interestingly, 433 

the non-canonical peptides matching to the HNRNPA2B1 gene also had a higher expression 434 

in the BT GSCs compared to the controls (Figure 6E, Table S10, p < 0.05, 5% FDR), 435 

suggesting a role in GPC-like GSC biology. Still, it remains to be elucidated if the non-436 

canonical protein sequences detected in GSCs in this study, such as those of HNRNPA2B1, 437 

are expressed at protein level only in GSCs or provide improved gene models. Overall, our 438 

findings show that some gene variants previously considered as non-coding are translated 439 
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and expressed in GSCs and GBM at protein level and that a subset of these is related to 440 

proteins included in the GSAPS. 441 

 442 

Discussion 443 

 GBM is a highly malignant cancer, which is driven by GSCs and their ability to adapt 444 

in response to treatment and the tumour microenvironment. To improve treatment options 445 

for GBM patients, it is essential to understand the underlying mechanisms driving GSCs and 446 

how mRNA is translated to protein level, allowing the tumour to progress, adapt, and resist 447 

therapeutic interventions.   448 

In this study we have performed the most in-depth proteogenomic analysis of GSCs to date, 449 

providing a new layer of information on GSC biology. Based on HiRIEF LC-MS/MS 450 

proteomics of primary GSCs we present a new GSC-associated protein signature (GSAPS). 451 

GSAPS recapitulates GSC-specific features, such as PMT and hypoxia, and was validated 452 

in an independent panel of GSCs from the HGCC cohort (Johansson et al., 2020). We 453 

discovered that non-mesenchymal GSCs express proteins belonging to both the proneural 454 

and classical subtype, maintaining the expression of a core set of proteins that we defined 455 

as GPC-like. On the other side of the spectrum were the mesenchymal-like GSCs, enriched 456 

for the GM-like protein set, with MET among proteins with highest levels. In line with the 457 

PMT hypothesis, we find that GSCs mainly exist in two phenotypic conditions, one defined 458 

by the GPC-like signature and another defined by the GM-like signature, which are mutually 459 

exclusive.  460 

Furthermore, we show that the GM-like set is enriched in recurrent GBM tissue, in regions 461 

characterised by hypoxia and necrosis, and mesenchymal GBM tumours. Previous 462 

observations at tissue proteome level from the CPTAC cohort (Wang et al., 2021), have 463 

shown that mesenchymal GBM tumours have higher MET levels and are enriched for EMT, 464 

hypoxia, glycolysis, angiogenesis and inflammatory pathways, however it was not clear 465 

whether the pathways were enriched in GBM tumour cells or due to microenvironment. We 466 

demonstrated that all these observations at tissue level are driven by expression patterns at 467 

GBM cellular level, adding to our understanding of GBM tissue development. 468 

From a clinical perspective, the GSAPS encompasses over 100 protein drug targets, out of 469 

which 33 are currently undergoing clinical trials for GBM. It is tempting to speculate that the 470 

signature might serve a purpose in drug-development guidance, where a combination 471 

treatment targeting proteins in both the GPC-like and the GM-like protein set might be more 472 

effective. Furthermore, we report that higher GM over GPC ratio might be associated with 473 
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worse OS in GBM and could be of prognostic value. However, this has to be confirmed in 474 

larger, independent cohorts. 475 

Possible limitations of our work are in the initial derivation of GSAPS by comparing proneural 476 

and classical GSCs to two types of non-stem cell lines instead of using several non-stem 477 

controls, and that the cells are cultivated in vitro. However, we have stringently filtered the 478 

proteins that would define GSAPS, and the strength of the in vitro cultivation of GSCs is in 479 

the ability to use them to experimentally validate their stem-cell nature through established 480 

methods described elsewhere (De Bacco et al., 2021). It is also relevant to point out that 481 

GSAPS showed consistent findings in subsequent validation of the signature in another 482 

panel of validated GSCs that use different culturing and stem-cell validation methods 483 

(Johansson et al., 2020). Furthermore, we have shown that the GSAPS expression can be 484 

traced in GBM tissue in our experiments and in a publicly available dataset on GBM tissue 485 

proteome expression, potentially providing clinically-useful information. 486 

In summary, we present the most in-depth proteogenomic characterisation of GSCs to date, 487 

and report a new GSC-associated protein signature that differentiates two phenotypic 488 

conditions of GSCs along the proneural-to-mesenchymal axis. We have shown that some 489 

phenotypic patterns enriched in GBM subtypes at tissue proteome level are driven by protein 490 

expression programmes at GBM cellular level. Finally, we discover novel protein-coding 491 

gene regions in GSCs, some of which have been reported in other, non-cancer cells and 492 

some that are uniquely reported in this study. These findings allow studying GBM at a GSC 493 

cellular proteomic level, improve our understanding of GSC biology and identify new, both 494 

protein and pathway-related, subtype-specific therapeutic targets for GSCs. 495 

 496 

Key points 497 

 This study provides the most in-depth proteome analysis of GSCs to date, comparing 498 

protein to mRNA levels. Only a subset of proteins has high correlation to mRNA 499 

levels. 500 

 Two protein sets define a GSC-associated protein signature that distinguishes two 501 

