

1 **Investigations into the emergent properties of gene-to-
2 phenotype networks across cycles of selection: A case study of
3 shoot branching in plants**

4 Owen M. Powell^{a,b,*}, Francois Barbier^{b,c}, Kai P. Voss-Fels^{d,e}, Christine Beveridge^{b,c}, Mark
5 Cooper^{a,b}

6 ^aUniversity of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for
7 Crop Science, St Lucia, QLD, Australia.

8 ^bARC Centre of Excellence for Plant Success in Nature and Agriculture, University of
9 Queensland, St Lucia, QLD, Australia.

10 ^cUniversity of Queensland, School of Biological Sciences, St Lucia, QLD, Australia.

11 ^d University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for
12 Animal Science, St Lucia, QLD, Australia.

13 ^e Hochschule Geisenheim University, Department of Grapevine Breeding, Geisenheim, Germany.

14

15 **Corresponding Authors:**

16 * Owen M. Powell

17 **Email:** o.powell2@uq.edu.au

18 **Author Contributions:** OMP and MC conceived the study and interpreted the results. OMP
19 developed the gene-to-phenotype network, developed the *in-silico* selection experiments,
20 performed the analyses, and wrote the manuscript. FB provided input on the shoot branching
21 model, helped interpret the results, and wrote parts of the introduction. KVF developed a previous
22 iteration of the G2P network. CB provided input on the shoot branching model and helped
23 interpret the results. All authors read, refined, and approved the final manuscript.

24 **Competing Interest Statement:** The authors declare they have no competing interests.

25 **Keywords:** shoot architecture, , networks, epistasis, hormones, genetic canalization, cryptic
26 genetic variation..

27 **This file includes:**

28 Main Text

29 Figures 1, 2, 3 and 4

30 Supplementary Figure 1,

31 **Abstract**

32

33 Predictive breeding is now widely practised in crop improvement programs and has accelerated
34 selection response (i.e., the amount of genetic gain between breeding cycles) for complex traits.
35 However, world food production needs to increase further to meet the demands of the growing
36 human population. The prediction of complex traits with current methods can be inconsistent
37 across different genetic, environmental, and agronomic management contexts because the
38 complex relationships between genomic and phenotypic variation are not well accounted for.
39 Therefore, developing gene-to-phenotype network models for traits that integrate the knowledge
40 of networks from systems biology, plant and crop physiology with population genomics has been
41 proposed to close this gap in predictive modelling. Here, we develop a gene-to-phenotype
42 network for shoot branching, a critical developmental pathway underpinning harvestable yield for
43 many crop species, as a case study to explore the value of developing gene-to-phenotype
44 networks to enhance understanding of selection responses. We observed that genetic
45 canalization is an emergent property of the complex interactions among shoot branching gene-to-
46 phenotype network components, leading to the accumulation of cryptic genetic variation, reduced
47 selection responses, and large variation in selection trajectories across populations. As genetic
48 canalization is expected to be pervasive in traits, such as grain yield, that result from interactions
49 among multiple genes, traits, environments, and agronomic management practices, the need to
50 model traits in crop improvement programs as outcomes of gene-to-phenotype networks is
51 highlighted as an emerging opportunity to advance our understanding of selection response and
52 the efficiency of developing resilient crops for future climates.

53 **Introduction**

54

55 Due to an increasingly harsh and unpredictable climate, improving the consistency and
56 scope of predictions for crop performance is crucial for global agriculture to meet the challenge of
57 feeding a global population of 10+ billion people (Reynolds et al., 2021). Current prediction
58 methods used in crop breeding assume a simplified linear relationship between genotype and
59 phenotypes (Falconer and Mackay, 1996; Meuwissen et al., 2001; Cooper et al., 2014; Walsh
60 and Lynch, 2018; Gianola, 2021), thus limiting the realized selection response achieved by many
61 crop improvement programs (Kholová et al., 2021). Although this simplified genotype-to-
62 phenotype relationship (G2P map) is sufficient to successfully model the average selection
63 trajectory of large populations (Cooper et al., 2014), this approach captures only a subset of all
64 performance outcomes, potentially leading to misalignments between predicted performance and
65 realized performance in the field. Such simplified G2P relationships can hinder accurate
66 predictions for crop performance in specific management and environment combinations
67 (Kholová et al., 2021).

68 Developing G2P network models that integrate the knowledge of networks from systems
69 biology and physiology with population genomics may improve modelling of the genotype-to-
70 phenotype relationship for many complex traits (Benfey and Mitchell-Olds, 2008; Marjoram et al.,
71 2014; Marshall-Colon et al., 2017; Eshed and Lippman, 2019; Cooper et al., 2020). For crop
72 improvement programs, the detected interactions in network models can unmask existing genetic
73 variation or identify intermediate traits that can increase the selection accuracy and efficiency of
74 developing novel crop varieties and hybrids. Applying the framework of the "breeders equation"
75 (Falconer and Mackay, 1996; Paixão and Barton, 2016; Walsh and Lynch, 2018), the
76 contributions of the genetic interactions (epistasis) to total genetic variation must be converted
77 into additive genetic variation to deliver a sustainable selection response in breeding programs
78 (Technow et al. 2021). A strong theoretical understanding exists of the importance of epistasis for
79 selection response when based on G2P models without molecular network models (Paixão and

80 Barton, 2016; Walsh and Lynch, 2018). However, relevant knowledge of selection response for
81 G2P models based on networks operating over biological scales (Marshall-Colon et al., 2017;
82 Hammer et al., 2019; Wu et al., 2019; Tardieu et al., 2020) is lagging due to the lack of
83 adequately characterized empirically-based examples.

84 Here, we use axillary bud outgrowth, a primary driver of shoot branching, as a case study
85 of an agronomically important, well-characterized and empirically described network (Bertheloot
86 et al., 2020). The core structure of this network is largely conserved across herbaceous model
87 plants and divergent crops. It involves different endogenous signals interacting with each other to
88 regulate shoot branching. Hormones including auxin, cytokinins and strigolactones play a crucial
89 role in regulating this process (Domagalska and Leyser, 2011; Barbier et al., 2019). The growing
90 shoot apex produces auxin, which travels downwards in the stem, inhibiting cytokinin synthesis
91 and accumulation and promoting strigolactone synthesis. Cytokinins and strigolactones induce
92 and repress bud outgrowth, respectively. Sugar availability is a determining factor for plant growth
93 and development, including shoot branching (Barbier et al., 2019; Fichtner et al., 2021). Axillary
94 buds require a source of sugar to grow out, and the strong demand for sugar by the shoot apex
95 inhibits axillary bud outgrowth (Mason et al., 2014; Barbier et al., 2019). During shoot branching,
96 sugars were reported to promote cytokinin synthesis and inhibit strigolactone perception (Barbier
97 et al., 2019; Bertheloot et al., 2020; Salam et al., 2020; Patil et al., 2021). Despite the detailed
98 knowledge of molecular physiological mechanisms, translating these discoveries into breeding
99 outcomes is still a challenge.

