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ABSTRACT

There is increasing interest in cancer cell subpopulations that can withstanding treatment via
non-genetic mechanisms, such as tumor cell plasticity and adaptation. These cell populations
may be comprised of cells with diverse phenotypes, e.g., quiescent or slow cycling. Such
populations have been broadly termed “drug-tolerant persisters” (DTPs) and may be responsible
for minimal residual disease following anticancer treatment and acquired resistance.
Understanding molecular mechanisms that drive emergence of DTPs could lead to new strategies
to improve therapeutic outcomes. Recently, we reported that BRAF-mutant melanoma cells
under prolonged BRAF inhibition enter a DTP state with balanced cell death and division, which
we termed “idling.” Here, we apply single cell barcoding to show that idling DTP populations
emerge via cell state transitions, rather than selection of a few pre-existing drug-tolerant clones.
Within the time frame of our experiments, DTPs exhibit varying proportions of fast- and slow-
cycling cells within each lineage, suggesting that entry into the DTP state is a stochastic process.
Furthermore, single-cell transcriptomics and bulk epigenomics reveal common gene expression
and ontology signatures in DTP lineages that are consistent with rebalancing of ion channels.
Calcium flux experiments uncover a reduction of divalent cation reserves in intracellular
organelles, likely leading to endoplasmic reticulum stress. Accordingly, idling DTPs are more
prone to ferroptotic cell death, as indicated by increased sensitivity to inhibition of glutathione
peroxidase 4 (GPX4), which prevents removal of toxic lipid peroxides. In summary, we propose
that ion channel homeostasis is a central process underlying idling DTP emergence in BRAF-
mutated melanoma. Future studies will investigate translational aspects of this insight.
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INTRODUCTION

Cancer is a complex and dynamic disease characterized by intratumoral cell-to-cell variability that
has been implicated in treatment evasion and acquired resistance to therapy.? Tumor cells
exhibit multiple forms of variability, due to a complex interplay between genetics, epigenetics,
and other non-genetic sources of variation.? Historically, genetic variability has received the most
attention, with pre-existing or acquired genetic resistance mutations implicated as the primary
cause of treatment resistance and tumor relapse. However, recently, epigenetic factors have
become increasingly recognized as major sources of tumor heterogeneity and consequent
treatment failure.*® Epigenetic heterogeneity, defined as co-existence of multiple distinct
phenotypes within a population of genetically identical cells,® may result in long-term drug
tolerance, from which new genetic resistance mutations can ultimately arise.”® As such, it has
been suggested that a window of opportunity might exist between the onset of drug tolerance
and the acquisition of genetic resistance mutations during which a targeted secondary treatment
can be deployed to further reduce, or even eliminate, the residual tumor mass.”® Accomplishing
this will require a detailed understanding of the molecular drivers underlying drug tolerance so
that potential vulnerabilities can be identified and exploited clinically.

Multiple investigators have reported cancer cell subpopulations capable of withstanding drug
treatments via non-genetic mechanisms. These populations have been broadly termed “drug-
tolerant persisters” (DTPs) and described, variously, as either quiescent® or slow cycling.1%2
Recently, we described a similar drug-tolerant state, termed “idling,” that arises in BRAF-mutant
melanoma cell populations under prolonged BRAF inhibition.””** Importantly, in contrast to
previously reported DTPs, the idling phenotype refers to the state of a cell population, rather
than of individual cells. More precisely, we found that the growth dynamics of drug-treated BRAF-
mutant melanoma cell populations were best described by a model in which cells are distributed
across multiple phenotypic states, each with a distinct proliferation rate.” In the idling state, cells
are proportionally distributed across these states, such that the proliferation rate of the
population as a whole is approximately zero. Given the significant interest in drug tolerance as a
precursor to treatment failure and acquired resistance in tumors,'* recognizing that DTP
populations may, in fact, be heterogenous, composed of multiple phenotypic states that act
collectively to evade and survive drug treatment, is crucial for developing effective treatment
strategies against them.

Here, we demonstrate experimentally in BRAF-mutant melanoma that the idling phenotype is a
heterogeneous collection of phenotypic states, which is less heterogeneous than the collection
of states in untreated populations. This reduction in heterogeneity under drug pressure suggests
idling cells may potentially be vulnerable to a targeted secondary treatment. Single-cell RNA
sequencing demonstrates that idling populations comprise multiple distinct transcriptomic states
that are more similar to each other than the states observed in untreated populations.
Furthermore, we use DNA barcoding to show that the idling state is populated by cells from most
lineages present in the untreated population, suggesting that phenotypic state transitions, rather
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86  than clonal selection, underlies the establishment of drug tolerance. A gene ontology (GO)

87  analysis, combining data from both transcriptomics and epigenomics, indicates that ion channel

88  expression is significantly altered in idling cells relative to untreated cells, pointing to a role for

89  mitochondrial metabolism in the idling phenotype. This is supported by calcium flux assays that

90 show store-operated calcium entry (SOCE) is significantly altered in idling cells. Finally, idling cell

91 populations are shown to have increased susceptibility to death by ferroptosis, supporting the

92  notion that DTPs are vulnerable to targeted secondary treatments.

93

94 RESULTS

95

96 Drug-tolerant melanoma populations include cells from almost all untreated lineages

97

98 We have previously shown that BRAF-mutant melanoma cell lines exhibit non-linear drug

99 response dynamics to BRAF inhibitor (BRAFi). The initial phase of drug response is characterized
100 by variable degrees of proliferation rate reduction. This is followed by entry of the treated cell
101  population into a state of near-zero proliferation rate, termed idling.” To determine whether the
102 idling state populations are comprised of a collection of DTP clones, we barcoded the BRAF-
103  mutant SKMEL5 melanoma cell line with a gRNA barcoding library.*® This approach allowed for
104  high-depth coverage of dynamics for multiple lineages in response to selective pressures (i.e.,
105 drug treatment) and the ability to distinguish between clonal selection and phenotypic state
106  transitions (FIG. 1A). Upon treatment with BRAFi PLX 4720 (8 uM for 8 days), the barcode library
107 complexity was reduced by less than 10% (FIG. 1B). These surviving barcodes were shared in a
108 large majority of replicates within each condition (untreated and idling; FIG. 1C), as well as
109  between conditions (FIG. 1D). These results indicate that most clonal lineages survive treatment
110 and persist at a similar relative proportion after BRAFi treatment. Simply, the idling state consists
111 of cells from an overwhelming majority of the untreated population, providing direct evidence
112  against clonal selection in response to BRAFi.
113
114  Some fluctuations in relative barcode abundance do exist after treatment with BRAFi (FIG. 1E,
115  see next section). The underlying fold change distribution for the entire barcoded cell population
116  from untreated to idling is a normal distribution centered at zero, with no obvious exceptions;
117  the top 25 most populous barcodes reflect this distribution and are used for downstream
118  analyses (FIG. 1F). Notably, nearly all the lineages that do not survive treatment come from clones
119  that have an exceedingly small representation in the overall distribution, suggesting that the loss
120 of those lineages is due to random chance. These results indicate that phenotypic state
121 transitions likely dominate the response to BRAFi, leading a diverse set of clonal lineages to adopt
122  a phenotypic state(s) akin to DTPs.
123

124  Melanoma populations become less transcriptomically heterogeneous following prolonged
125  BRAF inhibition

126

127  We performed single-cell transcriptomics on the barcoded cell line in untreated and in idling
128  conditions (see Methods). Using Uniform Manifold Approximation and Projection'® (UMAP) to
129  project the transcriptomic profiles for all cells into two dimensions, we see that untreated and
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130 idling cells clearly fall in different regions of the UMAP space, with minimal overlap (FIG. 2A).
131  Additionally, the idling cells reside in a more constrained region of the space, while in the
132 untreated cells two distinct clusters are evident.

