

1 Exploring different virulent proteins of human respiratory 2 syncytial virus for designing a novel epitope-based 3 polyvalent vaccine: Immunoinformatics and molecular 4 dynamics approaches

6 Abu Tayab Moin^{1,¶}, Md. Asad Ullah^{2,¶}, Rajesh B. Patil³, Nairita Ahsan Faruqui⁴, Bishajit
7 Sarkar², Yusha Araf⁵, Sowmen Das⁶, Khaza Md. Kapil Uddin¹, Md Shakhawat Hossain¹, Md.
8 Faruque Miah⁵, Mohammad Ali Moni^{7, 8}, Dil Umme Salma Chowdhury^{1*}, Saiful Islam^{9*}

10 ¹Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences,
11 University of Chittagong, Chattogram, Bangladesh

12 ²Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences,
13 Jahangirnagar University, Savar, Dhaka, Bangladesh

14 ³Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Department of
15 Pharmaceutical Chemistry, Maharashtra, India

16 ⁴Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data
17 and Sciences, BRAC University, Dhaka, Bangladesh

18 ⁵Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal
19 University of Science and Technology, Sylhet, Bangladesh

20 ⁶Department of Computer Science and Engineering, School of Physical Sciences, Shahjalal
21 University of Science and Technology, Sylhet, Bangladesh

22 ⁷Bone Biology Division, The Garvan Institute of Medical Research, Darlinghurst, NSW
23 Sydney, Australia

²⁴WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and
²⁵Community Medicine, Faculty of Medicine, UNSW Sydney, Australia

26 ⁹Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram
27 Laboratories, Chattogram, Bangladesh

29 *These authors contributed equally to this work

31

32 *Corresponding author:

33 Dil Umme Salma Chowdhury (dilgeb@cu.ac.bd), &

34 Saiful Islam (saifbiology80@gmail.com)

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49 **Abstract**

50 Human Respiratory Syncytial Virus (RSV) is one of the most prominent causes of lower
51 respiratory tract infections (LRTI), contributory to infecting people from all age groups - a
52 majority of which comprises infants and children. The implicated severe RSV infections lead
53 to numerous deaths of multitudes of the overall population, predominantly the children, every
54 year. Consequently, despite several distinctive efforts to develop a vaccine against the RSV as
55 a potential countermeasure, there is no approved or licensed vaccine available yet, to control
56 the RSV infection effectively. Therefore, through the utilization of immunoinformatics tools,
57 a computational approach was taken in this study, to design and construct a multi-epitope
58 polyvalent vaccine against the RSV-A and RSV-B strains of the virus. Potential predictions of
59 the T-cell and B-cell epitopes were followed by extensive tests of antigenicity, allergenicity,
60 toxicity, conservancy, homology to human proteome, transmembrane topology, and cytokine-
61 inducing ability. The most promising epitopes (i.e. 13 CTL epitopes, 9 HTL epitopes, and 10
62 LBL epitopes) exhibiting full conservancy were then selected for designing the peptide fusion
63 with appropriate linkers, having hBD-3 as the adjuvant. The peptide vaccine was modeled,
64 refined, and validated to further improve the structural attributes. Following this, molecular
65 docking analysis with specific TLRs was carried out which revealed excellent interactions and
66 global binding energies. Additionally, molecular dynamics (MD) simulation was conducted
67 which ensured the stability of the interactions between vaccine and TLR. Furthermore,
68 mechanistic approaches to imitate and predict the potential immune response generated by the
69 administration of vaccines were determined through immune simulations. Owing to an overall
70 evaluation, *in silico* cloning was carried out in efforts to generate recombinant pETite plasmid
71 vectors for subsequent mass production of the vaccine peptide, incorporated within *E.coli*.
72 However, more *in vitro* and *in vivo* experiments can further validate its efficacy against RSV
73 infections.

75 **Keywords:** Human syncytial respiratory virus; Polyvalent multi-epitope vaccine;
76 Immunoinformatics; Molecular docking; Molecular dynamics simulation; Immune simulation

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93 1. Introduction

94 The Human Respiratory Syncytial Virus (hRSV), a member of the family of *Paramyxoviridae*,
95 is known to be the primary cause of lower respiratory tract infections (LRTI), including

96 pneumonia and bronchiolitis, in infants, children, as well as elderly and immunocompromised
97 individuals [1-2]. RSV is an enveloped virus that contains a single-stranded, negative-sense
98 RNA with a genome size of about 15.2 kb. As of yet, two major RSV antigenic subtypes have
99 been identified, RSV-A and RSV-B, exhibiting differential sequence divergence throughout
100 their genome; RSV-A has been seen to be more prevalent than RSV-B [2-3]. Antibody cross-
101 reactivity patterns revealed these two antigenic subgroups (A and B) for RSV, which were then
102 divided into genotypes based on genetic divergence within the highly variable G gene [4-6].
103 Contributory to the fact that the RSV attachment (G) protein has a central conserved domain
104 (CCD) with a CX3C motif, which has been known to be linked to the generation of protective
105 antibodies, vaccine candidates including the G protein are of considerable interest [7]. A novel
106 genotype of RSV-A, known as RSV-A ON1 was found in Ontario, Canada, in 2010. RSV-A
107 ON1 has a 72-nucleotide duplication at the G Protein's C terminus [8], which has been linked
108 to an increased risk of pneumonia and lower respiratory tract infections [9]. However, the two
109 subgroups can coexist and thrive, owing to RSV reinfections being common throughout the
110 life of an infected individual, indicating that cross-immunity against distinct strains is only
111 partial [10]. RSV-A infection is commonly followed by RSV-B infection, although the scenario
112 may vary upon several factors [11]. A claim owing to the antigenic diversity of the G protein
113 states that, both within and between antigenic subgroups, this prominent diversity aids in
114 evading pre-existing host immune responses [12, 13].

115

116

117 RSV severely affects immunocompromised infants and the geriatric population with weaned
118 immune systems. The implicated virus infection is considered globally to be the second largest
119 cause of death, in children under one year of age. RSV-associated acute LRTI is responsible
120 for around 33 million serious respiratory infections a year, according to the World Health
121 Organisation (WHO); resulting in more than 3 million hospitalizations and about 60,000 deaths
122 of children under 5 years of age, and 6.7% of all deaths in infants younger than one-year-old.
123 About a half of these hospitalizations and deaths have since been confirmed to be in infants
124 younger than 6 months of age [14]. Additionally, RSV was identified as the third leading cause
125 of fatal childhood pneumonia after *Streptococcus pneumonia* and *Haemophilus influenza* in
126 2005, responsible for approximately 66,000 to 199,000 deaths from pneumonia in children
127 younger than 5 years [1]. The consequential impact of RSV on older people may be similar to
128 that of influenza, according to epidemiological research, both in the community and in long-
129 term care institutions. In nursing facilities, attack rates are around 5–10 percent per year, with
130 pneumonia (10–20 percent) and mortality (2–5 percent) being quite common. Moreover, RSV
131 infections cause around 10,000 deaths yearly among those aged 64 and over, according to
132 estimates based on US healthcare databases and viral surveillance results [15]. RSV infects the
133 cells lining the human respiration pathway, including the ciliated epithelial cells, and causes
134 upper and lower respiratory tract complications. Influenza-like diseases and LRTI display
135 clinical symptoms of serious RSV infection. However, the most frequent and serious
136 occurrence of infection in younger children is bronchiolitis. Also, over the lifespan of adults,
137 reinfection by the same and separate strains of RSV is considered to be normal, and therefore,
138 RSV is often termed as a chronic virus [2].

139
140 Consequently, over the past two decades, RSV has become a major focus for vaccination
141 studies to decrease the morbidity of lower respiratory tract infections. Several vaccinations and

142 antiviral drugs have been formulated and implemented over the years since its identification,
143 and while multiple vaccines, prophylactic and monoclonal antibody candidates are available in
144 clinical trials, no approved RSV vaccine is currently available to counter RSV [16]. The first
145 RSV vaccine, composed of the formalin-inactivated virus (FI-RSV) from the Bennett strain,
146 was studied in a clinical trial back in 1966. Unfortunately, however, the FI-RSV vaccine had a
147 disastrous effect as it struggled to induce an effective neutralizing antibody response, thus
148 preventing infection [2]. Large quantities of eosinophils were discovered in the lungs of
149 children and infants with severe illness, but not in individuals who had a normal RSV infection.
150 Following this unanticipated outcome, it was crucial to design a safe RSV vaccine, which
151 included increased testing for vaccine-induced illnesses [17-21]. The inability of the vaccine
152 to elicit effective neutralizing antibodies or memory CD8+ T cells, as well as the production
153 of a significant inflammatory CD4 T cell response, contributed to this vaccine-induced illness
154 [22-25].

155 Numerous modified RSV vaccine candidates have been designed after the failure of the FI-
156 RSV vaccine trial and many of them are now in clinical trials. However, none of those vaccine
157 candidates being licensed have so far made it to the international economy, for mass production
158 and administration. Although live-attenuated vaccines can stimulate both a humoral and
159 cellular immune response, clinical trials have revealed some potential drawbacks.
160 Chimpanzees are used to compare the amount of attenuation of vaccinations that are candidates
161 for use in humans. Karron et al. found that RSV vaccines that were temperature sensitive and
162 had a high degree of attenuation in chimps could cause infection in the lower respiratory tract
163 in children [26]. Furthermore, recombinant vector-based vaccinations allow for the
164 presentation of one or more antigens encoded on a viral vector such as PIV3 or adenovirus
165 [27]. Intranasal delivery of a new BLP (bacterial-like particle) conjugated to the RSV fusion
166 protein stimulates both mucosal IgA responses and increased IFN-production in a different sort

167 of vaccination approach [28]. Although both represent effective approaches, further assays to
168 evaluate the long-lasting immune responses are paramount [29].

169 In addition, it has been observed that, with the use of RSV vaccine candidates, palliative
170 treatment with RSV anti-infective drugs is also required [30]. Merely two approved RSV
171 antivirals are currently available, which include, palivizumab, a humanized preventive
172 monoclonal antibody, and aerosolized ribavirin for therapy. The symptoms of RSV infections
173 can be alleviated by these two antivirals, although they cannot serve prophylactic measures
174 [31]. While studies are underway to identify an effective antiviral therapy or countermeasure
175 to prevent RSV spread and infection, these studies have not been able to deliver any satisfactory
176 findings that can be used to tackle RSV infections [32].

177 The production of a viable vaccine candidate against a specific pathogen by traditional means
178 can often take many years [33]. However, the age of vaccine production, especially the novel
179 epitope-based "subunit vaccines," has been enriched by today's modern technology and the
180 availability of genomic information for almost all pathogens. These subunit vaccines consist
181 only of the antigenic protein segments of the target pathogen and hence, toxic and
182 immunogenic or allergenic parts of the antigen can be dissipated during the construction of the
183 specific vaccine [34]. Again, the development of vaccines using these computer-based
184 approaches takes far less time, and thus greatly reduces the expense of construction and
185 development [35, 36].

186 The immunoinformatics approach in this study was used to establish successful polyvalent
187 vaccines against the virulent strains of both forms of RSV, i.e. RSV-A and RSV-B respectively.
188 Immunoinformatics is a vaccine modeling process that allows predictions using several
189 computational methods. The novel antigens of a pathogen or virus are identified in
190 immunoinformatics by dissecting its genomic data and then, through the utilization of various
191 *in silico* biology and bioinformatics tools for vaccine design and development, by analyzing

192 the target pathogen genome [35, 37]. In our research, a polyvalent epitope-based vaccine
193 blueprint was produced that could produce a significant immune response to both RSV-A and
194 RSV-B forms, targeting the phosphoprotein (P protein), nucleoprotein (N protein), fusion
195 glycoprotein (F protein), and major surface glycoprotein (mG protein) of these viruses. Since
196 RSV-A is more prevalent than RSV-B, as a model, the vaccine was developed using RSV-A
197 [2]. For the T-cell and B-cell epitope prediction, the RSV-A P protein, N protein, F protein,
198 and mG protein were used and then the epitopes with 100 % conservancy in both species along
199 with some other selection criteria were selected for vaccine construction. The criteria for
200 selecting the epitopes include i.e., antigenicity (the parameter that measures whether the
201 epitopes stimulate a high antigenic response), non-allergenicity (to ensure that the epitopes do
202 not cause any unintended allergic reaction inside the body), non-toxicity, conservancy across
203 the selected organisms, as well as non-homologation of the human proteome. It is, therefore,
204 expected that the vaccine will be effective against both the subtypes - RSV-A and RSV-B. The
205 most common vaccine target for RSV is known to be the F protein [574 amino acids (aa) in
206 length], which is a highly conserved protein in both RSV forms. The F protein mediates the
207 fusion and attachment of the virus to its target cells along with the mG protein, thus facilitating
208 viral entry [2, 38]. The F1 (aa 137–574) and F2 (aa 1–109) subunits form a homotrimer in the
209 mature F protein, and the F1 subunit is required for membrane fusion. The F protein has two
210 different conformations i.e., the pre-fusion and post-fusion conformations [39, 40]. The protein
211 rearranges to a more stable post-fusion form during infection to allow viral entrance into the
212 host cell. Antibodies having neutralizing activity identify at least two antigenic sites on both
213 the pre-fusion and post-fusion forms of F (sites II and IV) [41-43]. In this study, the precursor
214 F0 protein was targeted to retrieve all of the potential antigenic epitopes. The possible
215 conformational change of the F protein, as well as the cleavage sites of the protein sequence,
216 were taken into account while generating the potential epitopes [39, 40].

217

218 The viral genome of RSV is surrounded by N protein, and the P protein is a vital component
219 of the viral RNA-dependent RNA polymerase complex which is necessary for the proper
220 replication and transcription of RSV [44]. Therefore, in our study, these four proteins were
221 used as possible targets to design a vaccine to suppress these viral proteins, preventing viral
222 entry, and thus interfering with the life cycle of the virus.

223

224 **2. Methods and Materials**

225 The high throughput immunoinformatics and MD approaches of vaccine designing are
226 illustrated in a step-by-step processes in **Fig 1**.

227

228 **Fig 1.** The step-by-step procedures of immunoinformatics and molecular dynamics approaches
229 used in the vaccine designing study.

