

1 **Let's face it: The lateralization of the face perception**
2 **network as measured with fMRI is not clearly right**
3 **dominant**

4
5 Ina Thome^{1,2}, José C. García Alanis^{2,3,4}, Jannika Volk^{1,2}, Christoph Vogelbacher^{1,2},
6 Olaf Steinsträter⁵, Andreas Jansen^{1,2,5}

7
8 *AFFILIATIONS:*

9 ¹ Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Germany

10 ² Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen,
11 Germany

12 ³ Clinical Child and Adolescent Psychology, Department of Psychology, University of Marburg, Germany

13 ⁴ Analysis and Modeling of Complex Data Lab, Institute of Psychology, University of Mainz, Germany

14 ⁵ Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Germany

15
16 *ADDRESS OF CORRESPONDENCE*

17 Ina Thome // Andreas Jansen

18 Department of Psychiatry, University of Marburg

19 Rudolf-Bultmann-Straße 8, 35039 Marburg, Germany

20 Phone: +49 (0)6421 5864801 // -65273

21 E-Mail: ina.thome@staff.uni-marburg.de // andreas.jansen@staff.uni-marburg.de

22
23

24
25 *RUNNING TITLE:* Lateralization of the face perception network

26

27 **ABSTRACT**

28 The neural face perception network is distributed across both hemispheres. However, the
29 dominant role in humans is virtually unanimously attributed to the right hemisphere.
30 Interestingly, there are, to our knowledge, no imaging studies that systematically describe the
31 distribution of hemispheric lateralization in the core system of face perception across subjects
32 in large cohorts so far. To address this, we determined the hemispheric lateralization of all core
33 system regions (i.e., occipital face area (OFA), fusiform face area (FFA), posterior superior
34 temporal sulcus (pSTS)) in 108 healthy subjects using functional magnetic resonance imaging
35 (fMRI). We were particularly interested in the variability of hemispheric lateralization across
36 subjects and explored how many subjects can be classified as right-dominant based on the fMRI
37 activation pattern. We further assessed lateralization differences between different regions of
38 the core system and analyzed the influence of handedness and sex on the lateralization with a
39 generalized mixed effects regression model. As expected, brain activity was on average stronger
40 in right-hemispheric brain regions than in their left-hemispheric homologues. This asymmetry
41 was, however, only weakly pronounced in comparison to other lateralized brain functions (such
42 as language and spatial attention) and strongly varied between individuals. Only half of the
43 subjects in the present study could be classified as right-hemispheric dominant. Additionally,
44 we did not detect significant lateralization differences between core system regions. Our data
45 did also not support a general leftward shift of hemispheric lateralization in left-handers. Only
46 the interaction of handedness and sex in the FFA revealed that specifically left-handed men
47 were significantly more left-lateralized compared to right-handed males. In essence, our fMRI
48 data did not support a clear right-hemispheric dominance of the face perception network. Our
49 findings thus ultimately question the dogma that the face perception network – as measured
50 with fMRI – can be characterized as “typically right lateralized”.

51

52 *KEYWORDS:* hemispheric lateralization, face perception, fMRI, interindividual variability, lateralization index

53 **1. INTRODUCTION**

54 **1.1. The neural network underlying face perception**

55 Face perception is mediated by a distributed neural network. This network is, as proposed more
56 than 20 years ago by Haxby and colleagues, often divided into a “core system” and an “extended
57 system” (Haxby et al., 2000; Haxby and Gobbini, 2011). The core system is associated with the
58 analysis of the visual appearance of faces. It consists of three bilateral brain regions in the
59 occipito-temporal cortex: the occipital face area (OFA) in the inferior occipital gyrus, the
60 fusiform face area (FFA) in the lateral fusiform gyrus and the posterior superior temporal sulcus
61 (pSTS). Each of these regions has a distinct role in the process of face perception. The OFA is
62 typically associated with the analysis of invariant facial features like eyes or mouth and helps
63 to decide if an object is a face or not (Gauthier et al., 2000; Haxby et al., 1999; Pitcher et al.,
64 2011b). The FFA predominantly processes identity (Kanwisher et al., 1997), while the pSTS
65 engages in the extraction of changeable features such as expression, eye-gaze and lip movement
66 (Engell and Haxby, 2007; Nummenmaa et al., 2010; Puce et al., 1998). The extended system is
67 distributed over limbic, parietal and prefrontal regions. It is associated with the retrieval of
68 person-knowledge and other nonvisual information. For example, the auditory cortex guides
69 speech perception, the anterior temporal lobe is said to contribute semantic and biographic
70 information and the insula and amygdala come into play, when emotional aspects are involved
71 (Duchaine and Yovel, 2015; Haxby et al., 2000; Haxby and Gobbini, 2011). More recent studies
72 reported additional face sensitive areas in the anterior temporal lobe (ATL) (Rajimehr et al.,
73 2009; Tsao et al., 2008), the anterior superior temporal sulcus (aSTS) (Pitcher et al., 2011a) and
74 the ventral lateral prefrontal cortex (often referred to as inferior frontal gyrus (IFG) or inferior
75 frontal junction (IFJ)) (Chan and Downing, 2011; Pitcher et al., 2011a). Furthermore, Weiner
76 and Grill-Spector (2012) questioned the idea of one single FFA and proposed a subdivision into
77 a medial FFA (mFFA, located in medial fusiform gyrus) and a posterior FFA (pFFA, located
78 in posterior fusiform gyrus) instead. All these discoveries inspired Duchaine and Yovel (2015)

79 to propose a revised neural network for face perception. It includes all the aforementioned face
80 sensitive brain areas and assigns them to a ventral (OFA, FFA and ATL) and a dorsal (pSTS,
81 aSTS and IFG) pathway.

82

83 **1.2. Hemispheric lateralization of the face perception network**

84 The neural face perception network is distributed across both hemispheres. However, the
85 dominant role in humans is virtually unanimously attributed to the right hemisphere. This
86 finding first originated from lesion studies. Here, it has been observed that most patients
87 suffering from acquired prosopagnosia, i.e., the inability to recognize the identity of faces
88 following brain damage, had lesions in the right posterior hemisphere (for an overview, cf.
89 Bukowski et al., 2013). In contrast, prosopagnosia following unilateral lesions to the left
90 hemisphere has been reported only in few cases (Barton, 2008; Eimer and McCarthy, 1999;
91 Mattson et al., 2000; Tzavaras et al., 1973). The right-hemispheric dominance of the face-
92 processing network was subsequently confirmed in various other studies. It is now based on
93 ample evidence accumulated over decades of research with lesion patients, brain stimulation
94 techniques or behavioral experiments (for an overview, see Duchaine and Yovel, 2015; Rossion
95 and Lochy, 2021).

96 Also the functional magnetic resonance imaging (fMRI) literature seems to confirm, at least at
97 first glance, the right-hemispheric dominance of the face perception network. Even though brain
98 activation in both hemispheres is reported for face processing tasks, the right hemisphere is
99 usually described as “dominant”. It shows overall stronger responses to face stimuli, both in
100 terms of the spatial extent of the activation and the strength of activity (Badzakova-Trajkov et
101 al., 2010; Frässle et al., 2016c; Ishai et al., 2005; Rhodes et al., 2004; Rossion et al., 2012).
102 Interestingly, a more thorough analysis of the literature provides a more ambiguous picture.
103 More specifically, while fMRI studies that describe hemispheric lateralization across the
104 averaged activation in the entire core system or in even larger regions (e.g., the entire temporal

105 lobe) often report a clear right-hemispheric dominance (e.g., Badzakova-Trajkov et al., 2010),
106 other studies that calculate lateralization for individual regions of the core system often report
107 a high interindividual variability (e.g., Canário et al., 2020; Davies-Thompson et al., 2016; De
108 Winter et al., 2015; Johnstone et al., 2020). This high variability results in up to 45% of subjects
109 being not right-hemispheric dominant for face perception.

110

111 **1.3. Interindividual variabiliy of hemispheric lateralization**

112 High interindividual variability of the hemispheric lateralization of the face peerception
113 network is also in accordance with our own anecdotal experience. Our research group has
114 conducted numerous fMRI studies on face processing over the last years, often in the context
115 of hemispheric lateralization (e.g., Frässle et al., 2016a, 2016b, 2016c; Hildesheim et al., 2020;
116 Sahraei et al., 2021; Thome et al., 2021; Zimmermann et al., 2019). In these studies, it was often
117 necessary to assess the fMRI activation patterns not only at the group level, but also at the
118 individual level, e.g., in order to determine the spatial location of core system regions for further
119 analyses. Here we noticed, independent of the specific face processing task, that although the
120 face network was consistently (albeit not strongly) right-lateralized at the group level, there was
121 a strong variability at the individual level. Even among right-handers, many subjects showed a
122 bilateral or left-hemispheric lateralization. So far, however, we never assessed the distribution
123 of hemispheric lateralization of the face perception network systematically. Interestingly, there
124 are, to our knowledge, also no other imaging studies yet that investigated the interindividual
125 variation of hemispheric lateralization of face perception across subjects in large cohorts. This
126 is in clear contrast to the investigation of for instance the language or the spatial attention
127 network (e.g., Flöel et al., 2005; Jansen et al., 2007; Knecht et al., 2000a, 2000b; Springer et
128 al., 1999). It is thus unknown how many individuals can be characterized as right-dominant,
129 left-dominant or bilateral for face perception based on the fMRI activation pattern. The first
130 aim of the present study was therefore to thoroughly decribe hemispheric lateralization of all

131 regions of the core system of face perception in a large cohort of subjects (including left- and
132 right-handers). We aimed to assess the variability of hemispheric dominance within the
133 population and to determine to which degree the network is lateralized to the right hemisphere
134 based on the fMRI activation pattern.

135

136 **1.4. Effects of region, handedness, and sex on hemispheric lateralization**

137 The hemispheric lateralization of cognitive functions is in general highly flexible and can be
138 modulated by various factors like handedness, sex, age, genetic factors, hormonal influences,
139 or disease (Toga and Thompson, 2003). For example, in language research a relationship
140 between handedness and hemispheric dominance is well established. While 96% of strong
141 right-handed subjects show a left hemispheric language dominance, this value is reduced to
142 85% in ambidextrous individuals and 73% in strong left-handers (Knecht et al., 2000b). In a
143 similar vein, a number of neuroimaging studies reported a relationship between handedness and
144 hemispheric lateralization also for face perception. Willems et al. (2010) showed that the typical
145 right-ward lateralization of the FFA was absent in left-handers who, on average, showed a more
146 bilateral activation pattern. Bukowski et al. (2013) replicated these findings and additionally
147 showed that this reduced right-hemispheric lateralization was specific to the FFA, while OFA
148 and STS were right-lateralized in both right- and left-handers, without a difference in the degree
149 of lateralization. A possible explanation for this spatial specificity is often attributed to the left
150 dominance of the visual word form area (VWFA), a region associated with the identification
151 of words and letters from lower-level shape images, prior to association with phonology or
152 semantics (Dehaene and Cohen, 2011; Price and Devlin, 2003; for an overview also see
153 Hildesheim et al., 2020; Rossion and Lochy, 2021). In another recent study, Frässle et al.
154 (2016a) combined fMRI and Dynamic Causal Modeling (DCM) to elucidate the neural
155 mechanisms underlying the different hemispheric lateralization of face perception in right- and
156 left-handers. They reported an enhanced recruitment of the left FFA in left-handers, as shown

157 by stronger face-specific modulatory influences on both intra- and interhemispheric
158 connections.

