

1 **Brain aging is faithfully modelled in organotypic brain slices and accelerated by prions**

2

3 Yingjun Liu^{1,*}, Assunta Senatore¹, Silvia Sorce¹, Mario Nuvolone^{1, 2}, Jingjing Guo¹, Zeynep H.
4 Gümüş^{3, 4, 5} and Adriano Aguzzi^{1,*}

5

6 ¹Institute of Neuropathology, University of Zurich, Switzerland

7 ²Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo,

8 Department of Molecular Medicine, University of Pavia, Italy

9 ³Department of Genetics and Genomics, ⁴Precision Immunology Institute, ⁵Icahn Institute for Data

10 Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, USA

11

12 *Correspondence: Yingjun Liu (yingjun.liu@usz.ch); Adriano Aguzzi (adriano.aguzzi@usz.ch)

13

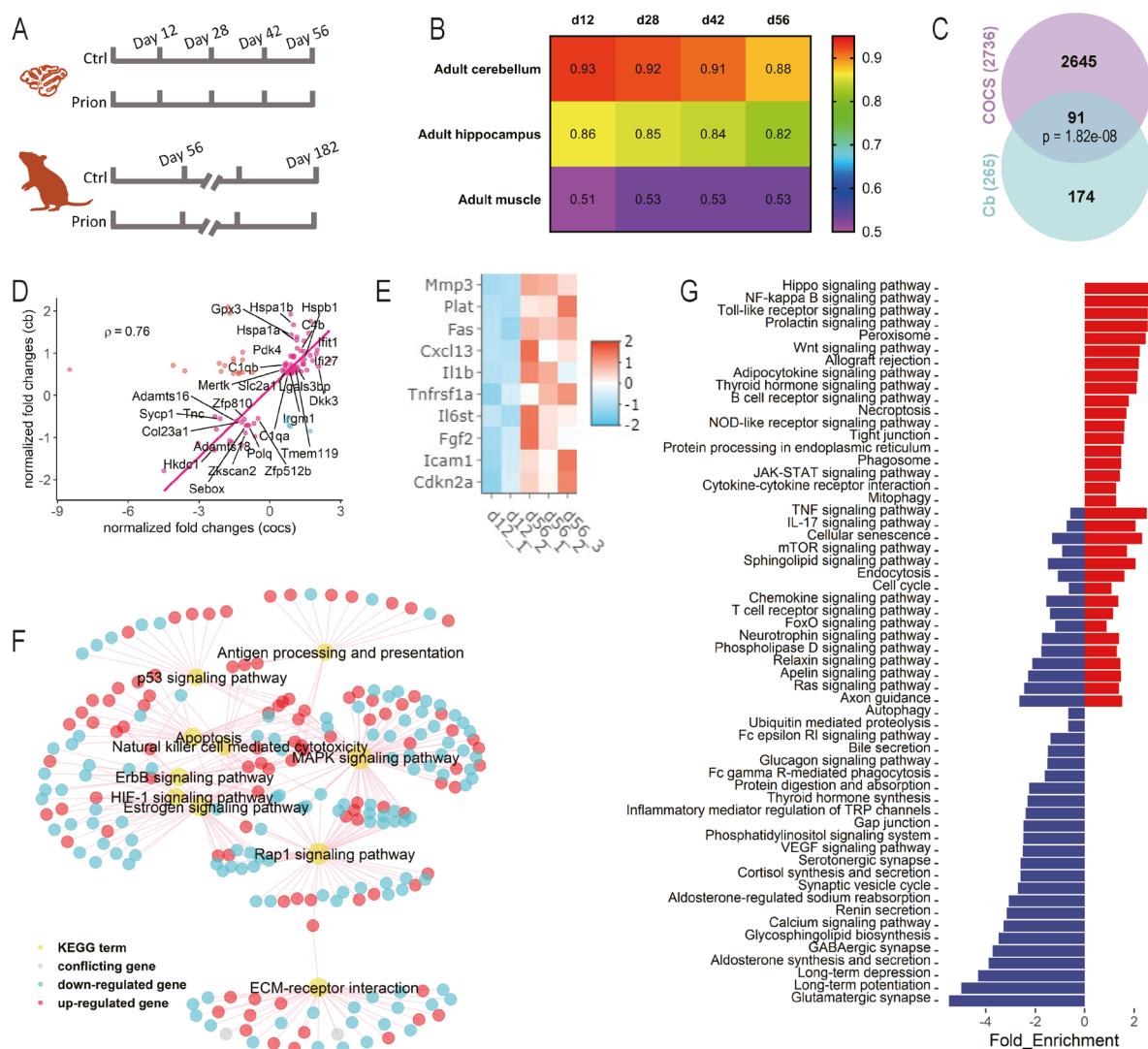
14 **Abstract**

15 Mammalian models are essential for brain aging research. However, the long lifespan and limited
16 amenability to genetic and pharmacological perturbations have hindered the use of mammals for
17 dissecting aging-regulatory molecular networks and discovering new anti-aging interventions. To
18 circumvent these limitations, we developed an ex vivo model system that faithfully mimics the aging
19 process of the mammalian brain using cultured mouse brain slices. Genome-wide gene expression
20 analyses showed that brain slices spontaneously upregulated senescence-associated genes over
21 time and reproduced many of the transcriptional characteristics of aged brains. Treatment with
22 rapamycin, a classical anti-aging compound, largely abolished the time-dependent transcriptional
23 changes in brain slices. Using this model system, we discovered that prions drastically accelerated
24 the development of age-related molecular signatures and the pace of brain aging. We confirmed this
25 finding in mouse models and human victims of Creutzfeldt-Jakob disease. These data establish a
26 novel, eminently tractable mammalian model of brain aging, and uncover a surprising acceleration
27 of brain aging in prion diseases.

28

29 **Introduction**

30 Advanced age is a strong risk factor for several chronic disorders affect multiple organs, including
31 the brain (Niccoli and Partridge 2012). Therefore, treatments targeting the biological aging process
32 may represent promising therapeutic interventions against many of these diseases. However,
33 current mammalian models for aging research suffer from long lifespans and poor amenability for
34 genetic and pharmacological perturbations (Brunet 2020), which limits their usefulness for dissecting
35 aging-regulatory molecular networks and discovering new anti-aging interventions. Consequently,
36 only a small number of molecular pathways relevant to human aging have been identified (Bitto,
37 Wang et al. 2015). More versatile model systems are needed to advance our knowledge on aging of
38 complex tissues in mammals including humans.


39 Previous studies have highlighted several hallmarks of biological aging, including inflammation, loss
40 of proteostasis, dysregulated nutrient sensing, mitochondrial malfunction, and altered intercellular
41 communication (Ferrucci, Gonzalez-Freire et al. 2020). Many of these aging hallmarks are also
42 critical pathological events observed in brain disorders characterized by abnormal protein
43 aggregation, such as prion diseases, a group of neurodegenerative disorders caused by misfolding
44 and aggregation of the cellular prion protein (PrP^C) into pathological isoforms called prions (Aguzzi
45 and Liu 2017). Therefore, studying the aging process in protein-aggregation disorders of the brain
46 may not only enhance our understanding of disease progression but also offer a unique opportunity
47 to identify key drivers of biological brain aging.

48 All major pathological characteristics of prion diseases can be faithfully mimicked in both prion-
49 inoculated animals and cultured organotypic cerebellar slices (COCS) (Falsig, Julius et al. 2008,
50 Falsig, Sonati et al. 2012). Such cultures preserve the sophisticated cell-cell interactions present in
51 vivo while gaining simplicity and experimental amenability, and represent a tantalizing biological
52 system for investigating complex physiological and pathological processes of the brain. It is however
53 unclear whether COCS experience biological aging akin to brains in vivo.

54 Here, we evaluated the suitability of COCS for modeling in vivo brain aging through genome-wide
55 gene expression profiling, bioinformatics and machine learning, approaches widely used to measure
56 and predict biological ages of various tissues (Jylhava, Pedersen et al. 2017, Fleischer, Schulte et
57 al. 2018, Bulteau and Francesconi 2021, Meyer and Schumacher 2021). We found that COCS
58 faithfully mimicked the in vivo molecular brain aging process, and demonstrated the physiological

59 relevance of these findings through rapamycin treatment, establishing a novel, convenient,
 60 mammalian model system for brain aging research. Furthermore, we discovered that prions
 61 drastically accelerated the pace of brain aging in COCS, mouse models and human patients,
 62 providing a theoretical basis for exploiting “rejuvenating” therapies against prion diseases.

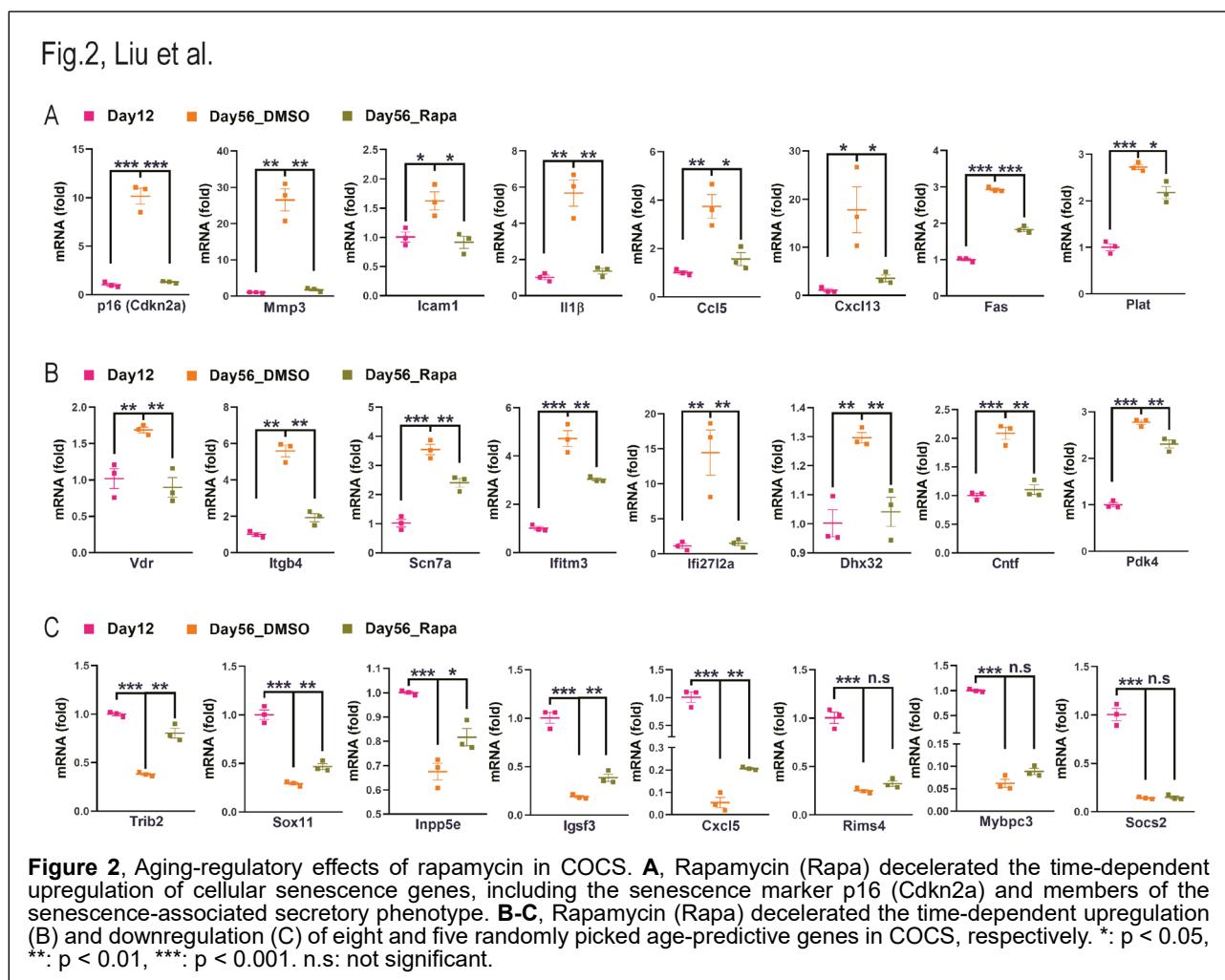
Fig.1, Liu et al.

