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Abstract

Glioblastoma’s (GBM) origin, recurrence and resistance to treatment are driven by GBM
cancer stem cells (GSCs). Existing transcriptomic characterisations of GBM classify the
tumours to three subtypes: classical, proneural, and mesenchymal. The comprehension of
how expression patterns of the GBM subtypes are reflected at global proteome level in
GSCs is limited.

To characterise protein expression in GSCs, we performed in-depth proteogenomic analysis
of patient-derived GSCs by RNA-sequencing and mass-spectrometry proteomics. We
identified and quantified over 10,000 proteins in two independent GSCs panels, and propose
a GSC-associated proteomic signature (GSAPS) that defines two distinct morphological
conditions; one defined by a set of proteins expressed in non-mesenchymal - proneural and
classical - GSCs (GPC-like), and another expressed in mesenchymal GSCs (GM-like). The
expression of GM-like protein set in GBM tissue was associated with hypoxia, necrosis,
recurrence, and worse overall survival in GBM patients.

In a proof-of-concept proteogenomic approach, we discovered 252 non-canonical peptides
expressed in GSCs, i.e., protein sequences that are variant or derive from genome regions
previously considered protein-non-coding. We report new variants of the heterogeneous
ribonucleoproteins (HNRNPs), which are implicated in mRNA splicing. Furthermore, we
show that per-gene mRNA-protein correlations in GSCs are moderate and vary compared to
GBM tissue.

Keywords

glioblastoma, stem cells, proteomics, signature, proteogenomics, non-canonical

proteins, subtype, mesenchymal, proneural, hypoxia
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90 Introduction

91 Glioblastoma (GBM) is the most common malignant primary brain tumour, inevitably
92 fatal, and characterised by short survival after diagnosis with median overall survival (OS) at
93 15 months (Louis et al., 2016; Weller et al., 2015; Wen and Kesari, 2008). A widely accepted
94  GBM classification, proposed by Verhaak et al. (2010), is based on mRNA expression
95  patterns that distinguish four GBM subtypes: classical, mesenchymal, proneural, and neural
96 (Roel G.W. Verhaak et al., 2010). More recently, the classification was revised by removing
97 the neural subtype, and highlighting subtypes’ plasticity, i.e. the ability to switch from one to
98 another (Wang et al., 2017). The CPTAC consortium has recently explored the protein
99  expression in adult GBM tumours and proposed a multiomic classification of GBM tumour
100  subtypes to nmfl (proneural-like), nmf2 (mesenchymal-like), and nmf3 (classical-like) (Wang
101  etal, 2021).

102  Extensive research about the origin of GBM has established the theory that cancer stem
103  cells drive the development and progression of GBM, contribute to resistance to chemo- and
104 radio-therapy, and induce GBM recurrence (Galli et al., 2004; Singh et al., 2003). Primary
105 GBM stem cells (GSCs) have shown to reflect the diversity of GBM, recapitulate the tumour
106  subtypes at mRNA level, and represent a good model to study the molecular profile of this
107 cancer and explore new therapeutic targets (Johansson et al., 2020). Many efforts were
108 undertaken to uncover gene expression signatures that are pivotal for GSC functions,
109  expanding our understanding of the transcriptome and proteome of GBM and GSCs (Asif et
110 al., 2019; Guardia et al., 2020; Johansson et al., 2020; Kozuka-Hata et al., 2012; MacLeod
111  etal, 2019; Marziali et al., 2016; Mostovenko et al., 2018; Rheinbay et al., 2013; Song et al.,
112  2017; Yanovich-Arad et al., 2021). Single-cell RNA-sequencing (scRNAseq) studies have
113  demonstrated that GSCs are plastic and can switch between different subtypes®. Despite
114  these efforts to characterize the transcriptional programs responsible for GSCs’ plasticity
115 and stemness, no study has provided in-depth proteomic or proteogenomic profiling of
116  primary GBM stem cells. Furthermore, it is not known how well GBM subtypes are

117  recapitulated in GSCs at protein level.

118  The aim of this study was to explore the proteomic and proteogenomic landscape of GSCs,
119  to enhance our comprehension on: (i) the molecular GSC phenotype at protein level; (ii) the
120 relation between mRNA and protein levels in GSCs; (iii) whether GSC proteome expression
121  is detectable at tissue level; and (iv) non-canonical peptides originating from genome

122 regions previously considered as non-protein-coding.

123 Here, we report deep transcriptome and proteome profiling of patient-derived GSCs, by

124  RNA-sequencing (RNAseq) and high-resolution isoelectric focusing coupled with liquid
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125  chromatography and mass-spectrometry (HIRIEF LC-MS/MS), respectively. We discovered
126 a new GSC-associated protein signature (GSAPS), which we validated in an independent
127  panel of GSCs from the HGCC cohort (Johansson et al., 2020), in primary and recurrent
128 GBM tissue, and in another set of tumour tissue from the CPTAC GBM cohort (Wang et al.,
129  2021) (Figure 1A). We demonstrate that the GSAPS recapitulates key features of GSCs,
130 such as proneural-to-mesenchymal axis and hypoxic metabolism, consists of protein drug
131  targets and has a potential association with OS in GBM. Furthermore, we report mRNA-
132 protein correlations and non-canonical protein sequences expressed in GSCs, discovering

133  potentially new protein-coding targets for research and treatment.

134
135 Results

136  Protein identification and GBM proteome subtyping

137 To extract GSC-specific features, we selected six primary GSCs (hereafter referred
138 to as BT GSCs) for RNAseq analysis and in-depth proteomic profiling (Figure 1A). Three
139  GSCs were previously classified as expressing the classical subtype and three expressing
140  the proneural subtype (Wang 2017 mRNA classification, Table S1) (De Bacco et al., 2021,
141  2012; Patané et al., 2013). All samples were run in biological triplicates. For comparison, in
142  the proteomic experiments we included primary human healthy astrocytes with three
143  technical replicates representing normal brain cells, and three biological replicates of the
144  T98G human glioblastoma cell line, representing a non-stem glioblastoma cell line (hereafter
145 defined as controls). Across all samples, we identified 11,140 proteins, of which 9,161
146  proteins (82.24%) had no missing values and were included in the analyses. This is, so far,

147  the most in-depth proteomic characterisation of GSCs.

148 Based on total proteome expression, the GSCs clearly clustered away from the normal brain
149 cells as well as the T98G GBM cell line, and the GSC biological replicates clustered very
150 close to each other (Figure 1B). Clustering the samples with proteins corresponding to
151  genes previously implicated in GSC biology (Table S2) (Behnan et al., 2019; Codrici et al.,
152  2016; De Bacco et al., 2012; Gimple et al., 2019; He et al., 2012; Lathia et al., 2015; Pointer
153 et al., 2014; Prager et al., 2019; Saygin et al., 2019) showed clear separation of GSCs from
154 the astrocyte and the T98G line (Figure S1A). Performing single-sample gene-set
155  enrichment analysis (ssGSEA) to define the Verhaak GBM subtype at protein level showed
156 that three cell lines overexpressed a different subtype at protein level compared to their
157 initial mMRNA subtype classification; some GSCs initially classified as proneural had

158  enrichment for the classical subtype and vice versa. In addition, the proteins included in the
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159  proneural gene set projected closer to the classical gene set, suggesting that they were
160 coexpressed in the GSCs (Figure 1C-D). This also implied that classical GSCs are more
161  closely related to the proneural GSCs in human samples, as suggested in a mouse cell-of-
162  origin gene signature in mouse GSCs (Jiang et al., 2017). The GSCs showed higher
163  expression of protein products of genes included in both the proneural and classical
164  subtype, but had a consistently lower expression of proteins deriving from mesenchymal
165 gene sets, as compared to the non-stem cell lines (Figure S1B). Based on ssGSEA, we did
166  not detect an activation of the Wang proneural and classical gene sets at protein level,
167  possibly because these gene sets are smaller than the Verhaak GBM gene sets. However,
168 all GSCs had a suppression for the Wang mesenchymal subtype, in agreement with the
169 Verhaak gene sets (Figure S2A & S2B). Furthermore, the MET gene had consistent
170  downregulation in BT GSCs, and all GSCs had higher EGFR to MET ratio compared to
171  controls (Figure S2A & S2C), suggesting that higher EGFR-to-MET ratio and a
172  downregulated MET could be biomarkers of the non-mesenchymal subtypes. The
173  downregulation of MET in classical GSCs is in agreement with previous findings (De Bacco
174 et al., 2012), however, we found that MET is downregulated in proneural GSCs at protein

175 level opposing the findings of De Bacco et al. (2012).
176
177  Protein-mRNA correlations in GSCs

178  Due to the variable protein expression of the gene sets used to classify GBM subtypes in the
179 BT GSCs, we have continued with analysing the agreement between mRNA and protein
180  per-gene products in GSCs. Per-gene correlation analysis of mRNA and protein matching to
181 9,007 genes showed an overall moderate agreement between mRNA and protein level
182 (median Spearman’s p = 0.49, 5% FDR, Figure 2A, Table S3). Analysing several
183  established GBM and splicing gene sets of interest (Beier et al., 2007; Uhlen et al., 2017,
184 Roel G W Verhaak et al., 2010; Wang et al., 2017) showed similar mRNA-protein
185  correlations as observed in the entire proteome identified in the GSCs (Figure 2B). Genes
186  upregulated in glioma stem cells (Beier et al., 2007) and glioma-elevated genes (obtained
187  from the Human Protein Atlas — HPA (Uhlen et al., 2017)) had a higher than overall mRNA-
188  protein correlation, whereas genes involved in splicing and heterogeneous

189  ribonucleoproteins (HNRNPs) had lower than overall correlation in GSCs.