159 The second aim of the present study was to explore the influence of different factors on
160 hemispheric lateralization of face perception. More specifically, we aimed to investigate effects
161 of region (OFA, FFA, STS), handedness, and sex on the degree of lateralization. We expected,
162 as outlined above, a reduced right-hemispheric lateralization of the FFA in left-handers
163 compared to right-handers (Bukowski et al., 2013; Frässle et al., 2016a; Willems et al., 2010).
164 We further explored whether the OFA, often considered to be a hierarchically lower region of
165 the face perception network, is characterized by decreased lateralization compared to the FFA
166 and STS (Rossion et al., 2012).

167 **2. MATERIALS AND METHODS**

168 **2.1. Subjects**

169 Subjects were recruited in an ongoing fMRI study investigating the neural mechanisms
170 underlying hemispheric lateralization. At the time of data analysis, 119 subjects had been
171 included. Nine subjects had to be excluded due to bad quality of MRI data. Two subjects were
172 excluded because they could not be clearly classified as either right- or left-hander. One-
173 hundred-eight subjects (67 females, 41 males; mean age 24.5 years \pm 3.6 years) were therefore
174 included in the final data analysis (see demographics in Table 1). Eighty-five participants were
175 right-handed and twenty-three left-handed, as assessed by the twelve-item short version of the
176 Edinburgh Handedness Inventory (Oldfield 1971, cut-off +/-30). The proportion of left-handed
177 subjects (~21%) was higher than would have been expected if the sample had been randomly
178 selected (~10%; Coren and Porac 1977; McManus 2019). However, we deliberately chose to
179 increase the proportion of left-handers in order to explore the effect of handedness on
180 hemispheric lateralization. All subjects had normal or corrected-to-normal vision and no history
181 of neurological or psychiatric disorders. Written consent to participate in the study was given
182 by all participants.

183

Table 1.
Cohort demographics (mean age and standard deviation [SD] in brackets)

	All	Female	Male
All subjects	108 (24.5, SD = 3.6)	67 (23.4, SD = 2.9)	41 (26.2, SD = 4.0)
Right-handers	85 (24.1, SD = 3.2)	51 (23.1, SD = 2.7)	34 (25.6, SD = 3.4)
Left-handers	23 (25.9, SD = 4.6)	16 (24.5, SD = 3.2)	7 (29.1, SD = 5.7)

184

185 The experiment was implemented in accordance with the Declaration of Helsinki and was
186 approved by the local ethics committee of the Medical Faculty of the University of Marburg,
187 where all imaging took place (file reference 160/13 version 2).

188

189

190 **2.2. Experimental paradigm**

191 Subjects viewed either faces, houses or scrambled images in a blocked design. All stimuli were
192 presented using the Presentation software 18.1 (Neurobehavioral Systems Inc., Berkeley,
193 California, United States, 2000). The scrambled images were generated by applying a Fourier
194 transformation to the original images of both faces and houses. Face stimuli were taken from
195 the Centre for Vital Longevity Face Database (Ebner, 2008), the house stimuli were kindly
196 provided by Joshua Goh (Goh et al., 2010). All images were static, frontal, black and white
197 photographs. The stimuli were presented centrally. During the whole paradigm, a fixation cross
198 was shown in the middle of the screen. Participants were instructed to fixate this cross and
199 perceive the stimuli around it. Nine blocks of each stimulus category were presented in pseudo-
200 randomized order, each containing 20 stimuli. Stimuli were presented for 300 ms and were
201 followed by a fixation cross for 425 ms. Each block lasted for 14.5 seconds. Stimulus blocks
202 were separated by baseline blocks of 14.5 seconds, where only the fixation cross was shown.
203 In the middle of the experiment, there was a short pause of 20 seconds. This resulted in a total
204 length of approximately 13 minutes for the whole face processing task. To ensure that
205 participants were paying attention during this passive viewing task, they were instructed to
206 always press a button when the same image appeared twice in a row (1-back task).

207

208 **2.3. MRI data acquisition**

209 Subjects were scanned on a 3 Tesla MR scanner (TIM Trio, Siemens, Erlangen, Germany) with
210 a 12-channel head matrix receive coil at the Department of Psychiatry, University of Marburg.
211 Functional MRI images were acquired with a T2*-weighted gradient-echo echo planar imaging
212 sequence sensitive to the blood-oxygenation-level-dependent (BOLD) contrast (TR = 1450 ms,
213 TE = 25 ms, voxel size = $3 \times 3 \times 4 \text{ mm}^3$, 30 slices, 4 mm thickness, flip angle = 90° , matrix
214 size = 64×64 voxels, FoV = $192 \times 192 \text{ mm}^2$). Slices were measured in interleaved descending
215 order parallel to the intercommissural plane (anterior to posterior commissure).

216 For each subject, a high-resolution T1-weighted anatomical image was collected using a
217 magnetization-prepared rapid gradient-echo (3D MP-RAGE) sequence in sagittal orientation
218 (TR = 1900 ms, TE = 2.54 ms, voxel size = 1 x 1 x 1 mm³, 176 slices, 1 mm thickness, flip
219 angle 9°, matrix size = 384 x 384, FoV = 384 x 384 mm).

220

221 **2.4. MRI data analysis**

222 Preprocessing

223 Pre-processing was conducted using SPM12 (Statistical Parametric Mapping, version v6015,
224 Wellcome Trust Centre for Neuroimaging, London, UK; <http://www.fil.ion.ucl.ac.uk>) and
225 MATLAB R2009b (MathWorks, Natick, MA, USA) with an in-house pipeline that consisted
226 of the following steps: realignment, coregistration, segmentation, normalization, and
227 smoothing.

228 After discarding the first four functional scans which are prone to magnetization instability
229 artefacts, all remaining functional images were corrected for head motion (realignment). The
230 six realignment parameters were saved for further analyses. The individual images were
231 realigned to the mean image and afterwards co-registered with the high-resolution anatomical
232 T1-weighted image. Normalization to MNI (Montreal Neurological Institute) space was
233 conducted using the segmentation-normalization approach (Ashburner and Friston, 2005).
234 During this normalization step, the functional images were resampled to a voxel size of
235 2 x 2 x 2 mm³. After that, the normalized functional images were spatially smoothed with a 6
236 mm full width at half maximum (FWHM)-Gaussian kernel.

237

238 Statistical analysis

239 A first-level analysis for every subject's functional data was conducted using a General Linear
240 Model (GLM; (Friston et al., 1995). We modelled each condition ("faces", "houses",
241 "scrambled images") as a regressor, convolved with the canonical hemodynamic response

242 function implemented in SPM. Furthermore, to control for movement-related artifacts, the six
243 realignment parameters were introduced as nuisance regressors. Low-frequency noise in the
244 data was accounted for by a high-pass filter (cut-off frequency: 1/128 Hz).

245 Individual brain activation in the core network was assessed by means of a conjunction analysis.
246 With the conjunction, one is able to control both high- and low-level visual characteristics of
247 faces (Rossion et al., 2012). Here, we first calculated contrast images and t-statistic images for
248 the contrasts “faces > houses” and “faces > scrambled”. The conjunction t-map was then
249 calculated by choosing for each voxel the smallest t-value from the “faces > houses” contrast
250 and the “faces > scrambled” contrast (minimum statistic approach as suggested by Nichols et
251 al. 2005). The resulting conjunction t-map (i.e., conjunction null hypothesis) provides a more
252 conservative indicator of face-sensitivity compared to the conjunction analysis implemented in
253 SPM (i.e., global null hypothesis; Friston et al., 2005).

254 At the group level, the individual contrast images were entered in a random-effects analysis.
255 We specified a one-way ANOVA with two levels. For each level, we chose the contrast images
256 either from the “faces > houses” contrast or the “faces > scrambled” contrast. We defined one
257 contrast for each level (i.e., using the weights 1 0 and 0 1, respectively). Face sensitive
258 activation was analyzed with a conjunction of those contrasts.

259

260 **2.5. Assessment of hemispheric lateralization**

261 Hemispheric lateralization for a specific cognitive task can be described by a lateralization
262 index (LI). The LI, sometimes also referred to as asymmetry index (Anderson et al., 2006),
263 quantifies whether the brain activation is predominantly left-hemispheric, right-hemispheric or
264 bilateral. The LI is typically calculated with the following formula (among others, Binder et al.
265 1996; Jansen et al. 2006):

266
$$LI = \frac{A_L - A_R}{A_L + A_R}, \quad (1)$$

267 where A_L and A_R quantify the strength of fMRI-measured activity (A) within regions of interest
268 (ROIs) of the left (L) and right (R) hemisphere, respectively. It results in an LI value ranging
269 from -1 to +1. Negative values indicate a right-hemispheric dominance and positive values
270 indicate a left-hemispheric dominance. The cut-off for bilateral activation can be set arbitrarily.
271 However, as it is typically set to ± 0.2 in many studies (Bradshaw et al., 2017), we decided to
272 also use this cut-off in the present study.

273

274 *Choice of activity measure*

275 In lateralization research several approaches have been established to quantify the strength of
276 brain activity (i.e., A_L and A_R). The most widely used measures of brain activity are either based
277 on the magnitude of the fMRI signal change (weighted β -values or t-values) or the extent of the
278 activated brain region (i.e., number of activated voxel) (see Jansen et al. (2006) for a detailed
279 overview). In the present study, we used the magnitude of signal change defined by the t-values
280 as activity measure. All LIs were calculated using the bootstrap procedure (Wilke and
281 Schmithorst, 2006) implemented in the LI toolbox (version 1.3, Wilke and Lidzba 2007) for
282 SPM12 (MATLAB version 2017a). This calculation encompassed the following steps: First,
283 the individual conjunction t-maps were thresholded and masked with custom ROI-masks for
284 the three core system regions (for creation of ROI masks, see below). Second, from all surviving
285 voxels 100 bootstrapped samples were drawn from each hemisphere (resampling ration
286 $k = 0.25$, with replacement) and all possible LI combinations (10,000) were calculated and
287 plotted in a histogram. Third, from the central 50% of LI values a “trimmed mean” LI value
288 was calculated. This procedure was repeated for all 20 regularly spaced thresholding steps.
289 Finally, a weighted-overall mean was calculated by applying the t-threshold as a weighting
290 factor. Hence, statistically more conservative thresholds lead to progressively stronger
291 weightings. A more detailed description of the bootstrapping approach and the toolbox is given
292 in Wilke and Schmithorst (2006) and Wilke and Lidzba (2007) respectively.

