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ABSTRACT 23 
 24 
There is increasing interest in cancer cell subpopulations that can withstanding treatment via 25 
non-genetic mechanisms, such as tumor cell plasticity and adaptation. These cell populations 26 
may be comprised of cells with diverse phenotypes, e.g., quiescent or slow cycling. Such 27 
populations have been broadly termed “drug-tolerant persisters” (DTPs) and may be responsible 28 
for minimal residual disease following anticancer treatment and acquired resistance.  29 
Understanding molecular mechanisms that drive emergence of DTPs could lead to new strategies 30 
to improve therapeutic outcomes. Recently, we reported that BRAF-mutant melanoma cells 31 
under prolonged BRAF inhibition enter a DTP state with balanced cell death and division, which 32 
we termed “idling.” Here, we apply single cell barcoding to show that idling DTP populations 33 
emerge via cell state transitions, rather than selection of a few pre-existing drug-tolerant clones. 34 
Within the time frame of our experiments, DTPs exhibit varying proportions of fast- and slow-35 
cycling cells within each lineage, suggesting that entry into the DTP state is a stochastic process. 36 
Furthermore, single-cell transcriptomics and bulk epigenomics reveal common gene expression 37 
and ontology signatures in DTP lineages that are consistent with rebalancing of ion channels. 38 
Calcium flux experiments uncover a reduction of divalent cation reserves in intracellular 39 
organelles, likely leading to endoplasmic reticulum stress. Accordingly, idling DTPs are more 40 
prone to ferroptotic cell death, as indicated by increased sensitivity to inhibition of glutathione 41 
peroxidase 4 (GPX4), which prevents removal of toxic lipid peroxides. In summary, we propose 42 
that ion channel homeostasis is a central process underlying idling DTP emergence in BRAF-43 
mutated melanoma. Future studies will investigate translational aspects of this insight. 44 
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 45 
 46 
INTRODUCTION 47 

Cancer is a complex and dynamic disease characterized by intratumoral cell-to-cell variability that 48 
has been implicated in treatment evasion and acquired resistance to therapy.1,2 Tumor cells 49 
exhibit multiple forms of variability, due to a complex interplay between genetics, epigenetics, 50 
and other non-genetic sources of variation.3 Historically, genetic variability has received the most 51 
attention, with pre-existing or acquired genetic resistance mutations implicated as the primary 52 
cause of treatment resistance and tumor relapse. However, recently, epigenetic factors have 53 
become increasingly recognized as major sources of tumor heterogeneity and consequent 54 
treatment failure.4–6 Epigenetic heterogeneity, defined as co-existence of multiple distinct 55 
phenotypes within a population of genetically identical cells,6 may result in long-term drug 56 
tolerance, from which new genetic resistance mutations can ultimately arise.7,8 As such, it has 57 
been suggested that a window of opportunity might exist between the onset of drug tolerance 58 
and the acquisition of genetic resistance mutations during which a targeted secondary treatment 59 
can be deployed to further reduce, or even eliminate, the residual tumor mass.7,8 Accomplishing 60 
this will require a detailed understanding of the molecular drivers underlying drug tolerance so 61 
that potential vulnerabilities can be identified and exploited clinically.  62 

Multiple investigators have reported cancer cell subpopulations capable of withstanding drug 63 
treatments via non-genetic mechanisms. These populations have been broadly termed “drug-64 
tolerant persisters” (DTPs) and described, variously, as either quiescent9 or slow cycling.10–12 65 
Recently, we described a similar drug-tolerant state, termed “idling,” that arises in BRAF-mutant 66 
melanoma cell populations under prolonged BRAF inhibition.7,13 Importantly, in contrast to 67 
previously reported DTPs, the idling phenotype refers to the state of a cell population, rather 68 
than of individual cells. More precisely, we found that the growth dynamics of drug-treated BRAF-69 
mutant melanoma cell populations were best described by a model in which cells are distributed 70 
across multiple phenotypic states, each with a distinct proliferation rate.7 In the idling state, cells 71 
are proportionally distributed across these states, such that the proliferation rate of the 72 
population as a whole is approximately zero. Given the significant interest in drug tolerance as a 73 
precursor to treatment failure and acquired resistance in tumors,14 recognizing that DTP 74 
populations may, in fact, be heterogenous, composed of multiple phenotypic states that act 75 
collectively to evade and survive drug treatment, is crucial for developing effective treatment 76 
strategies against them.  77 

Here, we demonstrate experimentally in BRAF-mutant melanoma that the idling phenotype is a 78 
heterogeneous collection of phenotypic states, which is less heterogeneous than the collection 79 
of states in untreated populations. This reduction in heterogeneity under drug pressure suggests 80 
idling cells may potentially be vulnerable to a targeted secondary treatment. Single-cell RNA 81 
sequencing demonstrates that idling populations comprise multiple distinct transcriptomic states 82 
that are more similar to each other than the states observed in untreated populations. 83 
Furthermore, we use DNA barcoding to show that the idling state is populated by cells from most 84 
lineages present in the untreated population, suggesting that phenotypic state transitions, rather 85 
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than clonal selection, underlies the establishment of drug tolerance.  A gene ontology (GO) 86 
analysis, combining data from both transcriptomics and epigenomics, indicates that ion channel 87 
expression is significantly altered in idling cells relative to untreated cells, pointing to a role for 88 
mitochondrial metabolism in the idling phenotype. This is supported by calcium flux assays that 89 
show store-operated calcium entry (SOCE) is significantly altered in idling cells. Finally, idling cell 90 
populations are shown to have increased susceptibility to death by ferroptosis, supporting the 91 
notion that DTPs are vulnerable to targeted secondary treatments. 92 
 93 
RESULTS 94 
 95 
Drug-tolerant melanoma populations include cells from almost all untreated lineages 96 
 97 
We have previously shown that BRAF-mutant melanoma cell lines exhibit non-linear drug 98 
response dynamics to BRAF inhibitor (BRAFi). The initial phase of drug response is characterized 99 
by variable degrees of proliferation rate reduction. This is followed by entry of the treated cell 100 
population into a state of near-zero proliferation rate, termed idling.7 To determine whether the 101 
idling state populations are comprised of a collection of DTP clones, we barcoded the BRAF-102 
mutant SKMEL5 melanoma cell line with a gRNA barcoding library.15 This approach allowed for 103 
high-depth coverage of dynamics for multiple lineages in response to selective pressures (i.e., 104 
drug treatment) and the ability to distinguish between clonal selection and phenotypic state 105 
transitions (FIG. 1A). Upon treatment with BRAFi PLX 4720 (8 µM for 8 days), the barcode library 106 
complexity was reduced by less than 10% (FIG. 1B). These surviving barcodes were shared in a 107 
large majority of replicates within each condition (untreated and idling; FIG. 1C), as well as 108 
between conditions (FIG. 1D). These results indicate that most clonal lineages survive treatment 109 
and persist at a similar relative proportion after BRAFi treatment. Simply, the idling state consists 110 
of cells from an overwhelming majority of the untreated population, providing direct evidence 111 
against clonal selection in response to BRAFi. 112 
 113 