phenotypic conditions of GSCs, which are mutually exclusive and have an inverse 502 

association with clinical outcomes in GBM. 503 

 In GSCs, we discovered protein sequences matching to genes previously 504 

established as non-protein-coding. These novel non-canonical proteins, along with 505 

newly discovered variants of protein-coding genes in this study, may have 506 

implications in GBM. 507 

 508 
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 509 

Importance of the study 510 

By identifying over 10,000 proteins in two patient-derived GSC panels, this study is 511 

the most in-depth data resource of protein expression in GSCs, to date. Overall, mRNA 512 

levels are moderately good at predicting protein levels, highlighting the importance of 513 

understanding protein expression signatures behind GSC phenotypes. 514 

We report a new GSC-associated protein signature (GSAPS) that describes two phenotypic 515 

conditions of GSCs. The expression at tissue level of the two protein sets that consist 516 

GSAPS, i.e., the GPC-like and GM-like sets, had an inverse association with clinically-517 

relevant outcomes in GBM, such as necrosis, recurrence and overall survival, and may 518 

identify new treatment targets. 519 

Proteogenomics allows for discovering non-canonical protein sequences that have not been 520 

observed before, matching to new protein variants, or pseudogenes and long-non-coding 521 

RNAs not expected to be protein-coding. The discovery of non-canonical proteins in GSCs 522 

questions established gene models and indicates potentially new proteins, which may have 523 

implications in GBM and warrant further investigation. 524 

 525 

 526 

Materials and methods 527 

GSCs and GBM tumours 528 

BT human GSC lines were grown as neurospheres in serum-free medium as 529 

described and validated in (De Bacco et al., 2021; Galli et al., 2004). The human 530 

glioblastoma T98G cell line and the astrocyte line were purchased from ATCC and 531 

CliniSciences (Guidonia Montecelio, Italy), respectively. The HGCC human GSC cultures 532 

are part of the HGCC biobank (https://hgcc.se/), and have been previously described 533 

and validated (Johansson et al., 2020; Xie et al., 2015a).  534 

Ten GBM tissue samples were collected and fresh-frozen at the Neurosurgical Unit 535 

and evaluated by a pathologist at the Hospital Spirito Santo, Pescara, "G. D'Annunzio" 536 

University, Chieti, Italy. All patients gave informed consent and the samples were collected 537 

and processed in accordance with the Declaration of Helsinki. The molecular analyses were 538 

approved by the Ethics Committee of the Provinces of Chieti and Pescara and of the "G. 539 

d'Annunzio" University of Chieti-Pescara.  540 

 541 

Cell culture 542 
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The T98G cells were cultured in DMEM supplemented with 10% foetal bovine serum. 543 

The astrocytes were cultured in Astrocyte Medium (ScienCell #1801). We grew three 544 

biological replicates for each BT GSC and the T98G line, and one biological replicate for the 545 

astrocyte line.  546 

Handling of HGCC human tissues and data were performed in accordance with the 547 

protocol approved by Uppsala ethical review board (2007/353) and informed written consent 548 

was obtained from all patients. The cells were cultured as previously described (Jiang et al., 549 

2017; Xie et al., 2015b), and were analysed between passage 10-19. Briefly, cultures were 550 

maintained on poly-ornithine/laminin-coated dishes in DMEM/F12 Glutamax (Gibco) and 551 

Neurobasal medium (Gibco) mixed 1:1 with addition of 1% B27 (Invitrogen), 0.5% N2 552 

(Invitrogen), 1% Penicillin/Streptomycin (Sigma), 10 ng/ml each of EGF and FGF2 553 

(Peprotech). They have been regularly screened for mycoplasma infection using a PCR-554 

based method with the primers Myco1 (5’-GGCGAATGGGTGAGTAACACG) and Myco2 (5’-555 

CGGATAACGCTTGCGACTATG) (Invitrogen) and no cultures have tested positive. 556 

 557 

GBM tumour tissue processing 558 

The tissue samples were fixated on OCT and cut into 10 μm-thick sections, of which 559 

30 sections were collected in a tube for lysis and parallel sections were fixed on slides for 560 

haematoxylin and eosin staining. The sections collected in tubes were washed in PBS to 561 

remove the blood, centrifuged, and the tissue pellets were used for subsequent DNA, RNA, 562 

and protein isolation with the AllPrep DNA/RNA/Protein Mini Kit (Qiagen). 563 

 564 

RNA sequencing 565 

 Sequencing libraries for whole transcriptome analysis were prepared using Stranded 566 

mRNA-Seq Library Preparation Kit. RNA-seq was performed on an Illumina HiSeq 2500 567 

Sequencer using standard conditions at the Next Generation Sequence Facility of University 568 

of Trento (CIBIO). 569 

 570 

RNA isolation, library preparation, RNA-sequencing, qRT–PCR  571 

 Total RNA from the BT GSCs was isolated by TRIzol (Invitrogen), subjected to DNase-572 

I (Ambion) treatment and RNAs were depleted of ribosomal RNA. Two RNA samples 573 

derived from normal brain were purchased from Clontech Laboratories and BioChain 574 

respectively.  575 
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 576 

Data Quality check 577 

The fastq files generated by the Illumina sequencer were monitored for quality by the 578 

