

1 **Title**

2 Predictability and transferability of local biodiversity environment relationships

3

4 **Authors:**

5 Martin Jung¹

6 1 Biodiversity, Ecology and Conservation Research group, International Institute for Applied
7 Systems Analysis (IIASA) - Schlossplatz 1 - A-2361 Laxenburg, Austria jung@iiasa.ac.at

8

9 **Abstract**

10

11 Biodiversity varies in space and time, and often in response to environmental heterogeneity.
12 Indicators in the form of local biodiversity measures – such as species richness or abundance
13 – are common tools to capture this variation. The rise of readily available remote sensing data
14 has enabled the characterization of environmental heterogeneity in a globally robust and
15 replicable manner. Based on the assumption that differences in biodiversity measures are
16 generally related to differences in environmental heterogeneity, these data have enabled
17 projections and extrapolations of biodiversity in space and time. However so far little work has
18 been done on quantitatively evaluating if and how accurately local biodiversity measures can
19 be predicted. Here I combine estimates of biodiversity measures from local biodiversity
20 surveys with remotely-sensed data on environmental heterogeneity globally. I then determine
21 through a cross-validation framework how accurately local biodiversity measures can be
22 predicted within (“predictability”) and across similar (“transferability”)biodiversity surveys. I
23 found that prediction errors can be substantial, with error magnitudes varying between different
24 biodiversity measures, taxonomic groups, sampling techniques and types of environmental
25 heterogeneity characterizations. And although errors associated with model predictability were
26 in many cases relatively low, these results question - particular for transferability - our
27 capability to accurately predict and project local biodiversity measures based on environmental
28 heterogeneity. I make the case that future predictions should be evaluated based on their
29 accuracy and inherent uncertainty, and ecological theories be tested against whether we are
30 able to make accurate predictions from local biodiversity data.

31

32 **Keywords:** Spectral-diversity, biodiversity-productivity, transferability, PREDICTS, remote-
33 sensing, extrapolation, prediction uncertainty

34

35

36 **Introduction**

37

38 Local biodiversity is known to vary with environmental heterogeneity (Hillebrand, 2004; Holt
39 et al., 2017; Stein and Kreft, 2015), often quantified as difference in availability and variability
40 of resources. These resources include the diversity of habitats and landscapes, or the
41 availability and structural complexity of vegetation or rocks (Stein and Kreft, 2015). Several
42 theories have been postulated as possible source of the relationship with local biodiversity.
43 These include, among others, the widely tested species-energy (Duncan et al., 2015; Evans et
44 al., 2005; Hurlbert, 2004), the species spectral-heterogeneity (Oldeland et al., 2010; Rocchini
45 et al., 2010) or the species-geodiversity hypotheses (Alahuhta et al., 2020; Theobald et al.,
46 2015). However, despite a number of global meta-analyses on the relationship between
47 environmental heterogeneity and local biodiversity (Duncan et al., 2015; Stein et al., 2014), it
48 has rarely been comprehensively investigated how predictable and transferable these
49 relationships are, especially across taxonomic and functional groups and different biodiversity
50 measures.

51 Predictions made by statistical models are key for our understanding of the living world
52 and for the creation of outputs relevant for conservation management (Houlihan et al., 2017;
53 Miller et al., 2004). Because of the evermore increasing demand for scenarios and spatial maps
54 by policy makers and land managers, biodiversity modellers often need to rely on inter- and
55 extrapolations of model predictions across space and time (Miller et al., 2004). These
56 predictions need to be precise and accurate enough for the context and decisions they are meant
57 to inform (Santini et al., 2021). Thus model predictions should be investigated for their
58 predictability, e.g. a model's ability to accurately predict correlative relationships within the
59 same spatial and/or temporal context, and transferability, e.g. the capacity to produce accurate
60 predictions for conditions dissimilar to those of the data for which a model was trained (Petchey
61 et al., 2015; Tredennick et al., 2021; Yates et al., 2018). And yet, model predictability and
62 transferability is rarely consistently assessed and, when studied in more detail, results rarely
63 look promising.

64 There is increasing evidence that models using variables of environmental
65 heterogeneity often fail to accurately predict and transfer biodiversity environment
66 relationships. Studies have found that the predictability of local biodiversity as function of a
67 difference in environmental heterogeneity are highly variable between geographic regions
68 (Phillips et al., 2017) and local contexts (Duncan et al., 2015; Jung et al., 2017). Similarly,
69 transferability of model predictions to spatial or temporally distinct regions has long been
70 recognized as key issue for species distribution models (Mesgaran et al., 2014; Regos et al.,
71 2019; Zurell et al., 2012) or models using local and regional biodiversity measures (Parmentier
72 et al., 2011; Schmidlein and Fassnacht, 2017). Despite the development of techniques for
73 assessing the novel parameter space of a model (Meyer and Pebesma, 2021; Zurell et al., 2012),
74 the limited uptake of modellers to evaluate and honestly present model uncertainty can hinder
75 the application and affect trust in biodiversity model predictions (Rapacciulo, 2019).

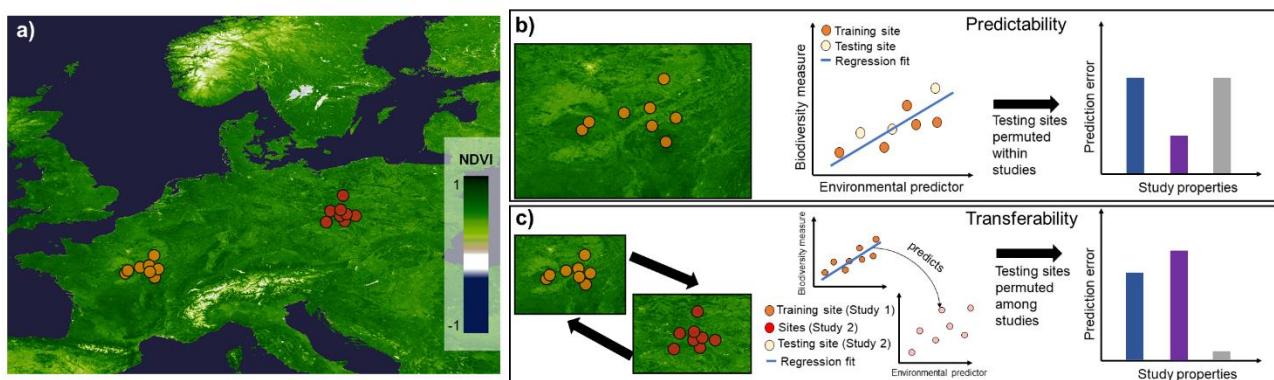
76 An outstanding issue for assessing predictability and transferability of local biodiversity
77 environment relationships in macroecological studies has been the various ways in which

78 environmental heterogeneity is quantified (Stein and Kreft, 2015). Recent advances in remote
79 sensing and cloud-processing have enabled the robust quantification of environmental
80 heterogeneity at high spatial and temporal resolution (Gorelick et al., 2017; Randin et al., 2020).
81 Through repeated satellite observations, measures of environmental heterogeneity, such as
82 differences in photosynthetic activity or spectral variability as proxies for vegetation
83 productivity, habitat condition and structure (Radeloff et al., 2019; Rocchini et al., 2010), can
84 be robustly quantified. Subsequently, these measures have been incorporated in statistical
85 models for the prediction of species distributions (Cord et al., 2013; He et al., 2015) or to infer
86 differences in local biodiversity measures (Goetz et al., 2014; Jung et al., 2020, 2019a;
87 Oldeland et al., 2010; Rocchini et al., 2015). Remote sensing data can therefore – opposed to
88 study-specific predictor variables commonly included in ecological meta-analysis – serve as
89 globally consistent predictor for studies of biodiversity environment relationships (Duncan et
90 al., 2015). With the availability of new global databases on local biodiversity in-situ
91 observations (Hudson et al., 2017), it has become possible to investigate predictability and
92 transferability of biodiversity environment relationships in greater detail than what has been
93 done so far.

94 There are a number of shortcomings in previous analyses on the predictability and
95 transferability of local biodiversity environment relationships. Most studies have (a) focussed
96 on effect sizes among studies (e.g. strength of inference), rather than the predictability and
97 transferability of this relationships (Tredennick et al., 2021), (b) tended to focus mostly on
98 species richness (Stein et al., 2014), thus ignoring other biodiversity measures such as
99 abundance or differences in species assemblage composition, (c) used variables of varying
100 origin to capture effects of changes in environmental heterogeneity on biodiversity
101 (Shackelford et al., 2017; Supp and Ernest, 2014) or have (d) focussed only on regional extents
102 and single taxonomic groups such as birds, butterflies or plants (Goetz et al., 2014; Kerr et al.,
103 2001; Oldeland et al., 2010; Schmidlein and Fassnacht, 2017). Quantitatively addressing these
104 issues is key, if we are to understand in which cases spatial and/or temporal predictions of local
105 biodiversity measures are reliable and accurate.

106 In this study I investigate the predictability and transferability of model-based
107 predictions on local biodiversity environment relationships. The expectation is that (i)
108 predictability is generally stronger than transferability, (ii) transferability of species-
109 environment relationships affects some biodiversity measures and taxonomic groups are less
110 transferable than others, and that (iii) unexplained variation is predominantly linked to
111 differences in study design, e.g. spatial scale and sampling duration. To test this, I combine
112 local biodiversity data from globally distributed surveys with remotely-sensed environmental
113 predictors quantifying photosynthetic activity (Duncan et al., 2015; Evans et al., 2005; Stein et
114 al., 2014) and spectral variability (Rocchini et al., 2010). Using variations of linear models, I
115 assess the predictability, quantified as overall and within-study reduction in prediction error,
116 and transferability, quantified as reduction in prediction error between different studies of
117 comparable study design (Figure 1). I expect that the results of this work provide further
118 insights into the generality of local biodiversity-environment relationships at a global scale,
119 which hopefully stimulates a debate on whether predicted local biodiversity measures, such as
120 abundance or richness, can accurately be predicted or transferred to unsampled regions.

121



122

123 **Figure 1:** (a) Distribution of two hypothetical studies (coloured in orange and red) and their sites at which a biodiversity
124 measure and environmental predictor has been calculated. The Normalized Difference Vegetation Index (NDVI) is shown as
125 example of a remotely sensed environmental predictor. Shown is a simplified procedure for investigating the (b) predictability
126 and (c) transferability of local biodiversity-environment relationships. For (b) ‘testing’ sites within a studies are removed at
127 random, regressions refitted and the within-study prediction error quantified in relation to study properties. Contrastingly, in
128 (c) regression fits from one study (orange) are used to predict permuted biodiversity estimates in another study (red) that have
129 been removed (beige), with the prediction error quantified in relation to study properties.

130

131 Methods

132 Biodiversity data preparation

133 For data on biodiversity I took species assemblage data from the global **Projecting Responses**
134 of **Ecological Diversity In Changing Terrestrial Systems** (PREDICTS) database (Hudson et
135 al., 2017), which contains records of species occurrence and abundance at spatial-explicit sites
136 ‘sites’ as reported in published ‘studies’. PREDICTS includes only studies which differ in
137 ‘land-use’ and/or ‘land-use intensity’ and have spatial and temporal information associated
138 with them, e.g. sampling extent and date of sampling (Hudson et al., 2014). Studies in the
139 PREDICTS database vary widely in study properties, notably in taxonomic coverage (e.g.
140 invertebrates, plants, birds,...), spatial grain (0.05 – 39,150m, median = 60m), sampling start
141 (1984 - 2013), sampling effort (>0 – 4,382 days, median = 91 days) and methodology (flight
142 traps, transects,...). Owing to these differences, a hierarchical modelling framework is usually
143 necessary when analysing biodiversity estimates from databases such as PREDICTS (Purvis et
144 al., 2018).