230 **2.1. Protein sequences identification and retrieval**

231 Through existing literature reviews in the National Center for Biotechnology Information
232 (NCBI) (<https://www.ncbi.nlm.nih.gov/>) database, the RSV-A and RSV-B viruses were
233 identified and selected along with their target proteins (i.e., P protein, N protein, F protein, and
234 mG protein). The sequences of target proteins of the selected strains (i.e., RSV strain A2 and
235 RSV strain B1) were then extracted from the UniProt (<https://www.uniprot.org/>) database in
236 FASTA format. The NCBI Protein database is a collection of SwissProt, PIR, PRF, and PDB
237 sequences. It also includes GenBank, RefSeq, and TPA translations from elucidated coding
238 regions.

239 **2.2. Prediction of antigenicity and analysis of physicochemical**
240 **properties of the selected proteins**

241 Using the online antigenicity prediction tool, VaxiJen v2.0 (<http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html>), the antigenicity of the target protein sequences
242 was predicted with the prediction precision parameter threshold kept at 0.4. This tool uses the
243 method of transformation of auto cross-covariance (ACC) to predict the antigenicity of query
244 proteins or peptides and provides results with an accuracy of 70% to 89%. For this reason, this
245 server is the widely used and accepted server to determine the antigenicity of query proteins
246 [45]. ProtParam tool of the ExPASy server (<https://web.expasy.org/protparam/>) has
247 subsequently determined numerous physicochemical properties, i.e. the number of amino
248 acids, molecular weight, number of total atoms, theoretical pI, instability index, extinction
249 coefficient, half-life, grand average of hydropathicity (GRAVY), etc. of the target proteins
250 [46].

252 **2.3. Prediction of T-cell and B-cell epitopes**

253 The two major types of T-cells, cytotoxic T-cells, and Helper T-cells are both considered
254 essential for the successful design of the vaccine [47]. For specific antigen recognition of the
255 major histocompatibility complex class I (MHC-I) or CD8+ cytotoxic T-lymphocytic (CTL)
256 epitopes on the surface of the antigen-presenting cells (APCs), the cytotoxic T-cells are
257 important. Additionally, the helper T-cells are considered to be a crucial component of adaptive
258 immunity that interacts on the surface of APCs with major histocompatibility complex class II
259 (MHC-II) or CD4+ helper T-lymphocytic (HTL) epitopes. They function in activating the B-
260 cell, macrophages, and even cytotoxic T-cells [48, 49]. On the other hand, B-cells produce
261 antigen-specific immunoglobulins after their activation [50]. They can identify solvent-

262 exposed antigens via membrane-bound immunoglobulins called B cell receptors (BCRs) [51].
263 B-cell epitopes are important for defense against viral infections because they are the essential
264 immune system components that activate an adaptive immune response in response to a
265 specific viral infection. Therefore, the B-cell epitopes are used as one of the crucial building
266 blocks of the subunit vaccine. There are two types of B-cell epitopes: linear B-cell epitopes
267 (LBL) and conformational B-cell epitopes, also known as continuous and discontinuous B-cell
268 epitopes, respectively [52].

269 The T-cell and B-cell epitope prediction was performed using the Immune Epitope Database
270 or IEDB (<https://www.iedb.org/>), which contains extensive experimental data on antibodies
271 and epitopes [53]. For the prediction of MHC Class-I or CTL epitopes for several human
272 leukocyte antigen (HLA) alleles, i.e., HLA A*01:01, HLA A*03:01, HLA A*11:01, HLA
273 A*02:01, HLA A*02:06, and HLA A*29:02, the recommended IEDB NetMHCpan 4.0
274 prediction method was used. The default prediction method selection of the server is 'IEDB
275 recommended' which utilizes the best available technique for a specific MHC molecule based
276 on the availability of predictors and observes the predicted performance for a specific allele. It
277 is updated regularly based on predictor availability. NetMHCpan EL 4.1 is currently used
278 across all alleles for peptide: MHC Class-I binding prediction. Again, for the prediction of
279 MHC class-II or HTL epitopes for DRB1*03:01, DRB1*04:01, DRB1*15:01, DRB3*01:01,
280 DRB5*01:01, and DRB4*01:01 alleles, the recommended IEDB 2.22 prediction method was
281 used. If any corresponding predictor is available for the MHC molecule, the IEDB
282 recommended method employs the Consensus method, combining NN-align, SMM-align,
283 CombLib, and Sturniolo; otherwise, NetMHCIIPan is used. If any three of the four approaches
284 are available, the Consensus approach evaluates them all, with Sturniolo as the final option.
285 Henceforth, based on their ranking, the top-scored HTL and CTL epitopes that were found to
286 be common for all of the selected corresponding HLA alleles were considered for further

287 analyses. All the parameters were retained by opting for default during the T-cell epitope
288 prediction. Subsequently, B-cell epitopes of the proteins were predicted using the BepiPred
289 linear epitope prediction method 2.0, maintaining all the default parameters. Using a Random
290 Forest algorithm trained on epitope and non-epitope amino acids obtained from crystal
291 structures, the BepiPred-2.0 server predicted linear B-cell epitopes from a protein sequence.
292 Following this, a sequential prediction smoothing was conducted. Residues with scores greater
293 than the threshold (default value of 0.5) were thought to constitute epitopes [54]. Finally, the
294 top-scored LBL epitopes containing more than ten amino acids were primarily regarded as
295 potential candidates for further analysis.

296 Conformational or discontinuous B-cell epitopes are critical components to induce antibody-
297 mediated humoral immunity within the body. While designing a vaccine, efficient
298 conformational B-cell epitopes should be included alongside the LBLs to elicit a better
299 immunogenic response against the pathogen. The conformational B-cell epitopes of the
300 modeled 3D structure of the vaccine were predicted using IEDB ElliPro, an online server
301 (<http://tools.iedb.org/ellipro/>) using the default parameters of a minimum score of 0.5 and a
302 maximum distance of 6 angstroms [55]. ElliPro uses three algorithms to predict the protein
303 shape as an ellipsoid, measure the residue PI, and estimate adjacent cluster residues based on
304 their protrusion index (PI) values [56]. ElliPro calculates a score for each output epitope based
305 on an average PI value over the residues of each epitope. Protein residues are contained in 90%
306 of ellipsoids with a PI value of 0.9, while 10% of residues are outside ellipsoids. The center of
307 residue mass residing outside the largest ellipsoid possible was used to calculate the PI value
308 for each epitope residue [57].

309 **2.4. Assessment of antigenicity, allergenicity, toxicity, and topology**
310 **prediction of the epitopes**

311 In this step, several methods for predicting their conservancy, antigenicity, allergenicity, and
312 toxicity were used to evaluate the initially predicted T-cell and B-cell epitopes. To assess the
313 conservancy of the chosen epitopes [58], the conservancy prediction method of the IEDB
314 server (<https://www.iedb.org/conservancy/>) was used. Additionally, the components of the
315 vaccine should be highly antigenic, non-allergenic at the same time, and also devoid of toxic
316 reactions. In this step, the antigenicity determination tool VaxiJen v2.0 (<http://www.ddg->
317 pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) was used again for the determination of
318 antigenicity [45]. Two different tools were then used, i.e. AllerTOP v2.0 (<https://www.ddg->
319 pharmfac.net/AllerTOP/) and AllergenFP v1.0 (<http://ddg-pharmfac.net/AllergenFP/>) to obtain
320 the highest precision for prediction of allergenicity. Both of the tools are based on auto cross-
321 covariance (ACC) transformation of protein sequences into uniform equal-length vectors.
322 However, the AllerTOP v2.0 server has a better 88.7 % prediction accuracy than the
323 AllergenFP v1.0 server (87.9 %) [59, 60]. In addition, the ToxinPred
324 (<http://crdd.osdd.net/raghava/toxinpred/>) server was used to predict toxicity for all epitopes by
325 using the Support Vector Machine (SVM) prediction method to keep all the default parameters.
326 The SVM is a widely accepted machine learning technique for toxicity prediction since it can
327 differentiate the toxic and non-toxic epitopes quite efficiently [61]. Finally, using the TMHMM
328 v2.0 server (<http://www.cbs.dtu.dk/services/TMHMM/>), the transmembrane topology
329 prediction of all the epitopes was performed to predict whether the epitopes were exposed
330 inside or outside, keeping the parameters at their default values. TMHMM uses an algorithm
331 called N-best (or 1-best in this case) to predict the most probable location and orientation of
332 transmembrane helices in the sequence [62].

333 **2.5. Cytokine inducing capacity prediction of the epitopes**

334 Several cytokine types, including IFN- γ , IL-4 (interleukin-4), and IL-10 (interleukin-10) are
335 produced by helper T cells to activate various immune cells, i.e. cytotoxic T cells,
336 macrophages, etc. [63]. As a result, it is crucial to know whether HTL epitopes are capable of
337 producing key cytokines to induce an immune response against the virus before designing a
338 vaccine. The induction capacity of the predicted HTL epitopes for interferon- γ (IFN- γ) was
339 determined using the IFNepitope (<http://crdd.osdd.net/raghava/ifnepitope/>) server. Based on
340 analyzing a dataset that includes IFN- γ inducing and non-inducing peptides, the server
341 determines the probable IFN- γ inducing epitopes. To determine the IFN- γ inducing capacity,
342 the Design module and the Hybrid (Motif + SVM) prediction approach were used. The Hybrid
343 prediction approach is considered to be a highly precise approach to the prediction of the
344 epitope-inducing capacity of IFN- γ [64]. In addition, IL-4 and IL-10 inducing HTL epitope
345 properties were determined using the servers IL4pred
346 (<https://webs.iiitd.edu.in/raghava/il4pred/index.php>) and IL10pred
347 (<http://crdd.osdd.net/raghava/IL-10pred/>) [65, 66]. The SVM method was used on both servers,
348 where the default threshold values were kept at 0.2 and -0.3, respectively.

349 **2.6. Conservancy and human proteome homology prediction**

350 The conservancy analysis of the specified epitopes was conducted using the IEDB server's
351 epitope conservancy analysis module (<https://www.iedb.org/conservancy/>) [58]. The epitopes
352 that were found to be fully conserved among the selected strains were taken for the construction
353 of the vaccine since this will ensure and facilitate the broad-spectrum activity of the polyvalent
354 vaccine over the two selected RSV species or types. The homology of the human proteome
355 epitopes was determined by the BLAST (BlastP) protein module of the BLAST tool
356 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>), where Homo sapiens (taxid:9606) was used for
357 comparison, keeping all other default parameters. An e-value cut-off of 0.05 was set and

358 epitopes were selected as non-homologous pathogen peptides that showed no hits below the e-
359 value inclusion threshold [67]. The epitopes found to be highly antigenic, non-allergenic, non-
360 toxic, fully conserved, and non-homologous to the human proteome were considered among
361 all the initially selected epitopes to be the best-selected epitopes or the most promising epitopes,
362 and only these selected epitopes were used in the construction of the vaccine.

363 **2.7. Population coverage and cluster analyses of the epitopes and**
364 **their MHC alleles**

365 A crucial requirement is to consider the distribution of unique HLA alleles among the different
366 populations and ethnicities around the world to design a multi-epitope vaccine since the
367 expression of different HLA alleles can vary from population to population. The IEDB resource
368 for population coverage (<http://tools.iedb.org/population/>) was used for analyzing the
369 population coverage of the most promising epitopes across several HLA alleles in various
370 regions around the world. Denominated MHC restriction of T cell responses and polymorphic
371 HLA combinations were considered in the analysis. All the parameters were maintained at their
372 default conditions during the study.

373 Furthermore, the human MHC genomic region or HLA is enormously polymorphic, with
374 thousands of alleles; many of which code for a different molecule. MHCcluster is a program
375 that organizes the MHC molecules into functional clusters based on their predicted binding
376 specificity. The approach provides a user-friendly online interface that allows the user to
377 include any MHC in the analysis. A static heat map and graphical tree-based visualizations of
378 the functional relationship between the MHC variants are included in the output as well as a
379 dynamic TreeViewer interface that displays both the functional relationship and the individual
380 binding specificities of the MHC molecules [68]. To evaluate the relationship between the
381 selected MHC alleles, cluster analysis of the MHC alleles was done using the online tool

382 MHCcluster 2.0 <https://services.healthtech.dtu.dk/service.php?MHCcluster-2.0>). During the
383 study, 50,000 peptides to be used were retained, 100 bootstrap measurements were retained,
384 and both HLA super-type (MHC Class-I) and HLA-DR (MHC class-II) members were chosen.

385 **2.8. Designing of the multi-epitope subunit vaccine**

386 The most promising antigenic epitopes have been linked with each other to create a fusion
387 peptide using an adjuvant and linkers. Human beta-defensin-3 (hBD-3) used an adjuvant
388 sequence that was linked to the epitopes by EAAAK linkers. Adjuvants are considered to play
389 important roles in improving the antigenicity, immunogenicity, stability, and durability of the
390 developed vaccine. The hBD-3 plays a vital role in host immune responses against the
391 pathogens (i.e., innate mucosal defense within the respiratory tract) and is highly significant
392 against respiratory infections [69-71].

393 The epitopes were also appended to the pan HLA-DR epitope (PADRE) sequence. By
394 enhancing the ability of CTL vaccine epitopes, the PADRE sequence activates the immune
395 responses [34]. In the conjugation of the CTL, HTL, and LBL epitopes, the AAY, GPGPG,
396 and KK linkers were used, respectively. The EAAAK linkers have a viable partition of
397 bifunctional fusion protein domains [72], while the GPGPG linkers are ideal for preventing
398 junctional epitope production and optimizing the processing and presentation of the immune
399 system [73]. The AAY linker is also commonly used in the design trials of the *in silico* vaccine
400 since this linker offers successful and efficient epitope conjugation [74]. In addition, bi-lysine
401 (KK) linkers are active in the autonomous immunological function of vaccine epitopes [75].