Some fluctuations in relative barcode abundance do exist after treatment with BRAFi (FIG. 1E, 114 
see next section). The underlying fold change distribution for the entire barcoded cell population 115 
from untreated to idling is a normal distribution centered at zero, with no obvious exceptions; 116 
the top 25 most populous barcodes reflect this distribution and are used for downstream 117 
analyses (FIG. 1F). Notably, nearly all the lineages that do not survive treatment come from clones 118 
that have an exceedingly small representation in the overall distribution, suggesting that the loss 119 
of those lineages is due to random chance. These results indicate that phenotypic state 120 
transitions likely dominate the response to BRAFi, leading a diverse set of clonal lineages to adopt 121 
a phenotypic state(s) akin to DTPs. 122 
 123 
Melanoma populations become less transcriptomically heterogeneous following prolonged 124 
BRAF inhibition  125 
 126 
We performed single-cell transcriptomics on the barcoded cell line in untreated and in idling 127 
conditions (see Methods). Using Uniform Manifold Approximation and Projection16 (UMAP) to 128 
project the transcriptomic profiles for all cells into two dimensions, we see that untreated and 129 
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idling cells clearly fall in different regions of the UMAP space, with minimal overlap (FIG. 2A). 130 
Additionally, the idling cells reside in a more constrained region of the space, while in the 131 
untreated cells two distinct clusters are evident.  132 
 133 
To quantify the variability within and between populations, pairwise distances were calculated 134 
between cells in each condition (FIG. 2B). Nearly all idling cells fall closer to one another than 135 
untreated cells fall to each other in the principal component analysis (PCA) space using 10 136 
principal components. The Earth Mover’s Distance (EMD) was calculated between the two 137 
pairwise distance distributions (EMD = 4.38) to measure the separation between the untreated 138 
and idling populations. In summary, the untreated population is more heterogeneous than the 139 
idling one in transcriptomic space. 140 
 141 
Next, we aimed to determine the biological factors that differentiate the axes that separate 142 
population clusters. UMAP_2 (e.g., separation between untreated clusters) largely separates 143 
based on metabolic processes, consistent with our previous report of metabolic heterogeneity in 144 
untreated melanoma cells7 (Supplementary FIG. S1A). Specifically, the large untreated (UTL) 145 
cluster is enriched in a glycolysis gene signature compared to the small untreated (UTS) cluster 146 
(see Methods, Supplementary FIG. S1D). Conversely, the idling population is enriched in an 147 
oxidative phosphorylation gene signature compared to both untreated clusters (Supplementary 148 
FIG. S1D). This is consistent with multiple reports in the literature, where BRAF-mutant cells rely 149 
primarily on glycolysis for growth and energy production, and BRAFi interferes with glycolytic 150 
processes, presumably favoring a switch to oxidative phosphorylation (see Discussion). 151 
 152 
Alternatively, UMAP_1 primarily separates based on cell cycle stage, even after cell cycle gene 153 
signature regression, within the context of each cluster (Supplementary FIG. S1B). We used a 154 
previously established cell cycle gene signature (see Methods) to classify individual cells by cell 155 
cycle stage (G1, G2M, S). We then projected cell cycle stage on cells in the single-cell 156 
transcriptomics UMAP space (FIG. 2C). For visualization clarity, cell cycle stages were simplified 157 
into non-cycling (G1) and cycling (G2/M/S) states. The number and proportion of cells in cycling 158 
vs. non-cycling states were calculated (FIG. 2D), and the number of cycling cells is dramatically 159 
decreased in the treated population (67% vs 15%).  160 
 161 
Changes in barcode abundance between untreated and drug-tolerant populations can be 162 
explained by simple random effects, not clonal selection 163 
 164 
The barcoding system we adopted integrates droplet cell barcodes with transduced gRNA lineage 165 
barcodes, establishing a direct connection between the abundance of clonal lineages and their 166 
location in the single-cell transcriptomics state space.  The barcoding library was designed with a 167 
relative low complexity (~65k potential barcodes, ~425 identified barcoded lineages), which 168 
allowed for multiple instances of the same lineage barcode in gene expression space. We 169 
projected the lineage distribution of SKMEL5 barcoded cells onto scRNA-seq UMAP space 170 
(examples in FIG. 3A). Barcodes exhibit various UMAP transcriptomic state occupancies and fall 171 
in both clusters (large and small) and cycling states across treatment conditions. In the untreated 172 
clusters, barcodes tend to have an approximately similar breakdown between small and large 173 
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clusters as the average of the population. However, in the idling cell cluster, the breakdown 174 
between non-cycling and cycling cell states tends to be predictive of clonal lineage drug response 175 
(FIG. 1E; FIG. 3B). From these examples, three key behaviors emerge. The first is exemplified by 176 
barcodes 5 and 9, where only a few cells (~5%) from the barcoded cell lineages fall in the cycling 177 
idling state region of the cluster. This low proportion of cycling cells potentially leads to a 178 
reduction in the relative proportion of these barcodes post-treatment (FIG. 1E-F). The second 179 
behavior, as seen in barcodes 2 and 13, is the opposite, where an increased proportion of cells in 180 
each barcode fall in the idling cycling state (~23%). This increase in cells in the cycling state 181 
potentially leads to an increase in the relative proportion of both lineages after treatment (FIG. 182 
1E-F). The third is characteristic of most lineages and falls somewhere in between, which causes 183 
a middling effect on treatment response (Supplementary FIG. S2). Thus, a strong correlation 184 
(Pearson, R=0.55) exists between the proportion of cells in the cycling idling state and the relative 185 
fold change of barcode abundance after treatment (FIG. 3C), indicating that this is a shared 186 
feature of all barcoded cell lineages. 187 
 188 
Multi-omics analysis points to ion channel dysregulation as a central factor in drug tolerance 189 
 190 
Due to the time scale of the appearance of DTPs, it is generally accepted that DTPs may arise by 191 
epigenetic regulation rather than the accumulation of mutations.9–12 To determine whether this 192 
is the case for transitions to the idling state, we performed bulk ATAC-seq on SKMEL5 cells before 193 
and after BRAFi treatment (see Methods). In each condition, we identified a fragment size 194 
distribution characteristic of a successful run (Supplementary FIG. S3B; library complexity in 195 
Supplementary FIG. S3A). Regions of open chromatin were enriched in cells from both conditions, 196 
resulting in unique and shared peaks between conditions (see Methods; FIG. 4A). These peaks 197 
were normalized to the transcription start site (TSS), and the distribution of binding loci 198 
(Supplementary FIG. S3C) was used to quantify the peak feature set (FIG. 4B). Idling peaks have 199 
much fewer proximal features (e.g., promoter regions) and more distal elements (e.g., distal 200 
intergenic and intronic regions) compared to the untreated condition. Distal elements have been 201 
known to be involved in short-term epigenetic regulation. Unique peaks were also assigned to a 202 
corresponding gene, and genes associated with unique peaks were input into a GO over-203 
representation analysis, which identified ion transport and activity as differentiators of idling 204 
(FIG. 4C). 205 
 206 
To confirm this finding independently, we subjected clonal sublines7 of SKMEL5 (SC01, SC07, and 207 