100 Therefore, the objectives of this study were threefold: (1) to extend the Bertheloot et al. (2020)
101 model of the shoot branching network to include genetic variation for nodes of the network; (2)
102 apply quantitative genetic methods (Falconer and Mackay, 1996; Walsh and Lynch 2018) to
103 undertake *in silico* investigations of important G2P properties of the extended shoot branching
104 network model that can influence breeding outcomes; and (3) develop hypotheses of the
105 expected selection trajectories for levels of the branching network nodes and branching trait
106 outcomes for experimental investigation. Applying the framework developed to link quantitative

107 genetic models for trait genetic variation with crop growth models to model plant responses to
108 environmental variation, outlined in Cooper et al. (2020), we created a shoot branching G2P
109 network (Fig. 1) underpinned by genomic variation to demonstrate how variation from interactions
110 in network-based G2P models is translated into selection responses for complex traits. *In-silico*
111 selection experiments were performed on a large, segregating plant population to quantify direct
112 (time to bud outgrowth) and indirect (intermediate traits; hormones and sucrose) selection
113 responses. The results are discussed in terms of practical implications for developing G2P
114 models to accelerate crop genetic improvement within established and future crop improvement
115 programs.

116

117 **Materials and Methods**

118

119 **Overview**

120

121 We created a gene-to-phenotype (G2P) network model for bud outgrowth by connecting a
122 published, empirical shoot branching network (Bertheloot et al., 2020) to underlying allelic
123 variation in the genome. The shoot branching network models phenotypic variation for the trait
124 "time to bud outgrowth" as the outcome of the intermediate traits, auxin, cytokinins,
125 strigolactones, and sucrose, and their interactions (Fig.1). We simulated the additive genetic
126 effects of 10 non-pleiotropic, causal genetic loci for each intermediate trait. The additive genetic
127 effects of the 10 causal genetic loci determined the additive genetic values for each intermediate
128 trait for individual genotypes. . These additive genetic values replaced the synthesis term of the
129 intermediate traits (hormones and sucrose), in the differential equations provided by Bertheloot et
130 al. (2020) which were used to calculate the levels for each intermediate trait (g). Therefore, the
131 trait under selection, time to bud outgrowth (y_{BO}), can be viewed as a function F of the levels of
132 the genotype-dependent intermediate traits (g) and a random error term (e).

133

$$y_{BO} = F(\mathbf{g}_A, \mathbf{g}_{CK}, \mathbf{g}_{SL}, \mathbf{g}_{SUC}) + e \quad (1)$$

134

135 To quantify response to selection, we performed *in-silico* divergent selection experiments for
136 increased and decreased levels of y_{BO} over 30 selection cycles. The results presented are
137 generated from 100 replicates of the *in-silico* selection experiment. Code for the shoot branching
138 network, genetic simulations and figures can be accessed in the following repository:
139 <https://github.com/powell/GeneticCanalizationOfG2PNetworks>.

140

141 **Description of the Empirical Shoot Branching Model**

142

143 Bertheloot et al. (2020) used experimental data to describe phenotypic variation for time
144 to bud outgrowth within a shoot branching network as a system of differential equations. The
145 shoot branching network takes levels of auxin and sucrose as inputs, calculates cytokinins,
146 strigolactones and signal integrator as intermediate trait outputs, and the time to bud outgrowth
147 (days) as the final trait output. The levels of the intermediate trait outputs are described by
148 differential equations, which each contained three terms: (i) a synthesis term, (ii) an interaction
149 term and (iii) a degradation term. Bertheloot et al. (2020) applied a grid search approach, using
150 observed times to bud outgrowth and levels of cytokinins, to parameterize the coefficients of the
151 differential equations.

152

153 **Description of the *in-silico* Gene-to-Phenotype Shoot Branching Network**

154

155 To quantify the response to selection for time to bud outgrowth in a breeding population,
156 a G2P shoot branching network model was developed. The G2P network connected phenotypic
157 variation within the shoot branching network to allelic variation across a simulated genome. The
158 simulated genomes of the individuals within a reference population of genotypes (Cooper et al.,
159 2020) consisted of a single chromosome with 40 causal genetic loci. Each intermediate trait

160 received additive genetic effects (\mathbf{u}) from 10 non-pleiotropic causal genetic loci. The magnitudes
 161 of \mathbf{u} were sampled from a normal distribution, but the sum of their effects was constrained so that
 162 the additive genetic values (\mathbf{a}) of individuals were within the range observed in experimental data
 163 (Table S4, Bertheloot et al. (8)). The additive genetic values (\mathbf{a}) for each intermediate trait were
 164 computed by summing the 10 additive genetic effects (\mathbf{u}_i) according to the genotypes at
 165 the causal loci of each individual:

166

$$a_{AUX} = \sum_{i=1}^{10} u_{AUX_i} ; a_{SUC} = \sum_{i=1}^{10} u_{SUC_i} ; a_{CK} = \sum_{i=1}^{10} u_{CK_i} ; a_{SL} = \sum_{i=1}^{10} u_{SL_i} \quad (2)$$

167

168 The additive genetic values of individuals replaced the synthesis terms in the differential
 169 equations, but all other steps remained unchanged from Bertheloot et al. (2020). We provide the
 170 following, adapted equations replacing the synthesis terms with the appropriate breeding values
 171 purely for thoroughness and reproducibility. The interaction terms (γ) and levels of intermediate
 172 traits (\mathbf{g}) were calculated based on the additive genetic values (\mathbf{a}) of individuals as follows:

173

$$\gamma_{CK_{AUX}} = \frac{1}{1 + 0.96 \cdot a_{AUX}} \quad (3)$$

$$\gamma_{CK_{SUC}} = 0.25 \cdot \frac{a_{SUC}^2}{0.19 + a_{SUC}^2} \quad (4)$$

$$\gamma_{SL_{AUX}} = 24.89 \cdot \frac{a_{AUX}^2}{294.58 + a_{AUX}^2} \quad (5)$$

