

Live-bearing cockroach genome reveals convergent evolutionary mechanisms linked to viviparity in insects and beyond

Bertrand Fouks^{a,1}, Mark C. Harrison^{a,1}, Alina A. Mikhailova^a, Elisabeth Marchal^b, Sinead English^c, Madeleine Carruthers^c, Emily C. Jennings^{d,e}, Martin Pippel^f, Geoffrey M. Attardo^g, Joshua B. Benoit^{d,2}, Erich Bornberg-Bauer^{a,h,2}, and Stephen S. Tobe^{i,†}

^aWestfälische Wilhelms-Universität, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany; ^bDepartment of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59-Box 2465, B-3000 Leuven, Belgium; ^cSchool of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; ^dDepartment of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA, 45221; ^eTranslational Science, Oncology R&D, AstraZeneca, Gaithersburg MD, USA, 20878; ^fMax Planck Institute of Molecular Cell Biology and Genetics, Pfotenauerstrasse 108, 01307 Dresden, Germany; ^gDepartment of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA; ^hDepartment of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen 72076, Germany; ⁱDepartment of Cell and Systems Biology, University of Toronto, Toronto, Canada

This manuscript was compiled on February 3, 2022

1 **Insects provide an unparalleled opportunity to link genomic changes**
2 **with the rise of novel phenotypes, given tremendous variation in**
3 **the numerous and complex adaptations displayed across the group.**
4 **Among these numerous and complex adaptations, live-birth has**
5 **arisen repeatedly and independently in insects and across the tree of**
6 **life, suggesting this is one of the most common types of convergent**
7 **evolution among animals. We sequenced the genome and transcript-**
8 **ome of the Pacific beetle-mimic cockroach, the only truly viviparous**
9 **cockroach, and performed comparative analyses including two other**
10 **viviparous insect lineages, the tsetse and aphids, to unravel the ge-**
11 **nomic basis underlying the transition to viviparity in insects. We**
12 **identified pathways experiencing adaptive evolution, common in all**
13 **viviparous insects surveyed, involved in uro-genital remodeling, ma-**
14 **ternal control of embryo development, tracheal system, and heart**
15 **development. Our findings suggest the essential role of those path-**
16 **ways for the development of placenta-like structure enabling embryo**
17 **development and nutrition. Viviparous transition seems also to be**
18 **accompanied by the duplication of genes involved in eggshell for-**
19 **mation. Our findings from the viviparous cockroach and tsetse re-**
20 **veal that genes involved in uterine remodeling are up-regulated and**
21 **immune genes are down-regulated during the course of pregnancy.**
22 **These changes may facilitate structural changes to accommodate de-**
23 **veloping young and protect them from the mothers immune system.**
24 **Our results denote a convergent evolution of live-bearing in insects**
25 **and suggest similar adaptive mechanisms occurred in vertebrates,**
26 **targeting pathways involved in eggshell formation, uro-genital re-**
27 **modeling, enhanced tracheal and heart development, and reduced**
28 **immunity.**

Placenta | Tracheal and heart development | Urogenital remodelling | Embryogenesis | Natural Selection

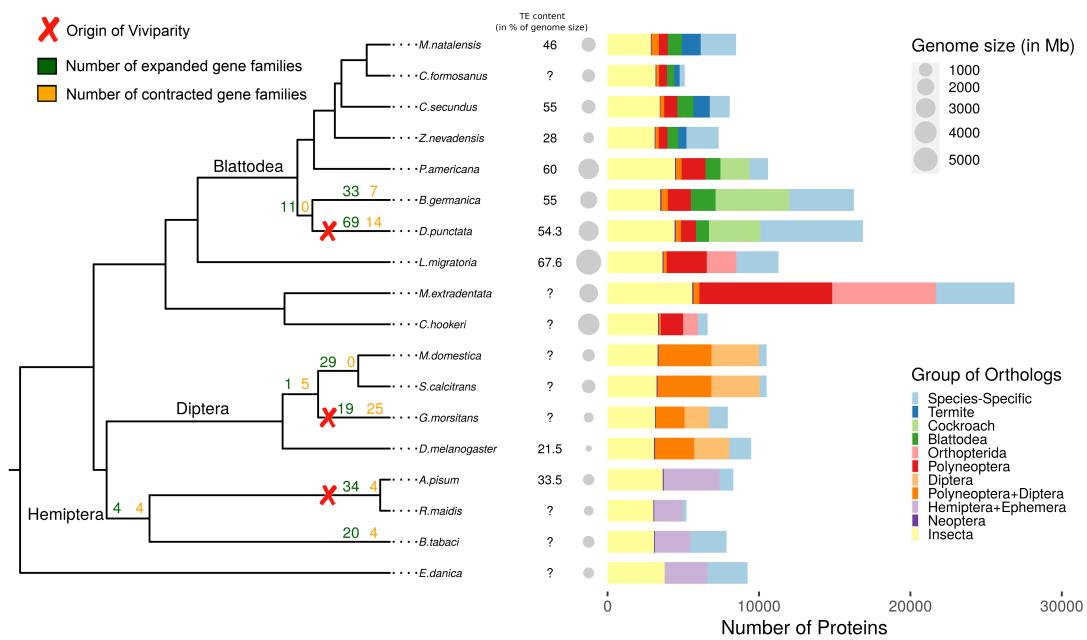
1 **I**nsecta is one of the most diverse animal classes with the
2 highest number of living species, which have colonized most
3 habitats spanning terrestrial, freshwater, and aerial environments (1). Insects have adapted to numerous ecological niches
4 and display a wide range of phenotypic traits. Insect biodiversity is a valuable resource for ecosystems and the source
5 of many new scientific discoveries (1). For instance, insects
6 exhibit a broad spectrum of complex traits such as sociality
7 (solitary, gregarious, sub- to eusociality), metamorphosis
8 (a-, hemi-, pauro- and holometabolous development), and re-
9 productive modes (ovi- to viviparity). While the majority

10 of insects are oviparous (egg laying), viviparity (live birth),
11 both facultative (including ovoviviparity) and obligate, has
12 emerged independently over 65 times across insect evolution
13 (2–4). Among all viviparous insects, the pacific beetle-mimic
14 cockroach, *Diploptera punctata*, and tsetse, stand out by their
15 evolutionary adaptations to have yielded specific organs that
16 house developing progeny and produce protein-rich nutrition,
17 which are functionally equivalent to placental structures in
18 vertebrates (5, 6).

19 True viviparity is a reproductive mode in which females
20 harbor developing embryos and other juvenile stages within
21 their reproductive tracts until giving birth to live and active
22 offspring (7). In contrast, oviparity describes the reproductive
23 mode whereby females lay eggs, while embryogenesis as well as
24 other early development stages occur outside the female body
25 (7). Viviparity has gradually evolved from oviparity repeatedly
26 and independently across the tree of life, for instance, within
27 reptiles, mammals, fish and insects (3), suggesting this is one
28 of the most common types of convergent evolution among
29 animals.

30 Despite broad physiological and morphological differences
31 among viviparous animal clades, the emergence of viviparity
32 has led to similar physiological, morphological, and immunolog-
33 ical changes to the female reproductive tract for vertebrate
34 systems (8–10). This transition requires numerous adaptations,
35 observed in both mammalian and reptile lineages, including

36
37
BF performed the multiple sequence alignments, detection of selection, and functional categories
enrichment analyses, wrote the first version of the manuscript; MCH performed the genome as-
sembly and annotations, ortholog clustering, gene family evolution analyses, wrote the first version
of the manuscript; AAM performed the annotation of chemoreceptors; EM participated in the or-
ganisation of the project; SE participated in the RNA-seq analysis; MC performed the RNA-seq
analysis; ECJ performed the RNA-seq analysis and collected samples for DNA sequencing; GMA
contributed to figure development; MP assisted in the genome assembly; JBB provided funding,
performed the RNA-seq analysis, and functional gene suppression studies ; EBB provided funding
and supervised bioinformatics analyses and organization of the project; SST provided funding
and participated in early organization of the project. All authors contributed to revisions of the
manuscript with the exception of SST[†].


The authors declare no competing interest.

Data deposition: The data reported in this paper have been deposited in the National
Center for Biotechnology Information Genome Archive (GenBank assembly accession no.
GCA_XXXXXX.X, BioProject accession no. PRJNA803029, BioSample accession no.
SAMN25610536) and the source code of the comparative genomic pipeline in github repository
(github.org//xxxx).

¹B.F.(Bertrand Fouks) and M.C.H. (Mark C. Harrison) contributed equally to this work.

²To whom correspondence should be addressed. E-mail: ebb.admin@uni-muenster.de, joshua.benoit@uc.edu

[†]Stephen S. Tobe sadly passed away during the final production of this manuscript. Dr. Tobe made
critical contributions to this article and his work on invertebrate biology has been foundational

Fig. 1. Genomic features associated with viviparity across 3 insect groups. The phylogenetic tree (on the left, made with ggtree (14)) depicts the evolutionary history of 18 insect species along which viviparity originated 3 times independently: in aphids, flies and cockroaches (red cross). Right of the phylogenetic tree, the numbers represent the proportions of transposable elements within each species genome (in %), the grey dots depict their genome size, and the barplot the number of orthologs shared among all 18 insect species, each clade, within Blattodea, within cockroaches, with termites, and those that are species-specific.

38 eggshell reduction, delayed oviposition, enhanced supply of
 39 water and nutrition to the embryo by the mother, enhanced
 40 gas exchange, and suppression of maternal immune rejection
 41 of the embryo (8, 11). The adaptation to viviparity requires
 42 acceptance of a developing non-self organism by the mother.
 43 In mammals, repression of maternal immunity towards pla-
 44 cental cells is essential for successful pregnancy (12), while
 45 in reptiles some viviparous squamates display reduced im-
 46 munocompetence during pregnancy (13). In both mammals
 47 and viviparous reptiles, genes and gene families share similar
 48 immuno-repression roles in the uterus and placenta (13).