SC10) to bulk RNA sequencing (RNA-seq) over the course of BRAFi treatment (0, 3, and 8 days 208 
post-BRAFi). Even though these sublines have marked short-term differences in terms of BRAFi 209 
response,7 they were chosen because they all converge to a long-term near-zero proliferation 210 
rate characteristic of idling (3-8 days). To understand the time evolution of clonal subline 211 
response to BRAFi, normalized counts of each subline were projected into reduced 212 
dimensionality space by PCA (FIG. 4D). 213 
 214 
On day 0, prior to BRAFi treatment, sublines are distinct on the first PCA axis (PC1), with SC07 215 
and SC10 showing the most similarity. In short-term treatment (day 0 à 3), sublines 216 
predominately change on PC2 and maintain the overall variance between sublines observed at 217 
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day 0 (FIG. 4D). In the long-term response (day 3 à 8), the sublines begin to converge on both 218 
PC1 and PC2 (FIG. 4D). Considering that these three sublines are clonal derivatives of the SKMEL5 219 
population, this result is consistent with the en masse transition of single cells to a common 220 
UMAP space after treatment (FIG. 3A). 221 
 222 
A differential expression analysis was performed between untreated (day 0) and idling (day 8) 223 
across all three clones to identify transcriptomic signatures characteristic of idling. Differentially 224 
expressed genes were input into a GO over-enrichment analysis to reveal processes upregulated 225 
in the idling state. GO terms associated with ion transport and homeostasis were also found to 226 
be upregulated in idling cells (MF – FIG. 4E; BP – Supplementary FIG. S3D; CC – Supplementary 227 
FIG. S3E). In fact, statistically enriched GO terms shared a strong correlation between data 228 
modalities, with the most significant terms pointing to the ion channel activity shown in previous 229 
analyses (FIG. 4C and 4E). In summary, both epigenomics and transcriptomics data point toward 230 
ion channel activity as a major molecular determinant of the idling state.  231 
 232 
Intracellular calcium ion flux is significantly reduced in drug-tolerant melanoma populations 233 
 234 
Next, we experimentally tested calcium channel activity in idling versus untreated cells, using a 235 
calcium flux assay that measures the amount of ER resident calcium and propensity of SOCE 236 
activity. In this assay, cyclopiazonic acid (CPA) is used to inhibit the activity of Sarcoendoplasmic 237 
Reticulum Calcium ATPases (SERCAs), leading to a release of free calcium from the ER to the 238 
cytoplasm where it is detected by the calcium dye, Fluo-8-AM. (first peak, FIG. 5A). To replenish 239 
ER calcium upon depletion, cells undergo store operated calcium entry (SOCE) which brings in 240 
extracellular calcium that can then be pumped into the ER by SERCAs. In order to isolate ER 241 
calcium release from SOCE activity, CPA is added in a calcium free buffer, followed by addition of 242 
calcium to the assay (second peak, FIG. 5A). ER calcium release stimulates the opening of plasma 243 
membrane resident calcium channels (e.g., ORAI), but calcium cannot flow in until it is added to 244 
the assay buffer, allowing ER calcium content/release and propensity of SOCE activity to be 245 
studied separately. Idling cells exhibited decreased SOCE activity compared to untreated cells, 246 
demonstrated by the second peak (FIG. 5A). These results verify differences in ion channel 247 
activity in idling cells, and further suggest ER stress may be a vulnerability of idling cells. 248 
 249 
To see if these differences in calcium flux may be a result of gene expression changes driven by 250 
BRAFi treatment, a differential gene expression analysis was conducted on bulk RNAseq data 251 
obtained from three SKMEL5 clonal sublines (FIG. 5B). Many of the queried calcium handling 252 
genes are differentially expressed in sublines after 3 days and 8 days of BRAF inhibition. 253 
Interestingly, trends in gene expression patterns seem relatively consistent across the sublines 254 
(FIG. 5B). These results show that calcium handling genes are differentially expressed in cell 255 
populations treated with BRAFi compared to untreated cell populations.  256 
 257 
Drug-tolerant melanoma populations exhibit increased susceptibility to death via ferroptosis 258 
 259 
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Previous reports have indicated a connection between ion channels and ferroptosis, a type of 260 
regulated cell death, by way of increased ER stress.17 Thus, induction of ferroptosis may provide 261 
a potential way to eradicate idling cancer cells. Indeed, expression of several genes in the 262 
ferroptosis signature is altered in melanoma cells upon BRAFi and entry into the idling state (FIG. 263 
6A; Supplementary FIG. S4). Notably, glutathione metabolism gene expression is increased and 264 
genes for polyunsaturated fatty acid (PUFA) enzymes are decreased after BRAFi treatment, along 265 
with differences in various other parts of ferroptosis-related signaling. Interestingly, the 266 
expression pattern results in increased supply to the Fenton reaction, which produces the free 267 
radical precursors to reactive oxygen species (ROS), the step directly before commitment to 268 
ferroptosis (Supplementary FIG. S1E and S4).   269 
 270 
To directly test susceptibility to ferroptosis, we subjected both drug-naïve and idling cells to 271 
treatment (see Methods) with RSL3; RSL3 is a compound that induces ferroptosis by targeting 272 
GPX4, a key regulator of glutathione oxidation and PUFA reduction. Interestingly, this treatment 273 
would reduce glutathione metabolism while preventing reduction of PUFA intermediates, leading 274 
to more precursors of the Fenton reaction and potentially to increased ROS that would drive cell 275 
death by ferroptosis. Interestingly, idling cells were ~3-fold more sensitive to RSL3 by potency 276 
(FIG. 6B; difference in IC50s), suggesting idling cells are susceptible to ferroptosis. Furthermore, 277 
addition of ferrostatin-1 (Fer-1), a drug that inhibits the production of lipid peroxides by the 278 
Fenton reaction (i.e., ROS), rescued the differential drug-response behavior of both idling and 279 
untreated cells in the presence of RSL3 (FIG. 6C). These results indicate that idling cells are 280 
vulnerable to ferroptosis, presumably due to the increased ROS that results from sequential GPX4 281 
inhibition, providing a potential route to DTP elimination.  282 
 283 
DISCUSSION 284 
 285 
In this study, we show that BRAF inhibition (BRAFi) causes BRAF-mutant melanoma cells to 286 
transition en masse into idling populations of plastic drug-tolerant persisters (DTPs), which 287 
exhibit ion channel dysregulation and susceptibility to ferroptosis. Using cellular barcoding, we 288 
showed that idling cells result from an overwhelming majority of untreated clones, rather than 289 
clonal selection of a special idling clone (FIG. 1B-D). Distinct transcriptomic signatures were 290 
identified that differentiate untreated and idling cells, with the idling cells represented in a more 291 
restrained transcriptomic space (FIG. 2A-B). The idling cell population consisted of cells in cycling 292 
and non-cycling states, as defined by their phase in the cell cycle (FIG. 2C); though, the idling 293 
population had a lower proportion of cycling cells in its transcriptomic space than untreated cell 294 
populations (FIG. 2D). Barcoded clonal lineages were distributed across both transcriptomic 295 
states in the untreated condition (FIG. 3A). However, relative barcode abundances for lineages 296 
that have a larger proportion of cells in the cycling versus non-cycling idling state result in a larger 297 
proportion of that barcode in the idling population after treatment (FIG. 3A-C; c.f. FIG. 1E). Bulk 298 
epigenomics and time-series transcriptomics of the SKMEL5 cell line and clonal lineages identify 299 
a convergent idling molecular signature shared across modalities, which points towards ion 300 