174

$$g_{AUX} = a_{AUX} \quad (6)$$

$$g_{SUC} = a_{SUC} \quad (7)$$

$$g_{CK} = \frac{a_{CK} \cdot \gamma_{CK_{AUX}} + \gamma_{CK_{SUC}}}{0.99} \quad (8)$$

$$g_{SL} = \frac{a_{SL} + \gamma_{SL_{AUX}}}{0.86} \quad (9)$$

175

176 The levels of the intermediate traits were passed through a signal integrator, I .

177 Calculated as follows:

$$\gamma_{I_{CK}} = \frac{1}{1 + 1000 \cdot g_{CK}} \quad (10)$$

$$\gamma_{I_{SL:SUC}} = 5.64 \cdot \frac{g_{SL}^2}{1 + [(0.00418 + 7.10 \cdot g_{SUC}^2) \cdot g_{SL}^2]} \quad (11)$$

$$g_I = 0.33 + \gamma_{I_{SL:SUC}} + \gamma_{I_{CK}} \quad (12)$$

178

179 The level of the signal integrator (g_I) was then used to calculate the output trait, time to
180 bud outgrowth (g_{BO}), as well as the calculation of a threshold bud outgrowth trait:

181

$$g_{BO} = -2.2 + 3.5 \cdot g_I \quad (13)$$

182

$$\begin{aligned} \text{Bud Outgrowth, } & g_{BO} \leq 8.3 \\ \text{No Bud Outgrowth, } & g_{BO} > 8.3 \end{aligned}$$

183

184 **Description of the *in-silico* Selection Experiments**

185

186 For the *in-silico* selection experiments, we created an initial reference population of
187 genotypes (RPG) from a single biparental cross, consisting of 1,000 F2 individuals. Phenotypes
188 for time to bud outgrowth (y_{BO}) of the 1,000 individuals of the reference population of genotypes
189 were generated by adding a random error effect ($e \sim N[0, \nu_e]$), to collectively represent stochastic
190 environmental, developmental noise and measurement error, to the true genetic value of time to
191 bud outgrowth, g_{BO} (Eqn. 1). The value of ν_e was calculated such that the broad-sense
192 heritability, H^2 , of time to bud outgrowth ranged between 0.1 and 1.0 in the initial RPG. We
193 present results for $H^2 = 0.3$ and 1.0. The value of ν_e was held constant over the 30 selection
194 cycles. Therefore, individuals experienced the same level of random error throughout the

195 experiment, while the H^2 for time to bud outgrowth could change with the magnitude of genetic
196 variance in the reference population of genotypes due to selection. The population underwent 30
197 cycles of truncation selection with discrete, non-overlapping generations (cycles) for either higher
198 or lower time to bud outgrowth. For each cycle, the 'best' 100 individuals were selected based on
199 their output trait phenotype, time to bud outgrowth, to be used as parents (selection proportion =
200 0.1) and crossed at random to create 1,000 offspring for the next cycle of evaluation and
201 selection. Independent population replicates were generated by repeating the whole *in-silico*
202 selection experiment process one hundred times.

203

204 ***Hierarchical Clustering of Selection Trajectories***

205

206 Multi-trait performance landscapes for the intermediate trait phenotypes were generated to
207 investigate quantitative genetic properties of the selection trajectories over 30 cycles of selection
208 (Gavrilets, 2004; Messina et al., 2011; Walsh and Lynch, 2018; Cooper et al., 2020). To aid the
209 visualization of the exploration of the shoot branching performance landscape via selection, the
210 selection trajectories of the 100 replicates underwent hierarchical clustering. The 100 replicates
211 were classified into 3 clusters using Ward's method (Ward, 1963; Wishart, 1969; Williams, 1976).
212 Rows of the matrix corresponded to the replicate id for each of the 100 replicates, columns of the
213 matrix corresponded to each of the 30 selection cycles, and the cells contained values for
214 strigolactone levels. The group mean trait levels for each selection cycle were plotted on the
215 performance landscapes to visualize the selection trajectories.

216

217 **Results**

218 The *in-silico* selection experiments with the shoot branching G2P network (Fig. 1)
219 revealed the presence of cryptic genetic variation for the intermediate traits, hormones, and
220 sugars that the selection for time to bud outgrowth struggled to access (Waddington, 1942; Flatt,
221 2005; Masel, 2006; Walsh and Lynch, 2018). Such cryptic sources of genetic variation occur
222 when selection cannot directly translate the sources of genetic variation into a selection response
223 to improve adaptation and performance. The cryptic genetic variation within the *in-silico*
224 experiment led to many repeated selection cycles with reduced selection response and large
225 variation in selection trajectories across different replicate populations (Fig. 2A, C). Despite the
226 large magnitudes of cryptic genetic variation for the intermediate traits under indirect selection,
227 only small differences were observed among the selection trajectories of time to bud outgrowth,
228 the output trait under direct selection.

229 Cryptic genetic variation for the intermediate traits resulted in temporary and permanent
230 plateaus in selection response (Fig. 2A, C). The emergence of these plateaus began after only
231 three selection cycles. In scenarios with a simulated broad-sense heritability of 1 (no stochastic
232 error variation during selection), the average genetic mean for sucrose began to increase again
233 around selection cycle nine, when the genetic mean for strigolactones reached approximately 0.1.
234 However, even with this perfect selection accuracy, a few of the replicate populations reached
235 permanent plateaus at local maxima for two intermediate traits, sucrose and strigolactones. In
236 scenarios with error included in the phenotypes of time to bud outgrowth, selection response was
237 decreased for all shoot branching G2P network components, with the largest reductions observed
238 for the genetic mean of sucrose. For example, with a broad-sense heritability of 0.3, the average
239 genetic mean for sucrose across the 100 population replicates reached a permanent plateau at
240 less than 90% of the maximum theoretical value after 30 selection cycles (Fig. 2C), with several
241 individual populations achieving less than 60%.

