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Abstract 9 

 10 

Biodiversity varies in space and time, and often in response to environmental heterogeneity. 11 

Indicators in the form of local biodiversity measures – such as species richness or abundance 12 

– are common tools to capture this variation. The rise of readily available remote sensing data 13 

has enabled the characterization of environmental heterogeneity in a globally robust and 14 

replicable manner. Based on the assumption that differences in biodiversity measures are 15 

generally related to differences in environmental heterogeneity, these data have enabled 16 

projections and extrapolations of biodiversity in space and time. However so far little work has 17 

been done on quantitatively evaluating if and how accurately local biodiversity measures can 18 

be predicted. Here I combine estimates of biodiversity measures from local biodiversity 19 

surveys with remotely-sensed data on environmental heterogeneity globally. I then determine 20 

through a cross-validation framework how accurately local biodiversity measures can be 21 

predicted within (“predictability”) and across similar (“transferability“)biodiversity surveys. I 22 

found that prediction errors can be substantial, with error magnitudes varying between different 23 

biodiversity measures, taxonomic groups, sampling techniques and types of environmental 24 

heterogeneity characterizations. And although errors associated with model predictability were 25 

in many cases relatively low, these results question  - particular for transferability  - our 26 

capability to accurately predict and project local biodiversity measures based on environmental 27 

heterogeneity. I make the case that future predictions should be evaluated based on their 28 

accuracy and inherent uncertainty, and ecological theories be tested against whether we are 29 

able to make accurate predictions from local biodiversity data. 30 
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 35 

Introduction 36 

 37 

Local biodiversity is known to vary with environmental heterogeneity (Hillebrand, 2004; Holt 38 

et al., 2017; Stein and Kreft, 2015), often quantified as difference in availability and variability 39 

of resources. These resources include the diversity of habitats and landscapes, or the 40 

availability and structural complexity of vegetation or rocks (Stein and Kreft, 2015). Several 41 

theories have been postulated as possible source of the relationship with local biodiversity. 42 

These include, among others, the widely tested species-energy (Duncan et al., 2015; Evans et 43 

al., 2005; Hurlbert, 2004), the species spectral-heterogeneity (Oldeland et al., 2010; Rocchini 44 

et al., 2010) or the species-geodiversity hypotheses (Alahuhta et al., 2020; Theobald et al., 45 

2015). However, despite a number of global meta-analyses on the relationship between 46 

environmental heterogeneity and local biodiversity (Duncan et al., 2015; Stein et al., 2014), it 47 

has rarely been comprehensively investigated how predictable and transferable these 48 

relationships are, especially across taxonomic and functional groups and different biodiversity 49 

measures. 50 

Predictions made by statistical models are key for our understanding of the living world 51 

and for the creation of outputs relevant for conservation management (Houlahan et al., 2017; 52 

Miller et al., 2004). Because of the evermore increasing demand for scenarios and spatial maps 53 

by policy makers and land managers, biodiversity modellers often need to rely on inter- and 54 

extrapolations of model predictions across space and time (Miller et al., 2004). These 55 

predictions need to be precise and accurate enough for the context and decisions they are meant 56 

to inform (Santini et al., 2021). Thus model predictions should be investigated for their 57 

predictability, e.g. a model’s ability to accurately predict correlative relationships within the 58 

same spatial and/or temporal context, and transferability, e.g. the capacity to produce accurate 59 

predictions for conditions dissimilar to those of the data for which a model was trained (Petchey 60 

et al., 2015; Tredennick et al., 2021; Yates et al., 2018). And yet, model predictability and 61 

transferability is rarely consistently assessed and, when studied in more detail, results rarely 62 

look promising. 63 

There is increasing evidence that models using variables of environmental 64 

heterogeneity often fail to accurately predict and transfer biodiversity environment 65 

relationships. Studies have found that the predictability of local biodiversity as function of a 66 

difference in environmental heterogeneity are highly variable between geographic regions 67 

(Phillips et al., 2017) and local contexts (Duncan et al., 2015; Jung et al., 2017). Similarly, 68 

transferability of model predictions to spatial or temporally distinct regions has long been 69 

recognized as key issue for species distribution models (Mesgaran et al., 2014; Regos et al., 70 

2019; Zurell et al., 2012) or models using local and regional biodiversity measures (Parmentier 71 

et al., 2011; Schmidtlein and Fassnacht, 2017). Despite the development of techniques for 72 

assessing the novel parameter space of a model (Meyer and Pebesma, 2021; Zurell et al., 2012), 73 

the limited uptake of modellers to evaluate and honestly present model uncertainty can hinder 74 

the application and affect trust in biodiversity model predictions (Rapacciuolo, 2019). 75 

