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Abstract  31 

 32 

Predictive breeding is now widely practised in crop improvement programs and has accelerated 33 

selection response (i.e., the amount of genetic gain between breeding cycles) for complex traits. 34 

However, world food production needs to increase further to meet the demands of the growing 35 

human population. The prediction of complex traits with current methods can be inconsistent 36 

across different genetic, environmental, and agronomic management contexts because the 37 

complex relationships between genomic and phenotypic variation are not well accounted for. 38 

Therefore, developing gene-to-phenotype network models for traits that integrate the knowledge 39 

of networks from systems biology, plant and crop physiology with population genomics has been 40 

proposed to close this gap in predictive modelling. Here, we develop a gene-to-phenotype 41 

network for shoot branching, a critical developmental pathway underpinning harvestable yield for 42 

many crop species, as a case study to explore the value of developing gene-to-phenotype 43 

networks to enhance understanding of selection responses. We observed that genetic 44 

canalization is an emergent property of the complex interactions among shoot branching gene-to-45 

phenotype network components, leading to the accumulation of cryptic genetic variation, reduced 46 

selection responses, and large variation in selection trajectories across populations. As genetic 47 

canalization is expected to be pervasive in traits, such as grain yield, that result from interactions 48 

among multiple genes, traits, environments, and agronomic management practices, the need to 49 

model traits in crop improvement programs as outcomes of gene-to-phenotype networks is 50 

highlighted as an emerging opportunity to advance our understanding of selection response and 51 

the efficiency of developing resilient crops for future climates.  52 
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Introduction  53 

 54 

Due to an increasingly harsh and unpredictable climate, improving the consistency and 55 

scope of predictions for crop performance is crucial for global agriculture to meet the challenge of 56 

feeding a global population of 10+ billion people (Reynolds et al., 2021). Current prediction 57 

methods used in crop breeding assume a simplified linear relationship between genotype and 58 

phenotypes (Falconer and Mackay, 1996; Meuwissen et al., 2001; Cooper et al., 2014; Walsh 59 

and Lynch, 2018; Gianola, 2021), thus limiting the realized selection response achieved by many 60 

crop improvement programs (Kholová et al., 2021). Although this simplified genotype-to-61 

phenotype relationship (G2P map) is sufficient to successfully model the average selection 62 

trajectory of large populations (Cooper et al., 2014), this approach captures only a subset of all 63 

performance outcomes, potentially leading to misalignments between predicted performance and 64 

realized performance in the field. Such simplified G2P relationships can hinder accurate 65 

predictions for crop performance in specific management and environment combinations 66 

(Kholová et al., 2021).  67 

Developing G2P network models that integrate the knowledge of networks from systems 68 

biology and physiology with population genomics may improve modelling of the genotype-to-69 

phenotype relationship for many complex traits (Benfey and Mitchell-Olds, 2008; Marjoram et al., 70 

2014; Marshall-Colon et al., 2017; Eshed and Lippman, 2019; Cooper et al., 2020). For crop 71 

improvement programs, the detected interactions in network models can unmask existing genetic 72 

variation or identify intermediate traits that can increase the selection accuracy and efficiency of 73 

developing novel crop varieties and hybrids. Applying the framework of the "breeders equation" 74 

(Falconer and Mackay, 1996; Paixão and Barton, 2016; Walsh and Lynch, 2018), the 75 

contributions of the genetic interactions (epistasis) to total genetic variation must be converted 76 

into additive genetic variation to deliver a sustainable selection response in breeding programs 77 

(Technow et al. 2021). A strong theoretical understanding exists of the importance of epistasis for 78 

selection response when based on G2P models without molecular network models (Paixão and 79 
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Barton, 2016; Walsh and Lynch, 2018). However, relevant knowledge of selection response for 80 

G2P models based on networks operating over biological scales (Marshall-Colon et al., 2017; 81 