49 Most of our knowledge on the molecular evolution of vivipar-
 50 ity stems from studies in vertebrates (15). The expansion of
 51 genomic resources for insects represents an ideal opportunity
 52 for investigating more general insights into the emergence of
 53 viviparity and comparing distantly related taxa for conver-
 54 gence. By sequencing and assembling the genome of the only
 55 known truly viviparous cockroach, *D. punctata*, we investi-
 56 gated the genomic signatures of insect viviparity comparing
 57 three origins of insect viviparity, the obligate viviparous cock-
 58 roach, the obligate viviparous tsetse (*Glossina morsitans*),
 59 and two cyclically viviparous aphids (*Acyrtosiphon pisum*,
 60 *Rhopalosiphum maidis*). These three systems use strikingly
 61 different form of viviparity (5), which are even more divergent
 62 than those in other vertebrate systems. Furthermore, we ana-
 63 lyzed the transcriptomes of *D. punctata* and multiple *Glossina*
 64 species during different pregnancy stages to unravel patterns
 65 of specific gene expression before and during pregnancy. We
 66 detected genes and pathways under positive selection and also
 67 experiencing variation of selection at each of these transitions
 68 from oviparity to viviparity. From the results obtained with
 69 our comparative genomic and transcriptomic analyses, we se-
 70 lected candidate genes, whose strong effects on pregnancy were
 71 validated with RNA interference experiments in *D. punctata*.
 72 Our analyses shed light on the biological bases of the emer-
 73 gence of viviparity in insects, which to a large extent mirror
 74 convergent viviparous adaptations in vertebrates despite broad

physiological and morphological differences. 75

Results

Genome of the viviparous cockroach. We sequenced and assembled the genome of the viviparous cockroach, *Diploptera punctata* (Blaberidae), with a combination of long- (PacBio, 60x) and short-read (Illumina, 45x) sequencing data. We obtained a highly contiguous (contig N₅₀: 1.4 Mb) and complete (97.6% of insect BUSCOs) genome assembly of length 3.13 Gb (estimated genome size based on k-mer distribution of Illumina data: 3.07 Gb). This genome size is considerably larger than that of the closest related blattodean species with a sequenced genome, *Blattella germanica* (Ectobiidae, 2.0 Gb) (16), and in fact is closer in size to the more distantly related American cockroach, *Periplaneta americana* (Blattidae, 3.4 Gb) (17). The differences in genome size do not seem to have been aided by variation in transposable element content as all three cockroach genome assemblies exhibit similar proportions of repetitive elements: 54.3% in *D. punctata*, 54.7% in *B. germanica* and 57.8% in *P. americana*. Similarly, we find no evidence for genome size being driven by proteome expansion as we identified 27,939 protein-coding genes similar to the number of proteins first reported for *B. germanica* (29,216), both greater than in *P. americana* (21,336, Fig. 1).

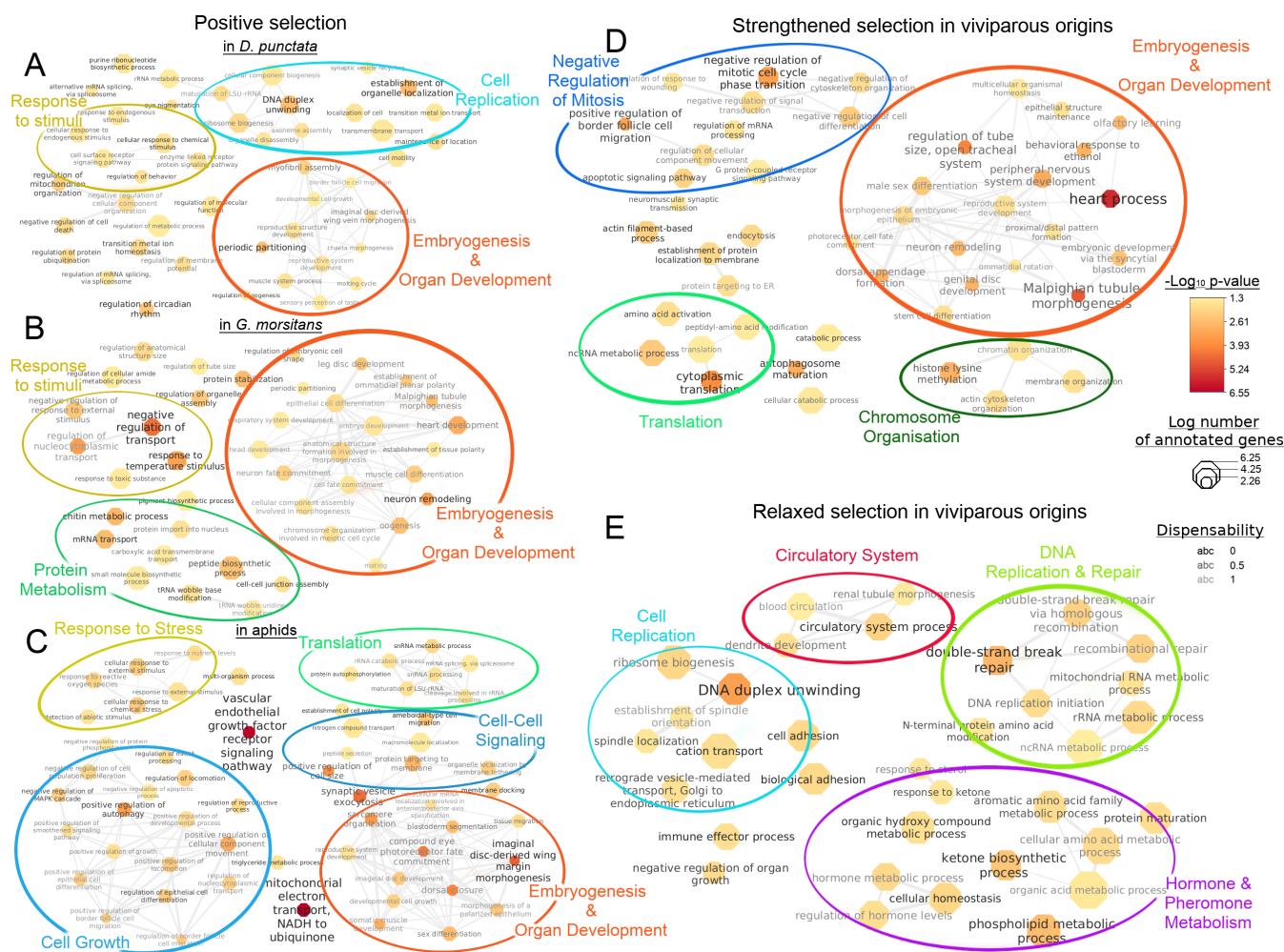
Gene family evolution related to insect viviparity. To understand mechanisms underlying adaptations to viviparity in insects, we compiled a data set comprising genomes and proteomes of 18 insect species from 3 different insect orders (Blattodea, Diptera, and Hemiptera), in which viviparity has arisen independently (Fig. 1). An analysis of gene family size variation from orthogroups sizes defined by OrthoFinder (18) using CAFE (19) across these species revealed several significant gene family expansions and contractions that were shared between independent origins of viviparity. While none of these were shared among all 3 origins of viviparity, 5 expanding gene families were shared between *D. punctata* and *G. morsitans*, 3

110 between *D. punctata* and aphids and 3 between *G. morsitans*
111 and aphids. Interestingly, most of these gene families experiencing
112 significant expansions across pairs of viviparity origins were either related to protein ubiquitination or chromatin
113 remodelling (Table 1).

Orthogroup	Reference	Putative function
EXPANSIONS SHARED BETWEEN <i>D. PUNCTATA</i> & <i>G. MORSITANS</i>		
OG00000835	<i>polybromo</i>	chromatin remodeling
OG0001065	NADH dehydrogenase	oxidative metabolism
OG0001123	NADH dehydrogenase	oxidative metabolism
OG0001271	NADH dehydrogenase	oxidative metabolism
OG0001573	<i>ref(2)P</i>	autophagy
EXPANSIONS SHARED BETWEEN <i>D. PUNCTATA</i> & APHIDS		
OG0000078	<i>His3</i>	nucleosome formation
OG0000160	<i>His1</i>	nucleosome formation
OG0000345	Poly(ADP-ribose) polymerase catalytic domain	DNA damage & ubiquitination
EXPANSIONS SHARED BETWEEN <i>G. MORSITANS</i> & APHIDS		
OG0000062	DNA polymerase type B	DNA replication
OG0000395	<i>Ulp1</i>	SUMOylation & ubiquitination
OG0000630	Collagen triple helix repeat	tissue structure
CONTRACTION SHARED BETWEEN <i>D. PUNCTATA</i> & APHIDS		
OG0000073	Reverse transcriptase	transcription
CONTRACTIONS SHARED BETWEEN <i>G. MORSITANS</i> & APHIDS		
OG0000010	<i>CHKov2</i>	unknown
OG0000017	<i>Ser12</i>	serine-type endopeptidase
OG0000033	<i>Jon25Bi</i>	serine hydrolase activity

Table 1. Gene family experiencing either expansion or contraction shared among insect viviparous origins.

115 Fewer overlaps were found between contracting gene families with no overlap between *D. punctata* and *G. morsitans*,
116 only 1 contracting gene family containing a reverse transcriptase domain was shared between *D. punctata* and aphids,
117 and 3 contracting gene families involved in serine enzymatic pathways between *G. morsitans* and aphids (Table 1). In
118 addition, 2 gene families that were expanded in *D. punctata* were contracted in both *G. morsitans* and aphids. These 2 gene
119 families are part of the serine protease and ecdysteroid kinase-like protein families. Interestingly, serine protease and peptidase
120 inhibitors have been associated with placental growth in lizards (13). The contraction of serine protease gene families in
121 viviparous insects might serve a similar role as inhibitors in reptiles allowing placenta formation.