133

134  To quantify the variability within and between populations, pairwise distances were calculated
135  between cells in each condition (FIG. 2B). Nearly all idling cells fall closer to one another than
136  untreated cells fall to each other in the principal component analysis (PCA) space using 10
137  principal components. The Earth Mover’s Distance (EMD) was calculated between the two
138  pairwise distance distributions (EMD = 4.38) to measure the separation between the untreated
139  and idling populations. In summary, the untreated population is more heterogeneous than the
140 idling one in transcriptomic space.

141

142  Next, we aimed to determine the biological factors that differentiate the axes that separate
143  population clusters. UMAP_2 (e.g., separation between untreated clusters) largely separates
144  based on metabolic processes, consistent with our previous report of metabolic heterogeneity in
145  untreated melanoma cells’ (Supplementary FIG. S1A). Specifically, the large untreated (UT.)
146  cluster is enriched in a glycolysis gene signature compared to the small untreated (UTs) cluster
147  (see Methods, Supplementary FIG. S1D). Conversely, the idling population is enriched in an
148  oxidative phosphorylation gene signature compared to both untreated clusters (Supplementary
149  FIG. S1D). This is consistent with multiple reports in the literature, where BRAF-mutant cells rely
150 primarily on glycolysis for growth and energy production, and BRAFi interferes with glycolytic
151  processes, presumably favoring a switch to oxidative phosphorylation (see Discussion).

152

153  Alternatively, UMAP_1 primarily separates based on cell cycle stage, even after cell cycle gene
154  signature regression, within the context of each cluster (Supplementary FIG. S1B). We used a
155  previously established cell cycle gene signature (see Methods) to classify individual cells by cell
156 cycle stage (G1, G2M, S). We then projected cell cycle stage on cells in the single-cell
157  transcriptomics UMAP space (FIG. 2C). For visualization clarity, cell cycle stages were simplified
158 into non-cycling (G1) and cycling (G2/M/S) states. The number and proportion of cells in cycling
159  vs. non-cycling states were calculated (FIG. 2D), and the number of cycling cells is dramatically
160 decreased in the treated population (67% vs 15%).

161

162  Changes in barcode abundance between untreated and drug-tolerant populations can be

163  explained by simple random effects, not clonal selection

164

165 The barcoding system we adopted integrates droplet cell barcodes with transduced gRNA lineage
166  barcodes, establishing a direct connection between the abundance of clonal lineages and their
167 location in the single-cell transcriptomics state space. The barcoding library was designed with a
168 relative low complexity (~65k potential barcodes, ~425 identified barcoded lineages), which
169 allowed for multiple instances of the same lineage barcode in gene expression space. We
170 projected the lineage distribution of SKMEL5 barcoded cells onto scRNA-seq UMAP space
171  (examples in FIG. 3A). Barcodes exhibit various UMAP transcriptomic state occupancies and fall
172  in both clusters (large and small) and cycling states across treatment conditions. In the untreated
173  clusters, barcodes tend to have an approximately similar breakdown between small and large
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174  clusters as the average of the population. However, in the idling cell cluster, the breakdown
175  between non-cycling and cycling cell states tends to be predictive of clonal lineage drug response
176  (FIG. 1E; FIG. 3B). From these examples, three key behaviors emerge. The first is exemplified by
177  barcodes 5 and 9, where only a few cells (~5%) from the barcoded cell lineages fall in the cycling
178 idling state region of the cluster. This low proportion of cycling cells potentially leads to a
179  reduction in the relative proportion of these barcodes post-treatment (FIG. 1E-F). The second
180 behavior, as seen in barcodes 2 and 13, is the opposite, where an increased proportion of cells in
181  each barcode fall in the idling cycling state (~¥23%). This increase in cells in the cycling state
182  potentially leads to an increase in the relative proportion of both lineages after treatment (FIG.
183  1E-F). The third is characteristic of most lineages and falls somewhere in between, which causes
184 a middling effect on treatment response (Supplementary FIG. S2). Thus, a strong correlation
185  (Pearson, R=0.55) exists between the proportion of cells in the cycling idling state and the relative
186 fold change of barcode abundance after treatment (FIG. 3C), indicating that this is a shared
187  feature of all barcoded cell lineages.

188

189  Multi-omics analysis points to ion channel dysregulation as a central factor in drug tolerance
190

191  Due to the time scale of the appearance of DTPs, it is generally accepted that DTPs may arise by
192  epigenetic regulation rather than the accumulation of mutations.®>=*? To determine whether this
193 isthe case for transitions to the idling state, we performed bulk ATAC-seq on SKMELS5 cells before
194  and after BRAFi treatment (see Methods). In each condition, we identified a fragment size
195  distribution characteristic of a successful run (Supplementary FIG. S3B; library complexity in
196  Supplementary FIG. S3A). Regions of open chromatin were enriched in cells from both conditions,
197  resulting in unique and shared peaks between conditions (see Methods; FIG. 4A). These peaks
198 were normalized to the transcription start site (TSS), and the distribution of binding loci
199  (Supplementary FIG. S3C) was used to quantify the peak feature set (FIG. 4B). Idling peaks have
200 much fewer proximal features (e.g., promoter regions) and more distal elements (e.g., distal
201 intergenic and intronic regions) compared to the untreated condition. Distal elements have been
202  known to be involved in short-term epigenetic regulation. Unique peaks were also assigned to a
203  corresponding gene, and genes associated with unique peaks were input into a GO over-
204  representation analysis, which identified ion transport and activity as differentiators of idling
205 (FIG. 4C).

206

207  To confirm this finding independently, we subjected clonal sublines’ of SKMEL5 (SC01, SC07, and
208 SC10) to bulk RNA sequencing (RNA-seq) over the course of BRAFi treatment (0, 3, and 8 days
209  post-BRAFi). Even though these sublines have marked short-term differences in terms of BRAFi
210 response,’ they were chosen because they all converge to a long-term near-zero proliferation
211  rate characteristic of idling (3-8 days). To understand the time evolution of clonal subline
212  response to BRAFi, normalized counts of each subline were projected into reduced
213  dimensionality space by PCA (FIG. 4D).

214

215 On day O, prior to BRAFi treatment, sublines are distinct on the first PCA axis (PC1), with SC07
216 and SC10 showing the most similarity. In short-term treatment (day 0 = 3), sublines
217  predominately change on PC2 and maintain the overall variance between sublines observed at
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218 day O (FIG. 4D). In the long-term response (day 3 = 8), the sublines begin to converge on both
219 PClandPC2 (FIG. 4D). Considering that these three sublines are clonal derivatives of the SKMEL5
220 population, this result is consistent with the en masse transition of single cells to a common
221  UMAP space after treatment (FIG. 3A).

