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Abstract

Biodiversity varies in space and time, and often in response to environmental heterogeneity.
Indicators in the form of local biodiversity measures — such as species richness or abundance
— are common tools to capture this variation. The rise of readily available remote sensing data
has enabled the characterization of environmental heterogeneity in a globally robust and
replicable manner. Based on the assumption that differences in biodiversity measures are
generally related to differences in environmental heterogeneity, these data have enabled
projections and extrapolations of biodiversity in space and time. However so far little work has
been done on quantitatively evaluating if and how accurately local biodiversity measures can
be predicted. Here | combine estimates of biodiversity measures from local biodiversity
surveys with remotely-sensed data on environmental heterogeneity globally. I then determine
through a cross-validation framework how accurately local biodiversity measures can be
predicted within (“predictability”) and across similar (“transferability*)biodiversity surveys. |
found that prediction errors can be substantial, with error magnitudes varying between different
biodiversity measures, taxonomic groups, sampling techniques and types of environmental
heterogeneity characterizations. And although errors associated with model predictability were
in many cases relatively low, these results question - particular for transferability - our
capability to accurately predict and project local biodiversity measures based on environmental
heterogeneity. 1 make the case that future predictions should be evaluated based on their
accuracy and inherent uncertainty, and ecological theories be tested against whether we are
able to make accurate predictions from local biodiversity data.

Keywords: Spectral-diversity, biodiversity-productivity, transferability, PREDICTS, remote-
sensing, extrapolation, prediction uncertainty
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Introduction

Local biodiversity is known to vary with environmental heterogeneity (Hillebrand, 2004; Holt
etal., 2017; Stein and Kreft, 2015), often quantified as difference in availability and variability
of resources. These resources include the diversity of habitats and landscapes, or the
availability and structural complexity of vegetation or rocks (Stein and Kreft, 2015). Several
theories have been postulated as possible source of the relationship with local biodiversity.
These include, among others, the widely tested species-energy (Duncan et al., 2015; Evans et
al., 2005; Hurlbert, 2004), the species spectral-heterogeneity (Oldeland et al., 2010; Rocchini
et al., 2010) or the species-geodiversity hypotheses (Alahuhta et al., 2020; Theobald et al.,
2015). However, despite a number of global meta-analyses on the relationship between
environmental heterogeneity and local biodiversity (Duncan et al., 2015; Stein et al., 2014), it
has rarely been comprehensively investigated how predictable and transferable these
relationships are, especially across taxonomic and functional groups and different biodiversity
measures.

Predictions made by statistical models are key for our understanding of the living world
and for the creation of outputs relevant for conservation management (Houlahan et al., 2017;
Miller et al., 2004). Because of the evermore increasing demand for scenarios and spatial maps
by policy makers and land managers, biodiversity modellers often need to rely on inter- and
extrapolations of model predictions across space and time (Miller et al., 2004). These
predictions need to be precise and accurate enough for the context and decisions they are meant
to inform (Santini et al., 2021). Thus model predictions should be investigated for their
predictability, e.g. a model’s ability to accurately predict correlative relationships within the
same spatial and/or temporal context, and transferability, e.g. the capacity to produce accurate
predictions for conditions dissimilar to those of the data for which a model was trained (Petchey
et al., 2015; Tredennick et al., 2021; Yates et al., 2018). And yet, model predictability and
transferability is rarely consistently assessed and, when studied in more detail, results rarely
look promising.

There is increasing evidence that models using variables of environmental
heterogeneity often fail to accurately predict and transfer biodiversity environment
relationships. Studies have found that the predictability of local biodiversity as function of a
difference in environmental heterogeneity are highly variable between geographic regions
(Phillips et al., 2017) and local contexts (Duncan et al., 2015; Jung et al., 2017). Similarly,
transferability of model predictions to spatial or temporally distinct regions has long been
recognized as key issue for species distribution models (Mesgaran et al., 2014; Regos et al.,
2019; Zurell et al., 2012) or models using local and regional biodiversity measures (Parmentier
et al., 2011; Schmidtlein and Fassnacht, 2017). Despite the development of techniques for
assessing the novel parameter space of a model (Meyer and Pebesma, 2021; Zurell et al., 2012),
the limited uptake of modellers to evaluate and honestly present model uncertainty can hinder
the application and affect trust in biodiversity model predictions (Rapacciuolo, 2019).