145 For each study j and site i in the PREDICTS database, I calculated four different site-
146 based measures of local biodiversity: total Species richness (S_i), total log-transformed
147 abundance ($\log_{10} A_i$), the arcsine square root transformed probability of interspecific
148 encounter as measure of assemblage evenness ($\sin^{-1} \sqrt{PIE_i}$) and the logit transformed pairwise
149 Sørensen similarity index as measure of difference in assemblage composition (logit SIM_{i-i_n}).
150 Similar to previous studies I assumed that, in the few cases where within-study study effort
151 differs among sites, the abundance of species individuals increases linearly with sampling
152 effort (Newbold et al., 2015). In cases where the sampling extent of a site is missing in the
153 PREDICTS database, I approximated the mean sampling extent using a heuristic that fills
154 missing estimates with the average used within studies of the same sampling method and/or
155 taxonomic group. Earlier work has shown that this approximation can accurately fill missing
156 sampling extents (Jung et al., 2019a). Lastly, I created, based on the taxonomic group and

157 sampling method attributed to a study in the PREDICTS databased, a new factor variable that
158 groups studies of comparable method, unit and broad taxonomic grouping (SI Table 1), such
159 as for instance studies involving bird individuals that were counted using point counts. I realize
160 that not all differences in sampling techniques can attributed to this new contrast between sites
161 and therefore post-hoc analyse the contribution of differing sampling methods in explaining
162 the cross-validated model error (see statistical analysis).

163 **Environmental predictors**

164 In this work I exclusively used remotely-sensed environmental predictors, which – opposed to
165 commonly-used study-specific differences – (1) have medium to high spatial resolution, (2) are
166 consistently quantified at global extent in comparable units, (3) are temporally explicit, often
167 differing between years, (4) correlate with differences in local biodiversity (Duncan et al.,
168 2015; Jung et al., 2019a) and land use (Mueller et al., 2014; Yin et al., 2014).

169 For each site in the PREDICTS databases, I calculated two different remotely sensed
170 predictors that reflect environmental heterogeneity. First, 16-day time series of atmospherically
171 corrected spectral observations (MCD43A v006, [Schaaf et al. 2002]) from the Moderate
172 Resolution Imaging Spectroradiometer (MODIS) sensor on board the Terra and Aqua satellites
173 were downloaded for each PREDICTS site from Google Earth Engine (Gorelick et al., 2017).
174 Time series of remotely sensed spectral observations often have data gaps caused by clouds or
175 sensor errors. To reduce the number of data gaps, I first aggregated (arithmetic mean) the
176 obtained time series to monthly estimates for each spectral observation (band 1 to 7). The
177 overall proportion of missing data in the aggregated time series was low (mean: $5.9\% \pm 10.5$
178 SD), nevertheless I subjected the aggregated time series to a missing value imputation using a
179 Kalman smoother on the whole time series (Hyndman and Khandakar, 2008) as implemented
180 in the ‘*imputeTS*’ R package (Moritz and Bartz-Beielstein, 2017). Whenever the imputation
181 did not converge, a linear interpolation was used to impute missing observations among years.
182 Only data gaps smaller than five months were filled in that manner and sites with six or more
183 missing months were excluded from subsequent analyses. From the full time series, I then
184 selected for each site the first year (12 months) of data preceding biodiversity sampling as
185 representation of environmental heterogeneity (Jung et al., 2019a).

186 Second, I calculated from the remaining time series of spectral observations, as proxy
187 of overall photosynthetic activity, the arithmetic mean of the two-band Enhanced Vegetation
188 Index (EVI, Jiang et al. 2008). Variations in photosynthetic activity have previously been
189 shown to reflect continuous gradients in land cover (Huete et al., 2002; Radeloff et al., 2019)
190 and directly influence local biodiversity measures and life history (Jung et al., 2019a, 2019b;
191 Oldeland et al., 2010; Pettorelli et al., 2005). Furthermore, I also calculated a measure of overall
192 spectral heterogeneity from the spectral data (Randin et al., 2020; Rocchini et al., 2015, 2010).
193 Spectral heterogeneity is expected to give a more nuanced view on habitat structure and
194 condition than any single vegetation index. To capture spectral heterogeneity, I first calculated
195 a principal component analysis of all spectral observations (bands 1-7) and then calculated
196 from the first two axes, which on average explained $93\% \pm 5.92$ SD of all variation, the centroid
197 of the resulting bivariate scatter plot. Spectral heterogeneity per site was then summarized as
198 the mean Euclidean distance to this centroid. Both environmental predictors, photosynthetic
199 activity and spectral heterogeneity are only weakly correlated (Pearson’s $r = -0.21$, SI Figure
200 1). In total 21821 sites had suitable remote sensing data for subsequent analyses, with the

201 remainder (4028 sites) being sampled either too long ago for sufficient remote sensing coverage
202 from MODIS (2000 onwards) or having too many data gaps.

203 **Statistical analysis**

204 In the context of this work, ‘predictability’ is defined as the ability to accurately infer a
205 biodiversity measure y_{ij} based on the environmental covariates x_{ij} among the sites i of a
206 PREDICTS study j (Figure 1b), and ‘transferability’ as the ability to accurately predict y_i based
207 on the environmental covariates x_i across studies of the same sampling methodology and
208 taxonomic group (Figure 1c).

209 In both predictability and transferability variants prediction accuracy is assessed by
210 calculating for each study the symmetric mean absolute percentage error ($sMAPE_j =$
211 $\frac{100}{n} \sum_{i=1}^I \left| \frac{y_{predicted} - y_{observed}}{(|y_{observed}| + |y_{predicted}|)} \right|$) between the observed biodiversity measures ($y_{observed}$) and
212 the ones predicted by the model ($y_{predicted}$) for a given site i . The $sMAPE$ quantifies the
213 percentage error in a model prediction and is bounded between 0 and 100%. Alternative metrics
214 to quantify prediction precision and accuracy exists, however in this case the $sMAPE$ is
215 preferable for PREDICTS style data owing to its simplicity and inter-comparability between
216 studies that use biodiversity measures of different units and value ranges.

217 I constructed separate models for each study j and biodiversity measure y in site i , by assuming
218 that $y_i = \alpha_i + \beta_i x_i + \epsilon$, where α is the study specific intercept, β a slope coefficient, x the
219 environmental predictor and ϵ an error term. Models of S_i were assumed to have Poisson
220 distributed errors and a log-link function ($\log y$), while models of A_i , PIE_i and SIM_{i-i_n} were
221 assumed to have Gaussian distributed errors. Pairwise similarities in species composition
222 (Sorensen Index) were related to differences in environmental predictors x in addition to
223 pairwise distance between sites, calculated as $\log_{10}(x + 0.05 \text{ km})$ from great circle distances
224 between sites. Here I calculated pairwise absolute difference in mean photosynthetic activity
225 or between spectral centroids of each site (see environmental predictors). For each constructed
226 full model I furthermore calculate an R^2 measure as indication of overall variance explained.

227 To evaluate the predictability and transferability of local biodiversity environment
228 relationships, I constructed in total ten permutation sets, in each of which sites were split into
229 testing (33%) and training (66%) datasets. For evaluating predictability, I removed one third
230 of sites (33%) at random (Figure 1b), but weighted them by the mean distance to the study
231 centroid, therefore placing extra weight on sites that are less likely to be in close proximity
232 (Roberts et al., 2017). For transferability, instead of individual sites, I sampled and removed
233 33% of entire studies and their sites from each set of comparable methodology in the
234 PREDICTS database (Figure 1c, methods above). However across all ten permutation sets, I
235 iteratively weighted (0-1) this sampling by whether a given study has been sampled before,
236 therefore ensuring that each study is part of both testing and training dataset at least once.

237 For each respective permutation set, predictability and transferability was then
238 evaluated by using the remaining training data to estimate the regression specified above for
239 each study or group of comparable methodology. I excluded combinations of taxonomic groups,
240 sampling method and sampling unit for which fewer than 2 studies were available. In total
241 77.3% of all studies had a matching study of comparable methodology and unit for the same

242 taxonomic group. A table with all recategorized combinations (43) can be found in the
243 supplementary materials (SI Table 1). Using the fitted models I predicted y for the excluded
244 'hold-out' 33% sites and then calculated the average sMAPE for each study in the permutation
245 sets.

246 Lastly, I explored possible correlates of why sMAPE for some studies is larger than for others
247 for each of the four considered biodiversity measures. I considered a series of variables
248 commonly related to differences in sampling design, species and individual detectability and
249 errors in remotely-sensed environmental predictors. Specifically, I calculated for each study in
250 the permutation sets, the median sampling extent (m) as measure of sample grain, the median
251 sampling duration (days) of the study, the number of sites with a study as measure of effort for
252 the whole study, the average number of samples across sites as effort for area-based sampling
253 effort or the average time sampled (hours) for time-based sampling effort, average accessibility
254 to sites in the study (distance to nearest city in meters) from Weiss et al. (2018), and finally
255 factors related to possible errors in remotely-sensed environmental variables, including the
256 amount of missing data (before gap filling) and the average topographic ruggedness per study
257 using data from Amatulli et al. (2018). To make comparisons across these different units and
258 scales, I standardized all variables before model fitting by subtracting the mean and dividing
259 by one standard deviation.

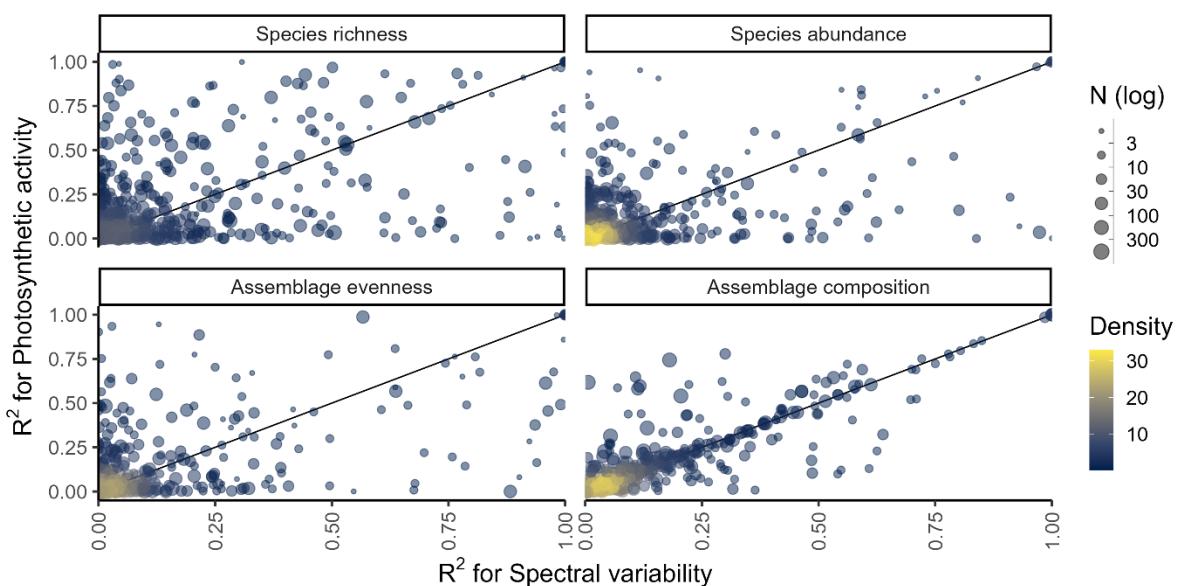
260 I fitted linear models allowing partial pooling among studies j (Harrison et al., 2018)
261 by adding a random intercept α_k in addition to the overall intercept, e.g. $SMAPE_j = \alpha +$
262 $\alpha_k + \beta_j x_j + \epsilon$. These kind of models can borrow strength among studies by shrinking
263 individual estimates towards an overall population-wide average (Harrison et al., 2018; Purvis
264 et al., 2018). As random intercept k I used the methodology specific grouping (see methods
265 and SI Table 1) thus pooling possible correlates among studies of similar methodology. I fitted
266 all possible combinations between the above mentioned variables, including an interaction
267 between sampling extent and sampling effort, finally constructing an average ensemble model
268 of the 5% best performing models. Models were fitted in lme4 (Bates et al., 2015) using the
269 'MuMIn' package in R for model averaging (Bartoń, 2015).