222

223 A differential expression analysis was performed between untreated (day 0) and idling (day 8)
224  across all three clones to identify transcriptomic signatures characteristic of idling. Differentially
225 expressed genes were input into a GO over-enrichment analysis to reveal processes upregulated
226 in the idling state. GO terms associated with ion transport and homeostasis were also found to
227  be upregulated in idling cells (MF — FIG. 4E; BP — Supplementary FIG. S3D; CC — Supplementary
228  FIG. S3E). In fact, statistically enriched GO terms shared a strong correlation between data
229  modalities, with the most significant terms pointing to the ion channel activity shown in previous
230 analyses (FIG. 4C and 4E). In summary, both epigenomics and transcriptomics data point toward
231  ion channel activity as a major molecular determinant of the idling state.

232

233 Intracellular calcium ion flux is significantly reduced in drug-tolerant melanoma populations
234

235 Next, we experimentally tested calcium channel activity in idling versus untreated cells, using a
236  calcium flux assay that measures the amount of ER resident calcium and propensity of SOCE
237  activity. In this assay, cyclopiazonic acid (CPA) is used to inhibit the activity of Sarcoendoplasmic
238  Reticulum Calcium ATPases (SERCAs), leading to a release of free calcium from the ER to the
239  cytoplasm where it is detected by the calcium dye, Fluo-8-AM. (first peak, FIG. 5A). To replenish
240  ER calcium upon depletion, cells undergo store operated calcium entry (SOCE) which brings in
241  extracellular calcium that can then be pumped into the ER by SERCAs. In order to isolate ER
242  calcium release from SOCE activity, CPA is added in a calcium free buffer, followed by addition of
243  calcium to the assay (second peak, FIG. 5A). ER calcium release stimulates the opening of plasma
244  membrane resident calcium channels (e.g., ORAI), but calcium cannot flow in until it is added to
245  the assay buffer, allowing ER calcium content/release and propensity of SOCE activity to be
246  studied separately. Idling cells exhibited decreased SOCE activity compared to untreated cells,
247  demonstrated by the second peak (FIG. 5A). These results verify differences in ion channel
248  activity in idling cells, and further suggest ER stress may be a vulnerability of idling cells.

249

250 To see if these differences in calcium flux may be a result of gene expression changes driven by
251  BRAFi treatment, a differential gene expression analysis was conducted on bulk RNAseq data
252  obtained from three SKMELS5 clonal sublines (FIG. 5B). Many of the queried calcium handling
253  genes are differentially expressed in sublines after 3 days and 8 days of BRAF inhibition.
254  Interestingly, trends in gene expression patterns seem relatively consistent across the sublines
255  (FIG. 5B). These results show that calcium handling genes are differentially expressed in cell
256  populations treated with BRAFi compared to untreated cell populations.

257

258  Drug-tolerant melanoma populations exhibit increased susceptibility to death via ferroptosis
259
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260  Previous reports have indicated a connection between ion channels and ferroptosis, a type of
261  regulated cell death, by way of increased ER stress.'” Thus, induction of ferroptosis may provide
262 a potential way to eradicate idling cancer cells. Indeed, expression of several genes in the
263  ferroptosis signature is altered in melanoma cells upon BRAFi and entry into the idling state (FIG.
264  6A; Supplementary FIG. S4). Notably, glutathione metabolism gene expression is increased and
265  genes for polyunsaturated fatty acid (PUFA) enzymes are decreased after BRAFi treatment, along
266  with differences in various other parts of ferroptosis-related signaling. Interestingly, the
267  expression pattern results in increased supply to the Fenton reaction, which produces the free
268 radical precursors to reactive oxygen species (ROS), the step directly before commitment to
269  ferroptosis (Supplementary FIG. S1E and S4).

270

271  To directly test susceptibility to ferroptosis, we subjected both drug-naive and idling cells to
272  treatment (see Methods) with RSL3; RSL3 is a compound that induces ferroptosis by targeting
273  GPX4, a key regulator of glutathione oxidation and PUFA reduction. Interestingly, this treatment
274  would reduce glutathione metabolism while preventing reduction of PUFA intermediates, leading
275 to more precursors of the Fenton reaction and potentially to increased ROS that would drive cell
276  death by ferroptosis. Interestingly, idling cells were ~3-fold more sensitive to RSL3 by potency
277  (FIG. 6B; difference in IC50s), suggesting idling cells are susceptible to ferroptosis. Furthermore,
278 addition of ferrostatin-1 (Fer-1), a drug that inhibits the production of lipid peroxides by the
279  Fenton reaction (i.e., ROS), rescued the differential drug-response behavior of both idling and
280 untreated cells in the presence of RSL3 (FIG. 6C). These results indicate that idling cells are
281  vulnerable to ferroptosis, presumably due to the increased ROS that results from sequential GPX4
282  inhibition, providing a potential route to DTP elimination.

283

284  DISCUSSION

285

286 In this study, we show that BRAF inhibition (BRAFi) causes BRAF-mutant melanoma cells to
287  transition en masse into idling populations of plastic drug-tolerant persisters (DTPs), which
288  exhibit ion channel dysregulation and susceptibility to ferroptosis. Using cellular barcoding, we
289  showed that idling cells result from an overwhelming majority of untreated clones, rather than
290 clonal selection of a special idling clone (FIG. 1B-D). Distinct transcriptomic signatures were
291 identified that differentiate untreated and idling cells, with the idling cells represented in a more
292  restrained transcriptomic space (FIG. 2A-B). The idling cell population consisted of cells in cycling
293  and non-cycling states, as defined by their phase in the cell cycle (FIG. 2C); though, the idling
294  population had a lower proportion of cycling cells in its transcriptomic space than untreated cell
295 populations (FIG. 2D). Barcoded clonal lineages were distributed across both transcriptomic
296  states in the untreated condition (FIG. 3A). However, relative barcode abundances for lineages
297  that have a larger proportion of cells in the cycling versus non-cycling idling state result in a larger
298 proportion of that barcode in the idling population after treatment (FIG. 3A-C; c.f. FIG. 1E). Bulk
299  epigenomics and time-series transcriptomics of the SKMELS5 cell line and clonal lineages identify
300 a convergent idling molecular signature shared across modalities, which points towards ion
301 dysregulation as a characteristic of the idling state (FIG. 4). The calcium ion channel dysregulation
302 was validated in a calcium flux assay (FIG. 5A) and a differential gene expression analysis of ion
303 channels (FIG. 5B). This evidence of calcium ion channel dysregulation further established a
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304 potential connection to ferroptosis, a type of regulated cell death. A ferroptosis gene signature
305 (FIG. 6A) suggested potential susceptibility to GPX4 inhibition through increased ROS; this
306 susceptibility was validated to have a clear effect on idling cells (FIG. 6B). Rescue of the drugged
307 phenotype by a lipid ROS scavenger verified the connection between idling drug tolerance and
308 susceptibility to ferroptosis (FIG. 6C).

