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Abstract

While chemokines were originally described for their ability to induce cell migration, many studies
show how chemokines also take part in a variety of other cell functions, acting as adaptable
messengers in the communication between a diversity of cell types. In the nervous system,
chemokines participate both in physiological and pathological processes, and while their expression
is often described on glial and immune cells, growing evidence describe the expression of
chemokines and their receptors in neurons, highlighting, their potential in auto- and paracrine
signalling. In this study we analysed the role of nociception in the neuronal chemokinome, and their
role in axonal growth. We found that stimulating TRPV1* nociceptors induces a transient increase in
CCL21. Interestingly we found that; this CCL21 increases neurite growth of large diameter
proprioceptors in vitro. Consistent with this, we show that proprioceptors express the CCL21
receptor CCR7, and a CCR7 neutralizing antibody dose-dependently attenuates CCL21-induced
neurite outgrowth. Mechanistically, we found that CCL21 binds locally to its receptor CCR7 at the
growth cone, activating the downstream MEK-ERK pathway, that in turn activates N-WASP,
triggering actin filament ramification in the growth cone, resulting in increased axonal growth.

1 Introduction

Classically, chemokines have been associated with leukocyte migration (1). Nevertheless, growing
evidence shows they can signal to a great variety of cell types and tissues (2,3). In addition, as
conventional chemokine receptors are G-protein coupled receptors (GPCRs), chemokines can initiate
a broad variety of intracellular signaling pathways (1).
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Several studies have demonstrated the presence and the importance of chemokines in the nervous
system (2,4,5). For instance, CXCL12 plays a vital role in regulating neuronal migration during
cortical development (6,7). Remarkably, research is now showing neuronal expression of both
chemokines and their receptors, suggesting an implication of these cells in direct neuronal
communication (5,8)., In homeostasis, neuronal CX3CL1 interacts with microglia preventing its
activation (9). Additionally, neuronal chemokines have emerged as fundamental signals after insult,
as for CCL2 or CCL21 among others (10-13), that are secreted upon neuronal injury and serve as
chemoattractants of immune cells, triggering their activation and often leading to neuropathic pain
(11-13). However, as in the case of CCL2 after peripheral injury, some chemokines have been also
described to promote axonal regeneration as a result of macrophage recruitment and phenotype
modulation (10,14). Meanwhile, although several chemokine receptors are expressed in different
neuronal types (8,9), little is known about the functions chemokines may exert as autocrine or
paracrine messengers on other neurons.

Neurons alter their secretome when exposed to different stimuli and according to their physiological
state. In that direction, neuronal activity has shown to modulate neuronal communication, including
with microglia or with other neurons beyond classical neurotransmission (15-17). Nociceptor activity
after axonal injury is normally associated with pathological neuropathic pain (18), despite that, some
studies have started to uncover how nociception participates in the healing process, such as
promoting skin or adipose tissue regeneration, as well as neovascularization (19-21). These findings
indicate that nociception might function as a key component of the healing machinery, and it is
therefore important to study its precise roles in healing and regeneration in different tissues,
including the nervous system.

In that sense, injured nociceptors have been described to release CCL21, however, whether this
expression affected axonal regeneration has not been previously assessed (13). CCL21 has a
primordial role in immune cell homing, via its canonical receptor CCR7 (22), but other functions for
this chemokine in distinct tissues are also emerging, such as cartilage regeneration (23) and
neuropathic pain induction in the CNS (13). Interestingly, in accordance with its function as a
migration cue, the CCL21-CCRY7 interaction activates intracellular pathways related to chemotaxis,
via ERK signaling, this includes actin cytoskeleton remodeling via RhoA (24). Since cellular
migration and growth cone dynamics are analogous mechanisms (25,26), we hypothesized that
CCL21 could exert a growth promoting effect on neurons.