dysregulation as a characteristic of the idling state (FIG. 4). The calcium ion channel dysregulation 301 
was validated in a calcium flux assay (FIG. 5A) and a differential gene expression analysis of ion 302 
channels (FIG. 5B). This evidence of calcium ion channel dysregulation further established a 303 
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potential connection to ferroptosis, a type of regulated cell death. A ferroptosis gene signature 304 
(FIG. 6A) suggested potential susceptibility to GPX4 inhibition through increased ROS; this 305 
susceptibility was validated to have a clear effect on idling cells (FIG. 6B). Rescue of the drugged 306 
phenotype by a lipid ROS scavenger verified the connection between idling drug tolerance and 307 
susceptibility to ferroptosis (FIG. 6C).  308 
 309 
Many studies have remarked on the epigenetic plasticity as a way to understand decreased drug 310 
sensitivity,18 and others have postulated using the epigenetic landscape as a mechanism to 311 
understand how cancer cells transition between states.19 However, little experimental evidence 312 
exists showing how epigenetic state transitions lead to drug tolerance and eventual resistance. 313 
Together, these data provide evidence for a view of tumor cell plasticity where cells fall into 314 
basins across an epigenetic landscape. This study puts forth data that suggests a timeline for 315 
epigenetic plasticity of cancer cells prior to and after treatment. Tumor initiation from a single 316 
clone creates a population with the same genetic background. The genetic clone emanates an 317 
epigenetic landscape, comprised of several basins of attraction over which cells populate to 318 
create multiple cell types, each with different molecular phenotypes. Over time, cells in the 319 
landscape reach a dynamic equilibrium, i.e., cells can still transition between basins but the 320 
population is in a state of balance, a process known as “bet hedging”.20,21 The introduction of a 321 
perturbation, such as an anticancer drug treatment, upends the equilibrated landscape and drops 322 
cells into a new landscape. Cells re-equilibrate to the new landscape and adopt cell fates 323 
corresponding to the state in which they now reside. In the case of a drug with good efficacy, 324 
most cells will fall into a state of the drug-treated landscape that results in death. However, if the 325 
new landscape includes a state where cells have a positive proliferation rate in drug, the 326 
population will invariably rebound. In our case, most of the cells matriculate into the large non-327 
cycling state upon treatment with BRAFi, but some end up in a smaller cycling state (FIG. 2C). This 328 
feature is consistent with several different types of DTPs, from quiescent to slow-cycling.9–12 329 
However, some barcoded clonal lineages disproportionally fall into one of the two states (FIG. 330 
3A), leading to a differential short-term drug fitness in response to BRAFi. Previous studies in the 331 
lab show that even sublines eventually adopt a near-zero proliferation rate in prolonged BRAFi,7 332 
suggesting that lineages fully equilibrate to the new landscape over time. This occurrence is 333 
largely consistent with other oncogene-addicted cancers treated with targeted therapies, which 334 
exhibit a noisy short-term drug tolerance that often leads to long-term genetic resistance.22,23 335 
 336 
An actionable result of a drug-modified landscape is new biochemical network properties that 337 
can lead to new treatment sensitivities. This phenomenon, in which resistance (or tolerance) to 338 
one drug treatment confers sensitivity to a different drug (or drug class), is commonly known as 339 
“collateral sensitivity.” Interesting screens have been performed to identify drugs that have 340 
increased sensitivity for cells treated with an initial drug, including in cancer.24 However, these 341 
methods ignore the heterogeneity present in treated populations and often lead to traditional 342 
up-front combination therapies. These combination therapies create an entirely new epigenetic 343 
landscape that has new molecular properties with unknown vulnerabilities,6,25 making the new 344 
tumor difficult to treat. The heterogeneity identified in our idling cells exemplifies this problem 345 
and, therefore, requires a different approach. Sequential therapy is an alternative approach in 346 
which cells are able to equilibrate to the new drug-treated landscape with the hope that it is 347 
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more sensitive as a whole.26 Molecular analyses in our study show that the drug-treated 348 
landscape is indeed more homogeneous (FIG. 2A) and has a common thread in ion channel 349 
activity across transcriptomics and epigenomics data (FIG. 4). By targeting the idling state with a 350 
sequential therapy that leverages the increased ion channel activity to promote targeted 351 
ferroptotic cell death, we seemingly create another epigenetic landscape where all of the basins 352 
have a negative proliferation rate in drug treatment and result in tumor eradication. Therefore, 353 
potential future studies could be aimed at identifying vulnerabilities of epigenetic landscapes 354 
that result after primary drug treatment and finding patient-specific secondary drugs used for 355 
sequential drug treatment regimens that eradicate the entire tumor. Together, these results 356 
indicate that BRAF-mutant melanoma cells converge to a confined idling population after BRAFi 357 
treatment, yet still exhibits cycling and non-cycling transcriptomic states. This breakdown 358 
appears to encapsulate previously described DTPs that exhibit various cycling behaviors, 359 
including quiescence, active division, and slow cycling.  360 
 361 
Figure captions 362 
 363 
Figure 1: Most clonal lineages survive treatment with BRAFi into idling. (A) Schematic of 364 
example lineage tracing experiments using cellular barcoding. (B) Number of unique barcodes in 365 
each treatment condition. Lines correspond to the means of three experimental replicates 366 
(points). A minimum cutoff of 100 counts per million (CPM) was used. (C) Proportional sharing of 367 
barcodes among experimental replicates (i.e., R1 = replicate 1) for each treatment condition. (D) 368 
Heatmap of relative barcode abundances (log10 CPM) for each experimental replicates across all 369 
captured barcodes. Heatmap is organized by decreasing barcode abundance in untreated 370 
condition.  (E) Relative fraction of the top 25 ranked (in untreated) barcoded cell lineages in 371 
untreated and idling conditions. Bar height corresponds to the average of three experimental 372 
replicates (line is standard deviation). (F) Distribution of (log2) fold change for barcoded clonal 373 
lineages from untreated to idling. Means of fold changes were compiled into a distribution for all 374 
captured lineages (grey), as well as the top 25 most abundant lineages noted in E.  375 
 376 
Figure 2: Idling cells represent a convergent, yet still heterogeneous, transcriptomic state with 377 
less idling cells in the cycling state than untreated cells. (A) UMAP projection of untreated and 378 
idling single-cell transcriptomes. 6410 cells are shown, with an approximately equal split between 379 
conditions. (B) CDF of pairwise cell distances (random sampling of 15,000) with 10 principal 380 
components on the PCA space of the untreated and idling single-cell transcriptomic data. An 381 
Earth Mover’s Distance (EMD) was calculated between the distributions to quantify their 382 
separation from each other.  (C) Overlay of cell cycle state (see Methods) on UMAP projection of 383 
single cell transcriptomes (colored contours represent information in A). (D) Relative proportion 384 
of cells in cell cycle state for major untreated and idling clusters. The total number of cells in each 385 
cluster (n) is noted above each bar.  386 
 387 