242 Different magnitudes of cryptic genetic variation across the intermediate traits of
243 hormones and sucrose resulted in different allele frequency changes for causal loci with similar
244 genetic effect sizes for the intermediate traits (Fig. 2B, D). This trend was most apparent for
245 causal loci occupying the bottom 60% of genetic effect sizes. In this G2P network simulation,
246 alleles of causal loci with moderate genetic effect sizes (0.2–0.6) for cytokinins and auxin reached
247 fixation within the reference population of genotypes (allele frequency of 0 or 1). However, causal
248 loci for sucrose and strigolactones, also with moderate genetic effect sizes, were still segregating
249 in the reference population of genotypes after 30 selection cycles (Fig. 2D). In the most extreme
250 cases of the population replicates, causal loci with small genetic effect sizes (<0.2) underwent
251 genetic drift in the reference population of genotypes, with allele frequency changes in the
252 opposite direction from that expected based on the direction of selection. For example, we
253 observed increases in allele frequencies of causal loci for strigolactones until at least selection
254 cycle 10 (Fig. 2B, D) even though, in the absence of genetic drift or interaction effects, these
255 would be expected to be selected against under the direct selection for faster bud outgrowth (Fig.
256 1). This property of intermediate traits was independent of the heritability of the trait under direct
257 selection.

258 Performance landscapes were generated to further investigate and visualize emergent
259 properties at the intermediate levels of the shoot branching network (Fig. 3). Steep gradients for
260 time to bud outgrowth were observed at intermediate values of the intermediate traits,
261 strigolactones and sucrose. Flatter gradients for time to bud outgrowth values were observed at
262 extreme values of the intermediate traits. The plateaus in the performance landscape reflect that
263 the large sources of genetic variation for sucrose and strigolactones translated into only a small
264 variation in values of time to bud outgrowth. The average selection trajectories of the population
265 replicates followed the steepness of performance landscapes, with a consistent higher strength of
266 selection for higher sucrose levels in the first few selection cycles, followed by selection for lower
267 strigolactone levels (Fig 3A & 3B). Although there was considerable variability in the selection
268 trajectories among the individual population replicates (Supplementary Fig. 1). The inclusion of

269 stochastic error in time to bud outgrowth values, $H^2 = 0.3$, resulted in selection trajectories

270 stopping at a local maximum instead of the global maximum (Fig. 3B).

271

272 **Discussion**

273

274 In this study, cryptic genetic variation (Waddington, 1942; Masel, 2006; Walsh and Lynch,
275 2018) accumulated over selection cycles for the intermediate traits (hormones and sucrose) of
276 the shoot branching G2P network, which resulted in reduced selection responses. The cryptic
277 genetic variation for sucrose can be explained by the complex interaction between sucrose and
278 strigolactone signalling in the G2P network (Fig. 1), resulting in genotypes with completely
279 different combinations of strigolactone and sucrose levels producing similar values for time to bud
280 outgrowth (Fig. 4). The occurrence of multiple intermediate G2P states mapping to fewer output
281 trait states, associated with the emergent quantitative genetic property of cryptic genetic variation
282 identified for the branching network model (Fig. 1), complicates the prediction of phenotype from
283 genotype and the outcomes of selection strategies (Fig. 2 & 3), as implemented in plant breeding
284 programs.

285 The accumulation of cryptic genetic variation is not specific to the shoot branching G2P
286 network. It can occur whenever non-linear relationships exist among traits or causal genetic loci
287 due to genetic canalization (Waddington, 1942; Flatt, 2005). Therefore, we expect genetic
288 canalization to be pervasive in complex traits under selection that result from interactions among
289 multiple interacting genes (Kauffman et al., 2004; Rünneburger and Le Rouzic, 2016; Ødegård
290 and Meuwissen, 2016), traits, environments, and agronomic management practices. The
291 expectation of the emergent property of genetic canalization for G2P networks controlling
292 complex traits raises several important questions for crop improvement programs.

293 What are the impacts of reductions in detectable genetic variation for complex traits
294 under selection? Reductions in detectable genetic variation, in part due to genetic canalization,
295 have important implications for the selection responses achieved by crop improvement programs.
296 Reductions in detectable genetic variation for complex target traits reduce the accuracy of
297 identifying the best performing individuals, which leads to plateaus in selection response (Fig. 2A,
298 2C, 3B). Of even more concern, the combination of reduced accuracy and reduced detectable

299 genetic variation could result in mistaking plateaus associated with local maxima for true,
300 permanent selection limits for breeding populations (Fig. 3B).

301 The results obtained from the *in-silico* selection experiment based on the branching
302 network (Fig. 1) highlight an important G2P prediction question for plant breeders; How can crop
303 improvement programs promote decanalization? Decanalization would allow the release of
304 cryptic genetic variation for complex traits and accelerate selection response for the reference
305 population of genotypes. In this study, decanalization and the subsequent increases in selection
306 response occurred via the fixation of causal loci by chance (genetic drift) at different cycles for
307 different population replicates (Fig 2B, D). Similar decanalization events could be a contributing
308 factor to the unexpected (according to an additive finite locus model and the breeder's equation;
309 (Falconer and Mackay, 1996; Walsh and Lynch, 2018)), continued selection responses seen in
310 long-term selection experiments (Dudley, 2007; Goodnight, 2015). A more targeted strategy
311 would be to restructure crop breeding programs to promote and control the conversion of non-
312 additive, epistatic genetic variance into additive genetic variance within the reference population
313 of genotypes (Cooper et al., 2005). For example, in maize (*Zea mays*), Technow et al. (2021)
314 demonstrated that a decentralized structure of multiple, smaller crop improvement programs
315 interconnected by a few key parents was required to facilitate selection response under high
316 levels of G2P genetic complexity. Another complementary strategy involves direct selection on
317 traits at intermediate layers of the G2P network to circumvent the complex interactions that
318 generate canalization of traits at higher levels of the network hierarchy. In the case of shoot
319 branching, decanalization could be achieved by direct selection on sucrose or strigolactone
320 levels. The many influences of such emergent non-linear properties and the need to consider
321 alternative breeding strategies to accelerate improvement of the complex traits motivate
322 experimental-simulation investigations to develop appropriate G2P models (Marshall-Colon et al.,
323 2017; Hammer et al., 2019; Cooper et al., 2020; Tardieu et al., 2020)

324 The development of G2P networks that link, empirically based, plant models with natural
325 genomic variation is crucial to appropriately design strategies and experiments to tackle many

326 compelling questions in crop improvement. This study is a demonstration of the ideas of
327 modelling selection response through crop growth models outlined in Cooper et al. (2020), using
328 the plant branching network model developed by Bertheloot et al. (2020). A benefit of taking such
329 a view of the G2P relationship was the observation of genetic canalization as an emergent
330 property of selection for faster shoot branching, which would not have been achievable taking
331 standard physiological modelling or single-trait quantitative genetics approaches in isolation. The
332 multi-trait structure and interactions within plant models generate conditional effects that
333 contribute to the quantitative genetic properties of epistasis and vertical pleiotropy when
334 connected to genomic variation. Specifying the genetic effects of the inputs of plant models at the
335 level of genes instead of genotypes allows the assessment of selection response over multiple
336 selection cycles, as is required for the design of breeding strategies (Hammer et al., 2019;
337 Cooper et al., 2020). Such G2P networks also include genetic constraints enforced by processes
338 such as recombination and linkage to provide more realistic predictions of the exploration of
339 performance landscapes of traits (Messina et al., 2011; Technow et al., 2021). In this study,
340 selection for faster shoot branching explored a relatively small area of the total performance
341 landscape encoded by the Bertheloot et al. (2020) branching model (Fig. 3).

