

1 **Extrachromosomal DNA is associated with decreased immune**
2 **cell infiltration and antigen presentation, represents a**
3 **potential cancer immune evasion mechanism**

4

5

6 Tao Wu^{1-3,*}, Chenxu Wu^{1-3,*}, Xiangyu Zhao¹, Guangshuai Wang¹, Wei Ning¹,
7 Ziyu Tao¹, Fuxiang Chen⁴, Xue-Song Liu¹

8

9 Affiliations of authors:

¹⁰ ¹ School of Life Science and Technology, ShanghaiTech University, Shanghai
¹¹ 201203, China;

¹² ² Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of
¹³ Sciences, Shanghai, China;

¹⁴ ³ University of Chinese Academy of Sciences, Beijing, China;

¹⁵ ⁴ Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao
¹⁶ Tong University School of Medicine, Shanghai, 200011, People's Republic of
¹⁷ China.

18 *These authors contributed equally to this work.

19

20 Correspondence: Xue-Song Liu, School of Life Science and Technology,
21 ShanghaiTech University, 230 Haik Road, Shanghai 201210, China. E-mail:
22 liuxs@shanghaitech.edu.cn.

23

24 **Short title:** ecDNA and cancer immune evasion.

25

26 **Key words:** ecDNA; extrachromosomal DNA; immunoediting; immune-escape;
27 antigen presentation gene expression; immunosurveillance; MHC I; MHC II;

28

29

30 **Abstract**

31 Extrachromosomal DNA (ecDNA) is a type of circular and tumor specific
32 genetic element. EcDNA has been reported to display open chromatin
33 structure, facilitate oncogene amplification and genetic material unequal
34 segregation, and is associated with poor cancer patients' prognosis. The ability
35 of immune evasion is a typical feature for cancer progression, however the
36 tumor intrinsic factors that determine immune evasion remain poorly
37 understood. Here we show that the presence of ecDNA is associated with
38 markers of tumor immune evasion, and obtaining ecDNA could be one of the
39 mechanisms employed by tumor cells to escape immune surveillance. Tumors
40 with ecDNA usually have comparable TMB and neoantigen load, however they
41 have lower immune cell infiltration and lower cytotoxic T cell activity. The
42 microenvironment of tumors with ecDNA shows increased immune desert,
43 decreased immune enriched fibrotic types. Both MHC class I and class II
44 antigen presentation genes' expression are decreased in tumors with ecDNA,
45 and this could be the underlying mechanism for ecDNA associated immune
46 evasion. This study provides evidence that the presence of ecDNA is an
47 immune escape mechanism for cancer cells.

48

49

50

51

52

53

54

55

56

57

58

59

60 **Introduction**

61 The immune system plays a crucial role in the protection and fight against
62 cancer cells^{1,2}. Immunoediting, which includes three temporally distinct stages,
63 termed elimination, equilibrium, and escape, has been proposed to explain the
64 interactions between cancer cells and the immune system during the evolution
65 of cancer³⁻⁵. The mechanisms responsible for the escape of tumor cells from
66 immunosurveillance are not fully understood. Potential tumor intrinsic immune
67 evasion mechanisms include: impaired antigen presentation machinery (such
68 as B2M mutation, decreased antigen presentation gene expression⁶⁻⁸),
69 overexpressed immune checkpoints or their ligands such as programmed
70 death-ligand 1 (PD-L1) on cancer cells⁹. In addition, secreting of immune
71 inhibitory cytokines, such as TGF- β , remarkably reshape the tumor immune
72 microenvironment^{10,11}.

73

74 Extrachromosomal DNA (ecDNA) is a type of tumor specific DNA element that
75 is circular and about 1–3 Mb in size. Since the 1960s, double minute
76 chromosomes have been observed in the metaphase spreads of human
77 cancer cells¹². Later these DNA elements without centrioles and telomeres are
78 found to be circular, a few Mb in size, and their size but not their number is
79 stable during the proliferation of cancer cells¹³. With the recent advance of
80 sequencing and bioinformatics techniques, ecDNA has been found to be
81 prevalent in various types of cancers, however ecDNA is rarely detected in
82 normal tissues, suggesting the presence of ecDNA is a specific feature for
83 some cancer cells¹⁴. EcDNA promotes accessible chromatin (open chromatin)
84 formation, facilitates oncogene amplification, drives genetic heterogeneity, and
85 is associated with poor prognosis in multiple types of cancer¹⁵⁻¹⁷.

86

87 Somatic DNA alterations are major determinants of cancer phenotypes,
88 including immune phenotypes. EcDNA formation is a type of somatic DNA
89 alteration. We hypothesize that ecDNA formation could be one mechanism for

90 cancer cells to evade immune surveillance.

91

92

93 **Results**

94 **EcDNA and tumor immune cell infiltration status**

95 For this study, we select cancer patient samples with both WGS and gene
96 expression data for analysis. The status of ecDNA in specific samples was
97 determined based on WGS data as previously described¹⁷. In total, 1684
98 samples with ecDNA status and gene expression information are available for
99 analysis (Supplementary Fig. S1).

100

101 First we investigate the correlation between the presence of ecDNA and tumor
102 immune infiltration status. The immune infiltration status was determined using
103 gene mRNA expression data. Multiple methods have been applied in the
104 quantification of tumor immune status, including TIMER, CIBERSORT, Xcell,
105 MCPcounter, Quantiseq and Estimate¹⁸⁻²³. With different methods, tumors with
106 ecDNA consistently show significantly decreased immune scores (Fig. 1a-c
107 and Supplementary Fig. S2). Importantly, the cytotoxic T cell (CD8⁺) levels and
108 cytotoxic scores are significantly decreased in tumors with ecDNA (Fig. 1d and
109 Supplementary Fig. S3). The composition of different immune cells was
110 calculated using gene expression data with multiple different methods,
111 including marker gene-based methods (Xcell and MCPcounter) or
112 deconvolution-based methods (Cibersort, Timer, and Quantiseq). Multiple
113 types of immune cells including B cell, NK cell and T cell show significantly
114 decreased composition in tumors with ecDNA in TCGA pan-cancer dataset as
115 a whole (Fig. 2a), or in separate cancer types, such as STAD (Stomach
116 adenocarcinoma), SKCM (Skin cutaneous melanoma), HNSC (Head and neck
117 squamous cell carcinoma) (Fig. 2b and Supplementary Fig. S3).