402 **2.9. Physicochemical property analyses of the vaccine with 403 antigenicity and allergenicity test**

404 To build a timely and successful immune response to the pathogenic attack, the constructed
405 vaccine should be strongly antigenic. The antigenicity of the vaccine model was estimated
406 using VaxiJen v2.0 (<http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.htm>), keeping the
407 threshold value fixed at 0.4 [45]. The findings of the Vaxijen v2.0 server were further cross-
408 checked by the ANTIGENpro module of the SCRATCH protein predictor
409 (<http://scratch.proteomics.ics.uci.edu/>), holding all the default parameters [76], to achieve
410 better prediction precision. Three separate online methods have estimated the allergenicity of
411 the vaccine structures, i.e. AlgPred (<http://crdd.osdd.net/raghava/algpred/>), AllerTop v2.0
412 (<https://www.ddgpharmfac.net/AllerTOP/>) and AllergenFP v1.0 (dg-
413 <http://www.ddgpharmfac.net/AllergenFP/>), to ensure optimum prediction precision. The AlgPred
414 (<http://crdd.osdd.net/raghava/algpred/>) server aims to combine multiple allergenicity
415 determination methods to reliably determine possible allergenic proteins [77, 78]. To predict
416 the vaccine's allergenicity, the MEME/MAST motif prediction approach was used. The
417 physicochemical properties of the built vaccine were then estimated by the same online
418 instrument, ProtParam (<https://web.expasy.org/protparam/>)[15], which was previously
419 utilized. The solubility of vaccine constructs was also estimated alongside the physicochemical
420 property study by the SOLpro module of the SCRATCH protein predictor
421 (<http://scratch.proteomics.ics.uci.edu/>) and later further explained by the Protein-Sol server
422 (<https://protein-sol.manchester.ac.uk/>). The solubility of a query protein is predicted by all
423 these servers with remarkable precision. SolPro produces its predictions based on the SVM
424 method, while Protein-Sol uses a rapid method of deciding the results based on sequence [76,
425 79]. All the parameters of the servers were maintained at their default values during the
426 solubility review.

427 **2.10. Secondary and tertiary structure prediction of the vaccine
428 construct**

429 The vaccine construct was subjected to secondary structure prediction following
430 physicochemical analysis. For this, several online resources were used to preserve all the
431 default parameters, i.e. PSIPRED (<http://bioinf.cs.ucl.ac.uk/psipred/>) (using the PSIPRED 4.0
432 prediction method), GOR IV (https://npsa-prabi.ibcp.fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_gor4.html), SOPMA (https://npsa-prabi.ibcp.fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_sopma.html) and SIMPA96
433 (https://npsa-prabi.ibcp.fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_npsa.html) and SIMPA96
434 (<https://npsa.npsa.npsa.npsa>). To predict the percentages or quantities of amino acids in α
435 helix, β -sheet, and coil structure formations, these servers are considered to be reliable, quick,
436 and effective [80-84]. Moreover, determination of the tertiary or 3D structure of the vaccine
437 construct was carried out using the RaptorX online server (<http://raptordb.uchicago.edu/>). Using
438 an easy and powerful template-based method [85], the server predicts the tertiary or 3D
439 structure of a query protein. Furthermore, RaptorX uses a deep learning method to enable
440 distance-based protein folding. This server has also been rated first in contact prediction in both
441 CASP12 and CASP13, making it an ideal server for 3D structure determination [86].

444 **2.11. Refinement and validation of tertiary structure of the vaccine**

445 The tertiary structure prediction of the proteins using computational methods also requires
446 extensive refinement, to turn predicted models with lower resolution into models that closely
447 match the native protein structure. Therefore, a GalaxyWEB server (<http://galaxy.seoklab.org/>)
448 using the GalaxyRefine module further refined the created tertiary structure of the proposed
449 vaccine model. The server uses dynamic simulation and the refinement approach is tested by
450 CASP10 to refine the tertiary protein structures [87, 88]. Furthermore, validation of the refined
451 protein was carried out by analyzing the Ramachandran plot created by the PROCHECK
452 (<https://servicesn.mbi.ucla.edu/PROCHECK/>) tool [89, 90]. Along with PROCHECK for
453 protein validation, another online platform, ProSA-web

454 (https://prosa.services.came.sbg.ac.at/prosa.php) was also used. A z-score that expresses the
455 consistency of a query protein structure is created by the PROCHECK server. In the latest PDB
456 database, a z-score residing within the z-score spectrum of all experimentally defined protein
457 chains represents a higher consistency of the query protein [91].

458 **2.12. Vaccine protein disulfide engineering analysis**

459 Disulfide bonds are more likely to form in a few regions within a protein structure, providing
460 stability through reduced conformational entropy and increased free energy concerning the
461 denatured state. However, disulfide engineering is the process of introducing disulfide bonds
462 to a target protein to increase its stability. In this experiment, the Disulfide by Design (DbD)2
463 v12.2 (<http://cptweb.cpt.wayne.edu/DbD2/>) online tool was used to predict the locations and
464 further design the disulfide bonds within the vaccine proteins [92]. The tool was developed
465 using computational approaches to predict the protein structure [93, 94], and the algorithm of
466 this server accurately estimates the χ_3 torsion angle based on the C β –C β distance using a
467 geometric model derived from native disulfide bonds. The Caf-C β -S γ angle is allowed some
468 tolerance in the DbD2 server based on the wide range found in native disulfides. To facilitate
469 the ranking process, DbD2 estimates an energy value for each potential disulfide and mutant
470 PDB files may be generated for selected disulfides [95].

471 The χ_3 angle was held at -87 ° or +97 ° \pm 10 during the experiment to cast off various putative
472 disulfides that were generated using the default angles of +97 ° \pm 30 ° and -87 ° \pm 30 °.
473 Additionally, the angle of Caf-C β -S γ was set to its default value of 114.6° \pm 10. Finally, to
474 allow disulfide bridge formation, residue pairs with energy less than 2.2 Kcal/mol were selected
475 and mutated to cysteine residue [96]. The energy value of 2.2 Kcal/mol was chosen as the
476 disulfide bond selection threshold since 90% of native disulfide bonds are usually considered
477 to have an energy value of less than 2.2 Kcal/mol [92].

478 **2.13. Post-translational modification analysis**

479 For posttranslational modification analysis of the vaccine construct comprising of the B-cell
480 and T-cell epitopes, the NetNGlyc-1.0 (<http://www.cbs.dtu.dk/services/NetNGlyc-1.0>),
481 NetOGlyc4.0 (<http://www.cbs.dtu.dk/services/NetOGlyc-4.0>), and NetPhos-3.1
482 (<http://www.cbs.dtu.dk/services/NetPhos-3.1>) servers were utilized. The NetNglyc server uses
483 artificial neural networks to predict N-glycosylation sites in human proteins by examining the
484 sequence context of Asn-Xaa-Ser/Thr sequons [97]. Any potential that exceeds the default
485 threshold of 0.5 indicates a predicted glycosylated site. The average output of nine neural
486 networks is used to get the 'potential' score. The NetOglyc server
487 (<http://www.cbs.dtu.dk/services/NetOGlyc-4.0>) predicts mucin type GalNAc O-glycosylation
488 sites in mammalian proteins using neural networks [98].
489 This server provides a list of probable glycosylation sites for each input sequence, together
490 with their positions in the sequence and prediction confidence scores. Only locations with a
491 score greater than 0.5 are expected to be glycosylated and the string "POSITIVE" is added to
492 the remark box. Using ensembles of neural networks, the NetPhos 3.1 server
493 (<http://www.cbs.dtu.dk/services/NetPhos-3.1>) predicts serine, threonine, or tyrosine
494 phosphorylation sites in eukaryotic proteins. Predictions are made for both generic and kinase-
495 specific kinases. A prediction score greater than 0.5 indicates a positive prediction.

496 **2.14. Analysis of protein-protein docking**

497 The vaccine protein was docked against several toll-like receptors (TLRs) in protein-protein
498 docking analysis. A strong binding affinity should be present between the vaccine and the
499 TLRs. This is crucial because, after identifying the vaccine that resembles the initial viral
500 infections, TLR proteins generate possible immune responses, and thus help to produce
501 immunity against the pathogen [99]. In this study, different TLRs have been docked with the

502 vaccine protein, i.e. TLR-1 (PDB ID: 6NIH), TLR-2 (PDB ID: 3A7C), TLR-3 (PDB ID:
503 2A0Z), TLR-4 (PDB ID: 4G8A), and TLR9 (PDB ID: 3WPF). ClusPro v2.0
504 (<https://cluspro.bu.edu/login.php>) was used to conduct the docking, where the lower energy
505 score corresponds to the stronger binding affinity. Based on the following equation, the ClusPro
506 server calculates the energy score:

507
$$E = 0.40E_{rep} + (-0.40E_{att}) + 600E_{elec} + 1.00E_{DARS} [54 - 55].$$

508 The repulsions and attraction energies owing to van der Waals interactions are denoted by E_{rep}
509 and E_{attr} , respectively, whereas E_{elec} signifies the electrostatic energy component. The Decoys'
510 pairwise structure-based potential is represented by E_{DARS} as the Reference State (DARS)
511 method. Furthermore, another round of docking was carried out using the ZDOCK server
512 which is a rigid-body protein-protein docking tool that employs a combination of shape
513 complementarity, electrostatics, and statistical potential terms for scoring and uses the Fast
514 Fourier Transform algorithm to enable an efficient global docking search on a 3D grid. In the
515 most current benchmark version (Accelerating protein docking in ZDOCK utilizing an
516 advanced 3D convolution library), ZDOCK achieves high predictive accuracy on protein-
517 protein docking benchmarks, with >70 % success in the top 1000 predictions for rigid-body
518 instances [100].

519 **2.15. Molecular dynamics simulation studies and MM-PBSA**
520 **calculations**

521 The docked complexes from the ZDOCK server were used in MD simulations. The complexes
522 being protein-protein in nature with multiple chains, the MD simulations were computationally
523 expensive and performed on the HPC cluster at Bioinformatics Resources and Applications
524 Facility (BRAF), C-DAC, Pune with Gromacs 2020.4 [101] MD simulation package. The
525 CHARMM-36 force field parameters [102, 103] were employed to prepare the topology of

526 protein chains. The system of each TLR along with the bound vaccine was solvated with the
527 single point charge water model [104] in the dodecahedron unit cells and neutralized with the
528 addition of Na^+ or Cl^- counter-ions. The solvated systems were initially energy minimized to
529 relieve the steric clashes if any with the steepest descent criteria until the threshold ($\text{Fmax} < 10$
530 kJ/mol) was reached. These energy minimized systems were then equilibrated at constant
531 volume and temperature conditions 300 K using modified Berendsen thermostat [105] and then
532 at constant volume and pressure Berendsen barostat [106] for 100 ps each. The equilibrated
533 systems were later subjected to 100 ns production phase MD simulations, where the modified
534 Berendsen thermostat and Parrinello-Rahman barostat [107] were used with covalent bonds
535 restrained using the LINCS algorithm [108]. The long-range electrostatic interaction energies
536 were measured with the cut-off of 12 Å, with the Particle Mesh Ewald method (PME) [109].
537 The resulting trajectories were analyzed for root mean square deviations (RMSD) in protein
538 backbone atoms, root mean square fluctuations (RMSF) in the side chain atoms of individual
539 chains in each protein complex, the radius of gyration (Rg), and several hydrogen bonds formed
540 between vaccine protein chain and the respective TLR protein chain.

541 **2.16. Immune simulation studies**

542 To forecast the immunogenicity and immune response profile of the proposed vaccine, an
543 immune simulation analysis was performed. For the immune simulation study, the C-ImmSim
544 server (<http://150.146.2.1/CIMMSIM/index.php>) was used to predict real-life immune
545 interactions using machine learning techniques and PSSM (Position-Specific Scoring Matrix)
546 [110]. During the experiment, all the variables except for the time steps were kept at their
547 default parameters. However, the time steps at 1, 84, and 170 were retained (time step 1 is
548 injection at time = 0), and the number of simulation steps was set to 1050. Thus, three injections
549 at four-week intervals were administered to induce recurrent antigen exposure [111].

550 **2.17. Codon adaptation and *in silico* cloning within *E.coli* System**

551 Codon adaptation and *in silico* cloning are two significant steps that are conducted to express
552 multi-epitope vaccine construction within an *Escherichia coli* (*E.coli*) K12 strain. In different
553 organisms, an amino acid can be encoded by more than one codon, which is known as codon
554 bias wherefore, the codon adaptation study is carried out to predict an appropriate codon that
555 effectively encodes a specific amino acid in a specific organism. Java Codon Adaptation Tool
556 or JCat server (<http://www.jcat.de/>) was used for codon optimization [112], and the optimized
557 codon sequence was further analyzed for expression parameters, codon adaptation index (CAI),
558 and GC-content %. The optimum CAI value is 1.0, while a score of > 0.8 is considered
559 acceptable, and the optimum GC content ranges from 30 to 70% [113]. For *in silico* cloning
560 simulation, the pETite vector plasmid was selected which contains a small ubiquitin-like
561 modifier (SUMO) tag as well as a 6x polyhistidine (6X-His) tag, which will facilitate the
562 solubilization and affinity purification of the recombinant vaccine construct [114]. Also, 6X-
563 His can facilitate the swift detection of the recombinant vaccine construct in
564 immunochromatographic assays [115]. The vaccine protein sequence was reverse-translated to
565 the optimized DNA sequence by the server to which EaeI and StyI restriction sites were
566 incorporated at the N-terminal and C-terminal sites, respectively. The newly adapted DNA
567 sequence was then inserted between the EaeI and StyI restriction sites of the pETite vector
568 using the SnapGene restriction cloning software (<https://www.snapgene.com/free-trial/>) to
569 confirm the expression of the vaccine [116, 117].

570 **2.18. Prediction of the vaccine mRNA secondary structure**

571 Two servers, i.e. Mfold (<http://unafold.rna.albany.edu/?q=mfold>) and RNAfold
572 (<http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi>), were used for the mRNA
573 secondary structure prediction. Both of these servers thermodynamically predict the mRNA

574 secondary structures and provide each of the generated structures with minimum free energy
575 ('G Kcal/mol'). The more stable the folded mRNA is, the lower the minimum free energy and
576 vice versa [55][118-120]. To analyze the mRNA folding and secondary vaccine structure, the
577 optimized DNA sequence was first taken from the JCat server and converted via the DNA<-
578 >RNA->Protein tool (<http://biomodel.uah.es/en/lab/cybertory/analysis/trans.htm>) to a possible
579 RNA sequence. The RNA sequence was then gathered from the tool and utilized for prediction
580 into the Mfold and RNAfold servers using the default settings for all the parameters.