270

271 Results

272 The explanatory power of environmental predictors – photosynthetic activity and spectral
273 variability – in explaining differences in biodiversity varied across biodiversity measures and
274 individual studies. Models fitted with photosynthetic activity explained on average slightly
275 more variance than models fitted with spectral variability, the former having an average R^2 of
276 0.21 (± 0.285 SD) compared to an average R^2 of 0.19 (± 0.284 SD) in the latter. There was
277 considerable variation of R^2 values across studies and biodiversity measures (Figure 2), with
278 species richness on average being best explained by photosynthetic activity ($R^2=0.246 \pm 0.311$
279 SD) or spectral variability ($R^2=0.22 \pm 0.306$ SD). Notably, correlations with species abundance
280 were particularly low, with the R^2 being close to 0 ($R^2 < 0.001$) for more than a quarter of all
281 studies (Figure 2). Meanwhile the difference in explained variance between models using
282 photosynthetic activity compared to spectral variability was lowest for differences in assemble
283 composition (Pearson's $R = 0.922$). There were no obvious spatial (SI Figure 2) or directional
284 patterns (SI Figure 3) in the average explained variance, although some studies notably had
285 high explanatory power regardless of the considered biodiversity measure (SI Figure 2).

286

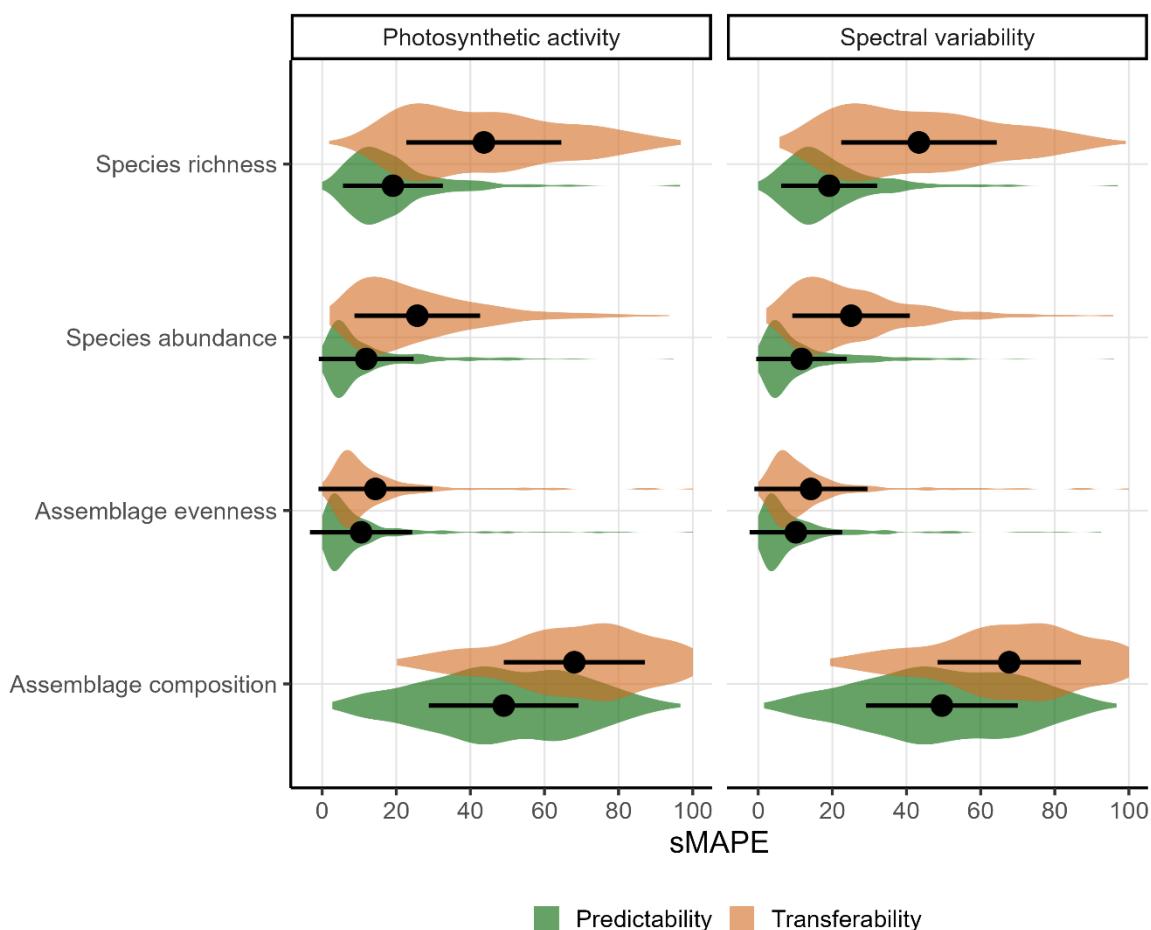


287

288 *Figure 2:* Explained variance (R^2) calculated from models fitted between different biodiversity
289 measures and either photosynthetic activity or spectral variability. Each point is an individual study in
290 the PREDICTS database with point size indicating the number of sites per study and the colour being a
291 visual indication of density in the plot. A map of the average R^2 per study and biodiversity measure can
292 be found in SI Figure 2.

293 When applying local biodiversity models to known ('Predictability') or different
294 ('Transferability') contexts, the main issue is how accurately such models can predict local
295 biodiversity measures in unknown situations based on the covariates of interest (Figure 3).
296 Regardless of whether remotely-sensed photosynthetic activity or spectral variability was used
297 as covariate, linear models were reasonably accurate for known contexts in inferring species
298 richness (sMAPE of 19.1%), abundance (11.8%) and evenness (10.3%), but less so when
299 inferring differences in species assemblages (49.3%). Errors in predicting local biodiversity to
300 different contexts were expectedly larger (Figure 3), whereas particular species richness could
301 be extrapolated relatively poorly (relative error 43.3%) similarly to differences in species
302 assemblages (67.9%), compared to abundance (25.4%) or evenness (14.3%). Notably, when
303 local biodiversity models are used to extrapolate richness to different contexts, the sMAPE had
304 was larger than 50% in 35% of all studies, compared to 8.1% and 4.7% for abundance and
305 evenness (Figure 3).

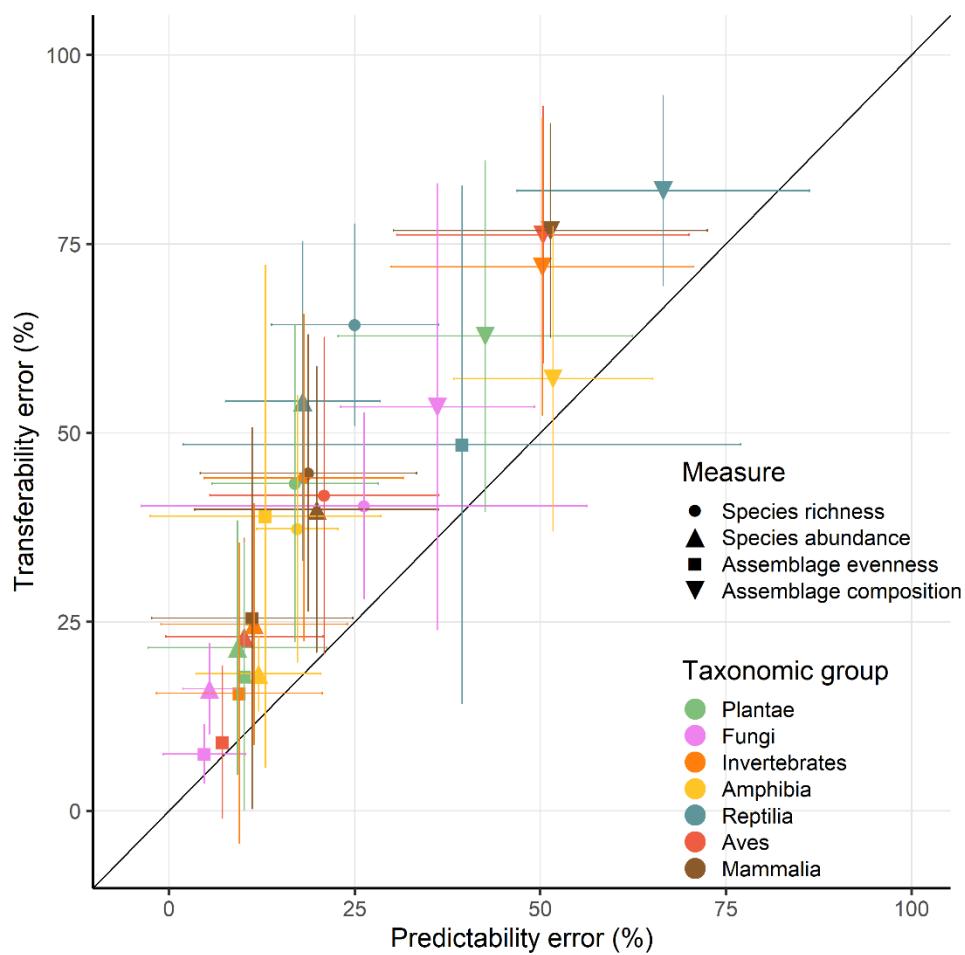
306



307

308 Figure 3: Distribution of the symmetric mean absolute percentage error (sMAPE) of biodiversity measures
309 calculated from models using photosynthetic activity or spectral variability. Larger values (range 0 to 100) indicate
310 a larger prediction error. Colours differentiate between models that evaluate Predictability and Transferability (see
311 Methods). Point error ranges show the arithmetic mean and standard deviation of the sMAPE.

