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31 Abstract

32

33 Predictive breeding is now widely practised in crop improvement programs and has accelerated
34  selection response (i.e., the amount of genetic gain between breeding cycles) for complex traits.
35 However, world food production needs to increase further to meet the demands of the growing
36 human population. The prediction of complex traits with current methods can be inconsistent

37 across different genetic, environmental, and agronomic management contexts because the

38 complex relationships between genomic and phenotypic variation are not well accounted for.

39 Therefore, developing gene-to-phenotype network models for traits that integrate the knowledge
40  of networks from systems biology, plant and crop physiology with population genomics has been
41 proposed to close this gap in predictive modelling. Here, we develop a gene-to-phenotype

42 network for shoot branching, a critical developmental pathway underpinning harvestable yield for
43 many crop species, as a case study to explore the value of developing gene-to-phenotype

44 networks to enhance understanding of selection responses. We observed that genetic

45 canalization is an emergent property of the complex interactions among shoot branching gene-to-
46 phenotype network components, leading to the accumulation of cryptic genetic variation, reduced
47  selection responses, and large variation in selection trajectories across populations. As genetic
48  canalization is expected to be pervasive in traits, such as grain yield, that result from interactions
49  among multiple genes, traits, environments, and agronomic management practices, the need to
50  model traits in crop improvement programs as outcomes of gene-to-phenotype networks is

51 highlighted as an emerging opportunity to advance our understanding of selection response and

52 the efficiency of developing resilient crops for future climates.
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53 Introduction

54

55 Due to an increasingly harsh and unpredictable climate, improving the consistency and
56  scope of predictions for crop performance is crucial for global agriculture to meet the challenge of
57  feeding a global population of 10+ billion people (Reynolds et al.,, 2021). Current prediction
58 methods used in crop breeding assume a simplified linear relationship between genotype and
59 phenotypes (Falconer and Mackay, 1996; Meuwissen et al., 2001; Cooper et al., 2014; Walsh
60  and Lynch, 2018; Gianola, 2021), thus limiting the realized selection response achieved by many
61 crop improvement programs (Kholova et al.,, 2021). Although this simplified genotype-to-
62 phenotype relationship (G2P map) is sufficient to successfully model the average selection
63 trajectory of large populations (Cooper et al., 2014), this approach captures only a subset of all
64 performance outcomes, potentially leading to misalignments between predicted performance and
65 realized performance in the field. Such simplified G2P relationships can hinder accurate
66 predictions for crop performance in specific management and environment combinations
67 (Kholova et al., 2021).

68 Developing G2P network models that integrate the knowledge of networks from systems
69 biology and physiology with population genomics may improve modelling of the genotype-to-
70  phenotype relationship for many complex traits (Benfey and Mitchell-Olds, 2008; Marjoram et al.,
71  2014; Marshall-Colon et al., 2017; Eshed and Lippman, 2019; Cooper et al., 2020). For crop
72 improvement programs, the detected interactions in network models can unmask existing genetic
73 variation or identify intermediate traits that can increase the selection accuracy and efficiency of
74  developing novel crop varieties and hybrids. Applying the framework of the "breeders equation”
75 (Falconer and Mackay, 1996; Paixdo and Barton, 2016; Walsh and Lynch, 2018), the
76 contributions of the genetic interactions (epistasis) to total genetic variation must be converted
77 into additive genetic variation to deliver a sustainable selection response in breeding programs
78 (Technow et al. 2021). A strong theoretical understanding exists of the importance of epistasis for

79  selection response when based on G2P models without molecular network models (Paix&o and