Hammer et al., 2019; Wu et al., 2019; Tardieu et al., 2020) is lagging due to the lack of 82 

adequately characterized empirically-based examples. 83 

Here, we use axillary bud outgrowth, a primary driver of shoot branching, as a case study 84 

of an agronomically important, well-characterized and empirically described network (Bertheloot 85 

et al., 2020). The core structure of this network is largely conserved across herbaceous model 86 

plants and divergent crops. It involves different endogenous signals interacting with each other to 87 

regulate shoot branching. Hormones including auxin, cytokinins and strigolactones play a crucial 88 

role in regulating this process (Domagalska and Leyser, 2011; Barbier et al., 2019). The growing 89 

shoot apex produces auxin, which travels downwards in the stem, inhibiting cytokinin synthesis 90 

and accumulation and promoting strigolactone synthesis. Cytokinins and strigolactones induce 91 

and repress bud outgrowth, respectively. Sugar availability is a determining factor for plant growth 92 

and development, including shoot branching (Barbier et al., 2019; Fichtner et al., 2021). Axillary 93 

buds require a source of sugar to grow out, and the strong demand for sugar by the shoot apex 94 

inhibits axillary bud outgrowth (Mason et al., 2014; Barbier et al., 2019). During shoot branching, 95 

sugars were reported to promote cytokinin synthesis and inhibit strigolactone perception (Barbier 96 

et al., 2019; Bertheloot et al., 2020; Salam et al., 2020; Patil et al., 2021). Despite the detailed 97 

knowledge of molecular physiological mechanisms, translating these discoveries into breeding 98 

outcomes is still a challenge.  99 

Therefore, the objectives of this study were threefold: (1) to extend the Bertheloot et al. (2020) 100 

model of the shoot branching network to include genetic variation for nodes of the network; (2) 101 

apply quantitative genetic methods (Falconer and Mackay, 1996; Walsh and Lynch 2018) to 102 

undertake in silico investigations of important G2P properties of the extended shoot branching 103 

network model that can influence breeding outcomes; and (3) develop hypotheses of the 104 

expected selection trajectories for levels of the branching network nodes and branching trait 105 

outcomes for experimental investigation. Applying the framework developed to link quantitative 106 
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genetic models for trait genetic variation with crop growth models to model plant responses to 107 

environmental variation, outlined in Cooper et al. (2020), we created a shoot branching G2P 108 

network (Fig. 1) underpinned by genomic variation to demonstrate how variation from interactions 109 

in network-based G2P models is translated into selection responses for complex traits. In-silico 110 

selection experiments were performed on a large, segregating plant population to quantify direct 111 

(time to bud outgrowth) and indirect (intermediate traits; hormones and sucrose) selection 112 

responses. The results are discussed in terms of practical implications for developing G2P 113 

models to accelerate crop genetic improvement within established and future crop improvement 114 

programs. 115 

 116 

Materials and Methods  117 

 118 

Overview 119 

 120 

We created a gene-to-phenotype (G2P) network model for bud outgrowth by connecting a 121 

published, empirical shoot branching network (Bertheloot et al., 2020) to underlying allelic 122 

variation in the genome. The shoot branching network models phenotypic variation for the trait 123 

"time to bud outgrowth" as the outcome of the intermediate traits, auxin, cytokinins, 124 

strigolactones, and sucrose, and their interactions (Fig.1). We simulated the additive genetic 125 

effects of 10 non-pleiotropic, causal genetic loci for each intermediate trait. The additive genetic 126 

effects of the 10 causal genetic loci determined the additive genetic values for each intermediate 127 

trait for individual genotypes. . These additive genetic values replaced the synthesis term of the 128 

intermediate traits (hormones and sucrose), in the differential equations provided by Bertheloot et 129 

al. (2020) which were used to calculate the levels for each intermediate trait (��. Therefore, the 130 

trait under selection, time to bud outgrowth (����, can be viewed as a function � of the levels of 131 

the genotype-dependent intermediate traits (�� and a random error term (��.  132 

 133 
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��� �  	
��, ���, ���, ����� �  �                                                        

