
mcPBWT: Space-efficient Multi-column PBWT Scanning
Algorithm for Composite Haplotype Matching

Pramesh Shakya1 Ardalan Naseri2 Degui Zhi2,∗

Shaojie Zhang1,∗

1Department of Computer Science
University of Central Florida, Orlando FL 32816, USA

2School of Biomedical Informatics
University of Texas Health Science Center at Houston, Houston, TX 77030, USA

Abstract

Positional Burrows-Wheeler Transform (PBWT) is a data structure that supports efficient
algorithms for finding matching segments in a panel of haplotypes. It is of interest to study the
composite patterns of multiple matching segments or blocks arranged contiguously along a same
haplotype as they can indicate recombination crossover events, gene-conversion tracts, or, some-
times, errors of phasing algorithms. However, current PBWT algorithms do not support search
of such composite patterns efficiently. Here, we present our algorithm, mcPBWT (multi-column
PBWT), that uses multiple synchronized runs of PBWT at different variant sites providing a
“look-ahead” information of matches at those variant sites. Such “look-ahead” information al-
lows us to analyze multiple contiguous matching pairs in a single pass. We present two specific
cases of mcPBWT, namely double-PBWT and triple-PBWT which utilize two and three columns
of PBWT respectively. double-PBWT finds two matching pairs’ combinations representative of
crossover event or phasing error while triple-PBWT finds three matching pairs’ combinations
representative of gene-conversion tract.

∗Corresponding authors. Email: degui.zhi@uth.tmc.edu; shzhang@cs.ucf.edu.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

1 Introduction

Durbin’s PBWT (positional Burrows-Wheeler Transform) [1] is an efficient data structure that
operates on a panel of haplotypes that are bi-allelic to find all the matching segments of a given
minimum length threshold, L. In addition to that, it’s also capable of finding matches for a query
haplotype against a reference haplotype panel and other useful compression algorithms.

Given the linear time complexity of PBWT algorithms, they scale well to large datasets. Because
of this, they have widely been incorporated in state-of-the-art statistical phasing and imputation
tools [2, 3, 4]. PBWT algorithms have also been used to find identical-by-descent (IBD) [5, 6, 7]
segments shared among individuals of a population. IBD segments are segments of chromosome
shared among individuals such that they share a most recent common ancestor. Numerous features
of IBD segments including their counts, length distribution, etc have been studied as they reveal
useful information of the population history, selection pressure, and the disease loci [8]. Many
other variations of the PBWT algorithm have been developed that tackle variety of problems.
gPBWT [9] provides a method to efficiently query graph-encoded haplotypes, d-pbwt [10] provides
efficient algorithms for query haplotype insertion and deletion, mPBWT [11] provides algorithms to
deal with multi-allelic panels, [12] allows wildcard characters in the PBWT panel to study relative
fitness of genomic variants, and cPBWT [13] and related works [14, 15] extend pairwise segment
matching to multi-way matching, i.e., clusters of haplotype matches.

It is of interest to study composite haplotype matching patterns. For example, two long segment
matches of a haplotype that are adjacent to each other may indicate a recombination event or an
error of the phasing method. Another example is a combination of three segment matches, two
long ones between the same pair of haplotypes, surrounding a relatively short one in the middle,
that is a hallmark of a gene conversion. However, most existing problem formulations of PBWT
algorithms are to find single matching segments between pairs of haplotypes or a single matching
block among a cluster of haplotypes.

Recently, bi-directional PBWT [16] (or bi-PBWT) was the first to study composite matching
patterns of more than one matching blocks. bi-PBWT finds all matches between sufficiently long
matching blocks at both sides of a site, with a small gap of tolerance. The bi-PBWT algorithm is a
two-pass scanning algorithm, first scanning backwards, storing the reverse PBWT data structure,
and then a second pass scanning forward and makes the block matching. We wish to generalize
the two-pattern matching problem to more, and with a more general definition of the connections
between individual matching patterns.

Here, we formulate the problem of composite haplotype matching. Conceptually, the goal
of composite haplotype matching problem is to find a number of pairwise matching segments or
matching clusters, each one is long enough, with small enough gaps/overlaps, and the haplotype IDs
of these segments satisfy certain condition (e.g., having a single id shared with all segments, and the
other IDs may or may not belong to the same individual). The phasing error pattern, recombination,
and the gene conversion each can be seen as special cases of such composite haplotype matching
patterns.