An outstanding issue for assessing predictability and transferability of local biodiversity
environment relationships in macroecological studies has been the various ways in which
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78  environmental heterogeneity is quantified (Stein and Kreft, 2015). Recent advances in remote
79  sensing and cloud-processing have enabled the robust quantification of environmental
80  heterogeneity at high spatial and temporal resolution (Gorelick et al., 2017; Randin et al., 2020).
81  Through repeated satellite observations, measures of environmental heterogeneity, such as
82  differences in photosynthetic activity or spectral variability as proxies for vegetation
83  productivity, habitat condition and structure (Radeloff et al., 2019; Rocchini et al., 2010), can
84  be robustly quantified. Subsequently, these measures have been incorporated in statistical
85  models for the prediction of species distributions (Cord et al., 2013; He et al., 2015) or to infer
86  differences in local biodiversity measures (Goetz et al., 2014; Jung et al., 2020, 2019a;
87  Oldeland et al., 2010; Rocchini et al., 2015). Remote sensing data can therefore — opposed to
88  study-specific predictor variables commonly included in ecological meta-analysis — serve as
89  globally consistent predictor for studies of biodiversity environment relationships (Duncan et
90 al.,, 2015). With the availability of new global databases on local biodiversity in-situ
91  observations (Hudson et al., 2017), it has become possible to investigate predictability and
92 transferability of biodiversity environment relationships in greater detail than what has been
93  done so far.

94 There are a number of shortcomings in previous analyses on the predictability and

95 transferability of local biodiversity environment relationships. Most studies have (a) focussed

96 on effect sizes among studies (e.g. strength of inference), rather than the predictability and

97 transferability of this relationships (Tredennick et al., 2021), (b) tended to focus mostly on

98  species richness (Stein et al., 2014), thus ignoring other biodiversity measures such as

99  abundance or differences in species assemblage composition, (c) used variables of varying
100 origin to capture effects of changes in environmental heterogeneity on biodiversity
101 (Shackelford et al., 2017; Supp and Ernest, 2014) or have (d) focussed only on regional extents
102 and single taxonomic groups such as birds, butterflies or plants (Goetz et al., 2014; Kerr et al.,
103  2001; Oldeland et al., 2010; Schmidtlein and Fassnacht, 2017). Quantitatively addressing these
104  issues is key, if we are to understand in which cases spatial and/or temporal predictions of local
105  biodiversity measures are reliable and accurate.

106 In this study | investigate the predictability and transferability of model-based
107  predictions on local biodiversity environment relationships. The expectation is that (i)
108  predictability is generally stronger than transferability, (ii) transferability of species-
109  environment relationships affects some biodiversity measures and taxonomic groups are less
110 transferable than others, and that (iii) unexplained variation is predominantly linked to
111 differences in study design, e.g. spatial scale and sampling duration. To test this, | combine
112 local biodiversity data from globally distributed surveys with remotely-sensed environmental
113 predictors quantifying photosynthetic activity (Duncan et al., 2015; Evans et al., 2005; Stein et
114  al., 2014) and spectral variability (Rocchini et al., 2010). Using variations of linear models, |
115  assess the predictability, quantified as overall and within-study reduction in prediction error,
116  and transferability, quantified as reduction in prediction error between different studies of
117  comparable study design (Figure 1). | expect that the results of this work provide further
118 insights into the generality of local biodiversity-environment relationships at a global scale,
119  which hopefully stimulates a debate on whether predicted local biodiversity measures, such as
120  abundance or richness, can accurately be predicted or transferred to unsampled regions.

121
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123 Figure 1: (a) Distribution of two hypothetical studies (coloured in orange and red) and their sites at which a biodiversity
124 measure and environmental predictor has been calculated. The Normalized Difference Vegetation Index (NDVI) is shown as
125 example of a remotely sensed environmental predictor. Shown is a simplified procedure for investigating the (b) predictability
126 and (c) transferability of local biodiversity-environment relationships. For (b) ‘testing” sites within a studies are removed at
127 random, regressions refitted and the within-study prediction error quantified in relation to study properties. Contrastingly, in
128 (c) regression fits from one study (orange) are used to predict permuted biodiversity estimates in another study (red) that have
129 been removed (beige), with the prediction error quantified in relation to study properties.

