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Insects provide an unparalleled opportunity to link genomic changes
with the rise of novel phenotypes, given tremendous variation in
the numerous and complex adaptations displayed across the group.
Among these numerous and complex adaptations, live-birth has
arisen repeatedly and independently in insects and across the tree of
life, suggesting this is one of the most common types of convergent
evolution among animals. We sequenced the genome and transcrip-
tome of the Pacific beetle-mimic cockroach, the only truly viviparous
cockroach, and performed comparative analyses including two other
viviparous insect lineages, the tsetse and aphids, to unravel the ge-
nomic basis underlying the transition to viviparity in insects. We
identified pathways experiencing adaptive evolution, common in all
viviparous insects surveyed, involved in uro-genital remodeling, ma-
ternal control of embryo development, tracheal system, and heart
development. Our findings suggest the essential role of those path-
ways for the development of placenta-like structure enabling embryo
development and nutrition. Viviparous transition seems also to be
accompanied by the duplication of genes involved in eggshell for-
mation. Our findings from the viviparous cockroach and tsetse re-
veal that genes involved in uterine remodeling are up-regulated and
immune genes are down-regulated during the course of pregnancy.
These changes may facilitate structural changes to accommodate de-
veloping young and protect them from the mothers immune system.
Our results denote a convergent evolution of live-bearing in insects
and suggest similar adaptive mechanisms occurred in vertebrates,
targeting pathways involved in eggshell formation, uro-genital re-
modeling, enhanced tracheal and heart development, and reduced
immunity.

Placenta | Tracheal and heart development | Urogenital remodelling |

Embryogenesis | Natural Selection

I nsecta is one of the most diverse animal classes with the
highest number of living species, which have colonized most
habitats spanning terrestrial, freshwater, and aerial environ-
ments (1). Insects have adapted to numerous ecological niches
and display a wide range of phenotypic traits. Insect biodi-
versity is a valuable resource for ecosystems and the source
of many new scientific discoveries (1). For instance, insects
exhibit a broad spectrum of complex traits such as social-
ity (solitary, gregarious, sub- to eusociality), metamorphosis
(a~, hemi-, pauro- and holometabolous development), and re-
productive modes (ovi- to viviparity). While the majority

of insects are oviparous (egg laying), viviparity (live birth),
both facultative (including ovoviviparity) and obligate, has
emerged independently over 65 times across insect evolution
(2-4). Among all viviparous insects, the pacific beetle-mimic
cockroach, Diploptera punctata, and tsetse, stand out by their
evolutionary adaptations to have yielded specific organs that
house developing progeny and produce protein-rich nutrition,
which are funcionally equivalent to placental structures in
vertebrate (5, 6).

True viviparity is a reproductive mode in which females
harbor developing embryos and other juvenile stages within
their reproductive tracts until giving birth to live and active
offspring (7). In contrast, oviparity describes the reproductive
mode whereby females lay eggs, while embryogenesis as well as
other early development stages occur outside the female body
(7). Viviparity has gradually evolved from oviparity repeatedly
and independently across the tree of life, for instance, within
reptiles, mammals, fish and insects (3), suggesting this is one
of the most common types of convergent evolution among
animals.

Despite broad physiological and morphological differences
among viviparous animal clades, the emergence of viviparity
has led to similar physiological, morphological, and immuno-
logical changes to the female reproductive tract for vertebrate
systems (8-10). This transition requires numerous adaptations,
observed in both mammalian and reptile lineages, including
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eggshell reduction, delayed oviposition, enhanced supply of
water and nutrition to the embryo by the mother, enhanced
gas exchange, and suppression of maternal immune rejection
of the embryo (8, 11). The adaptation to viviparity requires
acceptance of a developing non-self organism by the mother.
In mammals, repression of maternal immunity towards pla-
cental cells is essential for successful pregnancy (12), while
in reptiles some viviparous squamates display reduced im-
munocompetence during pregnancy (13). In both mammals
and viviparous reptiles, genes and gene families share similar
immuno-repression roles in the uterus and placenta (13).

Most of our knowledge on the molecular evolution of vivipar-
ity stems from studies in vertebrates (15). The expansion of
genomic resources for insects represents an ideal opportunity
for investigating more general insights into the emergence of
viviparity and comparing distantly related taxa for conver-
gence. By sequencing and assembling the genome of the only
known truly viviparous cockroach, D. punctata, we investi-
gated the genomic signatures of insect viviparity comparing
three origins of insect viviparity, the obligate viviparous cock-
roach, the obligate viviparous tsetse (Glossina morsitans),
and two cyclically viviparous aphids (Acyrthosiphon pisum,
Rhopalosiphum maidis). These three systems use strikingly
different form of viviparity (5), which are even more divergent
then those in other vertebrate systems. Furthermore, we ana-
lyzed the transcriptomes of D. punctata and multiple Glossina
species during different pregnancy stages to unravel patterns
of specific gene expression before and during pregnancy. We
detected genes and pathways under positive selection and also
experiencing variation of selection at each of these transitions
from oviparity to viviparity. From the results obtained with
our comparative genomic and transcriptomic analyses, we se-
lected candidate genes, whose strong effects on pregnancy were
validated with RNA interference experiments in D. punctata.
Our analyses shed light on the biological bases of the emer-
gence of viviparity in insects, which to a large extent mirror
convergent viviparous adaptations in vertebrates despite broad
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physiological and morphological differences.