Figure 1. COCS recapitulate in vivo gene expression and undergo rapid aging. **A.** Design of the RNAseq experiments. **B.** Spearman's correlation coefficient (ρ) of gene expression in COCS (12-56 days) with adult mouse cerebellum, hippocampus and muscle. X-axis indicates days ex vivo of COCS. **C.** Overlap between DEG of aged COCS and cerebellum (p : hypergeometric test). **D.** Changes of common DEG in aged COCS vs cerebella. Genes of interest are highlighted with their names. Genes show different directions of changes in the two conditions are highlighted in cyan or red. **E.** Heatmap showing the expression of cellular senescence genes, including p16 (Cdkn2a) and members of the senescence-associated secretory phenotype, in young (12 days) and old (56 days) COCS. **F.** Subset of common KEGG pathways that are significantly (FDR < 0.05) dysregulated in aged COCS and cerebellum. **G.** Additional KEGG pathways that are significantly (FDR < 0.05) enriched in the DEG of aged COCS. Negative and positive values of the x-axis indicate downregulation and upregulation during aging, respectively. Blue bars: downregulated pathways in aged COCS. Red bars: upregulated pathways in aged COCS.

63 **Results**

64 *Natural aging of COCS*

65 We used RNA sequencing (RNAseq) to obtain genome-wide gene expression profiles of COCS
66 maintained *ex vivo* for 12, 28, 42 or 56 days in the presence or absence of prions (**Fig. 1A**). To
67 compare it with *in vivo*, similar RNAseq was performed for the cerebellum of adult C57BL/6J mice at
68 56 or 182 days post-intracerebral inoculation with normal brain homogenate (NBH) or brain
69 homogenate containing prions (**Fig. 1A**). The global gene expression in the control COCS was highly
70 similar to that in the cerebellum and hippocampus *in vivo*, but substantially different from the adult
71 muscle (Borsch, Ham et al. 2021) (**Fig. 1B**), indicating that brain-specific gene expression was
72 retained in COCS. The correlation of transcriptional patterns between the control COCS and adult
73 brain tissues underwent a subtle monotonic decrease over time (**Fig. 1B**). Indeed, comparison of
74 gene expression in the control COCS between 56 and 12 days identified 2736 differentially
75 expressed genes (DEG) (**Supplementary fig. 1A; Supplementary table 1**).


76 To assess whether the time-dependent transcriptional changes in the control COCS mirror the
77 physiology of brain aging *in vivo*, we examined whether similar alterations were detectable in the
78 mouse cerebellum across ages. We identified 265 DEG in the cerebellar tissues of NBH-inoculated
79 mice between 56 and 182 days (~4-9 months of age) (**Supplementary fig. 1B; Supplementary**
80 **table 2**). Ninety-one out of the 265 DEG overlapped with those observed in the control COCS (**Fig.**
81 **1C**). Furthermore, 80% of the overlapping genes were altered in the same direction, and were highly
82 correlated ($\rho = 0.76$, Spearman's correlation) between the control COCS and *in vivo* (**Fig. 1D**). These
83 genes were associated with microglia (e.g., *Tmem119*, *C1qa*, *C1qb* and *C4b*), inflammation (e.g.,
84 *Mertk*, *Irgm1*, *Ifit1*, *Ifi27* and *Lgals3bp*), protein stabilization (e.g., *Hspa1a*, *Hspa1b*, *Hspb1* and *Dkk3*),
85 glucose metabolism (e.g., *Slc2a1*, *Pdk4*, *Gpx3* and *Hkdc1*), extracellular matrix (e.g., *Col23a1*,
86 *Adamts16*, *Adamts18* and *Tnc*), cell proliferation and gene expression regulation (e.g., *Sycp1*, *Polq*,
87 *Zkscan2*, *Sebox*, *Zfp512b* and *Zfp810*). In addition, a noteworthy overlap was identified between the
88 DEG in the control COCS and more advanced brain-aging stages, such as the 24-month mouse
89 hippocampus (Stilling, Benito et al. 2014) (**Supplementary fig. 2A-C**). Examination of the
90 expression levels of cellular senescence genes, including the senescence marker p16 (*Cdkn2a*) and
91 members of the senescence-associated secretory phenotype (e.g., *Mmp3* and *Icam1*), indicated a
92 strong induction of cellular senescence in the control COCS at 56 days (**Fig. 1E**), recapitulating a

93 hallmark of in vivo tissue aging (Yousefzadeh, Zhao et al. 2020).
94 To examine whether the transcriptional changes in the control COCS might be caused by the
95 transient exposure to NBH, we analyzed ten randomly picked DEG (5 upregulated and 5
96 downregulated) and ten genes related to cellular senescence by quantitative RT-PCR. However,
97 none of them showed any difference between the control and naïve (no NBH exposure) COCS at 12
98 and 56 days (**Supplementary fig. 3A-B**), indicating that the time-dependent gene expression
99 changes in the control COCS were mainly induced by the natural aging process.
100 Enrichment of DEG in aged COCS and in vivo for KEGG pathways identified 41 commonly altered
101 biological processes (**Supplementary table 3**). These included antigen processing and presentation,
102 p53 signaling, apoptosis, natural killer cell mediated cell toxicity, Mapk signaling, ErbB signaling, Hif1
103 signaling, estrogen signaling, Rap1 signaling and ECM-receptor interaction (**Fig. 1F**), all of which
104 had been found to be overrepresented in aged brains (Frahm, Srivastava et al. 2017, Mattson and
105 Arumugam 2018, Shavlakadze, Morris et al. 2019, Alique, Sanchez-Lopez et al. 2020, Paterson,
106 Cumming et al. 2020). Additional aging-related pathways, such as NF- κ B signaling, mTOR signaling,
107 autophagy, cellular senescence and VEGF signaling, were found to be more profoundly altered in
108 long-term cultured COCS than in 9-month cerebella (**Fig. 1G**), suggesting that the 56-day-old COCS
109 represent a more advanced in vivo brain aging stage.
110

111 *Aging-modulatory effects of rapamycin in COCS*

112 To further validate the physiological relevance of the time-dependent transcriptional changes in
113 COCS to in vivo brain aging, we treated naïve COCS with rapamycin, which is often used in anti-
114 aging paradigms, or with DMSO from day 12 to day 56, and examined the expression levels of
115 cellular senescence genes by quantitative RT-PCR. Strikingly, we found that the transcriptional
116 induction of all the cellular senescence-associated genes in aged COCS was drastically suppressed
117 by rapamycin treatment (**Fig. 2A**). In addition, by applying elastic net-based machine learning (Zou
118 and Hastie 2005) to our time-course RNAseq dataset of the control COCS, we identified 322 age-
119 predicting genes (**Supplementary table 4**). Quantitative RT-PCR results demonstrated that
120 rapamycin substantially inhibited the expression changes of all eight randomly picked upregulated
121 age-predicting genes (**Fig. 2B**), and five out of eight randomly picked downregulated age-predicting
122 genes (**Fig. 2B**), in the 56-day-old naïve COCS, indicating a global slowdown of the biological aging

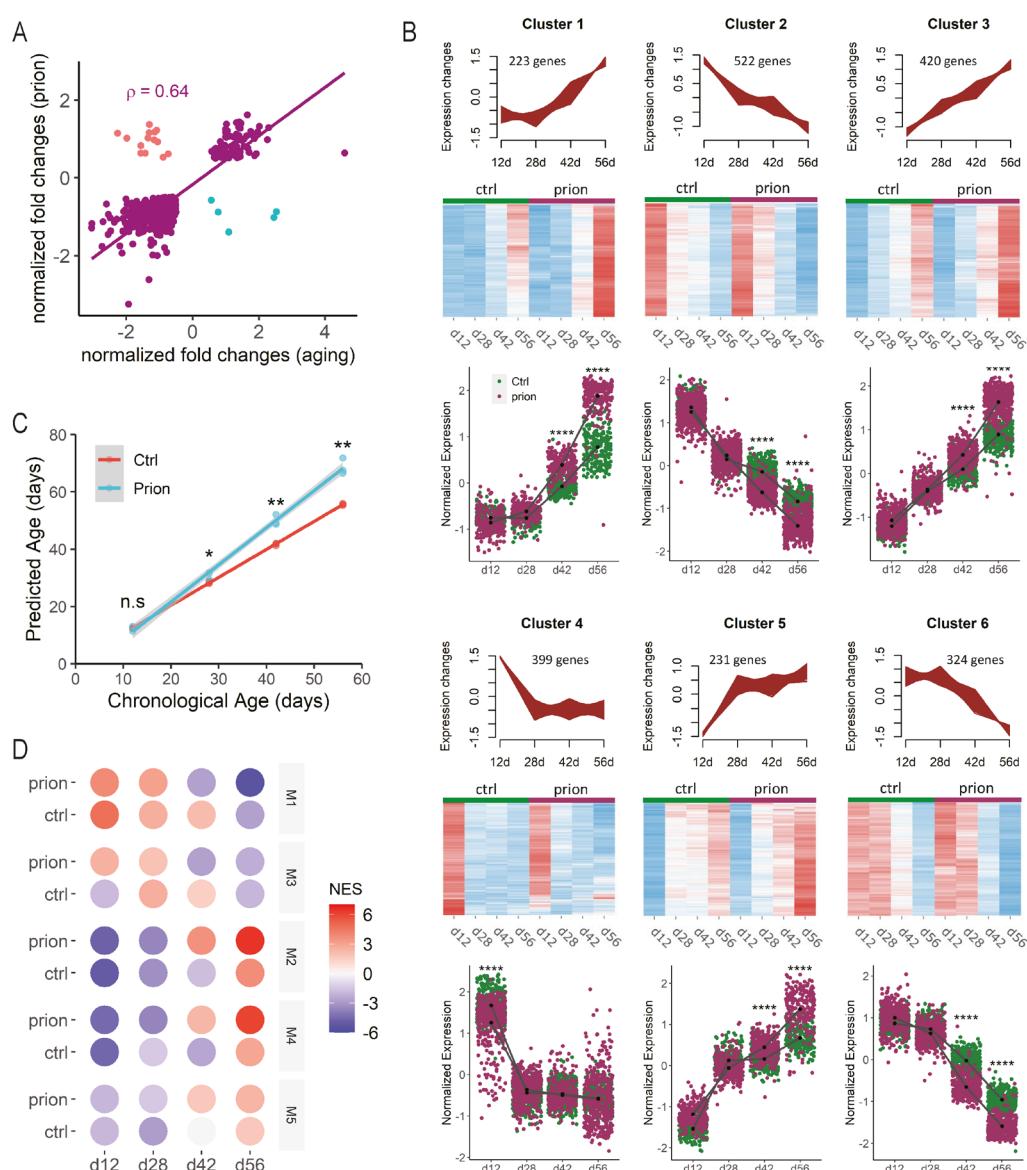
123 process upon rapamycin treatment. These data confirm that a biological process similar to that
124 underlying in vivo brain aging drove the progressive transcriptional changes in COCS over time.

125

126 *Accelerated aging in prion-exposed COCS*

127 To evaluate the power of our model system for identifying novel modifiers of brain aging, we next
128 studied how the biological aging process develops in COCS exposed to prions. We compared the
129 transcriptional changes in the prion-exposed COCS at 56 days with those induced by natural aging
130 in the control COCS. Surprisingly, we found a large number of genes dysregulated in the aged COCS
131 further changed their expression levels in the presence of prions (**Fig. 3A**). These results suggest
132 that prions may alter the biological aging process.