342 Future studies can exploit the increased power and flexibility when viewing complex traits
343 as gene-to-phenotype networks in: (i) *in silico* simulations (Hammer et al., 2019; Cooper et al.,
344 2020), akin to our approach; (ii) empirical, longitudinal, "select and sequence" studies (Lenski and
345 Travisano, 1994; Wisser et al., 2019) or (iii) broader exploration of performance landscapes with
346 genome editing of network components (Eshed and Lippman, 2019) to improve understanding of
347 selection response of complex traits in nature and agriculture.

348 **Acknowledgements**

349 We thank Dr Franziska Fichtner for fruitful discussions about the molecular physiology of the
350 shoot branching network and comments on the manuscript. Figures were created or formatted
351 with Biorender.

352

353 **Author Contributions**

354 OMP and MC conceived the study and helped interpret the results. OMP developed the gene-to-
355 phenotype network, developed the in-silico selection experiments, performed the analyses, and
356 wrote the manuscript. FB provided input on the shoot branching model, helped interpret the
357 results, and wrote parts of the introduction. KVF developed a previous iteration of the G2P
358 network. CB provided input on the shoot branching model and helped interpret the results. All
359 authors read, refined, and approved the final manuscript.

360 **Funding Statement**

361

362 Contribution supported by the Australian Research Council Centre of Excellence for Plant
363 Success in Nature and Agriculture (CE200100015) (OMP, FB, CB and MC), the Australian
364 Grains Research and Development Corporation project UOQ1903-008RTX (OMP and MC), the
365 Australian Research Council Georgina Sweet Laureate Fellowship (FL180100139 to CB) and the
366 Australian Research Council Discovery Early Career Researcher Award (DE210101407 to KVF)

367 **Competing Interest Statement**

368 The authors declare they have no competing interests.

369 **References**

370 Barbier, F. F., Dun, E. A., Kerr, S. C., Chabikwa, T. G., and Beveridge, C. A. (2019). An Update
371 on the Signals Controlling Shoot Branching. *Trends Plant Sci* 24, 220–236.
372 doi:10.1016/j.tplants.2018.12.001.

373 Benfey, P. N., and Mitchell-Olds, T. (2008). From Genotype to Phenotype: Systems Biology
374 Meets Natural Variation. *Science* 320, 495. doi:10.1126/science.1153716.

375 Bertheloot, J., Barbier, F., Boudon, F., Perez-Garcia, M. D., Péron, T., Citerne, S., et al. (2020).
376 Sugar availability suppresses the auxin-induced strigolactone pathway to promote bud outgrowth.
377 *New Phytologist* 225, 866–879. doi:<https://doi.org/10.1111/nph.16201>.

378 Cooper, M., Messina, C. D., Podlich, D., Totir, L. R., Baumgarten, A., Hausmann, N. J., et al.
379 (2014). Predicting the future of plant breeding: complementing empirical evaluation with genetic
380 prediction. *cpsc* 65, 311–336. doi:10.1071/CP14007.

381 Cooper, M., Podlich, D. W., and Smith, O. S. (2005). Gene-to-phenotype models and complex
382 trait genetics. *Aust. J. Agric. Res.* 56, 895–918. doi:10.1071/AR05154.

383 Cooper, M., Powell, O., Voss-Fels, K. P., Messina, C. D., Gho, C., Podlich, D. W., et al. (2020).
384 Modelling selection response in plant breeding programs using crop models as mechanistic gene-
385 to-phenotype (CGM-G2P) multi-trait link functions. *in silico Plants*.
386 doi:10.1093/insilicoplants/diaa016.

387 Domagalska, M. A., and Leyser, O. (2011). Signal integration in the control of shoot branching.
388 *Nature Reviews Molecular Cell Biology* 12, 211–221. doi:10.1038/nrm3088.

389 Dudley, J. W. (2007). From Means to QTL: The Illinois Long-Term Selection Experiment as a
390 Case Study in Quantitative Genetics. *Crop Science* 47, S-20-S-31.
391 doi:<https://doi.org/10.2135/cropsci2007.04.0003IPBS>.

392 Eshed, Y., and Lippman, Z. B. (2019). Revolutions in agriculture chart a course for targeted
393 breeding of old and new crops. *Science* 366, eaax0025. doi:10.1126/science.aax0025.

394 Falconer, D. S., and Mackay, T. F. C. (1996). *Introduction to Quantitative Genetics*. Harlow, UK:
395 Longman.

396 Fichtner, F., Dissanayake, I. M., Lacombe, B., and Barbier, F. (2021). Sugar and Nitrate Sensing:
397 A Multi-Billion-Year Story. *Trends Plant Sci* 26, 352–374. doi:10.1016/j.tplants.2020.11.006.

398 Flatt, T. (2005). The Evolutionary Genetics of Canalization. *The Quarterly Review of Biology* 80,
399 287–316. doi:10.1086/432265.

400 Gavrilets, S. (2004). *Fitness Landscapes and the Origin of Species*. Available at:
401 <https://press.princeton.edu/books/paperback/9780691119830/fitness-landscapes-and-the-origin-of-species-mpb-41> [Accessed January 28, 2022].

403 Gianola, D. (2021). Opinionated Views on Genome-Assisted Inference and Prediction During a
404 Pandemic. *Frontiers in Plant Science* 12, 1533. doi:10.3389/fpls.2021.717284.

405 Goodnight, C. (2015). Long-term selection experiments: epistasis and the response to selection.
406 *Methods Mol Biol* 1253, 1–18. doi:10.1007/978-1-4939-2155-3_1.

407 Hammer, G., Messina, C., Wu, A., and Cooper, M. (2019). Biological reality and parsimony in
408 crop models—why we need both in crop improvement! *in silico Plants* 1, diz010.
409 doi:10.1093/insilicoplants/diz010.