 An outstanding issue for assessing predictability and transferability of local biodiversity 76 

environment relationships in macroecological studies has been the various ways in which 77 
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environmental heterogeneity is quantified (Stein and Kreft, 2015). Recent advances in remote 78 

sensing and cloud-processing have enabled the robust quantification of environmental 79 

heterogeneity at high spatial and temporal resolution (Gorelick et al., 2017; Randin et al., 2020). 80 

Through repeated satellite observations, measures of environmental heterogeneity, such as 81 

differences in photosynthetic activity or spectral variability as proxies for vegetation 82 

productivity, habitat condition and structure (Radeloff et al., 2019; Rocchini et al., 2010), can 83 

be robustly quantified. Subsequently, these measures have been incorporated in statistical 84 

models for the prediction of species distributions (Cord et al., 2013; He et al., 2015) or to infer 85 

differences in local biodiversity measures (Goetz et al., 2014; Jung et al., 2020, 2019a; 86 

Oldeland et al., 2010; Rocchini et al., 2015). Remote sensing data can therefore – opposed to 87 

study-specific predictor variables commonly included in ecological meta-analysis – serve as 88 

globally consistent predictor for studies of biodiversity environment relationships (Duncan et 89 

al., 2015). With the availability of new global databases on local biodiversity in-situ 90 

observations (Hudson et al., 2017), it has become possible to investigate predictability and 91 

transferability of biodiversity environment relationships in greater detail than what has been 92 

done so far. 93 

There are a number of shortcomings in previous analyses on the predictability and 94 

transferability of local biodiversity environment relationships. Most studies have (a) focussed 95 

on effect sizes among studies (e.g. strength of inference), rather than the predictability and 96 

transferability of this relationships (Tredennick et al., 2021), (b) tended to focus mostly on 97 

species richness (Stein et al., 2014), thus ignoring other biodiversity measures such as 98 

abundance or differences in species assemblage composition, (c) used variables of varying 99 

origin to capture effects of changes in environmental heterogeneity on biodiversity 100 

(Shackelford et al., 2017; Supp and Ernest, 2014) or have (d) focussed only on regional extents 101 

and single taxonomic groups such as birds, butterflies or plants (Goetz et al., 2014; Kerr et al., 102 

2001; Oldeland et al., 2010; Schmidtlein and Fassnacht, 2017). Quantitatively addressing these 103 

issues is key, if we are to understand in which cases spatial and/or temporal predictions of local 104 

biodiversity measures are reliable and accurate.  105 

In this study I investigate the predictability and transferability of model-based 106 

predictions on local biodiversity environment relationships. The expectation is that (i) 107 

predictability is generally stronger than transferability, (ii) transferability of species-108 

environment relationships affects some biodiversity measures and taxonomic groups are less 109 

transferable than others, and that (iii) unexplained variation is predominantly linked to 110 

differences in study design, e.g. spatial scale and sampling duration. To test this, I combine 111 

local biodiversity data from globally distributed surveys with remotely-sensed environmental 112 

predictors quantifying photosynthetic activity (Duncan et al., 2015; Evans et al., 2005; Stein et 113 

al., 2014) and spectral variability (Rocchini et al., 2010). Using variations of linear models, I 114 

assess the predictability, quantified as overall and within-study reduction in prediction error, 115 

and transferability, quantified as reduction in prediction error between different studies of 116 

comparable study design (Figure 1). I expect that the results of this work provide further 117 

insights into the generality of local biodiversity-environment relationships at a global scale, 118 

which hopefully stimulates a debate on whether predicted local biodiversity measures, such as 119 

abundance or richness, can accurately be predicted or transferred to unsampled regions. 120 

 121 
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 122 

Figure 1: (a) Distribution of two hypothetical studies (coloured in orange and red) and their sites at which a biodiversity 123 
measure and environmental predictor has been calculated. The Normalized Difference Vegetation Index (NDVI) is shown as 124 
example of a remotely sensed environmental predictor. Shown is a simplified procedure for investigating the (b) predictability 125 
and (c) transferability of local biodiversity-environment relationships. For (b) ‘testing’ sites within a studies are removed at 126 
random, regressions refitted and the within-study prediction error quantified in relation to study properties. Contrastingly, in 127 
(c) regression fits from one study (orange) are used to predict permuted biodiversity estimates in another study (red) that have 128 
been removed (beige), with the prediction error quantified in relation to study properties. 129 