190 In order to verify whether the overall moderate mRNA-protein correlations are observable at
191 GBM tissue level as well, we downloaded proteomic and transcriptomic data from the
192  recently published CPTAC GBM cohort, which includes proteomic profiling of 99 treatment-

193 naive GBM cancer tissues (Wang et al., 2021). Based on an analysis of mMRNA and protein
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194  products deriving from 8,292 genes, GBM tissue also had a moderate overall mMRNA-protein
195  correlation (median Spearman’s p = 0.51, 5% FDR, Figure 2C, Table S4). GBM tissue had
196 more statistically-significant correlations and less skewed distribution of mRNA-protein
197  correlations compared to the GSCs, which is most likely due to the larger sample size of the
198 GBM cohort that provided better estimates. The selected gene sets of interest showed
199 mRNA-protein correlation patterns in tissue similar to those in GSCs (Figure 2D), and the
200  majority of the genes had similar correlation between mRNA and protein in GSCs and GBM
201  tissue (Figure 2E). Although most of the estimates in GSCs and GBM were in the same
202  direction, a proportion of genes had varying mRNA-protein correlation in GSCs compared to
203  GBM tissue. Comparing the agreement between correlations’ estimates by a Bland-Altman
204  plot analysis showed that proteins involved in RNA splicing and protein-folding had lower
205 and higher mRNA-protein correlation in the GSC lines compared to GBM tissue, respectively
206  (Figure 2F, Figure S3), suggesting that GSCs have a higher degree of impaired splicing
207  regulation but are less likely to accumulate unfolded proteins than GBM tissue due to better

208 translation of proteins that regulate protein folding.

209 The mesenchymal gene sets had the highest concordance between mRNA and protein level
210 in GBM tissue, with median correlation of r = 0.823 and r = 0.803 for the Verhaak and Wang
211  mesenchymal gene sets, respectively (Figure 2D). This was much higher compared to the
212 median mRNA-protein correlation in GSCs of r = 0.544 and r = 0.474 for the Verhaak and
213 Wang mesenchymal gene sets, respectively (Figure 2B). The classical and proneural gene
214  sets also had higher mRNA-protein correlation in GBM tissue, compared to GSCs,
215  confirming that these gene sets might perform better at subtyping GBM tumours than
216  subtyping GSCs. However, one limitation in our study is that the discovery panel did not
217  include mesenchymal GSCs, which has possibly limited the variance in protein expression
218 for the subtypes’ gene sets. Calculating the per-protein standard deviation in protein
219  expression of genes included in the mesenchymal and classical gene sets showed higher
220  variance in protein levels in GBM tissue than the GSCs, which could have driven the higher
221  mRNA-protein correlations (Figure S4A & S4B). However, we found no such association for
222 the proneural gene sets (Figure S4C), and the difference in the variance explained only 6-
223  11% of the differences in the mRNA-protein correlations of the mesenchymal gene sets,
224 which does not sufficiently explain the large overall difference between GBM tissue and
225 GSCs in the mRNA-protein correlation for these gene sets. It is also likely that non-cancer
226  cells, such as stromal and immune cells, could have contributed to a larger variance in
227  protein expression of genes included in the GBM subtypes, suggesting that the GBM
228  subtypes expression patterns might not be fully reflected at GSC level. The higher

229  correlations in tissue for the mesenchymal gene sets are expected, because it has been
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230 recently shown that this subtype has a larger infiltration of immune cells (Wang et al., 2021).
231  Still, other factors, such as gene sets’ size, mMRNA decay, protein degradation, study sample
232 size, protein identification and technical measurement errors could have all contributed to
233  the disagreement in estimating mRNA and protein correlations in both GSCs and GBM

234 tissue.

235  Overall, our findings demonstrate that the regulation of mRNA translation to protein follows
236  similar patterns in GSCs as in GBM, and that GSCs can be a representative cell model for
237 GBM to some degree. However, there was a notable disagreement between mRNA and
238  protein levels, which warrants investigating the GSCs at the phenotypic level by analysing

239  the proteome.
240

241  GSC-associated protein signature reflects the proneural-mesenchymal axis

242 The plasticity between the classical and proneural subtype, flanked by the lack of consistent
243  enrichment of the GBM gene sets at protein level, prompted us to hypothesise that gene
244  programs associated with the proneural and classical subtype are coactivated in one type of
245  GSCs. The suppression of the GBM mesenchymal subtype seemed a more consistent
246  predictor for GSCs at protein level, leading to the hypothesis that GSCs at phenotypic
247  (proteome) level express two exclusive programmes — either a mesenchymal-like or a

248  proneural-classical-like.

249 To select a set of proteins that describes the hypothesised GSC phenotypes, we
250 performed a differential expression analysis, to define a GSC-associated protein signature
251 (GSAPS). We compared each GSC triplicate to each non-stem triplicate (astrocyte or
252  T98G), to encompass the defining stem expression signature of each cell line, and selected
253  the overlapping proteins that were consistently differentially expressed in the same direction
254 inall BT GSCs and in all comparisons (Figure S5). This led to a core set of 524 proteins that
255  we define as GSAPS (Figure 3A, Table S5).

256  As expected, gene set enrichment analysis (GSEA) of GSAPS showed upregulation of the
257  Verhaak proneural subtype gene set and downregulation of the mesenchymal subtype and
258 the epithelial-to-mesenchymal transition (EMT) gene sets (Figure S6). Gliomas are not
259  tumours derived from the epithelium, therefore the EMT is not directly applicable to them.
260 However, a similar process, proneural-to-mesenchymal transition (PMT), has been
261  described in GBM and is associated with worse prognosis and therapy resistance (Behnan
262 et al.,, 2019; Bhat et al., 2013; Halliday et al., 2014; Phillips et al., 2006; Segerman et al.,
263  2016; Wang et al., 2017). A predominant part of GSAPS consisted of upregulated proneural

264  and downregulated mesenchymal markers, suggesting that the GSAPS is reflective of the
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265 PMT. The GSAPS also had the hallmark hypoxia gene set downregulated, along with
266  several other hypoxia gene sets (Figure S6B), indicating that the BT GSCs were not
267  hypoxic. The hypoxic metabolism has been associated with the mesenchymal subtype
268  (Behnan et al., 2019; Tejero et al., 2019), suggesting that GSAPS can reflect the subtype-

269 driven cellular metabolic condition.

270  Based on the differences in gene sets enriched among the upregulated and downregulated
271  GSAPS proteins, we split it into two protein sets. The first consisted of the upregulated
272  GSAPS proteins associated with the proneural signature, proliferation and non-hypoxic
273  metabolism, henceforth referred to as GSAPS Proneural and Classical-like protein set
274  (GPC-like), and the other consisted of the downregulated GSAPS proteins, associated with
275 the mesenchymal signature, hypoxia, and EMT, henceforth referred to as GSAPS
276 Mesenchymal-like protein set (GM-like). We hypothesised that these two protein sets define
277  two different GSC conditions, which are mutually exclusive and would better define the
278  specific stem phenotypes in GSCs than the previously established Verhaak and Wang gene
279  signatures established for GBM tissue. Worth noticing is that 107 of the GSAPS proteins are
280 targetable by FDA-approved drugs (31 in the GPC-like and 76 in GM-like set, Table S6),
281  with some drugs targeting more than one protein in the signature and 33 drugs ongoing
282  clinical trials in GBM (Table S7).

283  The overall protein-mRNA correlation of genes encoding for the GSAPS proteins was
284  moderately positive (Spearman’s median r = 0.459), indicating that some features should be
285  detectable at mRNA level but a large proportion of the GSC phenotype variance will be
286  observable only at protein level. We detected a higher mRNA-protein agreement for genes
287  included in the GM-like set in GSCs (Figure 3B), but this was not observed in GBM tissue
288  (Figure 3C), which had higher mRNA-protein agreement for the GSAPS sets than GSCs.