410 Kauffman, S., Peterson, C., Samuelsson, B., and Troein, C. (2004). Genetic networks with
411 canalizing Boolean rules are always stable. *PNAS* 101, 17102–17107.
412 doi:10.1073/pnas.0407783101.

413 Kholová, J., Urban, M. O., Cock, J., Arcos, J., Arnaud, E., Aytekin, D., et al. (2021). In pursuit of a
414 better world: crop improvement and the CGIAR. *Journal of Experimental Botany* 72, 5158–5179.
415 doi:10.1093/jxb/erab226.

416 Lenski, R. E., and Travisano, M. (1994). Dynamics of adaptation and diversification: a 10,000-
417 generation experiment with bacterial populations. *PNAS* 91, 6808–6814.
418 doi:10.1073/pnas.91.15.6808.

419 Marjoram, P., Zubair, A., and Nuzhdin, S. V. (2014). Post-GWAS: where next? More samples,
420 more SNPs or more biology? *Heredity* 112, 79–88. doi:10.1038/hdy.2013.52.

421 Marshall-Colon, A., Long, S. P., Allen, D. K., Allen, G., Beard, D. A., Benes, B., et al. (2017).
422 Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform.
423 *Frontiers in Plant Science* 8. Available at:
424 <https://www.frontiersin.org/article/10.3389/fpls.2017.00786> [Accessed January 28, 2022].

425 Masel, J. (2006). Cryptic Genetic Variation Is Enriched for Potential Adaptations. *Genetics* 172,
426 1985–1991. doi:10.1534/genetics.105.051649.

427 Mason, M. G., Ross, J. J., Babst, B. A., Wienclaw, B. N., and Beveridge, C. A. (2014). Sugar
428 demand, not auxin, is the initial regulator of apical dominance. *Proc Natl Acad Sci U S A* 111,
429 6092–6097. doi:10.1073/pnas.1322045111.

430 Messina, C. D., Podlich, D., Dong, Z., Samples, M., and Cooper, M. (2011). Yield–trait
431 performance landscapes: from theory to application in breeding maize for drought tolerance.
432 *Journal of Experimental Botany* 62, 855–868. doi:10.1093/jxb/erq329.

433 Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of Total Genetic Value
434 Using Genome-Wide Dense Marker Maps. *Genetics* 157, 1819–1829. Available at:
435 <http://www.genetics.org/content/157/4/1819> [Accessed January 10, 2015].

436 Ødegård, J., and Meuwissen, T. (2016). On genetic canalization, infinitesimal model and whole-
437 genome sequence data. *Journal of Animal Breeding and Genetics* 133, 1–2.
438 doi:10.1111/jbg.12201.

439 Paixão, T., and Barton, N. H. (2016). The effect of gene interactions on the long-term response to
440 selection. *Proc. Natl. Acad. Sci. U.S.A.* 113, 4422–4427. doi:10.1073/pnas.1518830113.

441 Patil, S. B., Barbier, F. F., Zhao, J., Zafar, S. A., Uzair, M., Sun, Y., et al. (2021). Sucrose
442 promotes D53 accumulation and tillering in rice. *New Phytologist*. doi:10.1111/nph.17834.

443 Reynolds, M., Atkin, O. K., Bennett, M., Cooper, M., Dodd, I. C., Foulkes, M. J., et al. (2021).
444 Addressing Research Bottlenecks to Crop Productivity. *Trends in Plant Science* 26, 607–630.
445 doi:10.1016/j.tplants.2021.03.011.

446 Rünneburger, E., and Le Rouzic, A. (2016). Why and how genetic canalization evolves in gene
447 regulatory networks. *BMC Evolutionary Biology* 16, 239. doi:10.1186/s12862-016-0801-2.

448 Salam, B. B., Barbier, F., Danieli, R., Ziv, C., Spíchal, L., Teper-Bamnolker, P., et al. (2020).
449 Sucrose promotes etiolated stem branching through activation of cytokinin accumulation followed
450 by vacuolar invertase activity. *bioRxiv*, 2020.01.08.897009. doi:10.1101/2020.01.08.897009.

451 Tardieu, F., Granato, I. S. C., Van Oosterom, E. J., Parent, B., and Hammer, G. L. (2020). Are
452 crop and detailed physiological models equally “mechanistic” for predicting the genetic variability
453 of whole plant behaviour? - the nexus between mechanisms and adaptive strategies. *in silico*
454 *Plants*. doi:10.1093/insilicoplants/diaa011.

455 Technow, F., Podlich, D., and Cooper, M. (2021). Back to the future: implications of genetic
456 complexity for the structure of hybrid breeding programs. *G3 Genes/Genomes/Genetics* 11.
457 doi:10.1093/g3journal/jkab153.

458 Waddington, C. H. (1942). Canalization of development and genetic assimilation of acquired
459 characters. *Nature* 150, 563–565. doi:10.1038/150563a0.

460 Walsh, B., and Lynch, M. (2018). *Evolution and Selection of Quantitative Traits*. OUP Oxford.

461 Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. *Journal of the*
462 *American Statistical Association* 58, 236–244. doi:10.1080/01621459.1963.10500845.

463 Williams, W. T. (1976). *Pattern analysis in agricultural science*. Elsevier.

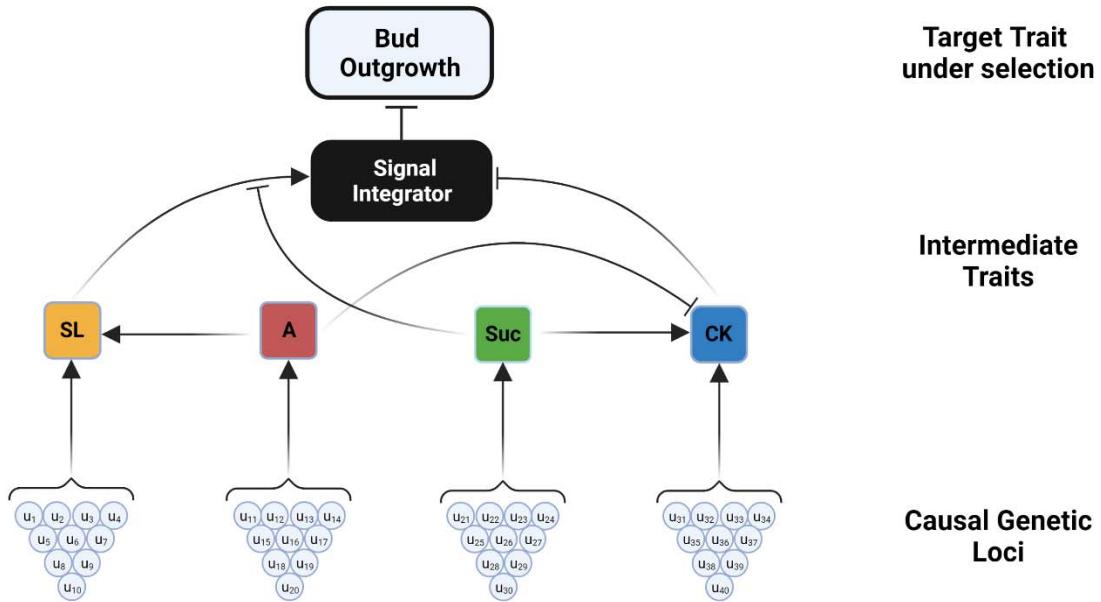
464 Wishart, D. (1969). An algorithm for hierarchical classification. *Biometrics* 22, 165–170.