3
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80 Barton, 2016; Walsh and Lynch, 2018). However, relevant knowledge of selection response for
81 G2P models based on networks operating over biological scales (Marshall-Colon et al., 2017;
82 Hammer et al.,, 2019; Wu et al., 2019; Tardieu et al., 2020) is lagging due to the lack of
83 adequately characterized empirically-based examples.
84 Here, we use axillary bud outgrowth, a primary driver of shoot branching, as a case study
85 of an agronomically important, well-characterized and empirically described network (Bertheloot
86 et al., 2020). The core structure of this network is largely conserved across herbaceous model
87 plants and divergent crops. It involves different endogenous signals interacting with each other to
88 regulate shoot branching. Hormones including auxin, cytokinins and strigolactones play a crucial
89 role in regulating this process (Domagalska and Leyser, 2011; Barbier et al., 2019). The growing
90  shoot apex produces auxin, which travels downwards in the stem, inhibiting cytokinin synthesis
91 and accumulation and promoting strigolactone synthesis. Cytokinins and strigolactones induce
92  and repress bud outgrowth, respectively. Sugar availability is a determining factor for plant growth
93 and development, including shoot branching (Barbier et al., 2019; Fichtner et al., 2021). Axillary
94 buds require a source of sugar to grow out, and the strong demand for sugar by the shoot apex
95 inhibits axillary bud outgrowth (Mason et al., 2014; Barbier et al., 2019). During shoot branching,
96  sugars were reported to promote cytokinin synthesis and inhibit strigolactone perception (Barbier
97 et al., 2019; Bertheloot et al., 2020; Salam et al., 2020; Patil et al., 2021). Despite the detailed
98 knowledge of molecular physiological mechanisms, translating these discoveries into breeding
99  outcomes is still a challenge.
100  Therefore, the objectives of this study were threefold: (1) to extend the Bertheloot et al. (2020)
101 model of the shoot branching network to include genetic variation for nodes of the network; (2)
102 apply quantitative genetic methods (Falconer and Mackay, 1996; Walsh and Lynch 2018) to
103 undertake in silico investigations of important G2P properties of the extended shoot branching
104 network model that can influence breeding outcomes; and (3) develop hypotheses of the
105 expected selection trajectories for levels of the branching network nodes and branching trait

106  outcomes for experimental investigation. Applying the framework developed to link quantitative
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107 genetic models for trait genetic variation with crop growth models to model plant responses to
108 environmental variation, outlined in Cooper et al. (2020), we created a shoot branching G2P
109 network (Fig. 1) underpinned by genomic variation to demonstrate how variation from interactions
110 in network-based G2P models is translated into selection responses for complex traits. In-silico
111 selection experiments were performed on a large, segregating plant population to quantify direct
112 (time to bud outgrowth) and indirect (intermediate traits; hormones and sucrose) selection
113 responses. The results are discussed in terms of practical implications for developing G2P
114 models to accelerate crop genetic improvement within established and future crop improvement

115 programs.

116

117 Materials and Methods

118

119  Overview

120

121  We created a gene-to-phenotype (G2P) network model for bud outgrowth by connecting a
122 published, empirical shoot branching network (Bertheloot et al., 2020) to underlying allelic
123  variation in the genome. The shoot branching network models phenotypic variation for the trait
124  "time to bud outgrowth" as the outcome of the intermediate traits, auxin, cytokinins,
125 strigolactones, and sucrose, and their interactions (Fig.1). We simulated the additive genetic
126  effects of 10 non-pleiotropic, causal genetic loci for each intermediate trait. The additive genetic
127 effects of the 10 causal genetic loci determined the additive genetic values for each intermediate
128 trait for individual genotypes. . These additive genetic values replaced the synthesis term of the
129 intermediate traits (hormones and sucrose), in the differential equations provided by Bertheloot et
130  al. (2020) which were used to calculate the levels for each intermediate trait (g). Therefore, the
131 trait under selection, time to bud outgrowth (yz,), can be viewed as a function F of the levels of
132  the genotype-dependent intermediate traits (g) and a random error term (e).

133
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134

135 To quantify response to selection, we performed in-silico divergent selection experiments for
136 increased and decreased levels of yg, over 30 selection cycles. The results presented are
137 generated from 100 replicates of the in-silico selection experiment. Code for the shoot branching
138  network, genetic simulations and figures can be accessed in the following repository:

139 https://github.com/powellow/ GeneticCanalizationOfG2PNetworks.

140

141 Description of the Empirical Shoot Branching Model

142

143 Bertheloot et al. (2020) used experimental data to describe phenotypic variation for time
144  to bud outgrowth within a shoot branching network as a system of differential equations. The
145 shoot branching network takes levels of auxin and sucrose as inputs, calculates cytokinins,
146  strigolactones and signal integrator as intermediate trait outputs, and the time to bud outgrowth
147  (days) as the final trait output. The levels of the intermediate trait outputs are described by
148  differential equations, which each contained three terms: (i) a synthesis term, (ii) an interaction
149  term and (iii) a degradation term. Bertheloot et al. (2020) applied a grid search approach, using
150  observed times to bud outgrowth and levels of cytokinins, to parameterize the coefficients of the
151 differential equations.