In this paper, we introduce a space-efficient algorithm, mcPBWT, that utilizes two or more syn-
chronized scans over multiple columns of PBWT to compare and analyze multiple sets of matches.
While a naive solution in the style of bi-PBWT that stores pre-computed PBWT is time-efficient,
the space-efficiency of pre-computed panel can be inconveniently large for biobank-scale data. Our
algorithm’s multi-column idea allows various columns of PBWT to exchange information and inte-
grate multiple single matches without a large memory-footprint or disk-usage. The algorithm also
makes a single pass of a haplotype panel. This online nature and generalizability of the algorithm
will provide an efficient way of studying complex set of matches.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 Preliminaries

2.1 PBWT Overview

PBWT (positional Burrows-Wheeler Transform) is an efficient data structure that finds all matches
of user-specified minimum length (L) in an efficient manner given a panel of haplotype sequences.
In his paper, Durbin [1] defines a haplotype panel X as a set of M haplotype sequences xi ∈ X,
i = 0, 1, 2, ...,M − 1. Each sequence xi has N SNP sites indexed by k, k ∈ {0, 1, ...N − 1}. All
the sites are assumed to be bi-allelic, namely xi[k] ∈ {0, 1}. Locally maximal match is defined as
a match between two haplotype sequences s and t from k1 to k2 such that, s[k1 − 1] ̸= t[k1 − 1],
or k1 = 0 and s[k2] ̸= t[k2], or k2 = N . A match is a long match if it is locally maximal and its
length satisfies a user-specified length threshold. Prefix array a contains N+1 reverse prefix sorted
orderings of the sequences, one for each k ∈ 0...N . It can also be thought of as a permutation
of indices of the haplotype sequences that range from 0 to M − 1 for every k ∈ {0, 1, 2...N}. ak
is the k-th reverse sorted ordering of the haplotype sequences up to the site k − 1. In any ak,
adjacent sequences are maximally matching until k. yki is the i-th sequence in ak, y

k
i = xak [i]. The

divergence array dk stores the starting position of locally maximal matches ending at k between a
sequence and the preceding sequence in ak.

2.2 Composite Haplotype Matching

Here, we generalize the notion of haplotype matching in a panel. A single haplotype match pattern
(or single match) in a haplotype panel is defined as p = (c, k1, k2), where c is a subset of the total
set of haplotype indexes C = {0, ...,M − 1}, and the haplotype sequences match between sites k1
and k2: xi[k1, k2) = xj [k1, k2), for any i, j ∈ c. Here, the length of the pattern is L(p) = |k2 − k1|,
and the width of the pattern is W (p) = |c|. We can also denote the sequence id set of p as c(p) = c,
the left boundary of p as l(p) = k1, and the right boundary as r(p) = k2. In general, |c| ≥ 2 indicates
a cluster of haplotypes matching. For pairwise matching, |c| = 2. The problem of single pattern
haplotype matching is, given a predefined length cutoff L and width cutoff W , find all patterns p,
such that L(p) ≥ L and W (p) ≥W in a haplotype panel.

Further, for two single haplotype match patterns p and q, we define q g-follows p if they are
adjacent, i.e., the gap (or overlap) between them, g(p, q) = l(q) − r(p), is small: |g(p, q)| ≤ g and
some haplotypes are shared among their sequence id sets c(p) ∩ c(q) ̸= ∅.

With that, we define a composite haplotype match pattern in a haplotype panel as a series of
B single matches, P = {pb}, b = 0...B − 1, that g-follow each other, i.e., pi g-follows pi−1, for

i = 1..B−1, and they share some common haplotypes c(P) =
⋂B−1

b=0 c(pb) ̸= ∅. We call B the span
of P, and c(P) the thread of P.

The problem of composite haplotype matching pattern is, given a predefined set of length
cutoffs {Lb}, b = 0...B − 1, width cutoff W , gap tolerance g, the span B, the thread width w, find
all composite patterns P = {pb}, b = 0..B − 1 such that L(pb) ≥ Lb, W (pb) ≥W , pi g-follows pi−1,
for i = 1..B − 1, and |c(P)| = w. Of course, it is possible to specify different width cutoffs and gap
tolerances for individual single match. We omit that for simplicity of presentation.

In this work, we mainly focus on double haplotype match patterns (B = 2) or triple haplotype
match patterns (B = 3). We will also mainly focus on pair segment matching (W = 2), and
single thread composite patterns (w = 1). We will present memory-efficient multi-column scanning
PBWT-based algorithms: double-PBWT for identifying double haplotype match patterns, and
triple-PBWT for triple haplotype match patterns.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

3 Multi-column PBWT

In PBWT, a single column scans the haplotype panel from left to right and updates divergence
values and prefix arrays to output long matches. Let Pk,L signify the active single column of PBWT
operating at site k finding matches of length at least L ending at site k. If the panel were to be
scanned in a reverse fashion from right to left then, RN−k,L would signify the active single column
of PBWT operating at site N − k finding matches of length at least L ending at site N − k. This
would allow the user to compare two sets of matches at site k (or N − k if looking from right to
left) i.e. matches from Pk,L and RN−k,L. This method would require the panel to be scanned twice
if we wanted to compare such matches along different SNP sites of the panel. In fact, one approach
would be to scan the panel in reverse and save all the precomputed divergence values and prefix
arrays before hand as in [16]. While this method works well, it occupies disk-space and needs to
be loaded into memory which might not be efficient for larger panels. In contrast, mcPBWT is
capable of providing the same information on a single pass of the haplotype panel from left to right
using multiple columns of PBWT without having to pre-scan the panel and save the values on disk.