130
131 Methods

132 Biodiversity data preparation

133 For data on biodiversity | took species assemblage data from the global Projecting Responses
134  of Ecological Diversity In Changing Terrestrial Systems (PREDICTS) database (Hudson et
135 al., 2017), which contains records of species occurrence and abundance at spatial-explicit sites
136 ‘sites’ as reported in published ‘studies’. PREDICTS includes only studies which differ in
137  ‘land-use’ and/or ‘land-use intensity’ and have spatial and temporal information associated
138  with them, e.g. sampling extent and date of sampling (Hudson et al., 2014). Studies in the
139  PREDICTS database vary widely in study properties, notably in taxonomic coverage (e.g.
140  invertebrates, plants, birds,...), spatial grain (0.05 — 39,150m, median = 60m), sampling start
141 (1984 - 2013), sampling effort (>0 — 4,382 days, median = 91 days) and methodology (flight
142 traps, transects,...). Owing to these differences, a hierarchical modelling framework is usually
143 necessary when analysing biodiversity estimates from databases such as PREDICTS (Purvis et
144  al., 2018).

145 For each study j and site i in the PREDICTS database, | calculated four different site-
146  based measures of local biodiversity: total Species richness (S;), total log-transformed
147  abundance (log;oA;), the arcsine square root transformed probability of interspecific

148  encounter as measure of assemblage evenness (sin~! \/WEi) and the logit transformed pairwise
149  Sgrensen similarity index as measure of difference in assemblage composition (logit SIM;_; ).
150  Similar to previous studies | assumed that, in the few cases where within-study study effort
151  differs among sites, the abundance of species individuals increases linearly with sampling
152  effort (Newbold et al., 2015). In cases where the sampling extent of a site is missing in the
153 PREDICTS database, | approximated the mean sampling extent using a heuristic that fills
154  missing estimates with the average used within studies of the same sampling method and/or
155  taxonomic group. Earlier work has shown that this approximation can accurately fill missing
156 sampling extents (Jung et al., 2019a). Lastly, | created, based on the taxonomic group and
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157  sampling method attributed to a study in the PREDICTS databased, a new factor variable that
158  groups studies of comparable method, unit and broad taxonomic grouping (Sl Table 1), such
159  as for instance studies involving bird individuals that were counted using point counts. | realize
160  that not all differences in sampling techniques can attributed to this new contrast between sites
161  and therefore post-hoc analyse the contribution of differing sampling methods in explaining
162  the cross-validated model error (see statistical analysis).

163  Environmental predictors

164  Inthis work I exclusively used remotely-sensed environmental predictors, which — opposed to
165  commonly-used study-specific differences — (1) have medium to high spatial resolution, (2) are
166  consistently quantified at global extent in comparable units, (3) are temporally explicit, often
167  differing between years, (4) correlate with differences in local biodiversity (Duncan et al.,
168  2015; Jung et al., 2019a) and land use (Mueller et al., 2014; Yin et al., 2014).

169 For each site in the PREDICTS databases, | calculated two different remotely sensed
170  predictors that reflect environmental heterogeneity. First, 16-day time series of atmospherically
171 corrected spectral observations (MCD43A v006, [Schaaf et al. 2002]) from the Moderate
172 Resolution Imaging Spectroradiometer (MODIS) sensor on board the Terra and Aqua satellites
173 were downloaded for each PREDICTS site from Google Earth Engine (Gorelick et al., 2017).
174  Time series of remotely sensed spectral observations often have data gaps caused by clouds or
175  sensor errors. To reduce the number of data gaps, | first aggregated (arithmetic mean) the
176  obtained time series to monthly estimates for each spectral observation (band 1 to 7). The
177 overall proportion of missing data in the aggregated time series was low (mean: 5.9% + 10.5
178  SD), nevertheless | subjected the aggregated time series to a missing value imputation using a
179  Kalman smoother on the whole time series (Hyndman and Khandakar, 2008) as implemented
180 in the ‘imputeTS’ R package (Moritz and Bartz-Beielstein, 2017). Whenever the imputation
181  did not converge, a linear interpolation was used to impute missing observations among years.
182  Only data gaps smaller than five months were filled in that manner and sites with six or more
183  missing months were excluded from subsequent analyses. From the full time series, | then
184  selected for each site the first year (12 months) of data preceding biodiversity sampling as
185  representation of environmental heterogeneity (Jung et al., 2019a).