118

119 **EcDNA and tumor immune typing**

120 Tumor immune typing was performed according to two known studies^{24,25}.
121 Thorsson et al used consensus clustering based on scored immune
122 expression signatures to cluster cancer samples into six immune
123 subtypes—wound healing, IFN- γ dominant, inflammatory, lymphocyte
124 depleted, immunologically quiet, and TGF- β dominant²⁵. In tumors with ecDNA,
125 lymphocyte depleted type is up-regulated, while inflammatory and TGF- β
126 dominant types are down-regulated (Fig. 3a). Bagaev et al used unsupervised
127 dense Louvain clustering based on ssGSEA scores of 29 Fges (functional
128 gene expression signatures) of immune and stromal related genes to cluster
129 cancer samples into four distinct microenvironments: (1) immune-enriched,
130 fibrotic (IE/F); (2) immune-enriched, non-fibrotic (IE); (3) fibrotic (F); and (4)
131 immune-depleted (D)²⁴. In tumors with ecDNA, fibrotic immune-enriched type
132 of TME (IE/F) is dramatically decreased, while immune desert type TME (D) is
133 significantly up-regulated (Fig. 3b).

134

135 **EcDNA and tumor immune escape**

136 Expression of immune inhibitory immune checkpoint genes, such as PD-L1,
137 CTLA4 is significantly down-regulated in tumors with ecDNA (Fig. 4a and
138 Supplementary Fig. S4), suggesting the immune evasion of tumors with
139 ecDNA is not through stimulating immune checkpoint signaling. This also
140 implicates that immune checkpoint inhibitor therapy alone may not work in
141 tumors with ecDNA.

142

143 **Antigen presentation and ecDNA mediated immune escape**

144 Tumors with ecDNA show decreased immune cell infiltration, suggesting a
145 decrease of immunogenicity in ecDNA-containing tumor cells. The
146 immunogenicity of tumor cells determines the tumor associated immune
147 response, and the antigenicity encoded by neoantigenic mutations is an
148 important determinant of tumor immunogenicity²⁶. Tumors with ecDNA show
149 comparable TMB and neoantigen counts, suggesting a comparable

150 antigenicity (Fig. 4b and Supplementary Fig. S5). This implies that the
151 decreased immunogenicity of ecDNA-containing tumors was not caused by
152 impaired antigenicity.

153

154 Antigen presentation efficiency is another important determinant of tumor
155 immunogenicity²⁶. The function of MHC class I antigen presentation pathway is
156 to display peptide fragments of proteins from within the cell to cytotoxic T cells;
157 MHC Class II molecules are normally found only on professional
158 antigen-presenting cells such as dendritic cells, mononuclear phagocytes,
159 some endothelial cells, thymic epithelial cells, and B cells. The antigens
160 presented by class II peptides are derived from extracellular proteins.
161 Expression of antigen presentation related genes, including MHC I, MHC II
162 related genes, are compared between tumors with and without ecDNA (Fig. 5a
163 and Supplementary Fig. S6). In tumors with ecDNA significantly decreased
164 expression of MHC class I and class II genes are observed (Fig. 5a). Gene set
165 enrichment analysis indicates MHC class I and class II related genes are
166 significantly down-regulated in several cancer types (Fig. 5b). The impaired
167 expression of MHC I and II related antigen presentation genes could be the
168 mechanism underlying decreased immune infiltration in tumors with ecDNA.

169

170

171 **Discussion**

172 Here we provide evidence to show that the presence of ecDNA is associated
173 with decreased immune cell infiltration, decreased cytotoxic T cell
174 percentage/composition, decreased expression of both class I and class II
175 antigen presentation machinery genes. This analysis indicates that the
176 presence of ecDNA could be one of the mechanisms employed by tumor cells
177 to evade immune surveillance. EcDNA is preferentially detected in tumors, and
178 less frequently in cultured tumor cells²⁷. The immune selection pressure in
179 tumors could be the underlying mechanism for this observation.

180

181 This study is based on gene expression data derived from bulk tumor samples,
182 currently it is unclear if the gene expression differences happens in tumor cells
183 or in the microenvironment immune cells or stromal cells. Consistently
184 down-regulated antigen presentation related genes are observed in various
185 types of tumors with ecDNA, and the functional consequence of these gene
186 expression down-regulation in antigen presentation process need to be
187 examined using experimental assays.

188

189 Based on this study ecDNA could directly induce tumor immune escape
190 through down-regulating the expression of antigen presentation genes.
191 Currently there are no experimental evidences supporting the alternative
192 possibility that immunosuppressive microenvironment directly induces ecDNA
193 formation. Potential inducers for ecDNA formation include DNA repair defect
194 (like HRD), telomere shortening, cell cycle defects, and most of these ecDNA
195 inducers are cell-intrinsic defects.

196

197 The detailed molecular mechanism responsible for the decreased MHC class I
198 and II antigen presentation genes' expression, and immune evasion in
199 ecDNA-containing tumors is not clear. The ecDNA associated oncogene could
200 be a potential mechanism. The function of nuclear circular DNA on immune
201 response is unknown. Cytoplasmic DNA is known to stimulate immune
202 response through cGAS-STING pathway²⁸, and in tumors with ecDNA, this
203 pathway is not over-activated (Supplementary Fig. S7). EcDNA formation is a
204 type of genomic DNA copy number alteration, its detections with copy number
205 signature analysis could reveal potentially actionable biomarkers for cancer
206 precision therapy²⁹⁻³¹. Tumors with ecDNA are known to have poorer
207 prognosis compared with tumors without ecDNA¹⁷. Stimulating the antigen
208 presentation pathway could potentially revert the ecDNA-mediated immune
209 escape.