The general idea of mcPBWT is to utilize the information obtained from “look-ahead” PBWT
columns. Here, a new PBWT column operating at site k + L that finds all the matches starting
at site k is denoted by P

′
k+L,L such that matches found by columns P

′
and R are the same i.e.

P
′
k+L,L = RN−k,L. So mcPBWT would consist of a set of PBWT columns where the columns

are finding matches ending at a site or starting few sites before. Even though, we only talk about
two columns of PBWT here, similar approach can be also used for the case of three columns of
PBWT. In fact, we can spawn multiple such columns of PBWT and at each column, the user has
the flexibility to find either matches ending at that site as in PBWT or have the flexibility to find
matches starting certain number of sites before, depending on the use case. First, we discuss the
divergence value properties that enable us to find the matches starting at a certain site and then
the two specific cases of mcPBWT in the following sections.

3.1 Divergence Value Properties

There are two major properties of the divergence values that assist in finding the matches starting at
a certain site efficiently. The first property asserts that in a divergence array, adjacent divergence
values cannot be equal unless it is zero (or when a match does not exist)[1], while the second
property that extends the first property asserts that between any two consecutive equal divergence
values there must be a divergence value that is greater than those equal values. These properties
are presented formally as two lemmas below.

Lemma 1. Two adjacent divergence values aren’t equal unless it is zero (or when the divergence
value greater than current k, i.e. when there is no match).

Proof. This property mentioned by Durbin, asserts that dk[i− 1] ̸= dk[i] , 0 < i < M except when
dk[i] = 0 or dk[i] = k. For any index i, the divergence value at some site k, dk[i] gives the starting
position of a match between haplotypes at index i and i−1. Since the panel is bi-allelic and reverse
prefix sorted, this means that yi−1[dk[i] − 1] must be 0 and yi[dk[i] − 1] must be 1. The same
condition holds for dk[i− 1] in that yi−2[dk[i− 1]− 1] must be 0 and yi−1[dk[i− 1]− 1] must be 1.
But if we assume that dk[i] = dk[i−1], there is a contradiction on the value for yi−1[dk[i]−1]. This
proves that the adjacent divergence values can’t being equal unless the divergence value is equal to
0 or k (match does not exist).

Lemma 2. In a divergence array dk, assume dk[i] = x, and there exists another index g, g < i and
g ̸= i − 1 where g is the first index preceding i to have divergence value equal to x i.e. dk[g] = x,

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1: Two blocks of matches of minimum length 2 starting at site k = 2 in a panel of 10 haplotypes reverse
prefix sorted at k = 4. The process of block detection while scanning the divergence array is shown. The rightmost
colored rectangle (under d4) shows the divergence value being scanned while the solid colored rectangles, blue in (a)
and red in (b), show the actual matching blocks. The grey boxes at position k = 1 show the two groups within each
block.

then there must be a divergence value greater than x at index h, where g < h < i and dk[h] > x
(except when x = 0) for 0 < g, h, i < M .

Proof. This property is essentially an extension of lemma 1. In a bi-allelic panel, dk[i] = x asserts
that yi−1[x − 1] = 0 and yi[x − 1] = 1. For index h in the range (g, i), the divergence value can
either be dk[h] < x or dk[h] > x since g is the first index preceding i where dk[g] = x. If we assume
that all the divergence values in the range (g, i) are less than x , we can conclude that yh[x−1] = 0,
∀ g < h < i. This includes dk[g+1] < x , which implies that yg+1[x− 1] = yg[x− 1] = 0. However,
we already have the case that dk[g] = x , which means that yg[x − 1] = 1 and yg−1[x − 1] = 0.
That is a contradiction for the value of yg[x − 1] which proves that it cannot be the case that all
the divergence values are less than x. Hence, there must be a divergence value greater than x in
the range (g, i).

3.2 Finding blocks of starting matches

In a PBWT panel, neighboring haplotypes sharing matching segments cluster together. Such a
collection of neighboring matches is called a block. Such blocks of matches are separated by a
haplotype whose divergence value is greater than the difference of the site being observed and the
length threshold specified. When iterating over the divergence array at a certain site, dk , the
divergence value properties discussed above restrict the combinations for the ordering of divergence
values in the array. This in-turn assists in finding such blocks of matches where the matches share
the same starting position.