Results

Genome of the viviparous cockroach. We sequenced and as-
sembled the genome of the viviparous cockroach, Diploptera
punctata (Blaberidae), with a combination of long- (PacBio,
60x) and short-read (Illumina, 45x) sequencing data. We ob-
tained a highly contiguous (contig Nso: 1.4 Mb) and complete
(97.6% of insect BUSCOs) genome assembly of length 3.13
Gb (estimated genome size based on k-mer distribution of
Ilumina data: 3.07 Gb). This genome size is considerably
larger than that of the closest related blattodean species with
a sequenced genome, Blattella germanica (Ectobiidae, 2.0 Gb)
(16), and in fact is closer in size to the more distantly related
American cockroach, Periplaneta americana (Blattidae, 3.4
Gb) (17). The differences in genome size do not seem to have
been aided by variation in transposable element content as all
three cockroach genome assemblies exhibit similar proportions
of repetitive elements: 54.3% in D. punctata, 54.7% in B.
germanica and 57.8% in P. americana. Similarly, we find no
evidence for genome size being driven by proteome expansion
as we identified 27,939 protein-coding genes similar to the
number of proteins first reported for B. germanica (29,216),
both greater than in P. americana (21,336, Fig. 1).

Gene family evolution related to insect viviparity. To under-
stand mechanisms underlying adaptations to viviparity in
insects, we compiled a data set comprising genomes and pro-
teomes of 18 insect species from 3 different insect orders (Blat-
todea, Diptera, and Hemiptera), in which viviparity has arisen
independently (Fig. 1). An analysis of gene family size varia-
tion from orthogroups sizes defined by OrthoFinder (18) using
CAFE (19) across these species revealed several significant
gene family expansions and contractions that were shared be-
tween independent origins of viviparity. While none of these
were shared among all 3 origins of viviparity, 5 expanding gene
families were shared between D. punctata and G. morsitans, 3
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between D. punctata and aphids and 3 between G. morsitans
and aphids. Interestingly, most of these gene families experi-
encing significant expansions across pairs of viviparity origins
were either related to protein ubiquitination or chromatin
remodelling (Table 1).

Orthogroup Reference Putative function
EXPANSIONS SHARED BETWEEN D. PUNCTATA & G. MORSITANS

0OG0000835 polybromo chromatin remodeling
0G0001065 NADH dehydrogenase oxidative metabolism
0G0001123 NADH dehydrogenase oxidative metabolism
0G0001271 NADH dehydrogenase oxidative metabolism
0G0001573 ref(2)P autophagy

EXPANSIONS SHARED BETWEEN D. PUNCTATA & APHIDS

0G0000078 His3 nucleosome formation

0G0000160 His1 nucleosome formation

0G0000345 Poly(ADP-ribose) poly-  DNA damage & ubiquitina-
merase catalytic domain tion

EXPANSIONS SHARED BETWEEN G. MORSITANS & APHIDS

0G0000062 DNA polymerase type B DNA replication

0G0000395 Ulp1 SUMOylation & ubiquitina-
tion

0OG0000630 Collagen triple helix repeat  tissue structure

CONTRACTION SHARED BETWEEN D. PUNCTATA & APHIDS
0G0000073 Reverse transcriptase transcription
CONTRACTIONS SHARED BETWEEN (. MORSITANS & AND APHIDS

0G0000010 CHKov2 unknown

0OG0000017 Ser12 serine-type endopepti-
dase

0OG0000033 Jon25Bi serine hydrolase activity

Table 1. Gene family experiencing either expansion or contraction
shared among insect viviparous origins.

Fewer overlaps were found between contracting gene fami-
lies with no overlap between D. punctata and G. morsitans,
only 1 contracting gene family containing a reverse transcrip-
tase domain was shared between D. punctata and aphids,
and 3 contracting gene families involved in serine enzymatic
pathways between G. morsitans and aphids (Table 1). In ad-
dition, 2 gene families that were expanded in D. punctata were
contracted in both G. morsitans and aphids. These 2 gene
families are part of the serine protease and ecdysteroid kinase-
like protein families. Interestingly, serine protease and pepti-
dase inhibitors have been associated with placental growth in
lizards (13). The contraction of serine protease gene families
in viviparous insects might serve a similar role as inhibitors in
reptiles allowing placenta formation.

To link broad functions with gene duplication and loss
events during the adaptation to viviparity, we performed en-
richment analyses of Gene Ontology (GO) terms among all
expanded and contracted gene families, using Fisher’s exact
test within topGO package (20) (see Methods). More GO
terms were found to be significantly enriched for expanded
gene families (P < 0.05), with 72, 95, and 142 significant
GOs in D. punctata, G. morsitans, and aphids respectively,
compared to GO terms enriched for contracted gene fami-
lies, with 44, 94, and 4 significant GOs in D. punctata, G.
morsitans, and aphids respectively. The functional categories
“negative regulation of chromatin silencing” and “nucleosome
assembly /organisation” were found to be significantly enriched
for expanded gene families in all origins of viviparity. In ad-
dition, functional categories involved in eggshell formation,
oxidative metabolism, and vitamin metabolism were enriched

Fouks et al.

for expanded gene families in both the Pacific beetle-mimic
cockroach and tsetse (Table S1). Shared functional categories
enriched for expanded gene families among D. punctata and
aphids were mainly related with immunity, while the tsetse and
aphids shared GO terms related with neurogenesis, pole cells,
and response to hypoxia. However, these GO terms were no
longer significant after False Discovery Rate (FDR) correction
at 20%, as the 11 significant functional categories after FDR,
were only found in aphids, mainly involved in transposition
and chromosome organization (Table S1).

Detecting common patterns of gene family evolution among
phylogenetically distant taxa may prove difficult due to a re-
duced ability to detect sequence homology. Hence, we carried
out a more robust estimate of duplication and loss events by
comparing protein domains rather than genes (21, 22). While
no protein domains were found to be significantly expanded
or contracted among all origins of viviparity, we found two
domains to be significantly expanded during two transitions
to viviparity. The transcription initiation factor IID, 31kD
subunit domain (PF02291) was expanded in D. punctata and
aphids, while the proton-conducting membrane transporter
domain (PF00361) was expanded in D. punctata and G. mor-
sitans. Expansion of transcription factors during viviparous
transitions might have aided changes of gene expression over
the course of pregnancy, similar to the transposon-mediated
increase of transcription factor binding sites during mammal
evolution (23, 24).