Figure 3: Lineage distribution across cell cycle states is reflective of clonal dynamics. (A) 388 
Projections of lineage transcriptomic distributions on UMAP projection in FIG. 2A. Lineages 389 
correspond to colored dots, while contours reflect treatment condition. (B) Proportion of cells in 390 
the idling cycling transcriptomic state for the top 25 most abundant barcodes. Dashed line 391 
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represents average of all barcodes. (C) A Pearson correlation analysis was performed between 392 
the percentage of cycling cells in the idling state and the log2 fold change in barcode abundance 393 
following BRAFi treatment for the top 25 most abundant barcodes.  394 
 395 
Figure 4: Unique elements of the idling transcriptome and epigenome have differential features 396 
for ion activity. (A) Venn diagram of ATAC-seq identified peaks of open chromatin. (B) Alignment 397 
of peaks to the TSS allows for prediction of epigenomic features. Predicted feature distribution 398 
in untreated, idling, or shared peaks. Peaks were assigned to features based on proximity to TSS 399 
(see Methods). (C) GO over-enrichment analysis of genes associated to unique idling peaks. The 400 
top 10 terms with the largest gene ratio are shown. (D) PCA projection of subclones (SC01, SC07, 401 
and SC10) at multiple times (0, 3, and 8 days) in BRAFi. Each condition (e.g. SC01 at day 0) was 402 
completed in triplicate. Lines are drawn between the centroids of triplicates across the time 403 
series. (E) GO over-representation analysis on differentially expressed genes with increased 404 
expression between untreated and idling. GO terms with the top 10 largest gene ratios (see 405 
Methods) are shown.  406 
 407 
Figure 5: Idling cells have decreased calcium flux and altered expression of calcium handling 408 
genes. (A) Calcium flux assay of untreated and idling cells using cyclopiazonic acid (CPA) to 409 
deplete ER calcium without extracellular Ca2+, addition of extracellular Ca2+ to test store operated 410 
calcium entry (SOCE) activity, and ionomycin to control for number of cells in the assay. (B) 411 
Differential gene expression analysis of calcium handling genes in sublines transcriptomics data 412 
from 4D.  413 
 414 
Figure 6: Idling cell populations are susceptible to ferroptosis. (A) Gene expression values (z-415 
scores; see Methods) for multiple clonal sublines (SC01, SC07, SC10) across the BRAFi treatment 416 
time course (0, 3, and 8 days post treatment). Genes are further grouped by their associated 417 
processes related to ferroptosis. (B) DIP rate dose response curves for untreated and idling cells 418 
treated with ferroptosis inducer RSL3. (C) Same as B, except with rescue experiments on the post-419 
treated cells using ferroptosis inhibitor Fer-1. 420 
 421 
Figure S1: Analysis of the UMAP single cell transcriptomic space. (A) GO analysis of differentially 422 
expressed between the untreated clusters in the UMAP single cell transcriptomics space shown 423 
in FIG. 2A. (B) Same as A except the analysis was applied to the idling cluster and a subpopulation 424 
of cells that were predominantly in the cycling state. (C) A representation of UMAP single cell 425 
transcriptomic space of untreated and idling cells used for differential gene expression and GO 426 
analyses in D and E. (D) Distributions of the signature scores for cells in each cluster in the 427 
differential gene expression analysis from the GO analysis related to glycolysis and oxidative 428 
phosphorylation. Colors of each distribution correspond to the colors of the clusters in C, where 429 
pink is cluster 1 (i.e., UTS), yellow is cluster 2 (i.e., UTL), and blue is cluster 3 (i.e., idling). (E) Same 430 
as D except with other processes.  431 
 432 
Figure S2: Lineage distributions for barcodes with a middle effect in clonal dynamics to 433 
treatment response. Same as FIG. 3A for the remaining top 25 barcodes in the single cell 434 
transcriptomics analysis.  435 
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 436 
Figure S3: Quality control of bulk epigenomics ATA-seq data and correlation analysis of 437 
differentially expressed genes in idling transcriptome and epigenome. (A) Plot of unique reads 438 
versus sequenced reads for the bulk ATAC-seq data used in epigenome analyses. (B) Insert size 439 
distribution of aligned reads from ATAC-seq data on untreated and idling cells. Both conditions 440 
follow traditional nucleosome patterning. (C) Peak binding site distribution for untreated, idling, 441 
and shared peaks. X-axis represents kb distances from the TSS. (D) Correlation analysis of the 442 
differentially expressed genes from a Biological Process (BP)-type of GO analysis for the 443 
epigenome and transcriptome of the idling cell population. (E) Same as D for a Cellular 444 
Component (CC)-type of GO analysis.  445 
 446 
Figure S4: Ferroptosis pathway. A schematic diagram of the ferroptosis pathway with boxes that 447 
correspond to the colors of the groups for the genes in FIG. 6A.  448 
 449 
MATERIALS AND METHODS 450 
 451 
Cell culture and reagents 452 
 453 
We chose BRAF-mutant melanoma cell line SKMEL5 as a preferred model, since it exhibits median 454 
BRAFi sensitivity compared to other BRAF-mutant melanoma cell lines.27 SKMEL5 cell line was 455 
purchased from ATCC© and labeled with either a fluorescent histone H2B conjugated to the 456 
monomeric red fluorescent protein (H2BmRFP) and a cellular barcoding library (see “Cellular 457 
barcoding” below) or H2B conjugated to the green fluorescent protein (H2B-GFP). Single cell-458 
derived subclones of SKMEL5 were selected and derived by limiting dilution, as described 459 
previously. Cells were cultured in a mixed media of DMEM and Ham F-12 media (DMEM:F12 1:1; 460 
catalog no. 11330-032), supplemented with 10% fetal bovine serum (FBS). Cells were incubated 461 
at 37°C, 5% CO2, and passaged twice a week using TrpLE (Gibco). Cell lines and sublines were 462 
tested for mycoplasma contamination using the MycoAlertTM mycoplasma detection kit (Lonza), 463 
according to manufacturer’s instructions, and confirmed to be mycoplasma-free. BRAF inhibitor 464 
PLX 4720 (analog to Vemurafenib), ferroptosis inducer RSL3 and ferroptosis inhibitor Fer-1 were 465 
obtained from MedChem Express (Monmouth Junction, NJ) and solubilized in dimethyl sulfoxide 466 
(DMSO) at a stock concentration of 10mM and stored at -20°C. Cell lines were originally stored 467 
at -80°C, then moved into liquid nitrogen. 468 
 469 
Cellular barcoding 470 
 471 
Setup: Cellular barcoding library was constructed by cloning a guide RNA (gRNA) library of 472 
barcodes into a CROP-seq-BFP-TSO vector as previously described. The vector was engineered 473 
such that barcodes can be isolated by isolation and amplification (barcode sampling) or mRNA 474 
capture in a single-cell RNA sequencing (scRNA-seq) experiment. gRNAs were built as a 20-475 
nucleotide sequence of four nucleotides identical among all barcodes, followed by a 16 strong-476 
weak (SW) paired nucleotides (i.e., XXXXSWSWSWSWSWSWSWSW). The SW pairing of the 477 
barcode sequence was designed to prevent polymerase chain reaction (PCR) amplification bias. 478 
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The maximum complexity of this library is 216 (~65,000 unique barcodes). The barcode library 479 
vector was used to produce lentiviral libraries using a lipofectamine transfection of HEK293T 480 
cells. Media containing lentiviral particles were collected at 48- and 72-hours post-transfection, 481 
pooled, filtered through a 0.45 um Nalgene syringe filter and concentrated using a 50 mL size-482 
exclusion column by centrifugation at 2200 RCF at 4°C for two hours. Concentrated virus was 483 
stored in -80°C. SKMEL5 cells were seeded in a 6-well plate at ~1x106 cells per well in 2.5 mL 484 
culture media. Cells were transduced with the barcoded CROP-seq-BFP-TSO-Barcode_sgRNA 485 
lentivirus using 0.8 µg/mL in each well and a multiplicity of infection (MOI) of 0.05. Twenty-four 486 