133 To test this hypothesis, we selected 3104 aging-related genes through combining DEG identified by
134 comparing control COCS at any two time points, and examined their expression changes in the


135 presence and absence of prions. Using fuzzy c-means clustering (Bezdek, Ehrlich et al. 1984), we
136 classified the aging-related genes into six clusters (**Fig. 3B**). Genes in clusters 2 and 6 showed
137 downregulation over time (**Fig. 3B**), and were enriched for neuronal genes (**Supplementary fig. 4A**)
138 and pathways associated with synaptic function (**Supplementary fig. 4B**). Genes in clusters 1 and
139 3 showed upregulation over time (**Fig. 3B**), and were enriched for Bergmann glia, astrocyte and
140 microglia specific genes (**Supplementary fig. 4A**), and pathways related to interferon and
141 inflammatory responses (**Supplementary fig. 4B**). Interestingly, genes in cluster 4, which were
142 associated with cell adhesion and extracellular matrix (**Supplementary fig. 4B**) and exhibited strong
143 early downregulation (**Fig. 3B**), were almost exclusively enriched in microglia (**Supplementary fig.**
144 **4A**), indicating possible coexistence of several distinct microglia populations. The cluster 5 genes
145 showed strong early upregulation (**Fig. 3B**), and were enriched for genes highly expressed in
146 oligodendrocyte lineage cells (**Supplementary fig. 4A**). We examined how prion exposure influenced
147 the transcriptional evolution of these aging-associated genes over time at the cluster level. Strikingly,
148 we found that the temporal signatures of all the six aging-associated clusters were largely preserved
149 after prion exposure; however, the overall temporal kinetics of both the upregulated and
150 downregulated clusters were strongly accelerated in the presence of prions (**Fig. 3B**).

151 To further investigate the prion-dependent aging acceleration, we trained an age-predictive machine-
152 learning algorithm based on ridge regression (Hoerl and Kennard 1970) using the time-course gene
153 expression profiles in the control COCS, and calculated the biological ages of COCS exposed or not
154 exposed to prions. The algorithm-predicted biological ages for the control COCS were similar to their
155 chronological ages at all time points (**Fig. 3C**); however, the algorithm-predicted biological ages for
156 the prion-exposed COCS were notably older compared to their chronological ages at three out of
157 the four time points (**Fig. 3C**). Specifically, we found the biological ages of the prion-exposed COCS
158 were approximately 3, 8 and 13 days older compared to the control COCS at day 28, day 42 and
159 day 56, respectively (**Fig. 3C**). These data further support the conclusion that the biological aging
160 process is accelerated in COCS after prion exposure.

161 To explore the mechanisms behind the accelerated aging in the prion-exposed COCS, we did a gene
162 co-expression network analysis across all experimental conditions, and identified five distinct co-
163 expression modules (**Supplementary fig. 5**). We evaluated the module activities across samples
164 using gene-set enrichment analysis, and found all the five modules showed strong associations with

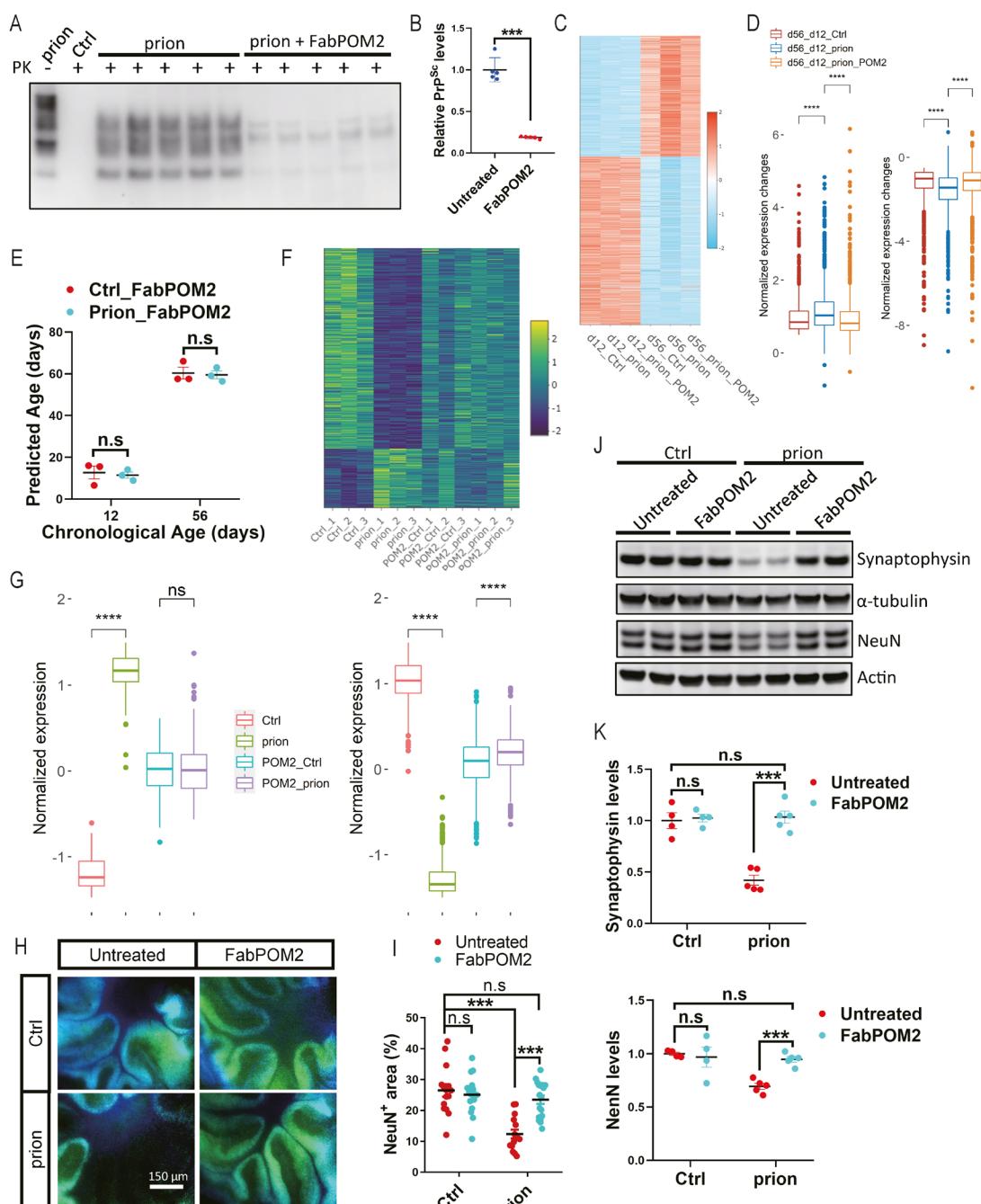

165 both aging and prion exposure (**Fig. 3D**). Genes in modules 2, 4 and 5 showed time-dependent
 166 downregulation while genes in modules 1 and 3 showed time-dependent upregulation (**Fig. 3D**), all
 167 of which were drastically enhanced in the presence of prions (**Fig. 3D**). These results suggest that
 168 prions and aging essentially activate the same molecular programs.

Fig. 3, Liu et al.

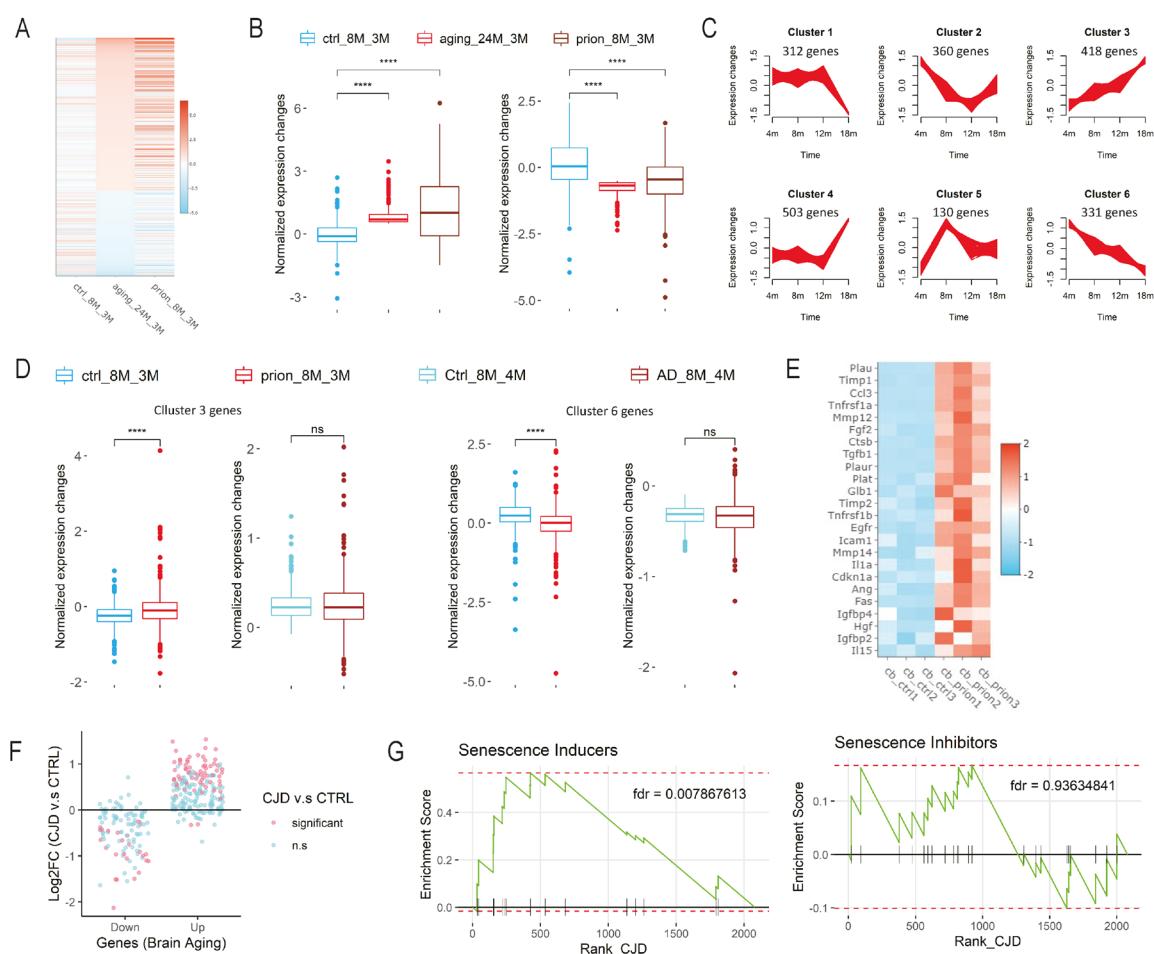
Figure 3, Prions accelerate biological aging in COCS. **A**, Normalized fold changes of DEG commonly identified in prion-exposed and naturally aged COCS. p : Spearman's correlation coefficient. Genes show different directions of changes in the two conditions are highlighted in cyan or red. **B**, Upper panel of each cluster: graphs showing the aging-associated gene clusters classified by fuzzy c-means. Only those genes with cluster membership values > 0.5 are shown. Middle panel for each cluster: heatmaps showing the relative expression levels of clustered genes in the presence and absence of prions. Bottom panel for each cluster: quantifications of normalized expression levels of clustered genes in the presence and absence of prions. ****: $p < 0.0001$. **C**, Linear regression of chronological and predicted biological ages of NBH- (Ctrl) and prion-exposed COCS at different time points. Shading indicates 0.95 confidence interval. *: $p < 0.05$, **: $p < 0.01$. n.s: not significant. **D**, Heatmap showing the transcriptional activities of the five gene co-expression network-modules in NBH- (Ctrl) and prion-exposed COCS over time. NES: normalized enrichment score of gene set enrichment analysis.

Fig. 4, Liu et al.