 130 

Methods 131 

Biodiversity data preparation 132 

For data on biodiversity I took species assemblage data from the global Projecting Responses 133 

of Ecological Diversity In Changing Terrestrial Systems (PREDICTS) database (Hudson et 134 

al., 2017), which contains records of species occurrence and abundance at spatial-explicit sites 135 

‘sites’ as reported in published ‘studies’. PREDICTS includes only studies which differ in 136 

‘land-use’ and/or ‘land-use intensity’ and have spatial and temporal information associated 137 

with them, e.g. sampling extent and date of sampling (Hudson et al., 2014). Studies in the 138 

PREDICTS database vary widely in study properties, notably in taxonomic coverage (e.g. 139 

invertebrates, plants, birds,…), spatial grain (0.05 – 39,150m, median = 60m), sampling start 140 

(1984 - 2013), sampling effort (>0 – 4,382 days, median = 91 days) and methodology (flight 141 

traps, transects,…). Owing to these differences, a hierarchical modelling framework is usually 142 

necessary when analysing biodiversity estimates from databases such as PREDICTS (Purvis et 143 

al., 2018). 144 

 For each study j and site 𝑖 in the PREDICTS database, I calculated four different site-145 

based measures of local biodiversity: total Species richness ( Si ), total log-transformed 146 

abundance ( log10 Ai) , the arcsine square root transformed probability of interspecific 147 

encounter as measure of assemblage evenness (sin−1 √PIEi) and the logit transformed pairwise 148 

Sørensen similarity index as measure of difference in assemblage composition (logit SIMi−in
). 149 

Similar to previous studies I assumed that, in the few cases where within-study study effort 150 

differs among sites, the abundance of species individuals increases linearly with sampling 151 

effort (Newbold et al., 2015). In cases where the sampling extent of a site is missing in the 152 

PREDICTS database, I approximated the mean sampling extent using a heuristic that fills 153 

missing estimates with the average used within studies of the same sampling method and/or 154 

taxonomic group. Earlier work has shown that this approximation can accurately fill missing 155 

sampling extents (Jung et al., 2019a). Lastly, I created, based on the taxonomic group and 156 
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sampling method attributed to a study in the PREDICTS databased, a new factor variable that 157 

groups studies of comparable method, unit and broad taxonomic grouping (SI Table 1), such 158 

as for instance studies involving bird individuals that were counted using point counts. I realize 159 

that not all differences in sampling techniques can attributed to this new contrast between sites 160 

and therefore post-hoc analyse the contribution of differing sampling methods in explaining 161 

the cross-validated model error (see statistical analysis). 162 

Environmental predictors 163 

In this work I exclusively used remotely-sensed environmental predictors, which – opposed to 164 

commonly-used study-specific differences – (1) have medium to high spatial resolution, (2) are 165 

consistently quantified at global extent in comparable units, (3) are temporally explicit, often 166 

differing between years, (4) correlate with differences in local biodiversity (Duncan et al., 167 

2015; Jung et al., 2019a) and land use (Mueller et al., 2014; Yin et al., 2014). 168 

For each site in the PREDICTS databases, I calculated two different remotely sensed 169 

predictors that reflect environmental heterogeneity. First, 16-day time series of atmospherically 170 

corrected spectral observations (MCD43A v006, [Schaaf et al. 2002]) from the Moderate 171 

Resolution Imaging Spectroradiometer (MODIS) sensor on board the Terra and Aqua satellites 172 

were downloaded for each PREDICTS site from Google Earth Engine (Gorelick et al., 2017). 173 

Time series of remotely sensed spectral observations often have data gaps caused by clouds or 174 

sensor errors. To reduce the number of data gaps, I first aggregated (arithmetic mean) the 175 

obtained time series to monthly estimates for each spectral observation (band 1 to 7). The 176 

overall proportion of missing data in the aggregated time series was low (mean: 5.9% ± 10.5 177 

SD), nevertheless I subjected the aggregated time series to a missing value imputation using a 178 

Kalman smoother on the whole time series (Hyndman and Khandakar, 2008) as implemented 179 

in the ‘imputeTS’ R package (Moritz and Bartz-Beielstein, 2017). Whenever the imputation 180 

did not converge, a linear interpolation was used to impute missing observations among years. 181 