293 Definition of regions of interest

294 Ideally, ROI masks should encompass the relevant brain activation (sensitivity) without
295 including other activated clusters (specificity). ROIs can either be determined anatomically
296 (i.e., based on anatomical landmarks) or functionally (i.e., based on the activation pattern). As
297 the core system of face perception is comprised of at least three brain areas in each hemisphere
298 that are in close anatomical proximity, we decided to use functionally determined ROIs.
299 The exact localization of face perception areas in the core system varies highly between
300 individual subjects. Therefore, we did not use one ROI mask for all subjects, but built subject-
301 specific masks using the following procedure: First, we created for each ROI symmetrical box-
302 shaped masks with the WFU PickAtlas (Maldjian et al., 2004, 2003) (v 3.0.5). Center
303 coordinates and spatial extent was based on typical locations for OFA, FFA and STS reported
304 in previous fMRI studies using face localizers (FFA, OFA, STS: Fox et al., 2009; FFA: Berman
305 et al. 2010; right OFA, right FFA, right STS: Pitcher et al., 2011b; OFA, right STS: Rossion et
306 al., 2012) and a search on the automated meta-analysis platform Neurosynth.org (STS,
307 neurosynth.org/analyses/terms/psts/). The coordinates are summarized on this studies Open
308 Science Framework repository (OSF, <https://osf.io/s8gwd/>). These fairly large masks were used
309 as anatomical restriction. The center of the subject-specific ROIs had to be within these masks
310 (see below). Second, we assessed the brain activation pattern at the group level. For each ROI,
311 peak voxels were identified for the group-level conjunction contrast at $p < 0.05$, family-wise
312 error (FWE) corrected (Table 2). Third, for each subject, all local maxima of the single subject
313 conjunction t-map were determined that (i) were within the borders of the anatomical mask
314 (created in the first step), (ii) had a t-value of at least 3.1 (corresponding to $p < 0.001$
315 uncorrected), and (iii) had t-values at least as high as the t-value at the group maximum
316 coordinate. Fourth, the nearest local maximum to the group maximum was identified. If no
317 local maximum met these criteria, we used the coordinate at the group maximum for this
318 subject. Fifth, custom sphere-shaped masks with a radius of 10 mm centered around these

319 individually determined coordinates were created. All these steps were performed with custom
320 MATLAB codes. The individual center coordinates for each ROI are depicted in Fig. 1 (purple:
321 OFA, green: FFA, yellow: STS).

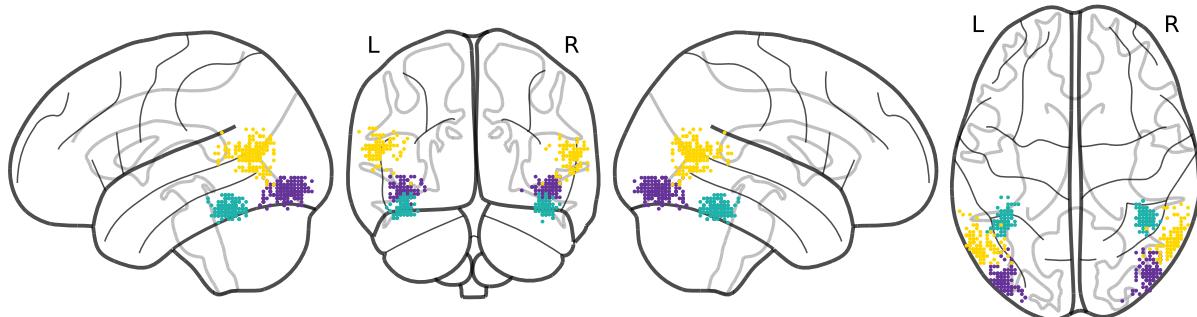

322

Table 2.
Core system MNI (x, y, z) coordinates

<i>Region of interest</i>	<i>x</i>	<i>y</i>	<i>Z</i>	<i>t-value</i>
Left OFA	-42	-86	-10	6.85
Right OFA	46	-80	-8	7.99
Left FFA	-42	-50	-20	11.24
Right FFA	42	-46	-18	15.11
Left STS	-58	-62	14	7.25
Right STS	60	-58	10	10.70

323 Group analysis, conjunction contrast (faces > houses AND faces > scrambled), $p < 0.05$ FWE corrected.

324

325

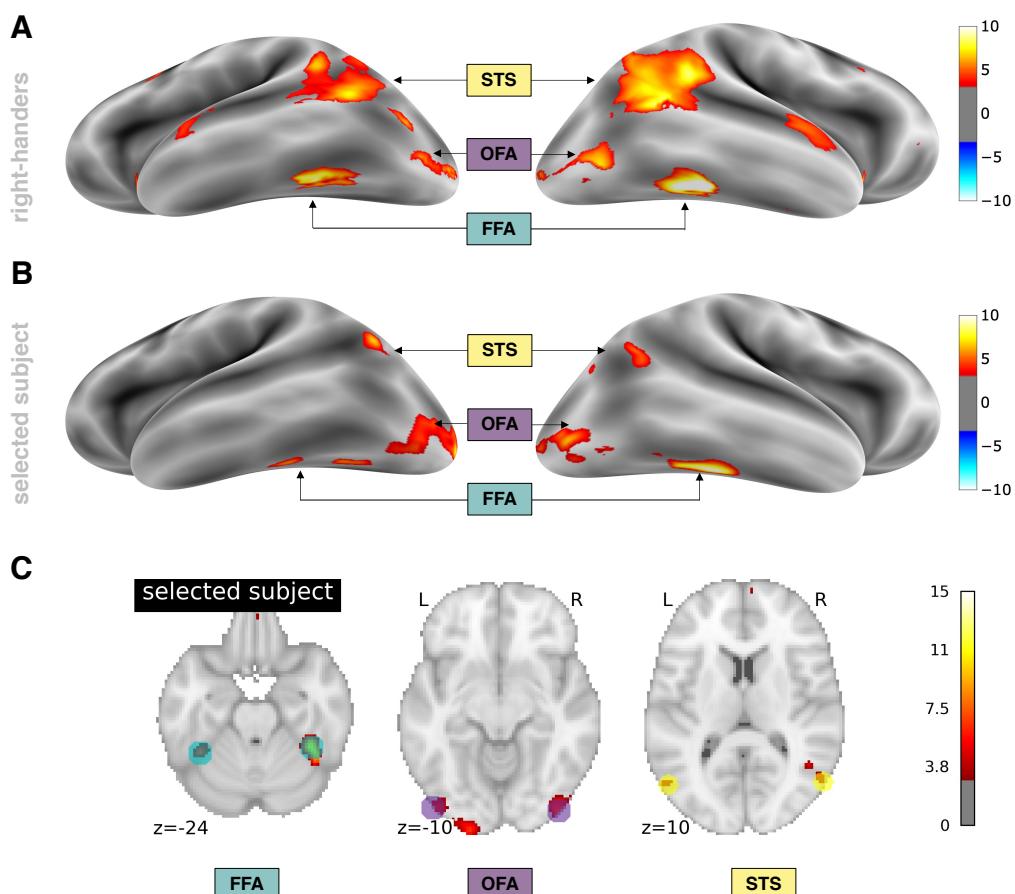
326 **Fig. 1.** Individual maxima for the three brain regions of the core system of face perception: OFA (purple), FFA
327 (green), STS (yellow). Coordinates were visualized with nilearn (version 0.7.0) (Abraham et al., 2014).

328

329 **2.6. Effects of brain region, handedness, and sex on hemispheric lateralization**

330 To assess the dependence of the LI on brain region (OFA, FFA, STS), handedness (right-
331 handed, left-handed) and sex (male, female), we calculated the main effect for each factor as
332 well as their interactions. All statistical analyses were carried out in the R programming
333 environment (R Core Team, 2021, version 4.1.2). Data were analyzed using a generalized linear
334 mixed effects regression approach assuming a gamma distribution and applying a log link
335 function. These analyses were carried out using the glmer() function from the R-package lme4
336 (Bates et al., 2015). LI values were transformed with $+1$ in order to meet the prerequisites of a
337 gamma distribution (i.e., positive-only). Like ordinary least squares (OLS) models, mixed

338 effects regression examines the relationship between a set of predictors (e.g., brain region,
339 handedness) and a response variable (e.g., LI-value). However, the repeated measures design
340 (multiple measurements extracted from one subject) of the study might lead to strong
341 interdependencies in the data, thus violating one of the key assumptions (the conditional mean
342 should be zero) of OLS models (Ernst and Albers, 2017). To address this issue, we used a mixed
343 models approach to account for individual variation of the response variable's variance (e.g.,
344 more similar LI-values within subjects than between subjects), which, if left unaddressed, can
345 lead to increased error variance in the ordinary regression models, diminishing their validity
346 and statistical power. Furthermore, a mixed effects regression framework, allowed us to handle
347 unbalanced data structures (i.e., due to missing data) more efficiently by nesting observations
348 within subjects. All models were estimated via maximum likelihood. Main effects and
349 interactions were assessed via Type III Wald Chi²-tests as implemented in R-package car (Fox
350 and Weisberg, 2019). All categorical variables were effect (i.e., deviation) coded and all
351 continuous variables mean centered around zero prior to analyses. Pairwise contrasts were
352 computed on the basis of the estimated marginal means using the R-package emmeans (Lenth,
353 2021) and all p-values adjusted according to the false discovery rate (FDR; Benjamini and
354 Hochberg 1995). Model descriptives, diagnostics, and estimates of effect sizes (standardized
355 beta coefficients) are provided on OSF (<https://osf.io/s8gwd/>) along with the R-scripts and data
356 to reproduce the analyses.


357 **3. RESULTS**

358 The results section is divided in three parts. First, we present the brain activation pattern for the
359 face perception task (3.1.). Second, we describe the variability of hemispheric lateralization
360 across subjects (3.2.). Last, we analyze the effects of region (OFA, FFA, STS), handedness and
361 sex on hemispheric lateralization (3.3.).

362

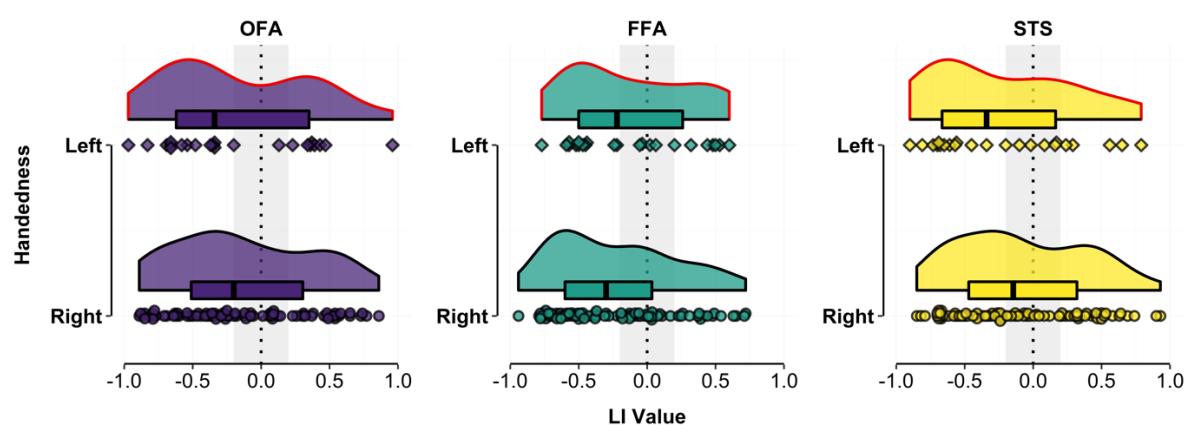
363 **3.1. Brain activation pattern associated with face perception**

364 The face perception task was associated with brain activity in a distributed network
365 encompassing the bilateral occipito-temporal cortex (including the core system's brain regions
366 OFA, FFA, and STS), frontal and parietal areas. For illustrative purposes, we present both the
367 group activation pattern for right-handed subjects and an individual activation pattern for a
368 selected right-handed subject in Fig. 2. On OSF (<https://osf.io/s8gwd/>) we additionally present
369 the group activation pattern for all subjects and the group activation pattern for left-handed
370 subjects.