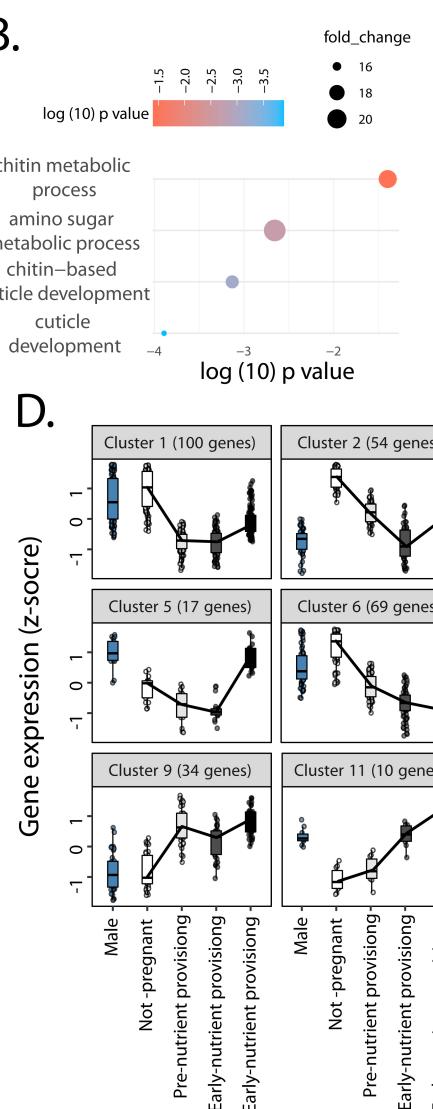
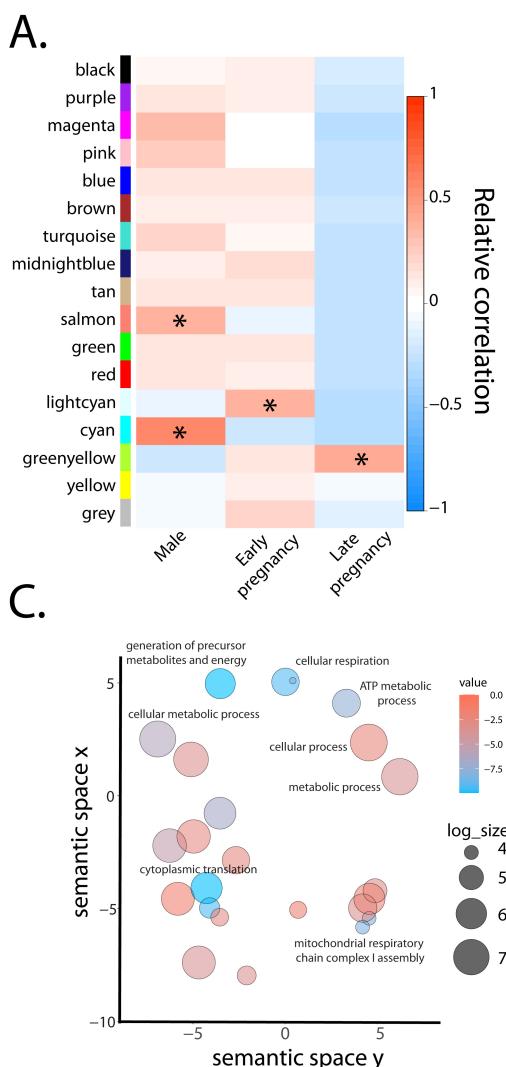

122 To link broad functions with gene duplication and loss events during the adaptation to viviparity, we performed enrichment analyses of Gene Ontology (GO) terms among all expanded and contracted gene families, using Fisher's exact test within topGO package (20) (see Methods). More GO terms were found to be significantly enriched for expanded gene families ($P < 0.05$), with 72, 95, and 142 significant GOs in *D. punctata*, *G. morsitans*, and aphids respectively, compared to GO terms enriched for contracted gene families, with 44, 94, and 4 significant GOs in *D. punctata*, *G. morsitans*, and aphids respectively. The functional categories "negative regulation of chromatin silencing" and "nucleosome assembly/organisation" were found to be significantly enriched for expanded gene families in all origins of viviparity. In addition, functional categories involved in eggshell formation, oxidative metabolism, and vitamin metabolism were enriched

145 for expanded gene families in both the Pacific beetle-mimic cockroach and tsetse (Table S1). Shared functional categories
146 enriched for expanded gene families among *D. punctata* and aphids were mainly related with immunity, while the tsetse and
147 aphids shared GO terms related with neurogenesis, pole cells, and response to hypoxia. However, these GO terms were no
148 longer significant after False Discovery Rate (FDR) correction at 20%, as the 11 significant functional categories after FDR
149 were only found in aphids, mainly involved in transposition and chromosome organization (Table S1).

150 Detecting common patterns of gene family evolution among phylogenetically distant taxa may prove difficult due to a reduced
151 ability to detect sequence homology. Hence, we carried out a more robust estimate of duplication and loss events by
152 comparing protein domains rather than genes (21, 22). While no protein domains were found to be significantly expanded
153 or contracted among all origins of viviparity, we found two domains to be significantly expanded during two transitions
154 to viviparity. The transcription initiation factor IID, 31kD subunit domain (PF02291) was expanded in *D. punctata* and
155 aphids, while the proton-conducting membrane transporter domain (PF00361) was expanded in *D. punctata* and *G. morsitans*.
156 Expansion of transcription factors during viviparous transitions might have aided changes of gene expression over
157 the course of pregnancy, similar to the transposon-mediated increase of transcription factor binding sites during mammal
158 evolution (23, 24).

159 We manually annotated three classes of chemoreceptors in *D. punctata*, the odorant (ORs), gustatory (GRs) and
160 ionotropic receptors (IRs), which are known to be highly abundant in two cockroach species (17, 25) and are reduced in
161 *Glossina* sp. (26) compared to oviparous flies. Compared to numbers in both the German and the American cockroach, we
162 found strongly reduced numbers of each of these chemoreceptor classes. We annotated 434 IRs, 69 ORs and 261 GRs, which
163 were 32-55% and 28-46% lower than in *B. germanica* and *P. americana*, respectively. Similarly, the predicted number of
164 cuticle proteins in the genome was lower in *D. punctata* when compared to the German (22% increase) and American (27%
165 increase) cockroaches, which also are reduced in viviparous flies (26) relative to oviparous counterparts.

166 **Genes related to oogenesis, morphogenesis and development under positive selection.** To identify protein coding
167 genes undergoing positive selection during the adaptation to viviparity, we used the adaptive branch-site random effects
168 likelihood (aBRSEL) method in Hyphy (27, 28) on all 4,671 single-copy orthologs who have passed filtering (see Methods).
169 We found 160 of these orthologs to have signals of positive selection along the three transitions to viviparity: 35 in aphids,
170 72 in *D. punctata*, and 55 in *G. morsitans* (Table S2). Of these orthologs experiencing positive selection, two were under
171 positive selection in more than one viviparous branch: *Mhc* encoding myosin heavy chain protein involved in muscle
172 contraction was under positive selection in *D. punctata* and *G. morsitans* branches; and *Coq3* encoding a methyltransferase
173 protein involved in wound healing was under positive selection in aphids and *D. punctata* branches. Interestingly, wound
174 healing pathway is linked with viviparous reproduction in aphids (29). After correcting for multiple testing, only 2 single-copy
175 orthogroups were under positive selection with an FDR < 10%: an unknown gene with a dynein heavy chain linker protein

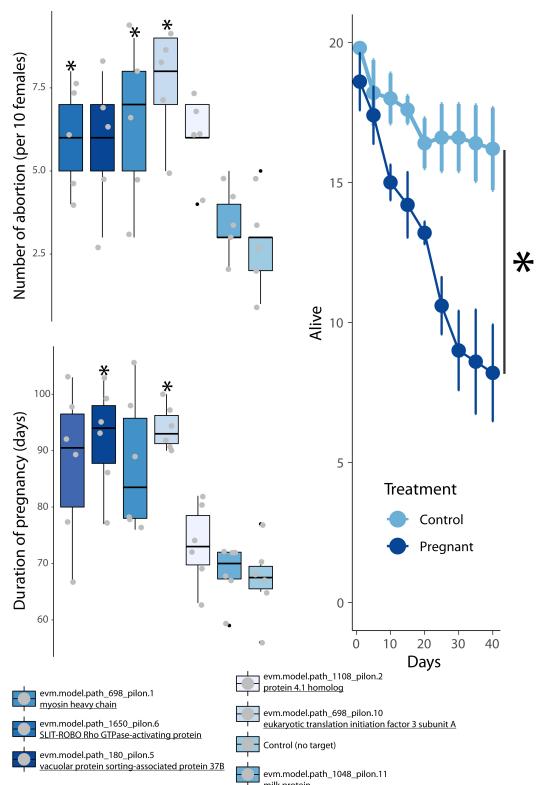


Fig. 2. Functional categories involved in the emergence of viviparity in insects. A) Enriched functional categories in genes under positive selection in the viviparous cockroach, *D. punctata*. B) Enriched functional categories in genes under positive selection in the tsetse, *G. morsitans*. C) Enriched functional categories in genes under positive selection in the aphid branch. D) Functional categories enriched for genes under strengthened selection pressure in all branches where viviparity emerged. E) Functional categories enriched for genes under relaxed selection pressure in all branches where viviparity emerged. In each case enriched GO-terms are shown with a p -value < 0.05 and are clustered into broader functions whenever possible, using REVIGO (30) and Cytoscape for visualization.

domain (ortholog to *CG14651* from *D. melanogaster*) in *G. morsitans* and the gene (*Cht11*) encoding a chitinase in *D. punctata* involved in chitin metabolism.