Figure 4. FabPOM2 treatment abolishes prion-induced aging acceleration and neurotoxicity. **A-B**, Representative western blots (**A**) and quantification (**B**) of PrP^{Sc} in prion-inoculated and control (NBH-inoculated) COCS with or without FabPOM2 treatment. ***: $p < 0.001$, n.s.: not significant. **C**, Heatmap showing the expression levels of aging-associated genes in NBH- (Ctrl) and prion-exposed COCS with or without FabPOM2 treatment at day 12 and day 56. Values are normalized row wise. **D**, Quantifications of normalized expression changes of the aging-associated genes shown in C between day 12 and day 56 in NBH- (Ctrl) and prion-exposed COCS with or without FabPOM2 treatment. ****: p value < 0.0001 . **E**, Chronological and predicted biological ages of COCS in NBH- (Ctrl) and prion-exposed COCS treated with FabPOM2. n.s: not significant. **F**, Heatmap showing the expression levels of differentially expressed genes in prion-exposed COCS at day 56 with or without FabPOM2 treatment. Data are normalized row wise. **G**, Quantifications of normalized expression levels of genes shown in F. Left panel: upregulated genes in prion-exposed COCS. Right panel: downregulated genes in prion-exposed COCS. ***: $p < 0.0001$. n.s: not significant. **H**, Representative immunofluorescent images of NeuN staining in NBH- (Ctrl) and prion-exposed COCS at day 56 with or without FabPOM2 treatment. **I**, Quantifications of NeuN positive areas shown in H. ***: $p < 0.001$. n.s: not significant. **J**, Representative western blots showing synaptophysin and NeuN protein levels in NBH- (Ctrl) and prion-exposed COCS at day 56 with or without FabPOM2 treatment. **K**, Quantifications of synaptophysin and NeuN protein levels shown in J. ***: $p < 0.001$. n.s: not significant. Raw images of all western blots shown in this figure are included in supplementary fig. 7.

170 *Anti-PrP antibody POM2 abolishes accelerated aging in prion-exposed COCS*

171 To further examine the accelerating effects of prions on the aging process, we treated the prion-
172 exposed COCS and the control COCS with the anti-PrP antibody fragment FabPOM2 (Sonati,
173 Reimann et al. 2013), and sequenced their transcriptomes at 12 and 56 days. FabPOM2 treatment
174 strongly reduced prion levels in the prion-exposed COCS (**Fig. 4A-B**). Strikingly, we found although
175 FabPOM2 did not alter the expression of aging-related genes in the absence of prions
176 (**Supplementary fig. 6A**), it completely abolished the accelerated aging signatures in the prion-
177 exposed COCS (**Fig. 4C-D**). We then calculated the biological ages of the FabPOM2 treated COCS
178 with our machine-learning algorithm, and found there was no difference between the control and the
179 prion-exposed COCS anymore (**Fig. 4E**). Crucially, the biological ages of FabPOM2-treated COCS
180 were similar to their chronological ages no matter whether they had been exposed to prions or not
181 (**Fig. 4E**). These data indicate that acceleration of biological aging in the prion-exposed COCS was
182 strictly dependent on prion replication.


183 We then examined how FabPOM2 treatment affected prion-induced neurotoxicity. By examining the
184 RNAseq data, we found FabPOM2 treatment completely abrogated all prion-induced molecular
185 changes in COCS (**Fig. 4F-G; Supplementary fig. 6B**). Quantification of the neuronal marker NeuN
186 through immunofluorescence and western blotting suggested that FabPOM2 treatment also
187 abolished prion-induced neurodegeneration (**Fig. 4H-K**). In addition, we found that the progressive
188 loss of the synaptic marker synaptophysin after prion exposure was fully prevented by FabPOM2
189 (**Fig. 4J-K**). These data suggest that aging acceleration by prions may be a driver of neurotoxicity.

190

191 *Accelerated biological brain aging in mouse models and patients of prion diseases*

192 Since the progression of prion diseases is much faster than natural aging in humans and animal
193 models, it is difficult to directly study the influence of prions on the aging process in vivo. However,
194 if prions also accelerate brain aging in vivo, genes whose expression change in advanced age may
195 be altered prematurely in young prion-inoculated animals or exhibit stronger changes in prion
196 disease patients compared to age-matched control subjects.

Fig. 5, Liu et al.

Figure 5, Prions accelerate biological brain aging in vivo. **A**, Heatmap showing the normalized fold changes of in vivo brain aging-signature genes across conditions. ctrl_8M_3M: 8-month vs. 3-month hippocampus in control (NBH-exposed) mice; prion_8M_3M: 8-month vs. 3-month hippocampus in prion-infected mice; aging_24M_3M: 24-month vs. 3-month hippocampus in normal mice. **B**, Quantifications of normalized expression changes of aging-signature genes shown in A. Left panel: upregulated brain aging-signature genes shown in A. Right panel: downregulated brain aging-signature genes shown A. ****: p value < 0.0001. **C**, In vivo brain aging-associated genes clustered by fuzzy c-means. Only those genes with cluster membership values > 0.5 are shown. **D**, Normalized expression changes of genes in clusters 3 and 6 shown in C in prion-inoculated mice, AD mice and their respective controls. ****: p value < 0.0001. n.s: not significant. **E**, Heatmap showing the expression levels of cellular senescence genes, including senescence markers and members of the senescence-associated secretory phenotype, in the cerebellum of NBH-(ctrl) and prion-inoculated mice. **F**, Fold changes of human brain-aging signature genes in the brains of Creutzfeldt-Jakob disease (CJD) patients compared to age-matched controls. Significant: p value < 0.05. n.s: not significant. **G**, Graphs showing results of gene set enrichment analysis of senescence inducer and inhibitor genes in the differentially expressed genes (DEG) of CJD. Statistical significance of the analysis is given as false discovery rate (fdr). DEG were ranked according to their fold changes in the CJD brains compared to age-matched controls.

197 To test this, we extracted a set of genes significantly dysregulated in the 24-month mouse
 198 hippocampus compared to 3-month (Stilling, Benito et al. 2014), and examined their expression
 199 changes in the hippocampus of 8-month compared to 3-month in the presence and absence of prions
 200 (Sorce, Nuvolone et al. 2020). In agreement with our prediction, we found many of the genes
 201 dysregulated in the 24-month hippocampus during normal aging had already shown significant

202 changes in the 8-month hippocampus compared to 3-month in prion-exposed mice (**Fig. 5A-B**). In
203 contrast, changes of the same genes were barely detectable in the 8-month hippocampus compared
204 to the 3-month hippocampus in the absence of prions (**Fig. 5A-B**). To further validate these findings,
205 we analyzed a publicly available RNAseq dataset (Forner, Kawauchi et al. 2021) examining genome-
206 wide gene expression in the hippocampus of wild type (WT) and 5xFAD mice across different ages.
207 Using the same approach as in **Fig. 3B**, we identified the aging-associated genes in the WT
208 hippocampus and classified them into six clusters using fuzzy c-means clustering (**Fig. 5C**). We then
209 examined how the expression of genes in clusters 3 and 6, two most age-predictive clusters,
210 changed in the prion-exposed mice and AD mice compared to their respective controls. As expected,
211 we found genes in both clusters changed much more strongly in the hippocampus of prion-exposed
212 mice compared to the NBH control group between 8 and 3 months of age (**Fig. 5D**). In contrast, very
213 similar expression changes were observed in the hippocampus of WT and AD mice within a similar
214 period of time (**Fig. 5D**). Furthermore, we found a drastic upregulation of senescence-related genes,
215 including the cellular senescence markers and members of the senescence-associated secretory
216 phenotype, in the brains of prion-infected mice (**Fig. 5E**). These data suggest that prions also
217 accelerate brain aging in the mouse model of prion diseases.
218 To investigate whether similar biological processes are present in the brains of human prion disease
219 patients, we examined the transcriptional changes of human brain-aging signature genes (Lu, Pan
220 et al. 2004) in the brains of Creutzfeldt-Jakob disease (CJD) patients and age-matched control
221 subjects (Bartolotti-Stella, Corrado et al. 2019). Strikingly, we found that most of the upregulated
222 human brain aging-signature genes exhibited higher expression levels in the CJD brains than in the
223 age-matched controls (**Fig. 5F**). Similarly, most of the downregulated human brain aging-signature
224 genes exhibited lower expression levels in the CJD brains compared to the age-matched controls
225 (**Fig. 5F**). In addition, by gene set enrichment analysis, we found the senescence-inducer genes
226 (Avelar, Ortega et al. 2020), but not the senescence-inhibitor genes (Avelar, Ortega et al. 2020),
227 were strongly upregulated in the CJD brains (**Fig. 5G**), indicating an induction of cellular senescence
228 in the brains of prion disease patients. These observations suggest that possible acceleration of
229 brain aging also present in human prion disease patients.
230

231 **Discussion**

232 In this study, we developed a novel ex vivo model system to investigate the biological brain aging
233 process in mammals based on COCS. This model system successfully captured the aging-
234 modulatory effects of rapamycin, a classical anti-aging compound, validating its physiological
235 relevance. Compared to the currently available mammalian models of brain aging, the experimental
236 system described here is much less time-consuming and highly amenable to genetic and
237 pharmacological perturbations. Therefore, our model system would be very useful for dissecting the
238 complex molecular networks underlying biological brain aging in evolutionarily advanced organisms,
239 especially when combined with high-throughput screening technologies.

240 Aging is a complex biological process strongly influenced by evolution. Although previous studies
241 have identified conserved aging-related pathways across species, the pace and physiological
242 mechanisms of aging in different species are not entirely the same (Cohen 2018). In principle, our
243 COCS-based aging-modeling approach can be adapted to other mammalian species including
244 primates and humans, thus providing an innovative experimental paradigm to study species-specific
245 characteristics of biological brain aging.

246 Advanced age poses strong risks for developing neurodegenerative diseases associated with
247 pathological protein aggregation (Hou, Dan et al. 2019). However, there is little consensus on why
248 this is the case. Using our COCS-based model system, we discovered that prions strongly
249 accelerated biological brain aging – a finding that we then corroborated in brains of experimental
250 animals and in human CJD victims. These findings not only advance our understanding of the
251 molecular pathology underlying prion-induced neurodegeneration, but also point to potential
252 therapeutic interventions against prion diseases.

253 In essence, our data suggest that certain phenotypic manifestations of prion diseases may directly
254 result from the accelerated changes of pathways operative in brain aging. If that is the case, it may
255 be important to explore whether interventions that reduce certain aspects of aging might be beneficial
256 (perhaps in combination with anti-prion therapies) in the treatment of prion diseases. Senolytic
257 therapies may represent such candidates. Indeed, the anti-aging compound rapamycin notably
258 suppressed prion disease pathogenesis in animal models (Cortes, Qin et al. 2012, Abdulrahman,
259 Tahir et al. 2019). In addition, long-term injection of blood serum from young mice alleviated the
260 clinical symptoms of prion-inoculated mice (Sorce, Nuvolone et al. 2020).

261 For all the novel findings discussed above, several questions surrounding are still open and need to
262 be addressed in future studies. Firstly, previous studies have observed different effects of aging on
263 prion disease development in animal models inoculated with prions through different routes
264 (Avrahami and Gabizon 2011, Sorce, Nuvolone et al. 2020), and prions accumulate in the peripheral
265 organs of animal models and human patients suffering from sporadic and variant CJD (Hill, Zeidler
266 et al. 1997, Hilton, Fathers et al. 1998, Prinz, Montrasio et al. 2002, Glatzel, Abela et al. 2003). It
267 would be interesting to investigate whether prions influence the biological aging process of tissues
268 other than the brain. Secondly, since different prion strains were found to be responsible for different
269 prion disease subtypes (Solforosi, Milani et al. 2013), future studies may determine whether the
270 observed brain aging acceleration is a general feature of all prion strains or is restricted to the prion
271 strains investigated in the current study.

272 **Materials and methods**

273 *Animal experiment*

274 For *in vivo* studies, adult male C57BL/6J mice purchased from Charles River Germany were used.
275 These mice were part of the mouse cohort that had been used for our previous investigations
276 focusing on gene expression of the hippocampus in prion diseases (Sorce, Nuvolone et al. 2020).
277 For studies using brain slice cultures, C57BL/6J pups from the Laboratory Animal Services Center,
278 University of Zurich were used. All animal experiments were performed according to Swiss federal
279 guidelines and approved by the Animal Experimentation Committee of the Canton of Zurich.

280

281 *Prion inoculation*

282 Intracerebral inoculation of adult C57BL/6J mice were performed as previously described (Sorce,
283 Nuvolone et al. 2020). Briefly, 30 µl of 0.1% normal brain homogenate (NBH) derived from the whole
284 brain of healthy adult CD-1 mice or same amount of prion-containing brain homogenate derived from
285 the whole brain of terminally sick Rocky Mountain Laboratory strain of scrapie, passage 6 (RML6)
286 infected mice was injected into the brain with 0.3-ml syringes under deep anesthesia. Health and
287 prion disease symptoms of the inoculated mice were monitored according to a protocol approved by
288 Animal Experimentation Committee of the Canton of Zurich.