289

290 GSAPS defines two phenotypic conditions that differ in hypoxic metabolism

291 In order to confirm the GSAPS ability to define GSC conditions along the PMT axis,
292  we performed proteomic expression profiling on another GSC panel consisting of GSCs of
293 all GBM subtypes (Verhaak and Wang classification, based on mRNA expression). The
294  extended cohort included 11 patient-derived GSC lines from the HGCC cohort, identifying
295 10,169 proteins across the cell lines, including cell lines classified as mesenchymal based
296 on mMRNA expression (Johansson et al., 2020). Subtyping the cell lines with single-sample
297 GSEA (ssGSEA) at protein level showed that all GSCs that expressed the classical subtype
298  also expressed the proneural subtype, and had a suppression for the mesenchymal subtype

299  (Figure 3D), in line with previous observation from the BT GSCs. Clustering the proteins
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300 corresponding to the subtype-specific genes included in Verhaak (Roel G W Verhaak et al.,
301 2010) and Wang (Wang et al., 2017) GBM gene sets showed again that the proteins
302 included in the classical gene set projected closer to the proteins included in the proneural

303 gene set and apart from the mesenchymal proteins (Figure 3E & 3F).

304 Applying GSAPS to the HGCC panel clustered the mesenchymal GSCs separately
305 from proneural-classical GSCs (Figure S7). To further validate whether the GSAPS is
306 reflective of PMT, we performed GSEA on the two GSAPS protein sets comparing the
307 proneural-classical HGCC GSC lines to the mesenchymal GSC lines. As hypothesised, we
308 detected a strong enrichment of both GSAPS protein sets (NES>3, p < 0.001), with the
309 GPC-like set upregulated in the proneural-classical GSCs and the GM-like upregulated in
310 the mesenchymal GSCs (Figure 4A and 4B). ssGSEA analyses showed that GSCs
311  expressing the GPC-like phenotype had suppression of the GM-like phenotype, and vice
312 versa, confirming the hypothesis that these conditions are mutually exclusive. GSEA
313  comparing the protein expression of GPC-like GSCs to GM-like GSCs on hallmark gene sets
314 showed metabolic differences between the cell lines, with GM-like GSCs enriched for
315  hypoxia (Figure S8).

316  Considering that mesenchymal gene expression has been consistently associated with
317 hypoxia, we hypothesised that the GM-like GSCs could be enriched in hypoxic regions of
318 GBM tumour tissue, in proximity to necrosis, such as regions of tumour cells palisading
319 around necrosis (CTpan) and tumour cells involved in microvascular proliferation (CTmvp).
320 We then performed enrichment analysis comparing protein expression between GPC-like
321 and GM-like GSCs to genes enriched in different GBM anatomical regions at mRNA level,
322 based on the lvy GBM Atlas (Puchalski et al., 2018) consisting of genes enriched at mRNA
323  level in different GBM regions. Neither GSAPS set had enrichment in the leading edge (LE)
324  region of GBM (OR = 1.058, Fisher’s test p = 0.485). However, genes overexpressed in the
325 GM-like GSCs at protein level were enriched in regions of CTmvp (OR = 3.883, Fisher’s test
326 < 2.2"°) and CTpan (OR = 2.115, Fisher's test p = 1.19°%, Figure 4C). Oppositely, genes
327  overexpressed in GPC-like GSCs at protein level were enriched in regions of cellular tumour
328 — CT (OR = 5.259, Fisher test p = 4.149™°, Figure 4C). The findings suggest that GSCs
329 adapt their phenotypic expression and thereby their subtype to local conditions, driving
330 different elements of tumorigenesis and that the plasticity in itself is involved in driving the
331  tumorigenesis. This is in line with previous observations within the vy GBM Atlas (Puchalski
332 et al.,, 2018). However, one limitation is that the gene sets of the Ivy Atlas are derived by
333  transcriptomic methods, leaving a gap to explore the regional protein expression in GBM for

334  future endeavours.

10
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335 In summary, these findings confirm that GSAPS is associated with PMT and that cultured
336 GSCs exist in two mutually-exclusive phenotypic conditions, one characterised by the GPC-
337 like protein set and another characterised by the GM-like protein set. The GSC phenotypes

338 appeared enriched in different regions of the tumour.
339
340 GSAPS is enriched in recurrent GBM tissue

341 Recurrent GBM tumours tend to have worse outcome and faster progression.
342  Several studies have linked this to PMT, suggesting that proneural and classical GSCs are
343  more sensitive to chemotherapy and radiotherapy, which eventually leads to selection and
344  enrichment of the mesenchymal subtype within recurrent tumours (Behnan et al., 2019;
345 Wang et al., 2017). To further demonstrate that GSAPS reflects PMT, we analysed 7
346  primary and 3 recurrent GBM tissue samples on proteomic level with HIRIEF LC-MS/MS,
347 identifying 7,810 proteins, with 7,378 proteins quantified in all samples. One primary GBM
348 tumour was excluded from analyses because it was highly necrotic on H&E staining and
349 clustered separately from the other tumours (Figure S9A & S9B). GSEA between non-paired
350 recurrent and primary tumours showed activation of the mesenchymal GBM gene set and
351  suppression of pathways associated with GPC-like GSCs in recurrent tumours (Figure S9C
352 & 9D). As hypothesised, GSEA on the GSAPS gene sets, comparing recurrent to primary
353 GBM, showed a suppressed GPC-like and activated GM-like protein set in recurrent GBM
354  tumours (Figure 5A). The GM-like protein set was also enriched in the necrotic GBM sample
355 in ssGSEA (Figure S10), further indicating that the GM-like signature is associated with
356  necrosis.

357

358 GSAPS protein signatures are associated with overall survival in GBM tissue

359 To demonstrate whether the GSAPS protein expression is maintained at tissue level,
360 we explored its expression in GBM tumours from the CPTAC cohort. PCA analysis of 99
361 GBM tumours and 10 normal brain samples from the CPTAC cohort (Wang et al., 2021)
362 based on GSAPS expression showed clear separation of GBM from normal brain and
363 separated mesenchymal from non-mesenchymal cancer tissue (Figure 5B). The GPC-like
364  protein set was enriched in GBM tumours of the classical or proneural subtype (Wang
365 classification, mMRNA (Wang et al., 2017)) and the multiomic nmfl (proneural-like) or nmf3
366 (classical-like) subtype (Wang et al., 2021), whereas the GM-like protein set was enriched in
367 GBM tumours of mesenchymal (Wang et al., 2017) and nmf2 (mesenchymal-like) multiomic
368 subtype (Wang et al., 2021) (Figure 5C and 5D). This confirms that the previous
369 observations in the CPTAC cohort are recapitulated in GSCs, i.e., mesenchymal GBM
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370 tumours exhibited a different proteomic and metabolomic profile from non-mesenchymal
371  GBM tumours.

372  Considering that the GM-like signature was associated with hypoxia, necrosis and
373  recurrence in GBM tissue, we hypothesised that it might be associated with worse OS in
374 GBM. To prove the hypothesis, we calculated GPC and GM protein sum scores, by
375 summarising relative expression of the proteins included in the corresponding GSAPS
376  protein sets, and performed survival analysis. Adjusting for age, which was associated with
377 worse OS in this GBM cohort, higher GPC protein sum scores had a statistically-non-
378  significant association with longer OS (HR = 0.278, 95% CI: 0.067-1.15, likelihood ratio test
379 (LRT), p=0.003, Table S8), whereas higher GM protein sum scores were associated with
380 shorter OS (HR = 4.162, 95% CI: 1.181-14.662, LRT, p=0.001) in Cox proportional hazards
381 models. This was also confirmed with KM survival analysis (Figure S11C & S11D, logrank
382 test, p < 0.05). To incorporate both protein sets, we then calculated a log2 ratio of the GM to
383  GPC protein sum score (log2 GM/GPC), which showed that higher log2 GM/GPC ratios
384  were associated with worse OS (HR = 2.183, 95% CI: 1.063-4.481, LRT=0.002), adjusted
385 for age in Cox models. This association remained consistent by categorising log2 GM/GPC
386 ratio to higher (> third quartile) and medium/lower ratio (< third quartile) in KM curves (Figure
387 5E, logrank test, p = 0.028).