We manually annotated three classes of chemoreceptors
in D. punctata, the odorant (ORs), gustatory (GRs) and
ionotropic receptors (IRs), which are known to be highly
abundant in two cockroach species (17, 25) and are reduced in
Glossina sp. (26) compared to oviparous flies. Compared to
numbers in both the German and the American cockroach, we
found strongly reduced numbers of each of these chemoreceptor
classes. We annotated 434 IRs, 69 ORs and 261 GRs, which
were 32-55% and 28-46% lower than in B. germanica and P.
americana, respectively. Similarly, the predicted number of
cuticle proteins in the genome was lower in D. punctata when
compared to the German (22% increase) and American (27%
increase) cockroaches, which also are reduced in viviparous
flies (26) relative to oviparous counterparts.

Genes related to oogenesis, morphogenesis and develope-
ment under positive selection. To identify protein coding
genes undergoing positive selection during the adaptation
to viviparity, we used the adaptive branch-site random effects
likelihood (aBRSEL) method in Hyphy (27, 28) on all 4,671
single-copy orthologs who have passed filtering (see Methods).
We found 160 of these orthologs to have signals of positive
selection along the three transitions to viviparity: 35 in aphids,
72 in D. punctata, and 55 in G. morsitans (Table S2). Of
these orthologs experiencing positive selection, two were under
positive selection in more than one viviparous branch: Mhc
encoding myosin heavy chain protein involved in muscle con-
traction was under positive selection in D. punctata and G.
morsitans branches; and Cog3 encoding a methyltransferase
protein involved in wound healing was under positive selection
in aphids and D. punctata branches. Interestingly, wound heal-
ing pathway is linked with viviparous reproduction in aphids
(29). After correcting for multiple testing, only 2 single-copy
orthogroups were under positive selection with an FDR < 10%:
an unknown gene with a dynein heavy chain linker protein
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Fig. 2. Functional categories involved in the emergence of viviparity in insects. A) Enriched functional categories in genes under positive selection in the viviparous cockroach,
D. punctata. B) Enriched functional categories in genes under positive selection in the tsetse, G. morsitans. C) Enriched functional categories in genes under positive selection

in the aphid branch. D) Functional categories enriched for genes under strengthene

d selection pressure in all branches where viviparity emerged. E) Functional categories

enriched for genes under relaxed selection pressure in all branches where viviparity emerged. In each case enriched GO-terms are shown with a p-value < 0.05 and are
clustered into broader functions whenever possible, using REVIGO (30) and Cytoscape for visualization.

domain (ortholog to CG14651 from D. melanogaster) in G.
morsitans and the gene (Cht11) encoding a chitinase in D.
punctata involved in chitin metabolism.

To identify whether positive selection among viviparous
origins quantitatively relates to particular functions, we clas-
sified orthogroups based on their GO term annotations from
D. melanogaster orthologs and protein domains from a pfam
library (see Methods). Using SUMSTAT (31) with the topGO
R package (20) to test for gene set enrichment, we identified
(P < 0.05), 59, 64, and 104 functional categories that were
enriched among positively selected genes in the viviparous
cockroach, the tsetse, and the aphid branches, respectively
(Fig. 2 A-C). While no specific, enriched GO terms were
shared among the 3 viviparous origins, all the branches, where
viviparity has arisen, had functional categories enriched among
genes under positive selection linked with embryogenesis and
organ development (Fig. 2 A-C). Furthermore, all branches of
viviparous origins shared positively evolving functional cate-
gories related to the alleviation of multiple stressors, cell fate
and metabolism (Fig. 2 A-C). We also detected signals of
positive selection on genes associated with oogenesis and chitin

metabolism in both D. punctata and G. morsitans (Fig. 2A &
B). After FDR correction three functional categories remained
significant (FDR < 20%) among genes under positive selec-
tion on the aphid branch: “mitochondrial electron transport,
NADH to ubiquinone”; “vascular endothelial growth factor
receptor signaling pathway”, and “imaginal disc-derived wing
margin morphogenesis” (Table S3).

Genes with increased and relaxed selection along transitions
to viviparity. With the transition to viviparity, it is predicted
that there will be stronger selection for adaptations that fa-
cilitate live-bearing and relaxed selection on traits associated
with evolutionary conflict over resource allocation. To test
this prediction, we identified genes experiencing variation of
selection during the transition to viviparity, using the RELAX
method in Hyphy (27, 32). This assigns a value determining
relaxation or strengthening of selection pressure as well as
estimates its significance using maximum likelihood methods,
on 4,671 single-copy orthogroups. We identified 215 and 112
orthogroups to be under relaxed and strengthened selection, re-
spectively, in the viviparous branches at 10% FDR. From those
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lists, the highest significant orthogroups (N = 15) experiencing
strengthened selection are mostly involved in development,
protein metabolism and the excretory system, while those un-
der relaxed selection (N = 11) are mainly involved in cell-cell
signalling and cell metabolism (Table S4).

To identify broader functions under differential selection
pressure during the transition of viviparity, we tested for
GO-term enrichment among genes under relaxed and strength-
ened selection separately. Only the functional category “heart
process” was found to be enriched for genes under stronger
selection at 20% FDR. However, using an uncorrected p-value
< 0.05 the functional categories enriched among genes under
strengthened selection can be grouped into 4 main categories,
namely: embryogenesis and organ development; negative reg-
ulation of mitotic cell cycle; chromosome organisation; and
translation (Fig. 2).