371

372 **Fig. 2. Brain activation during face perception.** The activation pattern is assessed with the conjunction contrast
373 “faces > houses” AND “faces > scrambled”. For illustrative purposes, we applied a statistical threshold of $p =$
374 0.001 (uncorrected). Activity in the core system of face perception (i.e., OFA, FFA, and STS) is clearly detectable.
375 (A) The activation pattern for the group of right-handed subjects ($n = 85$) and (B) a selected subject’s brain
376 activation (right-handed, female) is displayed on the inflated FreeSurfer fsaverage template (Fischl et al. 1999a;
377 Fischl et al. 1999b). (C) Brain activity of the selected subject shown in B is additionally displayed on sections of
378 the MNI ICBM152 TI template (Fonov et al., 2011, 2009). Here, we also show the individual ROI masks (spherical
379 mask, radius 10 mm) that were used for the LI calculations. All images were visualized with nilearn (version 0.7.0)
380 (Abraham et al., 2014).

381

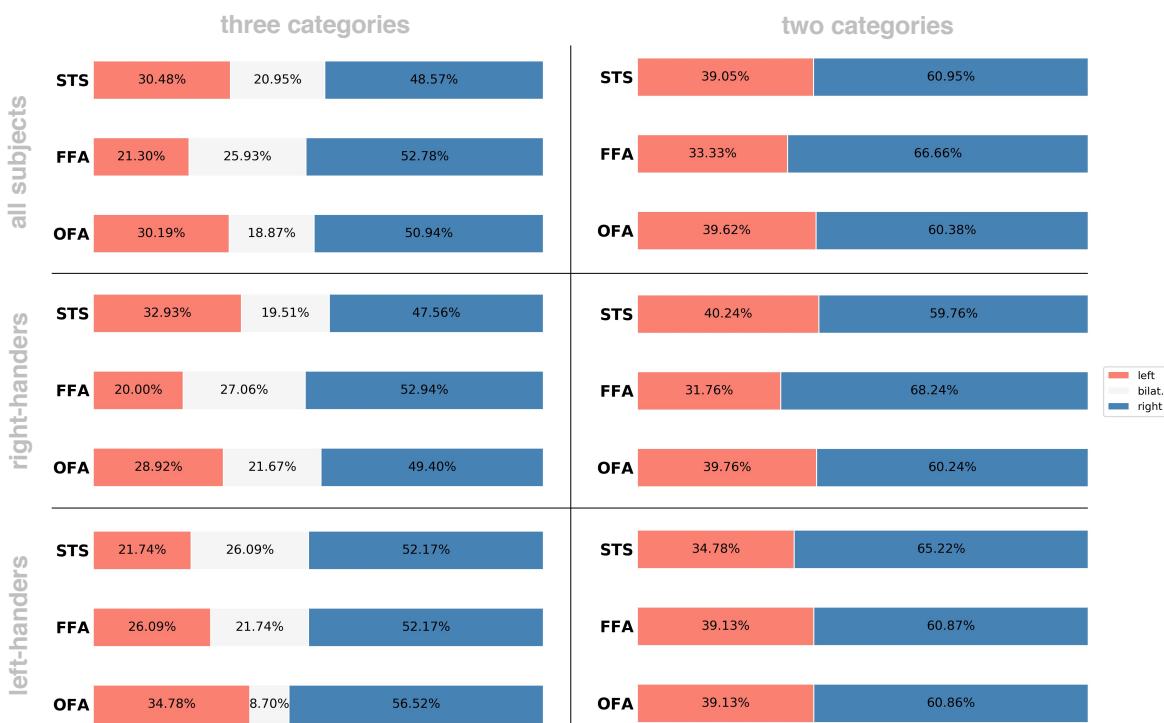

382 3.2. Distribution of hemispheric lateralization in the core system across subjects

383 A lateralization index was calculated for each subject and each region of the core system. Due
384 to weak brain activity (i.e., not sufficient activated voxels in the ROI masks even at liberal
385 statistical thresholds), an LI could not be calculated for three subjects for the STS and for two

386 subjects for the OFA. All subsequent results are thus based on 108 LI values for the FFA, 106
387 LIs for the OFA and 105 LIs for the STS.

388 The distribution of hemispheric lateralization across the population is presented separately for
389 right- and left-handers in Fig. 3. Hemispheric lateralization was continuously distributed across
390 subjects for both groups, ranging from right- to left-hemispheric dominance. Particularly
391 striking here is the high interindividual variability. For right-handers, the mean LI was -0.124
392 (SD = 0.490, median = -0.200) for the OFA, -0.225 (SD = 0.435, median = -0.300) for the FFA
393 and -0.082 (SD = 0.462, median = -0.145) for the STS. For left-handers, the LI was -0.173
394 (SD = 0.524, median = -0.340) for the OFA, -0.121 (SD = 0.438, median = -0.220) for the FFA
395 and -0.220 (SD = 0.508, median = -0.340) for the STS.

396



397
398 **Fig. 3.** Distribution of hemispheric lateralization (described by lateralization index [LI]) for face perception
399 across the population, separately presented for each region of the core system (OFA, FFA, STS) and handedness
400 groups (left-handers, right-handers). Of note: negative LI values on the left side of the x-axis represent right-
401 hemispheric dominance and positive values on the right side represent left-hemispheric dominance. Box plots with
402 median (black vertical line) and individual data points are also plotted at the bottom of each density distribution.

403
404 All density distributions were slightly skewed to the right, indicating that overall, more subjects
405 were right-dominant than left-dominant. Nevertheless, it is evident that there is a substantial
406 number of subjects with bilateral or even left-hemispheric dominance. In Fig. 4 (left), we

407 present the percentage of subjects classified as left-dominant ($LI > 0.2$), bilateral ($|LI| \leq 0.2$) or
408 right-dominant ($LI < -0.2$). In Fig. 4 (right), we additionally use a bipartite division (i.e., omit
409 the category bilateral) and present the percentage of subjects classified as left-dominant
410 ($LI > 0.0$), and right-dominant ($LI < 0.0$). This classification is performed both for all subjects
411 and separately for right- and left-handers. Only about half of the subjects can be classified as
412 right-dominant using a tripartite division, and only two-thirds of the subjects using a bipartite
413 division. The most strongly lateralized brain region is the FFA in right-handers using bipartite
414 division. However, also in this case 32% of subjects are not right-dominant.

415

416

417 **Fig. 4. Left column:** The percentage breakdown of hemispheric dominance in the three categories left-dominant
418 (red), bilateral (grey) and right-dominant (blue). For all three brain areas only ~50% of the sample is right-
419 dominant. **Right column:** Without a bilateral category, more than 60% of subjects show a right hemispheric
420 dominance for all core system regions.

421

422

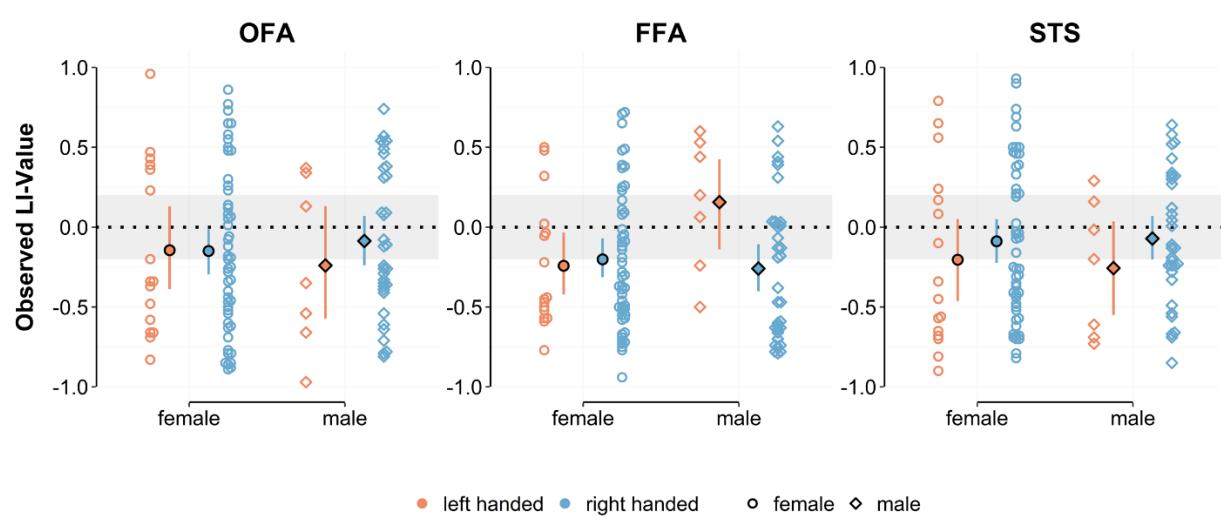
423

424 **3.3. Effects of region, handedness and sex on hemispheric lateralization**

425 To analyze the effects of the brain region (OFA, FFA, STS), handedness (right-handed, left-
426 handed) and sex (male, female) on the LI, we fitted a generalized linear mixed-effects
427 regression model. Main effects and interactions were assessed via type III Wald Chi²-tests. We
428 used an alpha level of 0.05 for all statistical tests. When necessary, p-values were adjusted
429 according to the false discovery rate.

430

431 *Effect of brain region*


432 Our first aim was to test the hypothesis that FFA and STS are stronger lateralized than the OFA.
433 Our analysis, however, did not show a significant main effect of brain region
434 ($\chi^2 (2, N = 108) = 0.0875$, $p = 0.9572$). This was also the case when we assessed models
435 separately for right- and left-handers (see OSF, <https://osf.io/s8gwd/>). For right-handers, the
436 mean LI for the OFA was -0.124 ± 0.490 , in comparison to -0.225 ± 0.435 for the FFA and
437 -0.082 ± 0.462 for the STS. For left-handers, the mean LI for the OFA was -0.173 ± 0.524 ,
438 in comparison to -0.121 ± 0.438 for the FFA and -0.220 ± 0.508 for the STS. Thus, our data
439 do not support the hypothesis that the OFA is on average less lateralized than the FFA and STS.

440

441 *Effect of handedness*

442 Our second aim was to test the hypothesis that left-handers show a reduced right-hemispheric
443 lateralization for the FFA. Again, our data analysis did neither yield a main effect of handedness
444 ($\chi^2 (1, N = 108) = 0.0638$, $p = 0.8006$) nor an interaction effect of handedness and brain region
445 ($\chi^2 (2, N = 108) = 4.6216$, $p = 0.0992$). Only descriptively, the comparison of LI values for left-
446 handers and right-handers showed a small leftward shift for the FFA (LH: -0.121 (SD = 0.438);
447 RH: -0.225 (SD = 0.462)), while OFA (LH: -0.173 (SD = 0.524); RH: -0.124 (SD = 0.490))
448 and STS (LH: -0.220 (SD = 0.508); RH: -0.082 (SD = 0.462)) were even stronger right-
449 lateralized in left-handed subjects.