To identify whether positive selection among viviparous origins quantitatively relates to particular functions, we classified orthogroups based on their GO term annotations from *D. melanogaster* orthologs and protein domains from a pfam library (see Methods). Using SUMSTAT (31) with the topGO R package (20) to test for gene set enrichment, we identified ($P < 0.05$), 59, 64, and 104 functional categories that were enriched among positively selected genes in the viviparous cockroach, the tsetse, and the aphid branches, respectively (Fig. 2 A-C). While no specific, enriched GO terms were shared among the 3 viviparous origins, all the branches, where viviparity has arisen, had functional categories enriched among genes under positive selection linked with embryogenesis and organ development (Fig. 2 A-C). Furthermore, all branches of viviparous origins shared positively evolving functional categories related to the alleviation of multiple stressors, cell fate and metabolism (Fig. 2 A-C). We also detected signals of positive selection on genes associated with oogenesis and chitin

metabolism in both *D. punctata* and *G. morsitans* (Fig. 2A & B). After FDR correction three functional categories remained significant (FDR $< 20\%$) among genes under positive selection on the aphid branch: “mitochondrial electron transport, NADH to ubiquinone”, “vascular endothelial growth factor receptor signaling pathway”, and “imaginal disc-derived wing margin morphogenesis” (Table S3).

Genes with increased and relaxed selection along transitions to viviparity. With the transition to viviparity, it is predicted that there will be stronger selection for adaptations that facilitate live-bearing and relaxed selection on traits associated with evolutionary conflict over resource allocation. To test this prediction, we identified genes experiencing variation of selection during the transition to viviparity, using the RELAX method in Hyphy (27, 32). This assigns a value determining relaxation or strengthening of selection pressure as well as estimates its significance using maximum likelihood methods, on 4,671 single-copy orthogroups. We identified 215 and 112 orthogroups to be under relaxed and strengthened selection, respectively, in the viviparous branches at 10% FDR. From those


Fig. 3. Transcriptional changes associated with single copy orthologs during the course of pregnancy in Pacific beetle mimic cockroaches, *Diploptera punctata*, and tsetse, *Glossina* spp. A) WGCNA-based assessment examining males, early pregnancy, and late pregnancy for *Glossina* and *D. punctata* B) Gene ontology (GO) assessment of modules associated with early pregnancy in *Glossina* and *D. punctata*. C) GO categories associated with late pregnancy in *Glossina* and *D. punctata*. D) Transcriptional changes associated with immune categories over the course of pregnancy in *Diploptera punctata*. Similar immune-pregnancy interactions have been observed in *Glossina* during pregnancy (26). RNA-seq datasets were acquired from (6) for *D. punctata* and (26) for *Glossina* spp.

lists, the highest significant orthogroups ($N = 15$) experiencing strengthened selection are mostly involved in development, protein metabolism and the excretory system, while those under relaxed selection ($N = 11$) are mainly involved in cell-cell signalling and cell metabolism (Table S4).

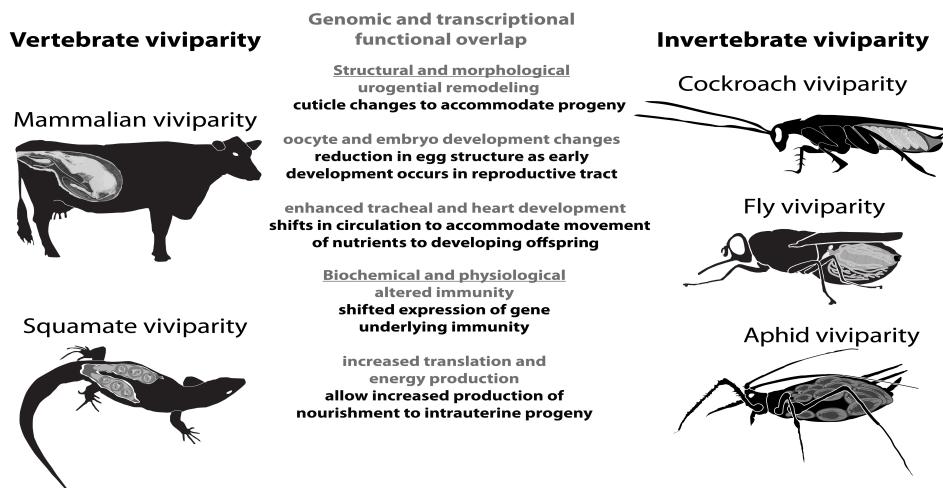
To identify broader functions under differential selection pressure during the transition of viviparity, we tested for GO-term enrichment among genes under relaxed and strengthened selection separately. Only the functional category “heart process” was found to be enriched for genes under stronger selection at 20% FDR. However, using an uncorrected p-value < 0.05 the functional categories enriched among genes under strengthened selection can be grouped into 4 main categories, namely: embryogenesis and organ development; negative regulation of mitotic cell cycle; chromosome organisation; and translation (Fig. 2).

Furthermore, several functional categories under strengthened selection pressure in viviparous species seem to be linked with cell-cell adhesion and signalling (i.e. “establishment of protein localization to membrane”, “endocytosis” and “autophagosome maturation”) and the regulation of gene expression (i.e. “non-coding RNA process”). While functional categories enriched among genes under relaxed selection ($P < 0.05$) do not cluster as well, they can still be grouped within 4 main functions: DNA replication and repair; hormone and pheromone metabolism; cell replication; and circulatory system. In addition to these broad functions, the immune effector pathway is under relaxed selection pressure in branches of live-bearing origin (Table S5).

290 associated with late pregnancy are linked with energy and
291 protein production, which highlights the necessary increase in
292 factors to provide nourishment for developing progeny (Fig.
293 3). Lastly, closer examination of expression of immune-related
294 genes in *D. punctata*, both across pregnancy and in comparison
295 to males and non-pregnant females, revealed immune changes
296 associated with pregnancy (Fig. 3D). These transcriptional
297 shifts associated with pregnancy show functional similarities
298 to those in vertebrate systems (8, 9).

Fig. 4. Functional validation of genes and pathways involved in the adaptation to live-bearing in the viviparous cockroach. A) RNA interference of genes of interest, selected based on our genomic and transcriptomic analyses, at each of the different pregnancy stages in *D. punctata*, confirmed the role of specific genes during pregnancy leading to disruption of pregnancy and/or delays in birth. B) Immune challenge in pregnant compared to non-pregnant females confirmed the reduced immunity during the course of pregnancy associated with a reduction of survival rate.

299 **RNA interference and immune studies confirm the critical
300 role of viviparity-associated genes.** To confirm that specific
301 genes identified by our earlier selection and transcriptome
302 analyses are involved in the process of live birth, we performed
303 RNA interference (RNAi) in *D. punctata* to suppress transcript
304 levels based on previously developed methods (6). These
305 results confirmed that reduction in transcript levels of targeted
306 genes potentially associated with viviparity could increase the
307 rate of abortion and extend the duration of the pregnancy
308 cycle when compared to controls (Fig. 4). These specific genes
309 are involved in protein synthesis and structural aspects, and
310 would not directly be identified as critical to viviparity without
311 our selection and transcriptome analyses. Of interest is the
312 suppression of single milk gland protein, a key component of
313 nutrients for the developing embryo, did not impact pregnancy,
314 likely due to the presence of over 20 similar genes that can


315 compensate to feed the embryos (6, 26) Lastly, immune function
316 was assessed by injection of a bacterium, *Pseudomonas*
317 *aeruginosa*, which revealed that pregnant females died more
318 rapidly following infection compared to non-pregnant ones.
319 These studies confirm that genomic and transcriptomic factors
320 identified by our analyses are directly linked to cockroach
321 viviparity.

Discussion

322 Increasing the number of sequenced insect genomes represents
323 a major step towards improving our understanding of the
324 molecular basis underlying adaptive radiation. Comparative
325 genomics of such a diverse animal class provide insights into
326 the key genomic changes along the evolution of insects and
327 also sheds light on the mechanisms by which certain genes
328 and pathways enable the emergence of specific phenotypes.
329 Our genome-wide analyses reveal that convergent adaptations
330 to viviparity in insects are driven by strong positive selec-
331 tion on specific pathways and functional categories, as well as
332 the regulation of specific gene expression patterns during the
333 different stages of pregnancy. Most intriguingly, our results
334 parallel vertebrate adaptations to viviparity with strengthened
335 selection targeting embryogenesis, reproductive system devel-
336 opment, tracheal system, and heart development, as well as
337 gene expression patterns during pregnancy linked with reduced
338 immunity and uterine remodelling (Fig. 5).

339 **Morphological and physiological adaptation to viviparity.** Our
340 study of gene family evolution revealed a duplication of genes
341 involved in eggshell formation in both the viviparous cockroach
342 and the tsetse, which may have favored viviparous transitions
343 similar to eggshell reduction observed in viviparous reptiles
344 (8, 9). Our genome-wide selection analyses reveal that the
345 adaptation to viviparity in insects is linked with strong positive
346 selection of genes involved in oogenesis in both cockroaches
347 and flies. The transition from oviparity to viviparity is accom-
348 panied by a reduction of offspring production per cycle
349 (5). Therefore, the regulation of egg production to reduce off-
350 spring numbers might have been attained through amino-acid
351 changes in proteins involved in the development of oocytes.
352 Moreover, in tsetse, alternate oocyte production between left
353 and right ovaries is associated with viviparity, as a conse-
354 quence of resource constraints (5). In addition to oogenesis
355 and its regulation, our results, for the first time, highlight the
356 rapid evolution of embryogenesis and early development along
357 with the urogenital system development in insects during live-
358 bearing adaptation. These are key adaptations to viviparity,
359 which enable the uterus to host the developing embryo (11, 15).
360 The morphological changes of the uterus associated with live-
361 bearing is reflected in our results with rapid evolution of genes
362 involved in reproductive system development in all viviparous
363 branches and gene expression changes during pregnancy of
364 both cockroach and tsetse associated with chitin metabolism.