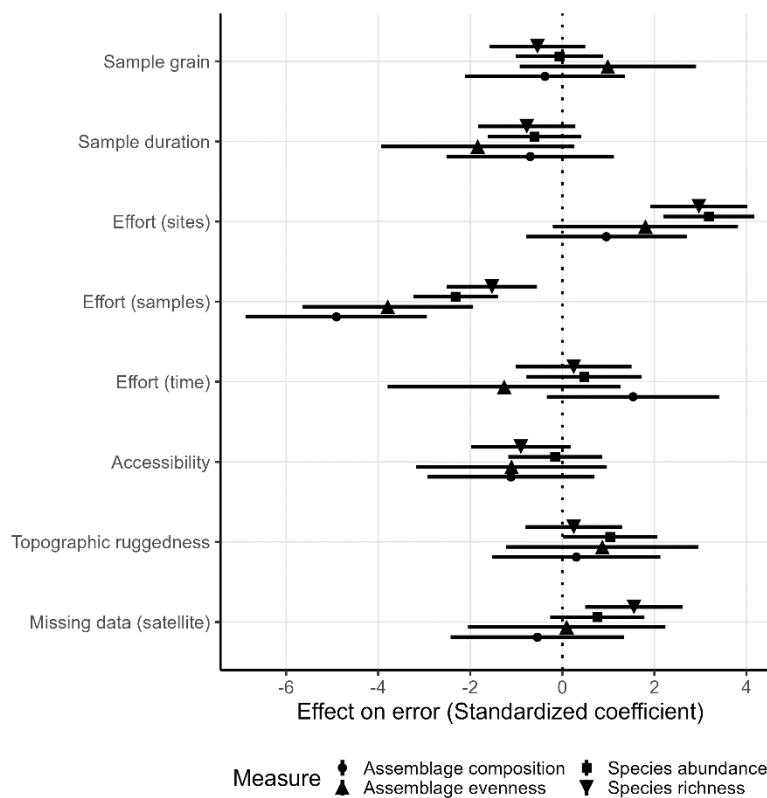
312 There were also considerable differences in prediction error, as quantified by the sMAPE,
313 among taxonomic groups. Across taxonomic groups and biodiversity measures the sMAPE
314 was larger when predictions were extrapolated to novel contexts compared to predictability,
315 particularly so for reptiles ($\Delta sMAPE=21.3\%$) and mammals ($\Delta sMAPE=20.8\%$), with the
316 greatest difference being for reptile species richness ($\Delta sMAPE=33\%$) and abundance
317 ($\Delta sMAPE=28\%$). The transferability of fungi (sMAPE=7.5%), and bird (sMAPE=9.1%)
318 assemblage evenness was overall the lowest, while predictability was best for evenness and
319 abundance of fungi (sMAPE=5.11%) and plants (sMAPE = 9.65%). Fungi and Plants had
320 across biodiversity measures the lowest sMAPE in predictability and transferability (Figure 4).
321 Overall, assemblage composition of vertebrates was the most poorly predicted with sMAPE
322 estimates well over 50% throughout (Figure 4).



323

324 Figure 4: Average error (sMAPE) across models for predictability and transferability. Errors were
325 averaged (lines indicating standard deviation) across models with different biodiversity measures
326 (shapes) and taxonomic group (colours). Shown only for models using photosynthetic activity as
327 predictor as spectral variability results were broadly comparable in overall patterns (SI Figure 4).

328 I also explored across studies which factors helped explain differences in prediction error, as
329 quantified by the sMAPE (Figure 5). Across biodiversity measures, having a greater number
330 of samples per site most effectively reduced the sMAPE ($\Delta\beta=-3.14$) for transferability, and so
331 did sample duration but to a lesser degree ($\Delta\beta=-0.98$). Meanwhile a greater number of sites per
332 study on average increased the sMAPE ($\Delta\beta=2.23$). Patterns of comparison results were broadly
333 similar between transferability (Figure 5) and predictability (SI Figure 5), although notably a
334 study being more accessible resulted in an average larger reduction in the sMAPE ($\Delta\beta=-1.02$)
335 for predictability (SI Figure 5). Overall variance explained by these factors in the average
336 model was relatively low ($R^2_{marginal} = 0.08$, $R^2_{conditional} = 0.14$).



337

338 Figure 5: Averaged and standardized model coefficients of variables that best explain differences in
339 sMAPE. Standardized coefficients smaller than zero indicate that increases in a given variable reduce
340 study-specific prediction errors, while coefficients greater than zero increase the error. Shapes
341 distinguish different biodiversity measures (as in Figure 3). Standardized coefficients shown for
342 transferability permutations only as predictability results follow similar patterns (SI Figure 5).

343 Discussion

344 In this work I comprehensively evaluate the predictability and transferability of biodiversity-
345 environment relationships, e.g. the ability of models to infer local biodiversity measures in
346 known and novel contexts. Particular emphasis is placed on differences among biodiversity
347 measures, taxonomic groups and sampling circumstances. I found that the explanatory power
348 of biodiversity-environment was relatively low for most studies (Figure 2). This aligns with a
349 previous meta-analysis that found that relationships between biodiversity measures and
350 photosynthetic activity cannot always be established (Duncan et al., 2015). I also discovered
351 that prediction errors are on average lowest for evenness and abundance, and, maybe
352 unsurprisingly, generally larger when models predictions are transferred to novel contexts
353 (Figure 3). Biodiversity measures of sessile organisms were on average more precisely
354 predicted (Figure 4), although not by much with predictions errors generally larger than 25%
355 compared to observed values, particularly so for differences in species assemblage composition.
356 Overall these results shed some doubts on the predictability and transferability of biodiversity
357 measures, although they have to be interpreted in the context of the individual studies (Figure
358 5) and ultimately in what is an acceptable accuracy to achieve with such predictions.

359 Indeed, it is not formerly defined what makes a prediction better or worse based on
360 quantitative measures such as the cross-validated error metrics used in this study. According
361 to Yates et al. (2018) 'transferability' is broadly defined as the capacity of a model to produce

362 predictions for a new set of predictor values that differ from those on which the model was
363 trained. Similarly predictability can be understood as the capacity of a model to infer held-out
364 observations (Figure 1). In this context a good precision could be understood as a model that
365 demonstrates transferability errors smaller or comparable to errors inherent in model inferences
366 or that don't exceed an a priori set threshold. I found that the predictability of local biodiversity
367 measures was overall reasonable good with errors being smaller than 25% in most cases (Figure
368 3), although particularly differences in assemblage composition were poorly predicted. This
369 might indicate that photosynthetic activity and spectral variability are useful predictors for
370 quantifying differences in local biodiversity measures, although the variance explained varied
371 considerably across studies (Figure 2). In contrast I found that errors associated with
372 transferability of biodiversity measures can be considerable, exceeding 50% relative to the
373 original measure for species richness and differences in assemblage composition in many
374 studies (Figure 3). This is especially relevant, since a number of studies spatially extrapolated
375 local biodiversity estimates, e.g. species richness or abundance, to unsampled areas based on
376 environmental predictors (König et al., 2017; Phillips et al., 2019; van den Hoogen et al., 2019).
377 These approaches assume that local biodiversity-environment relationships are transferable to
378 new, unsampled environments and the results by this work indicate that this often entails
379 considerable errors. Ideally models are evaluated on their ability to accurately reproduce their
380 data in novel contexts (Jung et al., 2017), quantify the uncertainty in doing so, or alternatively
381 limit predictions to areas within the models applicability (Mesgarian et al., 2014; Meyer and
382 Pebesma, 2021).

383 Biodiversity measures for certain taxonomic groups might be easier to predict than
384 others owing to the dynamics, drivers and mechanisms underlying them (Magurran, 2004).
385 Indeed previous studies have found species abundance to be stronger correlated with
386 photosynthetic activity than other measures (Duncan et al., 2015; Oldeland et al., 2010).
387 Similarly, I found that abundance-based biodiversity measures – e.g. abundance and evenness
388 – had overall lowest precision errors (Figure 3). A potential mechanism could be that a greater
389 photosynthetic activity or spectral variability is indicative of resources available to species
390 populations, facilitating population growth (Hurlbert, 2004; Pettorelli et al., 2006). While
391 species richness had the largest average explained variance compared to other biodiversity
392 measures, it performed considerably poorer when evaluated in predictions (Figure 3). Possibly,
393 the processes underlying patterns of local species richness, such as colonization and extinction,
394 might cause simple predictions to fail (Chase, 2003), unless the spatial-temporal dynamics of
395 environmental predictors are taken into account (Fernández et al., 2016). Similarly, the fact
396 that both predictability and transferability errors were on average lowest for more sessile
397 organisms such as Fungi and Plants (Figure 4), likely indicates that similar important processes
398 mediate biodiversity-environment relationships. Overall this study highlights the benefit of
399 comparing relationships across a range of studies and biodiversity measures (Duncan et al.,
400 2015; Stein et al., 2014), revealing that biodiversity-environment relationships are not
401 universally strong.

402 Investigating as to what factors best explain prediction errors can help to improve future
403 monitoring and modelling efforts. Among the most important factors that resulted in overall
404 smaller prediction errors was the average number of samples per sites (Figure 5), which can be
405 considered a simplified metric of sampling completeness. Given that errors were smaller for
406 sites with many samples, it could be that many species communities in the PREDICTS database

407 have not been comprehensively sampled, if one assumes that biodiversity-environment
408 relationships are strongest in equilibrium. There are ways to account for detectability and
409 observation biases (Royle et al., 2005), which however was not feasible for the studies in the
410 PREDICTS database given the heterogeneity of sampling information. Thus better standards
411 for sampling techniques and monitoring are advisable to enable better comparability
412 (Montgomery et al., 2021).

413 Interestingly, and in contrast to previous studies (Chase and Knight, 2013), differences
414 in sample grain, e.g. the linear scale of sampling, did not help to explain why biodiversity
415 measures could be better predicted in some studies. A likely explanation is that the contrasts
416 between sampling extents are relatively small (most studies in the PREDICTS database were
417 sampled at scales between ~1m and 4000m). Scale-dependent effects might only become
418 apparent at spatial scales that go beyond the local scale. A spatial mismatch at the lower end,
419 e.g. that the grain of the used MODIS data is too coarse to be matched to the extent of sampling
420 in PREDICTS studies, could be another explanation, however previous studies that used very-
421 high resolution satellite imagery (<10m) did not find much more accurate predictions than
422 presented here (Dalmayne et al., 2013; Hofmann et al., 2017). Other, non-explored factors
423 could further explain differences in prediction error, such as for instance preceding changes in
424 environmental predictors (Jung et al., 2019b, 2019a) or a better accounting of differences in
425 species traits (Duncan et al., 2015; Regos et al., 2019). Future efforts could evaluate if inter-
426 and intra-specific variability of species traits can be more precisely linked to differences in
427 environmental heterogeneity.

428 In this work I used photosynthetic activity and spectral availability as measures of
429 environmental heterogeneity, acknowledging that other characterizations of environmental
430 variability (e.g. soil, micro-climate) could be more important (Stein and Kreft, 2015). However
431 focussing solely on remotely-sensed variables ensures global consistency and is frequently
432 used to predict local biodiversity measures (Dalmayne et al., 2013; Hofmann et al., 2017;
433 Randin et al., 2020). The key limitation is that environmental heterogeneity is not necessarily
434 related to differences in land use and land-use intensity, for which the PREDICTS database
435 was explicitly designed (Purvis et al., 2018). Indeed it could be that the potential of remotely
436 sensed environmental heterogeneity in predicting local biodiversity measures has been
437 exaggerated, and better characterizations of land use and its management from remote sensing
438 have to be developed. Further, given the complexities of local species community assembly
439 (Chase, 2003; Leibold et al., 2004), any claim that a direct prediction of ‘biodiversity’ through
440 remotely-sensed proxies (Randin et al., 2020; Rocchini et al., 2016) should thus be taken with
441 a grain of salt. Remote sensors are at best able to measure changes in habitat extent or condition;
442 and those changes do not necessarily correlate strongly with changes in biodiversity measures.
443 Future work should ideally focus on the principal mechanisms of species community assembly,
444 their practical incorporation into models and how remote sensing can assist in capturing
445 relevant predictors.

446 Conclusion

447 The findings presented in this study have particular implications for spatial projections of local
448 biodiversity-environment relationships. Ecological models can and should be used for
449 predictions (Houlahan et al., 2017; Tredennick et al., 2021), however caveats and limitations
450 should be better identified, communicated and hopefully build upon. We need to create models

451 that enable biodiversity-environment relationships to be more predictable across scales and
452 novel contexts, especially when applied to conservation contexts (Santini et al., 2021). Given
453 the considerable drops in precision for transferability, key recommendations from this work
454 could be that spatial projections of local biodiversity measures at least provide estimates of
455 uncertainty or limit their projections to areas of model applicability (Meyer and Pebesma,
456 2021). To improve future biodiversity predictions I further propose that models (a) should be
457 evaluated comprehensively based on their ability to create accurate predictions, (b) account
458 better for underlying hierarchies and sampling effects, (c) ensure that environmental predictors
459 are quantified in a globally replicable and transparent way. Quantitative correlative models
460 might not be the most precise in many situations, but that does not invalidate their use if
461 shortcomings are appropriately communicated.