� 
 134 

To quantify response to selection, we performed in-silico divergent selection experiments for 135 

increased and decreased levels of ��� over 30 selection cycles. The results presented are 136 

generated from 100 replicates of the in-silico selection experiment. Code for the shoot branching 137 

network, genetic simulations and figures can be accessed in the following repository: 138 

https://github.com/powellow/ GeneticCanalizationOfG2PNetworks. 139 

 140 

Description of the Empirical Shoot Branching Model 141 

 142 

Bertheloot et al. (2020) used experimental data to describe phenotypic variation for time 143 

to bud outgrowth within a shoot branching network as a system of differential equations. The 144 

shoot branching network takes levels of auxin and sucrose as inputs, calculates cytokinins, 145 

strigolactones and signal integrator as intermediate trait outputs, and the time to bud outgrowth 146 

(days) as the final trait output. The levels of the intermediate trait outputs are described by 147 

differential equations, which each contained three terms: (i) a synthesis term, (ii) an interaction 148 

term and (iii) a degradation term. Bertheloot et al. (2020) applied a grid search approach, using 149 

observed times to bud outgrowth and levels of cytokinins, to parameterize the coefficients of the 150 

differential equations.  151 

 152 

Description of the in-silico Gene-to-Phenotype Shoot Branching Network 153 

 154 

To quantify the response to selection for time to bud outgrowth in a breeding population, 155 

a G2P shoot branching network model was developed. The G2P network connected phenotypic 156 

variation within the shoot branching network to allelic variation across a simulated genome. The 157 

simulated genomes of the individuals within a reference population of genotypes (Cooper et al., 158 

2020) consisted of a single chromosome with 40 causal genetic loci. Each intermediate trait 159 
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received additive genetic effects (�� from 10 non-pleiotropic causaal genetic loci. The magnitudes 160 

of � were sampled from a normal distribution, but the sum of their effects was constrained so that 161 

the additive genetic values (�) of individuals were within the range observed in experimental data 162 

(Table S4, Bertheloot et al. (8)). The additive genetic values (�)) for each intermediate trait were 163 

computed by summing the 10 additive genetic effets effects 
�	� according to the genotypes at 164 

the casusal geneti loci of each individual: 165 

 166 

���
 �   � ���
�

��

	
�

  ;   ���� � � �����

��

	
�

 ;   ��� � � ����

��

	
�

 ;   ��� � � ����

��

	
�

                   
��   

 167 

The additive genetic values  of individuals replaced the synthesis terms in the differential 168 

equations, but all other steps remained unchanged from Bertheloot et al. (2020). We provide the 169 

following, adapted equations replacing the synthesis terms with the appropriate breeding values 170 

purely for thoroughness and reproducibility. The interaction terms 
�� and levels of intermediate 171 

traits (�) were calculated based on the addtive genetic values (�) of individuals as follows: 172 

 173 

������
 �  



 �  �. �� · ���


                                                                                       
�� 

������
 �  �. �� · ����

�

�. 
� � �
���

�
                                                                                 
�� 

������
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�
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��


�
                                                                              
�� 

 174 
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 175 

 The levels of the intermediate traits were passed through a signal integrator, �. 176 

Calculated as follows: 177 

����
�  



 �  
���. ���

                                                                                               

�� 

����:���
�  �. �� · ���

�


 � �
�. ���
� � �. 
� · �
���

� � ·  �
��

� �                                


� 

��  �  �. �� � ����:���
 �  ����

                                                                                                           

�� 

 178 

The level of the signal integrator 
��� was then used to calculate the output trait, time to 179 

bud outgrowth 
����, as well as the calculation of a threshold bud outgrowth trait:  180 