In the present study, we investigated the impact of nociceptor activation in the neuronal
chemokinome which led us to find an undescribed mechanism of neuronal communication between
two different neuronal types, nociceptors and proprioceptors. Specifically, we found that activation of
TRPV1" nociceptors induce an increase in CCL21 expression. Moreover, we revealed a novel role for
this CCL21 in proprioceptors, promoting neurite outgrowth. We then found that the receptor CCR7,
expressed in proprioceptors, was required for this effect, which was also dependent on the MEK-
ERK pathway. Finally, our results disclose a local mechanism in the growth cone, where CCR7
expression is concentrated, affecting the actin cytoskeleton, ultimately leading to enhanced neurite
outgrowth.

2 Materials and methods

Mice
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77  B6.Cg-Tg(Thyl-COP4/EYFP)18Gfng/J (Thyl-ChR2) (27) were obtained from Jackson Laboratories
78 and C57BL/6J mice from Charles River Laboratories. PVV-Cre/Ai27D/CSP-Flox mice (#008069 and
79  #012567 (Jackson Laboratories) crossbreeding) were provided by Dr. Rafael Fernandez Chacén
80 (Instituto de Biomedicina de Sevilla, Spain). Mice ranging from 6-10 weeks were used. All animal
81  work was approved by the Ethics Committee on Animal Experimentation (CEEA) of the University
82  of Barcelona (procedures #276/16, 47/20, and OB41/21).

83  Compounds

84  Capsaicin (Merck, 100ug/ml i.pl.), CCL21 (Peprotech, 100ng/sciatic nerve ex vivo; 1nM, 10nM,
85  50nM in vitro;), aCCR7 blocking antibody (R&D systems, 2-5ug/ml), rat immunoglobulin (Ig) G
86  (Merck, 2-5ug/ml), U0126 (Promega, 1uM), Wiskostatin (Merck, 1 uM), CCL19 (Peprotech, 1 nM,
87  10nM, 50nM), Pertussis toxin (Merck, 50ng/ml).

88  Invitro optogenetic stimulation

89 Thyl-ChR2 DRG neurons were used for in vitro optogenetic stimulation. A 470nm emission LED
90 array (LuxeonRebelTM) under the control of a Driver LED (FemtoBuck, SparkFun) of 600mA and a
91  pulse generator PulsePal (OpenEphys)(28) was used to deliver blue light to neuronal cultures. The
92  optogenetic stimulation protocol consisted in 1h of illumination at 10Hz of frequency with 10ms-
93  90ms pulses, in 1s ON-4s OFF periods. Stimulation was applied 2h after seeding.

94  Capsaicin administration

95 Intraplantar (i.pl.) injection of capsaicin (10ul of 100pg/ml in PBS + 10% ethanol) was performed 2h
96  before animal sacrifice and DRG dissection.

97 Dorsal root ganglia (DRG) neuronal culture

98 DRGs were dissected, collected in ice-cold Hank’s balanced salt solution (HBSS) (ThermoFisher
99  Scientific) and transferred to a digestion solution (5mg/ml Dispase Il (Merck) and 2.5mg/mi
100  Collagenase Type Il (ThermoFisher Scientific) in DMEM (ThermoFisher Scientific)) incubated for
101  45min at 37°C. DRGs were then centrifuged and digestion solution was then exchanged for
102 DMEM:F12 (ThermoFisher Scientific) media supplemented with 10% heat-inactivated FBS and 1x
103  B27 (ThermoFisher Scientific), the DRGs were then dissociated by pipetting. The resulting cell
104  suspension was then spun down, resuspended in culture media (DMEM:F-12 media supplemented
105 with 1x B27 and penicillin/streptomycin (P/S) (ThermoFisher Scientific)) and seeded in 48-well
106  plates (3000-4000 cells/well) previously coated with 0.1mg/ml poly-D-lysine (2h, 37°C; Merck) and
107  2ug/ml laminin (over-night (O/N), RT (room temperature); ThermoFisher Scientific). Cells were kept
108 at 37°C in a 5% CO> atmosphere.

109 Compounds were added 2h after plating, unless in combinatorial experiments, when blocking
110  antibodies or pharmacological inhibitors were added at 1,5h and the remaining compound 30 min
111 later. Cells were fixed 24h after the treatment.