Only data gaps smaller than five months were filled in that manner and sites with six or more 182 

missing months were excluded from subsequent analyses. From the full time series, I then 183 

selected for each site the first year (12 months) of data preceding biodiversity sampling as 184 

representation of environmental heterogeneity (Jung et al., 2019a).  185 

 Second, I calculated from the remaining time series of spectral observations, as proxy 186 

of overall photosynthetic activity, the arithmetic mean of the two-band Enhanced Vegetation 187 

Index (EVI, Jiang et al. 2008). Variations in photosynthetic activity have previously been 188 

shown to reflect continuous gradients in land cover (Huete et al., 2002; Radeloff et al., 2019) 189 

and directly influence local biodiversity measures and life history (Jung et al., 2019a, 2019b; 190 

Oldeland et al., 2010; Pettorelli et al., 2005). Furthermore, I also calculated a measure of overall 191 

spectral heterogeneity from the spectral data (Randin et al., 2020; Rocchini et al., 2015, 2010). 192 

Spectral heterogeneity is expected to give a more nuanced view on habitat structure and 193 

condition than any single vegetation index. To capture spectral heterogeneity, I first calculated 194 

a principal component analysis of all spectral observations (bands 1-7) and then calculated 195 

from the first two axes, which on average explained 93% ± 5.92 SD of all variation, the centroid 196 

of the resulting bivariate scatter plot. Spectral heterogeneity per site was then summarized as 197 

the mean Euclidean distance to this centroid. Both environmental predictors, photosynthetic 198 

activity and spectral heterogeneity are only weakly correlated (Pearson’s r = -0.21, SI Figure 199 

1). In total 21821 sites had suitable remote sensing data for subsequent analyses, with the 200 
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remainder (4028 sites) being sampled either too long ago for sufficient remote sensing coverage 201 

from MODIS (2000 onwards) or having too many data gaps. 202 

Statistical analysis 203 

In the context of this work, ‘predictability’ is defined as the ability to accurately infer a 204 

biodiversity measure 𝑦𝑖𝑗  based on the environmental covariates 𝑥𝑖𝑗  among the sites i of a 205 

PREDICTS study j (Figure 1b), and ‘transferability’ as the ability to accurately predict 𝑦𝑖 based 206 

on the environmental covariates 𝑥𝑖  across studies of the same sampling methodology and 207 

taxonomic group (Figure 1c).  208 

In both predictability and transferability variants prediction accuracy is assessed by 209 

calculating for each study the symmetric mean absolute percentage error ( sMAPEj  = 210 

100

n
 ∑ |

ypredicted  − yobserved

(|yobserved| + |ypredicted|)
|I

i=1 ) between the observed biodiversity measures (yobserved) and 211 

the ones predicted by the model (ypredicted) for a given site i. The sMAPE quantifies the 212 

percentage error in a model prediction and is bounded between 0 and 100%. Alternative metrics 213 

to quantify prediction precision and accuracy exists, however in this case the sMAPE is 214 

preferrable for PREDICTS style data owing to its simplicity and inter-comparability between 215 

studies that use biodiversity measures of different units and value ranges. 216 

I constructed separate models for each study j and biodiversity measure 𝑦 in site i, by assuming 217 

that yi  =  αi  + βixi  + ϵ, where α is the study specific intercept, 𝛽 a slope coefficient, x the 218 

environmental predictor and ϵ an error term. Models of Si  were assumed to have Poisson 219 

distributed errors and a log-link function (log y), while models of Ai, PIEi and SIMi−in
were 220 

assumed to have Gaussian distributed errors. Pairwise similarities in species composition 221 

(Sorensen Index) were related to differences in environmental predictors x in addition to 222 

pairwise distance between sites, calculated as log10(x + 0.05 km) from great circle distances 223 

between sites. Here I calculated pairwise absolute difference in mean photosynthetic activity 224 

or between spectral centroids of each site (see environmental predictors). For each constructed 225 

full model I furthermore calculate an R² measure as indication of overall variance explained. 226 

To evaluate the predictability and transferability of local biodiversity environment 227 

relationships, I constructed in total ten permutation sets, in each of which sites were split into 228 

testing (33%) and training (66%) datasets. For evaluating predictability, I removed one third 229 

of sites (33%) at random (Figure 1b), but weighted them by the mean distance to the study 230 

centroid, therefore placing extra weight on sites that are less likely to be in close proximity 231 

(Roberts et al., 2017). For transferability, instead of individual sites, I sampled and removed 232 