388  Overall, these results show that GSAPS describes a GSC cellular signal that can categorise
389 tumours across the PMT axis, and that higher protein expression of the GM-like signature

390 may be associated with worse OS in GBM.
391
392  New protein-coding targets in GSCs

393 Stem cells often utilize parts of the genome that mature cells do not, such as early
394 developmental genes, to obtain pluripotency. To explore if GSCs express non-canonical
395 proteins, i.e. proteins expressed from genome regions considered as non-protein-coding, we
396 employed a previously established proteogenomics pipeline (Umer et al., 2021; Zhu et al.,
397 2018), to search for non-canonical peptides in BT GSCs. For this aim, we created an
398 RNAseg-based database of predicted protein sequences, by translating the detected
399 transcript sequences obtained from RNAseq of BT GSCs to protein sequences, and
400 predicting corresponding tryptic peptides by in silico tryptic cleavage. We then appended the
401 non-canonical database to a canonical database of protein sequences and searched for
402 non-canonical peptides among the identified peptide spectra matches (PSMs). This
403  approach allowed us to discover novel non-canonical peptides matching to novel protein

404  sequences corresponding to genome regions predicted to be non-protein-coding, such as
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405 pseudogenes and IncRNAs, as well as non-canonical peptides matching to canonical
406  protein-coding genes that have not been previously described, such as novel start sites,

407  splice variants, gene extensions, etc.

408  We detected 252 non-canonical peptides expressed in the BT GSCs, half of them with 2 or
409 more peptide spectral matches (>=2 PSMs, n = 118, 53.17%, Figure 6A, Table S9). More
410 than half (53.97%) were novel peptides, whereas the remaining peptides matched to non-
411  canonical sequences of protein-coding genes (Figure 6B & 6C).

412  One tenth of the non-canonical peptides (n=23) matched to protein-coding genes included in
413  the GSAPS, as expected mostly the GPC-like protein set (n=19), including exon variants of
414 HNRNPA2B1, QKI, CUX1, EPHB3 and GAB1 (GPC-like) and 5-UTR extensions of SOX2,
415 TRIM24, QKI, and MSI2 (GPC-like), further highlighting their potential importance in GSC
416  biology.

417 A recent screen of non-canonical open-reading frames characterised hundreds of new
418  proteins in human induced pluripotent stem cells (iPSC) and human foreskin fibroblasts
419 (HFF) (Chen et al., 2020). To validate the novel peptides discovered in our study, we
420 downloaded the novel amino-acid sequences reported by Chen et. al, and found that 40 of
421  the non-canonical peptides discovered in our study overlapped with their non-canonical
422  protein sequences, providing independent support for these sequences (Table S9). Most of

423  the non-canonical peptides were extensions of protein-coding genes (n = 33, 82.5%).

424  Sixteen non-canonical peptides found in GSCs matched to a family of ubiquitously
425  expressed heterogenous nuclear ribonucleoproteins (HNRNP), which are involved in mRNA
426  splicing, processing and metabolism**. Half of these peptides matched to processed
427  pseudogenes (HNRNPA1-P8, -P12, - P14, -P16, and -P59), and the remaining half to
428 variants of the isoforms A2 and B1. Among the non-canonical peptides matching to protein-
429 coding genes, several matched to two novel protein-coding isoforms of HNRNPA2B1
430 reported by Chen et al. (2020), which have upstream extensions of the canonical protein
431  isoforms’ sequences (Figure 6D) (Chen et al., 2020). The canonical HNRNPA2B1 protein
432  had a higher expression in BT GSCs compared to non-stem controls and was part of the
433  GPC-like protein set, along with other HNRNPs (HNRNP-U, -D, -DL, and -LL). Interestingly,
434  the non-canonical peptides matching to the HNRNPA2B1 gene also had a higher expression
435 in the BT GSCs compared to the controls (Figure 6E, Table S10, p < 0.05, 5% FDR),
436  suggesting a role in GPC-like GSC biology. Still, it remains to be elucidated if the non-
437  canonical protein sequences detected in GSCs in this study, such as those of HNRNPA2B1,
438  are expressed at protein level only in GSCs or provide improved gene models. Overall, our

439  findings show that some gene variants previously considered as non-coding are translated
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440 and expressed in GSCs and GBM at protein level and that a subset of these is related to
441  proteins included in the GSAPS.

442

443 Discussion

444 GBM is a highly malignant cancer, which is driven by GSCs and their ability to adapt
445 in response to treatment and the tumour microenvironment. To improve treatment options
446  for GBM patients, it is essential to understand the underlying mechanisms driving GSCs and
447  how mRNA is translated to protein level, allowing the tumour to progress, adapt, and resist
448  therapeutic interventions.

449 In this study we have performed the most in-depth proteogenomic analysis of GSCs to date,
450 providing a new layer of information on GSC biology. Based on HIiRIEF LC-MS/MS
451  proteomics of primary GSCs we present a new GSC-associated protein signature (GSAPS).
452  GSAPS recapitulates GSC-specific features, such as PMT and hypoxia, and was validated
453 in an independent panel of GSCs from the HGCC cohort (Johansson et al.,, 2020). We
454  discovered that non-mesenchymal GSCs express proteins belonging to both the proneural
455  and classical subtype, maintaining the expression of a core set of proteins that we defined
456  as GPC-like. On the other side of the spectrum were the mesenchymal-like GSCs, enriched
457  for the GM-like protein set, with MET among proteins with highest levels. In line with the
458  PMT hypothesis, we find that GSCs mainly exist in two phenotypic conditions, one defined
459 by the GPC-like signature and another defined by the GM-like sighature, which are mutually

460 exclusive.

461 Furthermore, we show that the GM-like set is enriched in recurrent GBM tissue, in regions
462 characterised by hypoxia and necrosis, and mesenchymal GBM tumours. Previous
463  observations at tissue proteome level from the CPTAC cohort (Wang et al., 2021), have
464  shown that mesenchymal GBM tumours have higher MET levels and are enriched for EMT,
465  hypoxia, glycolysis, angiogenesis and inflammatory pathways, however it was not clear
466  whether the pathways were enriched in GBM tumour cells or due to microenvironment. We
467  demonstrated that all these observations at tissue level are driven by expression patterns at

468  GBM cellular level, adding to our understanding of GBM tissue development.

469  From a clinical perspective, the GSAPS encompasses over 100 protein drug targets, out of
470  which 33 are currently undergoing clinical trials for GBM. It is tempting to speculate that the
471  signature might serve a purpose in drug-development guidance, where a combination
472  treatment targeting proteins in both the GPC-like and the GM-like protein set might be more

473  effective. Furthermore, we report that higher GM over GPC ratio might be associated with
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474  worse OS in GBM and could be of prognostic value. However, this has to be confirmed in

475  larger, independent cohorts.

476  Possible limitations of our work are in the initial derivation of GSAPS by comparing proneural
477  and classical GSCs to two types of non-stem cell lines instead of using several non-stem
478 controls, and that the cells are cultivated in vitro. However, we have stringently filtered the
479  proteins that would define GSAPS, and the strength of the in vitro cultivation of GSCs is in
480 the ability to use them to experimentally validate their stem-cell nature through established
481 methods described elsewhere (De Bacco et al., 2021). It is also relevant to point out that
482  GSAPS showed consistent findings in subsequent validation of the signature in another
483  panel of validated GSCs that use different culturing and stem-cell validation methods
484  (Johansson et al., 2020). Furthermore, we have shown that the GSAPS expression can be
485  traced in GBM tissue in our experiments and in a publicly available dataset on GBM tissue

486  proteome expression, potentially providing clinically-useful information.

487  In summary, we present the most in-depth proteogenomic characterisation of GSCs to date,
488 and report a new GSC-associated protein signature that differentiates two phenotypic
489  conditions of GSCs along the proneural-to-mesenchymal axis. We have shown that some
490 phenotypic patterns enriched in GBM subtypes at tissue proteome level are driven by protein
491  expression programmes at GBM cellular level. Finally, we discover novel protein-coding
492  gene regions in GSCs, some of which have been reported in other, non-cancer cells and
493  some that are uniquely reported in this study. These findings allow studying GBM at a GSC
494  cellular proteomic level, improve our understanding of GSC biology and identify new, both

495  protein and pathway-related, subtype-specific therapeutic targets for GSCs.
496

497  Key points

498 e This study provides the most in-depth proteome analysis of GSCs to date, comparing
499 protein to mMRNA levels. Only a subset of proteins has high correlation to mMRNA
500 levels.

501 e Two protein sets define a GSC-associated protein signature that distinguishes two
502 phenotypic conditions of GSCs, which are mutually exclusive and have an inverse
503 association with clinical outcomes in GBM.

504 e In GSCs, we discovered protein sequences matching to genes previously
505 established as non-protein-coding. These novel non-canonical proteins, along with
506 newly discovered variants of protein-coding genes in this study, may have
507 implications in GBM.

508
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509

510 Importance of the study

511 By identifying over 10,000 proteins in two patient-derived GSC panels, this study is
512  the most in-depth data resource of protein expression in GSCs, to date. Overall, mMRNA
513 levels are moderately good at predicting protein levels, highlighting the importance of
514  understanding protein expression signatures behind GSC phenotypes.