462 Acknowledgements

463 No funding

464 References

465 Alahuhta, J., Toivanen, M., Hjort, J., 2020. Geodiversity–biodiversity relationship needs
466 more empirical evidence. *Nat. Ecol. Evol.* 4, 2–3. [https://doi.org/10.1038/s41559-019-1051-7](https://doi.org/10.1038/s41559-019-
467 1051-7)

468 Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., Jetz,
469 W., 2018. A suite of global, cross-scale topographic variables for environmental and
470 biodiversity modeling. *Sci. Data* 5, 180040. <https://doi.org/10.1038/sdata.2018.40>

471 Barton, K., 2015. MuMIn: Multi-model inference.

472 Bates, D.M., Maechler, M., Bolker, B., Walker, S., 2015. lme4: linear mixed-effects models
473 using S4 classes. *J. Stat. Softw.* 67, 1–48.

474 Chase, J.M., 2003. Community assembly: when should history matter? *Oecologia* 136, 489–
475 498. <https://doi.org/10.1007/s00442-003-1311-7>

476 Chase, J.M., Knight, T.M., 2013. Scale-dependent effect sizes of ecological drivers on
477 biodiversity: Why standardised sampling is not enough. *Ecol. Lett.* 16, 17–26.
478 <https://doi.org/10.1111/ele.12112>

479 Cord, A.F., Meentemeyer, R.K., Leitão, P.J., Václavík, T., 2013. Modelling species
480 distributions with remote sensing data: bridging disciplinary perspectives. *J. Biogeogr.*
481 40, 2226–2227. <https://doi.org/10.1111/jbi.12199>

482 Dalmayne, J., Möckel, T., Prentice, H.C., Schmid, B.C., Hall, K., 2013. Assessment of fine-
483 scale plant species beta diversity using WorldView-2 satellite spectral dissimilarity.
484 *Ecol. Inform.* 18, 1–9. <https://doi.org/10.1016/j.ecoinf.2013.05.004>

485 Duncan, C., Chauvenet, A.L.M., Brown, M.E., Pettorelli, N., 2015. Energy availability,
486 spatio-temporal variability and implications for animal ecology. *Divers. Distrib.* 21,
487 290–301. <https://doi.org/10.1111/ddi.12270>

488 Evans, K.L., Warren, P.H., Gaston, K.J., 2005. Species–energy relationships at the
489 macroecological scale: a review of the mechanisms. *Biol. Rev.* 80, 1–25.
490 <https://doi.org/10.1017/S1464793104006517>

491 Fernández, N., Román, J., Delibes, M., 2016. Variability in primary productivity determines

492 metapopulation dynamics. *Proc. R. Soc. B Biol. Sci.* 283, 20152998.
493 <https://doi.org/10.1098/rspb.2015.2998>

494 Goetz, S.J., Sun, M., Zolkos, S., Hansen, A., Dubayah, R., 2014. The relative importance of
495 climate and vegetation properties on patterns of North American breeding bird species
496 richness. *Environ. Res. Lett.* 9, 034013. <https://doi.org/10.1088/1748-9326/9/3/034013>

497 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google
498 Earth Engine: Planetary-scale geospatial analysis for everyone. *Remote Sens. Environ.*
499 202, 18–27. <https://doi.org/10.1016/j.rse.2017.06.031>

500 Harrison, X.A., Donaldson, L., Correa-Cano, M.E., Evans, J., Fisher, D.N., Goodwin, C.E.D.,
501 Robinson, B.S., Hodgson, D.J., Inger, R., 2018. A brief introduction to mixed effects
502 modelling and multi-model inference in ecology. *PeerJ* 6, e4794.
503 <https://doi.org/10.7717/peerj.4794>

504 He, K.S., Bradley, B.A., Cord, A.F., Rocchini, D., Tuanmu, M.-N., Schmidlein, S., Turner,
505 Wiegmann, M., Pettorelli, N., 2015. Will remote sensing shape the next generation
506 of species distribution models? *Remote Sens. Ecol. Conserv.* 1, 4–18.
507 <https://doi.org/10.1002/rse2.7>

508 Hillebrand, H., 2004. On the Generality of the Latitudinal Diversity Gradient. *Am. Nat.* 163,
509 192–211. <https://doi.org/10.1086/381004>

510 Hofmann, S., Everaars, J., Schweiger, O., Frenzel, M., Bannehr, L., Cord, A.F., 2017.
511 Modelling patterns of pollinator species richness and diversity using satellite image
512 texture. *PLoS One* 12, e0185591. <https://doi.org/10.1371/journal.pone.0185591>

513 Holt, B.G., Costa, G.C., Penone, C., Lessard, J.-P., Brooks, T.M., Davidson, A.D., Blair
514 Hedges, S., Radeloff, V.C., Rahbek, C., Rondinini, C., Graham, C.H., 2017.
515 Environmental variation is a major predictor of global trait turnover in mammals. *J.*
516 *Biogeogr.* 1–13. <https://doi.org/10.1111/jbi.13091>

517 Houlahan, J.E., McKinney, S.T., Anderson, T.M., McGill, B.J., 2017. The priority of
518 prediction in ecological understanding. *Oikos* 126, 1–7.
519 <https://doi.org/10.1111/oik.03726>

520 Hudson, L.N., Newbold, T., Contu, S., Hill, S.L.L., Lysenko, I., De Palma, A., Phillips,
521 H.R.P., Alhusseini, T.I., Bedford, F.E., Bennett, D.J., Booth, H., Burton, V.J., Chng,
522 C.W.T., Choimes, A., Correia, D.L.P., Day, J., Echeverría-Londoño, S., Emerson, S.R.,
523 Gao, D., Garon, M., Harrison, M.L.K., Ingram, D.J., Jung, M., Kemp, V., Kirkpatrick,
524 L., Martin, C.D., Pan, Y., Pask-Hale, G.D., Pynegar, E.L., Robinson, A.N., Sanchez-
525 Ortiz, K., Senior, R.A., Simmons, B.I., White, H.J., Zhang, H., Aben, J., Abrahamczyk,
526 S., Adum, G.B., Aguilar-Barquero, V., Aizen, M.A., Albertos, B., Alcalá, E.L., del Mar
527 Alguacil, M., Alignier, A., Ancrenaz, M., Andersen, A.N., Arbeláez-Cortés, E.,
528 Armbrecht, I., Arroyo-Rodríguez, V., Aumann, T., Axmacher, J.C., Azhar, B., Azpiroz,
529 A.B., Baeten, L., Bakayoko, A., Báldi, A., Banks, J.E., Baral, S.K., Barlow, J., Barratt,
530 B.I.P., Barrico, L., Bartolommei, P., Barton, D.M., Basset, Y., Batáry, P., Bates, A.J.,
531 Baur, B., Bayne, E.M., Beja, P., Benedick, S., Berg, Å., Bernard, H., Berry, N.J., Bhatt,
532 D., Bicknell, J.E., Bihm, J.H., Blake, R.J., Bobo, K.S., Bócon, R., Boekhout, T.,
533 Böhning-Gaese, K., Bonham, K.J., Borges, P.A.V., Borges, S.H., Boutin, C., Bouyer, J.,
534 Bragagnolo, C., Brandt, J.S., Brearley, F.Q., Brito, I., Bros, V., Brunet, J., Buczkowski,
535 G., Buddle, C.M., Bugter, R., Buscardo, E., Buse, J., Cabra-García, J., Cáceres, N.C.,
536 Cagle, N.L., Calviño-Cancela, M., Cameron, S.A., Cancelli, E.M., Caparrós, R.,

537 Cardoso, P., Carpenter, D., Carrijo, T.F., Carvalho, A.L., Cassano, C.R., Castro, H.,
538 Castro-Luna, A.A., Rolando, C.B., Cerezo, A., Chapman, K.A., Chauvat, M.,
539 Christensen, M., Clarke, F.M., Cleary, D.F.R., Colombo, G., Connop, S.P., Craig, M.D.,
540 Cruz-López, L., Cunningham, S.A., D'Aniello, B., D'Cruze, N., da Silva, P.G.,
541 Dallimer, M., Danquah, E., Darvill, B., Dauber, J., Davis, A.L.V., Dawson, J., de Sassi,
542 C., de Thoisy, B., Deheuvels, O., Dejean, A., Devineau, J.L., Diekötter, T., Dolia, J. V.,
543 Domínguez, E., Dominguez-Haydar, Y., Dorn, S., Draper, I., Dreber, N., Dumont, B.,
544 Dures, S.G., Dynesius, M., Edenius, L., Eggleton, P., Eigenbrod, F., Elek, Z., Entling,
545 M.H., Esler, K.J., de Lima, R.F., Faruk, A., Farwig, N., Fayle, T.M., Felicioli, A.,
546 Felton, A.M., Fensham, R.J., Fernandez, I.C., Ferreira, C.C., Ficetola, G.F., Fiera, C.,
547 Filgueiras, B.K.C., Firincioglu, H.K., Flaspohler, D., Floren, A., Fonte, S.J., Fournier,
548 A., Fowler, R.E., Franzén, M., Fraser, L.H., Fredriksson, G.M., Freire, G.B., Frizzo,
549 T.L.M., Fukuda, D., Furlani, D., Gaigher, R., Ganzhorn, J.U., García, K.P., Garcia-R,
550 J.C., Garden, J.G., Garilleti, R., Ge, B.M., Gendreau-Berthiaume, B., Gerard, P.J.,
551 Gheler-Costa, C., Gilbert, B., Giordani, P., Giordano, S., Golodets, C., Gomes, L.G.L.,
552 Gould, R.K., Goulson, D., Gove, A.D., Granjon, L., Grass, I., Gray, C.L., Grogan, J.,
553 Gu, W., Guardiola, M., Gunawardene, N.R., Gutierrez, A.G., Gutiérrez-Lamus, D.L.,
554 Haarmeyer, D.H., Hanley, M.E., Hanson, T., Hashim, N.R., Hassan, S.N., Hatfield,
555 R.G., Hawes, J.E., Hayward, M.W., Hébert, C., Helden, A.J., Henden, J.A., Henschel,
556 P., Hernández, L., Herrera, J.P., Herrmann, F., Herzog, F., Higuera-Diaz, D., Hilje, B.,
557 Höfer, H., Hoffmann, A., Horgan, F.G., Hornung, E., Horváth, R., Hylander, K., Isaacs-
558 Cubides, P., Ishida, H., Ishitani, M., Jacobs, C.T., Jaramillo, V.J., Jauker, B., Hernández,
559 F.J., Johnson, M.F., Jolli, V., Jonsell, M., Juliani, S.N., Jung, T.S., Kapoor, V., Kappes,
560 H., Kati, V., Katovai, E., Kellner, K., Kessler, M., Kirby, K.R., Kittle, A.M., Knight,
561 M.E., Knop, E., Kohler, F., Koivula, M., Kolb, A., Kone, M., Körösi, Á., Krauss, J.,
562 Kumar, A., Kumar, R., Kurz, D.J., Kutt, A.S., Lachat, T., Lantschner, V., Lara, F.,
563 Lasky, J.R., Latta, S.C., Laurance, W.F., Lavelle, P., Le Féon, V., LeBuhn, G., Légaré,
564 J.P., Lehouck, V., Lencinas, M. V., Lentini, P.E., Letcher, S.G., Li, Q., Litchwark, S.A.,
565 Littlewood, N.A., Liu, Y., Lo-Man-Hung, N., López-Quintero, C.A., Louhaichi, M.,
566 Lövei, G.L., Lucas-Borja, M.E., Luja, V.H., Luskin, M.S., MacSwiney G, M.C., Maeto,
567 K., Magura, T., Mallari, N.A., Malone, L.A., Malonza, P.K., Malumbres-Olarte, J.,
568 Mandujano, S., Måren, I.E., Marin-Spiotta, E., Marsh, C.J., Marshall, E.J.P., Martínez,
569 E., Martínez Pastur, G., Moreno Mateos, D., Mayfield, M.M., Mazimpaka, V.,
570 McCarthy, J.L., McCarthy, K.P., McFrederick, Q.S., McNamara, S., Medina, N.G.,
571 Medina, R., Mena, J.L., Mico, E., Mikusinski, G., Milder, J.C., Miller, J.R., Miranda-
572 Esquivel, D.R., Moir, M.L., Morales, C.L., Muchane, M.N., Muchane, M., Mudri-
573 Stojnic, S., Munira, A.N., Muoñz-Alonso, A., Munyekeny, B.F., Naidoo, R., Naithani,
574 A., Nakagawa, M., Nakamura, A., Nakashima, Y., Naoe, S., Nates-Parra, G., Navarrete
575 Gutierrez, D.A., Navarro-Iriarte, L., Ndang'ang'a, P.K., Neuschulz, E.L., Ngai, J.T.,
576 Nicolas, V., Nilsson, S.G., Noreika, N., Norfolk, O., Noriega, J.A., Norton, D.A., Nöske,
577 N.M., Nowakowski, A.J., Numa, C., O'Dea, N., O'Farrell, P.J., Oduro, W., Oertli, S.,
578 Ofori-Boateng, C., Oke, C.O., Oostra, V., Osgathorpe, L.M., Otavo, S.E., Page, N. V.,
579 Paritsis, J., Parra-H, A., Parry, L., Pe'er, G., Pearman, P.B., Pelegrin, N., Pélissier, R.,
580 Peres, C.A., Peri, P.L., Persson, A.S., Petanidou, T., Peters, M.K., Pethiyagoda, R.S.,
581 Phalan, B., Philips, T.K., Pillsbury, F.C., Pincheira-Ulbrich, J., Pineda, E., Pino, J.,
582 Pizarro-Araya, J., Plumptre, A.J., Poggio, S.L., Politi, N., Pons, P., Poveda, K., Power,
583 E.F., Presley, S.J., Proença, V., Quaranta, M., Quintero, C., Rader, R., Ramesh, B.R.,
584 Ramirez-Pinilla, M.P., Ranganathan, J., Rasmussen, C., Redpath-Downing, N.A., Reid,
585 J.L., Reis, Y.T., Rey Benayas, J.M., Rey-Velasco, J.C., Reynolds, C., Ribeiro, D.B.,
586 Richards, M.H., Richardson, B.A., Richardson, M.J., Ríos, R.M., Robinson, R., Robles,