581

582 **3. Results**

583 **3.1. Protein sequences identification and retrieval**

584 From the NCBI database, the RSV viral strains and the query proteins were identified.
585 Following that, the four RSV-A and RSV-B Query Proteins including P protein, N protein, F
586 protein, and mG, were retrieved from the UniProt online database. The UniProt Accession
587 Number and the length of the query proteins are listed in **Table 1**.

588

589 **Table 01.**

Name of the Virus	Name of the Protein	UniProt Accession Number of the Protein	Length (aa) of the Protein Sequence
RSV-A	P protein	P03421	241
	N protein	P03418	391
	F protein	P03420	574
	mG protein	P03423	298
RSV-B	P protein	O42062	241
	N protein	O42053	391

	F protein	O36634	574
	mG protein	O36633	299

590 List of the proteins with their accession numbers used in the vaccine designing study.

591

592 **3.2. Prediction of antigenicity and analysis of physicochemical**
593 **properties of the selected proteins**

594 The selected proteins were analyzed for antigenicity and physicochemical properties through
595 the VaxiJen v2.0 server and ProtParam tool of the ExPASy server, respectively. To be a vaccine
596 candidate, antigenicity is a prerequisite for a protein or amino acid sequence. All of the selected
597 proteins were found to be antigenic in VaxiJen v2.0 server at threshold 0.4. In addition, while
598 P protein and N protein of RSV-A and RSV-B were found to have an acidic theoretical pI (pH
599 lower than 7), F protein and mG protein were found to have a basic theoretical pI (pH higher
600 than 7). The protein having an acidic theoretical pI belongs to negatively charged proteins.
601 Again, in the mammalian cell culture system, all the query proteins had a similar half-life of
602 30 h and a high aliphatic index (over 60.00) as well. All of the proteins had quite low GRAVY
603 values (lower than -0.909). P protein of the RSV-A and RSV-B had the highest GRAVY value
604 of -0.909 and -0.827, respectively. Whereas, the F protein of RSV-A and RSV-B had the lowest
605 GRAVY value of -0.028 and -0.033, respectively. Furthermore, the F protein of the RSV-A
606 and RSV-B had the highest aliphatic index of 99.97 and 102.35, respectively. **S1 Table** lists
607 the results of the analysis of physicochemical properties of all the query proteins.

608 **3.3. Epitope prediction and sorting the most promising epitopes**

609 The RSV-A proteins were selected as models during the prediction of the T-cell and B-cell
610 epitopes by the IEDB server for the construction of the polyvalent vaccine, meaning that the

611 epitopes were selected using only the RSV-A proteins and then only the fully conserved
612 epitopes were taken therefore, the epitopes should confer immunity to the selected strains of
613 both RSV-A and RSV-B. These epitopes were anticipated to induce potential T-cell and B-cell
614 immune responses after the vaccine administration. Based on the ranking, the top CTL and
615 HTL epitopes as well as top B-cell epitopes with lengths over ten amino acids were taken into
616 consideration for further analysis. Following this, a few criteria were selected to filter the best
617 epitopes which included, high antigenicity, non-allergenicity, non-toxicity, conservancy, and
618 human proteome non-homology. Furthermore, the cytokine (i.e., IFN- γ , IL-4, and IL-10)
619 inducing ability of HTL epitopes was also considered to determine whether they can produce
620 at least one of these cytokines. Finally, the epitopes that met these criteria were listed as the
621 most promising epitopes in **Table 02** and were later used for the construction of the vaccine.
622 The analysis of transmembrane topology by the TMHMM v2.0 server of the most promising
623 epitopes revealed that PEFHGEDANNR, SFKEDPTPSDNPFS, EVAPEYRHDSPD,
624 VFPSDEFDAISQVNEK,
625 IPNKKPGKTTTKPTKKPTLKTTKKDPKPQTTKSKEVPTTKP were exposed outside.
626 **S2 Table** listed the potential epitopes of P protein and **S3 Table** listed the potential epitopes of
627 N protein. The potential epitopes of F protein are listed in **S4 Table** and the potential epitopes
628 of mG protein are listed in **S5 Table**.

629

630 **Table 02.**

Name of the Protein	MHC class-I epitopes	MHC class-II epitopes	B cell epitopes
P protein	VSLNPTSEK	LGMLHTLVVASAGPT	PEFHGEDANNR
	QTNDNITAR	LHTLVVASAGPTSAR	EVTKESPITSNSTIINPTNETDDTAGNKPQNYQRK
	-	-	SFKEDPTPSDNPFS

	-	-	RNEESEKMAKDTSDDEVSLNPTSEK
N protein	CIAALVITK	EVLTLASLTTEIQIN	EVAPEYRHDSPD
	RSGLTAVIR	-	EYRGTPRNQDLYDA
	SVKNIMLGH	-	-
F protein	KTNVTLSKK	IVIIVILLSLIAVGL	VFPSDEFDASISQVNEK
	KSALLSTNK	VIIVILLSLIAVGLL	-
	IASGVAVSK	EEFYQSTCSAVSKGY	-
	KQLLPIVNK	-	-
	ITIELSNIK	-	-
	LTSKVLDLK	-	-
mG protein	TTTQTQPSK	LSILAMIISTSLIIA	TSQIKNTTPTYLTQNPQLGISPSNPSEITS
	IFIASANHK	TLSILAMIISTSLII	IPNKKPGKKTTKPTKTLKTTKKDPKPQTTSKKEVPTTKP TEEPTINTT
	-	QNPQLGISPSNPSEI	SNTTGNPELTSQ

631 List of the epitopes eventually selected for the construction of the vaccine (selection criteria:
632 antigenicity, non-allergenicity, non-toxicity, 100 % conservancy and non-homolog to the
633 human proteome).

634

635 **3.4. Population coverage and cluster analyses of the epitopes and**
636 **their MHC alleles**

637 The population coverage analysis showed that 85.70% and 87.92% of the world population
638 were covered by the MHC class-I and class-II alleles and their epitopes, respectively, and
639 84.62% of the world population was covered by the combined MHC class-I and class-II. While
640 India had the highest percentage of population coverage for the CTL epitopes (87.56 %) as
641 well as HTL epitopes (93.51 %), China had the highest percentage of population coverage for
642 CTL and HTL epitopes in combination (91.80 %) (**Fig 2**).

643

644 **Fig 2.** The result of the population coverage analysis of the most promising epitopes and their
645 selected MHC alleles

646

647 Cluster analysis of the potential alleles of MHC class I and MHC class II that may interfere
648 with the predicted epitopes of the RSV query proteins was also conducted. The study was
649 carried out using the online tool MHCcluster 2.0, which phylogenetically demonstrates the
650 relation of the allele clusters. **S1 Fig** shows the outcome of the experiment where a strong
651 interaction is shown in the red zone and a weaker interaction in the yellow zone.

652 **3.5. Designing of the multi-epitope subunit vaccine**

653 The most promising T-cell and B-cell epitopes were used to design the multi-epitope vaccine
654 incorporating adjuvant and appropriate linkers. The hBD-3 was used as an adjuvant to design
655 the vaccine and the PADRE sequence was also used as a potent inducer of immunity. The
656 adjuvant was linked with the epitopes by the EAAAK linker. Furthermore, AAY, GPGPG, and
657 KK were used to associate the epitopes with each other at their appropriate positions as given
658 in **Fig 3.**

659

660 **Fig 3. (A)** Schematic representation of the potential vaccine construct with linkers (EAAAK,
661 AAY, GPGPG, and KK), PADRE sequence, adjuvant (hBD-3) and epitopes (CTL, HTL, and LBL)
662 in a sequential and appropriate manner (B) Sequence of the vaccine protein. The letters in bold
663 represent the linker sequences.

664

665 **3.6. Prediction of antigenicity, allergenicity and Physicochemical** 666 **property analysis of the vaccine**

667 The vaccine protein was observed to be both a potent antigen and a non-allergen. The vaccine
668 had a high theoretical (basic) pI of 9.75. It had a reasonably adequate half-life in mammalian
669 cells of 30 h and of more than 10 h in the *E. coli* cell culture system. The GRAVY value of the
670 vaccine was considered to be significantly negative at -0.362. Additionally, both servers, Sol-
671 Pro and Protein-sol, have also shown that the vaccine protein is soluble, attesting to its negative
672 value. The instability index of the protein was found to be less than 40 (27.55), indicating the
673 vaccine to be quite stable. The extinction coefficient and the aliphatic index of the vaccine were
674 also found to be high with values, 45770 M⁻¹ cm⁻¹ and 80.85, respectively.

675 **3.7. Secondary and tertiary structure prediction of the vaccine**

676 The secondary structure of the vaccine protein revealed that the coil structure had the largest
677 number of amino acids, while the β -strand showed the lowest percentage. The predictions
678 provided by all four servers are depicted in **Fig 4**. The amino acid percentages of α -helix, β -
679 strand, and coil structure of the vaccine protein produced from four different servers are listed
680 in **Table 03**. All of the servers revealed almost similar predictions and the overall analysis also
681 showed that the adjuvant generated potential variations in the secondary structure of the
682 vaccine protein. The vaccine construct's 3D structure was predicted by the RaptorX online
683 server. The constructed vaccine protein had a surprisingly low p-value of 8.71e-05 in 4
684 domains, which demonstrated that the accuracy of the proposed 3D structure was significantly
685 good. Using 1KJ6A as the template from the Protein Data Bank, the homology modeling of
686 the vaccine construct was completed. Furthermore, the vaccine structure was modeled using
687 Modeller, as shown in **Fig 5**, to further improve the quality.

688 **Table 03.**

Secondary structure elements	PRISPRED	GOR IV	SOPMA	SIMPA96
α -helix	33.51%	32.98%	30.56%	29.61%

β-strand	16.22%	15.58%	18.46%	14.50%
Coil structure	50.25%	51.44%	50.98%	55.74%

689 Results of the secondary structure analysis of the vaccine construct.

690 **Fig 4.** The results of the secondary structure prediction of the vaccine. (A) PRISPRED
691 prediction, (B) GOR IV prediction, (C) SOPMA prediction, (D) SIMPA96 prediction.

692 **Fig 5.** (A) The tertiary or 3D structure of the vaccine construct modeled, refined and visualized
693 by RaptorX, GalaxyWEB server, and BIOVIA Discovery Studio Visualizer v. 17.2
694 respectively. (B) The results of the Ramachandran plot analysis generated by PROCHECK
695 server and (C) quality score or z-score graph generated by the ProSA-web server of the refined
696 vaccine construct. In the Ramachandran plots, the orange and deep yellow colored regions are
697 the allowed regions, the light yellow regions are the generously allowed regions and the white
698 regions are the outlier regions and the glycine residues are represented as triangles.

699

700 **3.8. Refinement and validation of tertiary structure of the vaccine**

701 The 3D structure of the vaccine protein produced by the RaptorX server was refined to predict
702 a structure that closely resembles the native protein structure. The refined protein structure was
703 then validated by evaluating the PROCHECK server-generated Ramachandran plot and the
704 ProSA-web server-generated z-score. The Ramachandran plot study found that in the most
705 preferred region, the vaccine protein had 93.5 % of amino acids, while in the additional
706 approved regions, 5.4 % of amino acids, 0.4 % of amino acids in the generously permitted
707 regions, and 0.7 % of amino acids in the disallowed regions. In comparison, the z-score of the
708 engineered vaccine was -6.58, which is beyond the range of all experimentally confirmed X-
709 ray crystal protein structures from the Protein Data Bank. The protein validation analysis
710 estimated that there was a reasonably good consistency structure in the distilled form (**Fig 5**).

711 3.9. Prediction of conformational B-lymphocytic epitopes

712 The conformational B-cell epitopes of the vaccine protein were predicted using the ElliPro
713 server which predicts conformational epitopes from tertiary structures of the protein. A score
714 of 0.50 or higher was selected for the prediction of discontinuous peptides by Ellipro. Three
715 discontinuous B-cell epitopes were predicted to include 333 amino acid residues, with values
716 ranging from 0.506 to 0.675. The size of the conformation epitopes varied from 4 to 394
717 residues. Three-dimensional representation of conformational B cell epitopes of the designed
718 multi-epitope-based RSV vaccine and the epitope residues are shown in **Fig 6** and listed in **S6**

719 **Table.**

720

721 **Fig 6.** Graphical representations of the predicted conformational B-cell epitopes of the modeled
722 vaccine indicated by yellow coloured ball-shaped structures.

723

724 3.10. Vaccine protein disulfide engineering analysis

725 The disulfide bonds of the vaccine structure were predicted using the DbD2 server in protein
726 disulfide engineering. Based on certain classification criteria, the server recognizes pairs of
727 amino acids with the ability to form disulfide bonds. Only those amino acid pairs that had bond
728 energy smaller than 2.2 kcal/mol were chosen in this experiment. Three pairs of amino acids
729 with bond energy below 2.2 kcal/mol were provided by the RSV: 23 Cys and 38 Cys, 414 Ala
730 and 414 Lys, and 513 Tyr- 516 Thr. The selected pairs of amino acids have formed the mutant
731 vaccine in the DbD2 server, which contains potential disulfide bonds within (**S2 Fig**). This
732 indicates the probable stability of the designed multi-epitope vaccine construct.

733 **3.11. Post-translational modification analysis**

734 The posttranslational modification analysis was performed to see whether the vaccine construct
735 would undergo any substantial changes after being administered to mammalian cells. Four N-
736 glycosylation sites and sixty-three O-glycosylation sites were predicted in the vaccine construct
737 sequence. The findings suggest that a significant amount of glycosylation may have occurred
738 inside the predicted vaccine construct, which might improve the vaccine's efficacy and
739 immunogenicity. In addition, the vaccine protein sequence has ninety-six phosphorylated
740 residues (i.e., serine residues (S), threonine (T), and tyrosine (Y) phosphorylation sites)
741 according to the NetPhos v2.0 server output. The server-provided plots containing the N-
742 glycosylation sites and phosphorylation are given in **S3 Fig.**

743 **3.12. Analysis of protein-protein docking**

744 Protein-protein docking analysis was performed to demonstrate the vaccine's ability to interact
745 with various crucial molecular immune components i.e., TLRs. When docked using ClusPro
746 2.0, it demonstrated very high binding affinities with all its targets (TLRs). It has been further
747 studied using the ZDOCK server where the vaccine protein also displayed very strong
748 interaction with the TLRs. The lowest energy level obtained for docking between the vaccine
749 construct and TLR-1, TLR-2, TLR-3, TLR-4, and TLR-9 were -986.1, -1236.7, -1084.4, -
750 1260.8, and -1226.4, respectively. The lowest energy level between the vaccine and TLRs
751 indicated the highest binding affinity.