515  We report a new GSC-associated protein signature (GSAPS) that describes two phenotypic
516  conditions of GSCs. The expression at tissue level of the two protein sets that consist
517 GSAPS, i.e., the GPC-like and GM-like sets, had an inverse association with clinically-
518 relevant outcomes in GBM, such as necrosis, recurrence and overall survival, and may
519 identify new treatment targets.

520 Proteogenomics allows for discovering non-canonical protein sequences that have not been
521 observed before, matching to new protein variants, or pseudogenes and long-non-coding
522  RNAs not expected to be protein-coding. The discovery of non-canonical proteins in GSCs
523  questions established gene models and indicates potentially new proteins, which may have
524  implications in GBM and warrant further investigation.

525

526

527 Materials and methods

528 GSCs and GBM tumours

529 BT human GSC lines were grown as neurospheres in serum-free medium as
530 described and validated in (De Bacco et al., 2021; Galli et al., 2004). The human
531 glioblastoma T98G cell line and the astrocyte line were purchased from ATCC and
532  CliniSciences (Guidonia Montecelio, Italy), respectively. The HGCC human GSC cultures

533 are part of the HGCC biobank (https://hgcc.se/), and have been previously described

534  and validated (Johansson et al., 2020; Xie et al., 2015a).

535 Ten GBM tissue samples were collected and fresh-frozen at the Neurosurgical Unit
536 and evaluated by a pathologist at the Hospital Spirito Santo, Pescara, "G. D'Annunzio”
537  University, Chieti, Italy. All patients gave informed consent and the samples were collected
538 and processed in accordance with the Declaration of Helsinki. The molecular analyses were
539 approved by the Ethics Committee of the Provinces of Chieti and Pescara and of the "G.
540  d'Annunzio” University of Chieti-Pescara.

541

542 Cell culture
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543 The T98G cells were cultured in DMEM supplemented with 10% foetal bovine serum.
544  The astrocytes were cultured in Astrocyte Medium (ScienCell #1801). We grew three
545  biological replicates for each BT GSC and the T98G line, and one biological replicate for the

546  astrocyte line.

547 Handling of HGCC human tissues and data were performed in accordance with the
548  protocol approved by Uppsala ethical review board (2007/353) and informed written consent
549  was obtained from all patients. The cells were cultured as previously described (Jiang et al.,
550 2017; Xie et al., 2015b), and were analysed between passage 10-19. Briefly, cultures were
551 maintained on poly-ornithine/laminin-coated dishes in DMEM/F12 Glutamax (Gibco) and
552  Neurobasal medium (Gibco) mixed 1:1 with addition of 1% B27 (Invitrogen), 0.5% N2
553  (Invitrogen), 1% Penicillin/Streptomycin (Sigma), 10 ng/ml each of EGF and FGF2
554  (Peprotech). They have been regularly screened for mycoplasma infection using a PCR-
555  based method with the primers Myco1 (5-GGCGAATGGGTGAGTAACACG) and Myco2 (5'-
556 CGGATAACGCTTGCGACTATG) (Invitrogen) and no cultures have tested positive.

557
558 GBM tumour tissue processing

559 The tissue samples were fixated on OCT and cut into 10 um-thick sections, of which
560 30 sections were collected in a tube for lysis and parallel sections were fixed on slides for
561 haematoxylin and eosin staining. The sections collected in tubes were washed in PBS to
562  remove the blood, centrifuged, and the tissue pellets were used for subsequent DNA, RNA,
563  and protein isolation with the AllPrep DNA/RNA/Protein Mini Kit (Qiagen).

564
565 RNA sequencing

566 Sequencing libraries for whole transcriptome analysis were prepared using Stranded
567 mRNA-Seq Library Preparation Kit. RNA-seq was performed on an lllumina HiSeq 2500
568  Sequencer using standard conditions at the Next Generation Sequence Facility of University
569  of Trento (CIBIO).

570
571 RNA isolation, library preparation, RNA-sequencing, qRT-PCR

572 Total RNA from the BT GSCs was isolated by TRIzol (Invitrogen), subjected to DNase-
573 | (Ambion) treatment and RNAs were depleted of ribosomal RNA. Two RNA samples
574  derived from normal brain were purchased from Clontech Laboratories and BioChain

575  respectively.
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576
577  Data Quality check

578 The fastq files generated by the Illlumina sequencer were monitored for quality by the

579 FastQC tool (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, version 0.11.6). It

580 provides a modular set of analyses which tests if the data has any problems. Since for each
581 sample there is one FASTQC output, with several results, it was decided to use multiQC tool
582  (http://multigc.info/, v.1.4) to aggregate the information for a better interpretation. The main

583  outcome of these analysis is that the reads have very good quality and despite some
584  differences among samples, the further analyses could be done without corrections at this

585  stage.
586
587  Transcript quantification

588 Transcript quantification was performed using Salmon (Patro et al., 2017). Salmon
589  applies a quasi-mapping with a two-phase inference procedure to quantify expression at the
590 transcript level. The unique feature that distinct Salmon from other transcript assemblers
591 account is in its ability to account for experimental and other biases that are common to
592 RNA-seq data such GC content. ENSEMBL cDNA release 99 from GRCh38 was used as
593 the target transcriptome. To obtain gene-level quantifications, the median value across the
594  transcripts of each gene was assigned as the gene expression. All options were set to

595 default and -I A parameter was set to detect the library type from the RNA-seq datasets.

596

597 Mass-spectrometry-based proteomics

598 The samples were prepared and run following the HIRIEF LC-MS/MS protocol, as
599  previously described (Branca et al., 2014).

600
601  Cell lysis and in-solution digestion

602 The BT GSCs cells were lysed in 200 pyl SDS-lysis buffer (containing (4% (w/v) SDS,
603 50 mM HEPES pH 7.6, and 1mM dithiothreitol) using 1:4-10 of sample to buffer ratio.
604  Afterwards, the cells were heated at 95°C for 5 min while shaking on a pre-warmed block,
605 and sonicated to dissolve the pellet and disrupt the remaining DNA. The lysate was then
606  centrifugated at 14 000xg for 15 min and the supernatant removed. Proteins from HGCC
607  cells and GBM tissue were extracted with the AllPrep DNA/RNA/Protein Mini Kit (Qiagen).
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608 The protein concentration in the lysate was determined by Bio-Rad DC Assay and equal
609 amounts of each sample was subjected to in-solution digestion. Briefly, the cell pellet was
610 denatured at 95°C for 5 minutes followed by reduction with dithiothreitol and alkylation with
611  chloroacetamide at end concentrations of 5mM and 10mM respectively. LysC was added at
612 a 1:50 (w/w) ratio and digestion was performed at 37°C 6 hours or overnight. The samples
613  were further digested by trypsin at a 1:50 (w/w) ratio with 37°C overnight incubation. After
614  LysCltrypsin digestion, ~1% of each peptide sample was aliquoted for ~15min gradient LC-

615 MS/MS runs to check for protease activity by the samples’ miscleavage rate.
616
617  TMT-labelling

618 Before labelling, equal amounts of peptide samples were pH adjusted using TEAB,
619 pH 8.5. The resulting peptide mixtures were labelled with isobaric TMT-tags (Thermo
620  Scientific). Biological triplicates of the BT GSCs and the T98G line, and technical triplicates
621  of the astrocyte line were labelled with three TMT-10-plex sets, using two internal standards
622  per set. The internal standards were made of sample pools. HGCC GSC samples were run
623 in one TMTpro-16-plex set, without an internal standard, leaving the 133C and 134N
624  channels empty. GBM tissue samples were labelled with one TMT-10 set, without an internal
625 standard. Labelling efficiency was determined by LC-MS/MS before pooling of samples.
626  Subsequently, sample clean-up was performed by solid phase extraction (SPE strata-X-C,
627 Phenomenex). The labelling schemes per sets can be found in Tables SM1A, SM1B, and
628 SMI1C (Supplementary File 3).