365 In addition, the strengthened selection pressure of genes
366 involved in cell-cell adhesion and membrane trafficking we
367 observed in viviparous branches is likely linked with the
368 emergence of the pseudo-placenta or a placenta-like structure
369 adapted in viviparous insects, which enables enhanced gas
370 exchange and nutrient supply (4, 33, 34). Our results suggest
371 that the rapid evolution of genes linked to the development
372 of the tracheal system and heart underlies the adaptation

Fig. 5. Summary of factors that overlap between vertebrate and invertebrate viviparity. The specific aspects identified were established by a combination of genomic and transcriptomic analyses. Gray indicates common factor between invertebrate and vertebrate viviparity and black is the specific aspect identified in this study for insect systems. Aspects associated with vertebrate viviparity are based upon previous studies (8, 9, 37)

374 to enhanced maternal-fetal gas exchange during viviparity, 416
375 mirroring the adaptation of enhanced angiogenesis during live- 417
376 bearing transition in vertebrates (9). Enhanced gas exchange 418
377 in viviparous insects might have also been overcome by duplica- 419
378 tions of genes involved in oxidative or hypoxia metabolism. 420
379 Furthermore, our results reveal that the emergence of placenta- 421
380 like structures in insects is associated with enhanced maternal 422
381 control over fetal development, as genes involved in the 423
382 embryonic development via the syncytial blastoderm are evolving 424
383 under strengthened selection pressure along the viviparous 425
384 branches. 426

385 **Immunity and maternal tolerance of the embryo.** Another 427
386 major change linked with live-bearing adaptation in vertebrates 428
387 is a reduced immunity necessary for not rejecting the developing 429
388 embryo. In support, during *D. punctata* pregnancy, we ob- 430
389 served differential regulation of immune genes especially during 431
390 early pregnancy, in line with findings in viviparous vertebrates 432
391 (12, 13). Furthermore, we find immune effectors to be under 433
392 relaxed selection in viviparous branches, while in many insects 434
393 immune pathways are expected to be the target of strong 435
394 positive selection (35, 36), denoting the importance of reduced 436
395 immune efficiency during live-bearing transition to minimize 437
396 embryo rejection. Reduced immunity during pregnancy is not 438
397 only inferred from our transcriptomic and genomic analyses 439
398 but also revealed by a reduced survival rate of pregnant fe- 440
399 males after an immune challenge. This difference in survival 441
400 could also be due to nutritional trade-offs, with the high ener- 442
401 getic demands of provisioning developing progeny resulting in 443
402 reduced immune function, whereas such trade-offs would be 444
403 less pronounced in oviparous counterparts. The tolerance of 445
404 the developing embryo within a female's body might have led 446
405 to the strong positive selection on pathways related to stress 447
406 response, which we inferred for all three viviparous insect 448
407 lineages. Indeed, in all viviparous insect branches, pathways 449
408 involved in response to chemicals or toxic substances were 450
409 enriched among positively selected genes, which might indicate 451
410 adaptations to sustaining embryo growth and development.

411 **Molecular basis of evolutionary conflict over resource allo- 452
412 cations.** While profound changes are needed to enable the 453
413 transition to viviparity as seen above, evolutionary conflicts 454
414 over resource allocation arise among females against males 455
415 and offspring (3). Such evolutionary conflicts should result 456
416

417 in divergent evolution which could produce similar signals to 418 relaxed selection. One of the major pathways enriched for 419 genes evolving under relaxed selection comprises hormone and 420 pheromone metabolism. In the viviparous cockroach, as well 421 as in tsetse, developing embryos are directly fed with specific 422 nutrients (5, 6). The production of these nutrients is governed 423 by the regulation of Juvenile Hormone (38). Considering the 424 evolutionary conflict over resource allocations, the regulation 425 of nutritional secretions should be the main source of conflict 426 as it represents the main source of nutrients for the embryo. 427 The relaxation of selection on these pathways in viviparous 428 branches could highlight such evolutionary conflict, with bal- 429 ancing selection between females minimizing the production 430 of pregnancy-associated secretions while male and offspring 431 maximize its intake.

432 **Universal pathways to viviparity.** Overall, our study reveals 433 that the viviparity transition in insects is associated with 434 strong positive selection or strengthened selection pressure 435 of genes involved in oogenesis, embryogenesis, tracheal sys- 436 tem, and heart development. In addition, our analyses high- 437 light uterus remodelling associated with viviparity in insects 438 detected in a change of gene expression related to cuticle 439 metabolism, as well as a strong positive selection pressure on 440 the urogenital development. Along with pathways involved 441 in uterus remodelling, we found the development of placental- 442 like structures in viviparous insects to be associated with 443 strengthened selection pressure on genes involved in maternal 444 control over embryo development. The viviparous cockroach 445 displays reduced immunity during pregnancy with a reduction 446 of immune gene expression during early pregnancy, and the 447 evolutionary transitions to viviparity seem to have led to the 448 relaxation of selection on immune effectors in all three stud- 449 ied viviparous insect branches. Hormonal changes were also 450 noted in the genomic analyses of invertebrate viviparity, which 451 could be as critical as the hormone shifts and changes that 452 are necessary for vertebrate viviparity (8–10).

453 Moreover, we found that in all viviparous insect branches 454 non-coding RNA processes, involved in the regulation of gene 455 expression (39), are under strengthened selection pressure. 456 Likewise, the basal evolution of eutherian mammals is as- 457 sociated with bursts of regulatory miRNAs regulating the 458 expression of genes involved in placentation (40), non-coding

458 RNA pathways in viviparous insects might therefore play a similar role. In addition, the formation of the placental tissue in mammals is associated with chromosomal maintenance pathways (41), which could explain the strengthened selection pressure of genes involved in chromosomal organisation in viviparous insect branches. Despite similar pathways shared among the three origins of live-bearing in insects, little overlap was found among genes involved in these adaptations among the different viviparous insect species. Our results highlight that the transition to viviparity involves similar pathways in both insects and vertebrates, but not necessarily common functional genes (9).

470 Strikingly, despite broad physiological and morphological differences, the adaptation to live-bearing seems to be universal among animals with pathways. In both arthropods and vertebrates, pathways related to eggshell formation, urogenital remodelling, maternal control of embryo development, tracheal and heart development corresponding to angiogenesis in vertebrates, reduced immunity have undergone fast evolutionary changes and gene expression changes during the course of pregnancy (Fig. 5). Even more remarkably, not only similar pathways but similar evolutionary mechanisms underlie the transition to viviparity in animals, with fast evolution, co-option, gene duplication, and expression changes during pregnancy of genes involved in corresponding functions across different animal taxa (15). Different forms of viviparity as well as ovoviparity, which can be considered intermediate along the transition from oviparity to viviparity, are well represented in insects (2, 42). Comparative genomics of insects, therefore, represents a great avenue to study in depth the genomic basis of the gradual emergence of live-bearing reproduction mode.

489 Materials and Methods

490

491 **Specimen Collection.** Cockroaches were acquired from the Ohio State University Insectary and maintained according to Jennings et al. (6). DNA was extracted from testes and sequenced at the Centre d'expertise et de services Génome Québec.

492 **Genome Sequencing and Assembly.** The genome was sequenced with a combination of long- and short-read technologies. Using Illumina HiSeq, we generated 147Gb of 150bp paired-end reads (486.8M read pairs), with 500bp fragment size. These reads were quality and adapter trimmed with Trimmomatic (v0.38) (43), resulting in 466.4M read pairs and 136.5Gb. We used these trimmed Illumina reads to estimate the genome size by first calculating kmer-frequencies with Jellyfish (v2.3.0) (44), with a kmer size of 21 and a hash size of 10^9 . The resulting histogram of kmer distribution was then used to model genome size with GenomeScope 2.0 (45), which was predicted at 3.07Gb, with an estimated heterozygosity level of 0.4% and repetitive content of 64.2%.

507 With 38 SMRT cells on a PacBio Sequel system, we generated 508 15.4M reads and a total of 164.5Gb of subread sequence data (mean 509 read length: 10 712bp). The PacBio sequences were assembled with 510 MARVEL (46). A database was created using blocksize 250. Then 511 to reduce run times, prior to the first alignment step of MARVEL 512 (daligner), raw reads were masked for repeat regions. This was first 513 carried out only on diagonal blocks (e.g. DB.1 vs DB.1, DB.2 vs 514 DB.2 etc.), then subsequently on a broader diagonal of ten blocks, 515 setting the coverage threshold at 10 and 15, respectively. MARVEL 516 was then run with standard settings on these patched reads. The 517 resulting assembly was polished with the patched PacBio reads that 518 were produced within the MARVEL assembly. For these reads were 519 first aligned against the assembly using nucmer from the MUMmer 520 suite (v4.0.0beta2) (47), then a consensus was created with racon

521 (48). This improved assembly was further polished using the Illumina reads, which were first mapped to the assembly with bowtie2 522 (v2.3.4.3) (49). The resulting bam file was then used to polish the 523 assembly using Pilon (v1.23) (50). Finally, we removed duplicate 524 contigs with Pseudohaploid (<https://github.com/schatzlab/pseudohaploid>) 525 After each of these correction steps, completeness of the assembly 526 was assessed by identifying Benchmarking Universal Single-Copy 527 Orthologs (BUSCOs) using the BUSCO (v3.0.2) pipeline in genome 528 mode (51). We identified single-copy orthologs based on the insecta- 529 db9. Each of the correction steps improved the assembly quality, 530 especially with regard to BUSCO completeness scores (Table 2). 531

	MARVEL	+Racon	+Pilon	+Pseudohaploid
ASSEMBLY				
STATS				
Total sequence	3.371 Gb	3.380 Gb	3.376 Gb	3.127 Gb
Number of contigs	14,530	14,450	14,450	10,704
Longest contig	8.328 Mb	8.350 Mb	8.341 Mb	8.341 Mb
Shortest contig	2189	2383	2139	2139
N50	1.266 Mb	1.268 Mb	1.265 Mb	1.407 Mb
BUSCO				
Complete - single	85.9%	87.0%	89.4%	92.0%
Complete - duplicated	7.2%	7.1%	8.3%	5.6%
Fragmented	3.9%	3.4%	1.4%	1.4%
Missing	3.0%	2.5%	0.9%	1.0%

Table 2. Assembly statistics and BUSCO scores for each assembly stage.