210

211

212 **Materials and Methods**

213 **Data Source**

214 EcDNA status information was determined using AmpliconArchitect from whole
215 genome sequencing (WGS) data as described previously¹⁷. Gene expression
216 data are available for the majority of the cancer genome atlas (TCGA) but not
217 pan-cancer analysis of whole genomes (PCAWG) datasets. For downstream
218 immune infiltration and gene expression analysis, we only keep TCGA
219 samples. Tumor immune cell infiltration information for TCGA samples was
220 downloaded from the TIMER webserver (<http://timer.comp-genomics.org/>),
221 including the results calculated by TIMER, CIBERSORT, quanTIseq, xCell,
222 and MCP-counter algorithms. Somatic mutation data detected by Mutect2 was
223 download from UCSC xena (GDC-PANCAN.mutect2_snv.tsv). The pan-cancer
224 gene-level RNA-Seq data of TCGA samples was downloaded from UCSC
225 xena, including counts and normalized transcripts per million (TPM) data.
226 Immune subtyping and tumor microenvironment (TME) information of TCGA
227 samples are based on reports of Thorsson et al and Bagaev et al study
228 respectively^{24,25}. The leukocyte fraction data of TCGA samples are based on
229 the results of Thorsson et al study²⁵. In the downstream analysis, we only
230 keep cancer types where the count of ecDNA samples was more than 20. All
231 methods were performed in accordance with the relevant guidelines and
232 regulations.

233

234 **Calculation of cancer immune scores**

235 In addition to immune cell infiltration quantification, we calculated a variety of
236 additional immune microenvironment quantitative scores. The
237 immunophenoscore (IPS) was used to measure the immune state of the
238 samples. IPS was based on the expression of major determinants, identified
239 by a random forest approach, and these factors were classified into four
240 categories: major histocompatibility complex (MHC) molecules, effector cells,
241 suppressor cells and checkpoint markers. We used R scripts and IPS genes
242 provided by the origin paper to calculate IPS scores³². ESTIMATE (Estimation
243 of STromal and Immune cells in MAlignant Tumor tissues using Expression
244 data) is a tool using gene signatures to generate three scores: stromal score,
245 immune score and estimate score, we used R package Estimate to calculate
246 the immune score²³. The cytolytic activity (CYT) score was a quantitative
247 means of assessing cytotoxic T cell infiltration and activity and was calculated

248 as the geometric mean of expression of *GZMA* and *PRF1* genes ³³. The tumor
249 inflammation signature (TIS) uses 18-gene signature to measure a pre-existing
250 but suppressed adaptive immune response within tumors. The TIS has been
251 shown to enrich for patients who respond to the anti-PD1 agent
252 pembrolizumab. TIS was calculated by gene set variation analysis (GSVA)
253 using the 18-gene signature mentioned by Danaher et al³⁴.

254

255 **Tumor mutational burden (TMB) and neoantigen burden**

256 TMB was defined as the number of non-synonymous alterations per
257 megabase (Mb) of genome examined. We used 38 Mb as the estimate of the
258 exome size: TMB = (whole exome missense mutations) / 38. Tumor
259 neoantigen are generated by somatic mutations, and can be recognized as
260 foreign by immune cells, conferring immunogenicity to cancer cells.
261 Neoantigen was predicted based on somatic mutation and human leukocyte
262 antigen (HLA) typing data. HLA typing data for TCGA cancer was obtained
263 from Thorsson et al study²⁵. Mutect2 mutation files were first transformed into
264 VCF format by maf2vcf tools, and we used NeoPredPipe to predict
265 neoantigen³⁵. We only evaluated single-nucleotide variants leading to a single
266 amino acid change, and novel peptides of nine amino acids were considered.
267 From the output results, if the IC50 of a novel peptide is less than 50nM, and
268 the TPM expression level is greater than 1, then this peptide is labeled as
269 neoantigen. A mutation was considered neoantigenic if there was at least a
270 single peptide produced from the mutated base that produce a neoantigen.
271 Neoantigen burden was calculated similarly as TMB: (Total counts of
272 neoantigens in the exome) / 38.

273

274 **Gene set enrichment analysis (GSEA)**

275 For each cancer type, we used Deseq2 to identify differentially expressed
276 genes between ecDNA and non-ecDNA samples³⁶. Then gene set enrichment
277 analysis was performed by using R package "fgsea". We downloaded gene list
278 gmt file for the following pathways from MSigDB database, including
279 "REACTOME_MHC_CLASS_II_ANTIGEN_PRESENTATION",
280 "REACTOME_CLASS_I_MHC_MEDIATED_ANTIGEN_PROCESSING_PRE
SENTATION",
282 "GOBP_ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_A
283 NTIGEN_VIA_MHC_CLASS_I", and
284 "GOBP_ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_O
285 R_POLYSACCHARIDE_ANTIGEN_VIA_MHC_CLASS_II". The GSEA p
286 values were corrected by FDR method, and was considered significant if less

287 than 0.05. For each cancer sample, we also calculated corresponding pathway
288 GSVA scores using R package “GSVA”³⁷.

289

290 **Statistical analysis**

291 All P values showed in boxplot were calculated by Wilcoxon tests using R. We
292 used the following convention for symbols indicating statistical significance: ns:
293 $P > 0.05$, *: $P \leq 0.05$, **: $P \leq 0.01$, ***: $P \leq 0.001$, ****: $P \leq 0.0001$. Immune subtype
294 enrichment analysis was conducted by chi-squared test. All statistical tests and
295 visualization analyses were performed with R.

296

297

298 **Data Availability Statement**

299 Only publicly available data were used in this study, and data sources and
300 handling of these data are described in the Materials and Methods and in
301 Supplementary Table 1-3. All codes required to reproduce the results reported
302 in this manuscript are freely available at:
303 https://github.com/XSLiuLab/ecDNA_immune. Analyses can be read online at:
304 https://xslulab.github.io/ecDNA_immune/. Further information is available
305 from the corresponding author upon request.