752 **3.13. Molecular dynamics simulation studies and MM-PBSA**

753 **calculations**

754 MD simulation is an effective method for the analysis of biological systems and it provides
755 many mechanistic insights into the possible behavior of the system under a simulated biological

756 environment [121]. Gromacs 2020.4 was used to carry out the production phase MD and the
757 analysis of resulting trajectories was undertaken to understand the structural properties, and
758 interaction between different TLRs and the predicted vaccine protein at a molecular level. The
759 snapshots of equilibrated structures of each TLR-vaccine complex and the snapshots of the last
760 trajectories are shown in **Fig 7**. The visual inspection of trajectories at different time intervals
761 suggested that the side chains of the vaccine make different interactions with chain A of all
762 TLRs except TLR1, where vaccine side chains were found to be interacting with side chains
763 of both A and B chains.

764

765 **Fig 7.** Snapshots of equilibrated (initial) systems and last trajectories. Vaccine bound
766 complexes of A) TLR1, B) TLR2, C) TLR3, D) TLR4, and E) TLR9 (For each snapshot the
767 surface representation and cartoon representations are shown)

768

769 Root mean square deviations (RMSD) analysis gives insights into how the backbone atoms
770 move relative to the initial equilibrated positions. Lower the RMSD, better the stability of the
771 corresponding system. In the present work, we measured the RMSD in backbone atoms of
772 entire protein-protein complexes of TLRs with a vaccine. **Fig 8A** shows the RMSD in the
773 investigated systems. The evaluation of root means square fluctuations (RMSF) provides
774 insights into the possible changes in the secondary structure of protein under investigation. In
775 the present work, the RMSF in the side chain atoms of residues in each system was measured.
776 As the TLR-vaccine systems have multiple chains, the RMSF evaluation is performed on each
777 chain of the complex to understand which residues are involved in the key contacts. The RMSF
778 in the TLR side-chain atoms is shown in **Fig 8B**. The RMSF in other chains in each of the
779 TLRs is given in **S4 Fig**. The analysis of radius of gyration (Rg) provides the overall
780 measurement of compactness of the system [122]. The results of total Rg are shown in **Fig 8C**.

781 Analysis of non-bonded interactions such as hydrogen bonds is quite challenging in protein-
782 protein complexes. The side chains of the proteins participate in hydrogen bond interactions.
783 The hydrogen bond analysis of all the trajectories was performed with the h-bond module of
784 Gromacs, while the key residues at the interface of the TLR chain and vaccine chain were
785 analyzed through the chimeraX program [123]. The results of the hydrogen bond analysis are
786 shown in **S5 Fig**.

787

788 **Fig 8:** Results of the (A) Root mean square deviations in the investigated systems, (B) Root
789 mean square fluctuations in the side chain atoms of vaccine, and (C) Radius of gyration of the
790 vaccine.

791

792 **3.14. Immune simulation studies**

793 The immune simulation study of the designed vaccine was conducted using the C-ImmSimm
794 server which forecasts the activation of adaptive immunity as well as the immune interactions
795 of the epitopes with their specific targets [63]. The analysis exhibited that the primary immune
796 reaction to the vaccine could be stimulated substantially after administration of the vaccine, as
797 demonstrated by a steady rise in the levels of different immunoglobulins i.e., (IgG1 + IgG2,
798 and IgG + IgM antibodies) (**Fig 9A**). It was also expected that the concentrations of active B
799 cells (**Fig 9B** and **Fig 9C**), plasma B cells (**Fig 9D**), helper T cells (**Fig 9E** and **Fig 9F**), and
800 cytotoxic T cells (**Fig 9H** and **Fig 9I**) could steadily increase, reflecting the vaccine's capacity
801 to create a very high secondary immune response and healthy immune memory. However, **Fig**
802 **9G** demonstrates that the concentration of regulatory T cells would gradually decrease
803 throughout the phases of the injections, which represents the decrease in suppression of
804 vaccine-induced immunity by regulatory T cells [124].

805 In comparison, the rise in macrophage and dendritic cell concentrations showed that these
806 APCs had a competent presentation of antigen (**Fig 9J** and **Fig 9K**). The simulation result also

807 predicted that the constructed vaccine could generate numerous forms of cytokines, including
808 IFN- γ , IL-23, IL-10, and IFN- β ; some of the most critical cytokines for producing an immune
809 response to viral infections (**Fig 9L**). Therefore, the overall immune simulation analysis
810 showed that after administration, the proposed polyvalent multi-epitope vaccine would be able
811 to elicit a robust immunogenic response.

812 **3.15. Codon adaptation, *in silico* cloning, and interpretation of the**
813 **vaccine mRNA secondary structure**

814 The protein sequence of the vaccine was adapted by the JCcat server for *in-silico* cloning and
815 plasmid construction. The CAI value was found to be 0.98, suggesting that the DNA sequences
816 contained a larger proportion of the codons most likely to be included in the target organism's
817 (K12 strain of *E.coli*) cellular machinery [118, 119]. Furthermore, GC content of the formed
818 sequence was found to be 50.23 %, within the desired range. The graph demonstrating the
819 sequence after codon adaptation is shown in **S6 Fig**. Following codon adaptation, the projected
820 vaccine DNA sequence was inserted between the EaeI and StyI restriction sites into the pETite
821 vector plasmid. The plasmid includes SUMO and 6X H tag sequences that are required to
822 promote the vaccine's purification during downstream processing [125]. The newly built
823 recombinant plasmid has been designated as "Cloned_ pETite" (**Fig 10**). Thereafter, the Mfold
824 and RNAfold servers predicted the secondary structure of the vaccine mRNA. A minimum free
825 energy score of -549.30 kcal/mol was produced by the Mfold server, which was consistent with
826 the prediction of the RNAfold server that also predicted a minimum free energy of -526.30
827 kcal/mol. In **S7 Fig**, the vaccine mRNA secondary structure is depicted.

828

829 **Fig 10.** *In-silico* cloning of the vaccine sequence in the pETite plasmid vector. The codon
830 sequence of the final vaccine is presented in red generated by the JCat server. The pETite
831 expression vector is in black.

832

833 **4. Discussion**

834 hRSV is conventionally the most prevalent cause of human LRTIs, known to infect individuals
835 from all age groups but more commonly newborns and children. Implicated infections of RSV
836 contribute to affecting and killing numerous people all over the globe, yet no pre-existing
837 authorized vaccine is recognized as an effective measure to prevent RSV infections. Vaccines
838 are extensively used to control and prevent diseases caused by a variety of pathogens across
839 the world. Conventional methods are primarily used for vaccine development and manufacture,
840 despite the associated disadvantages of being expensive and time-consuming [126]. In contrast
841 to traditional vaccine production strategies, today's cutting-edge research and technology as
842 well as the availability of knowledge about the genome and proteome of almost all viruses and
843 organisms, facilitate the design and development of novel peptide-based subunit vaccines.
844 Subunit vaccines have the benefit of being able to eliminate toxic and immunogenic
845 components of an antigen during a vaccine design study, making the vaccine safe to administer
846 in people. Subunit vaccines include a limited amount of viral particles that cause patients to
847 develop protective immunity. A subunit vaccine is a cost-efficient and effective way to prevent
848 health concerns [127-129]. As a result, bioinformatics and immunoinformatics techniques have
849 been developed and widely utilized to design novel subunit vaccines that are safe, effective,
850 efficient, and low-cost alternatives to current preventive measures [130, 131].

851

852 The narrated experiment utilized immunoinformatics methods to design a blueprint of a
853 polyvalent epitope-based vaccine against the antigenic subgroups, RSV-A and RSV-B,
854 targeting four distinctive proteins which include - P protein, N protein, F protein, and mG
855 protein. Antigenicity and physicochemical properties of the proteins were predicted, where all
856 the proteins identified were shown to be antigenic; a requirement for the use of a target protein
857 in epitope-based vaccine construction. The theoretical pI represents the pH at which there is no
858 net effective charge and mobility in a protein as well as predicts whether a protein is basic or
859 acidic [132]. The instability index of a protein represents the likelihood of that specific
860 compound being stable, and a compound with an instability index greater than 40 is deemed
861 unstable [133]. The aliphatic index measures the relative amount of amino acids occupied by
862 aliphatic amino acids in its side chains [134]. The high aliphatic index also indicates the
863 improved thermal stability of a protein [135]. All of the query proteins had a high extinction
864 coefficient and theoretical half-life of 30 h in mammalian cells. The extinction coefficient
865 indicates the ability of a protein to absorb light at a certain wavelength and a higher extinction
866 coefficient represents the higher absorbance of light by the protein [136, 137]. The GRAVY
867 value represents a compound's hydrophilic or hydrophobic traits. The GRAVY negative value
868 reflects hydrophilic characteristics, while the GRAVY positive value reflects the hydrophobic
869 characteristics of the compound [138, 139]. Since all query proteins were found to be quite
870 antigenic having a high aliphatic index and extinction coefficient, as well as negative GRAVY
871 values, they were expected to be thermostable, high light-absorbing as well as hydrophilic in
872 nature. Overall, the physiological property analyses of the proteins revealed satisfactory results,
873 desired for the epitope predictions. CTL, HTL, and LBL epitopes are some mandatory
874 constituents for a multi-epitope subunit vaccine, known to stimulate or activate the cytotoxic
875 T-cells, helper T-cells, and B-cells to generate an effective host immune response [140].
876 Cytotoxic T-cells can recognize the foreign antigens while helper T-cells recruit the other

877 immune cells including B-cells, macrophages, and even cytotoxic T-cells to ensure the
878 generation of immune responses [38, 48]. In addition, B-cells mediate the humoral immune
879 response by producing immunoglobulins or antibodies that are antigen-specific [50][141, 142].

880 Once the vaccine protein reaches the host antigen-presenting cells (APC), they are processed,
881 and the T cell epitopes are proteolytically cleaved off the protein, which is then represented by
882 MHC molecules on the surface of APCs, exposing them to T cell receptors [143]. MHC class
883 I molecules represent endogenous antigens often referred to as epitopes, such as intracellular
884 proteins of a pathogen (e.g., bacteria or virus) or any tumor-inducing proteins whereas, MHC
885 class II molecules represent exogenous epitopes. Furthermore, the antigen region that binds to
886 the immunoglobulin or antibody is referred to as the B-cell epitope. These B-cell epitopes can
887 be found in any exposed solvent area of the antigen and can be of various chemical types. The
888 majority of antigens, however, are proteins, which are the targets of epitope prediction
889 algorithms. The goal of B-cell epitope prediction is to ensure a more convenient method to
890 identify B-cell epitopes, to substitute antigen for antibody production by the plasma B-cells, or
891 conduct structure-function studies. Thus, antibodies can recognize any area of the antigen that
892 has been exposed to solvents. B-cell epitopes can be split into two categories: linear and
893 conformational; conformational B-cell epitopes are made up of patches of solvent-exposed
894 atoms from residues that are not always sequential, while LBL epitopes are made up of
895 sequential residues. Antibodies that identify LBL epitopes can recognize denatured antigens,
896 but denaturing the antigen causes conformational B-cell epitopes to lose their recognition
897 [144]. T-cell and B-cell epitopes have been predicted for the selected RSV proteins using the
898 IEDB server. The most conserved epitopes with high antigenicity, non-allergenicity, and non-
899 toxicity were screened for designing the vaccine construct. The broad-spectrum activity of the
900 vaccine over the selected strains of both RSV-A and RSV-B viruses was assured by the
901 conservancy of the epitopes.

902 Furthermore, the cytokine-producing ability was considered as a criterion to screen the HTL
903 epitopes desired for designing the vaccine. Inflammatory mediators, such as cytokines and
904 chemokines have been linked to RSV pathogenesis. They may be divided into two groups
905 depending on how they affect immune cells: pro-inflammatory and anti-inflammatory
906 chemicals [144]. Interleukin (IL)-1, tumor necrosis factor-alpha (TNF- α), interferon-gamma
907 (IFN- γ), and interleukin-6 (IL-6) are pro-inflammatory cytokines [145-147]. IL-10 and IL-12
908 are anti-inflammatory cytokines [148, 149]. IFN- γ , on the other hand, has a dual role during
909 RSV infection; it is essential to decrease viral multiplication while simultaneously inhibiting
910 airway blockage [150]. IFN- γ is well-known for its fundamentally safe responses and potential
911 to stop viral multiplication [151, 152]. Additionally, IL-4 plays important role in regulating the
912 responses of lymphocytes, myeloid cells, and non-hematopoietic cells. In T-cells, IL-4 induces
913 the differentiation of naïve CD4 T cells into Th2 cells, and in B cells, IL-4 drives the
914 immunoglobulin (Ig) class switch to IgG1 and IgE, and in macrophages, IL-4, as well as IL-
915 13, induce alternative macrophage activations [153]. Consequently, cytokines including IFN-
916 γ , IL-10, and IL-4 were considered essential during the prediction of the HTL epitopes of the
917 vaccine which, after administration, might play a crucial role in creating a network between
918 immune system cells [63]. The population coverage analysis was performed in the following
919 step. As HLA allelic distribution varies between geographical regions and ethnic groups
920 throughout the world, it is paramount to consider population coverage while designing a viable
921 epitope-based vaccine that is pertinent to global populations. According to the population
922 coverage analysis, the MHC Class-I and Class-II alleles and their epitopes covered 85.70 %
923 and 87.92 % of the global population, respectively, while the combined MHC Class-I and class-
924 II alleles and their epitopes covered 84% of the world population. When compared to the
925 overall population, selected epitopes exhibited a greater individual percentage cover which
926 indicates the potential worldwide effects of the vaccine against RSV infections.