309

310 Many studies have remarked on the epigenetic plasticity as a way to understand decreased drug
311  sensitivity,® and others have postulated using the epigenetic landscape as a mechanism to
312  understand how cancer cells transition between states.'® However, little experimental evidence
313  exists showing how epigenetic state transitions lead to drug tolerance and eventual resistance.
314 Together, these data provide evidence for a view of tumor cell plasticity where cells fall into
315 basins across an epigenetic landscape. This study puts forth data that suggests a timeline for
316  epigenetic plasticity of cancer cells prior to and after treatment. Tumor initiation from a single
317 clone creates a population with the same genetic background. The genetic clone emanates an
318 epigenetic landscape, comprised of several basins of attraction over which cells populate to
319 create multiple cell types, each with different molecular phenotypes. Over time, cells in the
320 landscape reach a dynamic equilibrium, i.e., cells can still transition between basins but the
321 population is in a state of balance, a process known as “bet hedging”.2%2! The introduction of a
322  perturbation, such as an anticancer drug treatment, upends the equilibrated landscape and drops
323 cells into a new landscape. Cells re-equilibrate to the new landscape and adopt cell fates
324  corresponding to the state in which they now reside. In the case of a drug with good efficacy,
325 most cells will fall into a state of the drug-treated landscape that results in death. However, if the
326 new landscape includes a state where cells have a positive proliferation rate in drug, the
327 population will invariably rebound. In our case, most of the cells matriculate into the large non-
328 cycling state upon treatment with BRAFi, but some end up in a smaller cycling state (FIG. 2C). This
329 feature is consistent with several different types of DTPs, from quiescent to slow-cycling.®=*2
330 However, some barcoded clonal lineages disproportionally fall into one of the two states (FIG.
331 3A), leading to a differential short-term drug fitness in response to BRAFi. Previous studies in the
332 lab show that even sublines eventually adopt a near-zero proliferation rate in prolonged BRAFi,’
333  suggesting that lineages fully equilibrate to the new landscape over time. This occurrence is
334  largely consistent with other oncogene-addicted cancers treated with targeted therapies, which
335 exhibit a noisy short-term drug tolerance that often leads to long-term genetic resistance.???3
336

337  An actionable result of a drug-modified landscape is new biochemical network properties that
338 can lead to new treatment sensitivities. This phenomenon, in which resistance (or tolerance) to
339 one drug treatment confers sensitivity to a different drug (or drug class), is commonly known as
340 “collateral sensitivity.” Interesting screens have been performed to identify drugs that have
341 increased sensitivity for cells treated with an initial drug, including in cancer.?* However, these
342 methods ignore the heterogeneity present in treated populations and often lead to traditional
343  up-front combination therapies. These combination therapies create an entirely new epigenetic
344 landscape that has new molecular properties with unknown vulnerabilities,®?> making the new
345 tumor difficult to treat. The heterogeneity identified in our idling cells exemplifies this problem
346  and, therefore, requires a different approach. Sequential therapy is an alternative approach in
347  which cells are able to equilibrate to the new drug-treated landscape with the hope that it is
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348 more sensitive as a whole.?® Molecular analyses in our study show that the drug-treated
349 landscape is indeed more homogeneous (FIG. 2A) and has a common thread in ion channel
350 activity across transcriptomics and epigenomics data (FIG. 4). By targeting the idling state with a
351 sequential therapy that leverages the increased ion channel activity to promote targeted
352 ferroptotic cell death, we seemingly create another epigenetic landscape where all of the basins
353  have a negative proliferation rate in drug treatment and result in tumor eradication. Therefore,
354  potential future studies could be aimed at identifying vulnerabilities of epigenetic landscapes
355 that result after primary drug treatment and finding patient-specific secondary drugs used for
356 sequential drug treatment regimens that eradicate the entire tumor. Together, these results
357 indicate that BRAF-mutant melanoma cells converge to a confined idling population after BRAFi
358 treatment, yet still exhibits cycling and non-cycling transcriptomic states. This breakdown
359 appears to encapsulate previously described DTPs that exhibit various cycling behaviors,
360 including quiescence, active division, and slow cycling.

361

362  Figure captions

363

364  Figure 1: Most clonal lineages survive treatment with BRAFi into idling. (A) Schematic of
365 example lineage tracing experiments using cellular barcoding. (B) Number of unique barcodes in
366 each treatment condition. Lines correspond to the means of three experimental replicates
367 (points). A minimum cutoff of 100 counts per million (CPM) was used. (C) Proportional sharing of
368 barcodes among experimental replicates (i.e., R1 = replicate 1) for each treatment condition. (D)
369 Heatmap of relative barcode abundances (log10 CPM) for each experimental replicates across all
370 captured barcodes. Heatmap is organized by decreasing barcode abundance in untreated
371 condition. (E) Relative fraction of the top 25 ranked (in untreated) barcoded cell lineages in
372 untreated and idling conditions. Bar height corresponds to the average of three experimental
373  replicates (line is standard deviation). (F) Distribution of (log2) fold change for barcoded clonal
374  lineages from untreated to idling. Means of fold changes were compiled into a distribution for all
375 captured lineages (grey), as well as the top 25 most abundant lineages noted in E.

376

377  Figure 2: Idling cells represent a convergent, yet still heterogeneous, transcriptomic state with
378 less idling cells in the cycling state than untreated cells. (A) UMAP projection of untreated and
379 idling single-cell transcriptomes. 6410 cells are shown, with an approximately equal split between
380 conditions. (B) CDF of pairwise cell distances (random sampling of 15,000) with 10 principal
381 components on the PCA space of the untreated and idling single-cell transcriptomic data. An
382  Earth Mover’s Distance (EMD) was calculated between the distributions to quantify their
383  separation from each other. (C) Overlay of cell cycle state (see Methods) on UMAP projection of
384  single cell transcriptomes (colored contours represent information in A). (D) Relative proportion
385 of cellsin cell cycle state for major untreated and idling clusters. The total number of cells in each
386 cluster (n) is noted above each bar.

387

388 Figure 3: Lineage distribution across cell cycle states is reflective of clonal dynamics. (A)
389  Projections of lineage transcriptomic distributions on UMAP projection in FIG. 2A. Lineages
390 correspond to colored dots, while contours reflect treatment condition. (B) Proportion of cells in
391 the idling cycling transcriptomic state for the top 25 most abundant barcodes. Dashed line
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392 represents average of all barcodes. (C) A Pearson correlation analysis was performed between
393 the percentage of cycling cells in the idling state and the log, fold change in barcode abundance
394  following BRAFi treatment for the top 25 most abundant barcodes.

395

396 Figure 4: Unique elements of the idling transcriptome and epigenome have differential features
397  forion activity. (A) Venn diagram of ATAC-seq identified peaks of open chromatin. (B) Alignment
398 of peaks to the TSS allows for prediction of epigenomic features.-Predicted feature distribution
399 in untreated, idling, or shared peaks. Peaks were assigned to features based on proximity to TSS
400 (see Methods). (C) GO over-enrichment analysis of genes associated to unique idling peaks. The
401 top 10 terms with the largest gene ratio are shown. (D) PCA projection of subclones (SC01, SC07,
402 and SC10) at multiple times (0, 3, and 8 days) in BRAFi. Each condition (e.g. SCO1 at day 0) was
403 completed in triplicate. Lines are drawn between the centroids of triplicates across the time
404  series. (E) GO over-representation analysis on differentially expressed genes with increased
405 expression between untreated and idling. GO terms with the top 10 largest gene ratios (see
406 Methods) are shown.