289

290 *Organotypic brain slice culture*

291 Brain slice cultures were prepared using cerebellar tissues from 10-12 days old mouse pups
292 according to a previously published protocol (Falsig and Aguzzi 2008). Briefly, 350-µm thick
293 cerebellar slices were produced using a Leica vibratome and temporarily kept in ice-cold Gey's
294 balanced salt solution (GBSS) supplemented with kynurenic acid (1 mM) and glucose. Slices with
295 intact morphology were then collected and exposed to RML6, NBH or no brain homogenate for 1
296 hour at 4 °C. After extensive washes, six to eight slices were put on a Millicell-CM Biopore PTFE
297 membrane insert (Millipore) and kept on slice culture medium (50% vol/vol MEM, 25% vol/vol basal
298 medium Eagle and 25% vol/vol horse serum supplemented with 0.65% glucose (w/vol),
299 penicillin/streptomycin and glutamax (Invitrogen)) at 37 °C in a cell culture incubator. Culture medium
300 was changed three times per week.

301

302 *Rapamycin treatment*

303 Rapamycin (HY-10219, MedChemExpress, USA) was dissolved in dimethyl sulfoxide (DMSO,
304 Sigma, 472301, Switzerland), aliquot and stored at -80 °C. Freshly thawed rapamycin was added
305 into the brain slice culture medium during medium changes from day 12 to day 56 with the final
306 concentration of 500 nM. Same amount of DMSO was used as control.

307

308 *FabPOM2 treatment*

309 Home-made anti-PrP antibody FabPOM2 was supplemented in the slice culture medium with 500
310 nM concentration from the second day after the cultures were established. The treatment continued
311 until to the end of the experiment. Fresh FabPOM2 was added in the culture medium every time
312 when the culture medium was changed.

313

314 *Quantitative RT-PCR*

315 Total RNA was extracted using TRIzol (Invitrogen, USA), and reverse-transcribed into cDNA with the
316 QuantiTect Reverse Transcription kit (QIAGEN, Germany). Quantitative RT-PCR was performed as
317 described (Liu, Sorce et al. 2018), using the SYBR Green PCR Master Mix (Roche, Switzerland) on
318 a ViiA7 Real-Time PCR system (Applied Biosystems, USA). The following primers were used: Mouse
319 actin: sense, 5'-AGATCAAGATCATTGCTCCTCCT-3', antisense, 5'-
320 ACGCAGCTCAGTAACAGTCC-3'. Mouse Cdkn2a: sense, 5'-CGAACTCGAGGAGGCCATC-3',
321 antisense, 5'-TACGTGAACGTTGCCATCA -3'. Mouse Icam1: sense, 5'-
322 CTGGGCTTGGAGACTCAGTG-3', antisense, 5'-CCACACTCTCCGGAAACGAA-3'. Mouse Fgf2:
323 sense, 5'-GGCTGCTGGCTTCTAAGTGT-3', antisense, 5'-GTCCCGTTTGGATCCGAGT-3'.
324 Mouse II1β: sense, 5'-TGCCACCTTTGACAGTGATG-3', antisense, 5'-
325 AAGGTCCACGGGAAAGACAC-3'. Mouse II6st: sense, 5'-CCAGAGCTCGAGCCATCCG-3',
326 antisense, 5'-GCGCTAGCCAAATCCTGGT-3'. Mouse Tnfrsf1a: sense, 5'-
327 ACCAGTTCCAACGCTACCTG-3', antisense, 5'-AGATAACCAGGGGAAACAGC-3'. Mouse Cxcl13:
328 sense, 5'-TCTCTCCAGGCCACGGTATT-3', antisense, 5'-TTCAGTTTGGGGCAGCCAT-3'. Mouse
329 Plat: sense, 5'-CAAGAGCTAGCGTCAAGGA-3', antisense, 5'-TTGTCTGCGTTGGCTCATCT-3'.
330 Mouse Fas: sense, 5'-GTCCTGCCTCTGGTGCTT-3', antisense, 5'-
331 AGCAAAATGGGCCTCCTTGA-3'. Mouse Mmp3: sense, 5'-CCACATCACCTACAGGATTGT-3',

332 antisense, 5'-GACTGTTCCAGGCCATCAA-3'. Mouse Mybpc3: sense, 5'-
333 ATCCCTTCCAGGGCAAACC-3', antisense, 5'-CCATCATCTGGGGTGGCTT-3'. Mouse Soc2:
334 sense, 5'-AGCTCAGTCAAACAGGATGGT-3', antisense, 5'-TCAATCCGCAGGTTAGTCGG-3'.
335 Mouse Igf3: sense, 5'-CCGGGCGAGGAATCTGC-3', antisense, 5'-
336 CAGCCAAAACACCCGGATTG-3'. Mouse Rims4: sense, 5'-TGGAGATTGGCTGCAGGAG-3',
337 antisense, 5'-TTCCCCACACGATTACCTGC-3'. Mouse Inpp5e: sense, 5'-
338 GCTCTAGTGCAGGGGATGTC-3', antisense, 5'-CACCCCTGTGACGGCTTTG-3'. Mouse Pdk4:
339 sense, 5'-CGTACTCCACTGCTCCAACA-3', antisense, 5'-ACACCAGTCATCAGCTTCGG-3'.
340 Mouse Trib2: sense, 5'-AGCCCGACTGTTCTACCAGA-3', antisense, 5'-
341 GCTTGACACGAGTCCTCTCTT-3'. Mouse Dhx32: sense, 5'-ACCAAGAAGATGCCGAGTG-3',
342 antisense, 5'-CTGTTGCAGTGTCCGTGTTG-3'. Mouse Ifi27l2a: sense, 5'-
343 TGTTGGCTCTGCCATAGGA-3', antisense, 5'-TGCTGATTGGAGTGTGGCTA-3'. Mouse Vdr:
344 sense, 5'-GCATCCAAAAGGTCATCGGC-3', antisense, 5'-GTCGGTCTGGGAGACAATG-3'.
345 Mouse Scn7a: sense, 5'-TGGGGATCTTGGAACTGGC-3', antisense, 5'-
346 GGCGTGGTTCAAAGGGATA-3'. Mouse Ccl5: sense, 5'-ATATGGCTCGGACACCAC-3',
347 antisense, 5'-ACTTGGCGGTTCCCTCGAG-3'. Mouse Ifitm3: sense, 5'-
348 CTGACCATGTGGCTGGTCC-3', antisense, 5'-CAGGACCGGAAGTCGGAATC-3'. Mouse Cntf:
349 sense, 5'-GCTTCGCAGAGCAATCACC-3', antisense, 5'-TTGCCACTGGTACACCATCC-3'.
350 Mouse Itgb4: sense, 5'-TCTGTGCTGCAGGGAAGAGT-3', antisense, 5'-
351 GAGACTACCTCGGACTTGGG-3'. Mouse Cxcl5: sense, 5'-GCCCTTCCTCAGTCATAGC-3',
352 antisense, 5'-AGCTTCTTTGTCACTGCC-3'. Mouse Sox11: sense, 5'-
353 ACAGCGAGAAGATCCCGTTC-3', antisense, 5'-CCGTCTGGGCTTTGCG -3'.
354
355 *Western blotting*

356 Western blotting was performed as previously described (Liu and Aguzzi 2020). The primary
357 antibodies used were mouse monoclonal antibodies against actin (1:10000, Merck Millipore,
358 MAB1501R), synaptophysin (1:5000, BD Biosciences, BD611880) and PrP (1:5000, POM1, home-
359 made); rabbit monoclonal antibody against NeuN (1:5000, Abcam, ab177487); rabbit polyclonal
360 antibodies against alpha-tubulin (1:5000, Proteintech, 11224-1-AP). After incubation with primary
361 antibody overnight at 4 °C, membranes were washed three times in PBST, incubated with

362 appropriate secondary antibody conjugated with HRP (1:10000, Jackson ImmunoResearch
363 Laboratories) for 2 hours at room temperature. After additional washes, the membranes were
364 developed with ECL substrates, visualized and digitized with ImageQuant (LAS-4000; Fujifilm).

365

366 *Immunofluorescence*

367 Immunofluorescent staining of cultured brain slices was performed as described previously (Liu and
368 Aguzzi 2020). Brain slices were fixed in 4% PFA for 30 minutes, permeabilized with 0.1% Triton X-
369 100 in PBS and blocked with 5% goat serum in PBS overnight. After blocking, brain slices were
370 incubated with anti-NeuN antibody (1:1000, Millipore, MAB377) for 3 days at 4 °C. After intensive
371 washes in PBST, slices were incubated overnight with Alexa488 conjugated goat anti-mouse
372 secondary antibody (1:3000, Jackson ImmunoResearch) at 4 °C. Stained slices were mounted on
373 glass slides and imaged with a fluorescent microscope (Leica Biosystems).

374

375 *RNA sequencing*

376 High throughput RNA sequencing (RNAseq) was performed as previously (Liu, Sorce et al. 2018,
377 Sorce, Nuvolone et al. 2020). For in vivo RNAseq experiments, three mice (the entire cerebellum
378 from each mouse as one biological repeat) per experimental condition were used at each time point.
379 For ex vivo RNAseq experiments, cerebellar slices prepared from multiple pups from 1-3 litters with
380 the same age were pooled together and randomly distributed into different slice culture wells with 6-
381 8 slices per well; slices from three wells (each well as one technical repeat) per experimental
382 condition were used at each time point. Total RNA was extracted using the TRIzol™ Reagent
383 (Invitrogen, 15596-018). After cleanup with the RNeasy Plus universal mini kit (QIAGEN) and quality-
384 check with Bioanalyzer 2100 (Agilent Technologies), sample mRNA passed the quality control was
385 enriched with the poly-A method. Sequencing libraries were then prepared with the TruSeq RNA
386 Sample Prep kit v2 (Illumina), and 150-bp paired-end high throughput RNAseq was performed on
387 an Illumina Novaseq 6000 equipment at the Functional Genomic Center Zurich.

388

389 *Differential expression analysis*

390 Differential expression analysis was done with edgeR (Robinson, McCarthy et al. 2010). Briefly, after
391 quality control with FastQC, sequencing reads were aligned to the reference genome

392 (Mus_musculus/GENCODE/GRCm38.p6/Annotation/Release_M23) with STAR (Dobin, Davis et al.
393 2013). Genes with low read counts were filtered out with the default parameters in edgeR. Trimmed
394 Mean of M-values (TMM) normalization was applied to account for compositional biases introduced
395 by sequencing depth and effective library sizes. Significance of differential expression for each gene
396 was tested using the QL F-test. Genes with absolute log2 (fold change) > 0.5 and false discovery
397 rate (FDR) < 0.05 were considered differentially expressed genes (DEG). KEGG pathway
398 enrichment analysis of DEG was performed using R package pathfindR (Ulgen, Ozisik et al. 2019).
399

400 *Clustering of aging-associated genes*

401 Aging-associated genes were clustered according to their temporal profiles using the fuzzy c-means
402 algorithm with the R package Mfuzz (Kumar and M 2007). Mean gene expression values (normalized
403 counts) for each time point were normalized through logarithmic transformation and standardized
404 with default settings. The fuzzifier parameter m and the number of clusters c were estimated with
405 the default programs in Mfuzz. Cluster membership value > 0.5 was used for identifying the core
406 genes in each cluster. Only the core genes in the clusters were plotted in the temporal profiles and
407 used for downstream analyses. Pathway enrichment analysis of the clustered genes was performed
408 using enrichR (Chen, Tan et al. 2013).
409

410 *Elastic-net and ridge regression*

411 Age-predictive machine-learning models were trained using the R package Caret (Kuhn 2008),
412 based on elastic-net (Zou and Hastie 2005) or ridge regression (Hoerl and Kennard 1970).
413 Logarithmic transformed gene expression levels (normalized counts) in the control (NBH-exposed)
414 brain slice cultures and their corresponding chronological ages were used for training the models
415 with leave-one-out cross validation.
416

417 *Cell type enrichment of aging-associated clusters*

418 Enrichment of core genes in each aging-associated cluster for major cerebellar cell types was
419 performed by gene set enrichment analysis (GSEA) using the R package fgsea (Korotkevich, Sukhov
420 et al. 2021). The core genes of each cluster were used as gene sets. The ranking list of genes for
421 each cell type were generated based on the expression fold changes of a given gene identified in a

422 given cell type against the rest of cerebellum (DropViz).