Fig. 1 shows an example of using the divergence value properties to find blocks of starting
matches of length, L ≥ 2. It shows a reverse prefix sorted panel of 10 haplotypes at site k = 4,

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2: Double haplotype match patterns (a) Double haplotype match pattern where c(p0) = {H1, H2}, c(p1) =
{H1, H3} and L(p0) ≥ L1, L(p1) ≥ L2. Such formation represents crossover breakpoints. (b) Alternating match
where A and B are two individuals and individual B has an alternating match with respect to individual A.

where d4 shows the values of the divergence array and a4 shows the prefix array. Fig. 1(a) shows
the first block of starting matches found and Fig. 1(b) shows the second block found. These two
blocks are separated by the sequence indexed 3 in a4 with divergence value 3 which is greater than
k − L = 2. The grey box at site k = 1 in the figures show the two clusters being formed within a
block, called groups. Within each block, the top group consists of zeros at site k − L − 1 and the
bottom group consists of ones at that site. It’s also to be noted that a block of starting matches
must contain only one sequence with divergence value equal to k−L value. In the blue block, that
sequence is 1, and in the red block, that sequence is 9. The haplotypes belonging to the same block
but different groups constitute the actual matches that are of minimum length 2 and start at site
k = 2. These starting matches are given by the tuples (3, 1), (3, 4) for the blue block and (0, 9) for
the red block.

3.3 double-PBWT

double-PBWT, as the name suggests, uses two columns of PBWT simultaneously scanning the
panel from left to right. The two columns are Dk,L1 and D

′
k′,L2 where column Dk,L1 is operating

at site k finding matches of length at least L1 ending at site k while column D
′

k′ ,L2
is operating

at site k
′
, L2 sites ahead of k such that k

′
= k + L2. This leading column finds matches of length

at least L2 starting from site k. Such a formulation of mcPBWT enables us to evaluate matches
flanking on either side of a site. Such flanking matches can be defined by a composite haploytpe
match pattern with B = 2, namely, double haplotype match pattern where P = {p0, p1}, |c(P)| = 1
, W (p0) = W (p1) = 2 and g = 0(for simplicity). This form of composite pattern is structured to
signify patterns of recombination. Such combination of matching pair segments were also shown to
be potential phasing errors[7]. Here, we introduce and focus on one such variation of this composite
pattern termed alternating match but the algorithm can find all the other possible variations as
well. We define alternating match and the problem statement formally in the following paragraphs.

Alternating Match Definition. An alternating match is a strict case of a double haplotype
match pattern, P = {p0, p1}, |c(P)| = 1, W (p0) = W (p1) = 2 where individual information is also
encoded. If we assume the single thread haplotype belongs to an individual say, A, the non-thread
haplotypes in p0 and p1 must be the complementary haplotypes of the same individual, say, B.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

Such a case of double haplotype match pattern is termed as an alternating match.For instance,
if p0 is a match between Ai[k1, k2) and Bj [k1, k2)where, i, j ∈ {0, 1} and Ai, Bj are haplotypes of
individuals A and B respectively and Ai is the thread haplotype. Then p1 must be a match between
Ai[k3, k4) and Bj′ [k3, k4), where Bj′ is the complement haplotype of individual B. Here, B is said
to have an alternating match with respect to A. Fig. 2 shows the double haplotype match pattern
and an alternating match. Fig 2(a) shows the double haplotype match pattern where H1, H2 and
H3 are three haplotypes. Here, sequence id set of p0, i.e., c(p0) = {H1, H2} and sequence id set
of p1, c(p1) = {H1, H3} where c(p0) ∩ c(p1) = {H1} is the thread haplotype. This form of double
haplotype match represents crossover breakpoints. Similarly, Fig. 2(b) shows an example of an
alternating match where individual B has an alternating match with respect to individual A. Here,
sequence id set of p0, i.e., c(p0) = {A0, B0} and sequence id set of p1, c(p1) = {A0, B1} such that A0

is the thread haplotype and B0 and B1 are complementary haplotypes of individual B. The first
segment of the alternating match (the blue segment) is of length L1 and the second yellow segment
is of length L2. Fig. 2(b) shows the case where the boundaries of the two pairs are juxtaposed
such that k2 = k3, i.e. g = 0.

Problem Statement. Given a phased haplotype panel and user specified length parameters L1,
L2 and g (here assumed 0 for simplicity), find all the alternating matches. We discuss the simple
case of the alternating matches with strict boundaries as shown in Fig. 2(b) such that g = 0. The
algorithm proceeds where the leading PBWT column D

′
first stores the information on starting

matches using block and group properties, passes this information to the lagging PBWT column
D which then checks if an alternating match exists for each ending match pair found of minimum
length L1. These two PBWT columns are L2 (k

′ − k = L2) distance apart so that the starting
matches found are of length at least L2.