33% of entire studies and their sites from each set of comparable methodology in the 233 

PREDICTS database (Figure 1c, methods above). However across all ten permutation sets, I 234 

iteratively weighted (0-1) this sampling by whether a given study has been sampled before, 235 

therefore ensuring that each study is part of both testing and training dataset at least once.  236 

For each respective permutation set, predictability and transferability was then 237 

evaluated by using the remaining training data to estimate the regression specified above for 238 

each study or group of comparable methodology. I excluded combinations of taxonomic groups, 239 

sampling method and sampling unit for which fewer than 2 studies where available. In total 240 

77.3% of all studies had a matching study of comparable methodology and unit for the same 241 
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taxonomic group. A table with all recategorized combinations (43) can be found in the 242 

supplementary materials (SI Table 1). Using the fitted models I predicted y for the excluded 243 

‘hold-out’ 33% sites and then calculated the average sMAPE for each study in the permutation 244 

sets.  245 

Lastly, I explored possible correlates of why sMAPE for some studies is larger than for others 246 

for each of the four considered biodiversity measures. I considered a series of variables 247 

commonly related to differences in sampling design, species and individual detectability and 248 

errors in remotely-sensed environmental predictors. Specifically, I calculated for each study in 249 

the permutation sets, the median sampling extent (m) as measure of sample grain, the median 250 

sampling duration (days) of the study, the number of sites with a study as measure of effort for 251 

the whole study, the average number of samples across sites as effort for area-based sampling 252 

effort or the average time sampled (hours) for time-based sampling effort, average accessibility 253 

to sites in the study (distance to nearest city in meters) from Weiss et al. (2018), and finally 254 

factors related to possible errors in remotely-sensed environmental variables, including the 255 

amount of missing data (before gap filling) and the average topographic ruggedness per study 256 

using data from Amatulli et al. (2018). To make comparisons across these different units and 257 

scales, I standardized all variables before model fitting by subtracting the mean and dividing 258 

by one standard deviation.  259 

 I fitted linear models allowing partial pooling among studies j (Harrison et al., 2018) 260 

by adding a random intercept αk  in addition to the overall intercept, e.g. 𝑆𝑀𝐴𝑃𝐸j  =  α +261 

 αk  +  βjxj  + ϵ . These kind of models can borrow strength among studies by shrinking 262 

individual estimates towards an overall population-wide average (Harrison et al., 2018; Purvis 263 

et al., 2018). As random intercept k I used the methodology specific grouping (see methods 264 

and SI Table 1) thus pooling possible correlates among studies of similar methodology. I fitted 265 

all possible combinations between the above mentioned variables, including an interaction 266 

between sampling extent and sampling effort, finally constructing an average ensemble model 267 

of the 5% best performing models. Models were fitted in lme4 (Bates et al., 2015) using the 268 

‘MuMIn’ package in R for model averaging (Bartoń, 2015). 269 

 270 

Results 271 

The explanatory power of environmental predictors – photosynthetic activity and spectral 272 

variability – in explaining differences in biodiversity varied across biodiversity measures and 273 

individual studies. Models fitted with photosynthetic activity explained on average slightly 274 

more variance than models fitted with spectral variability, the former having an average R² of 275 

0.21 (± 0.285 SD) compared to an average R² of 0.19 (± 0.284 SD) in the latter. There was 276 

considerable variation of R² values across studies and biodiversity measures (Figure 2), with 277 

species richness on average being best explained by photosynthetic activity (R²=0.246 ± 0.311 278 

SD) or spectral variability (R²=0.22 ± 0.306 SD). Notably, correlations with species abundance 279 

were particularly low, with the R² being close to 0 (R² < 0.001) for more than a quarter of all 280 

studies (Figure 2). Meanwhile the difference in explained variance between models using 281 

photosynthetic activity compared to spectral variability was lowest for differences in assemble 282 

composition (Pearson’s R = 0.922). There were no obvious spatial (SI Figure 2) or directional 283 

patterns (SI Figure 3) in the average explained variance, although some studies notably had 284 

high explanatory power regardless of the considered biodiversity measure (SI Figure 2). 285 
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 286 

 287 

Figure 2: Explained variance (R²) calculated from models fitted between different biodiversity 288 
measures and either photosynthetic activity or spectral variability. Each point is an individual study in 289 
the PREDICTS database with point size indicating the number of sites per study and the colour being a 290 
visual indication of density in the plot. A map of the average R² per study and biodiversity measure can 291 
be found in SI Figure 2. 292 