 181 

���  �   �. � � �. � · ��                                                                                                                      

�� 
 182 

!�" #��$%&'(, ��� ) �. �
*% !�" #�'�$%&'(, ��� + 8.3                                                                                     

 183 

Description of the in-silico Selection Experiments 184 

 185 

For the in-silico selection experiments, we created an initial reference population of 186 

genotypes (RPG) from a single biparental cross, consisting of 1,000 F2 individuals. Phenotypes 187 

for time to bud outgrowth (���� of the 1,000 individuals of the reference population of genotypes 188 

were generated by adding a random error effect 
� ~ *��, /���, to collectively represent stochastic 189 

environmental, developmental noise and measurement error, to the true genetic value of time to 190 

bud outgrowth, ��� (Eqn. 1). The value of /� was calculated such that the broad-sense 191 

heritability, 0�, of time to bud outgrowth ranged between 0.1 and 1.0 in the initial RPG. We 192 

present results for 0� � 0.3 and 1.0. The value of /� was held constant over the 30 selection 193 

cycles. Therefore, individuals experienced the same level of random error throughout the 194 
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experiment, while the 0� for time to bud outgrowth could change with the magnitude of genetic 195 

variance in the reference population of genotypes due to selection. The population underwent 30 196 

cycles of truncation selection with discrete, non-overlapping generations (cycles) for either higher 197 

or lower time to bud outgrowth. For each cycle, the 'best’ 100 individuals were selected based on 198 

their output trait phenotype, time to bud outgrowth, to be used as parents (selection proportion = 199 

0.1) and crossed at random to create 1,000 offspring for the next cycle of evaluation and 200 

selection. Independent population replicates were generated by repeating the whole in-silico 201 

selection experiment process one hundred times. 202 

 203 

Hierarchical Clustering of Selection Trajectories 204 

 205 

Multi-trait performance landscapes for the intermediate trait phenotypes were generated to 206 

investigate quantitative genetic properties of the selection trajectories over 30 cycles of selection 207 

(Gavrilets, 2004; Messina et al., 2011; Walsh and Lynch, 2018; Cooper et al., 2020). To aid the 208 

visualization of the exploration of the shoot branching performance landscape via selection, the 209 

selection trajectories of the 100 replicates underwent hierarchical clustering. The 100 replicates 210 

were classified into 3 clusters using Ward’s method (Ward, 1963; Wishart, 1969; Williams, 1976). 211 

Rows of the matrix corresponded to the replicate id for each of the 100 replicates, columns of the 212 

matrix corresponded to each of the 30 selection cycles, and the cells contained values for 213 

strigolactone levels. The group mean trait levels for each selection cycle were plotted on the 214 

performance landscapes to visualize the selection trajectories.  215 

  216 
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Results  217 

The in-silico selection experiments with the shoot branching G2P network (Fig. 1) 218 

revealed the presence of cryptic genetic variation for the intermediate traits, hormones, and 219 

sugars that the selection for time to bud outgrowth struggled to access (Waddington, 1942; Flatt, 220 

2005; Masel, 2006; Walsh and Lynch, 2018). Such cryptic sources of genetic variation occur 221 

when selection cannot directly translate the sources of genetic variation into a selection response 222 

to improve adaptation and performance. The cryptic genetic variation within the in-silico 223 

experiment led to many repeated selection cycles with reduced selection response and large 224 

variation in selection trajectories across different replicate populations (Fig. 2A, C). Despite the 225 

large magnitudes of cryptic genetic variation for the intermediate traits under indirect selection, 226 

only small differences were observed among the selection trajectories of time to bud outgrowth, 227 

the output trait under direct selection.  228 

Cryptic genetic variation for the intermediate traits resulted in temporary and permanent 229 

plateaus in selection response (Fig. 2A, C). The emergence of these plateaus began after only 230 

three selection cycles. In scenarios with a simulated broad-sense heritability of 1 (no stochastic 231 

error variation during selection), the average genetic mean for sucrose began to increase again 232 

around selection cycle nine, when the genetic mean for strigolactones reached approximately 0.1. 233 