423

424 *Gene co-expression network analysis*

425 Gene co-expression network analysis was performed using the R package CEMiTool (Russo,
426 Ferreira et al. 2018). Expression levels (normalized counts) of genes detected in all experimental
427 groups were normalized through logarithmic transformation and filtered according to variance with
428 the default parameters. Genes in the filtered list were used for identifying gene co-expression
429 networks with the soft-thresholding parameter beta = 20. The activity of identified co-expression
430 modules across experimental conditions were evaluated by performing a GSEA using the genes
431 within modules as gene sets and the median z-score values of each phenotype as rank.

432

433 *Statistical analyses*

434 Unless otherwise mentioned, unpaired, two-tailed student's t-test was used for comparing data from
435 two groups, which were presented as mean \pm SEM. Statistical analysis and data visualization were
436 done using R or GraphPad Prism 8.0.

437

438 **References**

439 Abdulrahman, B. A., W. Tahir, K. Doh-Ura, S. Gilch and H. M. Schatzl (2019). "Combining autophagy
440 stimulators and cellulose ethers for therapy against prion disease." *Prion* **13**(1): 185-196.

441 Aguzzi, A. and Y. J. Liu (2017). "A role for astroglia in prion diseases." *Journal of Experimental*
442 *Medicine* **214**(12): 3477-3479.

443 Alique, M., E. Sanchez-Lopez, G. Bodega, C. Giannarelli, J. Carracedo and R. Ramirez (2020).
444 "Hypoxia-Inducible Factor-1alpha: The Master Regulator of Endothelial Cell Senescence in Vascular
445 Aging." *Cells* **9**(1).

446 Avelar, R. A., J. G. Ortega, R. Tacutu, E. J. Tyler, D. Bennett, P. Binetti, A. Budovsky, K.
447 Chatsirisupachai, E. Johnson, A. Murray, S. Shields, D. Tejada-Martinez, D. Thornton, V. E. Fraifeld,
448 C. L. Bishop and J. P. de Magalhaes (2020). "A multidimensional systems biology analysis of cellular
449 senescence in aging and disease." *Genome Biol* **21**(1): 91.

450 Avrahami, D. and R. Gabizon (2011). "Age-related alterations affect the susceptibility of mice to prion
451 infection." *Neurobiol Aging* **32**(11): 2006-2015.

452 Bartoletti-Stella, A., P. Corrado, N. Mometto, S. Baiardi, P. F. Durrenberger, T. Arzberger, R. Reynolds,
453 H. Kretzschmar, S. Capellari and P. Parchi (2019). "Analysis of RNA Expression Profiles Identifies
454 Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease." *Mol Neurobiol* **56**(7):
455 5009-5024.

456 Bezdek, J. C., R. Ehrlich and W. Full (1984). "FCM: The fuzzy c-means clustering algorithm."
457 *Computers & Geosciences* **10**(2): 191-203.

458 Bitto, A., A. M. Wang, C. F. Bennett and M. Kaeberlein (2015). "Biochemical Genetic Pathways that
459 Modulate Aging in Multiple Species." *Cold Spring Harb Perspect Med* **5**(11).

460 Borsch, A., D. J. Ham, N. Mittal, L. A. Tintignac, E. Migliavacca, J. N. Feige, M. A. Ruegg and M.
461 Zavolan (2021). "Molecular and phenotypic analysis of rodent models reveals conserved and
462 species-specific modulators of human sarcopenia." *Commun Biol* **4**(1): 194.

463 Brunet, A. (2020). "Old and new models for the study of human ageing." *Nat Rev Mol Cell Biol* **21**(9):
464 491-493.

465 Bulteau, R. and M. Francesconi (2021). "Real age prediction from the transcriptome with RAPToR."
466 *bioRxiv*: 2021.2009.2007.459270.

467 Chen, E. Y., C. M. Tan, Y. Kou, Q. Duan, Z. Wang, G. V. Meirelles, N. R. Clark and A. Ma'ayan (2013).
468 "Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool." *BMC*
469 *Bioinformatics* **14**: 128.

470 Cohen, A. A. (2018). "Aging across the tree of life: The importance of a comparative perspective for
471 the use of animal models in aging." *Biochim Biophys Acta Mol Basis Dis* **1864**(9 Pt A): 2680-2689.

472 Cortes, C. J., K. Qin, J. Cook, A. Solanki and J. A. Mastrianni (2012). "Rapamycin delays disease
473 onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker
474 disease." *J Neurosci* **32**(36): 12396-12405.

475 Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson and T.
476 R. Gingeras (2013). "STAR: ultrafast universal RNA-seq aligner." *Bioinformatics* **29**(1): 15-21.

477 DropViz. "Exploring the Mouse Brain through Single Cell Expression Profiles ", from
478 <http://dropviz.org/>

479 Falsig, J. and A. Aguzzi (2008). "The prion organotypic slice culture assay--POSCA." *Nat Protoc* **3**(4):
480 555-562.

481 Falsig, J., C. Julius, I. Margalith, P. Schwarz, F. L. Heppner and A. Aguzzi (2008). "A versatile prion
482 replication assay in organotypic brain slices." *Nat Neurosci* **11**(1): 109-117.

483 Falsig, J., T. Sonati, U. S. Herrmann, D. Saban, B. Li, K. Arroyo, B. Ballmer, P. P. Liberski and A.
484 Aguzzi (2012). "Prion pathogenesis is faithfully reproduced in cerebellar organotypic slice cultures."
485 *PLoS Pathog* **8**(11): e1002985.

486 Ferrucci, L., M. Gonzalez-Freire, E. Fabbri, E. Simonsick, T. Tanaka, Z. Moore, S. Salimi, F. Sierra
487 and R. de Cabo (2020). "Measuring biological aging in humans: A quest." *Aging Cell* **19**(2): e13080.

488 Fleischer, J. G., R. Schulte, H. H. Tsai, S. Tyagi, A. Ibarra, M. N. Shokhirev, L. Huang, M. W. Hetzer
489 and S. Navlakha (2018). "Predicting age from the transcriptome of human dermal fibroblasts."
490 *Genome Biol* **19**(1): 221.

491 Forner, S., S. Kawauchi, G. Balderrama-Gutierrez, E. A. Kramar, D. P. Matheos, J. Phan, D. I.
492 Javonillo, K. M. Tran, E. Hingco, C. da Cunha, N. Rezaie, J. A. Alcantara, D. Baglietto-Vargas, C.
493 Jansen, J. Neumann, M. A. Wood, G. R. MacGregor, A. Mortazavi, A. J. Tenner, F. M. LaFerla and
494 K. N. Green (2021). "Systematic phenotyping and characterization of the 5xFAD mouse model of
495 Alzheimer's disease." *Sci Data* **8**(1): 270.

496 Frahm, C., A. Srivastava, S. Schmidt, J. Mueller, M. Groth, M. Guenther, Y. Ji, S. Priebe, M. Platzer
497 and O. W. Witte (2017). "Transcriptional profiling reveals protective mechanisms in brains of long-
498 lived mice." *Neurobiol Aging* **52**: 23-31.

499 Glatzel, M., E. Abela, M. Maissen and A. Aguzzi (2003). "Extraneuronal pathologic prion protein in
500 sporadic Creutzfeldt-Jakob disease." *N Engl J Med* **349**(19): 1812-1820.

501 Hill, A. F., M. Zeidler, J. Ironside and J. Collinge (1997). "Diagnosis of new variant Creutzfeldt-Jakob
502 disease by tonsil biopsy." *Lancet* **349**(9045): 99-100.

503 Hilton, D. A., E. Fathers, P. Edwards, J. W. Ironside and J. Zajicek (1998). "Prion immunoreactivity
504 in appendix before clinical onset of variant Creutzfeldt-Jakob disease." *Lancet* **352**(9129): 703-704.

505 Hoerl, A. E. and R. W. Kennard (1970). "Ridge Regression: Biased Estimation for Nonorthogonal
506 Problems." *Technometrics* **12**(1): 55-67.

507 Hou, Y., X. Dan, M. Babbar, Y. Wei, S. G. Hasselbalch, D. L. Croteau and V. A. Bohr (2019). "Ageing
508 as a risk factor for neurodegenerative disease." *Nat Rev Neurol* **15**(10): 565-581.

509 Jylhava, J., N. L. Pedersen and S. Hagg (2017). "Biological Age Predictors." *EBioMedicine* **21**: 29-
510 36.

511 Korotkevich, G., V. Sukhov, N. Budin, B. Shpak, M. N. Artyomov and A. Sergushichev (2021). "Fast
512 gene set enrichment analysis." *bioRxiv*: 060012.

513 Kuhn, M. (2008). "Building Predictive Models in R Using the caret Package." *Journal of Statistical
514 Software* **28**(5): 1 - 26.

515 Kumar, L. and E. F. M (2007). "Mfuzz: a software package for soft clustering of microarray data."
516 *Bioinformation* **2**(1): 5-7.

517 Liu, Y. and A. Aguzzi (2020). "NG2 glia are required for maintaining microglia homeostatic state."
518 *Glia* **68**(2): 345-355.

519 Liu, Y., S. Sorce, M. Nuvolone, J. Domange and A. Aguzzi (2018). "Lymphocyte activation gene 3
520 (Lag3) expression is increased in prion infections but does not modify disease progression." *Sci Rep*
521 **8**(1): 14600.

522 Lu, T., Y. Pan, S. Y. Kao, C. Li, I. Kohane, J. Chan and B. A. Yankner (2004). "Gene regulation and
523 DNA damage in the ageing human brain." *Nature* **429**(6994): 883-891.

524 Mattson, M. P. and T. V. Arumugam (2018). "Hallmarks of Brain Aging: Adaptive and Pathological

525 Modification by Metabolic States." *Cell Metab* **27**(6): 1176-1199.

526 Meyer, D. H. and B. Schumacher (2021). "BiT age: A transcriptome-based aging clock near the
527 theoretical limit of accuracy." *Aging Cell* **20**(3): e13320.

528 Niccoli, T. and L. Partridge (2012). "Ageing as a risk factor for disease." *Curr Biol* **22**(17): R741-752.

529 Paterson, C., B. Cumming and A. J. Law (2020). "Temporal Dynamics of the Neuregulin-ErbB
530 Network in the Murine Prefrontal Cortex across the Lifespan." *Cereb Cortex* **30**(5): 3325-3339.

531 Prinz, M., F. Montrasio, M. A. Klein, P. Schwarz, J. Priller, B. Odermatt, K. Pfeffer and A. Aguzzi
532 (2002). "Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells."
533 *Proc Natl Acad Sci U S A* **99**(2): 919-924.

534 Robinson, M. D., D. J. McCarthy and G. K. Smyth (2010). "edgeR: a Bioconductor package for
535 differential expression analysis of digital gene expression data." *Bioinformatics* **26**(1): 139-140.

536 Russo, P. S. T., G. R. Ferreira, L. E. Cardozo, M. C. Burger, R. Arias-Carrasco, S. R. Maruyama, T.
537 D. C. Hirata, D. S. Lima, F. M. Passos, K. F. Fukutani, M. Lever, J. S. Silva, V. Maracaja-Coutinho
538 and H. I. Nakaya (2018). "CEMiTool: a Bioconductor package for performing comprehensive modular
539 co-expression analyses." *BMC Bioinformatics* **19**(1): 56.

540 Shavlakadze, T., M. Morris, J. Fang, S. X. Wang, J. Zhu, W. Zhou, H. W. Tse, R. Mondragon-
541 Gonzalez, G. Roma and D. J. Glass (2019). "Age-Related Gene Expression Signature in Rats
542 Demonstrate Early, Late, and Linear Transcriptional Changes from Multiple Tissues." *Cell Rep*
543 **28**(12): 3263-3273 e3263.