587 C.A., Römbke, J., Romero-Duque, L.P., Rös, M., Rosselli, L., Rossiter, S.J., Roth, D.S.,
588 Roulston, T.H., Rousseau, L., Rubio, A. V., Ruel, J.C., Sadler, J.P., Sáfián, S., Saldaña-
589 Vázquez, R.A., Sam, K., Samnegård, U., Santana, J., Santos, X., Savage, J., Schellhorn,
590 N.A., Schilthuizen, M., Schmiedel, U., Schmitt, C.B., Schon, N.L., Schüepp, C.,
591 Schumann, K., Schweiger, O., Scott, D.M., Scott, K.A., Sedlock, J.L., Seefeldt, S.S.,
592 Shahabuddin, G., Shannon, G., Sheil, D., Sheldon, F.H., Shochat, E., Siebert, S.J., Silva,
593 F.A.B., Simonetti, J.A., Slade, E.M., Smith, J., Smith-Pardo, A.H., Sodhi, N.S.,
594 Somarriba, E.J., Sosa, R.A., Soto Quiroga, G., St-Laurent, M.H., Starzomski, B.M.,
595 Stefanescu, C., Steffan-Dewenter, I., Stouffer, P.C., Stout, J.C., Strauch, A.M., Struebig,
596 M.J., Su, Z., Suarez-Rubio, M., Sugiura, S., Summerville, K.S., Sung, Y.H., Sutrisno,
597 H., Svenning, J.C., Teder, T., Threlfall, C.G., Tiitsaar, A., Todd, J.H., Tonietto, R.K.,
598 Torre, I., Tóthmérész, B., Tscharntke, T., Turner, E.C., Tylianakis, J.M., Uehara-Prado,
599 M., Urbina-Cardona, N., Vallan, D., Vanbergen, A.J., Vasconcelos, H.L., Vassilev, K.,
600 Verboven, H.A.F., Verdasca, M.J., Verdú, J.R., Vergara, C.H., Vergara, P.M., Verhulst,
601 J., Virgilio, M., Vu, L. Van, Waite, E.M., Walker, T.R., Wang, H.F., Wang, Y., Watling,
602 J.I., Weller, B., Wells, K., Westphal, C., Wiafe, E.D., Williams, C.D., Willig, M.R.,
603 Woinarski, J.C.Z., Wolf, J.H.D., Wolters, V., Woodcock, B.A., Wu, J., Wunderle, J.M.,
604 Yamaura, Y., Yoshikura, S., Yu, D.W., Zaitsev, A.S., Zeidler, J., Zou, F., Collen, B.,
605 Ewers, R.M., Mace, G.M., Purves, D.W., Scharlemann, J.P.W., Purvis, A., 2017. The
606 database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing
607 Terrestrial Systems) project. *Ecol. Evol.* 7, 145–188. <https://doi.org/10.1002/ece3.2579>

608 Hudson, L.N., Newbold, T., Contu, S., Hill, S.L.L., Lysenko, I., De Palma, A., Phillips,
609 H.R.P., Senior, R.A., Bennett, D.J., Booth, H., Choimes, A., Correia, D.L.P., Day, J.,
610 Echeverría-Londoño, S., Garon, M., Harrison, M.L.K., Ingram, D.J., Jung, M., Kemp,
611 V., Kirkpatrick, L., Martin, C.D., Pan, Y., White, H.J., Aben, J., Abrahamczyk, S.,
612 Adum, G.B., Aguilar-Barquero, V., Aizen, M.A., Añcrenaz, M., Arbeláez-Cortés, E.,
613 Armbrecht, I., Azhar, B., Azpiroz, A.B., Baeten, L., Báldi, A., Banks, J.E., Barlow, J.,
614 Batáry, P., Bates, A.J., Bayne, E.M., Beja, P., Berg, Å., Berry, N.J., Bicknell, J.E., Bihm,
615 J.H., Böhning-Gaese, K., Boekhout, T., Boutin, C., Bouyer, J., Brearley, F.Q., Brito, I.,
616 Brunet, J., Buczkowski, G., Buscardo, E., Cabra-García, J., Calviño-Cancela, M.,
617 Cameron, S.A., Cancello, E.M., Carrijo, T.F., Carvalho, A.L., Castro, H., Castro-Luna,
618 A.A., Cerdá, R., Cerezo, A., Chauvat, M., Clarke, F.M., Cleary, D.F.R., Connop, S.P.,
619 D’Aniello, B., da Silva, P.G., Darvill, B., Dauber, J., Dejean, A., Diekötter, T.,
620 Dominguez-Haydar, Y., Dормann, C.F., Dumont, B., Dures, S.G., Dynesius, M.,
621 Edeni, L., Elek, Z., Entling, M.H., Farwig, N., Fayle, T.M., Felicioli, A., Felton, A.M.,
622 Ficetola, G.F., Filgueiras, B.K.C., Fonte, S.J., Fraser, L.H., Fukuda, D., Furlani, D.,
623 Ganzhorn, J.U., Garden, J.G., Gheler-Costa, C., Giordani, P., Giordano, S., Gottschalk,
624 M.S., Goulson, D., Gove, A.D., Grogan, J., Hanley, M.E., Hanson, T., Hashim, N.R.,
625 Hawes, J.E., Hébert, C., Helden, A.J., Henden, J.-A., Hernández, L., Herzog, F.,
626 Higuera-Díaz, D., Hilje, B., Horgan, F.G., Horváth, R., Hylander, K., Isaacs-Cubides, P.,
627 Ishitani, M., Jacobs, C.T., Jaramillo, V.J., Jauker, B., Jonsell, M., Jung, T.S., Kapoor,
628 V., Kati, V., Katovai, E., Kessler, M., Knop, E., Kolb, A., Körösi, Á., Lachat, T.,
629 Lantschner, V., Le Féon, V., LeBuhn, G., Légaré, J.-P., Letcher, S.G., Littlewood, N.A.,
630 López-Quintero, C.A., Louhaichi, M., Lövei, G.L., Lucas-Borja, M.E., Luja, V.H.,
631 Maeto, K., Magura, T., Mallari, N.A., Marin-Spiotta, E., Marshall, E.J.P., Martínez, E.,
632 Mayfield, M.M., Mikusinski, G., Milder, J.C., Miller, J.R., Morales, C.L., Muchane,
633 M.N., Muchane, M., Naidoo, R., Nakamura, A., Naoe, S., Nates-Parra, G., Navarrete
634 Gutierrez, D.A., Neuschulz, E.L., Noreika, N., Norfolk, O., Noriega, J.A., Nöske, N.M.,
635 O’Dea, N., Oduro, W., Ofori-Boateng, C., Oke, C.O., Osgathorpe, L.M., Paritsis, J.,

636 Parra-H, A., Pelegrin, N., Peres, C.A., Persson, A.S., Petanidou, T., Phalan, B., Philips,
637 T.K., Poveda, K., Power, E.F., Presley, S.J., Proen  a, V., Quaranta, M., Quintero, C.,
638 Redpath-Downing, N.A., Reid, J.L., Reis, Y.T., Ribeiro, D.B., Richardson, B.A.,
639 Richardson, M.J., Robles, C.A., R  mbke, J., Romero-Duque, L.P., Rosselli, L., Rossiter,
640 S.J., Roulston, T.H., Rousseau, L., Sadler, J.P., S  fi  n, S., Salda  a-V  zquez, R.A.,
641 Samneg  rd, U., Sch  epp, C., Schweiger, O., Sedlock, J.L., Shahabuddin, G., Sheil, D.,
642 Silva, F.A.B., Slade, E.M., Smith-Pardo, A.H., Sodhi, N.S., Somarriba, E.J., Sosa, R.A.,
643 Stout, J.C., Struebig, M.J., Sung, Y.-H., Threlfall, C.G., Tonietto, R., T  thm  rezs, B.,
644 Tscharntke, T., Turner, E.C., Tylianakis, J.M., Vanbergen, A.J., Vassilev, K., Verboven,
645 H.A.F., Vergara, C.H., Vergara, P.M., Verhulst, J., Walker, T.R., Wang, Y., Watling,
646 J.I., Wells, K., Williams, C.D., Willig, M.R., Woinarski, J.C.Z., Wolf, J.H.D.,
647 Woodcock, B.A., Yu, D.W., Zaitsev, A.S., Collen, B., Ewers, R.M., Mace, G.M.,
648 Purves, D.W., Scharlemann, J.P.W., Purvis, A., 2014. The PREDICTS database: a
649 global database of how local terrestrial biodiversity responds to human impacts. *Ecol.*
650 *Evol.* 4, 4701–4735. <https://doi.org/10.1002/ece3.1303>