FastQC tool (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, version 0.11.6). It 579 

provides a modular set of analyses which tests if the data has any problems. Since for each 580 

sample there is one FASTQC output, with several results, it was decided to use multiQC tool 581 

(http://multiqc.info/,  v.1.4) to aggregate the information for a better interpretation. The main 582 

outcome of these analysis is that the reads have very good quality and despite some 583 

differences among samples, the further analyses could be done without corrections at this 584 

stage. 585 

 586 

Transcript quantification 587 

 Transcript quantification was performed using Salmon (Patro et al., 2017). Salmon 588 

applies a quasi-mapping with a two-phase inference procedure to quantify expression at the 589 

transcript level. The unique feature that distinct Salmon from other transcript assemblers 590 

account is in its ability to account for experimental and other biases that are common to 591 

RNA-seq data such GC content. ENSEMBL cDNA release 99 from GRCh38 was used as 592 

the target transcriptome. To obtain gene-level quantifications, the median value across the 593 

transcripts of each gene was assigned as the gene expression. All options were set to 594 

default and -l A parameter was set to detect the library type from the RNA-seq datasets. 595 

 596 

Mass-spectrometry-based proteomics  597 

 The samples were prepared and run following the HiRIEF LC-MS/MS protocol, as 598 

previously described (Branca et al., 2014).  599 

 600 

Cell lysis and in-solution digestion 601 

  The BT GSCs cells were lysed in 200 μl SDS-lysis buffer (containing (4% (w/v) SDS, 602 

50 mM HEPES pH 7.6, and 1mM dithiothreitol) using 1:4-10 of sample to buffer ratio. 603 

Afterwards, the cells were heated at 95°C for 5 min while shaking on a pre-warmed block, 604 

and sonicated to dissolve the pellet and disrupt the remaining DNA. The lysate was then 605 

centrifugated at 14 000xg for 15 min and the supernatant removed. Proteins from HGCC 606 

cells and GBM tissue were extracted with the AllPrep DNA/RNA/Protein Mini Kit (Qiagen). 607 
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The protein concentration in the lysate was determined by Bio-Rad DC Assay and equal 608 

amounts of each sample was subjected to in-solution digestion. Briefly, the cell pellet was 609 

denatured at 95°C for 5 minutes followed by reduction with dithiothreitol and alkylation with 610 

chloroacetamide at end concentrations of 5mM and 10mM respectively. LysC was added at 611 

a 1:50 (w/w) ratio and digestion was performed at 37°C 6 hours or overnight. The samples 612 

were further digested by trypsin at a 1:50 (w/w) ratio with 37°C overnight incubation. After 613 

LysC/trypsin digestion, ~1% of each peptide sample was aliquoted for ~15min gradient LC-614 

MS/MS runs to check for protease activity by the samples’ miscleavage rate.  615 

 616 

TMT-labelling 617 

 Before labelling, equal amounts of peptide samples were pH adjusted using TEAB, 618 

pH 8.5. The resulting peptide mixtures were labelled with isobaric TMT-tags (Thermo 619 

Scientific). Biological triplicates of the BT GSCs and the T98G line, and technical triplicates 620 

of the astrocyte line were labelled with three TMT-10-plex sets, using two internal standards 621 

per set.  The internal standards were made of sample pools. HGCC GSC samples were run 622 

in one TMTpro-16-plex set, without an internal standard, leaving the 133C and 134N 623 

channels empty. GBM tissue samples were labelled with one TMT-10 set, without an internal 624 

standard. Labelling efficiency was determined by LC-MS/MS before pooling of samples. 625 

Subsequently, sample clean-up was performed by solid phase extraction (SPE strata-X-C, 626 

Phenomenex). The labelling schemes per sets can be found in Tables SM1A, SM1B, and 627 

SM1C (Supplementary File 3).  628 

 629 

High resolution isoelectric focusing (HiRIEF) 630 

 The HiRIEF prefractionation method at peptide level was applied as previous 631 

described (Branca et al., 2014). Briefly, after sample clean-up by solid phase extraction 632 

(SPE strata-X-C, Phenomenex), the sample pool was subjected to peptide IEF-IPG 633 

(isoelectric focusing by immobilized pH gradient) in pI range 3-10 (1mg). For the 634 

proteogenomics experiments, the sample pools of the BT cells were subjected to additional 635 

IEF and LC-MS/MS run in a separate experiment on IPG strips in the pI range 3.7-4.9, to 636 

increase the detection of peptides. The freeze-dried peptide sample was dissolved in 250µl 637 

rehydration solution containing 8M urea, and allowed to adsorb to the gel strip by swelling 638 

overnight. The 24cm linear gradient IPG strip (GE Healthcare) was incubated overnight in 639 

8M rehydration solution containing 1% IPG pharmalyte pH3-10 (GE Healthcare). After 640 

focusing, the peptides were passively eluted into 72 contiguous fractions with MilliQ water / 641 
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35% acetonitrile / 35% acetonitrile and 0.1% formic acid, using an in-house constructed IPG 642 

extractor robotics (GE Healthcare Biosciences AB, prototype instrument) into a 96-well plate 643 