186 Second, I calculated from the remaining time series of spectral observations, as proxy
187  of overall photosynthetic activity, the arithmetic mean of the two-band Enhanced Vegetation
188  Index (EVI, Jiang et al. 2008). Variations in photosynthetic activity have previously been
189  shown to reflect continuous gradients in land cover (Huete et al., 2002; Radeloff et al., 2019)
190  and directly influence local biodiversity measures and life history (Jung et al., 2019a, 2019b;
191  Oldeland et al., 2010; Pettorelli et al., 2005). Furthermore, | also calculated a measure of overall
192  spectral heterogeneity from the spectral data (Randin et al., 2020; Rocchini et al., 2015, 2010).
193  Spectral heterogeneity is expected to give a more nuanced view on habitat structure and
194  condition than any single vegetation index. To capture spectral heterogeneity, I first calculated
195  a principal component analysis of all spectral observations (bands 1-7) and then calculated
196  from the first two axes, which on average explained 93% + 5.92 SD of all variation, the centroid
197  of the resulting bivariate scatter plot. Spectral heterogeneity per site was then summarized as
198  the mean Euclidean distance to this centroid. Both environmental predictors, photosynthetic
199  activity and spectral heterogeneity are only weakly correlated (Pearson’s r = -0.21, SI Figure
200 1). In total 21821 sites had suitable remote sensing data for subsequent analyses, with the
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201 remainder (4028 sites) being sampled either too long ago for sufficient remote sensing coverage
202  from MODIS (2000 onwards) or having too many data gaps.

203  Statistical analysis

204  In the context of this work, ‘predictability’ is defined as the ability to accurately infer a
205  biodiversity measure y;; based on the environmental covariates x;; among the sites i of a

206 PREDICTS study j (Figure 1b), and ‘transferability’ as the ability to accurately predict y; based
207  on the environmental covariates x; across studies of the same sampling methodology and
208  taxonomic group (Figure 1c).

209 In both predictability and transferability variants prediction accuracy is assessed by
210  calculating for each study the symmetric mean absolute percentage error (sMAPE; =
100 g Ypredicted ~ Yobserved

n i=1 (Iyobserved| + |Ypredicted|)
212 the ones predicted by the model (ypredictea) fOr a given site i. The SMAPE quantifies the
213 percentage error in amodel prediction and is bounded between 0 and 100%. Alternative metrics
214  to quantify prediction precision and accuracy exists, however in this case the SMAPE is
215  preferrable for PREDICTS style data owing to its simplicity and inter-comparability between
216  studies that use biodiversity measures of different units and value ranges.

211

) between the observed biodiversity measures (yopserved) and

217 | constructed separate models for each study j and biodiversity measure y in site i, by assuming
218 thaty; = o; + Bix; + €, where a is the study specific intercept, S a slope coefficient, x the
219  environmental predictor and e an error term. Models of S; were assumed to have Poisson
220  distributed errors and a log-link function (logy), while models of A;, PIE; and SIM;_; were
221  assumed to have Gaussian distributed errors. Pairwise similarities in species composition
222 (Sorensen Index) were related to differences in environmental predictors x in addition to
223 pairwise distance between sites, calculated as log;,(x + 0.05 km) from great circle distances
224  between sites. Here | calculated pairwise absolute difference in mean photosynthetic activity
225  or between spectral centroids of each site (see environmental predictors). For each constructed
226  full model I furthermore calculate an R2 measure as indication of overall variance explained.

227 To evaluate the predictability and transferability of local biodiversity environment
228 relationships, | constructed in total ten permutation sets, in each of which sites were split into
229  testing (33%) and training (66%) datasets. For evaluating predictability, I removed one third
230  of sites (33%) at random (Figure 1b), but weighted them by the mean distance to the study
231  centroid, therefore placing extra weight on sites that are less likely to be in close proximity
232 (Roberts et al., 2017). For transferability, instead of individual sites, | sampled and removed
233 33% of entire studies and their sites from each set of comparable methodology in the
234  PREDICTS database (Figure 1c, methods above). However across all ten permutation sets, |
235  iteratively weighted (0-1) this sampling by whether a given study has been sampled before,
236  therefore ensuring that each study is part of both testing and training dataset at least once.