Algorithm 1 shows the working mechanism for PBWT column D
′
. It updates the block and

group information for all the starting matches found at a given site. The block array of size M
keeps track of the block-membership of all the haplotypes, where the index of the array represents
the haplotypes’ indexes. An integer value (id) is assigned to haplotypes belonging to the same
block. group, an array of size M distinguishes between the haplotypes of the block with 0 or 1 at
k

′ −L2− 1 position. The index of this array also represents the haplotypes. rblock stores the same
block and group information in a dictionary format where it is indexed by the block id to find the
double haplotype match pattern show in Fig. 2(a). The divergence values and prefix arrays are
calculated using Durbin’s algorithm 1 and 2 [1]. The block and group arrays along with rblock are
updated simultaneously as the divergence and prefix arrays are updated so the time complexity to
find the blocks of starting matches is O(M) at each site and O(MN) for the all sites. The block
and group arrays are passed on to the PBWT column D where it decides if an alternating match is
found. Here, the divergence array is scanned from M − 1 to 1 as it’s more intuitive to understand
the formation of block and groups but it can be scanned in the other direction without affecting
the algorithm as shown later in Algorithm 4

Algorithm 2 is responsible for finding the other set of matches ending at site k and deciding if
an alternating match exists. This algorithm scans the panel from site 0 to N simultaneously as D

′

scans the panel ahead of it. It finds all matches ending at site k using Durbin’s algorithm 3 [1]. For
every such ending match, it checks to see if there’s a starting match that satisfies as an alternating
match. This is done using the block and group arrays passed from D

′
. When the condition is

met, the alternating match is reported. This checking is done in constant time since array access is
constant time. Because of this constant time lookup for every pair of ending match found, the time
complexity depends on the number of such match pairs found. We define C as the total number of

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 1 Leading PBWT at column D
′
k′,L2 : Find blocks and groups of matches starting at

position k

1 create arrays block[], group[], s[]
2 create rblock{} ▷ Store haplotypes belonging to blocks
3 id← 1
4 f ← true
5 for i = M − 1 to 0 do
6 if f then ▷ Start looking for a block
7 if dk′ [i] < k

′ − L2 then
8 s.add(ak′ [i])

9 else if dk′ [i] == k
′ − L2 then ▷ Block exists

10 s.add(ak′ [i])
11 create rblock{id} ← {}
12 for all j ∈ s do
13 block[j]← id
14 group[j]← 1
15 rblock{id}.add(j)
16 f ← false, clear s
17 else
18 clear s
19 else
20 if dk′ [i] < k

′ − L2 then
21 s.add(ak′ [i])
22 else ▷ Block ends
23 s.add(ak′ [i])
24 for all j ∈ s do
25 block[j]← id
26 group[j]← 0
27 rblock{id}.add(j)
28 id← id+ 1, f ← true

match pairs found across all the sites. Therefore, the time complexity for this column is O(C).
It is to be noted that this algorithm does not handle for the double haplotype match pattern in

Fig. 2(b) but rblock can be used to query such patterns easily. For every ending match pair, like
H1 and H2 detected by lagging PBWT at column D, the haplotypes belonging in the blocks of H1
and H2 are scanned using block and rblock, to find the second matching segment H1 and H3 (H1
being the thread haplotype) or H2 and H3 (H2 being the thread haplotype). This scanning process
is done in O(b) time for every ending match pair where b is the average number of haplotypes in a
block. Hence, the overall time compleixty for such an algorithm would be O(C ∗ b) across all the
sites.

Algorithm 3 shows the synchronous execution of both PBWT columns as it does a one pass
scan on the panel. Since both columns move simultaneously across all the sites, the overall com-
plexity of the algorithm is O(MN + C). While we only show the case of alternating match when
g = 0, these algorithms can be extended to handle for overlaps or gaps (g ≥ 1) by altering the
distance between the two PBWT columns.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 2 Lagging PBWT at column Dk,L1 : Report matches of length at least L1 forming
alternating matches

1 block [], group [], rblock{} ▷ Obtained from Algorithm 1
2 u← 0 , v ← 0, create empty arrays a[],b[] ▷ Modified Durbin’s algorithm 3
3 for i = 0 to M − 1 do
4 if dk[i] > k − L1 then
5 if u > 0 and v > 0 then
6 for all 0 ≤ iu < u and 0 ≤ iv < v do
7 for match from a[iu] to b[iv] ending at kb do
8 if block[a[iu]] = block[b[iv]

c] then ▷ b[iv]
c is the complement of b[iv]