629
630  High resolution isoelectric focusing (HIRIEF)

631 The HIRIEF prefractionation method at peptide level was applied as previous
632 described (Branca et al., 2014). Briefly, after sample clean-up by solid phase extraction
633 (SPE strata-X-C, Phenomenex), the sample pool was subjected to peptide IEF-IPG
634  (isoelectric focusing by immobilized pH gradient) in pl range 3-10 (1mg). For the
635  proteogenomics experiments, the sample pools of the BT cells were subjected to additional
636 IEF and LC-MS/MS run in a separate experiment on IPG strips in the pl range 3.7-4.9, to
637 increase the detection of peptides. The freeze-dried peptide sample was dissolved in 250l
638 rehydration solution containing 8M urea, and allowed to adsorb to the gel strip by swelling
639  overnight. The 24cm linear gradient IPG strip (GE Healthcare) was incubated overnight in
640 8M rehydration solution containing 1% IPG pharmalyte pH3-10 (GE Healthcare). After

641  focusing, the peptides were passively eluted into 72 contiguous fractions with MilliQ water /
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642 35% acetonitrile / 35% acetonitrile and 0.1% formic acid, using an in-house constructed IPG
643  extractor robotics (GE Healthcare Biosciences AB, prototype instrument) into a 96-well plate
644  (V-bottom, Greiner product #651201). The BT GSCs samples were rerun and additionally
645 fractionated by IEF-IPG in pl range 3.7-4.9, in order to detect more peptides for
646  proteogenomic analyses. The resulting fractions were then freeze dried and kept at -20°C
647  until LC-MS/MS analysis.

648
649  LC-MS/MS analysis

650 Online LC-MS was performed using a Dionex UltiMate™ 3000 RSLCnano System
651 coupled to a Q-Exactive HF mass spectrometer (Thermo Scientific). Each plate well was
652  dissolved in 20 ul solvent A and 10 ul were injected. Samples were trapped on a C18 guard-
653  desalting column (Acclaim PepMap 100, 75um x 2 cm, nanoViper, C18, 5 um, 100A), and
654 separated on a 50cm long C18 column (Easy spray PepMap RSLC, C18, 2 um, 100A, 75
655 um x 50 cm). The nano capillary solvent A was 95% water, 5% DMSO, 0.1% formic acid;
656  and solvent B was 5% water, 5% DMSO, 95% acetonitrile, 0.1% formic acid. At a constant
657 flow of 0.25 ul min™, the curved gradient went from 2% B up to 40% B in each fraction,

658 followed by a steep increase to 100% B in 5 min and subsequent re-equilibration with 2% B.

659 FTMS master scans with 60,000 resolution (and mass range 300-1700 m/z) were
660 followed by data-dependent MS/MS (30 000 resolution) on the top 5 ions using higher
661  energy collision dissociation (HCD) at 30% normalized collision energy. Precursors were
662 isolated with a 2 m/z window. Automatic gain control (AGC) targets were 1e6 for MS1 and
663  1eb5 for MS2, with minimum AGC target of 1e3. Maximum injection times were 100 ms for
664 MS1 and 100 ms for MS2. The entire duty cycle lasted ~2.5 s. Dynamic exclusion was used
665  with 30.0s duration. Precursors with unassigned charge state or charge state 1, 7, 8, >8

666  were excluded.
667
668 Protein identification

669 Raw MS/MS files were converted to mzML format using msconvert from the
670 ProteoWizard tool suite(Kessner et al., 2008). Spectra were then searched in the Galaxy
671 framework using tools from the Galaxy-P project (Boekel et al., 2015; Goecks et al., 2010),
672  including MSGF+ (Kim and Pevzner, 2014) (v2020.03.14) and Percolator (Kall et al., 2007)
673  (v3.04.0), where 8 subsequent HIRIEF search result fractions were grouped for Percolator
674  target/decoy analysis. Peptide and PSM FDR were recalculated after merging the percolator

675 groups of 8 search results into one result per TMT set. The reference database used was
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676  the human protein subset of ENSEMBL101. Quantification of isobaric reporter ions was
677  done using OpenMS project's IsobaricAnalyzer (Rost et al., 2016) (v2.5.0). Quantification on
678  reporter ions in MS2 was for both protein and peptide level quantification based on median
679  of PSM ratios, limited to PSMs mapping only to one protein and with an FDR g-value < 0.01.
680 FDR for protein level identities was calculated using the -log10 of best-peptide g-value as a
681  score. The search settings included enzymatic cleavage of proteins to peptides using trypsin
682  limited to fully tryptic peptides. Carbamidomethylation of cysteine was specified as a fixed
683  modification. The minimum peptide length was specified to be 6 amino acids. Variable

684 modification was oxidation of methionine.

685

686 Proteogenomic identification

687 The proteogenomic pipeline is described elsewhere in detail, a brief description is
688  provided as follows(Umer et al., 2021). Transcripts were assembled from the RNA-seq data
689  of each sample using stringTie (version 2.113) (Kovaka et al., 2019) based on the human
690 reference gene annotations (ENSEMBL99). Next, transcripts with low expression level (TPM
691 <1) were removed and a peptide database was generated from the transcript sequences
692  using custom scripts. Tryptic peptides with a minimum length of eight amino acids and a
693 maximum length of 40 amino acids were kept. The database was fractionated based on the
694  peptide isoelectric points as further detailed in (Branca et al., 2014). Finally, the human

695  canonical proteins (ENSEMBL99) were appended to the peptide database.

696  The proteomics data from each cohort were searched against the peptide database from the
697  same cohort using MS-GF+ Release (version 15 January 2020). Percolator (version 3.04.0)
698 was used for Percolator target-decoy scoring. Peptides at FDR<1% were considered
699  significant, while those matching canonical protein sequences were removed. Using BLAST,
700 the remaining peptides were searched against a larger collection of reference protein
701  databases that included Uniprot version 11 December 2019, Gencode version 33, Ensembl
702  version 99, and RefSeq (version 29 May 2020). Peptides matching any sequence were
703  removed and those with one mismatch were further validated using SpectrumAl (Zhu et al.,
704  2018). Finally, the list of novel peptides contained peptides with more than one mismatch or

705  no match to known proteins as well as those that passed SpectrumAl.

706
707  Bioinformatics and statistical analyses

708

709  Differential expression and GSAPS algorithm
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710 Protein or peptide differential expression was performed with a two-sided t test for all
711  comparisons and corrected for multiple testing with the false discovery rate (FDR), at 5%.
712 The GSAPS was isolated by comparing each BT GSCs triplicate to a control (astrocyte or
713  T98G line) triplicate, and finding the intersect of proteins consistently upregulated and

714  downregulated in the BT GSCs as compared to controls (see Figure S5).
715
716  Protein-mRNA correlation

717 Protein per-gene expression was calculated as the average of the proteins matching
718  to the same gene, whereas the mRNA per-gene expression was calculated as the sum of
719  TPMs per gene. Correlations between matching protein and mRNA expression levels per
720  overlapping genes were tested with the Spearman’s correlation coefficient and permutation
721 test at alpha = 0.05, and corrected for multiple testing with the FDR. Protein-mRNA
722  correlation for the CPTAC data was performed using processed and normalised proteomic
723  and transcriptomic data available from (Wang et al., 2021). The selected gene sets were
724  extracted from the MSigDb database (Liberzon et al., 2015; Subramanian et al., 2005), apart
725  from the ‘Glioma-elevated’ and ‘FDA drugs’ datasets, which were extracted from the Human
726  Protein Atlas (Uhlen et al., 2017).

727  The Bland-Altman analysis on agreement in correlations between GSCs and GBM tissue
728 was performed as previously described (Bland and Altman, 1986). The genes outside the
729  95% CI of the Bland-Alman plot were considered to have strong disagreement; we extracted
730 the gene lists above and below the 95% CI and performed enrichment analysis with an

731  overrepresentation test in g:Profiler.
732
733  Feature reduction, visual projection and clustering

734 PCA, UMAP, and hierarchical clustering of samples based on protein expression was
735  performed on scaled log2 relative protein expression values. We used the prcomp, umap,

736  and Heatmap functions from the stats, umap, and ComplexHeatmap packages, respectively.
737
738 ssGSEA, GSEA and MSigDB

739 ssGSEA was performed by ordering the protein rank according to their log2 relative
740  protein expression values in a sample and performing a GSEA on gene sets of interest,
741  adjusting for multiple comparisons at 5% FDR. For subtyping the GSCs, the Verhaak gene

742  sets were downloaded from the MSigDB database (Liberzon et al., 2015; Subramanian et
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743  al., 2005) and we created a dataset with Entrez IDs for the Wang gene sets and the GSAPS
744  protein sets. GSEA analyses were performed separately for published, hallmark, and GO
745  biological processes’ gene sets by sub-setting the MSigDB to the C2 GCP and REACTOME,
746  H, and C5 Biological processes categories. The ranking in the comparisons GPC-like vs.
747  GM-like GSCs and recurrent vs. primary GBM tissue was based on the difference in log2
748  average expression in the first group and the log2 average expression in the second group.