237 For each respective permutation set, predictability and transferability was then
238  evaluated by using the remaining training data to estimate the regression specified above for
239  eachstudy or group of comparable methodology. | excluded combinations of taxonomic groups,
240  sampling method and sampling unit for which fewer than 2 studies where available. In total
241 77.3% of all studies had a matching study of comparable methodology and unit for the same
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242  taxonomic group. A table with all recategorized combinations (43) can be found in the
243 supplementary materials (SI Table 1). Using the fitted models I predicted y for the excluded
244 ‘hold-out’ 33% sites and then calculated the average SMAPE for each study in the permutation
245  sets.

246  Lastly, I explored possible correlates of why SMAPE for some studies is larger than for others
247  for each of the four considered biodiversity measures. | considered a series of variables
248  commonly related to differences in sampling design, species and individual detectability and
249  errors in remotely-sensed environmental predictors. Specifically, I calculated for each study in
250 the permutation sets, the median sampling extent (m) as measure of sample grain, the median
251 sampling duration (days) of the study, the number of sites with a study as measure of effort for
252 the whole study, the average number of samples across sites as effort for area-based sampling
253  effort or the average time sampled (hours) for time-based sampling effort, average accessibility
254  to sites in the study (distance to nearest city in meters) from Weiss et al. (2018), and finally
255  factors related to possible errors in remotely-sensed environmental variables, including the
256 amount of missing data (before gap filling) and the average topographic ruggedness per study
257  using data from Amatulli et al. (2018). To make comparisons across these different units and
258  scales, | standardized all variables before model fitting by subtracting the mean and dividing
259 by one standard deviation.

260 | fitted linear models allowing partial pooling among studies j (Harrison et al., 2018)
261 by adding a random intercept ay in addition to the overall intercept, e.g. SMAPE; = a +
262  ay + Bjx; + €. These kind of models can borrow strength among studies by shrinking
263 individual estimates towards an overall population-wide average (Harrison et al., 2018; Purvis
264 et al., 2018). As random intercept k | used the methodology specific grouping (see methods
265 and Sl Table 1) thus pooling possible correlates among studies of similar methodology. I fitted
266  all possible combinations between the above mentioned variables, including an interaction
267  between sampling extent and sampling effort, finally constructing an average ensemble model
268  of the 5% best performing models. Models were fitted in Ime4 (Bates et al., 2015) using the
269  ‘MuMIn’ package in R for model averaging (Barton, 2015).

270

271 Results

272 The explanatory power of environmental predictors — photosynthetic activity and spectral
273  variability — in explaining differences in biodiversity varied across biodiversity measures and
274  individual studies. Models fitted with photosynthetic activity explained on average slightly
275  more variance than models fitted with spectral variability, the former having an average R? of
276 0.21 (£ 0.285 SD) compared to an average R? of 0.19 (x 0.284 SD) in the latter. There was
277  considerable variation of R2 values across studies and biodiversity measures (Figure 2), with
278  species richness on average being best explained by photosynthetic activity (R?=0.246 + 0.311
279  SD) or spectral variability (R2=0.22 + 0.306 SD). Notably, correlations with species abundance
280  were particularly low, with the R2 being close to 0 (R2 < 0.001) for more than a quarter of all
281  studies (Figure 2). Meanwhile the difference in explained variance between models using
282  photosynthetic activity compared to spectral variability was lowest for differences in assemble
283  composition (Pearson’s R =0.922). There were no obvious spatial (SI Figure 2) or directional
284  patterns (SI Figure 3) in the average explained variance, although some studies notably had
285  high explanatory power regardless of the considered biodiversity measure (SI Figure 2).
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288  Figure 2: Explained variance (R?) calculated from models fitted between different biodiversity
289  measures and either photosynthetic activity or spectral variability. Each point is an individual study in
290 the PREDICTS database with point size indicating the number of sites per study and the colour being a
291  visual indication of density in the plot. A map of the average R2 per study and biodiversity measure can
292  be found in Sl Figure 2.