407

408  Figure 5: Idling cells have decreased calcium flux and altered expression of calcium handling
409 genes. (A) Calcium flux assay of untreated and idling cells using cyclopiazonic acid (CPA) to
410 deplete ER calcium without extracellular Ca?*, addition of extracellular Ca®* to test store operated
411  calcium entry (SOCE) activity, and ionomycin to control for number of cells in the assay. (B)
412  Differential gene expression analysis of calcium handling genes in sublines transcriptomics data
413  from 4D.

414

415  Figure 6: Idling cell populations are susceptible to ferroptosis. (A) Gene expression values (z-
416  scores; see Methods) for multiple clonal sublines (SC01, SC07, SC10) across the BRAFi treatment
417  time course (0, 3, and 8 days post treatment). Genes are further grouped by their associated
418  processes related to ferroptosis. (B) DIP rate dose response curves for untreated and idling cells
419 treated with ferroptosis inducer RSL3. (C) Same as B, except with rescue experiments on the post-
420 treated cells using ferroptosis inhibitor Fer-1.

421

422  Figure S1: Analysis of the UMAP single cell transcriptomic space. (A) GO analysis of differentially
423  expressed between the untreated clusters in the UMAP single cell transcriptomics space shown
424  inFIG. 2A. (B) Same as A except the analysis was applied to the idling cluster and a subpopulation
425  of cells that were predominantly in the cycling state. (C) A representation of UMAP single cell
426  transcriptomic space of untreated and idling cells used for differential gene expression and GO
427 analyses in D and E. (D) Distributions of the signature scores for cells in each cluster in the
428  differential gene expression analysis from the GO analysis related to glycolysis and oxidative
429  phosphorylation. Colors of each distribution correspond to the colors of the clusters in C, where
430 pinkis cluster 1 (i.e., UTs), yellow is cluster 2 (i.e., UT.), and blue is cluster 3 (i.e., idling). (E) Same
431  as D except with other processes.

432

433  Figure S2: Lineage distributions for barcodes with a middle effect in clonal dynamics to
434  treatment response. Same as FIG. 3A for the remaining top 25 barcodes in the single cell
435  transcriptomics analysis.
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436

437  Figure S3: Quality control of bulk epigenomics ATA-seq data and correlation analysis of
438 differentially expressed genes in idling transcriptome and epigenome. (A) Plot of unique reads
439  versus sequenced reads for the bulk ATAC-seq data used in epigenome analyses. (B) Insert size
440  distribution of aligned reads from ATAC-seq data on untreated and idling cells. Both conditions
441  follow traditional nucleosome patterning. (C) Peak binding site distribution for untreated, idling,
442  and shared peaks. X-axis represents kb distances from the TSS. (D) Correlation analysis of the
443  differentially expressed genes from a Biological Process (BP)-type of GO analysis for the
444  epigenome and transcriptome of the idling cell population. (E) Same as D for a Cellular
445  Component (CC)-type of GO analysis.

446

447  Figure S4: Ferroptosis pathway. A schematic diagram of the ferroptosis pathway with boxes that
448  correspond to the colors of the groups for the genes in FIG. 6A.

449

450 MATERIALS AND METHODS
451

452  Cell culture and reagents
453

454  We chose BRAF-mutant melanoma cell line SKMELS5 as a preferred model, since it exhibits median
455  BRAFi sensitivity compared to other BRAF-mutant melanoma cell lines.?” SKMEL5 cell line was
456  purchased from ATCCO and labeled with either a fluorescent histone H2B conjugated to the
457  monomeric red fluorescent protein (H2BmRFP) and a cellular barcoding library (see “Cellular
458  barcoding” below) or H2B conjugated to the green fluorescent protein (H2B-GFP). Single cell-
459  derived subclones of SKMEL5 were selected and derived by limiting dilution, as described
460 previously. Cells were cultured in a mixed media of DMEM and Ham F-12 media (DMEM:F12 1:1;
461  catalog no. 11330-032), supplemented with 10% fetal bovine serum (FBS). Cells were incubated
462 at 37°C, 5% CO,, and passaged twice a week using TrpLE (Gibco). Cell lines and sublines were
463  tested for mycoplasma contamination using the MycoAlert™ mycoplasma detection kit (Lonza),
464  according to manufacturer’s instructions, and confirmed to be mycoplasma-free. BRAF inhibitor
465  PLX 4720 (analog to Vemurafenib), ferroptosis inducer RSL3 and ferroptosis inhibitor Fer-1 were
466 obtained from MedChem Express (Monmouth Junction, NJ) and solubilized in dimethyl sulfoxide
467 (DMSO) at a stock concentration of 10mM and stored at -20°C. Cell lines were originally stored
468 at-80°C, then moved into liquid nitrogen.

469

470  Cellular barcoding

471

472  Setup: Cellular barcoding library was constructed by cloning a guide RNA (gRNA) library of
473  barcodes into a CROP-seg-BFP-TSO vector as previously described. The vector was engineered
474  such that barcodes can be isolated by isolation and amplification (barcode sampling) or mRNA
475  capture in a single-cell RNA sequencing (scRNA-seq) experiment. gRNAs were built as a 20-
476  nucleotide sequence of four nucleotides identical among all barcodes, followed by a 16 strong-
477  weak (SW) paired nucleotides (i.e., XXXXSWSWSWSWSWSWSWSW). The SW pairing of the
478 barcode sequence was designed to prevent polymerase chain reaction (PCR) amplification bias.
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479  The maximum complexity of this library is 26 (~65,000 unique barcodes). The barcode library
480 vector was used to produce lentiviral libraries using a lipofectamine transfection of HEK293T
481 cells. Media containing lentiviral particles were collected at 48- and 72-hours post-transfection,
482 pooled, filtered through a 0.45 um Nalgene syringe filter and concentrated using a 50 mL size-
483  exclusion column by centrifugation at 2200 RCF at 4°C for two hours. Concentrated virus was
484  stored in -80°C. SKMELS5 cells were seeded in a 6-well plate at ~1x10° cells per well in 2.5 mL
485  culture media. Cells were transduced with the barcoded CROP-seq-BFP-TSO-Barcode sgRNA
486 lentivirus using 0.8 ug/mL in each well and a multiplicity of infection (MOI) of 0.05. Twenty-four
487  hours after incubation, transduction media (containing polybrene) was exchanged for fresh
488 culture media. Forty-eight hours after incubation, barcoded cells were isolated by fluorescence-
489  activated cell sorting (FACS) and subsequently cultured until confluence in a T-150 dish and then
490 cryopreserved. Cryopreserved cells were thawed in a T-25 dish and scaled up for ~2 weeks in two
491  separate sets. The first set of thawed cells were treated with 8uM PLX4720 (and an untreated
492  control) for eight days and subjected to barcode sampling (see “Barcode Sampling Analysis”
493  subsection below). The second set was plated in three T-75 flasks (parallel replicates) and
494  independently treated with 8uM PLX4720 (or untreated control) for eight days and subjected to
495  scRNA-seq by the 10X genomics Chromium platform (version 2 chemistry; see “RNA single-cell
496 transcriptome sequencing” section below for more details). In both cases, treated cells had media
497  and drug replaced every three days. Untreated cells were expanded completely over the course
498  of the time course (i.e., no cell splitting).