112  Local administration to the sciatic nerve and ex vivo DRG culture

113  Mice were anaesthetized with inhaled isofluorane (4% induction, 2% maintenance). The sciatic nerve
114 was hooked and immobilized after skin incision and blunt dissection of the gluteus maximus and the
115  biceps femoralis. Compounds were locally injected into the nerve and the inscision was closed by
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116  layer. Animals were then allowed to recover for 24h. Sciatic DRGs (L4, L5, L6) were dissected and
117  processed for cell culture as previously explained.

118  Immunocytochemistry

119  Cells were fixed with cooled 4% paraformaldehyde (PFA) for 15min and washed in PBS (0.1M).
120  The cells were then blocked (PBS-0.25% Triton X-100+ 1% BSA (bovine serum albumin)) for 1h at
121  RT and then primary antibodies (anti-BIII tubulin (Tujl, 1:1000, BioLegend), anti-NFH (1:1000,
122 Merck), anti-CCR7 (1:200, Abcam)), were incubated O/N at 4°C in the same solution. After several
123 washes, Alexa-Fluor-conjugated secondary antibodies were incubated in blocking solution for 1h at
124  RT and cell nuclei were counterstained with Hoechst.

125  Immunohistochemistry

126  DRGs were dissected and fixed in PFA 4% for 2h at 4°C. After washing the DRGs were transferred
127 into cryoprotection solution (PBS-30% sucrose) for 24h at 4°C. Tissue freezing medium (OCT,
128  Merck) was used to freeze the DRGs in blocks, and then 10um slices were generated with a cryostat
129  (Leica CM 1900) and mounted on slides. The slides were washed in TTBS (TBS (Tris-buffered
130 saline) + 1% Tween) and blocking solution (8% BSA and 0.3% Tx and 1/150 malgG (Jackson
131  Immuno Research)) was then incubated for 1h at RT. After an O/N incubation with primary
132  antibodies (anti-TRPV/VR1 (1:200, Santa Cruz), anti-CCL21 (1:200 Peprotech), anti-CCR7 (1:200,
133 Abcam)) in 2% BSA and 0.2% Tx in TBS at 4°C, and washing, Alexa-Fluor-conjugated secondary
134  antibodies were added in the same solution for 1h at RT. Preparations were then mounted with
135  coverslips in Mowiol™ (Merck).

136  Fluorescence intensity analysis

137 DRG slices were stained for CCL21 and TRPV1. Images were acquired with a LSM 800 confocal
138  microscope (Zeiss) using an AxioCam 503c camera (Zeiss) at 20X magnification. Mean CCL21
139  fluorescence intensity (MFI) was computed in TRPV1* cells using ImagelJ, subtracting the
140  background for each image.

141  Neurite length analysis

142 Tujl immunocytochemistry was performed and imaged at 10X magnification using an Olympus
143 microscope IX71 with an Orca Flash 4 (3 images per well). The neurite length of large-diameter
144 (>35um) neurons was blindly quantified with the Neuron J plugin for ImageJ (29). Average neurite
145  length per neuron was computed.

146  Statistical analysis

147  Statistics and graphical representation were carried out using Prism 6.0 (GraphPad™ Software).
148  Shapiro-Wilk test was used to verify normality of the distributions. * or # indicate significant
149  differences in ANOVA followed by Bonferroni’s post-hoc test or Student’s t-test. Plotted data
150 represents meanzs.e.m (standard error of the mean). All tests performed were two-sided, and
151 adjustments for multiple comparisons and/or significantly different variances (Fisher’s F) were
152  applied were indicated. All data analysis was performed blind to the experimental group by two
153  independent experimenters. Unless otherwise stated, sample size was chosen in order to ensure a
154 power of at least 0.8, with a type | error threshold of 0.05, in view of the minimum effect size that
155  was expected.
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156 3 Results