152

153 Description of the in-silico Gene-to-Phenotype Shoot Branching Network

154

155 To quantify the response to selection for time to bud outgrowth in a breeding population,
156 a G2P shoot branching network model was developed. The G2P network connected phenotypic
157  variation within the shoot branching network to allelic variation across a simulated genome. The
158  simulated genomes of the individuals within a reference population of genotypes (Cooper et al.,

159 2020) consisted of a single chromosome with 40 causal genetic loci. Each intermediate trait
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160 received additive genetic effects (u) from 10 non-pleiotropic causaal genetic loci. The magnitudes
161 of u were sampled from a normal distribution, but the sum of their effects was constrained so that
162 the additive genetic values (a) of individuals were within the range observed in experimental data
163 (Table S4, Bertheloot et al. (8)). The additive genetic values (a)) for each intermediate trait were
164  computed by summing the 10 additive genetic effets effects (u;) according to the genotypes at

165 the casusal geneti loci of each individual:

166
10 10 10 10
Aryx = Z Uaux; 5 Asuc = Z Usyc; 5 Ack = Z Uck, ) Qs = Z Ugy, (2)
i=1 i=1 i=1 =1
167
168 The additive genetic values of individuals replaced the synthesis terms in the differential

169  equations, but all other steps remained unchanged from Bertheloot et al. (2020). We provide the
170  following, adapted equations replacing the synthesis terms with the appropriate breeding values
171 purely for thoroughness and reproducibility. The interaction terms (y) and levels of intermediate

172  traits (g) were calculated based on the addtive genetic values (a) of individuals as follows:

173
1
Yck = T I nor o 3)
AUX 1 + 0 96 * aAUX
2
Asyc
Yok = 025 55 gz @
% = 24.89. L (5)
SLavx 77 294.58+ a2,
174
Jaux = Auux (6)
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175
176 The levels of the intermediate traits were passed through a signal integrator, I.

177 Calculated as follows:

1
Yigg = m (10)
2
Visusue = 5-64 77 [(0.00418 +g;.L10 9% 9241 an
9r = 033+ Vi t Vi (12)
178
179 The level of the signal integrator (g,) was then used to calculate the output trait, time to
180 bud outgrowth (gge), as well as the calculation of a threshold bud outgrowth trait:
181
gso = —2.2+3.5-g, 13)
182
Bud Ougrowth, 9o = 8.3
No Bud Outgrowth, 9gpo > 8.3
183
184 Description of the in-silico Selection Experiments
185
186 For the in-silico selection experiments, we created an initial reference population of

187  genotypes (RPG) from a single biparental cross, consisting of 1,000 F2 individuals. Phenotypes
188  for time to bud outgrowth (yge) of the 1,000 individuals of the reference population of genotypes
189  were generated by adding a random error effect (e ~ N[0, v.]), to collectively represent stochastic
190  environmental, developmental noise and measurement error, to the true genetic value of time to
191 bud outgrowth, ggo (Egn. 1). The value of v, was calculated such that the broad-sense
192 heritability, H?, of time to bud outgrowth ranged between 0.1 and 1.0 in the initial RPG. We
193 present results for H2 = 0.3 and 1.0. The value of v, was held constant over the 30 selection

194  cycles. Therefore, individuals experienced the same level of random error throughout the
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195 experiment, while the H? for time to bud outgrowth could change with the magnitude of genetic
196  variance in the reference population of genotypes due to selection. The population underwent 30
197 cycles of truncation selection with discrete, non-overlapping generations (cycles) for either higher
198  or lower time to bud outgrowth. For each cycle, the 'best’ 100 individuals were selected based on
199 their output trait phenotype, time to bud outgrowth, to be used as parents (selection proportion =
200 0.1) and crossed at random to create 1,000 offspring for the next cycle of evaluation and
201 selection. Independent population replicates were generated by repeating the whole in-silico
202 selection experiment process one hundred times.

203

204 Hierarchical Clustering of Selection Trajectories

205

206  Multi-trait performance landscapes for the intermediate trait phenotypes were generated to
207  investigate quantitative genetic properties of the selection trajectories over 30 cycles of selection
208  (Gauvrilets, 2004; Messina et al., 2011; Walsh and Lynch, 2018; Cooper et al., 2020). To aid the
209  visualization of the exploration of the shoot branching performance landscape via selection, the
210  selection trajectories of the 100 replicates underwent hierarchical clustering. The 100 replicates
211  were classified into 3 clusters using Ward’s method (Ward, 1963; Wishart, 1969; Wiliams, 1976).
212 Rows of the matrix corresponded to the replicate id for each of the 100 replicates, columns of the
213 matrix corresponded to each of the 30 selection cycles, and the cells contained values for
214  strigolactone levels. The group mean trait levels for each selection cycle were plotted on the
215 performance landscapes to visualize the selection trajectories.