9 if group[a[iu]] ̸= group[b[iv]
c] then

10 report alternating match

11 if block[b[iv]] = block[a[iu]
c] then

12 if group[b[iv]] ̸= group[a[iu]
c] then

13 report alternating match

14 u← 0, v ← 0

15 if yi[k] = 0 then
16 a[u]← ak[i], u← u+ 1
17 else
18 b[v]← ak[i], v ← v + 1

Algorithm 3 double-PBWT: Simultaneous run of two PBWT columns

1 k ← 0, k
′ ← 0

2 while k
′
< N do

3 run Algorithm 1 ▷ compute block[] and group[] for k
′

4 if k
′ − k ≥ L2 then ▷ feed block[] and group[] to algorithm 2

5 run Algorithm 2 ▷ report alternating matches at k
6 k ← k + 1
7 k

′ ← k
′
+ 1

3.4 double-PBWT: Comparing Block of Matches

So far we’ve used double-PBWT to find double haplotype composite matching patterns where
W (pb) = 2, b = 0, 1 but here we take advantage of its versatility to make comparisons between
blocks of matches, i.e. W (pb) ≥ 2, b = 0, 1. The main idea here is to only evaluate matching blocks
found by the two PBWT columns when they satisfy user-specified constraints of a valid block
structure. A block structure is defined as a block consisting of at least W

′
haplotypes in common

and sharing at least L long segments. This definition is adapted from cPBWT [13] and allows us to
process composite match patterns in blocks. Such block-based comparison can be useful in studying
recombination patterns too [16]. Here, both columns of PBWT store haplotypes that belong to
different blocks and the blocks found by the two columns are compared to see if they share at least
W

′
haplotypes. When this requirement is met, the blocks are output. While Fig. 3 shows the

comparison of blocks of haplotypes, this can also be extended to find alternating matches. Since
alternating matches have more structure in terms of individuals that the haplotypes belong to, the
algorithm needs to be modified to account for this constraint. For alternating matches in a block
structure, additional constraints can be specified for the minimum number of thread haplotypes
i.e. |c(P)| ≥ wmin and the minimum number of alternating individuals that should be present in a
block-structure.

Fig. 3 shows an example of analyzing blocks of matches of length L1, L2 ≥ 2 on either side of

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3: Double PBWT finding blocks of matches of length L1, L2 ≥ 2 and W
′
≥ 2. (Left) Haplotype panel with

10 haplotypes reverse prefix sorted at k = 3. The two colored boxes represent the block of matches ending at k = 3.

(Right) Haplotype panel reverse prefix sorted at k
′
= 5 where the colored boxes represent blocks of matches starting

at k = 3. (Middle) The boxes in the middle show haplotypes common between the lagging and leading blocks. The

grey block from lagging PBWT column D3,2 and green block from leading PBWT column D
′
5,2 share two haplotypes

{1, 6} to satisfy W
′
≥ 2 showing that the two haplotypes have an extending match.

site 3. Here, a valid block structure should have at least 2 haplotypes (W
′ ≥ 2). The only valid

block structure found is shown in the middle with two haplotypes (6, 1) common to the two top
blocks indicating that they share an extending match. It can be seen that this can be generalized
to handle mismatches to study recombination patterns by adjusting the distance between the two
PBWT columns.

3.5 triple-PBWT

triple-PBWT is the case of mcPBWT where three columns of PBWT are utilized. Each column
has the freedom to find matches ending at those sites or starting few sites before. Here, we define
triple-PBWT with three columns Tk,L1 , T

′

k′ ,L2
and T

′′

k′′ ,L3
where, k

′
= k+L2 and k

′′
= k+L2+L3.

triple-PBWT can be useful in finding a triple haplotype composite match pattern (B = 3),

Figure 4: A composite pattern of three matching segments between three haplotypes H1, H2 and H3. This
pattern is representative of gene conversion, where the yellow segment is a possible gene conversion tract such that

L2 << L1, L3. The vertical dashed lines show the three simultaneous PBWT runs each operating at sites k, k
′
and

k
′′
, where k

′
= k + L2 and k

′′
= k + L2 + L3.

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 4 triple-PBWT at column T
′
: Find matches that are of exact length L2 at site k

′

1 create block[], group[], s[] ▷ For queries of exact match pairs
2 create rblock{} ▷ Store haplotypes belonging to blocks
3 Create end[] ▷ Tracks haplotypes that have 0 or 1 in the next site
4 id← 1, f ← False
5 for i = 0 to M − 1 do
6 if dk′ [i] > k

′ − L2 then
7 if not s.empty() and f then
8 for e ∈ s do
9 block[e]← id, group[e]← 1

10 rblock{id}.add(e)
11 id← id+ 1
12 s.clear(), s.add(ak′ [i])
13 f ← False
14 else
15 s.clear(), s.add(ak′ [i])