When applying local biodiversity models to known (‘Predictability’) or different 293 

(‘Transferability’) contexts, the main issue is how accurately such models can predict local 294 

biodiversity measures in unknown situations based on the covariates of interest (Figure 3). 295 

Regardless of whether remotely-sensed photosynthetic activity or spectral variability was used 296 

as covariate, linear models were reasonably accurate for known contexts in inferring species 297 

richness (sMAPE of 19.1%), abundance (11.8%) and evenness (10.3%), but less so when 298 

inferring differences in species assemblages (49.3%). Errors in predicting local biodiversity to 299 

different contexts were expectedly larger (Figure 3), whereas particular species richness could 300 

be extrapolated relatively poorly (relative error 43.3%) similarly to differences in species 301 

assemblages (67.9%), compared to abundance (25.4%) or evenness (14.3%). Notably, when 302 

local biodiversity models are used to extrapolate richness to different contexts, the sMAPE had 303 

was larger than 50% in 35% of all studies, compared to 8.1% and 4.7% for abundance and 304 

evenness (Figure 3).   305 

 306 
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 307 

Figure 3: Distribution of the symmetric mean absolute percentage error (sMAPE) of biodiversity measures 308 
calculated from models using photosynthetic activity or spectral variability. Larger values (range 0 to 100) indicate 309 
a larger prediction error. Colours differentiate between models that evaluate Predictability and Transferability (see 310 
Methods). Point error ranges show the arithmetic mean and standard deviation of the sMAPE. 311 

There were also considerable differences in prediction error, as quantified by the sMAPE, 312 

among taxonomic groups. Across taxonomic groups and biodiversity measures the sMAPE 313 

was larger when predictions were extrapolated to novel contexts compared to predictability, 314 

particularly so for reptiles (ΔsMAPE=21.3%) and mammals (ΔsMAPE=20.8%), with the 315 

greatest difference being for reptile species richness (ΔsMAPE=33%) and abundance 316 

(ΔsMAPE=28%). The transferability of fungi (sMAPE=7.5%), and bird (sMAPE=9.1%) 317 

assemblage evenness was overall the lowest, while predictability was best for evenness and 318 

abundance of fungi (sMAPE=5.11%) and plants (sMAPE = 9.65%). Fungi and Plants had 319 

across biodiversity measures the lowest sMAPE in predictability and transferability (Figure 4). 320 

Overall, assemblage composition of vertebrates was the most poorly predicted with sMAPE 321 

estimates well over 50% throughout (Figure 4). 322 
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 323 

Figure 4: Average error (sMAPE) across models for predictability and transferability. Errors were 324 
averaged (lines indicating standard deviation) across models with different biodiversity measures 325 
(shapes) and taxonomic group (colours). Shown only for models using photosynthetic activity as 326 
predictor as spectral variability results were broadly comparable in overall patterns (SI Figure 4). 327 

I also explored across studies which factors helped explain differences in prediction error, as 328 

quantified by the sMAPE (Figure 5). Across biodiversity measures, having a greater number 329 

of samples per site most effectively reduced the sMAPE (Δβ=-3.14) for transferability, and so 330 

did sample duration but to a lesser degree (Δβ=-0.98). Meanwhile a greater number of sites per 331 

study on average increased the sMAPE (Δβ=2.23). Patterns of comparison results were broadly 332 

similar between transferability (Figure 5) and predictability (SI Figure 5), although notably a 333 

study being more accessible resulted in an average larger reduction in the sMAPE (Δβ=-1.02) 334 

for predictability (SI Figure 5). Overall variance explained by these factors in the average 335 

model was relatively low (𝑅²𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 = 0.08, 𝑅²𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙  =  0.14). 336 
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 337 

Figure 5: Averaged and standardized model coefficients of variables that best explain differences in 338 
sMAPE. Standardized coefficients smaller than zero indicate that increases in a given variable reduce 339 
study-specific prediction errors, while coefficients greater than zero increase the error. Shapes 340 
distinguish different biodiversity measures (as in Figure 3). Standardized coefficients shown for 341 
transferability permutations only as predictability results follow similar patterns (SI Figure 5). 342 