Repeat annotation. Repetitive elements from *D. punctata* genome assembly were categorised with repeat modeler (<http://www.repeatmasker.org/>), LTRharvest (52) and TransposonPSI (<http://transposonpsi.sourceforge.net>). The resulting libraries were merged together with the SINEbank repeat data base, specific to Insecta (53). The merged repeat library was filtered for redundancy using cd-hit-est (parameters: -c 0.8 -n 5) (54) and for true proteins by blasting against a *de novo* assembled *Diploptera punctata* transcriptome. Specifically, we generated the *de novo* transcriptome assembly with 29 previously published RNAseq libraries (6) using Trinity (55) at default settings. Nucleotide coding and protein sequences were generated from the Trinity assembly with TransDecoder (<http://transdecoder.github.io/>). Sequences were removed from this transcriptome if they received a significant blast hit (e-value < 1e-5) against the RepeatPeps library contained in the RepeatMasker data set. We then blasted our merged repeat library against this reduced set of transcripts using blastn. Any hits with an e-value < 1e-10 were removed from the library. The repeat library was classified with RepeatClassifier. The genome assembly was then soft masked with RepeatMasker.

Gene annotation. We used two programs to predict *ab initio* gene models: Braker (56), which combines Augustus (57) and GeneMark (58), and GeMoMa (59). Both were trained with the *Blattella germanica* genome and *D. punctata* RNAseq (6). We additionally used two methods of evidence-based gene prediction. With Spaln (v2.4.6) (60) we aligned a large database of proteins against our genome assembly. The protein database contained the Uniprot arthropod database (version April 2018) and all available Blattodea proteomes: *B. germanica* (16), *Periplaneta americana*, *Cryptotermes secundus* (16), *Zootermopsis nevadensis* (61) and *Macrotermes natalensis* (62). Finally gene models with predicted by aligning the RNAseq data to the genome assembly with Pasa (63). EVidenceModeler (64) was then used to combine the different gene sets. The following weights were applied to each gene set; Augustus and GeneMark: 1; GeMoMa: 2; Spaln: 5; Pasa: 10. This produced a GFF containing 61,692 putative protein coding genes, which was further filtered to remove contamination and repetitive elements using blast against the NCBI nr database and our repeat database, respectively. Annotation scores from EVM output were compared to noncod-

571 ing equivalent. All putative genes with an annotation score =< 572 noncoding equivalent were removed. Furthermore, to detect true 573 positives, PFAM domains were annotated on translated sequences 574 with pfamscan and RNAseq reads were mapped against the putative 575 gene regions. All gene models with at least one significant PFAM 576 domain or to which at least 10 reads mapped in at least one sample 577 were considered true positives and retained. All further genes were 578 only kept if supported by evidence from protein alignments (Spaln), 579 transcript alignments (Pasa), or homology within Metazoa, resulting 580 in a gene set of 27,940 protein coding genes.

581 Chemoreceptor genes are notoriously difficult to predict with 582 standard tools and were therefore annotated manually with bita- 583 cora (65) and exonerate (66) in two rounds. For the first round, 584 the chemoreceptors from *Blattella germanica* (25), *Drosophila* 585 *melanogaster*, *Apis mellifera* and *Apolygus lucorum* species were 586 taken as a database for bitacora and exonerate. Predicted gene 587 models were filtered for the presence of domains of interest and 588 length (85% of domain length average) and used as a database for 589 the second round. The filtered predictions were merged between 590 bitacora and exonerate and with the previous annotations. Pre- 591 dicted cuticle proteins were identified with BLAST comparison to 592 known protein in other insect system (26).

593 **Ortholog detection and phylogeny.** The 18 Insect species have been 594 carefully chosen to investigate viviparous transition as it encom- 595 passes the independent origins of viviparity in different insect orders 596 along with, at least, 1 outgroup species per order. Orthologs among 597 the insect species selected; including mayfly (*Ephemera danica*) 598 used as a general insect outgroup, whitefly (*Bemisia tabaci*) as out- 599 group for the Hemiptera branch, 2 species of aphids (*Acyrtosiphon* 600 *pisum*, *Rhopalosiphum maidis*) representing origin of viviparity in 601 Hemiptera, 4 species of Diptera (*Glossina morsitans* as viviparous 602 dipteran, and *Musca domestica*, *Drosophila melanogaster*, *Sto- 603 moxys calcitrans* as dipteran outgroups), 2 species of stick insects 604 (*Medauroidea extradentata*, *Clitarchus hookeri*) and locust (*Locusta* 605 *migratoria*) as outgroup of Blattodea, 3 species of cockroaches 606 (*Blattella germanica* and *Periplaneta americana* as outgroups, 607 *Diploptera punctata* as viviparous blattodean), and 4 species of 608 termites (*Zootermopsis nevadensis*, *Cryptotermes secundus*, *Cop- 609 tototermes formosanus*, *Macrotermes natalensis*); were discovered 610 using Orthofinder (v2.5.2) (18). To optimize the number of single- 611 copy orthologs, We categorized them as such if they were single-copy 612 or absent in viviparous species and oviparous species with multi- 613 ple copies were dropped. Ortholog families including at least one 614 viviparous species and three oviparous species were retained for 615 further analyses, culminating at 5463 single-copy ortholog families. 616 Phylogenetic tree reconstruction, including all species described 617 above, was undertaken by OrthoFinder (18).

618 **Duplication and loss events.** The variation of gene family size across 619 the phylogenetic tree was assessed with CAFE (v4.2.1) (19), to 620 unravel the expansion and contraction of gene families in all branches 621 of the tree. Moreover, the variation of domain numbers in across 622 the phylogenetic tree was assessed with CAFE (v4.2.1) (19).

623 **Multiple Alignment.** For each single-copy ortholog family, the longest 624 protein isoforms for each of the species gene were used in multiple 625 sequence alignment with PRANK (v.150803) (67) and unreliable 626 aligned residues and sequences were masked with GUIDANCE 627 (v2.02) (68). This combination was shown to perform the best on 628 simulated data (69). To optimize alignment length without gaps, we 629 ran maxalign script (70) and removed subsequent sequences leading 630 to more than 30% of gapped alignment as long as it did not result 631 in the removal of a viviparous species' sequence, and an alignment 632 of less than 4 sequences. The protein sequences were replaced with 633 coding sequences in the multiple alignments using pal2nal script 634 (71). Alignments regions, where gapped positions were present, were 635 removed with a custom python script (see Supplementary Code SC1), 636 as these are the most problematic for positive selection inference 637 (72). Finally, CDS shorter than 100 nucleotides were eliminated 638 (73). After filtering, our dataset included 4,671 gene families. The 639 mean length of filtered alignment was 614 nucleotides (median = 640 471 nucleotides), ranging from a minimum of 102 nucleotides to a 641 maximum of 7836 nucleotides and included on average 10 sequences 642 (median = 11), ranging from 4 to 18.

Identifying selection pressures.

643
Branch-Site tests to detect positive selection. Phylogenetic tests of 644 positive selection in protein-coding genes usually contrast substi- 645 tution rates at non-synonymous sites to substitution rates at syn- 646 onymous sites taken as a proxy to neutral rates of evolution. The 647 adaptive branch-site random effects model (aBSREL, (28)) from 648 Hyphy software package (27) was used to detect positive selection 649 experienced by a gene family in a subset of sites in a specific branch 650 of its phylogenetic tree. Test for positive selection was run only 651 on the branches leading to the origin of viviparity, namely the 652 *Diploptera punctata* branch, the *Glossina morsitans* branch, and 653 the aphid branch. Results from the adaptive branch-site random 654 effects model were corrected for multiple testing as one series us- 655 ing False Discovery Rate (FDR) (74) and set up our significant 656 threshold at 10% (31). 657

658 **Variation of Selection pressure.** While elevated dN/dS can be caused 659 by increased positive selection, it can also be the result of relaxed 660 purifying selection, or a combination of both. We used RELAX (32) 661 to categorize if shifts in the distribution of dN/dS across individual 662 genes are caused by overall relaxation of selection (i.e. weakening of 663 both purifying selection and positive selection, towards neutrality) 664 versus overall intensification of selection (i.e. strengthening of both 665 purifying selection and positive selection, away from neutrality). 666 Specifically, RELAX models the distribution of three categories of 667 dN/dS (i.e. positive selection, neutral evolution, purifying selection) 668 across a phylogeny and compares the distributions for foreground 669 branches (here, the branches of viviparous origins) to background 670 branches (here, the ancestral and sister branches of viviparous ori- 671 gins) and estimates a parameter K that indicates overall relaxation 672 ($K < 1$) or intensification ($K > 1$). Eight alignments failed to run 673 due to removal of reference species during filtering. Results from 674 RELAX models were corrected for multiple testing as one series 675 using (FDR) (74) and set up our significant threshold at 10% (31).