544 Solforosi, L., M. Milani, N. Mancini, M. Clementi and R. Burioni (2013). "A closer look at prion strains:
545 characterization and important implications." *Prion* **7**(2): 99-108.

546 Sonati, T., R. R. Reimann, J. Falsig, P. K. Baral, T. O'Connor, S. Hornemann, S. Yaganoglu, B. Li, U.
547 S. Herrmann, B. Wieland, M. Swayampakula, M. H. Rahman, D. Das, N. Kav, R. Riek, P. P. Liberski,
548 M. N. James and A. Aguzzi (2013). "The toxicity of antiprion antibodies is mediated by the flexible
549 tail of the prion protein." *Nature* **501**(7465): 102-106.

550 Sorce, S., M. Nuvolone, G. Russo, A. Chincisan, D. Heinzer, M. Avar, M. Pfammatter, P. Schwarz,
551 M. Delic, M. Muller, S. Hornemann, D. Sanoudou, C. Scheckel and A. Aguzzi (2020). "Genome-wide
552 transcriptomics identifies an early preclinical signature of prion infection." *PLoS Pathog* **16**(6):
553 e1008653.

554 Stilling, R. M., E. Benito, M. Gertig, J. Barth, V. Capece, S. Burkhardt, S. Bonn and A. Fischer (2014).
555 "De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the
556 aging hippocampus." *Front Cell Neurosci* **8**: 373.

557 Ulgen, E., O. Ozisik and O. U. Sezerman (2019). "pathfindR: An R Package for Comprehensive
558 Identification of Enriched Pathways in Omics Data Through Active Subnetworks." *Front Genet* **10**:
559 858.

560 Yousefzadeh, M. J., J. Zhao, C. Bukata, E. A. Wade, S. J. McGowan, L. A. Angelini, M. P. Bank, A.
561 U. Gurkar, C. A. McGuckian, M. F. Calubag, J. I. Kato, C. E. Burd, P. D. Robbins and L. J.
562 Niedernhofer (2020). "Tissue specificity of senescent cell accumulation during physiologic and
563 accelerated aging of mice." *Aging Cell* **19**(3): e13094.

564 Zou, H. and T. Hastie (2005). "Regularization and variable selection via the elastic net." *Journal of
565 the Royal Statistical Society: Series B (Statistical Methodology)* **67**(2): 301-320.

566

567

568 **Acknowledgement**

569 The authors would like to thank Dr. Myvizhi Esai Selvan and Dr. Claudia Scheckel for helpful
570 discussion, Ms. Petra Schwartz for excellent technical help in animal experiments, and Functional
571 Genomic Center Zurich for assistance in RNAseq. A. Aguzzi is the recipient of an Advanced Grant
572 of the European Research Council, an individual grant of the Swiss National Foundation, the Nomis
573 Foundation and SystemsX.ch.

574

575 **Author contributions**

576 Y. Liu designed and performed most of experiments and all bioinformatics analyses. A. Senatore and
577 J. Guo performed RNAseq of cultured brain slices. S. Sorce and M. Nuvolone performed RNAseq of
578 cerebellar tissues. Z. H. Gümüş provided helpful suggestions on data visualization. A. Aguzzi
579 supervised the study and acquired funding. Y. Liu and A. Aguzzi wrote the manuscript.

580

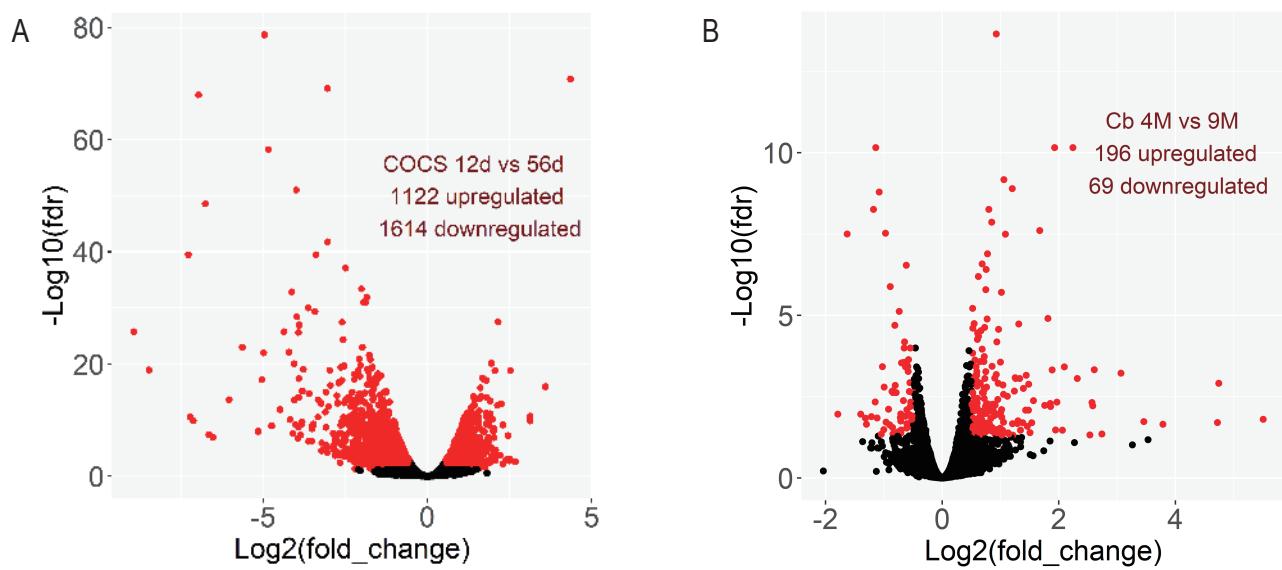
581 **Data availability**

582 Raw RNAseq data will be deposited on a public depository. The accession number will be available
583 before publication. Other data have been included in the manuscript.