927

928 The most promising epitopes had been conjugated by specific linkers, i.e. EAAAK, AAY, KK,
929 and GPGPG. An innate antimicrobial peptide, hBD-3 was used as an adjuvant during the
930 construction of the vaccine. An adjuvant is considered crucial for designing a subunit vaccine
931 because it improves the traits of antigenicity, immunogenicity, durability, and longevity of the
932 subunit vaccine [154]. The hBD-3 was chosen as it could potentially induce TLR-dependent
933 expression of the co-stimulatory molecules - CD80, CD86, and CD40 on the surface of
934 monocytes and myeloid dendritic cells [155]. Moreover, by forming a protective barrier of
935 immobilized surface proteins, hBD-3 can prevent the fusion of the virus [156]. Furthermore, it
936 activates the APCs through TLR1 and TLR2 [157], stimulates IL-22 [158], TGF- α [159, 160],
937 and IFN- γ [161, 162]. It also facilitates the chemotaxis of immature DCs and T cells through
938 its interaction with chemokine receptor 6 (CCR6), as well as the chemotaxis of monocytes
939 through its interaction with CCR2 [163]. This peptide also promotes and activates myeloid
940 DCs and natural killer (NK) cells [157, 162].

941 Alongside the adjuvant, to strengthen the immunogenic reaction of the vaccine, the PADRE
942 sequence was also incorporated. The antigenicity, allergenicity, and physicochemical
943 properties of the constructed vaccine were subsequently identified, which revealed the vaccine
944 protein to be desirable for further modeling refinement and validation processes. The vaccine
945 protein was predicted with a theoretical pI of 9.75, indicating that the vaccine protein is basic
946 and it might belong to the positively charged proteins [132]. The vaccine's GRAVY value was
947 predicted to be quite negative (-0.362), indicating that the vaccine protein is hydrophilic [138,
948 139]. Moreover, the instability index was determined to be less than 40 (27.55), implying that
949 the vaccine is fairly stable. The extinction coefficient which is representative of the light-
950 absorbing nature, and the aliphatic index which denotes the high stability of the vaccine protein,
951 were both found to have high values at 45770 M⁻¹ cm⁻¹ and 80.85, respectively [133]. Using

952 different online tools to predict the secondary and tertiary structure of the vaccine, it was
953 revealed that the adjuvant sequences had produced some substantial changes in the predicted
954 vaccine construct. Furthermore, the secondary structure analysis showed that the vaccine
955 protein sequence was abundant with the coiled regions as well as the very low amount of β -
956 strand. This indicates the higher stability and conservation of the predicted vaccine model. The
957 tertiary structure was modeled and refined once the secondary structure was determined. The
958 tertiary structure prediction of the vaccine protein revealed a p-value of 8.71e-05 in four
959 domains of the protein, indicating that the predicted 3D structure was quite accurate. The
960 quality of the vaccine was greatly enhanced following refinement in the context of GDT-HA,
961 MolProbity, Rama favored amino acid percentage, and z scores, according to the tertiary
962 structure refinement and validation study. With only a few amino acids in the outlier regions,
963 the refined structure showed a very high Rama favored amino acid percentage. Following that,
964 the refined structure was used for disulfide engineering. Furthermore, disulfide engineering of
965 the vaccine construct has been conducted to increase its stability using the DbD2 v12.2 servers.
966 The server can determine the B-factor of areas involved in disulfide bonding as well as identify
967 potential disulfides that increase the protein's thermal stability [92]. All residue pairings in a
968 given protein structural model are quickly analyzed for closeness and geometry compatible
969 with disulfide formation, assuming the residues have been changed to cysteines. Similarly, the
970 experimental result shows residue pairings that match the specified requirements. Engineered
971 disulfides have been shown to improve protein stability and aid in the study of protein dynamics
972 and interactions [94]. Three pairs of amino acids have been found by the server which is
973 predicted to improve the stability of the vaccine construct thereby. However, the vaccine's
974 possible effectiveness and immunological responses may be reduced if posttranslational
975 modification, such as glycosylation and phosphorylation, is overlooked during vaccine
976 development. Glycosylation is a chemical modification of macromolecules in which

977 carbohydrate moieties are covalently bonded to the N or C terminals of lipids and proteins
978 molecules, resulting in N-linked and O-linked glycosylation [164]. Previous studies have found
979 that glycosylation significantly improves vaccine immunogenicity when compared to non-
980 glycosylated vaccinations, and clinical trials are now ongoing [165]. Furthermore,
981 phosphorylation is the process of adding a phosphate group to macromolecules. Eukaryotes
982 have a greater frequency of occurrence of posttranslational modifications. Serine and threonine
983 are two important phosphorylation sites. Phosphorylated peptides or epitopes (synthetic or
984 natural) are known to be better recognized by cytotoxic T cells, i.e. MHC Class I molecules,
985 and are therefore directly implicated in the production of particular immune responses [166].
986 As a result, it is hypothesized that the vaccine construct predicted with multiple
987 posttranslational modifications will create an efficient immunogenic response against the virus
988 following vaccine administration.

989 Furthermore, one of the predominant necessities and approaches to designing an effective
990 vaccine is the molecular docking process. It concludes the probability of contact between the
991 vaccine and other networking proteins, i.e. TLRs may occur during initial immune response.
992 TLRs, which are found on leukocytes and in tissues, play a major role in innate immunity
993 activation by identifying invading pathogens, including viruses like RSV, and sending out
994 signals that promote inflammation-related components [167]. TLRs, such as TLR2, TLR1,
995 TLR6, TLR3, and TLR4, are found on leukocytes and can interact with RSV to boost immune
996 responses [168]. Within the lungs, TLR2 interactions with RSV increase neutrophil migration
997 and dendritic cell activation. TLR2 exists as a heterodimer complex with either TLR1 or TLR6
998 on the surface of immune cells and tissues [169]. According to genetic analysis and vaccine
999 studies, TLR2 signaling appears to be critical in RSV recognition [170-172]. TLR2 and TLR1
1000 or TLR2 and TLR6 complexes can recognize RSV, and greatly enhance early innate
1001 inflammatory responses [173-175]. Previous research has also suggested that the signals

1002 generated by TLR2 and TLR6 activation are critical for viral replication control [168]. TLR3
1003 and TLR4 signaling support the T helper type 1 (Th1) responses, whereas T helper type 2 (Th2)
1004 responses are favored by TLR2/1, and TLR2/6 signaling [177]. Th1 cells help with responses
1005 to intracellular pathogens, whereas Th2 cells handle parasitic infections and allergies [178,
1006 179]. The F glycoprotein of RSV has been reported to induce primarily a Th1-type immune
1007 response through the interaction with TLR4 [180, 181]. On the other hand, TLR9 has been
1008 found to improve vaccine immunogenicity and decrease vaccine-enhanced illness during FI-
1009 RSV immunization. Furthermore, immunomodulation generated by TLR9 agonists verifies
1010 TLR agonists' adjuvant potential after RSV immunization [182]. Finally, the targeted TLRs are
1011 all involved in pattern recognition and the innate immune response to RSV, which results in
1012 the production of proinflammatory cytokines and chemokines [183]. TLRs which are critical
1013 in the RSV pathogenesis were considered for the docking analysis. Thus, TLR-1, TLR-2, TLR-
1014 3, TLR-4, and TLR9 have been docked with the vaccine protein which revealed each of the
1015 TLRs to obtain very low binding energy in different servers and to show strong interaction with
1016 the vaccine protein according to the results given in the docking analysis. It is evident from the
1017 docking analysis that the designed vaccine would have a strong affinity with all the target
1018 TLRs, leading to the possibility that a strong immune response might be induced by the vaccine
1019 after administration.

1020 In response to external forces exerted by its surrounding environment, MD simulation
1021 examines the motion and changes in the state of a target protein molecule or complex. In this
1022 experiment, to get a better insight into their molecular stability, the five docked vaccine-TLR
1023 complexes were simulated. The experiment revealed that the structures retained appropriate
1024 levels of deviation. The TLR1-vaccine complex was found to have the least RMSD compared
1025 to other complexes; the TLR4-vaccine complex had higher RMSD despite having a similar
1026 number of chains. The result of RMSD represents the stability of TLR1 and TLR9 vaccine

1027 complexes. Despite 3 chains *viz.* Chain A, chain B, and vaccine chain in the TLR1-vaccine
1028 complex, the resultant RMSD, suggest reasonable stability. Furthermore, The RMSF analysis
1029 suggests the residues in the range 190-240 and 480-530 are having large magnitudes of
1030 fluctuations in all the complexes. The TLR3-vaccine complex showed slightly larger
1031 fluctuating side chains than other complexes. The results of the total Rg analysis suggest that
1032 the total Rg of the TLR1-vaccine complex almost remained constant throughout the simulation.
1033 The total Rg of the TLR4-vaccine complex was found lower; however, it deviated throughout
1034 the simulation. Though both these TLRs have two chains of proteins along with vaccine chains,
1035 TLR1 Rg seemed quite stable, while the other TLR systems (TLR2, TLR3) also seemed to be
1036 quite compact, and there were no evident secondary structural changes in these TLRs. In the
1037 non-bonded interaction analysis, in the case of TLR1-vaccine complex, it is found that around
1038 10 hydrogen bonds were formed till around 50 ns MD time interval, which steadily lowers to
1039 around 5 hydrogen bonds till 80 ns and thereafter rises to 10 hydrogen bonds. The TLR2-
1040 vaccine complex has around 7 hydrogen bonds being constantly formed throughout the MD
1041 simulation, while TLR3 and TLR9 complexes with vaccines have around 10 hydrogen bonds
1042 constantly formed. These complexes have strong hydrogen bond networks at the interface of
1043 TLRs and vaccines. The TLR4-vaccine complex has around 5 hydrogen bonds formed which
1044 are fewer in number compared to other systems. Actual residues involved in the hydrogen bond
1045 formation as investigated in the last trajectory are tabulated in the **S7 Table**.

1046
1047 The immune simulation analysis of the proposed vaccine demonstrated that the vaccine could
1048 induce an immune response compatible with the natural host immune system. Both humoral
1049 and cell-mediated responses may be activated by the vaccine, as shown by an elevation in the
1050 levels of memory B cells, plasma B cells, cytotoxic T cells, helper T cells, and various
1051 antibodies. Adaptive immunity is an immunity that occurs after exposure to an antigen either

1052 from a pathogen or a vaccination. A vaccine can generate adaptive immunity against the
1053 pathogen by which it may restrict or prevent the infection. The vaccine-provided activation of
1054 helper T cells resulted in strong adaptive immunity [184-186]. Again, a very strong antigen
1055 presentation was also demonstrated in the simulation study by the rise in the concentration of
1056 APCs such as macrophages and dendritic cells. In addition, enrichment in the cytokine profile
1057 that plays a crucial role in providing broad-spectrum immunity against viral invasions [186-
1058 189] has also been identified in the analysis [66]. Moreover, the gradual increase in the level
1059 of different mucosal immunoglobulins i.e. IgG1 + IgG2, and IgG + IgM antibodies throughout
1060 the vaccine doses or injections were also predicted. The mucosal immune system is the
1061 dominant part of the immune system, having developed to protect the mucosae in the upper
1062 respiratory tract, which are the primary sites of respiratory infection. Being a respiratory virus,
1063 RSV initially affects the upper respiratory tract, due to which the immune system may be
1064 stimulated against the virus predominantly at the mucosal surfaces [190]. Previous clinical
1065 studies also reported IgG and IgM to be significant role players against RSV infections [191].
1066 Furthermore, the simulation analysis revealed that the concentration of regulatory T cells would
1067 gradually decrease throughout the phases of the vaccine doses which indicates the potential
1068 decrease in suppression of vaccine-induced immunity by regulatory T cells [192].
1069 Hence, the proposed vaccine construct is predicted to produce an effective immunogenic
1070 response after the vaccine injections, according to the analysis of the immune simulation. The
1071 codon adaptation and subsequent *in silico* cloning studies were conducted to identify the
1072 potential codons required for the generation of a recombinant plasmid that could be used to
1073 express the vaccine in the *E. coli* strain K12, leading to the mass manufacturing efforts of the
1074 vaccine in the near future. The *E. coli* cell culture system is considered to be the majorly
1075 recommended system for the production of recombinant proteins at a mass level. In the codon
1076 adaptation analysis, the obtained results were significantly good with a CAI value of 0.98 and

1077 a GC content of 50.23 %, since any CAI value above 0.80 and a GC content of 30% to 70%
1078 are considered to be the most promising scores [34, 186, 193]. Following this, the optimized
1079 vaccine DNA sequence was inserted into the pETite plasmid vector using Snapgene restriction
1080 cloning software. The pETite plasmid vector contains SUMO tag and 6X His tag which might
1081 be fused with the vaccine codon sequence during the *in silico* cloning process. This may lead
1082 to the expression of these tags within the protein itself, which could promote the purification
1083 and downstream processing of the vaccine. Prediction of the stability of the vaccine mRNA
1084 secondary structure using the Mfold and RNAfold servers provided with the negative and much
1085 lower minimal free energies of -549.30 and -526.30 kcal/mol, respectively. The lower minimal
1086 free energy is often considered better than the higher maximal free energy score which indicates
1087 the protein to be more stable. It can, therefore, be reported that the predicted vaccine could be
1088 very stable upon transcription [133]. Overall, this study suggests that the proposed vaccine
1089 peptide could be utilized as a potential and successful protective measure against both RSV-A
1090 and RSV-B subtypes. However, to eventually validate its immunogenicity, efficacy, stability,
1091 safety, and various biophysical characteristics, further research approaches, and
1092 implementations are recommended.

1093

1094 **5. Conclusion**

1095 RSV is predominantly one of the major contributors of diseases of the LRTI, including
1096 pneumonia and bronchiolitis, responsible for infecting people of all ages as well as
1097 immunocompromised individuals with a high infection rate. Millions of individuals eventually
1098 end up being diagnosed with this virus every year, and a huge proportion of them require to be
1099 hospitalized. While research for an effective countermeasure to tackle this virus has been
1100 ongoing for the past few decades, no approved vaccine is still commercially available.