306

307 **Acknowledgements**

308 We thank ShanghaiTech University High Performance Computing Public
309 Service Platform for computing services. We thank Raymond Shuter for editing
310 the text. We thank multi-omics facility, molecular and cell biology core facility of
311 ShanghaiTech University for technical help. This work was supported by
312 Shanghai Science and Technology Commission (21ZR1442400), the National
313 Natural Science Foundation of China (31771373), and startup funding from
314 ShanghaiTech University.

315

316 **Contributions**

317 TW, CW, collected the data and performed the computational analysis. XZ,

318 GW, WN, ZT, FC participated in critical project discussion. XSL designed,
319 supervised the study and wrote the manuscript.

320

321 **Conflict of interest**

322 The authors declare no competing interests.

323

324

325 **References**

- 326 1 Finn, O. J. Immuno-oncology: understanding the function and dysfunction of the immune
327 system in cancer. *Annals of Oncology* **23**, 6-9 (2012).
- 328 2 Candeias, S. M. & Gaapl, U. S. The Immune System in Cancer Prevention, Development and
329 Therapy. *Anti-Cancer Agent Me* **16**, 101-107 (2016).
- 330 3 O'Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Cancer immunoediting and resistance to T
331 cell-based immunotherapy. *Nat Rev Clin Oncol* **16**, 151-167 (2019).
- 332 4 Kim, R., Emi, M. & Tanabe, K. Cancer immunoediting from immune surveillance to immune
333 escape. *Immunology* **121**, 1-14 (2007).
- 334 5 Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer Immunoediting: Integrating Immunity's Roles
335 in Cancer Suppression and Promotion. *Science* **331**, 1565-1570 (2011).
- 336 6 Vinay, D. S. *et al.* Immune evasion in cancer: Mechanistic basis and therapeutic strategies.
337 *Semin Cancer Biol* **35**, S185-S198 (2015).
- 338 7 Restifo, N. P. *et al.* Identification of Human Cancers Deficient in Antigen Processing. *J Exp Med*
339 **177**, 265-272 (1993).
- 340 8 Sade-Feldman, M. *et al.* Resistance to checkpoint blockade therapy through inactivation of
341 antigen presentation. *Nature Communications* **8** (2017).
- 342 9 Yi, M. *et al.* Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer
343 treatment. *Mol Cancer* **18** (2019).
- 344 10 Travis, M. A. & Sheppard, D. TGF-beta Activation and Function in Immunity. *Annu Rev
345 Immunol* **32**, 51-82 (2014).
- 346 11 Mariathasan, S. *et al.* TGF beta attenuates tumour response to PD-L1 blockade by
347 contributing to exclusion of T cells. *Nature* **554**, 544-+ (2018).
- 348 12 COX, D., YUNCKEN, C. & SPRIGGS, A. I. Minute chromatin bodies in malignant tumours of
349 childhood. *Lancet* **286**, 55-58, doi:10.1016/s0140-6736(65)90131-5 (1965).
- 350 13 Liao, Z. Y. *et al.* Classification of extrachromosomal circular DNA with a focus on the role of
351 extrachromosomal DNA (ecDNA) in tumor heterogeneity and progression. *Bba-Rev Cancer*
352 **1874** (2020).
- 353 14 Turner, K. M. *et al.* Extrachromosomal oncogene amplification drives tumour evolution and
354 genetic heterogeneity. *Nature* **543**, 122-125, doi:10.1038/nature21356 (2017).
- 355 15 deCarvalho, A. C. *et al.* Discordant inheritance of chromosomal and extrachromosomal DNA
356 elements contributes to dynamic disease evolution in glioblastoma. *Nature Genetics* **50**,
357 708-+ (2018).

358 16 Wu, S. H. *et al.* Circular ecDNA promotes accessible chromatin and high oncogene expression.
359 *Nature* **575**, 699-+ (2019).

360 17 Kim, H. *et al.* Extrachromosomal DNA is associated with oncogene amplification and poor
361 outcome across multiple cancers. *Nature Genetics* **52**, 891-+ (2020).

362 18 Li, T. W. *et al.* TIMER2.0 for analysis of tumor-infiltrating immune cells. *Nucleic Acids Research*
363 **48**, W509-W514 (2020).

364 19 Newman, A. M. *et al.* Robust enumeration of cell subsets from tissue expression profiles. *Nat
365 Methods* **12**, 453-+ (2015).

366 20 Aran, D., Hu, Z. C. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity
367 landscape. *Genome Biology* **18** (2017).

368 21 Becht, E. *et al.* Estimating the population abundance of tissue-infiltrating immune and
369 stromal cell populations using gene expression. *Genome Biology* **17** (2016).

370 22 Finotello, F. *et al.* Molecular and pharmacological modulators of the tumor immune
371 contexture revealed by deconvolution of RNA-seq data. *Genome Med* **11** (2019).

372 23 Yoshihara, K. *et al.* Inferring tumour purity and stromal and immune cell admixture from
373 expression data. *Nature Communications* **4** (2013).

374 24 Bagaev, A. *et al.* Conserved pan-cancer microenvironment subtypes predict response to
375 immunotherapy. *Cancer Cell* **39**, 845-+ (2021).

376 25 Thorsson, V. *et al.* The Immune Landscape of Cancer. *Immunity* **48**, 812-+ (2018).

377 26 Wang, S. X., He, Z. K., Wang, X., Li, H. M. & Liu, X. S. Antigen presentation and tumor
378 immunogenicity in cancer immunotherapy response prediction. *Elife* **8** (2019).

379 27 Tandon, I., Pal, R., Pal, J. K. & Sharma, N. K. Extrachromosomal circular DNAs: an extra piece
380 of evidence to depict tumor heterogeneity. *Future Sci OA* **5**, doi:10.2144/fsoa-2019-0024
381 (2019).