499

500 Barcode Sampling: After PLX4720 treatment for eight days (or no treatment expansion), cells in
501 thefirst set were pelleted for genomic DNA (gDNA) extraction using the DNeasy Blood and Tissue
502 Kit (Qiagen) per manufacturers’ instructions. Barcode sequences were amplified for each
503 replicate by polymerase chain reaction (PCR; 98°C for 30 seconds, followed by 22 cycles of
504  denaturation - 98°C for 10 seconds, annealing - 63°C for 30 seconds, extension - 72°C for 10
505 seconds, and a final extension of 72°C for 5 minutes) using primers containing flanking regions
506 and lllumina adapter index sequences. 2ug gDNA was used in each PCR reaction, and a
507 combination of 5 distinct pooled forward primers were utilized to minimize sequencing error.
508 Reactions were purified using a 1.8x AMPure XP bead (Beckman Coulter) cleanup. Reaction
509 products were confirmed using agarose gel confirmation (band at ~215bp). The resulting libraries
510 were quantified using a Qubit fluorometer (ThermoFisher), Bioanalyzer 2100 (Agilent) for library
511 profile assessment, and gPCR (Kapa Biosciences Cat: KK4622) to validate ligated material,
512  according to the manufacturer’s instructions. The libraries were sequenced using the NovaSeq
513 6000 with 150 bp paired end reads as sequencing spike-ins (targeting ~200k reads). RTA (version
514  2.4.11; lllumina) was used for base calling and MultiQC (version 1.7) for quality control.

515

516  Barcode Sampling Analysis: Barcodes were identified from amplified sequence reads by trimming
517 flanking adapter sequences. Barcodes abundances were totaled and normalized to library read
518 depth, resulting in reads per million (RPM). Barcodes less than 100 CPM were removed from the
519 analysis. Numbers of unique barcodes were calculated based on this threshold. Overlaps
520 between experimental replicates were calculated to determine the proportion of barcodes
521  shared across different runs. Total barcode abundance (including low abundance barcodes) was
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522  calculated using the logio of barcode RPM for each replicate. Relative barcode fraction was
523  calculated for each sample across three replicates. Log; fold change of the idling to untreated
524  mean barcode fractions was calculated for all barcodes above the CPM threshold.

525

526  RNA single-cell transcriptome sequencing

527

528  Data Collection: After PLX4720 treatment for eight days (or no treatment expansion), cells in the
529 second set were prepared targeting ~3000 cells per sample, washed, and resuspended in 0.04%
530 bovine serum albumin (BSA) in phosphate-buffered saline (PBS). Cell suspensions were subjected
531 to 10X Genomics single-cell gene expression protocol (version 2, 3’ counting) in two separate
532  wells, according to manufacturer’s guidelines. Single-cell mRNA expression libraries were
533  prepared according to manufacturer instructions. Due to the nature of gRNA barcoding library
534  construction, mRNAs resulting from gRNA barcodes were captured along with other mRNAs.
535 Libraries were cleaned using SPRI beads (Beckman Coulter) and quantified using a Bioanalyzer
536 2100 (Agilent). The libraries were sequenced using the NovaSeq 6000 with 150 bp paired-end
537 reads targeting 50M reads per sample for the mRNA library (including barcode library). RTA
538 (version 2.4.11; lllumina) was used for base calling and MultiQC (version 1.7) for quality control.
539  Gene counting, including alignment, filtering, barcode counting, and unique molecular identifier
540 (UMI) counting was performed on each library using the count function in the 10X Genomics
541  software Cell Ranger (version 3.0.2) with the GRCh38 (hg38) reference transcriptome.

542

543  Transcriptome Analysis: Cell Ranger output two single-cell gene expression matrices, for
544  untreated and idling cells. scUniFrac was performed to quantify the degree of overlap between
545  conditions. Finding minimal overlaps, and since cells were prepared and processed in parallel, no
546  computational batch correction was performed. Seurat was used to perform gene expression
547  analysis. The SCTransform function was used to regress out mitochondrial gene expression
548  (percent.mt), number of features (genes; nFeature_RNA), number of RNA molecules in the cell
549  (nCount_RNA), and cell cycle variables (S.Score and G2M.Score). Feature selection was
550 performed according to Seurat guidelines using a variance stabilizing transformation of the top
551 2000 most variable features. Data was normalized and scaled according to Seurat guidelines.
552 Data between conditions were combined and visualized using the Uniform Manifold
553  Approximation and Projection (UMAP) dimensionality reduction algorithm as implemented in
554  Seurat. In addition to UMAP, t-distributed Stochastic Neighbor Embedding (t-SNE) and Principal
555 Component Analysis (PCA) were also performed, using the Seurat implementation. Clustering
556 was performed in the joint UMAP space using the default Seurat implementation, a shared
557 nearest neighbor (SNN) modularity optimization-based method. Pairwise Euclidean distances
558  were calculated between cells in each condition with 10 principal components in the PCA space
559 and plotted as a cumulative density function (CDF). An Earth Mover’s Distance (EMD) was
560 calculated between 15000 randomly sampled pairwise distances using the wassersteinld
561 function in the transport R package. Differential expression analysis was performed between
562  conditions (untreated, idling), between combined clusters (large, small) within each condition,
563  and between clusters across conditions (e.g., untreatediarge Vs. idlingiarge). Differential expression
564  was performed using the Seurat FindMarkers function and DEGs (adjusted-p < 0.05) were input
565 into a GO over-enrichment analysis. The GO analysis identified cell cycle as a major factor
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566  separating idling clusters and was not present for untreated clusters. Therefore, using cell cycle
567  scores, a cell cycle phase (G1, G2M, S) was assigned to each cell, which was further simplified
568 into cycling (S, G2M) and non-cycling (G1), which we call cell cycle state. Cluster proportion was
569 calculated by cell cycle state to quantify the differences between clusters. The number of cells in
570 each cell cycle state were tallied and calculated as a percentage across each cluster.

571

572  Barcode Analysis: After calculation of scRNA-seq gene expression matrices, barcode abundances
573  were incorporated to the matrices. To do this, gRNA lineage barcodes had to be mapped to their
574  associated 10X cell barcodes. First, unmapped scRNA-seq BAM files were cleaned to only include
575 the mRNA transcript ID, scRNA-seq cell barcode, and scRNA-seq unique molecular identifier
576  (UMI). Mapped scRNA-seq BAM files (3’ heavy) were cleaned to only include the mRNA transcript
577 1D and lineage barcode (from gRNA library). Unmapped and mapped subsets were merged on
578 the mRNA transcript ID to assign a lineage barcode to each cell barcode and UMI. The resulting
579 merged dataset was paired down to a single cell barcode — lineage barcode pair, which was
580 appended to each cell in the gene expression matrix as a metadata tag. Barcode abundances
581  were totaled across all cells in the experiment that captured a barcode, and strongly reflected
582  barcode sampling relative abundances and fold changes upon treatment (FIG. 1E - scRNA-seq
583  barcode fractions). Barcodes were overlaid on UMAP projections of scRNA-seq data, and further
584  categorized into the cycling and non-cycling transcriptomic states (see Transcriptome Analysis
585  subsection). Total number of cells from each barcode were tallied across each transcriptomic cell
586 cycle state, and a percentage (relative to each barcode) in each state was calculated. A
587  correlation analysis (Pearson) was performed on the percentage of cycling cells in idling vs. the
588 logy barcode fold change after treatment.