157 3.1 CCLZ21 expression is upregulated upon nociceptor activation

158  While most defined neuronal chemokines are induced after traumatic injury or inflammatory
159  signalling (30), we analysed whether stimulating neuronal activity in the DRG would have an impact
160  in chemokine expression and secretion. To this aim we used DRG neuronal cultures expressing ChR2
161  (from Thyl-ChR2 animals) and subjected them to optical stimulation. We recovered the media 24h
162 later and measured chemokine secretion using a Mouse Chemokine Array (Raybiotech).
163  Interestingly, we found a remarkable increase in CCL21 levels compared to non-stimulated controls
164  (Data not shown). ChR2 expression in DRGs is ubiquitous among all sensory subtypes (Fig 1A-B),
165 however, previous studies had reported CCL21 expression specifically in small diameter TRPV1*
166  nociceptors after peripheral nerve injury (31,32), so we hypothesized that this CCL21 increase after
167  optogenetic stimulation could be specific of this neuronal subtype. Accordingly, CCL21 expression
168  was increased in TRPV1" nociceptors 2h after i.pl capsaicin (TRPV1 agonist) injection as compared
169  to vehicle administered animals (Student’s T test p= 0.0347) (Fig. 1C-E).

170 3.2 CCLZ21 promotes neurite outgrowth

171  To test whether this chemokine could also influence axonal growth, we administered CCL21 into the
172 sciatic nerve and cultured disaggregated DRG neurons 24h after. This led to an increment in the
173 neurite outgrowth of ex vivo CCL21-treated DRG neurons when compared to vehicle treated ones
174  (Student’s t-test p= 0.0046) (Fig. 2A-B). Additionally, administration of CCL21 at different doses
175  (1nM, 10nM, 50nM) on DRG cultures, resulted in a dose-dependent increase of DRG neurite
176  outgrowth in vitro (ANOVA followed by Bonferroni test; Veh vs 50nM p= 0.0129; 1nM vs 50nM p=
177  0.0440) (Fig. 2C-D).

178 3.3 CCLZ21 activates proprioceptive CCR7 to promote neurite outgrowth

179  CCL21 is a functional ligand of CCR7 (33). We therefore analysed the expression pattern of CCR7
180 inthe DRG. We found CCR7 expression mainly in neurons, including in parvalbumin® (PV) neurons,
181  that correspond to proprioceptors (Fig. 3A). Additionally, administering a CCR7-blocking antibody
182  to DRG cultures inhibited the neurite outgrowth induced by CCL21 as compared to the 1gG control
183  (two-way ANOVA followed by Bonferroni test; interaction p= 0.0233; 1gG-veh vs 1gG-CCL21 p=
184  0.0055; IgG-CCL21 vs aCCR7 2ug-veh p= 0.0040; IgG-CCL21 vs aCCR7 2pug-CCL21 p= 0.0355;
185  1gG-CCL21 vs aCCR7 5ug-veh p= 0.0037; IgG-CCL21 vs aCCR7 5ug-CCL21 p=0.0079) (Fig. 3B-
186  C). Parallelly, we tested whether CCL19, another CCR7 ligand(33), would induce the same effects.
187  Oppositely, CCL19 did not result in increased neurite outgrowth when administered in vitro
188  (Kruskal-Wallis test followed by Dunn’s test; Veh vs 50nM p > 0.9999) (Supplementary Figure 1),
189  suggesting a CCL21 biased CCR7 activation is responsible for this particular mechanism.

190 3.4 CCL21-CCRY7 activates MEK-ERK pathway

191  We then targeted the two main known downstream actuators of CCR7 activation, the MEK pathway
192  and the Gi, protein previously known to be involved in axon growth(34-36)). Pharmacological
193 inhibition of MEK with U0126 blocks the neurite outgrowth induced by CCL21 (Fig. 4A-B), as
194  evidenced by the significant interaction of the treatments (p= 0.0117) on the two-way ANOVA
195  (multiple comparisons with Bonferroni test: DMSO-Veh vs DMSO-CCL21 p= 0.0005; DMSO-
196 CCL21 vs U0126-Veh p= 0.0004; DMSO-CCL21 vs U0126-CCL21 p= 0.0001). Conversely,
197  pertussis toxin (Ptx) administration, an inhibitor of the Gi/o protein did not affect the CCL21-induced
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198  outgrowth (Supplementary Figure 2) as evidenced by the lack of significant interaction of the
199  treatments (p= 0.7961) on the two-way ANOVA (Student’s t-test w/o (without) Ptx: p= 0.0115; with
200  Ptx: p=0.7458).