450 We exploratively tested if handedness would only influence lateralization in combination with
 451 subjects' sex. LI values separately for each region, handedness and sex are depicted in Fig. 5.
 452 Results indicated that left-handed men show systematic differences in lateralization compared
 453 to right-handed males and right-and left-handed females. Their FFA is bilateral with a tendency
 454 to left hemispheric dominance (LI = 0.156, SD = 0.411), while the FFA in all other subgroups
 455 is right dominant (see Table 3). An additional ordinary least squares regression model only
 456 including LI values for the FFA confirmed a significant handedness and sex interaction for the
 457 FFA ($F(1, 103) = 4.7813, p = 0.031$). This interaction is driven by left-handed men being
 458 significantly less right-lateralized compared to right-handed men ($t(103) = 2.459, p = 0.0156$).
 459

460
 461 **Fig. 5.** Interaction plot for brain region * handedness * sex. Mean LI values with bootstrapped confidence intervals
 462 are plotted next to the individual datapoints. Left-handed men (red diamonds) stand out as a group with a shift
 463 towards a left dominant FFA. The horizontal grey bar highlights the range for bilaterality ($|LI| < 0.2$).
 464

Table 3.
Mean (SD) LI values separate for brain region, sex and handedness

ROI	LH female	LH male	RH female	RH male
OFA	-0.144 (0.538)	-0.240 (0.525)	-0.149 (0.512)	-0.087 (0.462)
FFA	-0.242 (0.402)	0.156 (0.411)	-0.202 (0.433)	-0.259 (0.441)
STS	-0.204 (0.553)	-0.257 (0.422)	-0.089 (0.495)	-0.072 (0.413)

465 ROI = region of interest, LH = left-handed, RH = right-handed

466

467

468 Other effects

469 For completeness, our analysis also did not show a main effect of sex ($\chi^2 (1, N = 108) = 0.2867$,
470 $p = 0.5924$), nor a three-way interaction of brain region, handedness and sex
471 ($\chi^2 (2, N = 108) = 3.8174$, $p = 0.1483$) or a two-way interactions of brain region and sex
472 ($\chi^2 (2, N = 108) = 1.1249$, $p = 0.5698$) or of sex and handedness ($\chi^2 (1, N = 108) = 0.1821$,
473 $p = 0.6695$).

474 **4. DISCUSSION**

475 Hemispheric lateralization is a fundamental principle of brain organization in humans and many
476 other species (Esteves et al., 2020; Güntürkün et al., 2020; Karolis et al., 2019). Asymmetry
477 rather than symmetry seems to be ubiquitously present in brain anatomy and function (Esteves
478 et al., 2020). Theoretical advantages of hemispheric asymmetries include parallel processing of
479 complementary information, maximization of available space, higher proficiency and
480 processing speed and decreased inter-hemispheric competition (Esteves et al., 2020; Güntürkün
481 et al., 2020). Lateralization patterns are highly flexible and can be modulated by various factors
482 like handedness, sex, age, genetic factors, hormonal influences, or disease (Toga and
483 Thompson, 2003).

484 In face perception research it is generally accepted that the right hemisphere is playing the
485 dominant role (Duchaine and Yovel, 2015; Rossion and Lochy, 2021). This observation is based
486 on ample evidence accumulated over the last decades with lesion patients, brain stimulation
487 studies, and behavioral experiments. Prosopagnosia is, for instance, mostly caused by right-
488 hemispheric lesion, only seldom by unilateral damage to the left hemisphere (for an overview,
489 cf. Bukowski et al., 2013). In contrast, fMRI studies comparing left- and right-hemispheric
490 activation in homologous face sensitive areas have painted a picture of large variability between
491 studies and amongst individual subjects ranging from clear right dominance over bilaterality to
492 individuals with left hemispheric dominance. Notably, most of these studies are based on rather
493 small sample sizes often deliberately excluding left-handers (Willems et al., 2014) or only
494 assessing the FFA. Thus, the present fMRI study aimed to systematically determine
495 hemispheric lateralization of all core system regions in a relatively large cohort ($N = 108$) of
496 healthy right- and left-handers. We were particularly interested in the variability of hemispheric
497 lateralization across subjects and explored how many subjects can be classified as right-
498 dominant based on the fMRI activation pattern. We further intended to determine lateralization

499 differences between different regions of the core system and to assess the influence of
500 handedness and sex on the lateralization pattern.

501

502 **4.1. Interindividual variabiliy of hemispheric lateralization**

503 Hemispheric lateralization was continuously distributed across subjects, ranging from strong
504 left- to strong right-hemispheric dominance both in right- and left-handers. Depending on the
505 specific region, the mean LI ranged from -0.082 to -0.225. At the group level, the degree of
506 hemispheric lateralization of the core system of face perception network could thus be
507 characterized as “bilateral to weakly right-dominant”. Right-hemispheric lateralization was
508 strongest for the FFA in right-handers (mean LI = -0.225), but the degree of lateralization had
509 to be characterized as “weak” in comparison to other cognitive brain functions such as language
510 or spatial attention. The hemispheric lateralization of the language network is for instance
511 characterized by LIs that are typically larger than 0.5 (e.g., Somers et al., 2011).

512 Particularly striking was the high interindividual variability. While the LI could by definition
513 only vary between -1 and 1, the standard deviation ranged from 0.435 to 0.529, expressing a
514 high level of dispersion around the mean. Only approximately 50% of subjects could be
515 classified as right-hemispheric dominant when applying the widely used criterion for
516 bilaterality ($|LI| < 0.2$). Even if we classified all subjects with LI values below 0.0 as right-
517 hemispheric dominant (i.e., omit the category “bilateral”), still about one third of subjects had
518 a dominant left hemisphere.

519 The high interindividual variability and the large number of subjects who do not show a clear
520 right-hemispheric dominance is also evident from other studies (e.g., Canário et al., 2020;
521 Davies-Thompson et al., 2016; De Winter et al., 2015; Johnstone et al., 2020), with up to 45%
522 of subjects being not right-hemispheric dominant for face perception. This issue is usually not
523 explicitly discussed. It is, however, abundantly obvious from the presented data. It would thus

524 be too simple to argue that the observed inter-individual variability of LI values is a specific
525 feature of our present study or the specific task.

526 Taken together, data both from the present and previous studies provide only limited support
527 for a clear right-hemispheric dominance of the face perception network based on fMRI
528 activation patterns alone. If one assessed the fMRI activation pattern for face perception
529 independent from previous expectations derived from the results of other modalities (e.g., lesion
530 studies), one would most likely not be inclined to characterize the network as right-hemispheric
531 dominant. Instead, one would rather term it “bilateral with a slight tendency towards right-
532 dominance at the group level and a large interindividual variability”.

533 To avoid misunderstandings, we would like to explicitly state that we do not question the right-
534 hemispheric dominance of the face perception network *per se*. Lesion studies, for instance,
535 clearly show, as mentioned several times previously, that damage to the right hemisphere is
536 typically associated with more obvious behavioral deficits than damage to the left hemisphere
537 (Duchaine and Yovel, 2015; Rossion and Lochy, 2021). Using this criterion, the face perception
538 network can be characterized as right-dominant. We only question that the fMRI activation
539 pattern associated with face perception should be characterized as “typically right-hemispheric
540 dominant”.

541 At this point, it is important to understand how the discrepancy between the high percentage of
542 subjects classified as right-hemispheric dominant based on lesion data and the much lower ratio
543 of individuals classified as right-hemispheric dominant based on fMRI data arises. A possible
544 explanation is that the hemispheric lateralization derived from lesion data and the lateralization
545 derived from fMRI data simply reflect different aspects of face perception. In this case, they do
546 not necessarily have to be strongly correlated.

547 From lesion data, one can infer that specific brain regions are necessary for the execution of
548 certain cognitive functions (or at least specific aspects of these functions). The right-
549 hemispheric dominance of face perception, as determined by lesion studies, thus describes that

550 specific aspects of face perception (e.g., identity processing) are typically (i.e., in most subjects)
551 lateralized to the right hemisphere. From fMRI data, one can infer that face perception is
552 associated with a bilateral network. Despite decades of research, however, we still lack a precise
553 characterization of the functional differences between the left- and right-hemispheric
554 homologues of the face perception network. Various hypotheses have been proposed to
555 characterize their different functional profiles. They typically describe the processing style of
556 the two hemispheres in a dichotomous fashion (e.g., left high vs. right low spatial frequencies
557 (Sergent, 1982), left analytic vs. right holistic (Bradshaw and Nettleton, 1981; Rossion et al.,
558 2000); left proactive vs. right reactive; left local vs. right global; see also Rossion and Lochy
559 (2021) and Dien (2008, 2009) for an overview). Interindividual differences in the fMRI
560 lateralization pattern might thus be associated with individual differences in the processing
561 styles and might be less related to the probability of showing behavioral deficits after lesions to
562 either hemisphere.

563 The challenge of future research will be to delineate potential factors driving hemispheric
564 lateralization of fMRI activation patterns not only at the group level, but also in individual
565 subjects. In other words, while decades of research investigated the underlying mechanisms of
566 a right dominant face perception network (e.g., neural competition hypothesis with language
567 areas, see Behrmann and Plaut, 2020, 2015; Dehaene et al., 2015, 2010; Rossion and Lochy,
568 2021) one should now address the question why – based on fMRI – roughly 50% of subjects
569 do not show this so called “typical” pattern. Consequently, if it is totally normal for half of the
570 population to present an atypical lateralization pattern, this brings up the questions whether
571 lateralization patterns of individual subjects’ matter at all in terms of healthy brain function or
572 disease. For example, individuals with left dominant face sensitive areas could potentially rely
573 on other processing strategies than individuals with a right hemispheric dominant face network.
574 Furthermore, a specific lateralization pattern could also be favorable for specific face perception
575 tasks or even indicative of certain psychiatric diseases.

576 **4.2. Effects of region, handedness, and sex on hemispheric lateralization**

577 The second aim of our study was to investigate whether there are lateralization differences
578 between different regions of the core system and to assess the influence of handedness and sex
579 on the lateralization pattern. Our data did neither show a significant main effect of region,
580 handedness, or sex nor any interaction. However, in an exploratory analysis of the FFA
581 lateralization alone, we showed that handedness in combination with sex has an influence on
582 hemispheric dominance, with left-handed men having a significantly more left-lateralized
583 activation pattern compared to all other subgroups. These results are discussed in the following.

584

585 *Are core system regions differentially lateralized?*

586 Faces are generally processed in direction from posterior (e.g., OFA) to anterior (e.g., ATL,
587 IFG) brain regions. This is also reflected by simultaneous recordings of EEG and fMRI
588 responses to faces, showing that OFA activation is correlated with early event-related potentials
589 about 110 ms after stimulus onset, while activations in the temporal lobe (i.e., FFA and STS)
590 are highly correlated with the later face-sensitive N170 component (Sadeh et al., 2010).

591 Whether these latency effects also translate to increased lateralization in posterior to anterior
592 direction within the core system remains largely unknown. Initial evidence in this regard was
593 provided by Rossion and colleagues (2012) for right-handed subjects. They calculated the
594 percentage of activated voxels in the right hemisphere and found no significant lateralization
595 for the OFA (61%), but significant right-hemispheric dominance for the FFA (71%) and STS
596 (77%).

597 Against our expectations we did not find a significant main effect of brain region
598 ($\chi^2 (2, N = 108) = 0.0875, p = 0.9572$). Our data thus did not support an increase in hemispheric
599 dominance from posterior (i.e., OFA) to anterior (i.e., FFA and STS) regions. The activation
600 pattern of the OFA was found to be bilateral in both right- (LI = -0.124 ± 0.490) and left-handed

601 subjects (LI = -0.173 ± 0.524). Even the brain region showing the most lateralized activity, the
602 FFA in right-handers (LI = -0.225 ± 0.435), was only slightly stronger lateralized.
603 Remarkably, a comparison of lateralization results found in the fMRI literature revealed one
604 obvious pattern: inconsistency for all three face sensitive areas. For each area there are several
605 studies showing clear right-hemispheric lateralization (e.g., Frässle et al., 2016c; Ishai et al.,
606 2005; Rhodes et al., 2004; Rossion et al., 2012), while others found inconclusive results (e.g.,
607 Haxby et al., 1999; Yovel et al., 2008) or even bilateral activity without a significant
608 lateralization effect (Canário et al., 2020; De Winter et al., 2015; Ishai et al., 2002). In summary
609 and in line with our results, face sensitive areas in the core system only show a gentle tendency
610 towards the right hemisphere. Furthermore this tendency is just a group effect with limited
611 implications for individuals.