749  For all the GSE analyses we used the GSEA function from the clusterProfiler package.
750

751  In silico validation

752  GBM anatomical localisation

753 GBM differentially expressed gene sets per anatomic region were downloaded from
754  the lvy League GBM Atlas (Puchalski et al., 2018), including gene sets of leading edge
755  (n=1,998), cellular tumour (n=114), palisades around necrosis (n=389), and microvascular
756  proliferation (n=1,126). The gene sets per regions consisted of genes two-folds (log2-FC >
757 1) differentially expressed in that region as compared to the remaining regions, at 1% FDR,
758 based on an edgeR analysis. We calculated the mean protein log2-FC between GPC-like
759 and GM-like HGCC GSCs as a difference between mean log2 protein values and
760  categorised them as up in GPC-like (if log2-FC>0) and up in GM-like (if log2-FC<0). We then
761 made contingency tables and tested if the proteins were overrepresented in the anatomical

762  regions’ gene sets with a two-sided Fisher’s exact test, at alpha < 0.05 and at 5% FDR.
763
764  CPTAC proteomics dataset

765 Processed, mass-spectrometry global-proteomics, log2-normalised  protein
766  expression data of GBM tissue samples (n = 99) and normal brain tissue samples (n = 10),
767  along with clinical, subtype, molecular and survival data were downloaded from the CPTAC
768  cohort (Wang et al., 2021). Based on the expression of proteins included in the GSAPS, the
769  samples were clustered with PCA and hierarchical clustering (method: Euclidean distance).
770  We then performed ssGSEA for the GPC-like and GM-like protein set, by ranking the

771  proteins within a sample based on their log2 relative expression values.

772 We first performed survival analyses with Kaplan-Meier (KM) curves and a log-rank test at
773  alpha=0.05, categorising the GBM patients according to GSAPS gene set enrichment (at
774  protein level). The overall survival was calculated as the time period from date of initial
775  pathological diagnosis to date of death or date of loss to follow-up. GPC and GM sum scores

776  were calculated by summing up the relative protein expression values of the proteins
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777  included in the GPC-like and GM-like protein set, respectively, and log2-normalising them.
778 We then performed a survival analysis with Cox proportional hazards models and a
779  likelihood ratio test at alpha = 0.05, adjusting the scores for age. To further confirm the
780  association between the GPC and GM sum scores, we categorised them based on quartile
781  expression values to high/medium (> first quartile) and low score (< first quartile) and
782  performed KM survival analysis with a logrank test, at alpha = 0.05. Finally, we calculated a
783  log2 ratio of the GM to the GPC sum score and performed survival analysis both with Cox
784  proportional hazards models and likelihood ratio test, adjusting for age. We then categorised
785  the GM/GPC ratio to high (> third quartile) and low/medium (< third quartile) and performed

786 KM survival analysis with a logrank test, at alpha = 0.05.
787

788  Software

789 All analyses were performed in R v.4.0.3.

790

791  Data availability

792 The mass spectrometry proteomics data have been deposited to the
793  ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers:
794  PXDO027341, PXD027339 and PXD027335. RNAseq files, the datasets and the code used

795 for the analyses can be provided by the corresponding authors upon reasonable request.

796

797 Supplementary files

798 Supplementary File 1 — Supplementary figures: Figure S1-S11.

799 Supplementary File 2 — Supplementary tables: Table S1-S10.

800 Supplementary File 3 — Supplementary methods tables: Table SM1A-1C.
801
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Figure 1. Study workflow and exploratory findings. A. In a discovery panel of six
patient-derived GSC lines, previously subtyped as expressing the classical and
proneural GBM subtype at mRNA level, we have identified variable enrichment of the
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1062  proneural (PRO) and classical (CLA) GBM subtype, suggesting a plasticity between
1063  the two subtypes. However, all of the GSC lines had a suppression for the GBM
1064 mesenchymal (MES) subtype at protein level. We hypothesised that the GSCs are
1065 more distinctive at protein level based on whether they express the mesenchymal
1066  subtype or not and aimed to identify a protein signature (GSAPS), that consisted of
1067 two protein sets: the proneural+classical-like (GPC-like) protein set that was
1068 expressed in proneural and classical GSCs and a mesenchymal-like protein set
1069 (GM-like) expressed in mesenchymal GSCs. GSAPS was identifiable in another
1070  panel of 11 patient-derived GSCs, and in GBM tissue, where the expression of lower
1071  GPC-like protein scores was associated with worse overall survival, whereas lower
1072  GM-like protein scores were associated with better overall survival. Finally, by
1073  integrating proteomic and transcriptomic expression, we have performed
1074  proteogenomic analysis of the discovery panel of GSCs, discovering novel protein-
1075 coding gene regions and providing assessment of how well mRNA levels predict
1076  protein levels; B. PCA based on proteomic expression of the GSC samples and
1077  controls; C-D. UMAP of protein products of genes included in the Verhaak 2010
1078  GBM subtypes’ gene sets (C) and Wang 2017 GBM subtypes’ gene sets (D).

1079
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Figure 2. mRNA-protein correlations in BT GSCs and in CPTAC GBM tissue. A.
MRNA-protein correlation of genes identified in BT GSCs with both RNAseq and
HIRIEF LC-MS/MS; B. GSCs’ mRNA-protein correlation of genes included in
selected gene sets of interest; C. mRNA-protein correlation of genes identified in
GBM tissue with both RNAseq and HIiRIEF LC-MS/MS, CPTAC cohort; D. GBM

35


https://doi.org/10.1101/2022.02.06.479313
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.06.479313; this version posted February 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

1086  cancer tissue mMRNA-protein correlation of genes included in selected gene sets of
1087 interest; E. Density plot comparing mRNA-protein correlation coefficients in GSCs
1088 and GBM tissue. Most of the genes have a positive correlation (> 0) in both GSCs
1089 and GBM tissue; F. Bland-Altman plot comparing the agreement between correlation
1090 coefficients in GSCs and in GBM tissue. The mean of the coefficients is plotted on
1091 the x axis and the difference between the coefficients is plotted on the y axis. The
1092 dashed lines show the 95% confidence intervals for the differences in correlation
1093  coefficients. Outside of the dashed lines are the genes with the largest disagreement
1094  in mRNA-protein correlations at GBM tissue and GSC level. The proteins below the
1095 lower dashed line having significantly lower mRNA-protein correlation in GSCs and
1096 proteins above the upper dashed line having significantly higher mRNA protein-
1097  correlation in GSCs, as compared to GBM tissue. These genes lists were enriched
1098 for the annotated gene ontology (GO) terms; the full enrichment terms are given in
1099  Figure S3.
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Figure 3. GSAPS and validation in the HGCC panel of GSCs. A. Hierarchical clustering

of the BT GSC panel and controls with proteins included in GSAPS (distance: 1-Spearman’s

r); B. Correlation between protein and mRNA levels of GSAPS protein sets in GSCs; C.

Correlation between protein and mRNA levels of GSAPS protein sets in GBM tissue; D.

Hierarchical clustering based on the protein expression levels of genes included in the

Verhaak gene sets (distance: 1-Spearman’s r), and EGFR and MET protein expression in

GSCs of different subtypes; E-F. UMAP dimensional reduction of the genes included in the

Verhaak GBM subtypes’ gene sets (E) and the revised Wang GBM subtypes’ gene sets (F).

37


https://doi.org/10.1101/2022.02.06.479313
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.06.479313; this version posted February 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

A PROvs. MES GSCs - GSEA C
) 1400
GPC-like 1300
0.4 == GM-like 1200
2 1100
ﬁ 1000 LE none
E 0.0 § 200
5 S 800
@D B 700
o o} PRO
£ o4 S 600
400
0.8 300
e 200 MES
100
LT o
protein up in Genes enriched in GBM
2500 5000 7500 GSC subtype anatomical region at mRNA
B suppressed activated

VERHAAK GLIOBLASTOMA PRONEURAL

VERHAAK GLIOBLASTOMA CLASSICAL

REACTOME MRNA SPLICING

GRAHAM NORMAL QUIESCENT VS NORMAL DIVIDING DN
BEIER GLIOMA STEM CELL UP

REACTOME DNA REPAIR

NUTT GBM VS AO GLIOMA DN

REACTOME MRNA SPLICING MINOR PATHWAY
GRAHAM CML DIVIDING VS NORMAL QUIESCENT UP
ROVERSI| GLIOMA LOH REGIONS

REACTOME DNA METHYLATION

ZHENG GLIOBLASTOMA PLASTICITY UP

GROSS HYPOXIA VIA ELK3 AND HIF1A UP

JIANG HYPOXIA NORMAL

GRAHAM CML DIVIDING VS NORMAL QUIESCENT DN
NUTT GBM VS AO GLIOMA UP

GROSS HYPOXIA VIA HIF1A DN

WINTER HYPOXIA UP

WEINMANN ADAPTATION TO HYPOXIA UP

HARRIS HYPOXIA

REACTOME BIOLOGICAL OXIDATIONS

LEONARD HYPOXIA

p.adjust

0.01

0.02

0.03

REACTOME SIGNALING BY MET
GROSS HYPOXIA VIA ELK3 DN

e —
ELVIDGE HYPOXIA UP
MENSE HYPOXIA UP
MANALO HYPOXIA UP
JINESH BLEBBISHIELD TRANSFORMED STEM CELL SPHERES UP
WEINMANN ADAPTATION TO HYPOXIA DN