201 3.5 CCL21-CCR7-MEK pathway modulates actin cytoskeleton to promote neurite outgrowth

202  Local assessment of the axonal tips revealed larger growth cones after CCL21 treatment (Fig. 5A),
203  this is in consonance with the especially abundant CCR7 expression found on these structures (Fig.
204  5B). We then sought to check the local effects that CCL21 could have in cytoskeletal dynamics of the
205  growth cones. Consequently, we inhibited actin branching by combining CCL21 administration with
206  wiskostatin, an inhibitor of the neural Wiskott-Aldrich syndrome protein (N-WASP), that acts as an
207  Arp2/3 complex activator. Wiskostatin co-administration greatly reduced the CCL21-induced
208  growth, supporting a local effect of CCL21 in the growth cone (two-way ANOVA followed by
209  Bonferroni test; interaction p= 0.0825; one-way ANOVA followed by Bonferroni test; DMSO-Veh
210 vs DMSO-CCL21 p=0.0207; DMSO-CCL21 vs Wiskostatin-Veh p= 0.0202).

211 4 Discussion

212  There are plenty of evidence that neuronal activity can alter neuronal signalling. In that sense, we
213 found that the expression and release of the chemokine CCL21 is enhanced upon neuronal
214  stimulation. Interestingly, we found that specific TRPV1" nociceptor stimulation is responsible for
215  CCL21 production, similarly to what has already been described upon axonal injury (31).

216  After axonal injury, release of neuronal CCL21 is mainly linked to neuropathic pain (13,37),
217  however, its role in axon growth and regeneration had never been described before. Interestingly, our
218  results revealed that CCL21 induces growth in proprioceptive neurons trough activation of the
219 CCR7-MEK-ERK pathway, exerting an effect on actin dynamics at the growth cone level.

220  CCL21 was first designated as a recruiting cue for leucocytes, specifically stimulating the migration
221  of T cell subpopulations and dendritic cells (22,38-40). More recently, it has also been described to
222  induce migration in other cells such as tumorigenic or mesenchymal stem cells (41-45).
223  Fundamentally, cell migration and axonal growth are events that share similar cellular and molecular
224 machinery (46,47). Thus, molecules that orchestrate one process will most likely be implicated in the
225  other, and vice versa, as for instance what occurs with CXCL12 (48-51).

226  We also describe that CCL21 executes its growth-inducing function through its canonical receptor
227 CCRY7, in accordance, we found abundant expression of this receptor on proprioceptive (PV*)
228  neurons, similarly to the findings of other studies, where neuronal CCR7 is abundantly found in
229  peripheral nerves and hippocampal neurons (52,53). Activation of CCR7 has already been shown to
230 play a cardinal role in the CCL21-induced cell migration (42,44,47,54,55), that, as stated, activates
231  similar cellular and molecular machinery than axonal growth (46,47).

232 Intriguingly, CCL19, another CCR7 ligand, did not induce axonal growth. This finding strengthens
233  the view of biased ligand-receptor responses, as already shown for CCL21 and CCL19, which can
234  trigger biased downstream effectors of CCR7 (56,57). These biased activations result in particular
235  mechanisms activated only by CCL21; however, this effect often varies depending on the target cell
236  (58-61).

237  We also found that pharmacological inhibition of the MEK-ERK pathway, one of the main
238  downstream mediators of CCRY7 effects, inhibited the growth induced by CCL21. This goes in line
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239  other studies defining MEK-ERK as the underlying mechanism of the chemotaxis induced by
240 CCL21-CCR7 (55,62). Contrarily, we did not see an effect by inhibiting the Gi, protein in the
241  CCL21- induced outgrowth, however lack of growth-suppression could derive from inactivation of
242  other growth-inhibitor pathways activated by the Gij (63).