However, even with this perfect selection accuracy, a few of the replicate populations reached 234 

permanent plateaus at local maxima for two intermediate traits, sucrose and strigolactones. In 235 

scenarios with error included in the phenotypes of time to bud outgrowth, selection response was 236 

decreased for all shoot branching G2P network components, with the largest reductions observed 237 

for the genetic mean of sucrose. For example, with a broad-sense heritability of 0.3, the average 238 

genetic mean for sucrose across the 100 population replicates reached a permanent plateau at 239 

less than 90% of the maximum theoretical value after 30 selection cycles (Fig. 2C), with several 240 

individual populations achieving less than 60%.  241 
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Different magnitudes of cryptic genetic variation across the intermediate traits of 242 

hormones and sucrose resulted in different allele frequency changes for causal loci with similar 243 

genetic effect sizes for the intermediate traits (Fig. 2B, D). This trend was most apparent for 244 

causal loci occupying the bottom 60% of genetic effect sizes. In this G2P network simulation, 245 

alleles of causal loci with moderate genetic effect sizes (0.2–0.6) for cytokinins and auxin reached 246 

fixation within the reference population of genotypes (allele frequency of 0 or 1). However, causal 247 

loci for sucrose and strigolactones, also with moderate genetic effect sizes, were still segregating 248 

in the reference population of genotypes after 30 selection cycles (Fig. 2D). In the most extreme 249 

cases of the population replicates, causal loci with small genetic effect sizes (<0.2) underwent 250 

genetic drift in the reference population of genotypes, with allele frequency changes in the 251 

opposite direction from that expected based on the direction of selection. For example, we 252 

observed increases in allele frequencies of causal loci for strigolactones until at least selection 253 

cycle 10 (Fig. 2B, D) even though, in the absence of genetic drift or interaction effects, these 254 

would be expected to be selected against under the direct selection for faster bud outgrowth (Fig. 255 

1). This property of intermediate traits was independent of the heritability of the trait under direct 256 

selection. 257 

Performance landscapes were generated to further investigate and visualize emergent 258 

properties at the intermediate levels of the shoot branching network (Fig. 3). Steep gradients for 259 

time to bud outgrowth were observed at intermediate values of the intermediate traits, 260 

strigolactones and sucrose. Flatter gradients for time to bud outgrowth values were observed at 261 

extreme values of the intermediate traits. The plateaus in the performance landscape reflect that 262 

the large sources of genetic variation for sucrose and strigolactones translated into only a small 263 

variation in values of time to bud outgrowth. The average selection trajectories of the population 264 

replicates followed the steepness of performance landscapes, with a consistent higher strength of 265 

selection for higher sucrose levels in the first few selection cycles, followed by selection for lower 266 

strigolactone levels (Fig 3A & 3B). Although there was considerable variability in the selection 267 

trajectories among the individual population replicates (Supplementary Fig. 1). The inclusion of 268 
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stochastic error in time to bud outgrowth values, 1� � 0.3, resulted in selection trajectories 269 

stopping at a local maximum instead of the global maximum (Fig. 3B).  270 

  271 
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Discussion  272 

 273 

In this study, cryptic genetic variation (Waddington, 1942; Masel, 2006; Walsh and Lynch, 274 

2018) accumulated over selection cycles for the intermediate traits (hormones and sucrose) of 275 

the shoot branching G2P network, which resulted in reduced selection responses. The cryptic 276 

genetic variation for sucrose can be explained by the complex interaction between sucrose and 277 

strigolactone signalling in the G2P network (Fig. 1), resulting in genotypes with completely 278 

different combinations of strigolactone and sucrose levels producing similar values for time to bud 279 

outgrowth (Fig. 4). The occurrence of multiple intermediate G2P states mapping to fewer output 280 

trait states, associated with the emergent quantitative genetic property of cryptic genetic variation 281 

identified for the branching network model (Fig. 1), complicates the prediction of phenotype from 282 

genotype and the outcomes of selection strategies (Fig. 2 & 3), as implemented in plant breeding 283 

programs.   284 

The accumulation of cryptic genetic variation is not specific to the shoot branching G2P 285 

network. It can occur whenever non-linear relationships exist among traits or casual genetic loci 286 

due to genetic canalization (Waddington, 1942; Flatt, 2005). Therefore, we expect genetic 287 

canalization to be pervasive in complex traits under selection that result from interactions among 288 

multiple interacting genes (Kauffman et al., 2004; Rünneburger and Le Rouzic, 2016; Ødegård 289 

and Meuwissen, 2016), traits, environments, and agronomic management practices. The 290 

expectation of the emergent property of genetic canalization for G2P networks controlling 291 

complex traits raises several important questions for crop improvement programs. 292 