ELVIDGE HYPOXIA BY DMOG UP —
WINTER HYPOXIA METAGENE ———

BOQUEST STEM CELL UP 42
GRAHAM NORMAL QUIESCENT VS NORMAL DIVIDING UP

HARRIS BRAIN CANCER PROGENITORS —-‘4'_‘—_‘
—

0.04

WU CELL MIGRATION
VERHAAK GLIOBLASTOMA MESENCHYMAL

1110 2 ) ?
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1113  proneural+classical GSCs as compared to mesenchymal GSCs. The GPC-like and GM-like
1114  protein sets were enriched in the proneural+classical GSCs and mesenchymal GSCs,
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1116 and REACTOME) enriched in the GPC-like GSCs as compared to GM-like GSCs at 5%
1117 FDR, GSEA, x axis = normalised enrichment score; C. Sankey diagram depicting the
1118  proportion of genes upregulated in the GPC-like (PRO) or GM-like (MES) GSCs at protein
1119 level that is enriched in different anatomical regions of GBM: leading edge (LE), cellular
1120  tumour (CT), cellular tumour palisading around necrosis (CTpan), and cellular tumour’'s
1121  microvascular proliferation (CTmvp). On the right side of the diagram, the enriched protein

1122 setis annotated per region (two-sided Fisher’s exact test, p < 0.001, 1% FDR);

1123
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Figure 5. GSAPS expression in GBM tissue. A. GSEA on the GSAPS protein sets GPC-
like and GM-like comparing recurrent to primary GBM tissue tumours (p < 0.001, 1% FDR);
B. PCA clustering, based on log2 expression levels of proteins included in the GSAPS, of

GBM tumours and normal brain tissue samples. GBM subtypes (mMRNA, based on the Wang
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1129 2017 GBM classification(Wang et al., 2017)): CLA = classical, PRO = proneural; IDHmut =
1130 IDH-mutant tumour; MES = mesenchymal; C. Sankey diagram showing the proportion of
1131  GBM tumours of different transcriptomic subtypes (Wang 2017, GBM classification) that are
1132 enriched for the GSAPS protein sets GPC-like or GM-like or both, as compared to the
1133  CPTAC’s multiomic GBM subtypes recently described by Wang et al. (2021)(Wang et al.,
1134  2021); D. Hierarchical clustering of GBM tumours and normal brain samples based on the
1135 GSAPS (distance: 1-Spearman’s r). The different subtypes are shown in the annotation
1136  bars, as well as mutation status of common genomic markers in GBM; E. KM curves
1137  showing survival differences in patients categorised based on log2 GM to GPC protein sum
1138  score ratio to group of high (> third quartile) and medium/low (< third quartile) score ratios.
1139 The p-values are based on logrank tests; the dashed lines present the median overall
1140  survival in the corresponding groups.
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Figure S1. Protein expression of GSC markers described in literature.
A. Hierarchical clustering (distance: 1-Spearman’s correlation coefficient) of GSCs

and controls (astrocyte and T98G line) based on relative expression of known GSC
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markers; B. Protein expression of genes included in the Verhaak (2010) GBM
subtypes’ gene sets identified in this study. Hierarchical clustering (distance: 1-
Spearman’s correlation coefficient) of GSCs based on protein expression of the gene
sets. Annotation map - the Wang Q. refers to the GBM mRNA subtypes
classification of the GSCs based on mRNA expression. Wang Z. classification refers
to the recently proposed GSC classification to type | and type Il (see DeBacco et. al,
2021).

Abbreviations: CLA = classical, PRO = proneural, MES = mesenchymal, NEU =

neural.
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Figure S2. Protein expression of genes included in the Wang GBM subtypes’
gene sets. A. Hierarchical clustering (distance: 1-Spearman’s correlation coefficient)

of GSCs and controls (astrocyte and T98G line) based on relative expression of the
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Wang GBM subtypes’ gene sets; B. For comparison - PCA and k-means (KM)
clustering only of GSCs based on the expression of all the proteins without missing
values. There was no clear separation between classical (CLA) and proneural (PRO)
GSCs, as classified according to the Wang mRNA subtypes; C. EGFR/MET protein
ratio on a log2 scale;
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Figirre S3. g:Profiter enrichment analysis of the genes that were outsidé df the
95% confidence intervals (Cl) of the Bland-Altman plot comparing the
agreement in mMRNA-protein correlation estimates in GBM tissue and GSCs. A.
Gene sets enriched in the list of proteins below the lower 95% ClI, i.e. genes that had
lower correlations in the GSCs compared to GBM tissue; B. Gene sets enriched in
the list of proteins above the lower 95% ClI, i.e. genes that had higher correlations in
the GSCs compared to GBM tissue.
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Figure S4. Per-gene mRNA-protein correlations in GSCs and GBM tissue. The

difference between the standard deviations (SD) of protein expression in GBM tissue

and GSCs (x axis) was associated with the difference in mRNA-protein correlations

(Spearman r) estimated in GBM tissue and in GSCs (y axis). Higher proteins’ SD in

GBM tissue was associated with higher correlation coefficients (r) in GBM tissue


https://doi.org/10.1101/2022.02.06.479313
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.06.479313; this version posted February 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

compared to GSCs for the mesenchymal (A) and classical (B) gene sets, but not for

the proneural gene sets (C).
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Figure S5. Differential expression algorithm for detecting GSAPS. Each GSC
line was independently compared to the astrocyte and T98G line. Then we extracted
the intersect of differentially expressed proteins in the same direction (over-/under-
expressed in GSCs) in the comparison to the astrocyte and the T98G line,
respectively. Finally, we took the intersect of consistently overexpressed and under-
expressed proteins in GSCs that define GSAPS.
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Figure S6. Gene set enrichment analysis (GSEA) of GSAPS, at 5% FDR. A.
GSEA of chemical and genetic perturbations (GCP) and REACTOME gene sets
included in the C2 collection of gene sets in the Molecular Signatures Database
(MSigDB); B. GSEA of hallmark gene sets included in the H collection of gene sets
in the MSigDB; C. GSEA of GO biological processes.
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Figure S7. Hierarchical clustering of HGCC GSCs based on GSAPS protein
expression. All classical GSCs had enrichment for the proneural subtype and the
GPC-like GSAPS gene set, whereas the mesenchymal GSCs had enrichment for the
GM-like gene set. Proneural + classical GSCs had a higher EGFR/MET ratio and
lower MET levels, whereas the mesenchymal GSCs had a lower EGFR/MET ratio
and higher MET levels.
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Figure S8. Gene set enrichment analysis (GSEA) of hallmark gene sets from

the MSigDB, comparing protein expression of GPC-like GSCs to protein
expression of GM-like GSCs, at 5% FDR.
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Figure S9. Pathways enriched in recurrent vs. primary GBM tumours. A.

D

Haematoxylin and eosin staining of sample GCH004 showed extensive necrosis.
The staining was repeated on another section; B. PCA clustering of GBM tissue
samples based on bulk proteome expression; C. GSEA of C2 (subcategory: GCP
and REACTOME) gene sets of the MSigDb, comparing recurrent to primary GBM
tumours. The proteins were ranked based on a mean log2-FC comparing recurrent
(n = 3) to primary (n = 6) GBM samples; D. GSEA of hallmark (H) gene sets of the
MSigDb, comparing recurrent to primary GBM tumours.
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Figure S10. Single-sample GSEA of the GSAPS gene sets in the necrotic

sample (p < 0.001, 1% FDR). Although the GM-like gene set was upregulated in the

necrotic GBM tumour and the GP-like was supressed, the signals were not that

consistent.
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Figure S11. Overall survival in GBM patients based on GSAPS, Kaplan-Meier
(KM) curves, CPTAC data. A. KM curves showing survival differences in patients
categorised based on GSAPS gene set enrichment in GBM tissue; B. KM curves
showing survival differences in patients with mesenchymal (MES) vs. non-
mesenchymal (NON-MES) GBM (Wang gene sets); C. KM curves showing survival
differences in patients categorised based on log2 GPC protein sum score expression
to group of low (< first quartile) and medium/high (> first quartile) scores; D. KM
curves showing survival differences in patients categorised based on log2 GM
protein sum score expression to group of low (< first quartile) and medium/high (>
first quartile) scores; The p values are based on logrank tests; the dashed lines

present the median overall survival in the corresponding groups.
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