(V-bottom, Greiner product #651201). The BT GSCs samples were rerun and additionally 644 

fractionated by IEF-IPG in pI range 3.7-4.9, in order to detect more peptides for 645 

proteogenomic analyses. The resulting fractions were then freeze dried and kept at -20°C 646 

until LC-MS/MS analysis. 647 

 648 

LC-MS/MS analysis 649 

 Online LC-MS was performed using a Dionex UltiMate™ 3000 RSLCnano System 650 

coupled to a Q-Exactive HF mass spectrometer (Thermo Scientific). Each plate well was 651 

dissolved in 20 ul solvent A and 10 ul were injected. Samples were trapped on a C18 guard-652 

desalting column (Acclaim PepMap 100, 75μm x 2 cm, nanoViper, C18, 5 µm, 100Å), and 653 

separated on a 50cm long C18 column (Easy spray PepMap RSLC, C18, 2 μm, 100Å, 75 654 

μm x 50 cm). The nano capillary solvent A was 95% water, 5% DMSO, 0.1% formic acid; 655 

and solvent B was 5% water, 5% DMSO, 95% acetonitrile, 0.1% formic acid. At a constant 656 

flow of 0.25 μl min−1, the curved gradient went from 2% B up to 40% B in each fraction, 657 

followed by a steep increase to 100% B in 5 min and subsequent re-equilibration with 2% B.  658 

 FTMS master scans with 60,000 resolution (and mass range 300-1700 m/z) were 659 

followed by data-dependent MS/MS (30 000 resolution) on the top 5 ions using higher 660 

energy collision dissociation (HCD) at 30% normalized collision energy. Precursors were 661 

isolated with a 2 m/z window. Automatic gain control (AGC) targets were 1e6 for MS1 and 662 

1e5 for MS2, with minimum AGC target of 1e3. Maximum injection times were 100 ms for 663 

MS1 and 100 ms for MS2. The entire duty cycle lasted ~2.5 s. Dynamic exclusion was used 664 

with 30.0s duration. Precursors with unassigned charge state or charge state 1, 7, 8, >8 665 

were excluded. 666 

 667 

Protein identification 668 

 Raw MS/MS files were converted to mzML format using msconvert from the 669 

ProteoWizard tool suite(Kessner et al., 2008). Spectra were then searched in the Galaxy 670 

framework using tools from the Galaxy-P project (Boekel et al., 2015; Goecks et al., 2010), 671 

including MSGF+ (Kim and Pevzner, 2014) (v2020.03.14) and Percolator (Kall et al., 2007) 672 

(v3.04.0), where 8 subsequent HiRIEF search result fractions were grouped for Percolator 673 

target/decoy analysis. Peptide and PSM FDR were recalculated after merging the percolator 674 

groups of 8 search results into one result per TMT set. The reference database used was 675 
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the human protein subset of ENSEMBL101. Quantification of isobaric reporter ions was 676 

done using OpenMS project's IsobaricAnalyzer (Rost et al., 2016) (v2.5.0). Quantification on 677 

reporter ions in MS2 was for both protein and peptide level quantification based on median 678 

of PSM ratios, limited to PSMs mapping only to one protein and with an FDR q-value < 0.01. 679 

FDR for protein level identities was calculated using the -log10 of best-peptide q-value as a 680 

score. The search settings included enzymatic cleavage of proteins to peptides using trypsin 681 

limited to fully tryptic peptides. Carbamidomethylation of cysteine was specified as a fixed 682 

modification. The minimum peptide length was specified to be 6 amino acids. Variable 683 

modification was oxidation of methionine.  684 

 685 

Proteogenomic identification 686 

The proteogenomic pipeline is described elsewhere in detail, a brief description is 687 

provided as follows(Umer et al., 2021). Transcripts were assembled from the RNA-seq data 688 

of each sample using stringTie (version 2.113) (Kovaka et al., 2019) based on the human 689 

reference gene annotations (ENSEMBL99). Next, transcripts with low expression level (TPM 690 

<1) were removed and a peptide database was generated from the transcript sequences 691 

using custom scripts. Tryptic peptides with a minimum length of eight amino acids and a 692 

maximum length of 40 amino acids were kept. The database was fractionated based on the 693 

peptide isoelectric points as further detailed in (Branca et al., 2014). Finally, the human 694 

canonical proteins (ENSEMBL99) were appended to the peptide database. 695 

The proteomics data from each cohort were searched against the peptide database from the 696 

same cohort using MS-GF+ Release (version 15 January 2020). Percolator (version 3.04.0) 697 

was used for Percolator target-decoy scoring. Peptides at FDR<1% were considered 698 

significant, while those matching canonical protein sequences were removed. Using BLAST, 699 

the remaining peptides were searched against a larger collection of reference protein 700 

databases that included Uniprot version 11 December 2019, Gencode version 33, Ensembl 701 

version 99, and RefSeq (version 29 May 2020). Peptides matching any sequence were 702 

removed and those with one mismatch were further validated using SpectrumAI (Zhu et al., 703 