16 else if dk′ [i] < k
′ − L2 then

17 s.add(ak′ [i])

18 else if dk′ [i] == k
′ − L2 then

19 f ← True
20 if not s.empty() then
21 Create rblock{id} ← {}
22 for e ∈ s do
23 block[e]← id, group[e]← 0
24 rblock{id}.add(e)
25 s.clear(), s.add(ak′ [i])

26 if yi[k
′
] = 0 then

27 end[i]← 1 ▷ haplotype ends in 0
28 else
29 end[i]← −1 ▷ haplotype ends in 1

30 if not s.empty() and f then ▷ Boundary case
31 for e ∈ s do
32 block[e]← id, group[e]← 1
33 rblock{id}.add(e)

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

P = {pb}, |c(P)| = 1 and W (pb) = 2, b = 0...2 . The set of length constraints for the three matching
pairs are {L1, L2, L3} such that L(p0) ≥ L1, L(p1) = L2 and L(p2) ≥ L3 and L2 << L1, L3. Here,
L2 is restricted to be a short match in comparison to L1 and L3 to emulate a gene-conversion
tract. Fig. 4 shows an example of triple haplotype match pattern. Here, H1, H2 and H3 are three
haplotypes where, H1 is the thread haplotype. Similarly, the sequence id sets are c(p0) = {H1, H3},
c(p1) = {H1, H2} and c(p2) = {H1, H3}. The three columns of triple-PBWT are represented by
the vertical dashed lines. Here, column T runs a standard PBWT finding matches of length at
least L1 ending at site k. The T

′
column finds matches of exact length L2 starting at site k and

ending at site k + L2 and column T
′′
finds matches of length at least L3 starting from site k + L2.

While a simple composite pattern like the one shown can be representative of gene-conversion tract,
it’s not sufficient condition and care has to be taken since the smaller match pair p1 could end up
providing lots of false positives. Additional information has to be incorporated to this formulation
to distinguish false positives from true gene-conversion tracts but this shows one potential use case
for the algorithm. The first column behaves similar to Algorithm 1 and can be easily extended
from there. The last column runs Algorithm 2 as in double-PBWT. The only change is for PBWT
column T

′
. Algorithm 4 shows how the exact matches can be catalogued for column T

′
. Exact

matches satisfy both restrictions of starting and ending matches and hence the algorithm uses
ideas of both starting and ending matches to find them. Here, block and group arrays along with
rblock serve the same function as in double-PBWT. rblock is a dictionary indexed by the block
ids that store haplotype indices belonging to such blocks. This dictionary is used to find exact
match pairs like p1. A new array end is introduced which keeps track of whether the haplotypes
have 0 or 1 in the next variant site. This end array is utilized to filter the exact matches from the
starting matches. Since, the end array is updated along with divergence and prefix arrays, the time
complexity for this algorithm at a given site is O(M). The overall synchronization of the three
columns is similar to double-PBWT in that columns T

′
and T

′′
catalogue the exact matches and

starting matches respectively and pass this information in the form of block, group, rblock and end
(for column T

′
) to column T . Then, for every ending match pair detected by column T , it takes

constant time to look up match pairs p2 but the haplotypes that belong to H1’s block have to be
scanned for match pair p1. When those matching pair segments exist, the triple haplotype match
is reported.

Of the three PBWT columns of triple-PBWT, column T
′′
is the same as the leading column of

double-PBWT and hence has a time complexity of O(M) at each site and O(MN) across all variant
sites. For the middle column T

′
, the time complexity to catalogue the exact matches is O(M) at

each site and O(MN) across all the sites. It’s important to note that querying of exact matches
of length L2 can be done by accessing block, group, end arrays in constant time. Lastly, column T
makes constant time query for every ending match found to see if the last match pair exists but has
a time complexity of O(b) to find the middle match pair, where b is average number of haplotypes
in a block. Since, T is our trigger column, the time complexity depends on the number of match
pairs found by PBWT column T . Hence, we define the complexity of this column across all sites
similar to double-PBWT as O(C ∗ b), where C is the total number of match pairs found across all
the variant sites. The overall time complexity of Triple PBWT is then O(C ∗ b+MN +MN), i.e.
O(MN + C ∗ b).

4 Discussion

In this work, we present a more flexible and powerful variation of PBWT for detecting composite
haplotype matches. The original formulation in PBWT for the haplotype matching problem only

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

captures the matching pattern at every single column separately. Our algorithm, however, simul-
taneously captures the patterns across multiple columns of PBWT. In the single column matching
formulation, at the active column of the PBWT, one only has access to the information in the
past but is uninformed about future columns. In our formulation, the columns at the forefront can
provide “look ahead” information allowing the algorithm to make complex decisions. Our flexible
algorithm’s capability to analyze composite matching patterns opens new potentials of the PBWT
data structure.