382 28 Chen, Q., Sun, L. J. & Chen, Z. J. J. Regulation and function of the cGAS-STING pathway of
383 cytosolic DNA sensing. *Nat Immunol* **17**, 1142-1149 (2016).

384 29 Wang, S. X. *et al.* Copy number signature analysis tool and its application in prostate cancer
385 reveals distinct mutational processes and clinical outcomes. *Plos Genet* **17**, doi:ARTN
386 e1009557
387 10.1371/journal.pgen.1009557 (2021).

388 30 Wang, S. X., Tao, Z. Y., Wu, T. & Liu, X. S. Sigflow: an automated and comprehensive pipeline
389 for cancer genome mutational signature analysis. *Bioinformatics* **37**, 1590-1592 (2021).

390 31 Wang S. X. Y., Zhao L, Gu K, Li Y, Zhao F, Li J, Wang M, Wang H, Tao Z, Wu T, Zheng Y, Li X, Liu XS.
391 UCSCXenaShiny: An R/CRAN Package for Interactive Analysis of UCSC Xena Data.
392 *Bioinformatics*, doi:10.1093/bioinformatics/btab561 (2021).

393 32 Charoentong, P. *et al.* Pan-cancer Immunogenomic Analyses Reveal
394 Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint
395 Blockade. *Cell Rep* **18**, 248-262 (2017).

396 33 Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and Genetic
397 Properties of Tumors Associated with Local Immune Cytolytic Activity. *Cell* **160**, 48-61 (2015).

398 34 Danaher, P. *et al.* Pan-cancer adaptive immune resistance as defined by the Tumor
399 Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA). *J Immunother
400 Cancer* **6** (2018).

401 35 Schenck, R. O., Lakatos, E., Gatenbee, C., Graham, T. A. & Anderson, A. R. A. NeoPredPipe:

402 high-throughput neoantigen prediction and recognition potential pipeline. *Bmc*
403 *Bioinformatics* **20** (2019).

404 36 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
405 RNA-seq data with DESeq2. *Genome Biology* **15** (2014).

406 37 Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and
407 RNA-Seq data. *Bmc Bioinformatics* **14** (2013).

408

409

410

411

412

413 **Figure legends**

414 **Figure 1. ecDNA and tumor immune infiltration scores. a-d** Comparisons
415 of immune infiltration scores quantified by different methods between tumors
416 with and without ecDNA. **a** Estimate ImmuneScore; **b** XCELL Immune score; **c**
417 Leukocyte fraction, **d** MCPCounter cytotoxicity score. Wilcoxon test p values
418 are shown.