293  When applying local biodiversity models to known (‘Predictability’) or different
294  (‘Transferability’) contexts, the main issue is how accurately such models can predict local
295  biodiversity measures in unknown situations based on the covariates of interest (Figure 3).
296  Regardless of whether remotely-sensed photosynthetic activity or spectral variability was used
297  as covariate, linear models were reasonably accurate for known contexts in inferring species
298  richness (SMAPE of 19.1%), abundance (11.8%) and evenness (10.3%), but less so when
299 inferring differences in species assemblages (49.3%). Errors in predicting local biodiversity to
300 different contexts were expectedly larger (Figure 3), whereas particular species richness could
301 be extrapolated relatively poorly (relative error 43.3%) similarly to differences in species
302  assemblages (67.9%), compared to abundance (25.4%) or evenness (14.3%). Notably, when
303 local biodiversity models are used to extrapolate richness to different contexts, the SMAPE had
304 was larger than 50% in 35% of all studies, compared to 8.1% and 4.7% for abundance and
305 evenness (Figure 3).

306
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308 Figure 3: Distribution of the symmetric mean absolute percentage error (SMAPE) of biodiversity measures
309 calculated from models using photosynthetic activity or spectral variability. Larger values (range 0 to 100) indicate

310  alarger prediction error. Colours differentiate between models that evaluate Predictability and Transferability (see
311 Methods). Point error ranges show the arithmetic mean and standard deviation of the SMAPE.

312 There were also considerable differences in prediction error, as quantified by the SMAPE,
313  among taxonomic groups. Across taxonomic groups and biodiversity measures the SMAPE
314  was larger when predictions were extrapolated to novel contexts compared to predictability,
315  particularly so for reptiles (ASMAPE=21.3%) and mammals (AsMAPE=20.8%), with the
316  greatest difference being for reptile species richness (AsMAPE=33%) and abundance
317 (AsMAPE=28%). The transferability of fungi (SMAPE=7.5%), and bird (SMAPE=9.1%)
318 assemblage evenness was overall the lowest, while predictability was best for evenness and
319  abundance of fungi (SMAPE=5.11%) and plants (SMAPE = 9.65%). Fungi and Plants had
320  across biodiversity measures the lowest SMAPE in predictability and transferability (Figure 4).
321 Overall, assemblage composition of vertebrates was the most poorly predicted with SMAPE
322  estimates well over 50% throughout (Figure 4).
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324  Figure 4: Average error (SMAPE) across models for predictability and transferability. Errors were
325 averaged (lines indicating standard deviation) across models with different biodiversity measures
326  (shapes) and taxonomic group (colours). Shown only for models using photosynthetic activity as
327  predictor as spectral variability results were broadly comparable in overall patterns (SI Figure 4).

328 | also explored across studies which factors helped explain differences in prediction error, as
329  quantified by the SMAPE (Figure 5). Across biodiversity measures, having a greater number
330 of samples per site most effectively reduced the SMAPE (Ap=-3.14) for transferability, and so
331  did sample duration but to a lesser degree (Ap=-0.98). Meanwhile a greater number of sites per
332 study on average increased the SMAPE (Ap=2.23). Patterns of comparison results were broadly
333 similar between transferability (Figure 5) and predictability (SI Figure 5), although notably a
334  study being more accessible resulted in an average larger reduction in the SMAPE (Ap=-1.02)
335  for predictability (SI Figure 5). Overall variance explained by these factors in the average
336 model was relatively low (R?pqrginar = 0.08, R? congitionar = 0.14).
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338  Figure 5: Averaged and standardized model coefficients of variables that best explain differences in
339 sMAPE. Standardized coefficients smaller than zero indicate that increases in a given variable reduce
340  study-specific prediction errors, while coefficients greater than zero increase the error. Shapes
341  distinguish different biodiversity measures (as in Figure 3). Standardized coefficients shown for
342  transferability permutations only as predictability results follow similar patterns (Sl Figure 5).