Furthermore, several functional categories under strength-
ened selection pressure in viviparous species seem to be linked
with cell-cell adhesion and signalling (i.e. “establishment of
protein localization to membrane”, “endocytosis” and “au-
tophagosome maturation”) and the regulation of gene expres-
sion (i.e. “non-coding RNA process”). While functional cate-

Fouks et al.

gories enriched among genes under relaxed selection (P < 0.05)
do not cluster as well, they can still be grouped within 4
main functions: DNA replication and repair; hormone and
pheromone metabolism; cell replication; and circulatory sys-
tem. In addition to these broad functions, the immune effector
pathway is under relaxed selection pressure in branches of
live-bearing origin (Table S5).

Expression patterns related to pregnancy are similar among
remotely related viviparous insects. To determine if transcrip-
tional patterns related to pregnancy were shared among inde-
pendent origins of viviparity, we compared the expression of
single copy orthologs between six tsetse species (G. morsitans,
G. palpalis, G. fuscipens, G. austeni, G. pallidipes, G. bre-
vipalpis) (26) and D. punctata (6). Specifically, the expression
in males, early pregnancy, and late pregnancy were compared
using a gene co-expression analysis (Fig. 3). These analyses
identified that there were specific groups of genes associated
with early and late pregnancy in both insect groups (Fig. 3).
Early pregnancy showed an enrichment for cuticle changes
and associated processes, suggesting that structural changes
are a key factor early in insect viviparity (Fig. 3B). The genes
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associated with late pregnancy are linked with energy and
protein production, which highlights the necessary increase in
factors to provide nourishment for developing progeny (Fig.
3). Lastly, closer examination of expression of immune-related
genes in D. punctata, both across pregnancy and in comparison
to males and non-pregnant females, revealed immune changes
associated with pregnancy (Fig. 3D). These transcriptional
shifts associated with pregnancy show functional similarities
to those in vertebrate systems (8, 9).
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Fig. 4. Functional validation of genes and pathways involved in the adaptation to live-
bearing in the viviparous cockroach. A) RNA interference of genes of interest, selected
based on our genomic and transcriptomic analyses, at each of the different pregnancy
stages in D. punctata, confirmed the role of specific genes during pregnancy leading
to disruption of pregnancy and/or delays in birth. B) Immune challenge in pregnant
compared to non-pregnant females confirmed the reduced immunity during the course
of pregnancy associated with a reduction of survival rate.

RNA interference and immune studies confirm the critical
role of viviparity-associated genes. To confirm that specific
genes identified by our earlier selection and transcriptome
analyses are involved in the process of live birth, we performed
RNA interference (RNAi) in D. punctata to suppress tran-
script levels based on previously developed methods (6). These
results confirmed that reduction in transcript levels of targeted
genes potentially associated with viviparity could increase the
rate of abortion and extend the duration of the pregnancy
cycle when compared to controls (Fig. 4). These specific genes
are involved in protein synthesis and structural aspects, and
would not directly be identified as critical to viviparity without
our selection and transcriptome analyses. Of interest is the
suppression of single milk gland protein, a key component of
nutrients for the developing embryo, did not impact pregnancy,
likely due to the presence of over 20 similar genes that can

compensate to feed the embryos (6, 26) Lastly, immune func-
tion was assessed by injection of a bacterium, Pseudomonas
aeruginosa, which revealed that pregnant females died more
rapidly following infection compared to non-pregnant ones.
These studies confirm that genomic and transcriptomic factors
identified by our analyses are directly linked to cockroach
viviparity.

Discussion

Increasing the number of sequenced insect genomes represents
a major step towards improving our understanding of the
molecular basis underlying adaptive radiation. Comparative
genomics of such a diverse animal class provide insights into
the key genomic changes along the evolution of insects and
also sheds light on the mechanisms by which certain genes
and pathways enable the emergence of specific phenotypes.
Our genome-wide analyses reveal that convergent adaptations
to viviparity in insects are driven by strong positive selec-
tion on specific pathways and functional categories, as well as
the regulation of specific gene expression patterns during the
different stages of pregnancy. Most intriguingly, our results
parallel vertebrate adaptations to viviparity with strengthened
selection targeting embryogenesis, reproductive system devel-
opment, tracheal system, and heart development, as well as
gene expression patterns during pregnancy linked with reduced
immunity and uterine remodelling (Fig. 5).

Morphological and physiological adaptation to viviparity. Our
study of gene family evolution revealed a duplication of genes
involved in eggshell formation in both the viviparous cockroach
and the tsetse, which may have favored viviparous transitions
similar to eggshell reduction observed in viviparous reptiles
(8, 9). Our genome-wide selection analyses reveal that the
adaptation to viviparity in insects is linked with strong positive
selection of genes involved in oogenesis in both cockroaches
and flies. The transition from oviparity to viviparity is ac-
companied by a reduction of offspring production per cycle
(5). Therefore, the regulation of egg production to reduce off-
spring numbers might have been attained through amino-acid
changes in proteins involved in the development of oocytes.
Moreover, in tsetse, alternate oocyte production between left
and right ovaries is associated with viviparity, as a conse-
quence of resource constraints (5). In addition to oogenesis
and its regulation, our results, for the first time, highlight the
rapid evolution of embryogenesis and early development along
with the urogenital system development in insects during live-
bearing adaptation. These are key adaptations to viviparity,
which enable the uterus to host the developing embryo (11, 15).
The morphological changes of the uterus associated with live-
bearing is reflected in our results with rapid evolution of genes
involved in reproductive system development in all viviparous
branches and gene expression changes during pregnancy of
both cockroach and tsetse associated with chitin metabolism.