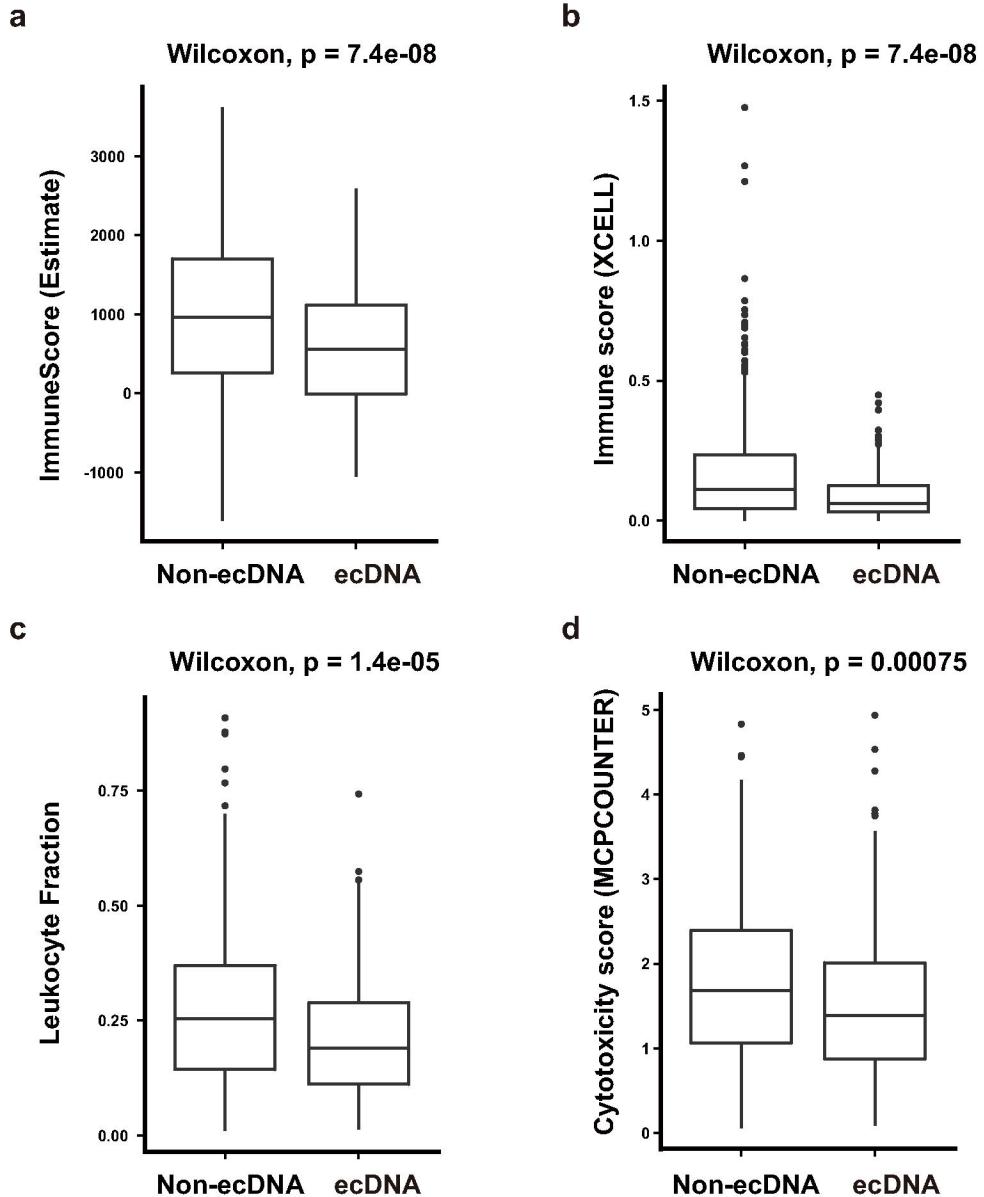
419

420 **Figure 2. ecDNA and the infiltration of different types of immune cells. a**
421 Comparisons of the compositions of different types of immune cells between
422 tumors with ecDNA and without ecDNA. The immune cell compositions have
423 been quantified by five different methods, including Cibersort, Xcell, Timer,
424 MCPcounter and Quantiseq. Wilcoxon test p values are shown. ns: $P>0.05$, *:
425 $P\leq 0.05$, **: $P\leq 0.01$, ***: $P\leq 0.001$, ****: $P\leq 0.0001$. **b** Comparison of immune cell
426 infiltration levels quantified by five different methods between ecDNA and
427 non-ecDNA samples in different cancer types. Heatmap color indicates ratio of
428 the median infiltration level for specific immune cell and specific cancer type
429 between ecDNA and non-ecDNA samples. TCGA cancer type acronyms:
430 STAD (stomach adenocarcinoma), SKCM (skin cutaneous melanoma), HNSC
431 (head and neck squamous cell carcinoma), LUAD (lung adenocarcinoma),
432 BLCA (bladder urothelial carcinoma), BRCA (breast invasive carcinoma),

433 ESCA (esophageal carcinoma).

434

435 **Figure 3. ecDNA and tumor immune typing. a** TME classification in tumors
436 with and without ecDNA according to Thorsson et al method. Chi-squared test
437 p value is shown. C1: wound healing; C2: IFN- γ dominant; C3: inflammatory;
438 C4: lymphocyte depleted; C5: immunologically quiet; C6: TGF- β dominant. **b**
439 Immune type classification in tumors with ecDNA and without ecDNA
440 according to Bagaev et al method. Chi-squared test p value is shown. D:
441 immune-depleted; F: fibrotic; IE: immune-enriched, non-fibrotic; IE/F:
442 immune-enriched, fibrotic.


443

444 **Figure 4. ecDNA and expression of inhibitory immune checkpoint genes**
445 **and TMB. a** Expression of inhibitory immune checkpoint genes in tumors with
446 ecDNA and without ecDNA. Wilcoxon test P values are shown. **b** Tumor
447 mutation burden (TMB) difference in different types of tumors with and without
448 ecDNA. Wilcoxon test p values are shown. ns: $P>0.05$, *: $P\leq0.05$, **: $P\leq0.01$,
449 ***: $P\leq0.001$, ****: $P\leq0.0001$. TCGA cancer type acronyms: STAD (stomach
450 adenocarcinoma), SKCM (skin cutaneous melanoma), HNSC (head and neck
451 squamous cell carcinoma), LUAD (lung adenocarcinoma), BLCA (bladder
452 urothelial carcinoma), BRCA (breast invasive carcinoma), ESCA (esophageal
453 carcinoma), GBM (glioblastoma multiforme).

454

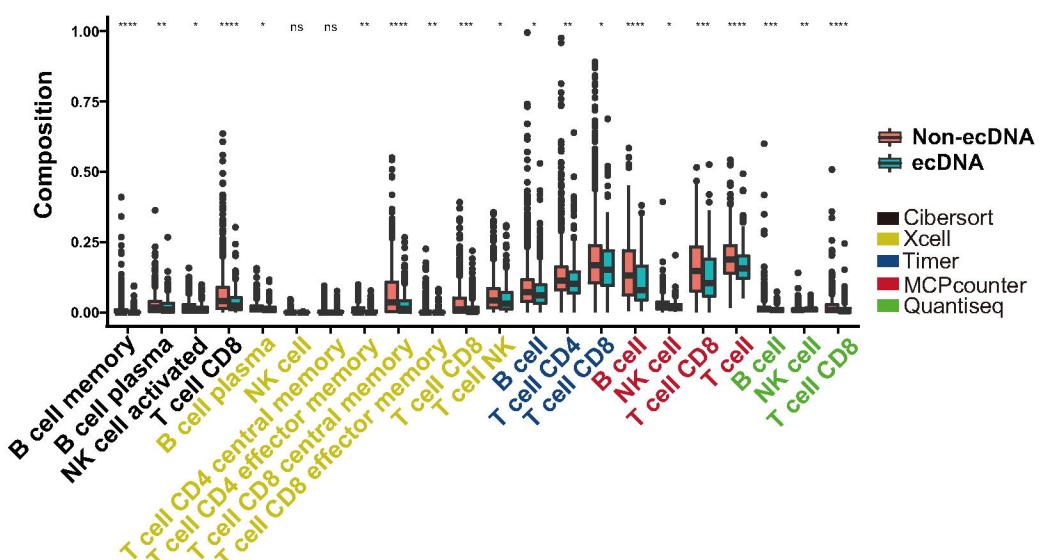

455 **Figure 5. ecDNA and antigen presentation genes' expression. a** mRNA
456 expression of MHC class I and class II antigen presentation related genes in
457 tumors with and without ecDNA. Wilcoxon test p values are shown. **b** GSVA
458 scores of MHC class I or class II antigen presentation genes in tumors with
459 and without ecDNA. Wilcoxon test P values are shown. ns: $P>0.05$, *: $P\leq0.05$,
460 **: $P\leq0.01$, ***: $P\leq0.001$, ****: $P\leq0.0001$.