hours after incubation, transduction media (containing polybrene) was exchanged for fresh 487 
culture media. Forty-eight hours after incubation, barcoded cells were isolated by fluorescence-488 
activated cell sorting (FACS) and subsequently cultured until confluence in a T-150 dish and then 489 
cryopreserved. Cryopreserved cells were thawed in a T-25 dish and scaled up for ~2 weeks in two 490 
separate sets. The first set of thawed cells were treated with 8uM PLX4720 (and an untreated 491 
control) for eight days and subjected to barcode sampling (see “Barcode Sampling Analysis” 492 
subsection below). The second set was plated in three T-75 flasks (parallel replicates) and 493 
independently treated with 8µM PLX4720 (or untreated control) for eight days and subjected to 494 
scRNA-seq by the 10X genomics Chromium platform (version 2 chemistry; see “RNA single-cell 495 
transcriptome sequencing” section below for more details). In both cases, treated cells had media 496 
and drug replaced every three days. Untreated cells were expanded completely over the course 497 
of the time course (i.e., no cell splitting). 498 
 499 
Barcode Sampling: After PLX4720 treatment for eight days (or no treatment expansion), cells in 500 
the first set were pelleted for genomic DNA (gDNA) extraction using the DNeasy Blood and Tissue 501 
Kit (Qiagen) per manufacturers’ instructions. Barcode sequences were amplified for each 502 
replicate by polymerase chain reaction (PCR; 98°C for 30 seconds, followed by 22 cycles of 503 
denaturation - 98°C for 10 seconds, annealing - 63°C for 30 seconds, extension - 72°C for 10 504 
seconds, and a final extension of 72°C for 5 minutes) using primers containing flanking regions 505 
and Illumina adapter index sequences. 2ug gDNA was used in each PCR reaction, and a 506 
combination of 5 distinct pooled forward primers were utilized to minimize sequencing error. 507 
Reactions were purified using a 1.8x AMPure XP bead (Beckman Coulter) cleanup. Reaction 508 
products were confirmed using agarose gel confirmation (band at ~215bp). The resulting libraries 509 
were quantified using a Qubit fluorometer (ThermoFisher), Bioanalyzer 2100 (Agilent) for library 510 
profile assessment, and qPCR (Kapa Biosciences Cat: KK4622) to validate ligated material, 511 
according to the manufacturer’s instructions. The libraries were sequenced using the NovaSeq 512 
6000 with 150 bp paired end reads as sequencing spike-ins (targeting ~200k reads). RTA (version 513 
2.4.11; Illumina) was used for base calling and MultiQC (version 1.7) for quality control. 514 
 515 
Barcode Sampling Analysis: Barcodes were identified from amplified sequence reads by trimming 516 
flanking adapter sequences. Barcodes abundances were totaled and normalized to library read 517 
depth, resulting in reads per million (RPM). Barcodes less than 100 CPM were removed from the 518 
analysis. Numbers of unique barcodes were calculated based on this threshold. Overlaps 519 
between experimental replicates were calculated to determine the proportion of barcodes 520 
shared across different runs. Total barcode abundance (including low abundance barcodes) was 521 
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calculated using the log10 of barcode RPM for each replicate. Relative barcode fraction was 522 
calculated for each sample across three replicates. Log2 fold change of the idling to untreated 523 
mean barcode fractions was calculated for all barcodes above the CPM threshold. 524 
 525 
RNA single-cell transcriptome sequencing  526 
 527 
Data Collection: After PLX4720 treatment for eight days (or no treatment expansion), cells in the 528 
second set were prepared targeting ~3000 cells per sample, washed, and resuspended in 0.04% 529 
bovine serum albumin (BSA) in phosphate-buffered saline (PBS). Cell suspensions were subjected 530 
to 10X Genomics single-cell gene expression protocol (version 2, 3’ counting) in two separate 531 
wells, according to manufacturer’s guidelines. Single-cell mRNA expression libraries were 532 
prepared according to manufacturer instructions. Due to the nature of gRNA barcoding library 533 
construction, mRNAs resulting from gRNA barcodes were captured along with other mRNAs. 534 
Libraries were cleaned using SPRI beads (Beckman Coulter) and quantified using a Bioanalyzer 535 
2100 (Agilent). The libraries were sequenced using the NovaSeq 6000 with 150 bp paired-end 536 
reads targeting 50M reads per sample for the mRNA library (including barcode library). RTA 537 
(version 2.4.11; Illumina) was used for base calling and MultiQC (version 1.7) for quality control. 538 
Gene counting, including alignment, filtering, barcode counting, and unique molecular identifier 539 
(UMI) counting was performed on each library using the count function in the 10X Genomics 540 
software Cell Ranger (version 3.0.2) with the GRCh38 (hg38) reference transcriptome. 541 
 542 
Transcriptome Analysis: Cell Ranger output two single-cell gene expression matrices, for 543 
untreated and idling cells. scUniFrac was performed to quantify the degree of overlap between 544 
conditions. Finding minimal overlaps, and since cells were prepared and processed in parallel, no 545 
computational batch correction was performed. Seurat was used to perform gene expression 546 
analysis. The SCTransform function was used to regress out mitochondrial gene expression 547 
(percent.mt), number of features (genes; nFeature_RNA), number of RNA molecules in the cell 548 
(nCount_RNA), and cell cycle variables (S.Score and G2M.Score). Feature selection was 549 
performed according to Seurat guidelines using a variance stabilizing transformation of the top 550 
2000 most variable features. Data was normalized and scaled according to Seurat guidelines.  551 
Data between conditions were combined and visualized using the Uniform Manifold 552 
Approximation and Projection (UMAP) dimensionality reduction algorithm as implemented in 553 
Seurat. In addition to UMAP, t-distributed Stochastic Neighbor Embedding (t-SNE) and Principal 554 
Component Analysis (PCA) were also performed, using the Seurat implementation. Clustering 555 
was performed in the joint UMAP space using the default Seurat implementation, a shared 556 
nearest neighbor (SNN) modularity optimization-based method. Pairwise Euclidean distances 557 
were calculated between cells in each condition with 10 principal components in the PCA space 558 
and plotted as a cumulative density function (CDF). An Earth Mover’s Distance (EMD) was 559 
calculated between 15000 randomly sampled pairwise distances using the wasserstein1d 560 
function in the transport R package. Differential expression analysis was performed between 561 
conditions (untreated, idling), between combined clusters (large, small) within each condition, 562 
and between clusters across conditions (e.g., untreatedlarge vs. idlinglarge). Differential expression 563 
was performed using the Seurat FindMarkers function and DEGs (adjusted-p < 0.05) were input 564 
into a GO over-enrichment analysis. The GO analysis identified cell cycle as a major factor 565 
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separating idling clusters and was not present for untreated clusters. Therefore, using cell cycle 566 
scores, a cell cycle phase (G1, G2M, S) was assigned to each cell, which was further simplified 567 
into cycling (S, G2M) and non-cycling (G1), which we call cell cycle state. Cluster proportion was 568 
calculated by cell cycle state to quantify the differences between clusters. The number of cells in 569 
each cell cycle state were tallied and calculated as a percentage across each cluster. 570 
 571 
Barcode Analysis: After calculation of scRNA-seq gene expression matrices, barcode abundances 572 
were incorporated to the matrices. To do this, gRNA lineage barcodes had to be mapped to their 573 
associated 10X cell barcodes. First, unmapped scRNA-seq BAM files were cleaned to only include 574 