243 MEK-ERK pathway activation has been previously implicated in axonal regeneration (64-66). For
244 instance, after peripheral conditioning injury, ERK is phosphorylated and has been shown to affect
245  multiple cellular processes affecting axonal growth, including transcriptional and epigenetic
246  alterations, resulting increased expression of several regeneration associated genes (RAGS) (66),
247  increased retrograde transport (64,67) as well as stimulation of cytoskeleton dynamics (65).
248  According with the latter, ERK has been shown to have a direct effect on actin polymerization
249  (68,69), through phosphorylation of different effectors such as WAVEZ2, cortactin and Racl (70-74).
250 Remarkably, we found CCR7 expression to be particularly elevated in the growth cones, therefore,
251 we evaluated the effects of actin dynamics in the growth cone as a putative mechanism of the
252  CCL21-induced growth. In that sense, coadministration of an N-WASP pharmacological inhibitor, a
253  key actin polymerization component, blocked the growth induced by CCL21. N-WASP is an Arp2/3
254  complex activator, which in turn works as an actin-binding protein, mainly responsible for actin
255  filament branching (75). Previous studies already showed the essential role of Arp2/3 in growth cone
256  progression (76,77). Mechanistically, ERK is known to phosphorylate cortactin, leading to N-WASP
257  binding and activation (71). Thus, in a nutshell, we found that upon CCL21 binding to its receptor
258 CCRY7 in the axonal growth cone, there is a downstream MEK-ERK activation, that leads to N-
259  WASP activation, triggering actin filament branching in this structure, resulting in increased axonal
260  growth (Figure 6).

261  While CCL21 has been already described for its role in regeneration in other tissues including skin,
262  cartilage, and vascular remodelling (41,43,78), here we describe a novel role of this chemokine in
263  axonal growth.

264  Additionally, the mechanism described involves an unprecedented paracrine dialogue based on
265  chemokines between two different DRG neuronal types. While neurons are highly interconnected
266  through synapses, there is little work regarding other forms of neuronal communication (79). Growth
267  factors, for instance, have been implicated in both paracrine and autocrine neuronal communication
268  (80-83), however, we describe a novel chemokine dependant mechanism of neuron-neuron
269  signalling.

270  Parallelly, we have also unravelled a novel role of nociceptive signalling in sensory axon
271  regeneration. Nociception and pain are tightly associated with tissue injury (84,85), and while it is
272  not surprising that a signal initiated by an injury could trigger the healing process, after nerve injury
273  chemokine release and nociceptor activity have been typically linked to pathological neuropathic
274 pain. Contrarily, here we show that stimulating nociceptor activity triggers the secretion of a growth-
275  promoting chemokine, CCL21. In agreement with this, nociceptive signalling participates in the
276  healing cascade of several tissues, for example, nociceptor activation induces adipose tissue
277  regeneration through CGRP (calcitonin gene-related peptide) secretion (86), angiogenesis via
278  Substance-P-mediated effects (87), and skin regeneration through modulation of the immune
279  response (88). Pain and nociceptive signalling are complex evolutionary mechanisms that might have
280  further implications than previously anticipated, as they play central roles orchestrating and
281  promoting the healing process in different tissues.
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282  This also suggest caution in the indiscriminate use of analgesic drugs and treatments after injury, as
283  these may hinder nociceptive regenerative signalling, limiting the healing process, similarly to the
284  effects observed by broad immunosuppressive drugs (89) or antioxidants (90) after SCIs. Therefore,
285  appropriate timing and level of analgesic inhibition after injury will likely need to be tailored to
286  provide pain relief while avoiding unwanted effects in hindering the tissue regeneration. An
287  additional intriguing implication is the possibility to modulate nociceptive signalling to achieve tissue
288  regeneration. While therapeutically, inducing nociception is not a reasonable approach, further
289 investigation and characterization of signalling elicited by nociceptor stimulation may increase our
290 understanding of the molecular mechanisms underlying the healing process, and may enable the
291  future design of therapeutic targets and strategies to foster tissue regeneration.
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597 10 Figure Legends

598  Figure 1. CCL21 is upregulated upon TRPV1* nociceptive neuron activation. A. Graph showing
599 the proportion of ChR2" cells depending on the neuronal diameter. ChR2 is expressed in both large-
600  diameter (>35um) and small-diameter (35-15um) neurons. B. ChR2 expression in Thy1-ChR2

601 DRGs. Scale bar: 50um. C. Immunohistochemistry showing CCL21 expression in TRPV1" neurons
602  2h after capsaicin injection. White arrows: magnified neurons in D. Scale bar: 50um. D. High

603  magnification inset. E. Intraplantar capsaicin injection increased CCL21 expression in TRPV1*

604  nociceptors specifically as shown by mean fluorescence intensity (MFI) of TRPV1* cells. a.u.:

605  arbitrary units. Data are expressed as mean+ts.e.m; Student’s t-test; *p < 0.05; n=5-7 images.