Figure1

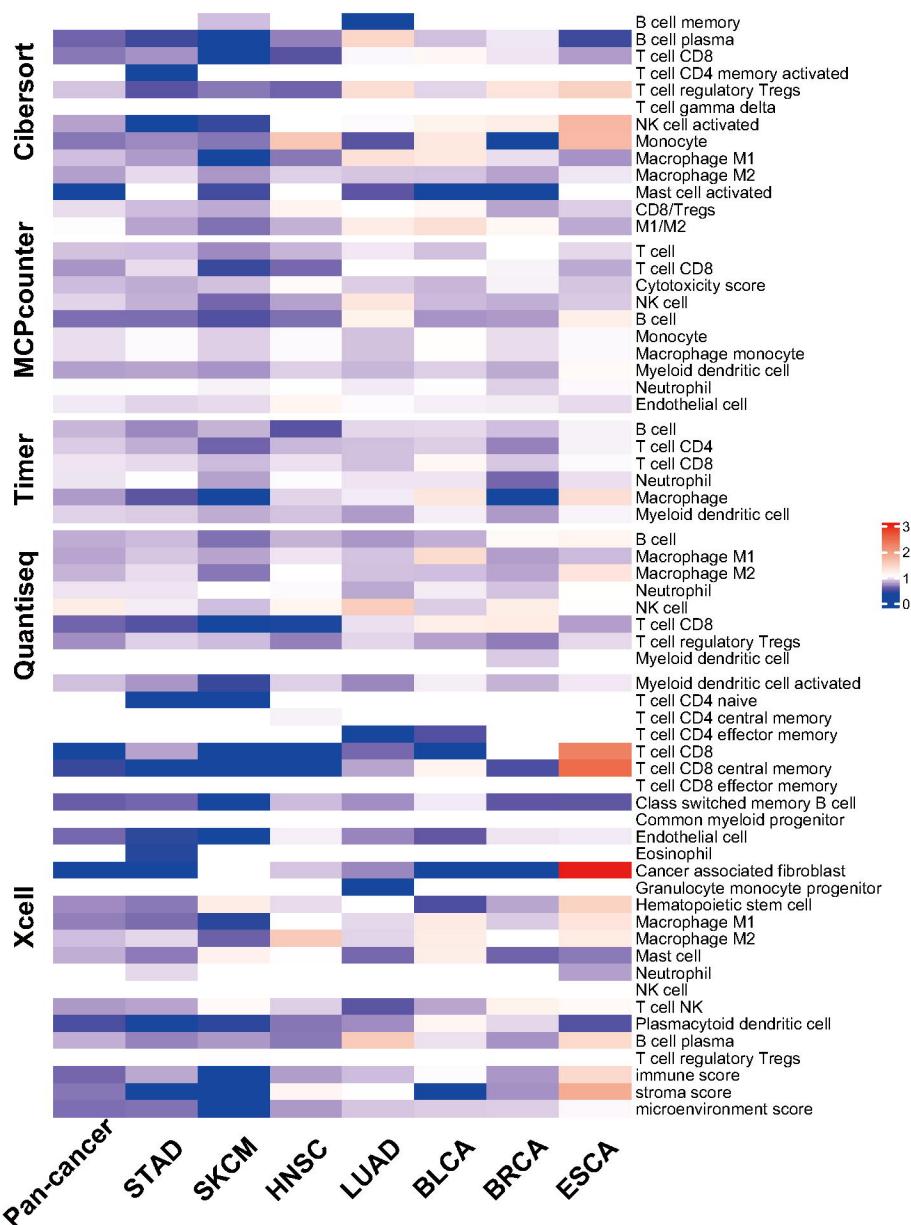
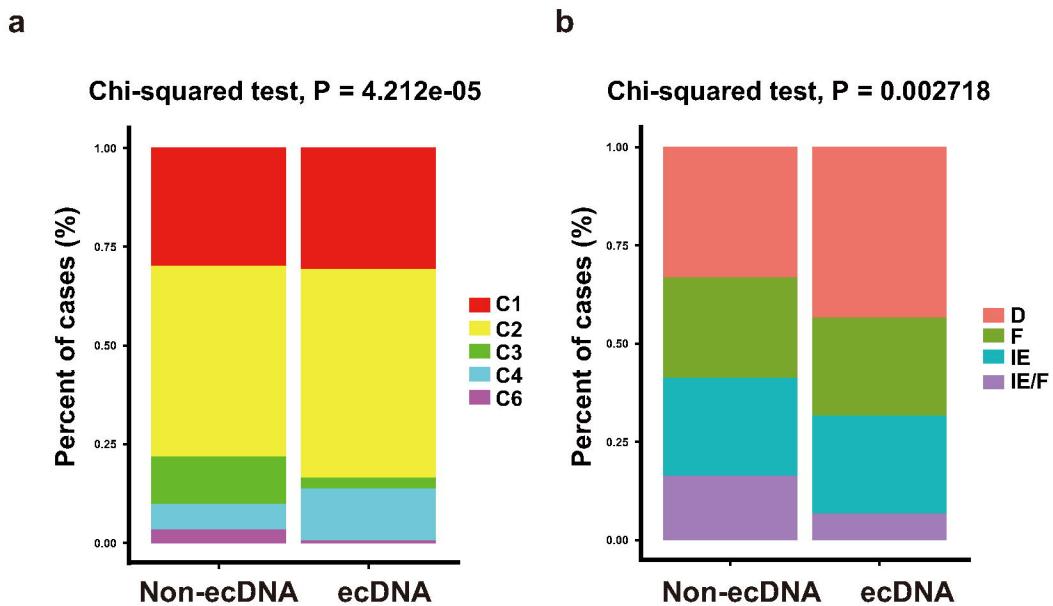