2018). Finally, the list of novel peptides contained peptides with more than one mismatch or 704 

no match to known proteins as well as those that passed SpectrumAI. 705 

 706 

Bioinformatics and statistical analyses  707 

 708 

Differential expression and GSAPS algorithm 709 
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 Protein or peptide differential expression was performed with a two-sided t test for all 710 

comparisons and corrected for multiple testing with the false discovery rate (FDR), at 5%. 711 

The GSAPS was isolated by comparing each BT GSCs triplicate to a control (astrocyte or 712 

T98G line) triplicate, and finding the intersect of proteins consistently upregulated and 713 

downregulated in the BT GSCs as compared to controls (see Figure S5). 714 

 715 

Protein-mRNA correlation 716 

 Protein per-gene expression was calculated as the average of the proteins matching 717 

to the same gene, whereas the mRNA per-gene expression was calculated as the sum of 718 

TPMs per gene. Correlations between matching protein and mRNA expression levels per 719 

overlapping genes were tested with the Spearman’s correlation coefficient and permutation 720 

test at alpha = 0.05, and corrected for multiple testing with the FDR. Protein-mRNA 721 

correlation for the CPTAC data was performed using processed and normalised proteomic 722 

and transcriptomic data available from (Wang et al., 2021). The selected gene sets were 723 

extracted from the MSigDb database (Liberzon et al., 2015; Subramanian et al., 2005), apart 724 

from the ‘Glioma-elevated’ and ‘FDA drugs’ datasets, which were extracted from the Human 725 

Protein Atlas (Uhlen et al., 2017).  726 

The Bland-Altman analysis on agreement in correlations between GSCs and GBM tissue 727 

was performed as previously described (Bland and Altman, 1986). The genes outside the 728 

95% CI of the Bland-Alman plot were considered to have strong disagreement; we extracted 729 

the gene lists above and below the 95% CI and performed enrichment analysis with an 730 

overrepresentation test in g:Profiler. 731 

 732 

Feature reduction, visual projection and clustering 733 

 PCA, UMAP, and hierarchical clustering of samples based on protein expression was 734 

performed on scaled log2 relative protein expression values. We used the prcomp, umap, 735 

and Heatmap functions from the stats, umap, and ComplexHeatmap packages, respectively. 736 

 737 

ssGSEA, GSEA and MSigDB 738 

 ssGSEA was performed by ordering the protein rank according to their log2 relative 739 

protein expression values in a sample and performing a GSEA on gene sets of interest, 740 

adjusting for multiple comparisons at 5% FDR. For subtyping the GSCs, the Verhaak gene 741 

sets were downloaded from the MSigDB database (Liberzon et al., 2015; Subramanian et 742 
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al., 2005) and we created a dataset with Entrez IDs for the Wang gene sets and the GSAPS 743 

protein sets. GSEA analyses were performed separately for published, hallmark, and GO 744 

biological processes’ gene sets by sub-setting the MSigDB to the C2 GCP and REACTOME, 745 

H, and C5 Biological processes categories. The ranking in the comparisons GPC-like vs. 746 

GM-like GSCs and recurrent vs. primary GBM tissue was based on the difference in log2 747 

average expression in the first group and the log2 average expression in the second group. 748 

For all the GSE analyses we used the GSEA function from the clusterProfiler package.  749 

 750 

In silico validation 751 

GBM anatomical localisation 752 

GBM differentially expressed gene sets per anatomic region were downloaded from 753 

the Ivy League GBM Atlas (Puchalski et al., 2018), including gene sets of leading edge 754 

(n=1,998), cellular tumour (n=114), palisades around necrosis (n=389), and microvascular 755 

proliferation (n=1,126). The gene sets per regions consisted of genes two-folds (log2-FC > 756 

1) differentially expressed in that region as compared to the remaining regions, at 1% FDR, 757 

based on an edgeR analysis. We calculated the mean protein log2-FC between GPC-like 758 

and GM-like HGCC GSCs as a difference between mean log2 protein values and 759 

categorised them as up in GPC-like (if log2-FC>0) and up in GM-like (if log2-FC<0). We then 760 

made contingency tables and tested if the proteins were overrepresented in the anatomical 761 

regions’ gene sets with a two-sided Fisher’s exact test, at alpha < 0.05 and at 5% FDR. 762 

 763 

CPTAC proteomics dataset  764 

Processed, mass-spectrometry global-proteomics, log2-normalised protein 765 

expression data of GBM tissue samples (n = 99) and normal brain tissue samples (n = 10), 766 

along with clinical, subtype, molecular and survival data were downloaded from the CPTAC 767 

cohort (Wang et al., 2021). Based on the expression of proteins included in the GSAPS, the 768 

samples were clustered with PCA and hierarchical clustering (method: Euclidean distance). 769 

We then performed ssGSEA for the GPC-like and GM-like protein set, by ranking the 770 

proteins within a sample based on their log2 relative expression values.  771 

We first performed survival analyses with Kaplan-Meier (KM) curves and a log-rank test at 772 

alpha=0.05, categorising the GBM patients according to GSAPS gene set enrichment (at 773 

protein level). The overall survival was calculated as the time period from date of initial 774 

pathological diagnosis to date of death or date of loss to follow-up. GPC and GM sum scores 775 

were calculated by summing up the relative protein expression values of the proteins 776 
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included in the GPC-like and GM-like protein set, respectively, and log2-normalising them. 777 