Discussion 343 

In this work I comprehensively evaluate the predictability and transferability of biodiversity-344 

environment relationships, e.g. the ability of models to infer local biodiversity measures in 345 

known and novel contexts. Particular emphasis is placed on differences among biodiversity 346 

measures, taxonomic groups and sampling circumstances. I found that the explanatory power 347 

of biodiversity-environment was relatively low for most studies (Figure 2). This aligns with a 348 

previous meta-analysis that found that relationships between biodiversity measures and 349 

photosynthetic activity cannot always be established (Duncan et al., 2015). I also discovered 350 

that prediction errors are on average lowest for evenness and abundance, and, maybe 351 

unsurprisingly, generally larger when models predictions are transferred to novel contexts 352 

(Figure 3). Biodiversity measures of sessile organisms were on average more precisely 353 

predicted (Figure 4), although not by much with predictions errors generally larger than 25% 354 

compared to observed values, particularly so for differences in species assemblage composition. 355 

Overall these results shed some doubts on the predictability and transferability of biodiversity 356 

measures, although they have to be interpreted in the context of the individual studies (Figure 357 

5) and ultimately in what is an acceptable accuracy to achieve with such predictions. 358 

 Indeed, it is not formerly defined what makes a prediction better or worse based on 359 

quantitative measures such as the cross-validated error metrics used in this study. According 360 

to Yates et al. (2018) ‘transferability’ is broadly defined as the capacity of a model to produce 361 
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predictions for a new set of predictor values that differ from those on which the model was 362 

trained. Similarly predictability can be understood as the capacity of a model to infer held-out 363 

observations (Figure 1). In this context a good precision could be understood as a model that 364 

demonstrates transferability errors smaller or comparable to errors inherent in model inferences 365 

or that don’t exceed an apriori set threshold.  I found that the predictability of local biodiversity 366 

measures was overall reasonable good with errors being smaller than 25% in most cases (Figure 367 

3), although particularly differences in assemblage composition were poorly predicted. This 368 

might indicate that photosynthetic activity and spectral variability are useful predictors for 369 

quantifying differences in local biodiversity measures, although the variance explained varied 370 

considerably across studies (Figure 2). In contrast I found that errors associated with 371 

transferability of biodiversity measures can be considerable, exceeding 50% relative to the 372 

original measure for species richness and differences in assemblage composition in many 373 

studies (Figure 3). This is especially relevant, since a number of studies spatially extrapolated 374 

local biodiversity estimates, e.g. species richness or abundance, to unsampled areas based on 375 

environmental predictors (König et al., 2017; Phillips et al., 2019; van den Hoogen et al., 2019). 376 

These approaches assume that local biodiversity-environment relationships are transferable to 377 

new, unsampled environments and the results by this work indicate that this often entails 378 

considerable errors. Ideally models are evaluated on their ability to accurately reproduce their 379 

data in novel contexts (Jung et al., 2017), quantify the uncertainty in doing so, or alternatively 380 

limit predictions to areas within the models applicability (Mesgaran et al., 2014; Meyer and 381 

Pebesma, 2021).  382 

 Biodiversity measures for certain taxonomic groups might be easier to predict than 383 

others owing to the dynamics, drivers and mechanisms underlying them (Magurran, 2004). 384 

Indeed previous studies have found species abundance to be stronger correlated with 385 

photosynthetic activity than other measures (Duncan et al., 2015; Oldeland et al., 2010). 386 

Similarly, I found that abundance-based biodiversity measures – e.g. abundance and evenness 387 

– had overall lowest precision errors (Figure 3). A potential mechanism could be that a greater 388 

photosynthetic activity or spectral variability is indicative of resources available to species 389 

populations, facilitating population growth (Hurlbert, 2004; Pettorelli et al., 2006). While 390 

species richness had the largest average explained variance compared to other biodiversity 391 

measures, it performed considerably poorer when evaluated in predictions (Figure 3). Possibly, 392 

the processes underlying patterns of local species richness, such as colonization and extinction, 393 

might cause simple predictions to fail (Chase, 2003), unless the spatial-temporal dynamics of 394 

environmental predictors are taken into account (Fernández et al., 2016). Similarly, the fact 395 

that both predictability and transferability errors were on average lowest for more sessile 396 

organisms such as Fungi and Plants (Figure 4), likely indicates that similar important processes 397 

mediate biodiversity-environment relationships. Overall this study highlights the benefit of 398 

comparing relationships across a range of studies and biodiversity measures (Duncan et al., 399 