The proposed method does not require to output or book keep the matches which will be very
useful in analyzing large haplotype panels with millions of individuals. While the PBWT algorithm
is able to find all matches efficiently, the number of matches in large cohorts may be enormous. As a
result, analyzing composite patterns like alternating matches after the PBWT run may not be very
efficient. Hence, a flexible algorithm like double-PBWT would be useful in such cases. Additionally,
we also showed that the triple-PBWT could find composite haplotype match representative of
gene-conversion tracts. This shows that mcPBWT has potential to allow and adjust for flexible
matching criteria and is suitable for more general-purpose settings.The double haplotype match
pattern discussed where H1 is the thread haplotype and H2 and H3 have matches with it not only
identifies more recombination events but also provides plausible evidence that H2 and H3 coalesce
more recently. This could help to determine the time of the recombination events, and also help
“triangulating” the genealogical relationship among individuals carrying these matching segments.
Such analyses can also be conducted using blocks to enable stronger signal using mcPBWT.

Acknowledgements

PS, AN, DZ and SZ were supported by the National Institutes of Health grant R01 HG010086.
AN, DZ and SZ were also supported by the National Institutes of Health grants R56 HG011509.
AN and DZ were also supported by the National Institutes of Health grant OT2-OD002751.

References

[1] Durbin, R. Efficient haplotype matching and storage using the positional Burrows–Wheeler
transform (PBWT). Bioinformatics 30, 1266–1272 (2014).

[2] Loh, P.-R. et al. Reference-based phasing using the haplotype reference consortium panel.
Nature Genetics 48, 1443 (2016).

[3] Delaneau, O., Zagury, J.-F., Robinson, M. R., Marchini, J. L. & Dermitzakis, E. T. Accurate,
scalable and integrative haplotype estimation. Nature Communications 10, 1–10 (2019).

[4] Rubinacci, S., Delaneau, O. & Marchini, J. Genotype imputation using the positional burrows
wheeler transform. bioRxiv 797944 (2020).

[5] Naseri, A., Liu, X., Tang, K., Zhang, S. & Zhi, D. RaPID: Ultra-fast, powerful, and accurate
detection of segments identical by descent (IBD) in biobank-scale cohorts. Genome Biology
20 (2019).

[6] Zhou, Y., Browning, S. R. & Browning, B. L. A fast and simple method for detecting identity-
by-descent segments in large-scale data. The American Journal of Human Genetics 106,
426–437 (2020).

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

[7] Freyman, W. A. et al. Fast and robust identity-by-descent inference with the templated
positional burrows–wheeler transform. Molecular Biology and Evolution 38, 2131–2151 (2021).

[8] Thompson, E. A. Identity by descent: Variation in meiosis, across genomes, and in populations
194, 301–326 (2013).

[9] Novak, A. M., Garrison, E. & Paten, B. A graph extension of the positional burrows–wheeler
transform and its applications. Algorithms for Molecular Biology 12, 1–12 (2017).

[10] Sanaullah, A., Zhi, D. & Zhang, S. d-PBWT: dynamic positional Burrows-Wheeler trans-
form. In International Conference on Research in Computational Molecular Biology, 269–270
(Springer, 2020).

[11] Naseri, A., Zhi, D. & Zhang, S. Multi-allelic positional burrows-wheeler transform. BMC
Bioinformatics 20, 1–8 (2019).

[12] Williams, L. & Mumey, B. Maximal perfect haplotype blocks with wildcards. Iscience 23,
101149 (2020).

[13] Naseri, A., Zhi, D. & Zhang, S. Discovery of runs-of-homozygosity diplotype clus-
ters and their associations with diseases in uk biobank. medRxiv (2020). Doi:
10.1101/2020.10.26.20220004.

[14] Alanko, J., Bannai, H., Cazaux, B., Peterlongo, P. & Stoye, J. Finding all maximal perfect
haplotype blocks in linear time. Algorithms for Molecular Biology 15, 1–7 (2020).

[15] Cunha, L., Diekmann, Y., Kowada, L. & Stoye, J. Identifying maximal perfect haplotype
blocks. In Brazilian Symposium on Bioinformatics, 26–37 (Springer, 2018).

[16] Naseri, A., Yue, W., Zhang, S. & Zhi, D. Efficient Haplotype Block Matching in Bi-Directional
PBWT. In Carbone, A. & El-Kebir, M. (eds.) 21st International Workshop on Algorithms
in Bioinformatics (WABI 2021), vol. 201 of Leibniz International Proceedings in Informatics
(LIPIcs), 19:1–19:13 (Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
2021).

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.02.478879doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.02.478879
http://creativecommons.org/licenses/by-nc-nd/4.0/