612

613 Does handedness influence lateralization?

614 Approximately 90% of humans are right-handers. This proportion has remained relatively
615 stable over the past 5000 years (Coren and Porac, 1977). From language research it is well
616 known that handedness can influence hemispheric dominance. While 96% of right-handed
617 subjects show a left hemispheric language dominance, this value is reduced to 73% in left-
618 handers (Knecht et al., 2000b). Thus, to rule out handedness effects, face perception research
619 has predominantly focused on lateralization patterns of right-handers (Rossion et al., 2012),
620 deliberately neglecting the investigation of left-handers (Willems et al., 2014).

621 In the last decade, however, a handful of research groups have specifically recruited left-
622 handers and detected a significant reduction in FFA lateralization compared to right-handers
623 (Bukowski et al., 2013; Frässle et al., 2016a; Willems et al., 2010; see also Badzakova-Trajkov
624 et al., 2010 for lateralization in the whole temporal lobe). Precisely, neither the percentage of
625 activated voxels (Bukowski et al., 2013; Willems et al., 2010) nor the activation strength
626 (Frässle et al., 2016a) was found to be significantly lateralized in left-handers. On the other

627 hand, OFA (see Bukowski et al., 2013; Frässle et al., 2016a) and STS (Bukowski et al., 2013)
628 were right dominant and not significantly different from right-handers. Bukowski et al. (2013)
629 speculated that the observed bilaterality of the FFA is not reflecting a true bilaterality but could
630 instead be caused by broader variations of LI results amongst left-handers.

631 However, in our sample we neither found a significantly reduced right-hemispheric dominance
632 in left-handers (main effect handedness: $\chi^2 (1, N = 108) = 0.0638, p = 0.8007$) nor an increased
633 variability of LI values (e.g., left-handed: SD FFA = 0.438, right-handed: SD FFA = 0.435).
634 Only the interaction of handedness and brain region indicated a tendency towards the expected
635 leftward shift of FFA lateralization in left-handed subjects ($\chi^2 (2, N = 108) = 4.6216,$
636 $p = 0.0992$). Notably, all of these studies including ours assessed rather small cohorts of left-
637 handed subjects ($n < 33$) and used different paradigms and analyses methods. Therefore, large
638 scale studies with left-handed subjects are needed to discern whether the handedness effects
639 found in previous studies are genuine to the left-handed population or rather caused by a
640 sampling bias or specific methodological decisions.

641 One possible cause of variability amongst left-handers might be their language dominance. For
642 example, two studies conducted by Gerrits and colleagues (2019, 2020) both revealed a reduced
643 right-hemispheric dominance in left-handers with atypical right language dominance. Left-
644 handers with typical left language dominance on the other hand were not distinguishable from
645 right-handers. Lastly, one could also think of sex as a potential source of variance amongst the
646 left-handed population (as discussed below).

647

648 *Are men and women differentially lateralized?*

649 Sex differences in hemispheric asymmetry and their implications on cognitive functioning like
650 mental rotation abilities or verbal skills have been a matter of debate for many decades
651 (Hirnstein et al., 2019). For example, male brains have repeatedly shown to be more lateralized
652 than female brains, albeit with a very small effect size (Hirnstein et al., 2019). Furthermore,

653 myriads of studies reported a male advantage in mental rotation tasks (Zell et al., 2015), while
654 women often outperform men in verbal tasks (Lowe et al., 2003).

655 However, a causal link between cognitive performance and hemispheric asymmetry related to
656 sex is still missing. To our knowledge no differences between males and females in hemispheric
657 lateralization in the face perception network have been reported so far (e.g., see Rossion et al.,
658 2012 who found no evidence for female vs. male difference in their lateralization pattern of
659 OFA, FFA or STS). In line with these observations the present study did not find a significant
660 main effect of sex.

661 Interestingly, when exploratively combining sex and handedness effects specifically in the
662 FFA, one group of subjects stood out in particular: left-handed men (see Fig. 5). Compared to
663 right-handed men, left-handed man showed a significant left-ward shift of FFA lateralization
664 (mean LI left-handers = 0.149, SD = 0.450). This observation is based on the seven left-handed
665 men included in our sample, rendering the need for larger samples to substantiate this finding.

666

667 **4.3. Limitations**

668 Last, we would like to point out potential limitations of our study. The LI is influenced by a
669 myriad of factors. Being based on fMRI activation patterns, it obviously depends on the chosen
670 paradigm, fMRI acquisition parameters, preprocessing pipelines, the choice of an activity
671 measure and the definition of suitable regions of interest (for an overview, cf. Jansen et al.,
672 2006). Since the regions of the core system are in close anatomical proximity, different from
673 for example Broca's and Wernicke's area in the language network, we have spent in particular
674 some effort to localize these regions in a meaningful way in individual subjects (Fig. 1). Further
675 studies, however, should investigate in more detail the influence of specific analysis parameters
676 on hemispheric lateralization. This will also help to make results from different studies more
677 comparable.

678

679 **4.4. Conclusions**

680 In summary, our fMRI data did not support a clear right-hemispheric dominance of the face
681 perception network. On average, brain activity was stronger in right-hemispheric brain regions
682 than in their left-hemispheric homologues. This asymmetry was, however, only weakly
683 pronounced in comparison to other lateralized brain functions (such as language and spatial
684 attention) and strongly varied between individuals. Only half of the subjects in the present study
685 could be classified as right-hemispheric dominant. Instead of calling the fMRI activation pattern
686 right-dominant, as is done in most studies, it might be more suitable to characterize it as
687 “bilateral, with a slight tendency towards right-dominance at the group level and a large
688 interindividual variability”. Our findings ultimately question the dogma that the face perception
689 network – as measured with fMRI – is typically right lateralized. To put it bluntly, how can
690 something be typical if it only applies to half of the population? This would be equally precise
691 as terming the world population typically female.

692 **Declaration of Competing Interest**

693 None.

694

695 **Credit authorship contribution statement**

696 **Ina Thome:** Conceptualization, Data curation, Formal analysis, Investigation, Methodology,
697 Project administration, Software, Visualization, Writing – original draft, Writing – review &
698 editing. **José C. García Alanis:** Formal analysis, Methodology, Visualization, Writing –
699 review & editing. **Jannika Volk:** Data curation, Formal analysis. **Christoph Vogelbacher:**
700 Data curation, Writing – review & editing. **Olaf Steinsträter:** Software. **Andreas Jansen:**
701 Conceptualization, Supervision, Resources, Funding acquisition, Writing – review & editing.

702

703 **Acknowledgements**

704 This work was supported by the German Research Council (Deutsche Forschungsgemeinschaft,
705 DFG, Grant no. JA 1890/11-1) and the University Medical Center Giessen and Marburg
706 (UKGM) (Grant no. 7/2019-MR).

707

708 We would like to thank Stefan Frässle, Anna Rysop, Peer Herholz, Verena Schuster, Mechthild
709 Wallnig, Rita Werner, and Jens Sommer for the setup of the experiment and raw data
710 acquisition.

711

712 **Data/code availability statement and supplementary material**

713 Supplementary material as well as data and code used in this study are publicly available on the
714 Open Science Framework at <https://osf.io/s8gwd/>.

715

716

717

718 REFERENCES

719 Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A.,
720 Thirion, B., Varoquaux, G., 2014. Machine learning for neuroimaging with scikit-learn. *Front. Neuroinform.* 8, 14. <https://doi.org/10.3389/FNINF.2014.00014>/BIBTEX

722 Anderson, D.P., Harvey, A.S., Saling, M.M., Anderson, V., Kean, M., Abbott, D.F., Wellard, R.M.,
723 Jackson, G.D., 2006. FMRI lateralization of expressive language in children with cerebral
724 lesions. *Epilepsia* 47, 998–1008. <https://doi.org/10.1111/j.1528-1167.2006.00572.x>

725 Ashburner, J., Friston, K.J., 2005. Unified segmentation. *Neuroimage* 26, 839–851.
726 <https://doi.org/10.1016/j.neuroimage.2005.02.018>

727 Badzakova-Trajkov, G., Häberling, I.S., Roberts, R.P., Corballis, M.C., 2010. Cerebral Asymmetries:
728 Complementary and Independent Processes. *PLoS One* 5, e9682.
729 <https://doi.org/10.1371/JOURNAL.PONE.0009682>

730 Barton, J., 2008. Structure and function in acquired prosopagnosia: lessons from a series of 10 patients
731 with brain damage. *J. Neuropsychol.* <https://doi.org/10.1348/174866407X214172>

732 Bates, D., Mächler, M., Bolker, B.M., Walker, S.C., 2015. Fitting Linear Mixed-Effects Models Using
733 lme4. *J. Stat. Softw.* 67, 1–48. <https://doi.org/10.18637/JSS.V067.I01>

734 Behrmann, M., Plaut, D.C., 2020. Hemispheric Organization for Visual Object Recognition: A
735 Theoretical Account and Empirical Evidence. *Perception* 49, 373–404.
736 <https://doi.org/10.1177/0301006619899049>

737 Behrmann, M., Plaut, D.C., 2015. A vision of graded hemispheric specialization. *Ann. N. Y. Acad. Sci.* 1359, 30–46. <https://doi.org/10.1111/NYAS.12833>

739 Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate: A Practical and Powerful
740 Approach to Multiple Testing. *J. R. Stat. Soc. Ser. B* 57, 289–300.
741 <https://doi.org/10.1111/J.2517-6161.1995.TB02031.X>

742 Berman, M.G., Park, J., Gonzalez, R., Polk, T.A., Gehrke, A., Knaffla, S., Jonides, J., 2010.
743 Evaluating functional localizers: The case of the FFA. *Neuroimage* 50, 56–71.
744 <https://doi.org/10.1016/j.neuroimage.2009.12.024>

745 Binder, J.R., Swanson, S.J., Hammeke, T.A., Morris, G.L., Mueller, W.M., Fischer, M., Benbadis, S.,

746 Frost, J.A., Rao, S.M., Haughton, V.M., 1996. Determination of language dominance using
747 functional MRI: A comparison with the Wada test. *Neurology* 46, 978–984.
748 <https://doi.org/10.1212/WNL.46.4.978>

749 Bradshaw, A.R., Bishop, D.V.M., Woodhead, Z.V.J., 2017. Methodological considerations in
750 assessment of language lateralisation with fMRI: a systematic review. *PeerJ* 5, e3557.
751 <https://doi.org/10.7717/peerj.3557>

752 Bradshaw, J.L., Nettleton, N.C., 1981. The nature of hemispheric specialization in man. *Behav. Brain
753 Sci.* 4, 51–63. <https://doi.org/10.1017/S0140525X00007548>

754 Bukowski, H., Dricot, L., Hanseeuw, B., Rossion, B., 2013. Cerebral lateralization of face-sensitive
755 areas in left-handers: only the FFA does not get it right. *Cortex*. 49, 2583–2589.
756 <https://doi.org/10.1016/j.cortex.2013.05.002>

757 Canário, N., Jorge, L., Castelo-Branco, M., 2020. Distinct mechanisms drive hemispheric
758 lateralization of object recognition in the visual word form and fusiform face areas. *Brain Lang.*
759 210, 104860. <https://doi.org/10.1016/J.BANDL.2020.104860>

760 Chan, A.W.-Y., Downing, P.E., 2011. Faces and Eyes in Human Lateral Prefrontal Cortex. *Front.
761 Hum. Neurosci.* 0, 51. <https://doi.org/10.3389/FNHUM.2011.00051>

762 Coren, S., Porac, C., 1977. Fifty centuries of right-handedness: the historical record. *Science* 198,
763 631–632. <https://doi.org/10.1126/SCIENCE.335510>

764 Davies-Thompson, J., Johnston, S., Tashakkor, Y., Pancaroglu, R., Barton, J., 2016. The relationship
765 between visual word and face processing lateralization in the fusiform gyri: A cross-sectional
766 study. *Brain Res.* 1644, 88–97. <https://doi.org/10.1016/J.BRAINRES.2016.05.009>

767 De Winter, F.L., Zhu, Q., Van den Stock, J., Nelissen, K., Peeters, R., de Gelder, B., Vanduffel, W.,
768 Vandenbulcke, M., 2015. Lateralization for dynamic facial expressions in human superior
769 temporal sulcus. *Neuroimage* 106, 340–352.
770 <https://doi.org/10.1016/J.NEUROIMAGE.2014.11.020>

771 Dehaene, S., Cohen, L., 2011. The unique role of the visual word form area in reading. *Trends Cogn.
772 Sci.* 15, 254–262. <https://doi.org/10.1016/j.tics.2011.04.003>

773 Dehaene, S., Cohen, L., Morais, J., Kolinsky, R., 2015. Illiterate to literate: behavioural and cerebral

774 changes induced by reading acquisition. *Nat. Rev. Neurosci.* 2015 164 16, 234–244.