676 **Test for functional category enrichment.** Gene Ontology (GO) (75) 677 annotations for our gene families were taken from pfam annotations 678 and from orthologs of *Drosophila melanogaster* and the enrichment 679 of functional categories was evaluated with the package topGO 680 version 2.4 (20) of Bioconductor (76). 681

682 To identify functional categories enriched for expanded and con- 683 tracted gene families, the Fisher exact test with the 'elim' algorithm 684 of topGO was run separately for the significantly expanded and 685 contracted gene families which were given the score of 1 while other 686 gene families were given the score of 0. The results were then 687 corrected with the FDR to account for multiple testing (74) and set 688 up our significant threshold at 20% (31). Gene Ontology categories 689 mapped to less than 10 genes were discarded.

690 To identify functional categories enriched for genes under pos- 691 itive selection, strengthened, and relaxed selection pressure, the 692 SUMSTAT test was used as described in (31). The SUMSTAT 693 test is more sensitive than other methods, and minimizes the rate 694 of false positives (77). To be able to use the distribution of log- 695 likelihood ratios of the aBSREL and RELAX tests as scores in 696 the SUMSTAT test, a fourth root transformation was used (31). 697 This transformation conserves the ranks of gene families (78). In 698 addition, we assigned a log-likelihood ratios of zero for genes under 699 relaxed selection ($K < 1$) when testing for enrichment of functional 700 categories with genes under strengthened selection and vice-versa 701 (0 for genes with $K > 1$) when testing for enrichment from genes 702 under relaxed selection. Gene Ontology categories mapped to less 703 than 10 genes were discarded.

704 The list of significant gene sets resulting from enrichment tests 705 is usually highly redundant. We therefore implemented the "elim" 706 algorithm from the Bioconductor package topGO, to decorrelate 707 the graph structure of the Gene Ontology (20). To account for 708 multiple testing, the final list of p-values resulting from this test was 709 corrected with the FDR (74) and set up our significant threshold at 710 20% (31). To cluster the long list of significant functional categories 711 before FDR correction, we used REVIGO (30) with the SimRel 712 semantic similarity algorithm and medium size (0.7) result list.

713 **RNA-seq analyses.** To assess if transcriptional changes are similar 714 between viviparous insects, previously available RNA-seq data sets 715

714 of multiple *Glossina* species and *D. punctata* were analyzed (6, 26).
715 In specific, this allowed comparison between males, non-pregnant
716 females, early pregnancy, and late pregnancy. Transcripts per mil-
717 lion (TPM) was determined using Sailfish (79). The expressional
718 changes were compared with the weighted correlation network anal-
719 ysis (WGCNA). In specific, orthologs that were identified through
720 the use of Orthofinder (18) between *Diptoptera* and *Glossina* sp.
721 with sequenced genomes (6, 26). The single copy orthologs obtained
722 from Orthofinder were used for WGCNA to identify groups of genes
723 with similar expression profiles males, during early pregnancy, and
724 late pregnancy. The WGCNA was conducted as a signed analyses
725 with a soft power of 12. Modules that were significantly associated
726 with early and late pregnancy were analyzed for enriched GOs fol-
727 lowing a false detection rate detection. Immune-related genes were
728 analyzed through the use of Deseq of previous data (6), where the
729 putative immune genes were identified. Clustering was performed
730 on normalised counts using the R package DEGReports v. 1.25.1
731 (80), with a minimum cluster size of 20.

732 **Functional validation of factors identified in genomics and transcriptomic studies.** Together with our results of detection of selection in
733 viviparous species and gene's expression at different life-stages in
734 *D. punctata*, we identified genes of interest, which could be linked
735 with the adaptation to viviparity. RNA interference was conducted
736 according to (6) and (81). Briefly, dsRNA was generated with a
737 MEGAscript RNAi Kit (Ambion). Following preparation of the
738 dsRNA, each pregnancy female was injected with 2-3 µg of dsRNA
739 at 30-40 days into the pregnancy cycle with a pulled glass capillary
740 needle. Control individuals were injected with a dsRNA targeting
741 green fluorescent protein (6). Individuals were monitored for
742 abortions and the duration of pregnancy.

743 Immune functionality was assessed through the use of injection of
744 *Pseudomonas aeruginosa* in pregnant females to confirm potential
745 altered immunity during this state. To do so, bacteria was grown
746 until a log-phase and injected 1.0×10^5 CFU of *P. aeruginosa* in 3
747 l PBS in pregnant or virgin females. Survival was monitored for 40
748 days.

750 **ACKNOWLEDGMENTS.** We thank David L. Denlinger for com-
751 ments and suggestions on an early draft of this manuscript and
752 Carsten Kemena, Elias Dohmen, and Anna Grandchamp for their
753 help in troubleshooting the comparative genomics pipeline. This
754 work was supported by a Discovery grant, no. 9408-08 from the
755 Natural Sciences and Engineering Research Council of Canada to
756 S.S.T, National Institute of Allergy and Infectious Diseases of the
757 National Institutes of Health under Award Number R01AI148551
758 and National Science Foundation DEB1654417 (to J.B.B. for shared
759 computational resources), B.F. was supported by an EU-H2020
760 MSCA-IF-2020 fellowship (101024100, TEEPI), M.C.H. was sup-
761 ported by a DFG grant BO2544/11-2 to E.B.B, A.M. was supported
762 by a DFG grant HA8997/1-1 to M.C.H. and S.E. was supported by
763 a Royal Society Dorothy Hodgkin Fellowship (DH140236).

1. GGE Scudder, The Importance of Insects in *Insect Biodiversity*, eds. RG Fottitt, PH Adler. (John Wiley Sons, Oxford, UK), pp. 9–43 (2017).
2. R Meier, M Kotrba, P Ferrar, Ovoviparity and viviparity in the Diptera. *Biol. Rev.* **74**, 199–258 (1999).
3. AT Kalinka, How did viviparity originate and evolve? Of conflict, co-option, and cryptic choice. *BioEssays* **37**, 721–731 (2015).
4. AN Ostrovsky, et al., Matrotrophy and placentation in invertebrates: a new paradigm. *Biol. reviews Camb. Philos. Soc.* **91**, 673–711 (2016).
5. JB Benoit, GM Attardo, AA Baumann, V Michalkova, S Aksoy, Adenotrophic viviparity in tsetse flies: Potential for population control and as an insect model for lactation. *Annu. Rev. Entomol.* **60**, 351–371 (2015).
6. EC Jennings, et al., Molecular mechanisms underlying milk production and viviparity in the cockroach, *diptoptera punctata*. *Insect biochemistry molecular biology* **120**, 103333 (2020).
7. T Llodé, Oviparity or viviparity? That is the question.... *Reproductive Biol.* **12**, 259–264 (2012).
8. W Gao, et al., Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity. *Proc. Natl. Acad. Sci. United States Am.* **116**, 3646–3655 (2019).
9. H Recknagel, et al., The functional genetic architecture of egg-laying and live-bearing reproduction in common lizards. *Nat. Ecol. Evol.* **5**, 1546–1556 (2021).
10. DG Blackburn, Viviparous placentotrophy in reptiles and the parent-offspring conflict. *J. Exp. Zool. Part B: Mol. Dev. Evol.* **324**, 532–548 (2015).
11. BF Murphy, MB Thompson, A review of the evolution of viviparity in squamate reptiles: The past, present and future role of molecular biology and genomics. *J. Comp. Physiol. B: Biochem. Syst. Environ. Physiol.* **181**, 575–594 (2011).