the mRNA transcript ID, scRNA-seq cell barcode, and scRNA-seq unique molecular identifier 575 
(UMI). Mapped scRNA-seq BAM files (3’ heavy) were cleaned to only include the mRNA transcript 576 
ID and lineage barcode (from gRNA library). Unmapped and mapped subsets were merged on 577 
the mRNA transcript ID to assign a lineage barcode to each cell barcode and UMI. The resulting 578 
merged dataset was paired down to a single cell barcode – lineage barcode pair, which was 579 
appended to each cell in the gene expression matrix as a metadata tag. Barcode abundances 580 
were totaled across all cells in the experiment that captured a barcode, and strongly reflected 581 
barcode sampling relative abundances and fold changes upon treatment (FIG. 1E - scRNA-seq 582 
barcode fractions). Barcodes were overlaid on UMAP projections of scRNA-seq data, and further 583 
categorized into the cycling and non-cycling transcriptomic states (see Transcriptome Analysis 584 
subsection). Total number of cells from each barcode were tallied across each transcriptomic cell 585 
cycle state, and a percentage (relative to each barcode) in each state was calculated. A 586 
correlation analysis (Pearson) was performed on the percentage of cycling cells in idling vs. the 587 
log2 barcode fold change after treatment. 588 
 589 
Functional interpretation analysis: The single-cell transcriptome count matrix (see “RNA single-590 
cell transcriptome sequencing:Data Collection” above) was scaled by multiplying counts by the 591 
median RNA molecules across all cells and dividing that number by the number of RNA molecules 592 
in each cell (as recommended). Gene signature files were obtained from the molecular signatures 593 
database (MSigDB). Hallmark gene sets (50 in total) were downloaded from MSigDB (gsea-594 
msigdb.org/gsea/msigdb/genesets.jsp?collection=H). Both the scaled counts matrix and each of 595 
the hallmark gene sets were input into VISION28 to identify gene signature scores for each cell-596 
signature pair. Four hallmark gene sets (KRAS_SIGNALING_UP, KRAS_SIGNALING_DOWN, 597 
UV_RESPONSE_UP, UV_RESPONSE_DOWN) were condensed into two (KRAS_SIGNALING, 598 
UV_RESPONSE) by VISION to leave 48 total gene signatures. Scores were compiled into a 599 
distribution and plotted by cluster (k=3) for each gene set. 600 
 601 
Bulk RNA transcriptome sequencing 602 
 603 
Data acquisition: Total RNA was isolated from untreated SKMEL5 single cell-derived subclones, 604 
each in triplicate, using Trizol isolation method (Invitrogen), according to the manufacturer’s 605 
instructions. RNA samples were submitted to Vanderbilt VANTAGE Core services for quality 606 
check, where mRNA enrichment and cDNA library preparation were done with Illumina Tru-Seq 607 
stranded mRNA sample prep kit. Sequencing was done at Paired-End 75 bp on the Illumina HiSeq 608 
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3000. Reads were aligned to the GRCh38 human reference genome using ‘HISAT2’ and gene 609 
counts were obtained using ‘featureCounts’. 610 
 611 
Data analysis: RNA-seq data was analyzed using the DESeq229 R package. Cells with less than 18 612 
reads per condition were removed, according to DESeq2 vignettes. Counts were transformed 613 
using the regularized logarithm (rlog) normalization algorithm. PCA was performed using the 614 
prcomp function in R. The path between time series data points was visualized as a line between 615 
subline-time point replicate means in the PCA space. EMDs were calculated between pairwise 616 
distance distributions for each subline across the treatment time series and for each time point 617 
across the sublines. Hierarchical clustering was performed using the hclust R function with a 618 
Ward’s minimum variance method. Differential expression analysis was performed using a model 619 
design to quantify both changing variables and their interaction (~ subline + treatment time + 620 
subline:treatment time). DEGs across sublines between untreated (pre-treatment, day 0) and 621 
idling (day 8 post-treatment) were identified (adjusted-p < 0.05, log2 fold change > 2). DEGs were 622 
input into a GO enrichment analysis, which identified GO terms associated with “Biological 623 
Process” (BP), “Molecular Function” (MF), and “Cellular Component” (CC) GO types. 624 
 625 
Ferroptosis gene signature analysis: A ferroptosis gene signature was obtained from the Kyoto 626 
Encyclopedia of Genes and Genomes (KEGG). For each subline, genes were normalized to the 0-627 
day time point and a log2 fold change was calculated compared to the 0-day baseline. Groupings 628 
of genes were annotated by separate signaling processes (Supplementary FIG. S5). 629 
 630 
Bulk ATAC epigenome sequencing 631 
 632 
Data acquisition: Data was collected using the omni-ATAC protocol for bulk ATAC sequencing 633 
(ATAC-seq). After PLX4720 treatment for eight days (or no treatment expansion), cells in the 634 
second set (in parallel to barcode sampling data collection) were pelleted at 50k cells and 635 
resuspended in a cold ATAC-seq resuspension and lysis buffer containing NP40 (0.1%), Tween20 636 
(0.1%), and Digitonin (0.01%) and incubated on ice. A resuspension buffer was added (0.1% 637 
Tween20, no NP40 or Digitonin) to wash out the lysis reaction. Cells were pelleted and 638 
resuspended in a transposition mix (5x Tris-DMF, PBS, 1% digitonin, 10% Tween20, nuclease-free 639 
H2O), including transposase Tn5, followed by a 30-minute incubation at 37°C, with shaking to 640 
enhance tagmentation. After 30 minutes, the reaction was stopped by adding a DNA binding 641 
buffer (Zymo) and purified using a DNA Clean and Concentrate kit (D4004, Zymo). The final 642 
product was eluted in nuclease-free H2O. PCR amplification was performed on the eluate with an 643 
NEBNext 2X High Fidelity PCR Mix (NEB, M0541S) N7, and N5 index sequencing primers 644 
(extension at 72°C for 5 minutes; denaturation at 90°C for 30 seconds; 12 cycles: denaturation at 645 
98°C for 10 seconds, annealing at 62°C for 30 seconds, extension at 72°C for 30 seconds; final 646 
extension at 72°C for 5 minutes). The PCR product was purified with the Zymo DNA Clean and 647 
Concentrate kit and eluted in 22µL nuclease-free H2O. ATAC-seq PCR libraries were visualized by 648 
agarose gel electrophoresis for a quick check for the nucleosome ladder pattern (bands over ~150 649 
bp). Libraries were also quantified using a Qubit fluorometer (ThermoFisher), Bioanalyzer 2100 650 
(Agilent) for library profile assessment, and qPCR (Kapa Biosciences Cat: KK4622) to validate 651 
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ligated material, according to the manufacturer’s instructions. The libraries were sequenced 652 
using the NovaSeq 6000 with 150 bp paired-end reads as spike-ins on the sequencing chip 653 
(untreated: ~160m, idling: ~130m reads). RTA (version 2.4.11; Illumina) was used for base calling 654 
and MultiQC (version 1.7) for quality control. 655 
 656 
Data Analysis: Reads were trimmed using cutadapt (paired-end) to remove primer sequences 657 
and aligned to the hg38 reference genome using the bwa mem function in Burrows-Wheeler 658 
Aligner (BWA, version 0.7.17). Aligned reads were sorted and duplicates were marked using 659 
Picard (version 2.17.10). Untreated reads had more detected duplicates (~78% compared to 660 
~32% in idling). Reads were deduplicated, but to address the discrepancy in deduplicated library 661 
complexity, idling reads were subsampled (25% of original library, Supplementary FIG. S4A-B) to 662 
achieve a similar complexity to the untreated. Reads were further cleaned according to sequence 663 
quality guidelines. Insert sizes were plotted from the output of InsertSizeMetrics after 664 
deduplication in Picard. Peaks of open chromatin were called using the MACS2 callpeak function 665 
according to recommended guidelines for ATAC-seq data (BAM paired-end method, q-threshold: 666 
0.05, no MACS2 model, shift: -100, extension size: 200). Peaks were subjected to a further round 667 