775 <https://doi.org/10.1038/nrn3924>

776 Dehaene, S., Pegado, F., Braga, L.W., Ventura, P., Nunes Filho, G., Jobert, A., Dehaene-Lambertz, G.,

777 Kolinsky, R., Morais, J., Cohen, L., 2010. How learning to read changes the cortical networks for

778 vision and language. *Science* 330, 1359–1364. <https://doi.org/10.1126/SCIENCE.1194140>

779 Dien, J., 2009. A tale of two recognition systems: Implications of the fusiform face area and the visual

780 word form area for lateralized object recognition models. *Neuropsychologia* 47, 1–16.

781 <https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2008.08.024>

782 Dien, J., 2008. Looking both ways through time: The Janus model of lateralized cognition. *Brain*

783 *Cogn.* 67, 292–323. <https://doi.org/10.1016/J.BANDC.2008.02.007>

784 Duchaine, B., Yovel, G., 2015. A Revised Neural Framework for Face Processing. *Annu. Rev. Vis.*

785 *Sci.* 1, 393–416. <https://doi.org/10.1146/annurev-vision-082114-035518>

786 Ebner, N.C., 2008. Age of face matters: age-group differences in ratings of young and old faces.

787 *Behav. Res. Methods* 40, 130–136. <https://doi.org/10.3758/brm.40.1.130>

788 Eimer, M., McCarthy, R.A., 1999. Prosopagnosia and structural encoding of faces: evidence from

789 event-related potentials. *Neuroreport* 10, 255–259. <https://doi.org/10.1097/00001756-199902050-00010>

790 Engell, A.D., Haxby, J. V., 2007. Facial expression and gaze-direction in human superior temporal

791 sulcus. *Neuropsychologia* 45, 3234–3241.

792 <https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2007.06.022>

793 Ernst, A.F., Albers, C.J., 2017. Regression assumptions in clinical psychology research practice—a

794 systematic review of common misconceptions. *PeerJ* 5. <https://doi.org/10.7717/PEERJ.3323>

795 Esteves, M., Lopes, S.S., Almeida, A., Sousa, N., Leite-Almeida, H., 2020. Unmasking the relevance

796 of hemispheric asymmetries—Break on through (to the other side). *Prog. Neurobiol.* 192,

797 101823. <https://doi.org/10.1016/J.PNEUROBIO.2020.101823>

798 Fischl, B., Sereno, M.I., Dale, A.M., 1999a. Cortical surface-based analysis. II: Inflation, flattening,

799 and a surface-based coordinate system. *Neuroimage* 9, 195–207.

800 <https://doi.org/10.1006/NIMG.1998.0396>

802 Fischl, B., Sereno, M.I., Tootell, R.B.H., Dale, A.M., 1999b. High-resolution intersubject averaging
803 and a coordinate system for the cortical surface. *Hum. Brain Mapp.* 8, 272.
804 [https://doi.org/10.1002/\(sici\)1097-0193\(1999\)8:4<272::aid-hbm10>3.0.co;2-4](https://doi.org/10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4)

805 Flöel, A., Buyx, A., Breitenstein, C., Lohmann, H., Knecht, S., 2005. Hemispheric lateralization of
806 spatial attention in right- and left-hemispheric language dominance. *Behav. Brain Res.* 158, 269–
807 275. <https://doi.org/10.1016/J.BBR.2004.09.016>

808 Fonov, V., Evans, A., McKinstry, R., Almlí, C., Collins, D., 2009. Unbiased nonlinear average age-
809 appropriate brain templates from birth to adulthood. *Neuroimage* 47, S102.
810 [https://doi.org/10.1016/S1053-8119\(09\)70884-5](https://doi.org/10.1016/S1053-8119(09)70884-5)

811 Fonov, V., Evans, A.C., Botteron, K., Almlí, C.R., McKinstry, R.C., Collins, D.L., 2011. Unbiased
812 average age-appropriate atlases for pediatric studies. *Neuroimage* 54, 313–327.
813 <https://doi.org/10.1016/J.NEUROIMAGE.2010.07.033>

814 Fox, C.J., Iaria, G., Barton, J.J.S., 2009. Defining the face processing network: Optimization of the
815 functional localizer in fMRI. *Hum. Brain Mapp.* 30, 1637–1651.
816 <https://doi.org/10.1002/hbm.20630>

817 Fox, J., Weisberg, S., 2019. An R Companion to Applied Regression, Third. ed. Sage, Thousand Oaks
818 CA.

819 Frässle, S., Krach, S., Paulus, F.M., Jansen, A., 2016a. Handedness is related to neural mechanisms
820 underlying hemispheric lateralization of face processing. *Sci. Rep.* 6, 1–17.
821 <https://doi.org/10.1038/srep27153>

822 Frässle, S., Paulus, F.M., Krach, S., Jansen, A., 2016b. Test-retest reliability of effective connectivity
823 in the face perception network. *Hum. Brain Mapp.* 37, 730–744.
824 <https://doi.org/10.1002/hbm.23061>

825 Frässle, S., Paulus, F.M., Krach, S., Schweinberger, S.R., Stephan, K.E., Jansen, A., 2016c.
826 Mechanisms of hemispheric lateralization: Asymmetric interhemispheric recruitment in the face
827 perception network. *Neuroimage* 124, 977–988.
828 <https://doi.org/10.1016/j.neuroimage.2015.09.055>

829 Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., Frackowiak, R.S.J., 1995.

830 Statistical parametric maps in functional imaging: A general linear approach. *Hum. Brain Mapp.*
831 2, 189–210. <https://doi.org/10.1002/hbm.460020402>

832 Friston, K.J., Penny, W.D., Glaser, D.E., 2005. Conjunction revisited. *Neuroimage* 25, 661–667.
833 <https://doi.org/10.1016/J.NEUROIMAGE.2005.01.013>

834 Gauthier, I., Tarr, M.J., Moylan, J., Skudlarski, P., Gore, J.C., Anderson, A.W., 2000. The Fusiform
835 “Face Area” is Part of a Network that Processes Faces at the Individual Level. *J. Cogn. Neurosci.*
836 12, 495–504. <https://doi.org/10.1162/089892900562165>

837 Goh, J.O.S., Leshikar, E.D., Sutton, B.P., Tan, J.C., Sim, S.K.Y., Hebrank, A.C., Park, D.C., 2010.
838 Culture differences in neural processing of faces and houses in the ventral visual cortex. *Soc.*
839 *Cogn. Affect. Neurosci.* 5, 227–235. <https://doi.org/10.1093/scan/nsq060>

840 Güntürkün, O., Ströckens, F., Ocklenburg, S., 2020. Brain Lateralization: A Comparative Perspective.
841 <https://doi.org/10.1152/physrev.00006.2019> 100, 1019–1063.
842 <https://doi.org/10.1152/PHYSREV.00006.2019>

843 Haxby, J. V, Gobbini, M.I., 2011. Distributed Neural Systems for Face Perception, 1st ed. Oxford
844 University Press, Oxford. <https://doi.org/10.1093/oxfordhb/9780199559053.013.0006>

845 Haxby, J. V, Hoffman, E.A., Gobbini, M.I., 2000. The distributed human neural system for face
846 perception. *Trends Cogn. Sci.* 4, 223–233. [https://doi.org/10.1016/S1364-6613\(00\)01482-0](https://doi.org/10.1016/S1364-6613(00)01482-0)

847 Haxby, J. V, Ungerleider, L.G., Clark, V.P., Schouten, J.L., Hoffman, E.A., Martin, A., 1999. The
848 Effect of Face Inversion on Activity in Human Neural Systems for Face and Object Perception.
849 *Neuron* 22, 189–199. [https://doi.org/10.1016/S0896-6273\(00\)80690-X](https://doi.org/10.1016/S0896-6273(00)80690-X)

850 Hildesheim, F.E., Debus, I., Kessler, R., Thome, I., Zimmermann, K.M., Steinsträter, O., Sommer, J.,
851 Kamp-Becker, I., Stark, R., Jansen, A., 2020. The Trajectory of Hemispheric Lateralization in
852 the Core System of Face Processing: A Cross-Sectional Functional Magnetic Resonance Imaging
853 Pilot Study. *Front. Psychol.* 11. <https://doi.org/10.3389/fpsyg.2020.507199>

854 Hirnstein, M., Hugdahl, K., Hausmann, M., 2019. Cognitive sex differences and hemispheric
855 asymmetry: A critical review of 40 years of research. *L laterality* 24, 204–252.
856 <https://doi.org/10.1080/1357650X.2018.1497044>

857 Ishai, A., Haxby, J. V., Ungerleider, L.G., 2002. Visual Imagery of Famous Faces: Effects of Memory

858 and Attention Revealed by fMRI. *Neuroimage* 17, 1729–1741.

859 <https://doi.org/10.1006/NIMG.2002.1330>

860 Ishai, A., Schmidt, C., Boesiger, P., 2005. Face perception is mediated by a distributed cortical
861 network. *Brain Res. Bull.* 67, 87–93. <https://doi.org/10.1016/J.BRAINRESBULL.2005.05.027>

862 Jansen, A., Lohmann, H., Scharfe, S., Sehlmeyer, C., Deppe, M., Knecht, S., 2007. The association
863 between scalp hair-whorl direction, handedness and hemispheric language dominance: Is there a
864 common genetic basis of lateralization? *Neuroimage* 35, 853–861.

865 <https://doi.org/10.1016/J.NEUROIMAGE.2006.12.025>

866 Jansen, A., Menke, R., Sommer, J., Förster, A.F., Bruchmann, S., Hempleman, J., Weber, B., Knecht,
867 S., 2006. The assessment of hemispheric lateralization in functional MRI-Robustness and
868 reproducibility. *Neuroimage* 33, 204–217. <https://doi.org/10.1016/j.neuroimage.2006.06.019>

869 Johnstone, L.T., Karlsson, E.M., Carey, D.P., 2020. The validity and reliability of quantifying
870 hemispheric specialisation using fMRI: Evidence from left and right handers on three different
871 cerebral asymmetries. *Neuropsychologia* 138, 107331.