12. A Moffett, C Loke, Immunology of placentation in eutherian mammals. *Nat. Rev. Immunol.* **6**, 584–594 (2006).
13. JU Van Dyke, MC Brandley, MB Thompson, The evolution of viviparity: Molecular and genomic data from squamate reptiles advance understanding of live birth in amniotes. *Reproduction* **147** (2014).
14. G Yu, Using ggtree to Visualize Data on Tree-Like Structures. *Curr. Protoc. Bioinforma.* **69**, 1–18 (2020).
15. OW Griffith, GP Wagner, The placenta as a model for understanding the origin and evolution of vertebrate organs. *Nat. Ecol. Evol.* **1**, 1–10 (2017).
16. MC Harrison, et al., Hemimetabolous genomes reveal molecular basis of termite eusociality. *Nat. ecology & evolution* **2**, 557–566 (2018).
17. S Li, et al., The genomic and functional landscapes of developmental plasticity in the american cockroach. *Nat. communications* **9**, 1–11 (2018).
18. DM Emms, S Kelly, Orthofinder: phylogenetic orthology inference for comparative genomics. *Genome biology* **20**, 1–14 (2019).
19. T De Bie, N Cristianini, JP Demuth, MW Hahn, CAFE: A computational tool for the study of gene family evolution. *Bioinformatics* **22**, 1269–1271 (2006).
20. A Alexa, J Rahnenführer, T Lengauer, Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. *Bioinformatics* **22**, 1600–1607 (2006).
21. GWC Thomas, et al., Gene content evolution in the arthropods. *Genome Biol.* **21**, 15 (2020).
22. AD Moore, E Borner-Bauer, The dynamics and evolutionary potential of domain loss and emergence. *Mol. Biol. Evol.* **29**, 787–796 (2012).
23. VJ Lynch, RD Leclerc, G May, GP Wagner, Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. *Nat. Genet.* **43**, 1154–1159 (2011).
24. VJ Lynch, et al., Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. *Cell Reports* **10**, 551–561 (2015).
25. HM Robertson, RL Baits, KK Walden, A Wada-Katsumata, C Schal, Enormous expansion of the chemosensory gene repertoire in the omnivorous german cockroach *blattella germanica*. *J. Exp. Zool. Part B: Mol. Dev. Evol.* **330**, 265–278 (2018).
26. GM Attardo, et al., Comparative genomic analysis of six *Glossina* genomes, vectors of African trypanosomes. *Genome Biol.* **20**, 1–31 (2019).
27. SL Kosakovsky Pond, et al., HyPhy 2.5—A Customizable Platform for Evolutionary Hypothesis Testing Using Phylogenies. *Mol. Biol. Evol.*, 1–5 (2019).
28. MD Smith, et al., Less is more: An adaptive branch-site random effects model for efficient detection of episodic diversifying selection. *Mol. Biol. Evol.* **32**, 1342–1353 (2015).
29. B Altinicek, J Gross, A Vilcinskas, Wounding-mediated gene expression and accelerated viviparous reproduction of the pea aphid *Acyrtosiphon pisum*. *Insect Mol. Biol.* **17**, 711–716 (2008).
30. F Supek, M Bošnjak, N Škunca, T Šmuc, Revigo summarizes and visualizes long lists of gene ontology terms. *PLoS ONE* **6** (2011).
31. B Fouks, et al., The genomic basis of evolutionary differentiation among honey bees. *Genome Res.* **31**, 1203–1215 (2021).
32. JO Wertheim, B Murrell, MD Smith, SL Pond, K Scheffler, RELAX: Detecting relaxed selection in a phylogenetic framework. *Mol. Biol. Evol.* **32**, 820–832 (2015).
33. S Blaize, N De Parseval, L Bégin, T Heidmann, Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. *Proc. Natl. Acad. Sci. United States Am.* **100**, 13013–13018 (2003).
34. C Esnault, G Cornelis, O Heidmann, T Heidmann, Differential Evolutionary Fate of an Ancestral Primate Endogenous Retrovirus Envelope Gene, the EnvV Syncytin, Captured for a Function in Placentation. *PLoS Genet.* **9**, 1–12 (2013).
35. TB Sackton, Comparative genomics and transcriptomics of host-pathogen interactions in insects: evolutionary insights and future directions. *Curr. Opin. Insect Sci.* **31**, 106–113 (2019).
36. L Viljakainen, et al., Rapid evolution of immune proteins in social insects. *Mol. Biol. Evol.* **26**, 1791–1801 (2009).
37. WC Warren, F Gutzner, The Evolution of Viviparity in Vertebrates in *Placentation in Mammals*, pp. 7–19 (2021).
38. E Marchal, EF Hult, J Huang, B Stay, SS Tobe, *Diptoptera punctata* as a model for studying the endocrinology of arthropod reproduction and development. *Gen. Comp. Endocrinol.* **188**, 85–93 (2013).
39. D Frías-Lasserre, CA Villagra, The importance of ncRNAs as epigenetic mechanisms in phenotypic variation and organic evolution. *Front. Microbiol.* **8**, 1–13 (2017).
40. AS Taylor, et al., A burst of regulatory and protein innovation at the origin of placental mammals drove the emergence of placenta and underpins divergent early pregnancy strategies in modern mammals. *bioRxiv* (2021).
41. H Gal, et al., Molecular pathways of senescence regulate placental structure and function. *The EMBO J.* **38** (2019).
42. IA Gavrilov-Zimin, Egg retention, viviparity and oovoviparity in paraneoptera. *Comp. Cytogenet.* **15**, 239–252 (2021).
43. AM Bolger, M Lohse, B Usadel, Trimmomatic: a flexible trimmer for illumina sequence data. *Bioinformatics* **30**, 2114–2120 (2014).
44. G Marcais, C Kingsford, Jellyfish: A fast k-mer counter. *Tutorialis e Manuais* **1**, 1–8 (2012).
45. TR Ranallo-Benavidez, KS Jaron, MC Schatz, Genomescope 2.0 and smudgeplot for reference-free profiling of polyploid genomes. *Nat. Commun.* **11**, 1–10 (2020).
46. S Nowoshilow, et al., The axolotl genome and the evolution of key tissue formation regulators. *Nature* **554**, 50–55 (2018).
47. G Marcais, et al., Mummer4: A fast and versatile genome alignment system. *PLoS computational biology* **14**, e1005944 (2018).
48. R Vaser, I Sović, N Nagarajan, M Šikić, Fast and accurate de novo genome assembly from long uncorrected reads. *Genome research* **27**, 737–746 (2017).
49. WB Langdon, Performance of genetic programming optimised bowtie2 on genome comparison and analytic testing (gcat) benchmarks. *BioData mining* **8**, 1–7 (2015).

872 50. BJ Walker, et al., Pilon: an integrated tool for comprehensive microbial variant detection and
873 genome assembly improvement. *PLoS one* **9**, e112963 (2014).

874 51. FA Simão, RM Waterhouse, P Ioannidis, EV Kriventseva, EM Zdobnov, Busco: assessing
875 genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*
876 **31**, 3210–3212 (2015).

877 52. D Ellinghaus, S Kurtz, U Willhöft, Ltrharvest, an efficient and flexible software for de novo
878 detection of ltr retrotransposons. *BMC bioinformatics* **9**, 1–14 (2008).

879 53. NS Vassetzky, DA Kramerov, Sinebase: a database and tool for sine analysis. *Nucleic acids
880 research* **41**, D83–D89 (2013).

881 54. W Li, A Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or
882 nucleotide sequences. *Bioinformatics* **22**, 1658–1659 (2006).

883 55. MG Grabherr, et al., Full-length transcriptome assembly from rna-seq data without a refer-
884 ence genome. *Nat. biotechnology* **29**, 644–652 (2011).

885 56. K Hoff, A Lomsadze, M Borodovsky, M Stanke, Whole-genome annotation with braker. *Methods
886 molecular biology (Clifton, NJ)* **1962**, 65 (2019).

887 57. M Stanke, et al., Augustus: ab initio prediction of alternative transcripts. *Nucleic acids re-
888 search* **34**, W435–W439 (2006).

889 58. AV Lukashin, M Borodovsky, Genemark. hmm: new solutions for gene finding. *Nucleic acids
890 research* **26**, 1107–1115 (1998).

891 59. J Keilwagen, F Hartung, J Grau, Gemoma: homology-based gene prediction utilizing intron
892 position conservation and rna-seq data in *Gene Prediction*. (Springer), pp. 161–177 (2019).

893 60. O Gotoh, A space-efficient and accurate method for mapping and aligning cdna sequences
894 onto genomic sequence. *Nucleic acids research* **36**, 2630–2638 (2008).

895 61. N Terrapon, et al., Molecular traces of alternative social organization in a termite genome.
896 *Nat. communications* **5**, 1–12 (2014).

897 62. M Poulsen, et al., Complementary symbiont contributions to plant decomposition in a fungus-
898 farming termite. *Proc. Natl. Acad. Sci.* **111**, 14500–14505 (2014).

899 63. BJ Haas, et al., Improving the arabidopsis genome annotation using maximal transcript align-
900 ment assemblies. *Nucleic acids research* **31**, 5654–5666 (2003).

901 64. BJ Haas, et al., Automated eukaryotic gene structure annotation using evidencemode and
902 the program to assemble spliced alignments. *Genome biology* **9**, 1–22 (2008).

903 65. J Vizueta, A Sánchez-Gracia, J Rozas, bitacora: A comprehensive tool for the identification
904 and annotation of gene families in genome assemblies. *Mol. Ecol. Resour.* **20**, 1445–1452
905 (2020).

906 66. GSC Slater, E Birney, Automated generation of heuristics for biological sequence comparison.
907 *BMC Bioinforma.* **6**, 1–11 (2005).

908 67. A Löytynoja, N Goldman, Phylogeny-aware gap placement prevents errors in sequence align-
909 ment and evolutionary analysis. *Science* **320**, 1632–1635 (2008).

910 68. O Penn, E Privman, G Landan, D Graur, T Pupko, An alignment confidence score capturing
911 robustness to guide tree uncertainty. *Mol. Biol. Evol.* **27**, 1759–1767 (2010).

912 69. G Jordan, N Goldman, The effects of alignment error and alignment filtering on the sitewise
913 detection of positive selection. *Mol. Biol. Evol.* **29**, 1125–1139 (2012).

914 70. R Gouveia-Oliveira, PW Sackett, AG Pedersen, MaxAlign: Maximizing usable data in an
915 alignment. *BMC Bioinforma.* **8** (2007).

916 71. M Suyama, D Torrents, P Bork, PAL2NAL: Robust conversion of protein sequence alignments
917 into the corresponding codon alignments. *Nucleic Acids Res.* **34**, 609–612 (2006).

918 72. P Markova-Raina, D Petrov, High sensitivity to aligner and high rate of false positives in the
919 estimates of positive selection in the 12 Drosophila genomes. *Genome Res.* **21**, 863–874
920 (2011).

921 73. TM Hambuch, J Parsch, Patterns of synonymous codon usage in Drosophila melanogaster
922 genes with sex-biased expression. *Genetics* **170**, 1691–1700 (2005).

923 74. Y Benjamini, Y Hochberg, Controlling the False Discovery Rate: A Practical and Powerful
924 Approach to Multiple Testing. *J. Royal Stat. Soc. Ser. B (Methodological)* **57**, 289–300 (1995).

925 75. M Ashburner, et al., Gene ontology: Tool for the identification of biology. *Nat. Genet.* **25**,
926 25–29 (2000).

927 76. R Gentleman, et al., Bioconductor: open software development for computational biology and
928 bioinformatics. *Genome Biol.* **5**, R80 (2004).

929 77. NL Tintle, B Borchers, M Brown, A Bekmetjev, Comparing gene set analysis methods on
930 single-nucleotide polymorphism data from Genetic Analysis Workshop 16. *BMC Proc.* **3**, S96
931 (2009).

932 78. L Canal, A normal approximation for the chi-square distribution. *Comput. Stat. Data Analysis*
933 **48**, 803–808 (2005).

934 79. M Kelley, et al., Abundances of transfer RNA modifications and transcriptional levels for tRNA-
935 modifying enzymes are sex-specific in mosquitoes. *bioRxiv* (2021).

936 80. L Pantano, DEReport: Report of DEG analysis (2017).

937 81. E Marchal, et al., Methoprene-tolerant (met) knockdown in the adult female cockroach,
938 *Diptroptera punctata* completely inhibits ovarian development. *PLoS ONE* **9**, 10–13 (2014).