216
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217 Results

218 The in-silico selection experiments with the shoot branching G2P network (Fig. 1)
219 revealed the presence of cryptic genetic variation for the intermediate traits, hormones, and
220  sugars that the selection for time to bud outgrowth struggled to access (Waddington, 1942; Flatt,
221 2005; Masel, 2006; Walsh and Lynch, 2018). Such cryptic sources of genetic variation occur
222  when selection cannot directly translate the sources of genetic variation into a selection response
223 to improve adaptation and performance. The cryptic genetic variation within the in-silico
224  experiment led to many repeated selection cycles with reduced selection response and large
225  variation in selection trajectories across different replicate populations (Fig. 2A, C). Despite the
226 large magnitudes of cryptic genetic variation for the intermediate traits under indirect selection,
227  only small differences were observed among the selection trajectories of time to bud outgrowth,

228  the output trait under direct selection.

229 Cryptic genetic variation for the intermediate traits resulted in temporary and permanent
230  plateaus in selection response (Fig. 2A, C). The emergence of these plateaus began after only
231  three selection cycles. In scenarios with a simulated broad-sense heritability of 1 (no stochastic
232 error variation during selection), the average genetic mean for sucrose began to increase again
233 around selection cycle nine, when the genetic mean for strigolactones reached approximately 0.1.
234 However, even with this perfect selection accuracy, a few of the replicate populations reached
235 permanent plateaus at local maxima for two intermediate traits, sucrose and strigolactones. In
236  scenarios with error included in the phenotypes of time to bud outgrowth, selection response was
237 decreased for all shoot branching G2P network components, with the largest reductions observed
238  for the genetic mean of sucrose. For example, with a broad-sense heritability of 0.3, the average
239 genetic mean for sucrose across the 100 population replicates reached a permanent plateau at
240  less than 90% of the maximum theoretical value after 30 selection cycles (Fig. 2C), with several

241 individual populations achieving less than 60%.

10
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242 Different magnitudes of cryptic genetic variation across the intermediate traits of
243 hormones and sucrose resulted in different allele frequency changes for causal loci with similar
244  genetic effect sizes for the intermediate traits (Fig. 2B, D). This trend was most apparent for
245 causal loci occupying the bottom 60% of genetic effect sizes. In this G2P network simulation,
246  alleles of causal loci with moderate genetic effect sizes (0.2—0.6) for cytokinins and auxin reached
247  fixation within the reference population of genotypes (allele frequency of 0 or 1). However, causal
248 loci for sucrose and strigolactones, also with moderate genetic effect sizes, were still segregating
249 in the reference population of genotypes after 30 selection cycles (Fig. 2D). In the most extreme
250 cases of the population replicates, causal loci with small genetic effect sizes (<0.2) underwent
251 genetic drift in the reference population of genotypes, with allele frequency changes in the
252  opposite direction from that expected based on the direction of selection. For example, we
253  observed increases in allele frequencies of causal loci for strigolactones until at least selection
254  cycle 10 (Fig. 2B, D) even though, in the absence of genetic drift or interaction effects, these
255  would be expected to be selected against under the direct selection for faster bud outgrowth (Fig.
256 1). This property of intermediate traits was independent of the heritability of the trait under direct
257  selection.

258 Performance landscapes were generated to further investigate and visualize emergent
259 properties at the intermediate levels of the shoot branching network (Fig. 3). Steep gradients for
260 time to bud outgrowth were observed at intermediate values of the intermediate traits,
261 strigolactones and sucrose. Flatter gradients for time to bud outgrowth values were observed at
262 extreme values of the intermediate traits. The plateaus in the performance landscape reflect that
263 the large sources of genetic variation for sucrose and strigolactones translated into only a small
264  variation in values of time to bud outgrowth. The average selection trajectories of the population
265 replicates followed the steepness of performance landscapes, with a consistent higher strength of
266  selection for higher sucrose levels in the first few selection cycles, followed by selection for lower
267  strigolactone levels (Fig 3A & 3B). Although there was considerable variability in the selection

268  trajectories among the individual population replicates (Supplementary Fig. 1). The inclusion of

11
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269 stochastic error in time to bud outgrowth values, H? = 0.3, resulted in selection trajectories
270  stopping at a local maximum instead of the global maximum (Fig. 3B).