343 Discussion

344  In this work | comprehensively evaluate the predictability and transferability of biodiversity-
345  environment relationships, e.g. the ability of models to infer local biodiversity measures in
346  known and novel contexts. Particular emphasis is placed on differences among biodiversity
347  measures, taxonomic groups and sampling circumstances. | found that the explanatory power
348  of biodiversity-environment was relatively low for most studies (Figure 2). This aligns with a
349  previous meta-analysis that found that relationships between biodiversity measures and
350 photosynthetic activity cannot always be established (Duncan et al., 2015). | also discovered
351 that prediction errors are on average lowest for evenness and abundance, and, maybe
352 unsurprisingly, generally larger when models predictions are transferred to novel contexts
353  (Figure 3). Biodiversity measures of sessile organisms were on average more precisely
354  predicted (Figure 4), although not by much with predictions errors generally larger than 25%
355  compared to observed values, particularly so for differences in species assemblage composition.
356  Overall these results shed some doubts on the predictability and transferability of biodiversity
357  measures, although they have to be interpreted in the context of the individual studies (Figure
358  5) and ultimately in what is an acceptable accuracy to achieve with such predictions.

359 Indeed, it is not formerly defined what makes a prediction better or worse based on
360  quantitative measures such as the cross-validated error metrics used in this study. According
361  to Yates et al. (2018) ‘transferability’ is broadly defined as the capacity of a model to produce
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362  predictions for a new set of predictor values that differ from those on which the model was
363 trained. Similarly predictability can be understood as the capacity of a model to infer held-out
364  observations (Figure 1). In this context a good precision could be understood as a model that
365  demonstrates transferability errors smaller or comparable to errors inherent in model inferences
366  or that don’t exceed an apriori set threshold. | found that the predictability of local biodiversity
367  measures was overall reasonable good with errors being smaller than 25% in most cases (Figure
368  3), although particularly differences in assemblage composition were poorly predicted. This
369  might indicate that photosynthetic activity and spectral variability are useful predictors for
370 quantifying differences in local biodiversity measures, although the variance explained varied
371 considerably across studies (Figure 2). In contrast | found that errors associated with
372 transferability of biodiversity measures can be considerable, exceeding 50% relative to the
373  original measure for species richness and differences in assemblage composition in many
374  studies (Figure 3). This is especially relevant, since a number of studies spatially extrapolated
375 local biodiversity estimates, e.g. species richness or abundance, to unsampled areas based on
376  environmental predictors (Konig et al., 2017; Phillips et al., 2019; van den Hoogen et al., 2019).
377  These approaches assume that local biodiversity-environment relationships are transferable to
378  new, unsampled environments and the results by this work indicate that this often entails
379  considerable errors. Ideally models are evaluated on their ability to accurately reproduce their
380 data in novel contexts (Jung et al., 2017), quantify the uncertainty in doing so, or alternatively
381  limit predictions to areas within the models applicability (Mesgaran et al., 2014; Meyer and
382  Pebesma, 2021).

383 Biodiversity measures for certain taxonomic groups might be easier to predict than
384  others owing to the dynamics, drivers and mechanisms underlying them (Magurran, 2004).
385 Indeed previous studies have found species abundance to be stronger correlated with
386  photosynthetic activity than other measures (Duncan et al., 2015; Oldeland et al., 2010).
387  Similarly, | found that abundance-based biodiversity measures — e.g. abundance and evenness
388  — had overall lowest precision errors (Figure 3). A potential mechanism could be that a greater
389  photosynthetic activity or spectral variability is indicative of resources available to species
390 populations, facilitating population growth (Hurlbert, 2004; Pettorelli et al., 2006). While
391  species richness had the largest average explained variance compared to other biodiversity
392  measures, it performed considerably poorer when evaluated in predictions (Figure 3). Possibly,
393  the processes underlying patterns of local species richness, such as colonization and extinction,
394  might cause simple predictions to fail (Chase, 2003), unless the spatial-temporal dynamics of
395 environmental predictors are taken into account (Fernandez et al., 2016). Similarly, the fact
396 that both predictability and transferability errors were on average lowest for more sessile
397 organisms such as Fungi and Plants (Figure 4), likely indicates that similar important processes
398 mediate biodiversity-environment relationships. Overall this study highlights the benefit of
399 comparing relationships across a range of studies and biodiversity measures (Duncan et al.,
400 2015; Stein et al., 2014), revealing that biodiversity-environment relationships are not
401  universally strong.