What are the impacts of reductions in detectable genetic variation for complex traits 293 

under selection? Reductions in detectable genetic variation, in part due to genetic canalization, 294 

have important implications for the selection responses achieved by crop improvement programs. 295 

Reductions in detectable genetic variation for complex target traits reduce the accuracy of 296 

identifying the best performing individuals, which leads to plateaus in selection response (Fig. 2A, 297 

2C, 3B). Of even more concern, the combination of reduced accuracy and reduced detectable 298 
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genetic variation could result in mistaking plateaus associated with local maxima for true, 299 

permanent selection limits for breeding populations (Fig. 3B).  300 

The results obtained from the in-silico selection experiment based on the branching 301 

network (Fig. 1) highlight an important G2P prediction question for plant breeders; How can crop 302 

improvement programs promote decanalization? Decanalization would allow the release of 303 

cryptic genetic variation for complex traits and accelerate selection response for the reference 304 

population of genotypes. In this study, decanalization and the subsequent increases in selection 305 

response occurred via the fixation of causal loci by chance (genetic drift) at different cycles for 306 

different population replicates (Fig 2B, D). Similar decanalization events could be a contributing 307 

factor to the unexpected (according to an additive finite locus model and the breeder’s equation; 308 

(Falconer and Mackay, 1996; Walsh and Lynch, 2018)), continued selection responses seen in 309 

long-term selection experiments (Dudley, 2007; Goodnight, 2015). A more targeted strategy 310 

would be to restructure crop breeding programs to promote and control the conversion of non-311 

additive, epistatic genetic variance into additive genetic variance within the reference population 312 

of genotypes (Cooper et al., 2005). For example, in maize (Zea mays), Technow et al. (2021) 313 

demonstrated that a decentralized structure of multiple, smaller crop improvement programs 314 

interconnected by a few key parents was required to facilitate selection response under high 315 

levels of G2P genetic complexity. Another complementary strategy involves direct selection on 316 

traits at intermediate layers of the G2P network to circumvent the complex interactions that 317 

generate canalization of traits at higher levels of the network hierarchy. In the case of shoot 318 

branching, decanalization could be achieved by direct selection on sucrose or strigolactone 319 

levels. The many influences of such emergent non-linear properties and the need to consider 320 

alternative breeding strategies to accelerate improvement of the complex traits motivate 321 

experimental-simulation investigations to develop appropriate G2P models (Marshall-Colon et al., 322 

2017; Hammer et al., 2019; Cooper et al., 2020; Tardieu et al., 2020)  323 

The development of G2P networks that link, empirically based, plant models with natural 324 

genomic variation is crucial to appropriately design strategies and experiments to tackle many 325 
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compelling questions in crop improvement. This study is a demonstration of the ideas of 326 

modelling selection response through crop growth models outlined in Cooper et al. (2020), using 327 

the plant branching network model developed by Bertheloot et al. (2020). A benefit of taking such 328 

a view of the G2P relationship was the observation of genetic canalization as an emergent 329 

property of selection for faster shoot branching, which would not have been achievable taking 330 

standard physiological modelling or single-trait quantitative genetics approaches in isolation. The 331 

multi-trait structure and interactions within plant models generate conditional effects that 332 

contribute to the quantitative genetic properties of epistasis and vertical pleiotropy when 333 

connected to genomic variation. Specifying the genetic effects of the inputs of plant models at the 334 

level of genes instead of genotypes allows the assessment of selection response over multiple 335 

selection cycles, as is required for the design of breeding strategies (Hammer et al., 2019; 336 