of quality control and cleaning using ChIPQC (peak mapping, peak duplication, blacklist peak 668 
detection), and blacklisted peaks were removed. Peaks were converted to consensus counts 669 
using the runConsensusCounts function in soGGi. Intersections of and unique cleaned peaks were 670 
determined and visualized as a Venn diagram using the vennDiagram function in the limma 671 
package. Unique and intersection peaks were annotated with the nearest neighbor genes using 672 
the annotatePeak function and hg38 transcriptome in the ChIPseeker package. These peaks were 673 
also re-aligned to the transcription start site (TSS) for each gene. Average profiles of read subsets 674 
across all genes (nucleosome-free, mono-nucleosome, and di-nucleosome; normalized to the 675 
TSS). Peaks were classified based on closeness to the TSS and assigned to predicted feature 676 
(promoter, UTR, exon, intron, downstream, distal intergenic). Genes associated with unique and 677 
intersections of peaks were input into a GO enrichment analysis for BP, MF, and CC GO types 678 
(same as “Bulk Transcriptome Analysis” above). Transcription factor (TF) footprinting in the 679 
region around TSSs was performed on untreated and idling unique peaks for key TFs. 680 
 681 
Gene ontology analysis 682 
 683 
Setup: Genes associated with unique ATAC-seq peaks (see “Bulk ATAC Epigenome Sequencing: 684 
Data Analysis” above) were identified for each condition (i.e., untreated or idling). Additionally, 685 
DEGs from the bulk RNA-seq statistical analysis were determined (8-day vs. 0-day time points 686 
across all clonal sublines; see “Bulk RNA Transcriptome Sequencing:Data Analysis” above). The 687 
two gene lists were independently subjected to a GO enrichment analysis using ‘clusterProfiler’. 688 
Genes were compared to BP, MF, CC GO types. GO terms significantly enriched in the unique 689 
ATAC-seq peaks (p < 0.05) and in DEGs (p < 0.05) were identified and stored independently as 690 
separate GO term lists for untreated and idling datasets. 691 
 692 
Correlation Analysis: The -log10(p-value) was calculated for terms shared between the lists 693 
associated with the separate modalities, ranking terms based on statistical significance. 694 
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Spearman correlation was calculated between the significant GO terms using the ggpubr package 695 
(version 0.4.0) for each GO type. 696 
 697 
Calcium flux assays 698 
 699 
Data acquisition: SKMEL5 barcoded cells were plated onto a 384 well, tissue culture treated plate 700 
24 hours before imaging at a density of 10,000 cells/well. For the treated condition, cells were 701 
treated with 8 µM PLX4720, a vemurafenib derivative, for 8 days with fresh media/drug swapped 702 
out every 3 days. Untreated control cells were taken from the same cell line culture which was 703 
maintained separately while the treatment condition was exposed to PLX4720, being split down 704 
when necessary to maintain healthy growth conditions. On the day of experimentation, the 384 705 
well plate with all treated and untreated cells were incubated with 4 µM Fluo-8-AM in fresh 706 
culture media (10% FBS) for 1 hour at room temperature, as recommended by the manufacturer 707 
(AAT Bioquest). Dye containing media was removed and Hanks Buffered Saline Solution (HBSS, 708 
10 mM HEPES, no Ca2+) was used to wash the wells of excess dye, followed by removal and 709 
addition of 20 µL of fresh HBSS (no Ca2+) for use as the assay buffer. The plate was loaded into a 710 
kinetic imaging instrument (Panoptic, by Waveguide Biosciences), which records the fluorescent 711 
intensity emitted by each well of the 384 well plate. A three-addition protocol was used to add 712 
the various drugs and assay conditions to the plate during the SOCE assay. Drug Addition plates 713 
were loaded with assay buffer (HBSS, with or without Ca2+) and thoroughly mixed immediately 714 
before imaging.  Add conditions were split into three parts: 1) Cyclopiazonic Acid (CPA; final 715 
concentration of 50 µM) to inhibit activity of Sarcoendoplasmic Reticulum Calcium ATPase 716 
(SERCA), leading ER Ca2+ release; 2) Addition of Ca2+ to the assay condition to activate SOCE 717 
activity; and 3) Addition of the Ca2+ ionophore, Ionomycin (final concentration of 5 µM), was used 718 
to generate maximal signal intensity to control for variations in cell count in individual wells (this 719 
was particularly important since drug treated idling cells experienced increased washout due to 720 
the stressful nature of sustained BRAF inhibition). Fluo-8-AM was excited with [480 nm] and 721 
imaged at [538 nm], with a frequency of 1 Hz. The CPA treatment condition was imaged for 260 722 
seconds before addition of Ca2+, followed by 270 seconds of imaging before addition of 5 µM 723 
Ionomycin. Treatment conditions were replicated in sets of 8 and average values traced with 95% 724 
confidence intervals.  725 
 726 
Data analysis: Fluorescence data were normalized by dividing data from each well by the first 727 
fluorescence value at the start of the experiment. The ionomycin peak was used as a control for 728 
the number of cells in each treatment group, as the idling population tends to have less cell than 729 
the untreated population. Therefore, the mean ionomycin treatment peak was calculated for 730 
each treatment group (i.e., idling and untreated), and data from each treatment group were 731 
divided by the corresponding mean ionomycin peak value to account for the change in the 732 
number of cells in the assay. For comparison of calcium flux between the treatment groups, the 733 
lowest values were the zero starting point (on the y-axis) in the plot for each of the curves. A 734 
mean and 95% confidence interval were calculated for each time point and plotted using ggplot.   735 
 736 
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Ferroptosis-induction experiments 737 
 738 
Plates of H2B-GFP-labeled SKMEL5 cells were treated with either vehicle (DMSO) or BRAFi (8µM 739 
PLX4720) for eight days incubated at 37°C and 5% CO2, changing media (with vehicle/drug) every 740 
three days. BRAFi-treated cells were plated at ~2500 cells per well in a black, clear-bottom 96-741 
well plate (Falcon). After cell seeding, RSL3, with or without Fer-1, was added the following 742 
morning, with media changes every three days (six replicates per condition). Plates were imaged 743 
using automated fluorescence microscopy (Cellavista Instrument, Synentec). Twenty-five non-744 
overlapping fluorescent images (20X objective, 5x5 montage) were taken twice daily for a total 745 
of 150 hours or until confluency. Cellavista image segmentation software (Synentec) was utilized 746 
to calculate nuclear count (i.e., cell count) per well at each time point (Source = FITC, Dichro = 747 
FITC, Filter = FITC, Emission Time = 800µs, Gain = 20x, Quality = High, Binning = 2x2). Cell nuclei 748 
counts across wells were normalized to time of drug treatment and used to calculate a DIP rate 749 
(stable linear growth rate). A dose-response curve was calculated across replicates using the drm 750 
R package with a 4-parameter log-logistic function, with DIP rate as the drug effect. Replicates 751 
were used to calculate means and 95% confidence intervals for the dose-response curves. IC50 752 
values were calculated for each condition and plotted as vertical dashed lines. Data was visualized 753 
using the ggplot2R package (version 3.2.0). 754 
 755 
Model and Experimental Analysis Code Availability. The codes used to generate model 756 
simulations and analyze experimental data are publicly available via GitHub, or from the 757 
corresponding author upon request. 758 
 759 
Data Availability. The sequencing datasets generated in this study can be found in the gene 760 
expression omnibus and sequence read archive. Additional experimental data will be available 761 
from the corresponding author upon request. 762 
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