402 Investigating as to what factors best explain prediction errors can help to improve future
403  monitoring and modelling efforts. Among the most important factors that resulted in overall
404  smaller prediction errors was the average number of samples per sites (Figure 5), which can be
405  considered a simplified metric of sampling completeness. Given that errors were smaller for
406  sites with many samples, it could be that many species communities in the PREDICTS database
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407 have not been comprehensively sampled, if one assumes that biodiversity-environment
408 relationships are strongest in equilibrium. There are ways to account for detectability and
409  observation biases (Royle et al., 2005), which however was not feasible for the studies in the
410 PREDICTS database given the heterogeneity of sampling information. Thus better standards
411  for sampling techniques and monitoring are advisable to enable better comparability
412  (Montgomery et al., 2021).

413 Interestingly, and in contrast to previous studies (Chase and Knight, 2013), differences
414  in sample grain, e.g. the linear scale of sampling, did not help to explain why biodiversity
415  measures could be better predicted in some studies. A likely explanation is that the contrasts
416  between sampling extents are relatively small (most studies in the PREDICTS database were
417 sampled at scales between ~1m and 4000m). Scale-dependent effects might only become
418  apparent at spatial scales that go beyond the local scale. A spatial mismatch at the lower end,
419  e.g.that the grain of the used MODIS data is too coarse to be matched to the extent of sampling
420 in PREDICTS studies, could be another explanation, however previous studies that used very-
421  high resolution satellite imagery (<10m) did not find much more accurate predictions than
422  presented here (Dalmayne et al., 2013; Hofmann et al., 2017). Other, non-explored factors
423  could further explain differences in prediction error, such as for instance preceding changes in
424  environmental predictors (Jung et al., 2019b, 2019a) or a better accounting of differences in
425  species traits (Duncan et al., 2015; Regos et al., 2019). Future efforts could evaluate if inter-
426  and intra-specific variability of species traits can be more precisely linked to differences in
427  environmental heterogeneity.

428 In this work | used photosynthetic activity and spectral availability as measures of
429  environmental heterogeneity, acknowledging that other characterizations of environmental
430 variability (e.g. soil, micro-climate) could be more important (Stein and Kreft, 2015). However
431  focussing solely on remotely-sensed variables ensures global consistency and is frequently
432  used to predict local biodiversity measures (Dalmayne et al., 2013; Hofmann et al., 2017,
433  Randin et al., 2020). The key limitation is that environmental heterogeneity is not necessarily
434  related to differences in land use and land-use intensity, for which the PREDICTS database
435  was explicitly designed (Purvis et al., 2018). Indeed it could be that the potential of remotely
436 sensed environmental heterogeneity in predicting local biodiversity measures has been
437  exaggerated, and better characterizations of land use and its management from remote sensing
438  have to be developed. Further, given the complexities of local species community assembly
439  (Chase, 2003; Leibold et al., 2004), any claim that a direct prediction of ‘biodiversity’ through
440  remotely-sensed proxies (Randin et al., 2020; Rocchini et al., 2016) should thus be taken with
441  agrain of salt. Remote sensers are at best able to measure changes in habitat extent or condition;
442  and those changes do not necessarily correlate strongly with changes in biodiversity measures.
443  Future work should ideally focus on the principal mechanisms of species community assembly,
444  their practical incorporation into models and how remote sensing can assist in capturing
445  relevant predictors.

ase  Conclusion

447  The findings presented in this study have particular implications for spatial projections of local
448  biodiversity-environment relationships. Ecological models can and should be used for
449  predictions (Houlahan et al., 2017; Tredennick et al., 2021), however caveats and limitations
450  should be better identified, communicated and hopefully build upon. We need to create models
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451  that enable biodiversity-environment relationships to be more predictable across scales and
452  novel contexts, especially when applied to conservation contexts (Santini et al., 2021). Given
453  the considerable drops in precision for transferability, key recommendations from this work
454  could be that spatial projections of local biodiversity measures at least provide estimates of
455  uncertainty or limit their projections to areas of model applicability (Meyer and Pebesma,
456  2021). To improve future biodiversity predictions | further propose that models (a) should be
457  evaluated comprehensively based on their ability to create accurate predictions, (b) account
458  better for underlying hierarchies and sampling effects, (c) ensure that environmental predictors
459 are quantified in a globally replicable and transparent way. Quantitative correlative models
460  might not be the most precise in many situations, but that does not invalidate their use if
461  shortcomings are appropriately communicated.
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