589

590 Functional interpretation analysis: The single-cell transcriptome count matrix (see “RNA single-
591 cell transcriptome sequencing:Data Collection” above) was scaled by multiplying counts by the
592  median RNA molecules across all cells and dividing that number by the number of RNA molecules
593 ineach cell (asrecommended). Gene signature files were obtained from the molecular signatures
594  database (MSigDB). Hallmark gene sets (50 in total) were downloaded from MSigDB (gsea-
595 msigdb.org/gsea/msigdb/genesets.jsp?collection=H). Both the scaled counts matrix and each of
596 the hallmark gene sets were input into VISION?® to identify gene signature scores for each cell-
597  signature pair. Four hallmark gene sets (KRAS_SIGNALING_UP, KRAS SIGNALING_DOWN,
598 UV_RESPONSE_UP, UV_RESPONSE_DOWN) were condensed into two (KRAS_SIGNALING,
599 UV_RESPONSE) by VISION to leave 48 total gene signatures. Scores were compiled into a
600 distribution and plotted by cluster (k=3) for each gene set.

601

602  Bulk RNA transcriptome sequencing

603

604  Data acquisition: Total RNA was isolated from untreated SKMELS single cell-derived subclones,
605 each in triplicate, using Trizol isolation method (Invitrogen), according to the manufacturer’s
606 instructions. RNA samples were submitted to Vanderbilt VANTAGE Core services for quality
607  check, where mRNA enrichment and cDNA library preparation were done with Illumina Tru-Seq
608 stranded mRNA sample prep kit. Sequencing was done at Paired-End 75 bp on the lllumina HiSeq
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609  3000. Reads were aligned to the GRCh38 human reference genome using ‘HISAT2’ and gene
610 counts were obtained using ‘featureCounts’.

611

612  Data analysis: RNA-seq data was analyzed using the DESeq2?° R package. Cells with less than 18
613 reads per condition were removed, according to DESeq2 vignettes. Counts were transformed
614  using the regularized logarithm (rlog) normalization algorithm. PCA was performed using the
615 prcomp function in R. The path between time series data points was visualized as a line between
616  subline-time point replicate means in the PCA space. EMDs were calculated between pairwise
617  distance distributions for each subline across the treatment time series and for each time point
618 across the sublines. Hierarchical clustering was performed using the hclust R function with a
619  Ward’s minimum variance method. Differential expression analysis was performed using a model
620 design to quantify both changing variables and their interaction (~ subline + treatment time +
621  subline:treatment time). DEGs across sublines between untreated (pre-treatment, day 0) and
622 idling (day 8 post-treatment) were identified (adjusted-p < 0.05, log2 fold change > 2). DEGs were
623 input into a GO enrichment analysis, which identified GO terms associated with “Biological
624  Process” (BP), “Molecular Function” (MF), and “Cellular Component” (CC) GO types.

625

626  Ferroptosis gene signature analysis: A ferroptosis gene signature was obtained from the Kyoto
627 Encyclopedia of Genes and Genomes (KEGG). For each subline, genes were normalized to the 0-
628  day time point and a log fold change was calculated compared to the 0-day baseline. Groupings
629 of genes were annotated by separate signaling processes (Supplementary FIG. S5).

630

631 Bulk ATAC epigenome sequencing

632

633  Data acquisition: Data was collected using the omni-ATAC protocol for bulk ATAC sequencing
634  (ATAC-seq). After PLX4720 treatment for eight days (or no treatment expansion), cells in the
635 second set (in parallel to barcode sampling data collection) were pelleted at 50k cells and
636 resuspended in a cold ATAC-seq resuspension and lysis buffer containing NP40 (0.1%), Tween20
637 (0.1%), and Digitonin (0.01%) and incubated on ice. A resuspension buffer was added (0.1%
638 Tween20, no NP40 or Digitonin) to wash out the lysis reaction. Cells were pelleted and
639 resuspended in a transposition mix (5x Tris-DMF, PBS, 1% digitonin, 10% Tween20, nuclease-free
640 H,0), including transposase Tn5, followed by a 30-minute incubation at 37°C, with shaking to
641 enhance tagmentation. After 30 minutes, the reaction was stopped by adding a DNA binding
642  buffer (Zymo) and purified using a DNA Clean and Concentrate kit (D4004, Zymo). The final
643  product was eluted in nuclease-free H,0. PCR amplification was performed on the eluate with an
644  NEBNext 2X High Fidelity PCR Mix (NEB, M0541S) N7, and N5 index sequencing primers
645 (extension at 72°C for 5 minutes; denaturation at 90°C for 30 seconds; 12 cycles: denaturation at
646  98°C for 10 seconds, annealing at 62°C for 30 seconds, extension at 72°C for 30 seconds; final
647  extension at 72°C for 5 minutes). The PCR product was purified with the Zymo DNA Clean and
648  Concentrate kit and eluted in 22ulL nuclease-free H,O. ATAC-seq PCR libraries were visualized by
649  agarose gel electrophoresis for a quick check for the nucleosome ladder pattern (bands over ~150
650 bp). Libraries were also quantified using a Qubit fluorometer (ThermoFisher), Bioanalyzer 2100
651  (Agilent) for library profile assessment, and qPCR (Kapa Biosciences Cat: KK4622) to validate


https://doi.org/10.1101/2022.02.03.479045
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.03.479045; this version posted February 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

652 ligated material, according to the manufacturer’s instructions. The libraries were sequenced
653  using the NovaSeq 6000 with 150 bp paired-end reads as spike-ins on the sequencing chip
654  (untreated: ~160m, idling: ~130m reads). RTA (version 2.4.11; Illumina) was used for base calling
655 and MultiQC (version 1.7) for quality control.