We then performed a survival analysis with Cox proportional hazards models and a 778 

likelihood ratio test at alpha = 0.05, adjusting the scores for age. To further confirm the 779 

association between the GPC and GM sum scores, we categorised them based on quartile 780 

expression values to high/medium (> first quartile) and low score (< first quartile) and 781 

performed KM survival analysis with a logrank test, at alpha = 0.05. Finally, we calculated a 782 

log2 ratio of the GM to the GPC sum score and performed survival analysis both with Cox 783 

proportional hazards models and likelihood ratio test, adjusting for age. We then categorised 784 

the GM/GPC ratio to high (> third quartile) and low/medium (< third quartile) and performed 785 

KM survival analysis with a logrank test, at alpha = 0.05. 786 

 787 

Software 788 

All analyses were performed in R v.4.0.3. 789 

 790 

Data availability 791 

 The mass spectrometry proteomics data have been deposited to the 792 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers: 793 

PXD027341, PXD027339 and PXD027335. RNAseq files, the datasets and the code used 794 

for the analyses can be provided by the corresponding authors upon reasonable request. 795 

 796 
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 Supplementary File 1 – Supplementary figures: Figure S1-S11. 798 

 Supplementary File 2 – Supplementary tables: Table S1-S10. 799 

 Supplementary File 3 – Supplementary methods tables: Table SM1A-1C. 800 
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 1058 

Figure 1. Study workflow and exploratory findings. A. In a discovery panel of six 1059 

patient-derived GSC lines, previously subtyped as expressing the classical and 1060 

proneural GBM subtype at mRNA level, we have identified variable enrichment of the 1061 
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proneural (PRO) and classical (CLA) GBM subtype, suggesting a plasticity between 1062 

the two subtypes. However, all of the GSC lines had a suppression for the GBM 1063 

mesenchymal (MES) subtype at protein level. We hypothesised that the GSCs are 1064 

more distinctive at protein level based on whether they express the mesenchymal 1065 

subtype or not and aimed to identify a protein signature (GSAPS), that consisted of 1066 

two protein sets: the proneural+classical-like (GPC-like) protein set that was 1067 

expressed in proneural and classical GSCs and a mesenchymal-like protein set 1068 

(GM-like) expressed in mesenchymal GSCs. GSAPS was identifiable in another 1069 

panel of 11 patient-derived GSCs, and in GBM tissue, where the expression of lower 1070 

GPC-like protein scores was associated with worse overall survival, whereas lower 1071 

GM-like protein scores were associated with better overall survival. Finally, by 1072 

integrating proteomic and transcriptomic expression, we have performed 1073 

proteogenomic analysis of the discovery panel of GSCs, discovering novel protein-1074 

coding gene regions and providing assessment of how well mRNA levels predict 1075 

protein levels; B. PCA based on proteomic expression of the GSC samples and 1076 

controls; C-D. UMAP of protein products of genes included in the Verhaak 2010 1077 

GBM subtypes’ gene sets (C) and Wang 2017 GBM subtypes’ gene sets (D). 1078 

1079 
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1080 
Figure 2. mRNA-protein correlations in BT GSCs and in CPTAC GBM tissue. A. 1081 

mRNA-protein correlation of genes identified in BT GSCs with both RNAseq and 1082 

HiRIEF LC-MS/MS; B. GSCs’ mRNA-protein correlation of genes included in 1083 

selected gene sets of interest; C. mRNA-protein correlation of genes identified in 1084 

GBM tissue with both RNAseq and HiRIEF LC-MS/MS, CPTAC cohort; D. GBM 1085 
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cancer tissue mRNA-protein correlation of genes included in selected gene sets of 1086 

interest; E. Density plot comparing mRNA-protein correlation coefficients in GSCs 1087 

and GBM tissue. Most of the genes have a positive correlation (> 0) in both GSCs 1088 

and GBM tissue; F. Bland-Altman plot comparing the agreement between correlation 1089 

coefficients in GSCs and in GBM tissue. The mean of the coefficients is plotted on 1090 

the x axis and the difference between the coefficients is plotted on the y axis. The 1091 

dashed lines show the 95% confidence intervals for the differences in correlation 1092 

coefficients. Outside of the dashed lines are the genes with the largest disagreement 1093 

in mRNA-protein correlations at GBM tissue and GSC level. The proteins below the 1094 

lower dashed line having significantly lower mRNA-protein correlation in GSCs and 1095 

proteins above the upper dashed line having significantly higher mRNA protein-1096 

correlation in GSCs, as compared to GBM tissue. These genes lists were enriched 1097 

for the annotated gene ontology (GO) terms; the full enrichment terms are given in 1098 

Figure S3. 1099 

  1100 
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 1101 

Figure 3. GSAPS and validation in the HGCC panel of GSCs. A. Hierarchical clustering 1102 

of the BT GSC panel and controls with proteins included in GSAPS (distance: 1-Spearman’s 1103 

r); B. Correlation between protein and mRNA levels of GSAPS protein sets in GSCs; C. 1104 