In addition, the strengthened selection pressure of genes
involved in cell-cell adhesion and membrane trafficking we
observed in viviparous branches is likely linked with the
emergence of the pseudo-placenta or a placenta-like structure
adapted in viviparous insects, which enables enhanced gas
exchange and nutrient supply (4, 33, 34). Our results suggest
that the rapid evolution of genes linked to the development
of the tracheal system and heart underlies the adaptation
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Genomic and transcriptional
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Biochemical and physiological
altered immunity
shifted expression of gene
underlying immunity

Squamate viviparity

increased translation and
energy production
allow increased production of
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to enhanced maternal-fetal gas exchange during viviparity,
mirroring the adaptation of enhanced angiogenesis during live-
bearing transition in vertebrates (9). Enhanced gas exchange
in viviparous insects might have also been overcome by dupli-
cations of genes involved in oxidative or hypoxia metabolism.
Furthermore, our results reveal that the emergence of placenta-
like structures in insects is associated with enhanced maternal
control over fetal development, as genes involved in the em-
bryonic development via the syncitial blastoderm are evolving
under strengthened selection pressure along the viviparous
branches.

Immunity and maternal tolerance of the embryo. Another ma-
jor change linked with live-bearing adaptation in vertebrates is
a reduced immunity necessary for not rejecting the developing
embryo. In support, during D. punctata pregnancy, we ob-
served differential regulation of immune genes especially during
early pregnancy, in line with findings in viviparous vertebrates
(12, 13). Furthermore, we find immune effectors to be under
relaxed selection in viviparous branches, while in many insects
immune pathways are expected to be the target of strong
positive selection (35, 36), denoting the importance of reduced
immune efficiency during live-bearing transition to minimize
embryo rejection. Reduced immunity during pregnancy is not
only inferred from our transcriptomic and genomic analyses
but also revealed by a reduced survival rate of pregnant fe-
males after an immune challenge. This difference in survival
could also be due to nutritional trade-offs, with the high ener-
getic demands of provisioning developing progeny resulting in
reduced immune function, whereas such trade-offs would be
less pronounced in oviparous counterparts. The tolerance of
the developing embryo within a female’s body might have led
to the strong positive selection on pathways related to stress
response, which we inferred for all three viviparous insect
lineages. Indeed, in all viviparous insect branches, pathways
involved in response to chemicals or toxic substances were en-
riched among positively selected genes, which might indicate
adaptations to sustaining embryo growth and development.

Molecular basis of evolutionary conflict over resource allo-
cations. While profound changes are needed to enable the
transition to viviparity as seen above, evolutionary conflicts
over resource allocation arise among females against males
and offspring (3). Such evolutionary conflicts should result

Fouks et al.

Invertebrate viviparity

Cockroach viviparity

Fly viviparity

Fig. 5. Summary of factors that overlap be-
tween vertebrate and invertebrate vivipar-
ity. The specific aspects identified were es-
tablished by a combination of genomic and
transcriptomic analyses. Gray indicates
common factor between invertebrate and
vertebrate viviparity and black is the spe-
cific aspect identified in this study for insect
systems. Aspects associated with verte-
brate viviparity are based upon previous
studies (8, 9, 37)

in divergent evolution which could produce similar signals to
relaxed selection. One of the major pathways enriched for
genes evolving under relaxed selection comprises hormone and
pheromone metabolism. In the viviparous cockroach, as well
as in tsetse, developing embryos are directly fed with specific
nutrients (5, 6). The production of these nutrients is governed
by the regulation of Juvenile Hormone (38). Considering the
evolutionary conflict over resource allocations, the regulation
of nutritional secretions should be the main source of conflict
as it represents the main source of nutrients for the embryo.
The relaxation of selection on these pathways in viviparous
branches could highlight such evolutionary conflict, with bal-
ancing selection between females minimizing the production
of pregnancy-associated secretions while male and offspring
maximize its intake.

Universal pathways to viviparity. Overall, our study reveals
that the viviparity transition in insects is associated with
strong positive selection or strengthened selection pressure
of genes involved in oogenesis, embryogenesis, tracheal sys-
tem, and heart development. In addition, our analyses high-
light uterus remodelling associated with viviparity in insects
detected in a change of gene expression related to cuticle
metabolism, as well as a strong positive selection pressure on
the urogenital development. Along with pathways involved
in uterus remodelling, we found the development of placental-
like structures in viviparous insects to be associated with
strengthened selection pressure on genes involved in maternal
control over embryo development. The viviparous cockroach
displays reduced immunity during pregnancy with a reduction
of immune gene expression during early pregnancy, and the
evolutionary transitions to viviparity seem to have led to the
relaxation of selection on immune effectors in all three stud-
ied viviparous insect branches. Hormonal changes were also
noted in the genomic analyses of invertebrate viviparity, which
could be as critical as the hormone shifts and changes that
are necessary for vertebrate viviparity (8-10).

Moreover, we found that in all viviparous insect branches
non-coding RNA processes, involved in the regulation of gene
expression (39), are under strengthened selection pressure.
Likewise, the basal evolution of eutherian mammals is as-
sociated with bursts of regulatory miRNAs regulating the
expression of genes involved in placentation (40), non-coding
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RNA pathways in viviparous insects might therefore play a
similar role. In addition, the formation of the placental tis-
sue in mammals is associated with chromosomal maintenance
pathways (41), which could explain the strengthened selection
pressure of genes involved in chromosomal organisation in
viviparous insect branches. Despite similar pathways shared
among the three origins of live-bearing in insects, little overlap
was found among genes involved in theses adaptations among
the different viviparous insect species. Our results highlight
that the transition to viviparity involves similar pathways
in both insects and vertebrates, but not necessarily common
functional genes (9).