465 Wisser, R. J., Fang, Z., Holland, J. B., Teixeira, J. E. C., Dougherty, J., Weldekidan, T., et al.
466 (2019). The Genomic Basis for Short-Term Evolution of Environmental Adaptation in Maize.
467 *Genetics* 213, 1479–1494. doi:10.1534/genetics.119.302780.

468 Wu, A., Hammer, G. L., Doherty, A., von Caemmerer, S., and Farquhar, G. D. (2019). Quantifying
469 impacts of enhancing photosynthesis on crop yield. *Nat. Plants* 5, 380–388. doi:10.1038/s41477-
470 019-0398-8.

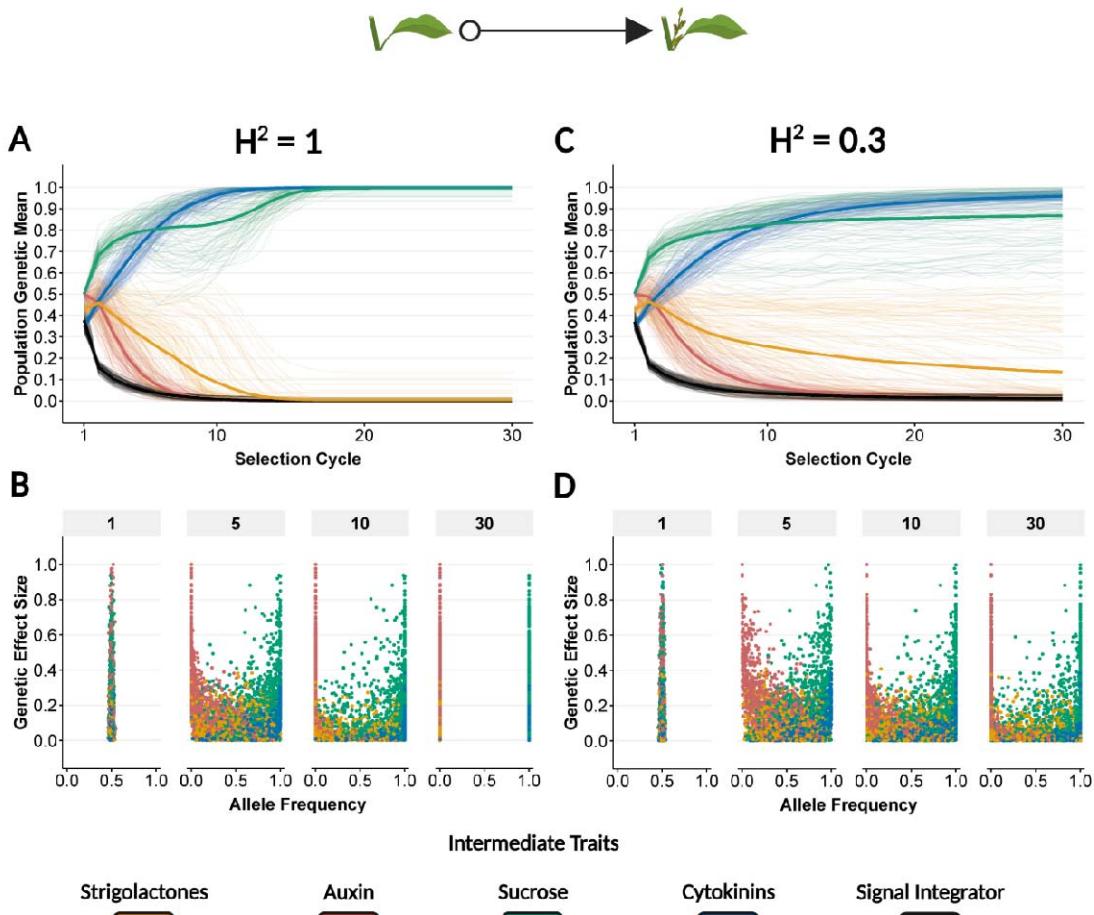
471

472 **Figures**
473



474
475 **Figure 1. Shoot branching gene-to-phenotype (G2P) network.** Ten causal genetic loci (u) and
476 interactions determine the levels of each of the intermediate traits : strigolactones (SL), auxin (A),
477 sucrose (Suc), and cytokinins (CK). In turn, levels of these intermediate traits (hormones,
478 sucrose and the signal integrator), their interactions, and random error (e) determine the time to
479 bud outgrowth of an individual plant.