1101 Moreover, the antiviral drugs now available often struggle to show any effective outcomes
1102 during therapy. Therefore, a potential epitope-based polyvalent vaccine against both forms of
1103 RSV, RSV-A, and RSV-B, was designed in this research using the techniques of
1104 immunoinformatics and *in-silico* biology. The vaccine included the T-cell and B-cell epitopes
1105 that were 100% conserved; they could therefore be efficient against the two selected viruses.
1106 In addition, high antigenicity, non-allergenicity, and non-toxicity as well as non-homology (to
1107 the human proteome) were also considered to be the criteria for choosing the most promising
1108 epitopes for the final construction of the vaccine, so that the vaccine could deliver a very strong
1109 immunogenic response without triggering any adverse reaction inside the body. The results of
1110 the various analyses conducted in the study revealed that the polyvalent vaccine should be very
1111 safe, efficient, and responsive to use. The tools utilized in this study are well accepted and yield
1112 highly accurate results. Therefore, the findings of this study can point researchers in the
1113 direction of novel vaccine development tactics. Researchers could investigate the predicted
1114 epitopes and their probable immunogenic response elicited in the host system when looking
1115 into further subunit vaccine development or other prevention strategies against RSV infection.
1116 However, as all these predictions were focused solely on computational techniques, it is
1117 important to perform further wet laboratory-based experiments to validate the findings of this
1118 analysis. With high-cost criteria and numerous drawbacks in improving the preparation of a
1119 live, attenuated, or inactivated vaccine for such highly infectious agents, candidates for peptide-
1120 based vaccines, such as the one designed in this study, maybe comparatively cheap and an
1121 efficient alternative to reach the entire world as a polyvalent vaccine to fight the challenge of
1122 RSV infections.

1123 **6. Acknowledgements**

1124 Authors are thankful to the Department of Pharmaceutical Chemistry, Sinhgad College of
1125 Pharmacy, Maharashtra, India, Department of Genetic Engineering and Biotechnology,

1126 University of Chittagong, Chattogram, Bangladesh and Swift Integrity Computational Lab,
1127 Dhaka, Bangladesh, a virtual platform of young researchers, for providing support to
1128 successfully carry out the research.

1129 **7. Declarations**

1130 **Ethics approval and consent to participate**

1131 Not Applicable

1132 **Consent for publication**

1133 Not Applicable

1134 **Availability of data and material**

1135 All the data generated during the experiment are provided in the manuscript/supplementary
1136 material.

1137 **Competing interests**

1138 The authors declare that they have no conflict of interest regarding the publication of the paper.

1139 **Funding**

1140 No funding was received from any external sources.

1141

1142

1143

1144

1145

1146

1147 8. References

- 1148 1. Meng J, Stobart CC, Hotard AL, Moore ML. An overview of respiratory syncytial virus.
1149 PLoS Pathog. 2014 Apr 24;10(4):e1004016.
1150 <https://doi.org/10.1371/journal.ppat.1004016>
1151 PMid:24763387 PMCid:PMC3999198
- 1152
- 1153 2. Clark CM, Guerrero-Plata A. Respiratory syncytial virus vaccine approaches: a current
1154 overview. Current clinical microbiology reports. 2017 Dec 1;4(4):202-7
1155 <https://doi.org/10.1007/s40588-017-0074-6>
1156 PMid:30009126 PMCid:PMC6040676
- 1157
- 1158 3. Killikelly A, Tunis M, House A, Quach C, Vaudry W, Moore D. Respiratory syncytial virus:
1159 Overview of the respiratory syncytial virus vaccine candidate pipeline in Canada. Canada
1160 Communicable Disease Report. 2020 Apr 2;46(4):56
1161 <https://doi.org/10.14745/ccdr.v46i04a01>
1162 PMid:32510521 PMCid:PMC7273503
- 1163
- 1164 4. Schmidt ME, Varga SM. Modulation of the host immune response by respiratory syncytial
1165 virus proteins. Journal of Microbiology. 2017 Mar 1;55(3):161-71.
1166 <https://doi.org/10.1007/s12275-017-7045-8>
1167 PMid:28243940
- 1168
- 1169 5. Bakre AA, Harcourt JL, Haynes LM, Anderson LJ, Tripp RA. The central conserved region
1170 (CCR) of respiratory syncytial virus (RSV) G protein modulates host miRNA expression and
1171 alters the cellular response to infection. Vaccines. 2017 Sep;5(3):16.
1172 <https://doi.org/10.3390/vaccines5030016>
1173 PMid:28671606 PMCid:PMC5620547
- 1174
- 1175 6. Harcourt J, Alvarez R, Jones LP, Henderson C, Anderson LJ, Tripp RA. Respiratory
1176 syncytial virus G protein and G protein CX3C motif adversely affect CX3CR1+ T cell
1177 responses. The Journal of Immunology. 2006 Feb 1;176(3):1600-8.
1178 <https://doi.org/10.4049/jimmunol.176.3.1600>
1179 PMid:16424189
- 1180
- 1181 7. Bergeron HC, Murray J, Castrejon AM, DuBois RM, Tripp RA. Respiratory Syncytial Virus
1182 (RSV) G Protein Vaccines With Central Conserved Domain Mutations Induce CX3C-CX3CR1
1183 Blocking Antibodies. Viruses. 2021 Feb;13(2):352.
1184 <https://doi.org/10.3390/v13020352>
1185 PMid:33672319 PMCid:PMC7926521
- 1186
- 1187 8. Eshaghi A, Duvvuri VR, Lai R, Nadarajah JT, Li A, Patel SN, Low DE, Gubbay JB. Genetic
1188 variability of human respiratory syncytial virus A strains circulating in Ontario: a novel
1189 genotype with a 72 nucleotide G gene duplication. PloS one. 2012 Mar 28;7(3):e32807.
1190 <https://doi.org/10.1371/journal.pone.0032807>
1191 PMid:22470426 PMCid:PMC3314658

1192
1193 9. Yoshihara K, Le MN, Okamoto M, Wadagni AC, Nguyen HA, Toizumi M, Pham E, Suzuki
1194 M, Nguyen AT, Oshitani H, Ariyoshi K. Association of RSV-A ON1 genotype with increased
1195 pediatric acute lower respiratory tract infection in Vietnam. *Scientific Reports*. 2016 Jun
1196 16;6(1):1-0.
1197 <https://doi.org/10.1038/srep27856>
1198 PMid:27306333 PMCid:PMC4910061
1199
1200 10. Chirkova T, Boyoglu-Barnum S, Gaston KA, Malik FM, Trau SP, Oomens AG, Anderson
1201 LJ. Respiratory syncytial virus G protein CX3C motif impairs human airway epithelial and
1202 immune cell responses. *Journal of virology*. 2013 Dec 15;87(24):13466-79.
1203 <https://doi.org/10.1128/JVI.01741-13>
1204 PMid:24089561 PMCid:PMC3838285
1205
1206 11. Resch B. Product review on the monoclonal antibody palivizumab for prevention of
1207 respiratory syncytial virus infection. *Human vaccines & immunotherapeutics*. 2017 Sep
1208 2;13(9):2138-49.
1209 <https://doi.org/10.1080/21645515.2017.1337614>
1210 PMid:28605249 PMCid:PMC5612471
1211
1212 12. IMpact-RSV Study Group*. Palivizumab, a humanized respiratory syncytial virus
1213 monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in
1214 high-risk infants. *Pediatrics*. 1998 Sep 1;102(3):531-7.
1215 <https://doi.org/10.1542/peds.102.3.531>
1216
1217
1218 13. Bergeron HC, Tripp RA. Emerging small and large molecule therapeutics for respiratory
1219 syncytial virus. *Expert opinion on investigational drugs*. 2020 Mar 3;29(3):285-94.
1220 <https://doi.org/10.1080/13543784.2020.1735349>
1221 PMid:32096420
1222
1223 14. Bianchini S, Silvestri E, Argentiero A, Fainardi V, Pisi G, Esposito S. Role of Respiratory
1224 Syncytial Virus in Pediatric Pneumonia. *Microorganisms*. 2020 Dec;8(12):2048.
1225 <https://doi.org/10.3390/microorganisms8122048>
1226 PMid:33371276 PMCid:PMC7766387
1227
1228 15. Falsey AR, Walsh EE. Respiratory syncytial virus infection in elderly adults. *Drugs &*
1229 *aging*. 2005 Jul;22(7):577-87.
1230 <https://doi.org/10.2165/00002512-200522070-00004>
1231 PMid:16038573 PMCid:PMC7099998
1232
1233 16. Agoti CN, Phan MV, Munywoki PK, Githinji G, Medley GF, Cane PA, Kellam P, Cotten
1234 M, Nokes DJ. Genomic analysis of respiratory syncytial virus infections in households and
1235 utility in inferring who infects the infant. *Scientific reports*. 2019 Jul 11;9(1):1-4
1236 <https://doi.org/10.1038/s41598-019-46509-w>
1237 PMid:31296922 PMCid:PMC6624209

1238
1239 17. Kim HW, Canchola JG, Brandt CD, Pyles G, Chanock RM, Jensen K, Parrott RH.
1240 Respiratory syncytial virus disease in infants despite prior administration of antigenic
1241 inactivated vaccine. *American journal of epidemiology*. 1969 Apr 1;89(4):422-34.
1242 <https://doi.org/10.1093/oxfordjournals.aje.a120955>
1243 PMid:4305198
1244
1245 18. Fulginiti VA, Eller JJ, Sieber OF, Joyner JW, Minamitani M, Meiklejohn G. Respiratory
1246 virus immunization: A field trial of two inactivated respiratory virus vaccines; an aqueous
1247 trivalent parainfluenza virus vaccine and an alum-precipitated Respiratory Syncytial Virus
1248 vaccine. *American journal of epidemiology*. 1969 Apr 1;89(4):435-48.
1249 <https://doi.org/10.1093/oxfordjournals.aje.a120956>
1250 PMid:4305199
1251
1252 19. CHIN J, MAGOFFIN RL, SHEARER LA, SCHIEBLE JH, LENNETTE EH. Field
1253 evaluation of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine
1254 in a pediatric population. *American journal of epidemiology*. 1969 Apr 1;89(4):449-63.
1255 <https://doi.org/10.1093/oxfordjournals.aje.a120957>
1256 PMid:4305200
1257
1258 20. Kapikian AZ, Mitchell RH, Chanock RM, Shvedoff RA, Stewart CE. An epidemiologic
1259 study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children
1260 previously vaccinated with an inactivated RS virus vaccine. *American journal of epidemiology*.
1261 1969 Apr 1;89(4):405-21.
1262 <https://doi.org/10.1093/oxfordjournals.aje.a120954>
1263 PMid:4305197
1264
1265 21. Kim HW, Arrobio JO, Pyles G, Brandt CD, Camargo E, Chanock RM, Parrott RH. Clinical
1266 and immunological response of infants and children to administration of low-temperature
1267 adapted respiratory syncytial virus. *Pediatrics*. 1971 Nov 1;48(5):745-55.
1268 <https://doi.org/10.1542/peds.48.5.745>
1269 PMid:4330595
1270
1271 22. Olson MR, Varga SM. CD8 T cells inhibit respiratory syncytial virus (RSV) vaccine-
1272 enhanced disease. *The Journal of Immunology*. 2007 Oct 15;179(8):5415-24.
1273 <https://doi.org/10.4049/jimmunol.179.8.5415>
1274 PMid:17911628
1275
1276 23. Olson MR, Hartwig SM, Varga SM. The number of respiratory syncytial virus (RSV)-
1277 specific memory CD8 T cells in the lung is critical for their ability to inhibit RSV vaccine-
1278 enhanced pulmonary eosinophilia. *The Journal of Immunology*. 2008 Dec 1;181(11):7958-68.
1279 <https://doi.org/10.4049/jimmunol.181.11.7958>
1280 PMid:19017987 PMCid:PMC2587004
1281

1282 24. Knudson CJ, Hartwig SM, Meyerholz DK, Varga SM. RSV vaccine-enhanced disease is
1283 orchestrated by the combined actions of distinct CD4 T cell subsets. *PLoS pathogens*. 2015
1284 Mar 13;11(3):e1004757.
1285 <https://doi.org/10.1371/journal.ppat.1004757>
1286 PMid:25769044 PMCid:PMC4358888
1287

1288 25. Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Bataille JP, Diaz L,
1289 Trento A, Chang HY, Mitzner W, Ravetch J. Lack of antibody affinity maturation due to poor
1290 Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. *Nature
1291 medicine*. 2009 Jan;15(1):34-41.
1292 <https://doi.org/10.1038/nm.1894>
1293 PMid:19079256 PMCid:PMC2987729
1294

1295 26. Karron RA, Wright PF, Crowe Jr JE, Mann ML, Thompson J, Makhene M, Casey R,
1296 Murphy BR. Evaluation of two live, cold-passaged, temperature-sensitive respiratory syncytial
1297 virus vaccines in chimpanzees and in human adults, infants, and children. *Journal of Infectious
1298 Diseases*. 1997 Dec 1;176(6):1428-36.
1299 <https://doi.org/10.1086/514138>
1300 PMid:9395351
1301

1302 27. Gomez M, Mufson MA, Dubovsky F, Knightly C, Zeng W, Losonsky G. Phase-I study
1303 MEDI-534, of a live, attenuated intranasal vaccine against respiratory syncytial virus and
1304 parainfluenza-3 virus in seropositive children. *The Pediatric infectious disease journal*. 2009
1305 Jul 1;28(7):655-8.
1306 <https://doi.org/10.1097/INF.0b013e318199c3b1>
1307 PMid:19483659
1308

1309 28. Ascough S, Vlachantoni I, Kalyan M, Hajema BJ, Wallin-Weber S, Dijkstra-Tiekstra M,
1310 Ahmed MS, Van Roosmalen M, Grimaldi R, Zhang Q, Leenhouts K. Local and systemic
1311 immunity against respiratory syncytial virus induced by a novel intranasal vaccine. A
1312 randomized, double-blind, placebo-controlled clinical trial. *American journal of respiratory
1313 and critical care medicine*. 2019 Aug 15;200(4):481-92.
1314 <https://doi.org/10.1164/rccm.201810-1921OC>
1315 PMid:30753101 PMCid:PMC6701032
1316

1317 29. Shafique M, Zahoor MA, Arshad MI, Aslam B, Siddique AB, Rasool MH, Qamar MU,
1318 Usman M. Hurdles in Vaccine Development against Respiratory Syncytial Virus. InThe
1319 Burden of Respiratory Syncytial Virus Infection in the Young 2019 Aug 1. IntechOpen.
1320 <https://doi.org/10.5772/intechopen.87126>
1321