271

12
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272  Discussion

273

274 In this study, cryptic genetic variation (Waddington, 1942; Masel, 2006; Walsh and Lynch,
275 2018) accumulated over selection cycles for the intermediate traits (hormones and sucrose) of
276  the shoot branching G2P network, which resulted in reduced selection responses. The cryptic
277 genetic variation for sucrose can be explained by the complex interaction between sucrose and
278  strigolactone signalling in the G2P network (Fig. 1), resulting in genotypes with completely
279 different combinations of strigolactone and sucrose levels producing similar values for time to bud
280  outgrowth (Fig. 4). The occurrence of multiple intermediate G2P states mapping to fewer output
281 trait states, associated with the emergent quantitative genetic property of cryptic genetic variation
282 identified for the branching network model (Fig. 1), complicates the prediction of phenotype from
283 genotype and the outcomes of selection strategies (Fig. 2 & 3), as implemented in plant breeding
284 programs.

285 The accumulation of cryptic genetic variation is not specific to the shoot branching G2P
286 network. It can occur whenever non-linear relationships exist among traits or casual genetic loci
287 due to genetic canalization (Waddington, 1942; Flatt, 2005). Therefore, we expect genetic
288  canalization to be pervasive in complex traits under selection that result from interactions among
289 multiple interacting genes (Kauffman et al., 2004; Runneburger and Le Rouzic, 2016; @degard
290 and Meuwissen, 2016), traits, environments, and agronomic management practices. The
291  expectation of the emergent property of genetic canalization for G2P networks controlling
292 complex traits raises several important questions for crop improvement programs.

293 What are the impacts of reductions in detectable genetic variation for complex traits
294 under selection? Reductions in detectable genetic variation, in part due to genetic canalization,
295 have important implications for the selection responses achieved by crop improvement programs.
296 Reductions in detectable genetic variation for complex target traits reduce the accuracy of
297 identifying the best performing individuals, which leads to plateaus in selection response (Fig. 2A,

298  2C, 3B). Of even more concern, the combination of reduced accuracy and reduced detectable

13
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299 genetic variation could result in mistaking plateaus associated with local maxima for true,
300 permanent selection limits for breeding populations (Fig. 3B).

301 The results obtained from the in-silico selection experiment based on the branching
302 network (Fig. 1) highlight an important G2P prediction question for plant breeders; How can crop
303 improvement programs promote decanalization? Decanalization would allow the release of
304  cryptic genetic variation for complex traits and accelerate selection response for the reference
305 population of genotypes. In this study, decanalization and the subsequent increases in selection
306 response occurred via the fixation of causal loci by chance (genetic drift) at different cycles for
307 different population replicates (Fig 2B, D). Similar decanalization events could be a contributing
308  factor to the unexpected (according to an additive finite locus model and the breeder’s equation;
309 (Falconer and Mackay, 1996; Walsh and Lynch, 2018)), continued selection responses seen in
310 long-term selection experiments (Dudley, 2007; Goodnight, 2015). A more targeted strategy
311  would be to restructure crop breeding programs to promote and control the conversion of non-
312 additive, epistatic genetic variance into additive genetic variance within the reference population
313 of genotypes (Cooper et al., 2005). For example, in maize (Zea mays), Technow et al. (2021)
314  demonstrated that a decentralized structure of multiple, smaller crop improvement programs
315 interconnected by a few key parents was required to facilitate selection response under high
316 levels of G2P genetic complexity. Another complementary strategy involves direct selection on
317  traits at intermediate layers of the G2P network to circumvent the complex interactions that
318 generate canalization of traits at higher levels of the network hierarchy. In the case of shoot
319 branching, decanalization could be achieved by direct selection on sucrose or strigolactone
320 levels. The many influences of such emergent non-linear properties and the need to consider
321 alternative breeding strategies to accelerate improvement of the complex traits motivate
322 experimental-simulation investigations to develop appropriate G2P models (Marshall-Colon et al.,
323 2017; Hammer et al., 2019; Cooper et al., 2020; Tardieu et al., 2020)