Strikingly, despite broad physiological and morphological
differences, the adaptation to live-bearing seems to be univer-
sal among animals with pathways. In both arthropods and
vertebrates, pathways related to eggshell formation, urogenital
remodelling, maternal control of embryo development, tra-
cheal and heart development corresponding to angiogenesis in
vertebrates, reduced immunity have undergone fast evolution-
ary changes and gene expression changes during the course
of pregnancy (Fig. 5). Even more remarkably, not only sim-
ilar pathways but similar evolutionary mechanisms underlie
the transition to viviparity in animals, with fast evolution,
co-option, gene duplication, and expression changes during
pregnancy of genes involved in corresponding functions across
different animal taxa (15). Different forms of viviparity as well
as ovoviviparity, which can be considered intermediate along
the transition from oviparity to viviparity, are well represented
in insects (2, 42). Comparative genomics of insects, therefore,
represents a great avenue to study in depth the genomic basis
of the gradual emergence of live-bearing reproduction mode.

Materials and Methods

Specimen Collection. Cockroaches were acquired from the Ohio
State University Insectary and maintained according to Jennings
et al. (6). DNA was extracted from testes and sequenced at the
Centre d’expertise et de services Génome Québec.

Genome Sequencing and Assembly. The genome was sequenced with
a combination of long- and short-read technologies. Using Illumina
HiSeq, we generated 147Gb of 150bp paired-end reads (486.8M
read pairs), with 500bp fragment size. These reads were quality
and adapter trimmed with Trimmomatic (v0.38) (43), resulting
in 466.4M read pairs and 136.5Gb. We used these trimmed Illu-
mina reads to estimate the genome size by first calculating kmer-
frequencies with Jellyfish (v2.3.0) (44), with a kmer size of 21 and
a hash size of 10°. The resulting histogram of kmer distribution
was then used to model genome size with GenomeScope 2.0 (45),
which was predicted at 3.07Gb, with an estimated heterozygosity
level of 0.4% and repetitive content of 64.2%.

With 38 SMRT cells on a PacBio Sequel system, we generated
15.4M reads and a total of 164.5Gb of subread sequence data (mean
read length: 10 712bp). The PacBio sequences were assembled with
MARVEL (46). A database was created using blocksize 250. Then
to reduce run times, prior to the first alignment step of MARVEL
(daligner), raw reads were masked for repeat regions. This was first
carried out only on diagonal blocks (e.g. DB.1 vs DB.1, DB.2 vs
DB.2 etc.), then subsequently on a broader diagonal of ten blocks,
setting the coverage threshold at 10 and 15, respectively. MARVEL
was then run with standard settings on these patched reads. The
resulting assembly was polished with the patched PacBio reads that
were produced within the MARVEL assembly. For this reads were
first aligned against the assembly using nucmer from the MUMmer
suite (v4.0.0beta2) (47), then a consensus was created with racon

(48). This improved assembly was further polished using the Illu-
mina reads, which were first mapped to the assembly with bowtie2
(v2.3.4.3) (49). The resulting bam file was then used to polish the as-
sembly using Pilon (v1.23) (50). Finally, we removed duplicate con-
tigs with Pseudohaploid (https:/github.com/schatzlab/pseudohaploid)
After each of these correction steps, completeness of the assembly
was assessed by identifying Benchmarking Universal Single-Copy
Orthologs (BUSCOs) using the BUSCO (v3.0.2) pipeline in genome
mode (51). We identified single-copy orthologs based on the insecta—
db9. Each of the correction steps improved the assembly quality,
especially with regard to BUSCO completeness scores (Table 2).

MARVEL +Racon +Pilon +Pseudohaploid
ASSEMBLY
STATS
Total sequence  3.371 Gb 3.380 Gb 3.376 Gb 3.127 Gb
Number of con- 14,530 14,450 14,450 10,704
tigs
Longest contig 8.328 Mb 8.350 Mb 8.341 Mb 8.341 Mb
Shortest contig 2189 2383 2139 2139
N50 1.266 Mb 1.268 Mb 1.265 Mb 1.407 Mb
BUSCO
Complete - sin-  85.9% 87.0% 89.4% 92.0%
gle
Complete - du-  7.2% 71% 8.3% 5.6%
plicated
Fragmented 3.9% 3.4% 1.4% 1.4%
Missing 3.0% 2.5% 0.9% 1.0%

Table 2. Assembly statistics and BUSCO scores for each assembly
stage.

Repeat annotation. Repetitive elements from D. punctata
genome assmebly were categorised with repeat modeler
(http://www.repeatmasker.org/), LTRharvest (52) and Trans-
posonPSI  (http://transposonpsi.sourceforge.net). The resulting
libraries were merged together with the SINEbank repeat data base,
specific to Insecta (53). The merged repeat library was filtered for
redundancy using cd-hit-est (parameters: -c¢ 0.8 -n 5) (54) and for
true proteins by blasting against a de novo assembled Diploptera
punctata transcriptome. Specifically, we generated the de novo
transcriptome assembly with 29 previously published RNAseq
libraries (6) using Trinity (55) at default settings. Nucleotide coding
and protein sequences were generated from the Trinity assembly
with TransDecoder (http:/transdecoder.github.io/). Sequences were
removed from this transcriptome if they received a significant blast
hit (e-value < le-5) against the RepeatPeps library contained in
the RepeatMasker data set. We then blasted our merged repeat
library against this reduced set of transcripts using blastn. Any
hits with an e-value < le-10 were removed from the library. The
repeat library was classified with RepeatClassifier. The genome
assembly was then soft masked with RepeatMasker.