Selection For Faster Bud Outgrowth

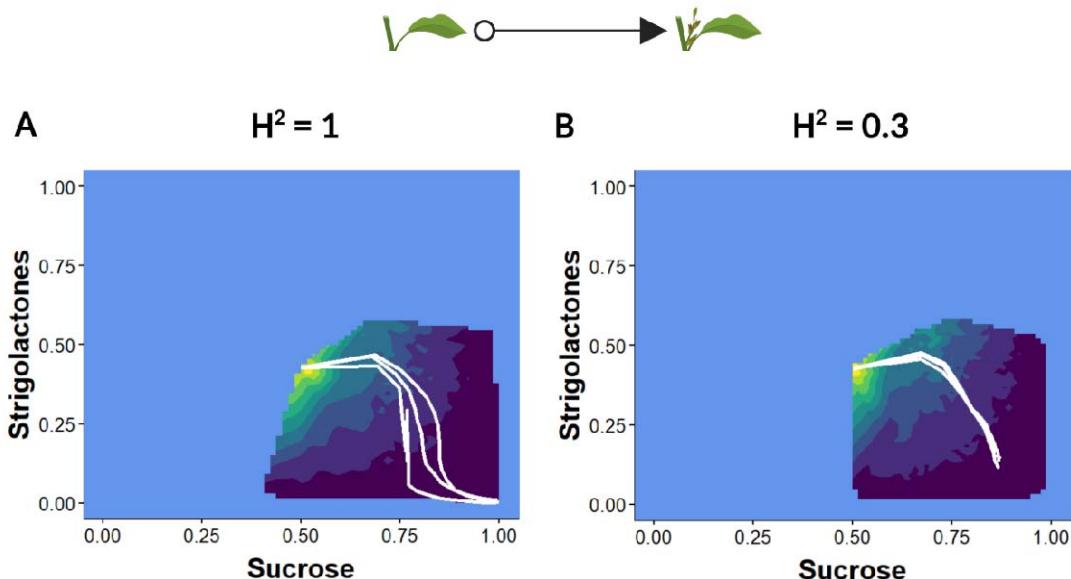


480

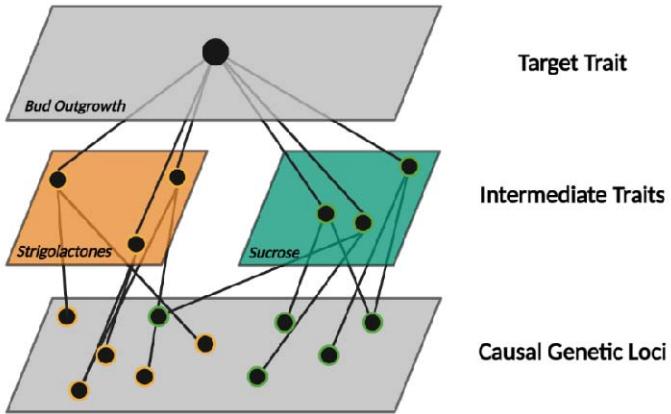
481 **Figure 2. Selection trajectories for the shoot branching G2P network for faster bud**
482 **outgrowth and the relationships between normalized genetic effect sizes and allele**
483 **frequency changes at causal genetic loci over selection cycles. (A, B) Results from selection**
484 **with a broad sense heritability, H^2 , of 1. (C, D) Results from selection with a broad sense**
485 **heritability, H^2 , of 0.3. (A, C) Normalized total genetic values for the intermediate traits over**
486 **selection cycles. Thick lines are the normalized genetic means averaged across the population**
487 **replicates. Thin lines are the normalized genetic means for each population replicate. (B, D) Plot**
488 **of allele frequency changes at causal genetic loci versus normalized genetic effect sizes. Each**
489 **point represents a causal genetic locus from the 100 population replicates. Values are presented**
490 **for selection cycles 1, 5, 10, and 30.**

491

Selection For Faster Bud Outgrowth



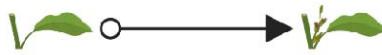
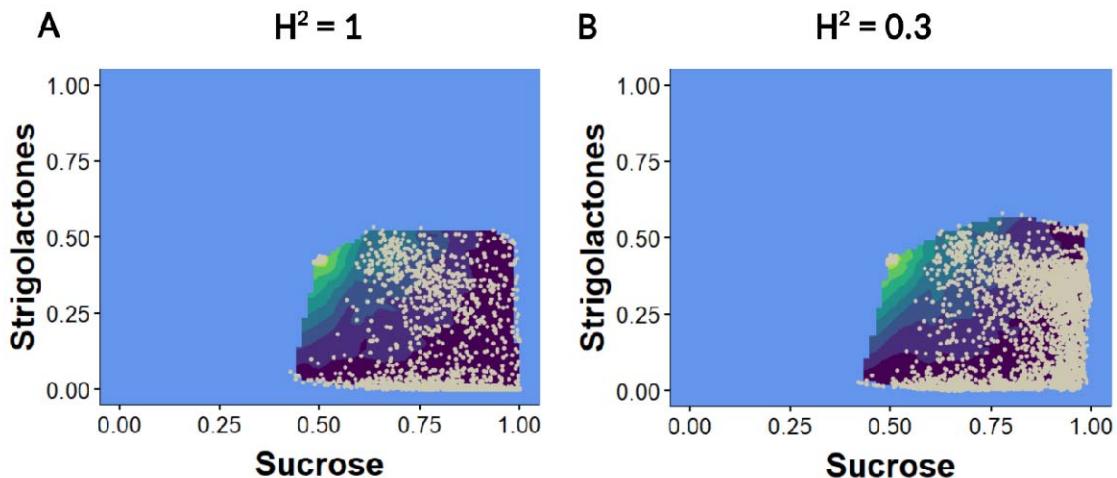
492
493 **Figure 3. Exploration of the Shoot Branching Performance Landscape via Selection. (A)**
494 Results from selection with a broad sense heritability, H^2 , of 1. **(B)** Results from selection with a
495 broad sense heritability, H^2 , of 0.3. To aid visualization, the selection trajectories of 100
496 population replicates were grouped into 3 clusters using Ward's method (see Methods). The
497 average selection trajectories of the three clusters (thick white lines) are plotted against the
498 normalised total genetic values for strigolactones and sucrose. The contour shows the variation in
499 strigolactone and sucrose values and the values for time to bud outgrowth observed across the
500 100 population replicates. The light blue area depicts the area of the full shoot branching
501 performance landscape, determined by the Bertheloot et al. (2020) model, unexplored by
502 selection.
503



504
505
506
507
508

Figure 4. Genetic Canalization of Gene-To-Phenotype Networks. Multiple genetic combinations of intermediate traits produce similar values for the target trait, causing the accumulation of cryptic genetic variation that cannot be accessed by selection.

Selection For Faster Bud Outgrowth



509
510
511
512
513
514
515
516
517

Supplementary Figure 1. Population variation during the exploration of the shoot branching performance landscape. **(A)** Results from selection with a broad sense heritability, H^2 , of 1. **(B)** Results from selection with a broad sense heritability, H^2 , of 0.3. The contour shows the variation in strigolactone and sucrose values and the values for time to bud outgrowth observed across the 100 population replicates. The light blue area depicts the area of the full shoot branching performance landscape, determined by the Bertheloot et al. (2020) model, unexplored by selection. Grey dots show average strigolactone and sucrose values for population replicates at a particular selection cycles.