606  Figure 2. CCL21 enhances DRG neurite outgrowth. A. Ex vivo CCL21 administration in the

607  sciatic nerve promoted neurite outgrowth of DRG large-diameter neurons. Data are expressed as

608 average neurite length per neuronts.e.m; Student’s t-test; **p < 0.01; n=6 sciatic nerves. C. Dose-
609  dependent increase in neurite length of in vitro CCL21-treated DRG large-diameter neurons. Data are
610  expressed as average neurite length per neuronzs.e.m; One-way ANOVA, Bonferroni’s post-hoc; *p
611 < 0.05; n=3 wells. B-D. Tuj-1 representative immunostainings (B: ex vivo D: in vitro) after 24h in
612  culture. Scale bar: 250pm.

613  Figure 3. CCRY7 is required for CCL21-mediated DRG outgrowth. A. PV* neurons express the
614  canonical CCL21 receptor CCR7. Scale bar: 50um. B. CCR7-blockade abolished the CCL21-

615  dependent growth induction. Data are expressed as mean fold change of average neurite length per
616  neuron vs each vehicle group+s.e.m. Two-way ANOVA, Bonferroni’s post-hoc; **p < 0.01 (vs IgG-
617  veh); #p < 0.05; ###p < 0.01 (vs IgG-CCL21); n=8-9 images. C. Tuj-1 representative

618 immunostainings after 24h in culture. Scale bar: 250pum.

619  Figure 4. Inhibiting the MEK-ERK pathway impairs the CCL21-dependent increased

620  outgrowth. A. CCL21 and U0126, a MEK inhibitor, co-administration resulted in reduced neurite
621  outgrowth compared to CCL21 administration alone. Data are expressed as average neurite length
622  per neuronts.e.m; Two-way ANOVA, Bonferroni’s post-hoc; ***p < 0.001 (vs veh-DMSO), ###p <
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623  0.001 (vs CCL21-DMSO). n=7-12 images. B. Tuj-1 representative immunostainings after 24h in
624  culture. Scale bar: 250pm.

625  Figure 5. CCL21 stimulates actin dynamics in the growth cone. A. CCL21 administration resulted
626  inenlarged growth cones in large-diameter DRG neurons. White arrows: growth cones. Scale bar:
627  100um. B. CCRY7 expression is specially elevated in the growth cone. Scale bar: 50um. C. Actin

628  branching is important for CCL21-dependent neurite outgrowth, as shown by impaired growth after
629  wiskostatin treatment. Data are expressed as average neurite length per neuronts.e.m; One-way

630 ANOVA, Bonferroni’s post-hoc; *p < 0.05; n=7-8 wells.

631  Figure 6. Schematic representation of the proposed mechanism for a novel nociceptor-

632  proprioceptor dialogue leading to neuritic growth. Activated TRPV1+ nociceptors secrete CCL21
633  which promotes actin branching in the growth cone of proprioceptor neurons. This mechanism is
634  mediated by the CCL21-CCRY7 interaction, leading to a downstream activation of the MEK-ERK
635 pathway and final N-WASP-related actin cytoskeleton modifications.

636  Suppl. Fig. 1. CCL19 administration does not induce neurite outgrowth. Data are expressed as
637  average neurite length per neuronts.e.m; n=8-12 images

638  Suppl. Fig. 2. Pertussis toxin addition does not prevent the CCL21-dependent neurite
639  outgrowth increase. Data are expressed as mean fold change of average neurite length per neuron vs
640  each vehicle £s.e.m; n=9-12 images.
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