651 Huete, a., Didan, K., Miura, T., Rodriguez, E., Gao, X., Ferreira, L., 2002. Overview of the
652 radiometric and biophysical performance of the MODIS vegetation indices. *Remote*
653 *Sens. Environ.* 83, 195–213. [https://doi.org/10.1016/S0034-4257\(02\)00096-2](https://doi.org/10.1016/S0034-4257(02)00096-2)

654 Hurlbert, A.H., 2004. Species-energy relationships and habitat complexity in bird
655 communities. *Ecol. Lett.* 7, 714–720. <https://doi.org/10.1111/j.1461-0248.2004.00630.x>

656 Hyndman, R.J., Khandakar, Y., 2008. Automatic Time Series Forecasting: The forecast
657 Package for R. *J. Stat. Softw.* 27, 1–22. <https://doi.org/10.18637/jss.v027.i03>

658 Jiang, Z., Huete, A., Didan, K., Miura, T., 2008. Development of a two-band enhanced
659 vegetation index without a blue band. *Remote Sens. Environ.* 112, 3833–3845.
660 <https://doi.org/10.1016/j.rse.2008.06.006>

661 Jung, M., Hill, S.L.L., Platts, P.J., Marchant, R., Siebert, S., Fournier, A., Munyekenye, F.B.,
662 Purvis, A., Burgess, N.D., Newbold, T., 2017. Local factors mediate the response of
663 biodiversity to land use on two African mountains. *Anim. Conserv.* 20, 370–381.
664 <https://doi.org/10.1111/acv.12327>

665 Jung, M., Rowhani, P., Newbold, T., Bentley, L., Purvis, A., Scharlemann, J.P.W., 2019a.
666 Local species assemblages are influenced more by past than current dissimilarities in
667 photosynthetic activity. *Ecography (Cop.)* 42, 670–682.
668 <https://doi.org/10.1111/ecog.04031>

669 Jung, M., Rowhani, P., Scharlemann, J.P.W., 2019b. Impacts of past abrupt land change on
670 local biodiversity globally. *Nat. Commun.* 10, 5474. <https://doi.org/10.1038/s41467-019-13452-3>

672 Jung, M., Scharlemann, J.P.W., Rowhani, P., 2020. Landscape-wide changes in land use and
673 land cover correlate with, but rarely explain local biodiversity change. *Landsc. Ecol.* 35,
674 2255–2273. <https://doi.org/10.1007/s10980-020-01109-2>

675 Kerr, J.T., Southwood, T.R.E., Cihlar, J., 2001. Remotely sensed habitat diversity predicts
676 butterfly species richness and community similarity in Canada. *Proc. Natl. Acad. Sci.*
677 98, 11365–11370. <https://doi.org/10.1073/pnas.201398398>

678 K  nig, C., Weigelt, P., Kreft, H., 2017. Dissecting global turnover in vascular plants. *Glob.*
679 *Ecol. Biogeogr.* 26, 228–242. <https://doi.org/10.1111/geb.12536>

680 Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F.,
681 Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M., Gonzalez, A., 2004. The
682 metacommunity concept: a framework for multi-scale community ecology. *Ecol. Lett.* 7,
683 601–613. <https://doi.org/10.1111/j.1461-0248.2004.00608.x>

684 Magurran, A.E., 2004. *Measuring Biological Diversity*, Wiley-Blackwell. Blackwell
685 publishing company, Oxford.

686 Mesgaran, M.B., Cousens, R.D., Webber, B.L., 2014. Here be dragons: a tool for quantifying
687 novelty due to covariate range and correlation change when projecting species
688 distribution models. *Divers. Distrib.* 20, 1147–1159. <https://doi.org/10.1111/ddi.12209>

689 Meyer, H., Pebesma, E., 2021. Predicting into unknown space? Estimating the area of
690 applicability of spatial prediction models. *Methods Ecol. Evol.* 12, 1620–1633.
691 <https://doi.org/10.1111/2041-210X.13650>

692 Miller, J.R., Turner, M.G., Smithwick, E.A.H., Dent, C.L., Stanley, E.H., 2004. Spatial
693 Extrapolation: The Science of Predicting Ecological Patterns and Processes. *Bioscience*
694 54, 310. [https://doi.org/10.1641/0006-3568\(2004\)054\[0310:SETSOP\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2004)054[0310:SETSOP]2.0.CO;2)

695 Montgomery, G.A., Belitz, M.W., Guralnick, R.P., Tingley, M.W., 2021. Standards and Best
696 Practices for Monitoring and Benchmarking Insects. *Front. Ecol. Evol.* 8.
697 <https://doi.org/10.3389/fevo.2020.579193>

698 Moritz, S., Bartz-Beielstein, T., 2017. imputeTS: Time Series Missing Value Imputation in R.
699 *R J.* 9, 207. <https://doi.org/10.32614/RJ-2017-009>

700 Mueller, T., Dressler, G., Tucker, C., Pinzon, J., Leimgruber, P., Dubayah, R., Hurt, G.,
701 Böhning-Gaese, K., Fagan, W., 2014. Human land-use practices lead to global long-term
702 increases in photosynthetic capacity. *Remote Sens.* 6, 5717–5731.
703 <https://doi.org/10.3390/rs6065717>

704 Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L.,
705 Bennett, D.J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-
706 Londoño, S., Edgar, M.J., Feldman, A., Garon, M., Harrison, M.L.K., Alhusseini, T.,
707 Ingram, D.J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Correia,
708 D.L.P., Martin, C.D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H.R.P., Purves, D.W.,
709 Robinson, A., Simpson, J., Tuck, S.L., Weiher, E., White, H.J., Ewers, R.M., Mace,
710 G.M., Scharlemann, J.P.W., Purvis, A., 2015. Global effects of land use on local
711 terrestrial biodiversity. *Nature* 520, 45–50. <https://doi.org/10.1038/nature14324>

712 Oldeland, J., Wesuls, D., Rocchini, D., Schmidt, M., Jürgens, N., 2010. Does using species
713 abundance data improve estimates of species diversity from remotely sensed spectral
714 heterogeneity? *Ecol. Indic.* 10, 390–396. <https://doi.org/10.1016/j.ecolind.2009.07.012>

715 Parmentier, I., Harrigan, R.J., Buermann, W., Mitchard, E.T.A., Saatchi, S., Malhi, Y.,
716 Bongers, F., Hawthorne, W.D., Leal, M.E., Lewis, S.L., Nusbaumer, L., Sheil, D., Sosef,
717 M.S.M., Affum-Baffoe, K., Bakayoko, A., Chuyong, G.B., Chatelain, C., Comiskey,
718 J.A., Dauby, G., Doucet, J.-L., Fauset, S., Gautier, L., Gillet, J.-F., Kenfack, D.,
719 Kouamé, F.N., Kouassi, E.K., Kouka, L.A., Parren, M.P.E., Peh, K.S.H., Reitsma, J.M.,
720 Senterre, B., Sonké, B., Sunderland, T.C.H., Swaine, M.D., Tchouto, M.G.P., Thomas,
721 D., Van Valkenburg, J.L.C.H., Hardy, O.J., 2011. Predicting alpha diversity of African
722 rain forests: models based on climate and satellite-derived data do not perform better
723 than a purely spatial model. *J. Biogeogr.* 38, 1164–1176. <https://doi.org/10.1111/j.1365>

724 2699.2010.02467.x

725 Petchey, O.L., Pontarp, M., Massie, T.M., Kéfi, S., Ozgul, A., Weilenmann, M., Palamara,
726 G.M., Altermatt, F., Matthews, B., Levine, J.M., Childs, D.Z., McGill, B.J., Schaeppman,
727 M.E., Schmid, B., Spaak, P., Beckerman, A.P., Pennekamp, F., Pearse, I.S., 2015. The
728 ecological forecast horizon, and examples of its uses and determinants. *Ecol. Lett.* 18,
729 597–611. <https://doi.org/10.1111/ele.12443>

730 Pettorelli, N., Gaillard, J.-M., Mysterud, A., Duncan, P., Chr. Stenseth, N., Delorme, D., Van
731 Laere, G., Toïgo, C., Klein, F., 2006. Using a proxy of plant productivity (NDVI) to find
732 key periods for animal performance: the case of roe deer. *Oikos* 112, 565–572.
733 <https://doi.org/10.1111/j.0030-1299.2006.14447.x>

734 Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.-M., Tucker, C.J., Stenseth, N.C., 2005.
735 Using the satellite-derived NDVI to assess ecological responses to environmental
736 change. *Trends Ecol. Evol.* 20, 503–510. <https://doi.org/10.1016/j.tree.2005.05.011>

737 Phillips, H.R.P., Guerra, C.A., Bartz, M.L.C., Briones, M.J.I., Brown, G., Crowther, T.W.,
738 Ferlian, O., Gongalsky, K.B., Van Den Hoogen, J., Krebs, J., Orgiazzi, A., Routh, D.,
739 Schwarz, B., Bach, E.M., Bennett, J., Brose, U., Decaëns, T., König-Ries, B., Loreau,
740 M., Mathieu, J., Mulder, C., Van Der Putten, W.H., Ramirez, K.S., Rillig, M.C., Russell,
741 D., Rutgers, M., Thakur, M.P., De Vries, F.T., Wall, D.H., Wardle, D.A., Arai, M.,
742 Ayuke, F.O., Baker, G.H., Beauséjour, R., Bedano, J.C., Birkhofer, K., Blanchart, E.,
743 Blossey, B., Bolger, T., Bradley, R.L., Callaham, M.A., Capowicz, Y., Caulfield, M.E.,
744 Choi, A., Crotty, F. V., Dávalos, A., Cosin, D.J.D., Dominguez, A., Duhour, A.E., Van
745 Eekeren, N., Emmerling, C., Falco, L.B., Fernández, R., Fonte, S.J., Fragoso, C.,
746 Franco, A.L.C., Fugère, M., Fusilero, A.T., Gholami, S., Gundale, M.J., Lpez, M. nica
747 G., Hackenberger, D.K., Hernández, L.M., Hishi, T., Holdsworth, A.R., Holmstrup, M.,
748 Hopfensperger, K.N., Lwanga, E.H., Huhta, V., Hurisso, T.T., Iannone, B. V., Iordache,
749 M., Joschko, M., Kaneko, N., Kaniantska, R., Keith, A.M., Kelly, C.A., Kernecker, M.L.,
750 Klaminder, J., Koné, A.W., Kooch, Y., Kukkonen, S.T., Lalthanzara, H., Lammel, D.R.,
751 Lebedev, I.M., Li, Y., Lidon, J.B.J., Lincoln, N.K., Loss, S.R., Marichal, R., Matula, R.,
752 Moos, J.H., Moreno, G., Mor n-Ríos, A., Muys, B., Neirynck, J., Norgrove, L., Novo,
753 M., Nuutinen, V., Nuzzo, V., Mujeeb Rahman, P., Pansu, J., Paudel, S., Pérès, G., Pérez-
754 Camacho, L., Piñeiro, R., Ponge, J.F., Rashid, M.I., Rebollo, S., Rodeiro-Iglesias, J.,
755 Rodríguez, M., Roth, A.M., Rousseau, G.X., Rozen, A., Sayad, E., Van Schaik, L.,
756 Scharenbroch, B.C., Schirrmann, M., Schmidt, O., Schröder, B., Seeber, J., Shashkov,
757 M.P., Singh, J., Smith, S.M., Steinwandter, M., Talavera, J.A., Trigo, D., Tsukamoto, J.,
758 De Valença, A.W., Vanek, S.J., Virto, I., Wackett, A.A., Warren, M.W., Wehr, N.H.,
759 Whalen, J.K., Wironen, M.B., Wolters, V., Zenkova, I. V., Zhang, W., Cameron, E.K.,
760 Eisenhauer, N., 2019. Global distribution of earthworm diversity. *Science* (80-).
761 <https://doi.org/10.1126/science.aax4851>