Gene annotation. We used two programs to predict ab initio gene
models: Braker (56), which combines Augustus (57) and GeneMark
(58), and GeMoMa (59). Both were trained with the Blattella ger-
manica genome and D. punctata RNAseq (6). We additionally used
two methods of evidence-based gene prediction. With Spaln (v2.4.6)
(60) we aligned a large database of proteins against our genome
assembly. The protein database contained the Uniprot arthropod
database (version April 2018) and all available Blattodea proteomes:
B. germanica (16), Periplaneta americana, Cryptotermus secundus
(16), Zootermopsis nevadensis (61) and Macrotermes natalensis
(62). Finally gene models with predicted by aligning the RNAseq
data to the genome assembly with Pasa (63). EVidenceModeler
(64) was then used to combine the different gene sets. The following
weights were applied to each gene set; Augustus and GeneMark:
1; GeMoMa: 2; Spaln: 5; Pasa: 10. This produced a GFF con-
taining 61,692 putative protein coding genes, which was further
filtered to remove contamination and repetitive elements using blast
against the NCBI nr database and our repeat database, respectively.
Annotation scores from EVM output were compared to noncod-
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ing equivalent. All putative genes with an annotation score =<
noncoding equivalent were removed. Furthermore, to detect true
positives, PFAM domains were annotated on translated sequences
with pfamscan and RNAseq reads were mapped against the putative
gene regions. All gene models with at least one significant PFAM
domain or to which at least 10 reads mapped in at least one sample
were considered true positives and retained. All further genes were
only kept if supported by evidence from protein alignments (Spaln),
transcript alignments (Pasa), or homology within Metazoa, resulting
in a gene set of 27,940 protein coding genes.

Chemoreceptor genes are notoriously difficult to predict with
standard tools and were therefore annotated manually with bita-
cora (65) and exonerate (66) in two rounds. For the first round,
the chemoreceptors from Blattella germanica (25), Drosophila
melanogaster, Apis melifera and Apolygus lucorum species were
taken as a database for bitacora and exonerate. Predicted gene
models were filtered for the presence of domains of interest and
length (85% of domain length average) and used as a database for
the second round. The filtered predictions were merged between
bitacora and exonerate and with the previous annotations. Pre-
dicted cuticle proteins were identified with BLAST comparison to
known protein in other insect system (26).

Ortholog detection and phylogeny. The 18 Insect species have been
carefully chosen to investigate viviparous transition as it encom-
passes the independent origins of viviparity in different insect orders
along with, at least, 1 outgroup species per order. Orthologs among
the insect species selected; including mayfly (Ephemera danica)
used as a general insect outgroup, whitefly (Bemisia tabaci) as out-
group for the Hemiptera branch, 2 species of aphids (Acyrthosiphon
pisum, Rhopalosiphum maidis) representing origin of viviparity in
Hemiptera, 4 species of Diptera (Glossina morsitans as viviparous
dipteran, and Musca domesticus, Drosophila melanogaster, Sto-
mozxys calcitrans as dipteran outgroups), 2 species of stick insects
(Medauroidea extradentata, Clitarchus hookeri) and locust (Locusta
migratoria) as outgroup of Blattodea, 3 species of cockroaches
(Blattella germanica and Periplaneta americana as outgroups,
Diploptera punctata as viviparous blattodean), and 4 species of
termites (Zootermopsis nevadensis, Cryptotermes secundus, Cop-
totermes formosanus, Macrotermes natalensis); were discovered
using Orthofinder (v2.5.2) (18). To optimize the number of single-
copy orthologs, We categorized them as such if they were single-copy
or absent in viviparous species and oviparous species with multi-
ple copies were dropped. Ortholog families including at least one
viviparous species and three oviparous species were retained for
further analyses, culminating at 5463 single-copy ortholog families.
Phylogenetic tree reconstruction, including all species described
above, was undertaken by OrthoFinder (18).

Duplication and loss events. The variation of gene family size across
the phylogenetic tree was assessed with CAFE (v4.2.1) (19), to
unravel the expansion and contraction of gene families in all branches
of the tree. Moreover, the variation of domain numbers in across
the phylogenetic tree was assessed with CAFE (v4.2.1) (19).

Multiple Alignment. For each single-copy ortholog family, the longest
protein isoforms for each of the species gene were used in multiple
sequence alignment with PRANK (v.150803) (67) and unreliably
aligned residues and sequences were masked with GUIDANCE
(v2.02) (68). This combination was shown to perform the best on
simulated data (69). To optimize alignment length without gaps, we
ran maxalign script (70) and removed subsequent sequences leading
to more than 30% of gapped alignment as long as it did not result
in the removal of a viviparous species’ sequence, and an alignment
of less than 4 sequences. The protein sequences were replaced with
coding sequences in the multiple alignments using pal2nal script
(71). Alignments regions, where gapped positions were present, were
removed with a custom python script (see Supplementary Code SC1),
as these are the most problematic for positive selection inference
(72). Finally, CDS shorter than 100 nucleotides were eliminated
(73). After filtering, our dataset included 4,671 gene families. The
mean length of filtered alignment was 614 nucleotides (median =
471 nucleotides), ranging from a minimum of 102 nucleotides to a
maximum of 7836 nucleotides and included on average 10 sequences
(median = 11), ranging from 4 to 18.
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Identifying selection pressures.

Branch-Site tests to detect positive selection. Phylogenetic tests of
positive selection in protein-coding genes usually contrast substi-
tution rates at non-synonymous sites to substitution rates at syn-
onymous sites taken as a proxy to neutral rates of evolution. The
adaptive branch-site random effects model (aBSREL, (28)) from
Hyphy software package (27) was used to detect positive selection
experienced by a gene family in a subset of sites in a specific branch
of its phylogenetic tree. Test for positive selection was run only
on the branches leading to the origin of viviparity, namely the
Diploptera punctata branch, the Glossina morsitans branch, and
the aphid branch. Results from the adaptive branch-site random
effects model were corrected for multiple testing as one series us-
ing False Discovery Rate (FDR) (74) and set up our significant
threshold at 10% (31).