656

657  Data Analysis: Reads were trimmed using cutadapt (paired-end) to remove primer sequences
658 and aligned to the hg38 reference genome using the bwa mem function in Burrows-Wheeler
659  Aligner (BWA, version 0.7.17). Aligned reads were sorted and duplicates were marked using
660  Picard (version 2.17.10). Untreated reads had more detected duplicates (~78% compared to
661 ~32% inidling). Reads were deduplicated, but to address the discrepancy in deduplicated library
662  complexity, idling reads were subsampled (25% of original library, Supplementary FIG. S4A-B) to
663  achieve a similar complexity to the untreated. Reads were further cleaned according to sequence
664  quality guidelines. Insert sizes were plotted from the output of InsertSizeMetrics after
665  deduplication in Picard. Peaks of open chromatin were called using the MACS2 callpeak function
666 according to recommended guidelines for ATAC-seq data (BAM paired-end method, g-threshold:
667  0.05, no MACS2 model, shift: -100, extension size: 200). Peaks were subjected to a further round
668 of quality control and cleaning using ChIPQC (peak mapping, peak duplication, blacklist peak
669  detection), and blacklisted peaks were removed. Peaks were converted to consensus counts
670  using the runConsensusCounts function in soGGi. Intersections of and unique cleaned peaks were
671 determined and visualized as a Venn diagram using the vennDiagram function in the limma
672  package. Unique and intersection peaks were annotated with the nearest neighbor genes using
673 the annotatePeak function and hg38 transcriptome in the ChlPseeker package. These peaks were
674  alsore-aligned to the transcription start site (TSS) for each gene. Average profiles of read subsets
675 across all genes (nucleosome-free, mono-nucleosome, and di-nucleosome; normalized to the
676  TSS). Peaks were classified based on closeness to the TSS and assigned to predicted feature
677 (promoter, UTR, exon, intron, downstream, distal intergenic). Genes associated with unique and
678 intersections of peaks were input into a GO enrichment analysis for BP, MF, and CC GO types
679 (same as “Bulk Transcriptome Analysis” above). Transcription factor (TF) footprinting in the
680 region around TSSs was performed on untreated and idling unique peaks for key TFs.

681

682  Gene ontology analysis

683

684  Setup: Genes associated with unique ATAC-seq peaks (see “Bulk ATAC Epigenome Sequencing:
685 Data Analysis” above) were identified for each condition (i.e., untreated or idling). Additionally,
686 DEGs from the bulk RNA-seq statistical analysis were determined (8-day vs. 0-day time points
687  across all clonal sublines; see “Bulk RNA Transcriptome Sequencing:Data Analysis” above). The
688  two gene lists were independently subjected to a GO enrichment analysis using ‘clusterProfiler’.
689 Genes were compared to BP, MF, CC GO types. GO terms significantly enriched in the unique
690 ATAC-seq peaks (p < 0.05) and in DEGs (p < 0.05) were identified and stored independently as
691 separate GO term lists for untreated and idling datasets.

692

693  Correlation Analysis: The -logio(p-value) was calculated for terms shared between the lists
694  associated with the separate modalities, ranking terms based on statistical significance.
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695 Spearman correlation was calculated between the significant GO terms using the ggpubr package
696  (version 0.4.0) for each GO type.
697

698  Calcium flux assays

699

700 Data acquisition: SKMELS5 barcoded cells were plated onto a 384 well, tissue culture treated plate
701 24 hours before imaging at a density of 10,000 cells/well. For the treated condition, cells were
702  treated with 8 uM PLX4720, a vemurafenib derivative, for 8 days with fresh media/drug swapped
703  out every 3 days. Untreated control cells were taken from the same cell line culture which was
704  maintained separately while the treatment condition was exposed to PLX4720, being split down
705  when necessary to maintain healthy growth conditions. On the day of experimentation, the 384
706  well plate with all treated and untreated cells were incubated with 4 uM Fluo-8-AM in fresh
707  culture media (10% FBS) for 1 hour at room temperature, as recommended by the manufacturer
708  (AAT Bioquest). Dye containing media was removed and Hanks Buffered Saline Solution (HBSS,
709 10 mM HEPES, no Ca?*) was used to wash the wells of excess dye, followed by removal and
710  addition of 20 pL of fresh HBSS (no Ca?*) for use as the assay buffer. The plate was loaded into a
711  kinetic imaging instrument (Panoptic, by Waveguide Biosciences), which records the fluorescent
712  intensity emitted by each well of the 384 well plate. A three-addition protocol was used to add
713  the various drugs and assay conditions to the plate during the SOCE assay. Drug Addition plates
714  were loaded with assay buffer (HBSS, with or without Ca?*) and thoroughly mixed immediately
715 before imaging. Add conditions were split into three parts: 1) Cyclopiazonic Acid (CPA; final
716  concentration of 50 uM) to inhibit activity of Sarcoendoplasmic Reticulum Calcium ATPase
717  (SERCA), leading ER Ca?* release; 2) Addition of Ca?* to the assay condition to activate SOCE
718  activity; and 3) Addition of the Ca?* ionophore, lonomycin (final concentration of 5 pM), was used
719  to generate maximal signal intensity to control for variations in cell count in individual wells (this
720  was particularly important since drug treated idling cells experienced increased washout due to
721  the stressful nature of sustained BRAF inhibition). Fluo-8-AM was excited with [480 nm] and
722  imaged at [538 nm], with a frequency of 1 Hz. The CPA treatment condition was imaged for 260
723  seconds before addition of Ca?*, followed by 270 seconds of imaging before addition of 5 uM
724  lonomycin. Treatment conditions were replicated in sets of 8 and average values traced with 95%
725  confidence intervals.

726

727  Data analysis: Fluorescence data were normalized by dividing data from each well by the first
728  fluorescence value at the start of the experiment. The ionomycin peak was used as a control for
729  the number of cells in each treatment group, as the idling population tends to have less cell than
730 the untreated population. Therefore, the mean ionomycin treatment peak was calculated for
731  each treatment group (i.e., idling and untreated), and data from each treatment group were
732  divided by the corresponding mean ionomycin peak value to account for the change in the
733  number of cells in the assay. For comparison of calcium flux between the treatment groups, the
734  lowest values were the zero starting point (on the y-axis) in the plot for each of the curves. A
735 mean and 95% confidence interval were calculated for each time point and plotted using ggplot.
736
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737  Ferroptosis-induction experiments

738

739  Plates of H2B-GFP-labeled SKMELS cells were treated with either vehicle (DMSO) or BRAFi (8uM
740  PLX4720) for eight days incubated at 37°C and 5% CO>, changing media (with vehicle/drug) every
741  three days. BRAFi-treated cells were plated at ~2500 cells per well in a black, clear-bottom 96-
742  well plate (Falcon). After cell seeding, RSL3, with or without Fer-1, was added the following
743  morning, with media changes every three days (six replicates per condition). Plates were imaged
744  using automated fluorescence microscopy (Cellavista Instrument, Synentec). Twenty-five non-
745  overlapping fluorescent images (20X objective, 5x5 montage) were taken twice daily for a total
746  of 150 hours or until confluency. Cellavista image segmentation software (Synentec) was utilized
747  to calculate nuclear count (i.e., cell count) per well at each time point (Source = FITC, Dichro =
748  FITC, Filter = FITC, Emission Time = 800us, Gain = 20x, Quality = High, Binning = 2x2). Cell nuclei
749  counts across wells were normalized to time of drug treatment and used to calculate a DIP rate
750 (stable linear growth rate). A dose-response curve was calculated across replicates using the drm
751 R package with a 4-parameter log-logistic function, with DIP rate as the drug effect. Replicates
752  were used to calculate means and 95% confidence intervals for the dose-response curves. 1Cso
753  values were calculated for each condition and plotted as vertical dashed lines. Data was visualized
754  using the ggplot2R package (version 3.2.0).

755

756 Model and Experimental Analysis Code Availability. The codes used to generate model
757 simulations and analyze experimental data are publicly available via GitHub, or from the
758  corresponding author upon request.

759

760 Data Availability. The sequencing datasets generated in this study can be found in the gene
761  expression omnibus and sequence read archive. Additional experimental data will be available
762  from the corresponding author upon request.
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