762 Phillips, H.R.P., Newbold, T., Purvis, A., 2017. Land-use effects on local biodiversity in
763 tropical forests vary between continents. *Biodivers. Conserv.* 26, 2251–2270.
764 <https://doi.org/10.1007/s10531-017-1356-2>

765 Purvis, A., Newbold, T., De Palma, A., Contu, S., Hill, S.L.L., Sanchez-Ortiz, K., Phillips,
766 H.R.P., Hudson, L.N., Lysenko, I., Börger, L., Scharlemann, J.P.W., 2018. Modelling
767 and projecting the response of local terrestrial biodiversity worldwide to land use and
768 related pressures: The PREDICTS project, in: *Advances in Ecological Research*. pp.
769 201–241. <https://doi.org/10.1016/bs.aecr.2017.12.003>

770 Radeloff, V.C., Dubinin, M., Coops, N.C., Allen, A.M., Brooks, T.M., Clayton, M.K., Costa,
771 G.C., Graham, C.H., Helmers, D.P., Ives, A.R., Kolesov, D., Pidgeon, A.M.,
772 Rapacciulo, G., Razenkova, E., Suttidate, N., Young, B.E., Zhu, L., Hobi, M.L., 2019.
773 The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. *Remote*
774 *Sens. Environ.* 222, 204–214. <https://doi.org/10.1016/j.rse.2018.12.009>

775 Randin, C.F., Ashcroft, M.B., Bolliger, J., Cavender-Bares, J., Coops, N.C., Dullinger, S.,
776 Dirnböck, T., Eckert, S., Ellis, E., Fernández, N., Giuliani, G., Guisan, A., Jetz, W.,
777 Joost, S., Karger, D., Lembrechts, J., Lenoir, J., Luoto, M., Morin, X., Price, B.,
778 Rocchini, D., Schaeppman, M., Schmid, B., Verburg, P., Wilson, A., Woodcock, P.,
779 Yoccoz, N., Payne, D., 2020. Monitoring biodiversity in the Anthropocene using remote
780 sensing in species distribution models. *Remote Sens. Environ.* 239, 111626.
781 <https://doi.org/10.1016/j.rse.2019.111626>

782 Rapacciulo, G., 2019. Strengthening the contribution of macroecological models to
783 conservation practice. *Glob. Ecol. Biogeogr.* 28, 54–60.
784 <https://doi.org/10.1111/geb.12848>

785 Regos, A., Gagne, L., Alcaraz-Segura, D., Honrado, J.P., Domínguez, J., 2019. Effects of
786 species traits and environmental predictors on performance and transferability of
787 ecological niche models. *Sci. Rep.* 9, 4221. <https://doi.org/10.1038/s41598-019-40766-5>

788 Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-Arroita, G., Hauenstein, S.,
789 Lahoz-Monfort, J.J., Schröder, B., Thuiller, W., Warton, D.I., Wintle, B.A., Hartig, F.,
790 Dormann, C.F., 2017. Cross-validation strategies for data with temporal, spatial,
791 hierarchical, or phylogenetic structure. *Ecography (Cop.)*. 40, 913–929.
792 <https://doi.org/10.1111/ecog.02881>

793 Rocchini, D., Balkenhol, N., Carter, G. a., Foody, G.M., Gillespie, T.W., He, K.S., Kark, S.,
794 Levin, N., Lucas, K., Luoto, M., Nagendra, H., Oldeland, J., Ricotta, C., Southworth, J.,
795 Neteler, M., 2010. Remotely sensed spectral heterogeneity as a proxy of species
796 diversity: Recent advances and open challenges. *Ecol. Inform.* 5, 318–329.
797 <https://doi.org/10.1016/j.ecoinf.2010.06.001>

798 Rocchini, D., Boyd, D.S., Féret, J.-B., Foody, G.M., He, K.S., Lausch, A., Nagendra, H.,
799 Wegmann, M., Pettorelli, N., 2016. Satellite remote sensing to monitor species diversity:
800 potential and pitfalls. *Remote Sens. Ecol. Conserv.* 2, 25–36.
801 <https://doi.org/10.1002/rse2.9>

802 Rocchini, D., Hernández-Stefanoni, J.L., He, K.S., 2015. Advancing species diversity
803 estimate by remotely sensed proxies: A conceptual review. *Ecol. Inform.* 25, 22–28.
804 <https://doi.org/10.1016/j.ecoinf.2014.10.006>

805 Royle, J.A., Nichols, J.D., Kéry, M., 2005. Modelling occurrence and abundance of species
806 when detection is imperfect. *Oikos* 110, 353–359. <https://doi.org/10.1111/j.0030-1299.2005.13534.x>

808 Santini, L., Antão, L.H., Jung, M., Benítez-López, A., Rapacciulo, G., Di Marco, M., Jones,
809 F.A.M., Haghkerdar, J.M., González-Suárez, M., 2021. The interface between
810 Macroecology and Conservation: existing links and untapped opportunities. *Front.*
811 *Biogeogr.* <https://doi.org/10.21425/F5FBG53025>

812 Schaaf, C.B., Gao, F., Strahler, A.H., Lucht, W., Li, X., Tsang, T., Strugnell, N.C., Zhang,
813 X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G.,

814 Dunderdale, M., Doll, C., D'Entremont, R.P., Hu, B., Liang, S., Privette, J.L., Roy, D.,
815 2002. First operational BRDF, albedo nadir reflectance products from MODIS. *Remote*
816 *Sens. Environ.* 83, 135–148. [https://doi.org/10.1016/S0034-4257\(02\)00091-3](https://doi.org/10.1016/S0034-4257(02)00091-3)

817 Schmidlein, S., Fassnacht, F.E., 2017. The spectral variability hypothesis does not hold
818 across landscapes. *Remote Sens. Environ.* 192, 114–125.
819 <https://doi.org/10.1016/j.rse.2017.01.036>

820 Shackelford, N., Starzomski, B.M., Banning, N.C., Battaglia, L.L., Becker, A., Bellingham,
821 P.J., Bestelmeyer, B., Catford, J.A., Dwyer, J.M., Dynesius, M., Gilmour, J., Hallett,
822 L.M., Hobbs, R.J., Price, J., Sasaki, T., Tanner, E.V.J., Standish, R.J., 2017. Isolation
823 predicts compositional change after discrete disturbances in a global meta-study.
824 *Ecography (Cop.)*. 40, 1256–1266. <https://doi.org/10.1111/ecog.02383>

825 Stein, A., Gerstner, K., Kreft, H., 2014. Environmental heterogeneity as a universal driver of
826 species richness across taxa, biomes and spatial scales. *Ecol. Lett.* 17, 866–880.
827 <https://doi.org/10.1111/ele.12277>

828 Stein, A., Kreft, H., 2015. Terminology and quantification of environmental heterogeneity in
829 species-richness research. *Biol. Rev.* 90, 815–836. <https://doi.org/10.1111/brv.12135>

830 Supp, S.R., Ernest, S.K.M., 2014. Species-level and community-level responses to
831 disturbance: a cross-community analysis. *Ecology* 95, 1717–1723.
832 <https://doi.org/10.1890/13-2250.1>

833 Theobald, D.M., Harrison-Atlas, D., Monahan, W.B., Albano, C.M., 2015. Ecologically-
834 Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation
835 Planning. *PLoS One* 10, e0143619. <https://doi.org/10.1371/journal.pone.0143619>

836 Tredennick, A.T., Hooker, G., Ellner, S.P., Adler, P.B., 2021. A practical guide to selecting
837 models for exploration, inference, and prediction in ecology. *Ecology* 102.
838 <https://doi.org/10.1002/ecy.3336>

839 van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A., de
840 Goede, R.G.M., Adams, B.J., Ahmad, W., Andriuzzi, W.S., Bardgett, R.D., Bonkowski,
841 M., Campos-Herrera, R., Cares, J.E., Caruso, T., de Brito Caixeta, L., Chen, X., Costa,
842 S.R., Creamer, R., Mauro da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M.,
843 Griffiths, B.S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A.,
844 Korthals, G., Krashevská, V., Kudrin, A.A., Li, Q., Liang, W., Magilton, M., Marais,
845 M., Martín, J.A.R., Matveeva, E., Mayad, E.H., Mulder, C., Mullin, P., Neilson, R.,
846 Nguyen, T.A.D., Nielsen, U.N., Okada, H., Rius, J.E.P., Pan, K., Peneva, V., Pellissier,
847 L., Carlos Pereira da Silva, J., Pitteloud, C., Powers, T.O., Powers, K., Quist, C.W.,
848 Rasmann, S., Moreno, S.S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A. V., Trap, J.,
849 van der Putten, W., Vestergård, M., Villenave, C., Waeyenberge, L., Wall, D.H.,
850 Wilschut, R., Wright, D.G., Yang, J., Crowther, T.W., 2019. Soil nematode abundance
851 and functional group composition at a global scale. *Nature* 572, 194–198.
852 <https://doi.org/10.1038/s41586-019-1418-6>

853 Weiss, D.J., Nelson, A., Gibson, H.S., Temperley, W., Peedell, S., Lieber, A., Hancher, M.,
854 Poyart, E., Belchior, S., Fullman, N., Mappin, B., Dalrymple, U., Rozier, J., Lucas,
855 T.C.D., Howes, R.E., Tusting, L.S., Kang, S.Y., Cameron, E., Bisanzio, D., Battle, K.E.,
856 Bhatt, S., Gething, P.W., 2018. A global map of travel time to cities to assess
857 inequalities in accessibility in 2015. *Nature* 553, 333–336.
858 <https://doi.org/10.1038/nature25181>

859 Yates, K.L., Bouchet, P.J., Caley, M.J., Mengersen, K., Randin, C.F., Parnell, S., Fielding,
860 A.H., Bamford, A.J., Ban, S., Barbosa, A.M., Dormann, C.F., Elith, J., Embling, C.B.,
861 Ervin, G.N., Fisher, R., Gould, S., Graf, R.F., Gregr, E.J., Halpin, P.N., Heikkinen, R.K.,
862 Heinänen, S., Jones, A.R., Krishnakumar, P.K., Lauria, V., Lozano-Montes, H.,
863 Mannocci, L., Mellin, C., Mesgaran, M.B., Moreno-Amat, E., Mormede, S., Novaczek,
864 E., Oppel, S., Ortuño Crespo, G., Peterson, A.T., Rapacciulo, G., Roberts, J.J., Ross,
865 R.E., Scales, K.L., Schoeman, D., Snelgrove, P., Sundblad, G., Thuiller, W., Torres,
866 L.G., Verbruggen, H., Wang, L., Wenger, S., Whittingham, M.J., Zharikov, Y., Zurell,
867 D., Sequeira, A.M.M., 2018. Outstanding Challenges in the Transferability of Ecological
868 Models. *Trends Ecol. Evol.* 33, 790–802. <https://doi.org/10.1016/j.tree.2018.08.001>

869 Yin, H., Pflugmacher, D., Kennedy, R.E., Sulla-Menashe, D., Hostert, P., 2014. Mapping
870 Annual Land Use and Land Cover Changes Using MODIS Time Series. *IEEE J. Sel.
871 Top. Appl. Earth Obs. Remote Sens.* 7, 3421–3427.
872 <https://doi.org/10.1109/JSTARS.2014.2348411>

873 Zurell, D., Elith, J., Schröder, B., 2012. Predicting to new environments: tools for visualizing
874 model behaviour and impacts on mapped distributions. *Divers. Distrib.* 18, 628–634.
875 <https://doi.org/10.1111/j.1472-4642.2012.00887.x>

876

877