Cooper et al., 2020). Such G2P networks also include genetic constraints enforced by processes 337 

such as recombination and linkage to provide more realistic predictions of the exploration of 338 

performance landscapes of traits (Messina et al., 2011; Technow et al., 2021). In this study, 339 

selection for faster shoot branching explored a relatively small area of the total performance 340 

landscape encoded by the Bertheloot et al. (2020) branching model (Fig. 3).  341 

Future studies can exploit the increased power and flexibility when viewing complex traits 342 

as gene-to-phenotype networks in: (i) in silico simulations (Hammer et al., 2019; Cooper et al., 343 

2020), akin to our approach; (ii) empirical, longitudinal, "select and sequence" studies (Lenski and 344 

Travisano, 1994; Wisser et al., 2019) or  (iii) broader exploration of performance landscapes with 345 

genome editing of network components (Eshed and Lippman, 2019) to improve understanding of 346 

selection response of complex traits in nature and agriculture.   347 
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Figures 472 

 473 

474 

Figure 1. Shoot branching gene-to-phenotype (G2P) network. Ten causal genetic loci (u) and 475 

interactions determine the levels of each of the intermediate traits : strigolactones (SL), auxin (A), 476 

sucrose (Suc), and cytokinins (CK). In turn, levels of these intermediate traits (hormones, 477 

sucrose and the signal integrator), their interactions, and random error (e) determine the time to 478 

bud outgrowth of an individual plant.  479 
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 480 

Figure 2. Selection trajectories for the shoot branching G2P network for faster bud 481 

outgrowth and the relationships between normalized genetic effect sizes and allele 482 

frequency changes at causal genetic loci over selection cycles. (A, B) Results from selection 483 

with a broad sense heritability, , of 1. (C, D) Results from selection with a broad sense 484 

heritability, , of 0.3. (A, C) Normalized total genetic values for the intermediate traits over 485 

selection cycles. Thick lines are the normalized genetic means averaged across the population 486 

replicates. Thin lines are the normalized genetic means for each population replicate. (B, D) Plot 487 

of allele frequency changes at causal genetic loci versus normalized genetic effect sizes. Each 488 

point represents a causal genetic locus from the 100 population replicates. Values are presented 489 

for selection cycles 1, 5, 10, and 30. 490 
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 492 
Figure 3. Exploration of the Shoot Branching Performance Landscape via Selection. (A) 493 

Results from selection with a broad sense heritability, , of 1. (B) Results from selection with a 494 

broad sense heritability, , of 0.3. To aid visualization, the selection trajectories of 100 495 

population replicates were grouped into 3 clusters using Ward’s method (see Methods). The 496 

average selection trajectories of the three clusters (thick white lines) are plotted against the 497 

normalised total genetic values for strigolactones and sucrose. The contour shows the variation in 498 

strigolactone and sucrose values and the values for time to bud outgrowth observed across the 499 

100 population replicates. The light blue area depicts the area of the full shoot branching 500 

performance landscape, determined by the Bertheloot et al. (2020) model, unexplored by 501 

selection. 502 
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 504 
Figure 4. Genetic Canalization of Gene-To-Phenotype Networks. Multiple genetic 505 

combinations of intermediate traits produce similar values for the target trait, causing the 506 

accumulation of cryptic genetic variation that cannot be accessed by selection. 507 
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 509 
Supplementary Figure 1. Population variation during the exploration of the shoot 510 

branching performance landscape. (A) Results from selection with a broad sense heritability, 511 

, of 1. (B) Results from selection with a broad sense heritability, , of 0.3. The contour shows 512 

the variation in strigolactone and sucrose values and the values for time to bud outgrowth 513 

observed across the 100 population replicates. The light blue area depicts the area of the full 514 

shoot branching performance landscape, determined by the Bertheloot et al. (2020) model, 515 

unexplored by selection. Grey dots show average strigolactone and sucrose values for population 516 

replicates at a particular selection cycles. 517 
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