Correlation between protein and mRNA levels of GSAPS protein sets in GBM tissue; D. 1105 

Hierarchical clustering based on the protein expression levels of genes included in the 1106 

Verhaak gene sets (distance: 1-Spearman’s r), and EGFR and MET protein expression in 1107 

GSCs of different subtypes; E-F. UMAP dimensional reduction of the genes included in the 1108 

Verhaak GBM subtypes’ gene sets (E) and the revised Wang GBM subtypes’ gene sets (F). 1109 
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1110 
Figure 4. Proneural-mesenchymal axis and GSAPS association with different gene 1111 

sets and pathways. A. GSEA of the GSAPS protein sets GPC-like and GM-like in 1112 

proneural+classical GSCs as compared to mesenchymal GSCs. The GPC-like and GM-like 1113 

protein sets were enriched in the proneural+classical GSCs and mesenchymal GSCs, 1114 

respectively (NES > 3, p < 0.001, 1% FDR); B. MSigDb C2 gene sets (subcategory: GCP 1115 

and REACTOME) enriched in the GPC-like GSCs as compared to GM-like GSCs at 5% 1116 

FDR, GSEA, x axis = normalised enrichment score; C. Sankey diagram depicting the 1117 

proportion of genes upregulated in the GPC-like (PRO) or GM-like (MES) GSCs at protein 1118 

level that is enriched in different anatomical regions of GBM: leading edge (LE), cellular 1119 

tumour (CT), cellular tumour palisading around necrosis (CTpan), and cellular tumour’s 1120 

microvascular proliferation (CTmvp). On the right side of the diagram, the enriched protein 1121 

set is annotated per region (two-sided Fisher’s exact test, p < 0.001, 1% FDR);  1122 

1123 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.06.479313doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479313
http://creativecommons.org/licenses/by/4.0/


 39 

1124 
Figure 5. GSAPS expression in GBM tissue. A. GSEA on the GSAPS protein sets GPC-1125 

like and GM-like comparing recurrent to primary GBM tissue tumours (p < 0.001, 1% FDR); 1126 

B. PCA clustering, based on log2 expression levels of proteins included in the GSAPS, of 1127 

GBM tumours and normal brain tissue samples. GBM subtypes (mRNA, based on the Wang 1128 
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2017 GBM classification(Wang et al., 2017)): CLA = classical, PRO = proneural; IDHmut = 1129 

IDH-mutant tumour; MES = mesenchymal; C. Sankey diagram showing the proportion of 1130 

GBM tumours of different transcriptomic subtypes (Wang 2017, GBM classification) that are 1131 

enriched for the GSAPS protein sets GPC-like or GM-like or both, as compared to the 1132 

CPTAC’s multiomic GBM subtypes recently described by Wang et al. (2021)(Wang et al., 1133 

2021); D. Hierarchical clustering of GBM tumours and normal brain samples based on the 1134 

GSAPS (distance: 1-Spearman’s r). The different subtypes are shown in the annotation 1135 

bars, as well as mutation status of common genomic markers in GBM; E. KM curves 1136 

showing survival differences in patients categorised based on log2 GM to GPC protein sum 1137 

score ratio to group of high (> third quartile) and medium/low (< third quartile) score ratios. 1138 

The p-values are based on logrank tests; the dashed lines present the median overall 1139 

survival in the corresponding groups. 1140 

 1141 
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1143 
Figure 6. Non-canonical peptides expressed in GSCs. A. Number of PSMs per non-1144 

canonical peptide; B. Proportion of non-canonical and novel peptides classified according to 1145 

matching gene type; C. Proportion of novel peptide classified according to the matching 1146 

gene region; D. Canonical (A2 and B1) and non-canonical protein isoforms (here referred to 1147 

as n.i. 1 and n.i. 2, both include 5’ extensions) of the HNRNPA2B1 gene. The plot shows the 1148 

detected peptides positioned to the matching sequences of the canonical and novel isoforms 1149 

of the HNRNPA2B1 gene. The numbers refer to the positions of the first and last amino acid 1150 

of the corresponding isoform; E. Novel peptides matching to the novel protein isoform 1 of 1151 

HNRNPA2B1 (390 amino acids long); F. Novel peptides matching to the novel protein 1152 

isoform 2 of HNRNPA2B1 (310 amino acids long);  1153 
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Supplementary Figures to manuscript: 

Babačić H. et al. (2022). Glioblastoma stem cells express non-canonical 

proteins and exclusive mesenchymal-like or non-mesenchymal-like protein 

signatures 
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Figure S1. Protein expression of GSC markers described in literature.  

A. Hierarchical clustering (distance: 1-Spearman’s correlation coefficient) of GSCs 

and controls (astrocyte and T98G line) based on relative expression of known GSC 
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markers; B. Protein expression of genes included in the Verhaak (2010) GBM 

subtypes’ gene sets identified in this study. Hierarchical clustering (distance: 1-

Spearman’s correlation coefficient) of GSCs based on protein expression of the gene 

sets. Annotation map – the Wang Q. refers to the GBM mRNA subtypes 

classification of the GSCs based on mRNA expression. Wang Z. classification refers 

to the recently proposed GSC classification to type I and type II (see DeBacco et. al, 

2021). 