324 The development of G2P networks that link, empirically based, plant models with natural

325  genomic variation is crucial to appropriately design strategies and experiments to tackle many
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326 compelling questions in crop improvement. This study is a demonstration of the ideas of

327 modelling selection response through crop growth models outlined in Cooper et al. (2020), using
328 the plant branching network model developed by Bertheloot et al. (2020). A benefit of taking such
329 a view of the G2P relationship was the observation of genetic canalization as an emergent

330 property of selection for faster shoot branching, which would not have been achievable taking
331 standard physiological modelling or single-trait quantitative genetics approaches in isolation. The
332 multi-trait structure and interactions within plant models generate conditional effects that

333 contribute to the quantitative genetic properties of epistasis and vertical pleiotropy when

334  connected to genomic variation. Specifying the genetic effects of the inputs of plant models at the
335 level of genes instead of genotypes allows the assessment of selection response over multiple
336  selection cycles, as is required for the design of breeding strategies (Hammer et al., 2019;

337  Cooper et al., 2020). Such G2P networks also include genetic constraints enforced by processes
338  such as recombination and linkage to provide more realistic predictions of the exploration of

339 performance landscapes of traits (Messina et al., 2011; Technow et al., 2021). In this study,

340  selection for faster shoot branching explored a relatively small area of the total performance

341 landscape encoded by the Bertheloot et al. (2020) branching model (Fig. 3).

342 Future studies can exploit the increased power and flexibility when viewing complex traits
343 as gene-to-phenotype networks in: (i) in silico simulations (Hammer et al., 2019; Cooper et al.,
344  2020), akin to our approach; (ii) empirical, longitudinal, "select and sequence" studies (Lenski and
345 Travisano, 1994; Wisser et al., 2019) or (iii) broader exploration of performance landscapes with
346 genome editing of network components (Eshed and Lippman, 2019) to improve understanding of

347  selection response of complex traits in nature and agriculture.
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474
475 Figure 1. Shoot branching gene-to-phenotype (G2P) network. Ten causal genetic loci (u) and

476  interactions determine the levels of each of the intermediate traits : strigolactones (SL), auxin (A),
477  sucrose (Suc), and cytokinins (CK). In turn, levels of these intermediate traits (hormones,

478  sucrose and the signal integrator), their interactions, and random error (e) determine the time to
479 bud outgrowth of an individual plant.
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480

481  Figure 2. Selection trajectories for the shoot branching G2P network for faster bud
482  outgrowth and the relationships between normalized genetic effect sizes and allele
483  frequency changes at causal genetic loci over selection cycles. (A, B) Results from selection
484  with a broad sense heritability, , of 1. (C, D) Results from selection with a broad sense
485 heritability, , of 0.3. (A, C) Normalized total genetic values for the intermediate traits over
486  selection cycles. Thick lines are the normalized genetic means averaged across the population
487  replicates. Thin lines are the normalized genetic means for each population replicate. (B, D) Plot
488  of allele frequency changes at causal genetic loci versus normalized genetic effect sizes. Each
489 point represents a causal genetic locus from the 100 population replicates. Values are presented
490  for selection cycles 1, 5, 10, and 30.
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493 Figure 3. Exploration of the Shoot Branching Performance Landscape via Selection. (A)
494  Results from selection with a broad sense heritability, , of 1. (B) Results from selection with a
495 broad sense heritability, , of 0.3. To aid visualization, the selection trajectories of 100

496  population replicates were grouped into 3 clusters using Ward’s method (see Methods). The
497  average selection trajectories of the three clusters (thick white lines) are plotted against the
498  normalised total genetic values for strigolactones and sucrose. The contour shows the variation in
499  strigolactone and sucrose values and the values for time to bud outgrowth observed across the
500 100 population replicates. The light blue area depicts the area of the full shoot branching
501 performance landscape, determined by the Bertheloot et al. (2020) model, unexplored by
502  selection.
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510 Supplementary Figure 1. Population variation during the exploration of the shoot
511 branching performance landscape. (A) Results from selection with a broad sense heritability,
512 , of 1. (B) Results from selection with a broad sense heritability, , of 0.3. The contour shows
513  the variation in strigolactone and sucrose values and the values for time to bud outgrowth
514  observed across the 100 population replicates. The light blue area depicts the area of the full
515 shoot branching performance landscape, determined by the Bertheloot et al. (2020) model,
516 unexplored by selection. Grey dots show average strigolactone and sucrose values for population

517 replicates at a particular selection cycles.
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