Figure2


a

b

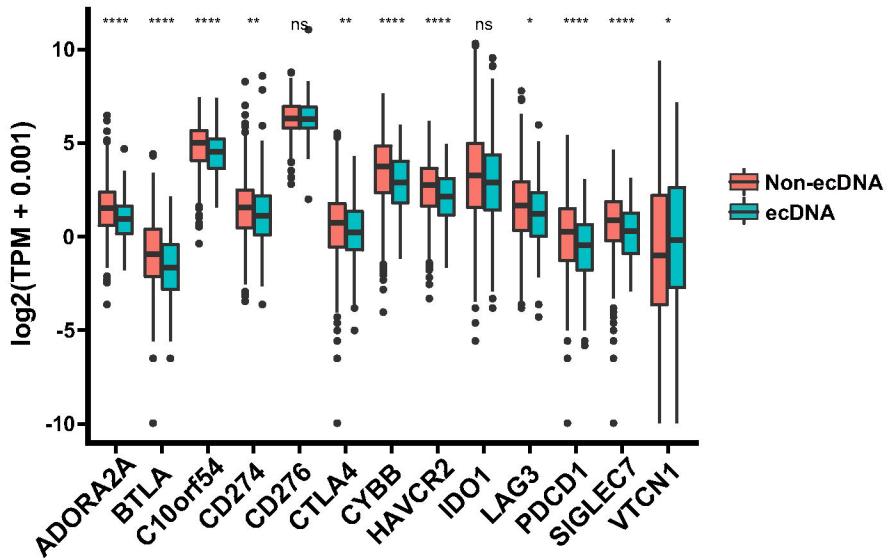


Figure3

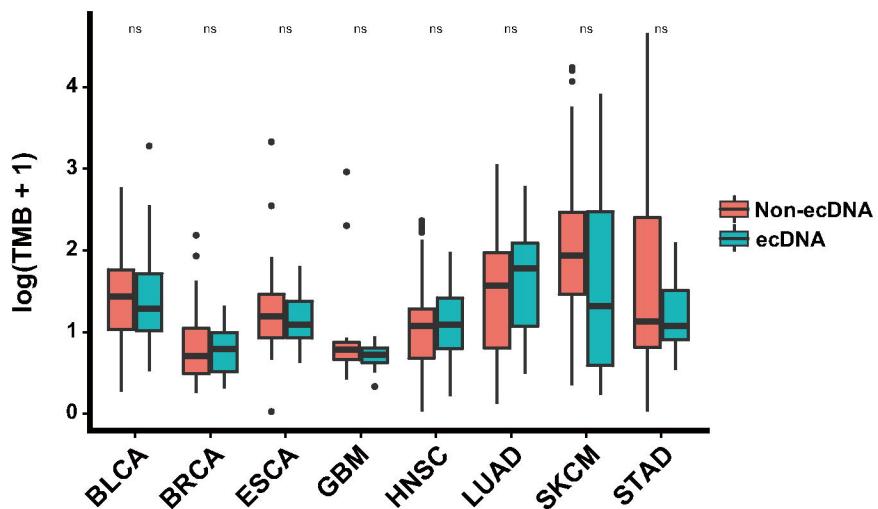
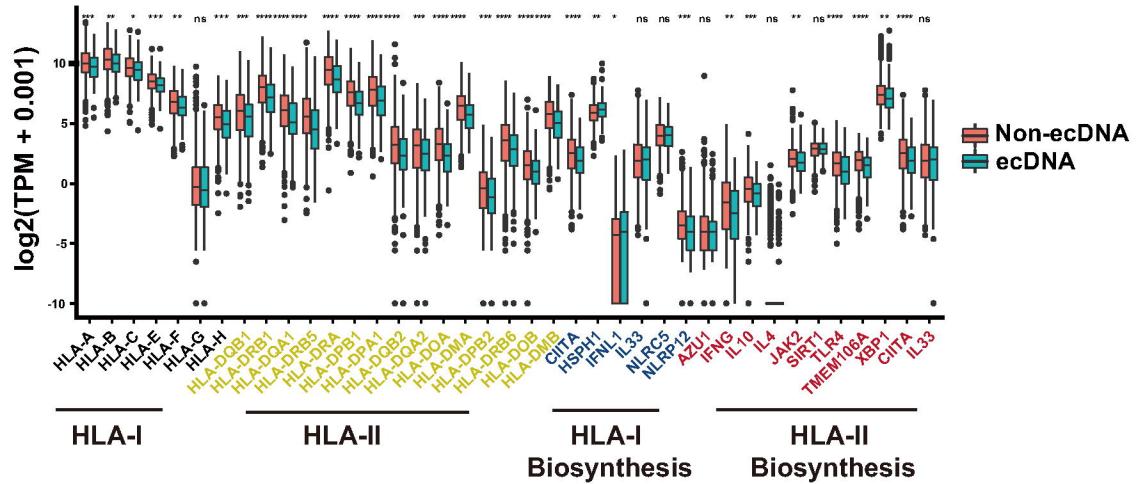


Figure4

a



b

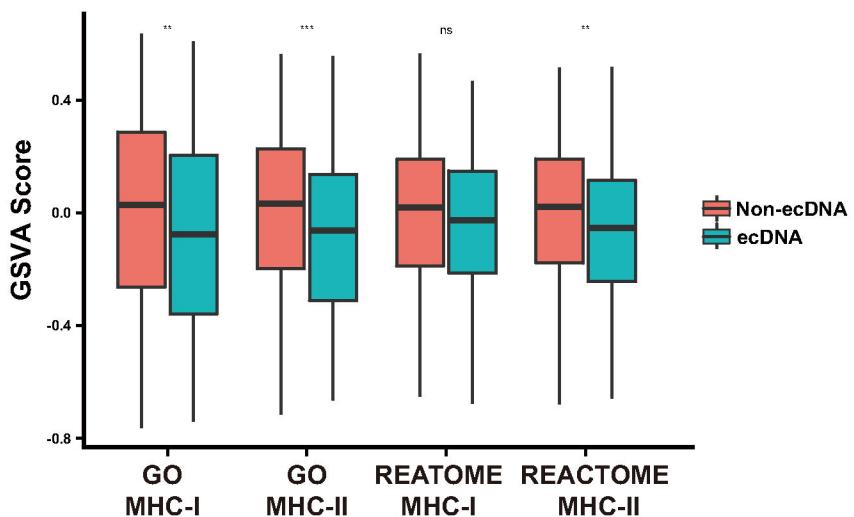


Figure5

a

b