Variation of Selection pressure. While elevated dN/dS can be caused
by increased positive selection, it can also be the result of relaxed
purifying selection, or a combination of both. We used RELAX (32)
to categorize if shifts in the distribution of dN/dS across individual
genes are caused by overall relaxation of selection (i.e. weakening of
both purifying selection and positive selection, towards neutrality)
versus overall intensification of selection (i.e. strengthening of both
purifying selection and positive selection, away from neutrality).
Specifically, RELAX models the distribution of three categories of
dN/dS (i.e. positive selection, neutral evolution, purifying selection)
across a phylogeny and compares the distributions for foreground
branches (here, the branches of viviparous origins) to background
branches (here, the ancestral and sister branches of viviparous ori-
gins) and estimates a parameter K that indicates overall relaxation
(K < 1) or intensification (K > 1). Eight alignments failed to run
due to removal of reference species during filtering. Results from
RELAX models were corrected for multiple testing as one series
using (FDR) (74) and set up our significant threshold at 10% (31).

Test for functional category enrichment. Gene Ontology (GO) (75)
annotations for our gene families were taken from pfam annotations
and from orthologs of Drosophila melanogaster and the enrichment
of functional categories was evaluated with the package topGO
version 2.4 (20) of Bioconductor (76).

To identify functional categories enriched for expanded and con-
tracted gene families, the Fisher exact test with the ‘elim’ algorithm
of topGO was run separately for the significantly expanded and
contracted gene families which were given the score of 1 while other
gene families were given the score of 0. The results were then
corrected with the FDR to account for multiple testing (74) and set
up our significant threshold at 20% (31). Gene Ontology categories
mapped to less than 10 genes were discarded.

To identify functional categories enriched for genes under pos-
itive selection, strengthened, and relaxed selection pressure, the
SUMSTAT test was used as described in (31). The SUMSTAT
test is more sensitive than other methods, and minimizes the rate
of false positives (77). To be able to use the distribution of log-
likelihood ratios of the aBSREL and RELAX tests as scores in
the SUMSTAT test, a fourth root transformation was used (31).
This transformation conserves the ranks of gene families (78). In
addition, we assigned a log-likelihood ratios of zero for genes under
relaxed selection (K < 1) when testing for enrichment of functional
categories with genes under strengthened selection and vice-versa
(0 for genes with K > 1) when testing for enrichment from genes
under relaxed selection. Gene Ontology categories mapped to less
than 10 genes were discarded.

The list of significant gene sets resulting from enrichment tests
is usually highly redundant. We therefore implemented the “elim”
algorithm from the Bioconductor package topGO, to decorrelate
the graph structure of the Gene Ontology (20). To account for
multiple testing, the final list of p-values resulting from this test was
corrected with the FDR (74) and set up our significant threshold at
20% (31). To cluster the long list of significant functional categories
before FDR correction, we used REVIGO (30) with the SimRel
semantic similarity algorithm and medium size (0.7) result list.

RNA-seq analyses . To assess if transcriptional changes are similar
between viviparous insects, previously available RNA-seq data sets

| February 3,2022 | | 9

643

644
645
646
647
648
649
650
651
652
653
654
655
656
657

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

705
706
707
708
709
710
71

712
713


https://doi.org/10.1101/2022.02.03.478960
http://creativecommons.org/licenses/by-nc-nd/4.0/

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

732
733
734
735
736
737
738
739
740

742
743
744
745
746
747
748
749

750
751
752
753
754
755
756
757
758
759
760
761
762
763

764
765
766
767
768
769
770

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.03.478960; this version posted February 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of multiple Glossina species and D. punctata were analyzed (6, 26).
In specific, this allowed comparison between males, non-pregnant
females, early pregnancy, and late pregnancy. Transcripts per mil-
lion (TPM) was determined using Sailfish (79). The expressional
changes were compared with the weighted correlation network anal-
ysis (WGCNA). In specific, orthologs that were identified through
the use of Orthofinder (18) between Diploptera and Glossina sp.
with sequenced genomes (6, 26). The single copy orthologs obtained
from Orthofinder were used for WGCNA to identify groups of genes
with similar expression profiles males, during early pregnancy, and
late pregnancy. The WGCNA was conducted as a signed analyses
with a soft power of 12. Modules that were significantly associated
with early and late pregnancy were analyzed for enriched GOs fol-
lowing a false detection rate detection. Immune-related genes were
analyzed through the use of Deseq of previous data (6), where the
putative immune genes were identified. Clustering was performed
on normalised counts using the R package DEGreports v. 1.25.1
(80), with a minimum cluster size of 20.

Functional validation of factors identified in genomics and transcrip-
tomic studies . Together with our results of detection of selection in
viviparous species and gene’s expression at different life-stages in
D. punctata, we identified genes of interest, which could be linked
with the adaptation to viviparity. RNA interference was conducted
according to (6) and (81). Briefly, dsRNA was generated with a
MEGAscript RNAi Kit (Ambion). Following preparation of the
dsRNA, each pregnancy female was injected with 2-3 pg of dsRNA
at 30-40 days into the pregnancy cycle with a pulled glass capillary
needle. Control individuals were injected with a dsRNA target-
ing green fluorescent protein (6). Individuals were monitored for
abortions and the duration of pregnancy.

Immune functionality was assessed through the use of injection of
Pseudomonas aeruginosa in pregnant females to confirm potential
altered immunity during this state. To do so, bacteria was grown
until a log-phase and injected 1.0 x 10> CFU of P. aeruginosa in 3
1 PBS in pregnant or virgin females. Survival was monitored for 40
days.
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