872 <https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2020.107331>

873 Kanwisher, N., McDermott, J., Chun, M.M., 1997. The Fusiform Face Area: A Module in Human
874 Extrastriate Cortex Specialized for Face Perception. *J. Neurosci.* 17, 4302–4311.
875 <https://doi.org/https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997>

876 Karolis, V.R., Corbetta, M., Thiebaut de Schotten, M., 2019. The architecture of functional
877 lateralisation and its relationship to callosal connectivity in the human brain. *Nat. Commun.* 10,
878 1417. <https://doi.org/10.1038/s41467-019-09344-1>

879 Knecht, S., Deppe, M., Dräger, B., Bobe, L., Lohmann, H., Ringelstein, E.B., Henningsen, H., 2000a.
880 Language lateralization in healthy right-handers. *Brain* 123, 74–81.
881 <https://doi.org/10.1093/BRAIN/123.1.74>

882 Knecht, S., Dräger, B., Deppe, M., Bobe, L., Lohmann, H., Flöel, A., Ringelstein, E.-B., Henningsen,
883 H., 2000b. Handedness and hemispheric language dominance in healthy humans. *Brain* 123,
884 2512–2518. <https://doi.org/10.1093/brain/123.12.2512>

885 Lenth, R. V, 2021. emmeans: Estimated Marginal Means, aka Least-Squares Means.

886 Lowe, P.A., Mayfield, J.W., Reynolds, C.R., 2003. Gender differences in memory test performance
887 among children and adolescents. *Arch. Clin. Neuropsychol.* 18, 865–878.
888 [https://doi.org/10.1016/S0887-6177\(02\)00162-2](https://doi.org/10.1016/S0887-6177(02)00162-2)

889 Maldjian, J.A., Laurienti, P.J., Burdette, J.H., 2004. Precentral gyrus discrepancy in electronic
890 versions of the Talairach atlas. *Neuroimage* 21, 450–455.
891 <https://doi.org/10.1016/j.neuroimage.2003.09.032>

892 Maldjian, J.A., Laurienti, P.J., Kraft, R.A., Burdette, J.H., 2003. An automated method for
893 neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. *Neuroimage* 19,
894 1233–1239. [https://doi.org/10.1016/s1053-8119\(03\)00169-1](https://doi.org/10.1016/s1053-8119(03)00169-1)

895 Mattson, A.J., Levin, H.S., Grafman, J., 2000. A Case of Prosopagnosia Following Moderate Closed
896 Head Injury with Left Hemisphere Focal Lesion. *Cortex* 36, 125–137.
897 [https://doi.org/10.1016/S0010-9452\(08\)70841-4](https://doi.org/10.1016/S0010-9452(08)70841-4)

898 McManus, C., 2019. Half a century of handedness research: Myths, truths; fictions, facts; backwards,
899 but mostly forwards. *Brain Neurosci. Adv.* 3, 239821281882051.
900 <https://doi.org/10.1177/2398212818820513>

901 Nichols, T., Brett, M., Andersson, J., Wager, T., Poline, J.B., 2005. Valid conjunction inference with
902 the minimum statistic. *Neuroimage* 25, 653–660.
903 <https://doi.org/10.1016/J.NEUROIMAGE.2004.12.005>

904 Nummenmaa, L., Passamonti, L., Rowe, J., Engell, A.D., Calder, A.J., 2010. Connectivity analysis
905 reveals a cortical network for eye gaze perception. *Cereb. Cortex* 20, 1780–1787.
906 <https://doi.org/10.1093/CERCOR/BHP244>

907 Oldfield, R.C., 1971. The assessment and analysis of handedness: the Edinburgh inventory.
908 *Neuropsychologia* 9, 97–113. [https://doi.org/10.1016/0028-3932\(71\)90067-4](https://doi.org/10.1016/0028-3932(71)90067-4)

909 Pitcher, D., Dilks, D., Saxe, R., Triantafyllou, C., Kanwisher, N., 2011a. Differential selectivity for
910 dynamic versus static information in face-selective cortical regions. *Neuroimage* 56, 2356–2363.
911 <https://doi.org/10.1016/J.NEUROIMAGE.2011.03.067>

912 Pitcher, D., Walsh, V., Duchaine, B., 2011b. The role of the occipital face area in the cortical face
913 perception network. *Exp. Brain Res.* 209, 481–493. <https://doi.org/10.1007/s00221-011-2579-1>

914 Price, C.J., Devlin, J.T., 2003. The myth of the visual word form area. *Neuroimage* 19, 473–481.

915 [https://doi.org/10.1016/S1053-8119\(03\)00084-3](https://doi.org/10.1016/S1053-8119(03)00084-3)

916 Puce, A., Allison, T., Bentin, S., Gore, J.C., McCarthy, G., 1998. Temporal Cortex Activation in

917 Humans Viewing Eye and Mouth Movements. *J. Neurosci.* 18, 2188–2199.

918 <https://doi.org/10.1523/JNEUROSCI.18-06-02188.1998>

919 Rajimehr, R., Young, J.C., Tootell, R.B.H., 2009. An anterior temporal face patch in human cortex,

920 predicted by macaque maps. *Proc. Natl. Acad. Sci. U. S. A.* 106, 1995–2000.

921 <https://doi.org/10.1073/pnas.0807304106>

922 Rhodes, G., Byatt, G., Michie, P.T., Puce, A., 2004. Is the Fusiform Face Area Specialized for Faces,

923 Individuation, or Expert Individuation? *J. Cogn. Neurosci.* 16, 189–203.

924 <https://doi.org/10.1162/089892904322984508>

925 Rossion, B., Dricot, L., Devolder, A., Bodart, J.M., Crommelinck, M., De Gelder, B., Zontjes, R.,

926 2000. Hemispheric asymmetries for whole-based and part-based face processing in the human

927 fusiform gyrus. *J. Cogn. Neurosci.* 12, 793–802. <https://doi.org/10.1162/089892900562606>

928 Rossion, B., Hanseeuw, B., Dricot, L., 2012. Defining face perception areas in the human brain: A

929 large-scale factorial fMRI face localizer analysis. *Brain Cogn.* 79, 138–157.

930 <https://doi.org/10.1016/j.bandc.2012.01.001>

931 Rossion, B., Lochy, A., 2021. Is human face recognition lateralized to the right hemisphere due to

932 neural competition with left-lateralized visual word recognition? A critical review. *Brain Struct.*

933 *Funct.* 2021 1–31. <https://doi.org/10.1007/S00429-021-02370-0>

934 Sadeh, B., Podlipsky, I., Zhdanov, A., Yovel, G., 2010. Event-related potential and functional {MRI}

935 measures of face-selectivity are highly correlated: a simultaneous {ERP}-{fMRI} investigation.

936 *Hum. Brain Mapp.* 31, 1490–1501. <https://doi.org/10.1002/hbm.20952>

937 Sahraei, I., Hildesheim, F.E., Thome, I., Kessler, R., Rusch, K.M., Sommer, J., Kamp-Becker, I.,

938 Stark, R., Jansen, A., 2021. Developmental changes within the extended face processing

939 network: A cross-sectional functional magnetic resonance imaging study. *Dev. Neurobiol.*

940 <https://doi.org/10.1002/DNEU.22858>

941 Sergent, J., 1982. The cerebral balance of power: Confrontation or cooperation? *J. Exp. Psychol. Hum.*

942 Percept. Perform. 8, 253–272. <https://doi.org/10.1037/0096-1523.8.2.253>

943 Somers, M., Neggers, S.F.W., Diederend, K.M., Boks, M.P., Kahn, R.S., Sommer, I.E., 2011. The
944 Measurement of Language Lateralization with Functional Transcranial Doppler and Functional
945 MRI: A Critical Evaluation. *Front. Hum. Neurosci.* 0, 31.
946 <https://doi.org/10.3389/FNHUM.2011.00031>

947 Springer, J.A., Binder, J.R., Hammeke, T.A., Swanson, S.J., Frost, J.A., Bellgowan, P.S.F., Brewer,
948 C.C., Perry, H.M., Morris, G.L., Mueller, W.M., 1999. Language dominance in neurologically
949 normal and epilepsy subjectsA functional MRI study. *Brain* 122, 2033–2046.
950 <https://doi.org/10.1093/BRAIN/122.11.2033>

951 Thome, I., Hohmann, D.M., Zimmermann, K.M., Smith, M.L., Kessler, R., Jansen, A., 2021. “I Spy
952 with my Little Eye, Something that is a Face...”: A Brain Network for Illusory Face Detection.
953 *Cereb. Cortex* 32, 137–157. <https://doi.org/10.1093/CERCOR/BHAB199>

954 Toga, A.W., Thompson, P.M., 2003. Mapping brain asymmetry. *Nat. Rev. Neurosci.* 2003 41 4, 37–
955 48. <https://doi.org/10.1038/nrn1009>

956 Tsao, D.Y., Moeller, S., Freiwald, W.A., 2008. Comparing face patch systems in macaques and
957 humans. *Proc. Natl. Acad. Sci.* 105, 19514–19519. <https://doi.org/10.1073/PNAS.0809662105>

958 Tzavaras, A., Merienne, L., Masure, M., 1973. Prosopagnosie, amnésie et troubles du langage par
959 lésion temporaire gauche chez un sujet Gaucher [Prosopagnosia, amnesia and language disorders
960 caused by left temporal lobe injury in a left-handed man]. *Encephale* 62, 382–94.

961 Weiner, K.S., Grill-Spector, K., 2012. The improbable simplicity of the fusiform face area. *Trends
962 Cogn. Sci.* 16, 251–254. <https://doi.org/10.1016/J.TICS.2012.03.003>

963 Wilke, M., Lidzba, K., 2007. LI-tool: A new toolbox to assess lateralization in functional MR-data. *J.
964 Neurosci. Methods* 163, 128–136. <https://doi.org/10.1016/j.jneumeth.2007.01.026>

965 Wilke, M., Schmithorst, V.J., 2006. A combined bootstrap/histogram analysis approach for computing
966 a lateralization index from neuroimaging data. *Neuroimage* 33, 522–530.
967 <https://doi.org/10.1016/j.neuroimage.2006.07.010>

968 Willems, R.M., der Haegen, L., Fisher, S.E., Francks, C., 2014. On the other hand: including left-
969 handers in cognitive neuroscience and neurogenetics. *Nat. Rev. Neurosci.* 15, 193–201.

970 <https://doi.org/10.1038/nrn3679>

971 Willems, R.M., Peelen, M. V, Hagoort, P., 2010. Cerebral lateralization of face-selective and body-
972 selective visual areas depends on handedness. *Cereb. Cortex* 20, 1719–1725.

973 <https://doi.org/10.1093/CERCOR/BHP234>

974 Yovel, G., Tambini, A., Brandman, T., 2008. The asymmetry of the fusiform face area is a stable
975 individual characteristic that underlies the left-visual-field superiority for faces.
976 *Neuropsychologia* 46, 3061–3068.

977 <https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2008.06.017>

978 Zell, E., Krizan, Z., Teeter, S.R., 2015. Evaluating gender similarities and differences using
979 metasynthesis. *Am. Psychol.* 70, 10–20. <https://doi.org/10.1037/A0038208>

980 Zimmermann, K.M., Stratil, A.S., Thome, I., Sommer, J., Jansen, A., 2019. Illusory face detection in
981 pure noise images: The role of interindividual variability in fMRI activation patterns. *PLoS One*
982 14. <https://doi.org/10.1371/journal.pone.0209310>

983