584

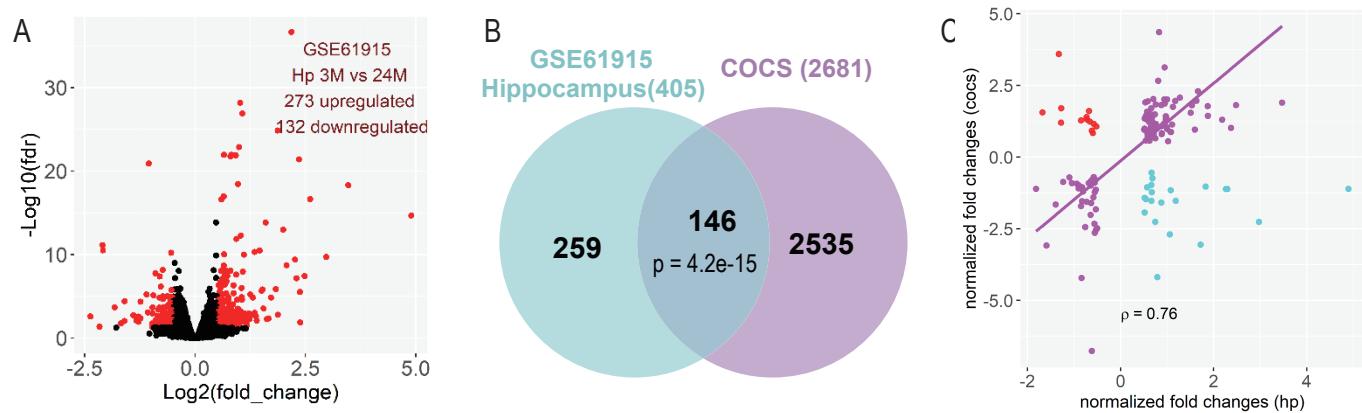
585 **Code availability**

586 Code used for bioinformatics analyses is available from the authors upon reasonable request.

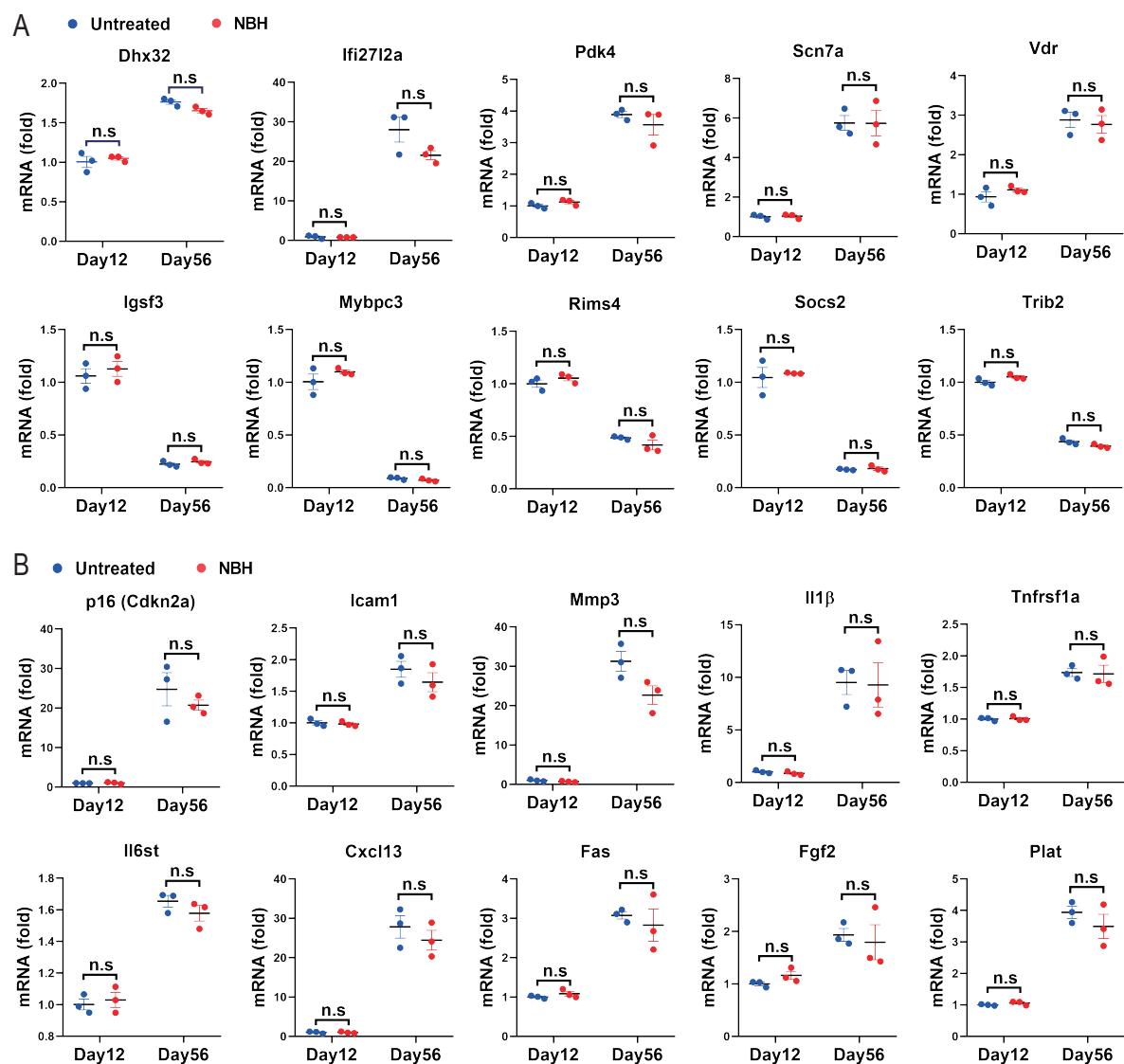

587

588 **Competing interests**

589 The authors declare no competing interests.

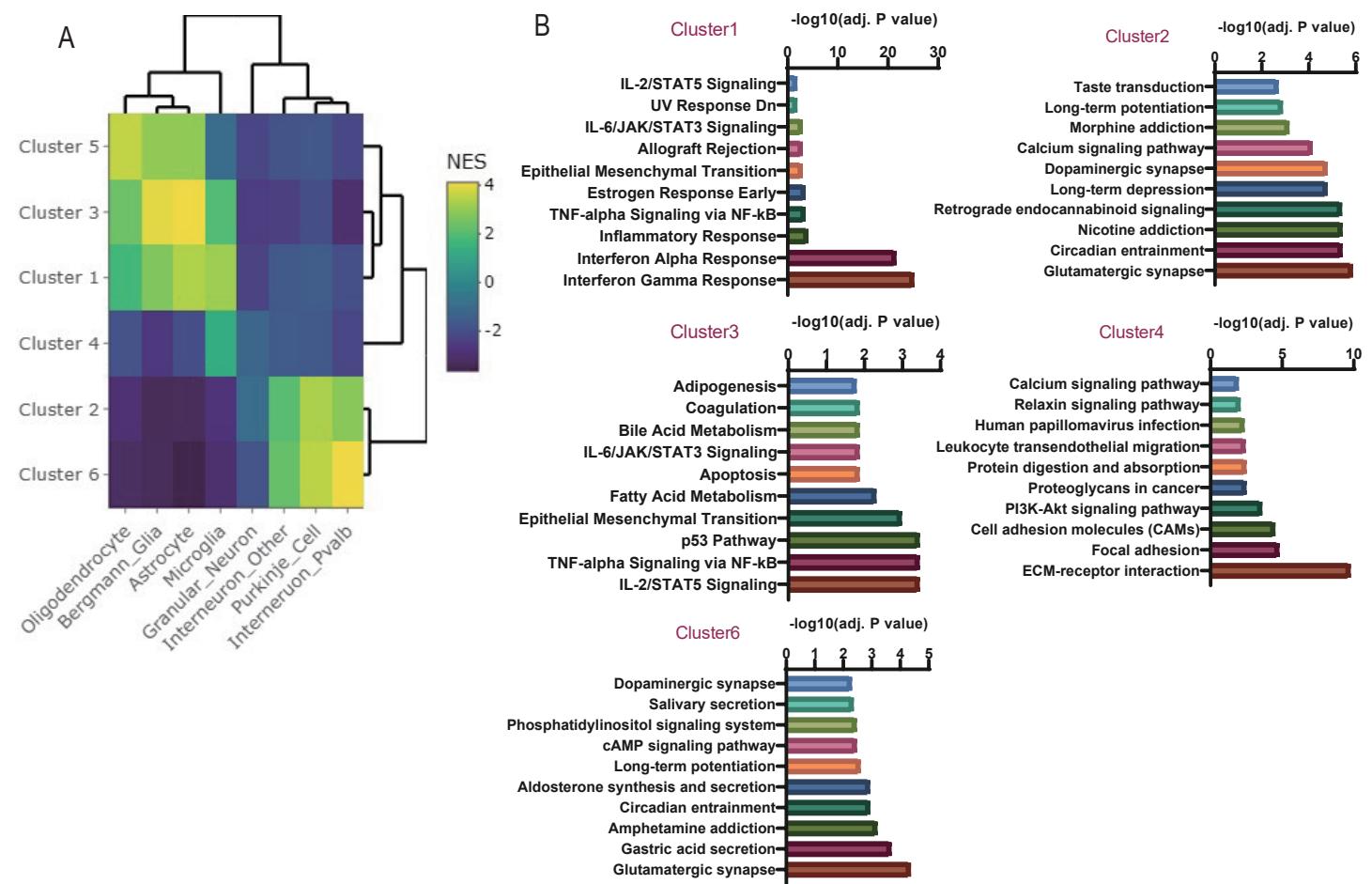

590

Supplementary fig. 1, Liu et al.

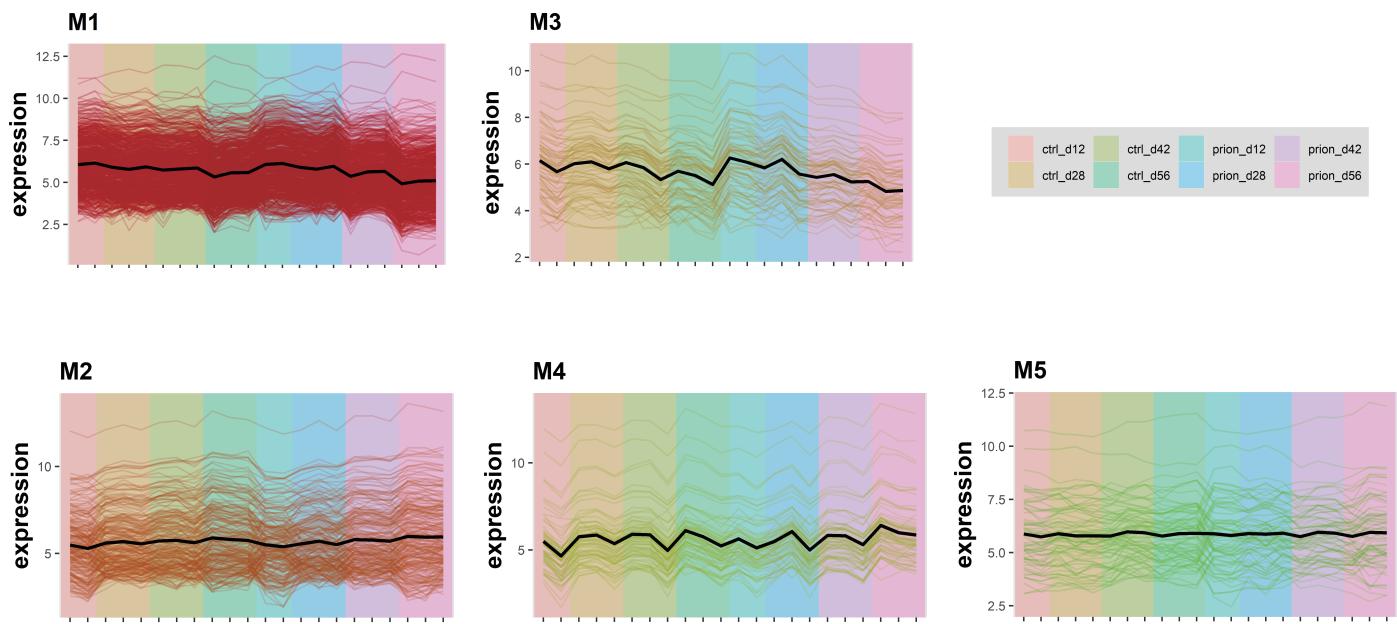


Supplementary figure 1, A, Volcano plot showing the dysregulated genes between the 12-day-old and 56-day-old control COCS. B, Volcano plot showing the dysregulated genes between the 4-month-old (4M) and 9-month-old (9M) NBH mouse cerebellum (Cb).

Supplementary fig 2, Liu et al.

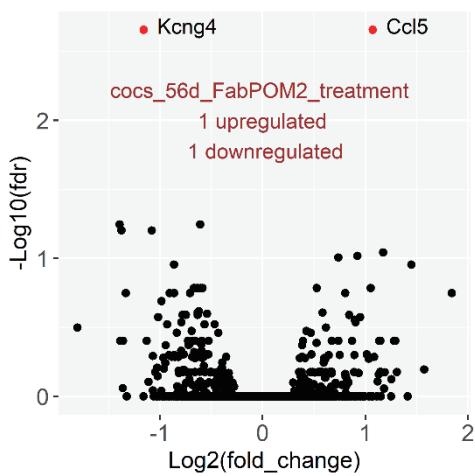


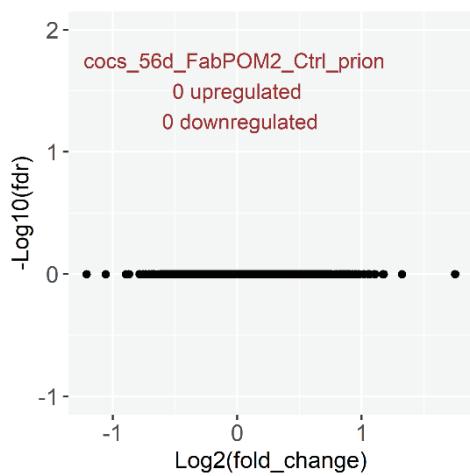
Supplementary fig. 3, Liu et al.


Supplementary figure 3. A, RT-PCR results showing similar expression levels of randomly picked age-predictive genes in naïve (untreated) and NBH-exposed COCS at day 12 and day 56. n.s: not significant. B, RT-PCR results showing similar expression levels of cellular senescence-associated genes in naïve (untreated) and NBH-exposed COCS at day 12 and day 56. n.s: not significant.

Supplementary fig 4, Liu et al.

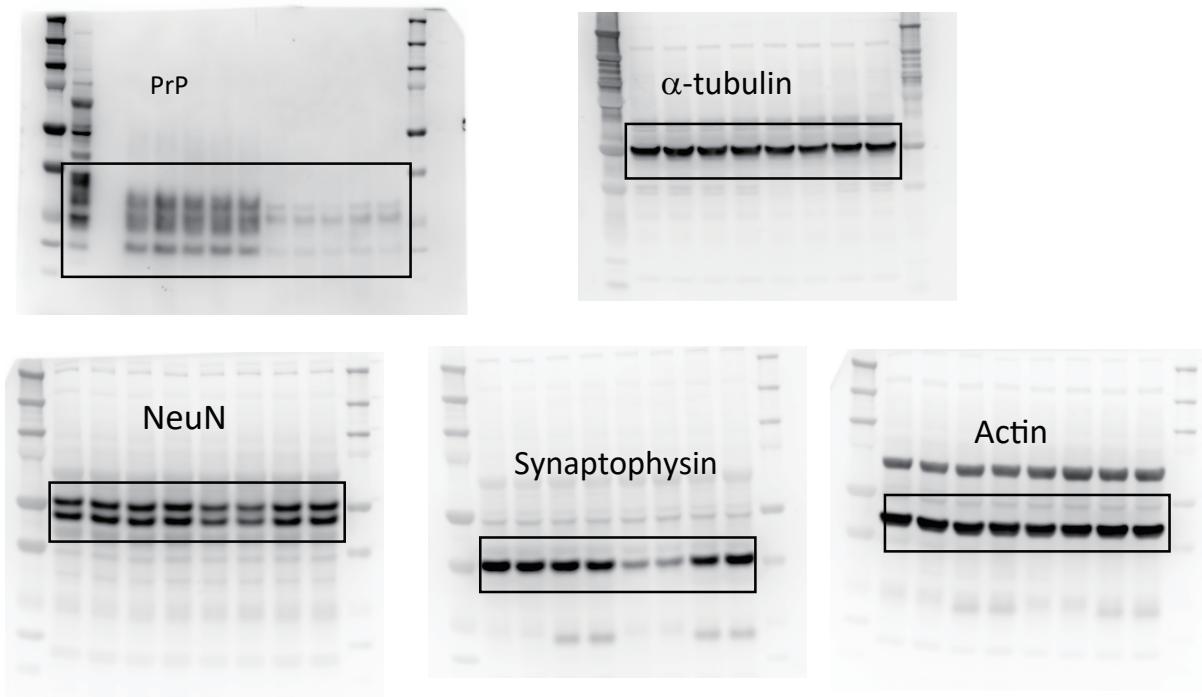
Supplementary figure 4, A, Heatmap showing the normalized enrichment score (NES) of gene set enrichment analysis of genes from the six clusters shown in fig. 3B for major cell types of the adult mouse cerebellum. **B,** Top 10 enriched pathways (adjusted p values < 0.05) for genes from the six clusters shown in fig. 3B. No pathways were significantly enriched for genes in cluster 5.


Supplementary fig 5, Liu et al.


Supplementary figure 5, Temporal expression profiles of genes in the five gene co-expression network modules identified across experimental conditions.

Supplementary fig 6, Liu et al.

A



B

Supplementary figure 6. A, Volcano plot showing the only two differentially expressed genes (DEG) between FabPOM2 treated and untreated COCS at day 56 in the absence of prion infection. B, Volcano plot showing no DEG between the prion- and NBH (Ctrl) COCS treated with FabPOM2.

Supplementary fig 7, Liu et al.

Supplementary figure 7, Raw images of western blots shown in Figure 4.