2015; Stein et al., 2014), revealing that biodiversity-environment relationships are not 400 

universally strong.  401 

 Investigating as to what factors best explain prediction errors can help to improve future 402 

monitoring and modelling efforts. Among the most important factors that resulted in overall 403 

smaller prediction errors was the average number of samples per sites (Figure 5), which can be 404 

considered a simplified metric of sampling completeness. Given that errors were smaller for 405 

sites with many samples, it could be that many species communities in the PREDICTS database 406 
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have not been comprehensively sampled, if one assumes that biodiversity-environment 407 

relationships are strongest in equilibrium. There are ways to account for detectability and 408 

observation biases (Royle et al., 2005), which however was not feasible for the studies in the 409 

PREDICTS database given the heterogeneity of sampling information. Thus better standards 410 

for sampling techniques and monitoring are advisable to enable better comparability 411 

(Montgomery et al., 2021). 412 

 Interestingly, and in contrast to previous studies (Chase and Knight, 2013), differences 413 

in sample grain, e.g. the linear scale of sampling, did not help to explain why biodiversity 414 

measures could be better predicted in some studies. A likely explanation is that the contrasts 415 

between sampling extents are relatively small (most studies in the PREDICTS database were 416 

sampled at scales between ~1m and 4000m). Scale-dependent effects might only become 417 

apparent at spatial scales that go beyond the local scale. A spatial mismatch at the lower end, 418 

e.g. that the grain of the used MODIS data is too coarse to be matched to the extent of sampling 419 

in PREDICTS studies, could be another explanation, however previous studies that used very-420 

high resolution satellite imagery (<10m) did not find much more accurate predictions than 421 

presented here (Dalmayne et al., 2013; Hofmann et al., 2017). Other, non-explored factors 422 

could further explain differences in prediction error, such as for instance preceding changes in 423 

environmental predictors (Jung et al., 2019b, 2019a) or a better accounting of differences in 424 

species traits (Duncan et al., 2015; Regos et al., 2019). Future efforts could evaluate if inter- 425 

and intra-specific variability of species traits can be more precisely linked to differences in 426 

environmental heterogeneity. 427 

 In this work I used photosynthetic activity and spectral availability as measures of 428 

environmental heterogeneity, acknowledging that other characterizations of environmental 429 

variability (e.g. soil, micro-climate) could be more important (Stein and Kreft, 2015). However 430 

focussing solely on remotely-sensed variables ensures global consistency and is frequently 431 

used to predict local biodiversity measures (Dalmayne et al., 2013; Hofmann et al., 2017; 432 

Randin et al., 2020). The key limitation is that environmental heterogeneity is not necessarily 433 

related to differences in land use and land-use intensity, for which the PREDICTS database 434 

was explicitly designed (Purvis et al., 2018). Indeed it could be that the potential of remotely 435 

sensed environmental heterogeneity in predicting local biodiversity measures has been 436 

exaggerated, and better characterizations of land use and its management from remote sensing 437 

have to be developed. Further, given the complexities of local species community assembly 438 

(Chase, 2003; Leibold et al., 2004), any claim that a direct prediction of ‘biodiversity’ through 439 

remotely-sensed proxies (Randin et al., 2020; Rocchini et al., 2016) should thus be taken with 440 

a grain of salt. Remote sensers are at best able to measure changes in habitat extent or condition; 441 

and those changes do not necessarily correlate strongly with changes in biodiversity measures. 442 

Future work should ideally focus on the principal mechanisms of species community assembly, 443 

their practical incorporation into models and how remote sensing can assist in capturing 444 

relevant predictors. 445 

Conclusion 446 

The findings presented in this study have particular implications for spatial projections of local 447 

biodiversity-environment relationships. Ecological models can and should be used for 448 

predictions (Houlahan et al., 2017; Tredennick et al., 2021), however caveats and limitations 449 

should be better identified, communicated and hopefully build upon. We need to create models 450 
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that enable biodiversity-environment relationships to be more predictable across scales and 451 

novel contexts, especially when applied to conservation contexts (Santini et al., 2021). Given 452 

the considerable drops in precision for transferability, key recommendations from this work 453 

could be that spatial projections of local biodiversity measures at least provide estimates of 454 

uncertainty or limit their projections to areas of model applicability (Meyer and Pebesma, 455 

2021). To improve future biodiversity predictions I further propose that models (a) should be 456 

evaluated comprehensively based on their ability to create accurate predictions, (b) account 457 

better for underlying hierarchies and sampling effects, (c) ensure that environmental predictors 458 

are quantified in a globally replicable and transparent way. Quantitative correlative models 459 

might not be the most precise in many situations, but that does not invalidate their use if 460 

shortcomings are appropriately communicated. 461 
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