Abbreviations: CLA = classical, PRO = proneural, MES = mesenchymal, NEU = 

neural. 
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Figure S2. Protein expression of genes included in the Wang GBM subtypes’ 

gene sets. A. Hierarchical clustering (distance: 1-Spearman’s correlation coefficient) 

of GSCs and controls (astrocyte and T98G line) based on relative expression of the 
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Wang GBM subtypes’ gene sets; B. For comparison - PCA and k-means (KM) 

clustering only of GSCs based on the expression of all the proteins without missing 

values. There was no clear separation between classical (CLA) and proneural (PRO) 

GSCs, as classified according to the Wang mRNA subtypes; C. EGFR/MET protein 

ratio on a log2 scale; 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.06.479313doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479313
http://creativecommons.org/licenses/by/4.0/


A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.  

 

 

 

 

 

 

 

 

 

 

Figure S3. g:Profiler enrichment analysis of the genes that were outside of the 

95% confidence intervals (CI) of the Bland-Altman plot comparing the 

agreement in mRNA-protein correlation estimates in GBM tissue and GSCs. A. 

Gene sets enriched in the list of proteins below the lower 95% CI, i.e. genes that had 

lower correlations in the GSCs compared to GBM tissue; B. Gene sets enriched in 

the list of proteins above the lower 95% CI, i.e. genes that had higher correlations in 

the GSCs compared to GBM tissue. 
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Figure S4. Per-gene mRNA-protein correlations in GSCs and GBM tissue. The 

difference between the standard deviations (SD) of protein expression in GBM tissue 

and GSCs (x axis) was associated with the difference in mRNA-protein correlations 

(Spearman r) estimated in GBM tissue and in GSCs (y axis). Higher proteins’ SD in 

GBM tissue was associated with higher correlation coefficients (r) in GBM tissue 
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compared to GSCs for the mesenchymal (A) and classical (B) gene sets, but not for 

the proneural gene sets (C).  
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Figure S5. Differential expression algorithm for detecting GSAPS. Each GSC 

line was independently compared to the astrocyte and T98G line. Then we extracted 

the intersect of differentially expressed proteins in the same direction (over-/under-

expressed in GSCs) in the comparison to the astrocyte and the T98G line, 

respectively. Finally, we took the intersect of consistently overexpressed and under-

expressed proteins in GSCs that define GSAPS. 
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Figure S6. Gene set enrichment analysis (GSEA) of GSAPS, at 5% FDR. A. 

GSEA of chemical and genetic perturbations (GCP) and REACTOME gene sets 

included in the C2 collection of gene sets in the Molecular Signatures Database 

(MSigDB); B. GSEA of hallmark gene sets included in the H collection of gene sets 

in the MSigDB; C. GSEA of GO biological processes. 
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Figure S7. Hierarchical clustering of HGCC GSCs based on GSAPS protein 

expression. All classical GSCs had enrichment for the proneural subtype and the 

GPC-like GSAPS gene set, whereas the mesenchymal GSCs had enrichment for the 

GM-like gene set. Proneural + classical GSCs had a higher EGFR/MET ratio and 

lower MET levels, whereas the mesenchymal GSCs had a lower EGFR/MET ratio 

and higher MET levels. 
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Figure S8. Gene set enrichment analysis (GSEA) of hallmark gene sets from 

the MSigDB, comparing protein expression of GPC-like GSCs to protein 

expression of GM-like GSCs, at 5% FDR.  
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Figure S9. Pathways enriched in recurrent vs. primary GBM tumours. A. 

Haematoxylin and eosin staining of sample GCH004 showed extensive necrosis. 

The staining was repeated on another section; B. PCA clustering of GBM tissue 

samples based on bulk proteome expression; C. GSEA of C2 (subcategory: GCP 

and REACTOME) gene sets of the MSigDb, comparing recurrent to primary GBM 

tumours. The proteins were ranked based on a mean log2-FC comparing recurrent 

(n = 3) to primary (n = 6) GBM samples; D. GSEA of hallmark (H) gene sets of the 

MSigDb, comparing recurrent to primary GBM tumours. 
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Figure S10. Single-sample GSEA of the GSAPS gene sets in the necrotic 

sample (p < 0.001, 1% FDR). Although the GM-like gene set was upregulated in the 

necrotic GBM tumour and the GP-like was supressed, the signals were not that 

consistent. 
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Figure S11. Overall survival in GBM patients based on GSAPS, Kaplan-Meier 

(KM) curves, CPTAC data. A. KM curves showing survival differences in patients 

categorised based on GSAPS gene set enrichment in GBM tissue; B. KM curves 

showing survival differences in patients with mesenchymal (MES) vs. non-

mesenchymal (NON-MES) GBM (Wang gene sets); C. KM curves showing survival 

differences in patients categorised based on log2 GPC protein sum score expression 

to group of low (< first quartile) and medium/high (> first quartile) scores; D. KM 

curves showing survival differences in patients categorised based on log2 GM 

protein sum score expression to group of low (< first quartile) and medium/high (> 

first quartile) scores; The p values are based on logrank tests; the dashed lines 

present the median overall survival in the corresponding groups. 
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