1322

1323 30. Xing Y, Proesmans M. New therapies for acute RSV infections: where are we?. *European
1324 journal of pediatrics*. 2019 Feb 12;178(2):131-8.
1325 <https://doi.org/10.1007/s00431-018-03310-7>
1326 PMid:30610420
1327

1328 31. Griffiths C, Drews SJ, Marchant DJ. Respiratory syncytial virus: infection, detection, and
1329 new options for prevention and treatment. *Clinical microbiology reviews*. 2017 Jan
1330 1;30(1):277-319.
1331 <https://doi.org/10.1128/CMR.00010-16>
1332 PMid:27903593 PMCid:PMC5217795
1333
1334 32. Jordan R, Shao M, Mackman RL, Perron M, Cihlar T, Lewis SA, Eisenberg EJ, Carey A,
1335 Strickley RG, Chien JW, Anderson ML. Antiviral efficacy of a respiratory syncytial virus
1336 (RSV) fusion inhibitor in a bovine model of RSV infection. *Antimicrobial agents and*
1337 *chemotherapy*. 2015 Aug 1;59(8):4889-900
1338 <https://doi.org/10.1128/AAC.00487-15>
1339 PMid:26055364 PMCid:PMC4505261
1340
1341 33. María, R.R., Arturo, C.J., Alicia, J.A., Paulina, M.G., Gerardo, A.O., 2017. The impact of
1342 bioinformatics on vaccine design and development. InTech, Rijeka, Croatia.
1343 <https://doi.org/10.5772/intechopen.69273>
1344
1345
1346 34. Sarkar B, Ullah MA, Araf Y, Das S, Hosen MJ. Blueprint of epitope-based multivalent and
1347 multipathogenic vaccines: targeted against the dengue and zika viruses. *Journal of*
1348 *Biomolecular Structure and Dynamics*. 2020a Aug 7:1-21.
1349 <https://doi.org/10.1080/07391102.2020.1804456>
1350 PMid:32772811
1351
1352 35. Rappuoli R. Reverse vaccinology. *Current opinion in microbiology*. 2000 Oct 1;3(5):445-
1353 50.
1354 [https://doi.org/10.1016/S1369-5274\(00\)00119-3](https://doi.org/10.1016/S1369-5274(00)00119-3)
1355
1356
1357 36. Rappuoli, R., Bottomley, M.J., D'Oro, U., Finco, O., De Gregorio, E., 2016. Reverse
1358 vaccinology 2.0: Human immunology instructs vaccine antigen design. *J. Exp. Med.* 213, 469-
1359 481.
1360 <https://doi.org/10.1084/jem.20151960>
1361 PMid:27022144 PMCid:PMC4821650
1362
1363 37. Chong, L.C. and Khan, A.M., 2019. Vaccine Target Discovery.
1364 <https://doi.org/10.1016/B978-0-12-809633-8.20100-3>
1365 PMCid:PMC7148608
1366
1367 38. Collins PL, Farnes R, Graham BS. Respiratory syncytial virus: virology, reverse genetics,
1368 and pathogenesis of disease. InChallenges and opportunities for respiratory syncytial virus
1369 vaccines 2013 (pp. 3-38). Springer, Berlin, Heidelberg.
1370 https://doi.org/10.1007/978-3-642-38919-1_1
1371 PMid:24362682 PMCid:PMC4794264
1372

1373 39. Steff AM, Monroe J, Friedrich K, Chandramouli S, Nguyen TL, Tian S, Vandepaer S,
1374 Toussaint JF, Carfi A. Pre-fusion RSV F strongly boosts pre-fusion specific neutralizing
1375 responses in cattle pre-exposed to bovine RSV. *Nature communications*. 2017 Oct 20;8(1):1-
1376 0.
1377 <https://doi.org/10.1038/s41467-017-01092-4>
1378 PMid:29057917 PMCid:PMC5651886
1379

1380 40. McLellan JS, Ray WC, Peeples ME. Structure and function of respiratory syncytial virus
1381 surface glycoproteins. *Challenges and opportunities for respiratory syncytial virus vaccines*.
1382 2013:83-104.
1383 https://doi.org/10.1007/978-3-642-38919-1_4
1384 PMid:24362685 PMCid:PMC4211642
1385

1386 41. Arbiza J, Taylor G, López JA, Furze J, Wyld S, Whyte P, Stott EJ, Wertz G, Sullender W,
1387 Trudel M, Melero JA. Characterization of two antigenic sites recognized by neutralizing
1388 monoclonal antibodies directed against the fusion glycoprotein of human respiratory syncytial
1389 virus. *Journal of General Virology*. 1992 Sep 1;73(9):2225-34.
1390 <https://doi.org/10.1099/0022-1317-73-9-2225>
1391 PMid:1383404
1392

1393 42. Lopez JA, Bustos R, Örvell C, Berois M, Arbiza J, García-Barreno B, Melero JA. Antigenic
1394 structure of human respiratory syncytial virus fusion glycoprotein. *Journal of virology*. 1998
1395 Aug 1;72(8):6922-8.
1396 <https://doi.org/10.1128/JVI.72.8.6922-6928.1998>
1397 PMid:9658147 PMCid:PMC109907
1398

1399 43. López JA, Peñas CO, García-Barreno BL, Melero JA, Portela A. Location of a highly
1400 conserved neutralizing epitope in the F glycoprotein of human respiratory syncytial virus.
1401 *Journal of virology*. 1990 Feb;64(2):927-30.
1402 <https://doi.org/10.1128/jvi.64.2.927-930.1990>
1403 PMid:1688629 PMCid:PMC249192
1404

1405 44. Lu B, Ma CH, Brazas R, Jin H. The major phosphorylation sites of the respiratory syncytial
1406 virus phosphoprotein are dispensable for virus replication in vitro. *Journal of virology*. 2002
1407 Nov 1;76(21):10776-84
1408 <https://doi.org/10.1128/JVI.76.21.10776-10784.2002>
1409 PMid:12368320 PMCid:PMC136636
1410

1411 45. Doytchinova, I.A., Flower, D.R., 2007. VaxiJen: a server for prediction of protective
1412 antigens, tumour antigens and subunit vaccines. *BMC Bioinform*. 8, 4.
1413 <https://doi.org/10.1186/1471-2105-8-4>
1414 PMid:17207271 PMCid:PMC1780059
1415

1416 46. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M.R., Appel, R.D. and Bairoch, A.,
1417 2005. Protein identification and analysis tools on the ExPASy server. In *The proteomics*
1418 *protocols handbook* (pp. 571-607). Humana press.

1419 https://doi.org/10.1385/1-59259-890-0:571
1420
1421
1422 47. Clem AS. Fundamentals of vaccine immunology. *Journal of global infectious diseases*.
1423 2011 Jan;3(1):73.
1424 <https://doi.org/10.4103/0974-777X.77299>
1425 PMid:21572612 PMCid:PMC3068582
1426
1427 48. Chaudhri, G., Quah, B.J., Wang, Y., Tan, A.H., Zhou, J., Karupiah, G. and Parish, C.R.,
1428 2009. T cell receptor sharing by cytotoxic T lymphocytes facilitates efficient virus control.
1429 *Proceedings of the National Academy of Sciences*, 106(35), pp.14984-14989.
1430 <https://doi.org/10.1073/pnas.0906554106>
1431 PMid:19706459 PMCid:PMC2736460
1432
1433 49. Zhu, J. and Paul, W.E., 2008. CD4 T cells: fates, functions, and faults. *Blood*, *The Journal*
1434 of the American Society of Hematology, 112(5), pp.1557-1569.
1435 <https://doi.org/10.1182/blood-2008-05-078154>
1436 PMid:18725574 PMCid:PMC2518872
1437
1438 50. Cooper, N.R. and Nemerow, G.R., 1984. The role of antibody and complement in the
1439 control of viral infections. *Journal of investigative dermatology*, 83(s 1), pp.121-127.
1440 <https://doi.org/10.1038/jid.1984.33>
1441
1442
1443 51. Sun P, Ju H, Liu Z, Ning Q, Zhang J, Zhao X, Huang Y, Ma Z, Li Y. Bioinformatics
1444 resources and tools for conformational B-cell epitope prediction. *Computational and*
1445 *mathematical methods in medicine*. 2013 Jul 21;2013.
1446 <https://doi.org/10.1155/2013/943636>
1447 PMid:23970944 PMCid:PMC3736542
1448
1449 52. Zhang J, Zhao X, Sun P, Gao B, Ma Z. Conformational B-cell epitopes prediction from
1450 sequences using cost-sensitive ensemble classifiers and spatial clustering. *BioMed research*
1451 *international*. 2014 Jun 17;2014.
1452 <https://doi.org/10.1155/2014/689219>
1453 PMid:25045691 PMCid:PMC4083607
1454
1455 53. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A,
1456 Peters B. The Immune Epitope Database (IEDB): 2018 update. *Nucleic Acids Res*. 2018 Oct
1457 24.
1458 <https://doi.org/10.1093/nar/gky1006>
1459 PMid:30357391 PMCid:PMC6324067
1460
1461 54. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based
1462 B-cell epitope prediction using conformational epitopes. *Nucleic acids research*. 2017 Jul
1463 3;45(W1):W24-9.
1464 <https://doi.org/10.1093/nar/gkx346>

1465 PMid:28472356 PMCid:PMC5570230
1466
1467 55. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The vienna RNA websuite.
1468 Nucleic acids research. 2008 Apr 19;36(suppl_2):W70-4.
1469 <https://doi.org/10.1093/nar/gkn188>
1470 PMid:18424795 PMCid:PMC2447809
1471
1472 56. Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B. ElliPro: a new
1473 structure-based tool for the prediction of antibody epitopes. BMC bioinformatics. 2008
1474 Dec;9(1):1-8.
1475 <https://doi.org/10.1186/1471-2105-9-514>
1476 PMid:19055730 PMCid:PMC2607291
1477
1478 57. Bibi S, Ullah I, Zhu B, Adnan M, Liaqat R, Kong WB, Niu S. In silico analysis of epitope-
1479 based vaccine candidate against tuberculosis using reverse vaccinology. Scientific Reports.
1480 2021 Jan 13;11(1):1-6.
1481 <https://doi.org/10.1038/s41598-020-80899-6>
1482 PMid:33441913 PMCid:PMC7807040
1483
1484 58. Bui HH, Sidney J, Li W, Fusseder N, Sette A. Development of an epitope conservancy
1485 analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC
1486 bioinformatics. 2007 Dec 1;8(1):361.
1487 <https://doi.org/10.1186/1471-2105-8-361>
1488 PMid:17897458 PMCid:PMC2233646
1489
1490 59. Dimitrov, I., Flower, D.R. and Doytchinova, I., 2013, April. AllerTOP-a server for in-silico
1491 prediction of allergens. In BMC bioinformatics (Vol. 14, No. 6, p. S4). BioMed Central.
1492 <https://doi.org/10.1186/1471-2105-14-S6-S4>
1493 PMid:23735058 PMCid:PMC3633022
1494
1495 60. Dimitrov, I., Naneva, L., Doytchinova, I. and Bangov, I., 2014. AllergenFP: allergenicity
1496 prediction by descriptor fingerprints. Bioinformatics, 30(6), pp.846-851.
1497 <https://doi.org/10.1093/bioinformatics/btt619>
1498 PMid:24167156
1499
1500 61. Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A. and Kumar, R., 2013. Consortium,
1501 OSDD; Raghava, GPS In-silico Approach for Predicting Toxicity of Peptides and Proteins.
1502 PLoS One, 8, p.e73957
1503 <https://doi.org/10.1371/journal.pone.0073957>
1504 PMid:24058508 PMCid:PMC3772798
1505
1506 62. Krogh, A., Larsson, B., Von Heijne, G., & Sonnhammer, E. L. (2001). Predicting
1507 transmembrane protein topology with a hidden Markov model: Application to complete
1508 genomes. Journal of Molecular Biology, 305(3), 567-580.
1509 <https://doi.org/10.1006/jmbi.2000.4315>
1510 PMid:11152613

1511
1512 63. Luckheeram, R.V., Zhou, R., Verma, A.D. and Xia, B., 2012. CD4+ T cells: differentiation
1513 and functions. *Clinical and developmental immunology*, 2012.
1514 <https://doi.org/10.1155/2012/925135>
1515 PMid:22474485 PMCid:PMC3312336
1516
1517 64. Dhanda SK, Gupta S, Vir P, Raghava GP. Prediction of IL4 inducing peptides. *Clinical and*
1518 *Developmental Immunology*. 2013 Oct;2013.
1519 <https://doi.org/10.1155/2013/263952>
1520 PMid:24489573 PMCid:PMC3893860
1521
1522 65. Dhanda SK, Vir P, Raghava GP. Designing of interferon-gamma inducing MHC class-II
1523 binders. *Biology direct*. 2013 Dec;8(1):30.
1524 <https://doi.org/10.1186/1745-6150-8-30>
1525 PMid:24304645 PMCid:PMC4235049
1526
1527 66. Nagpal G, Usmani SS, Dhanda SK, Kaur H, Singh S, Sharma M, Raghava GP. Computer-
1528 aided designing of immunosuppressive peptides based on IL-10 inducing potential. *Scientific*
1529 *reports*. 2017 Feb 17;7:42851.
1530 <https://doi.org/10.1038/srep42851>
1531 PMid:28211521 PMCid:PMC5314457
1532
1533 67. Mehla, K. and Ramana, J., 2016. Identification of epitope-based peptide vaccine candidates
1534 against enterotoxigenic *Escherichia coli*: a comparative genomics and immunoinformatics
1535 approach. *Molecular BioSystems*, 12(3), pp.890-901.
1536 <https://doi.org/10.1039/C5MB00745C>
1537 PMid:26766131
1538
1539 68. Thomsen M, Lundsgaard C, Buus S, Lund O, Nielsen M. MHCcluster, a method for
1540 functional clustering of MHC molecules. *Immunogenetics*. 2013 Sep;65(9):655-65.
1541 <https://doi.org/10.1007/s00251-013-0714-9>
1542 PMid:23775223 PMCid:PMC3750724
1543
1544 69. Ishimoto H, Mukae H, Date Y, Shimbara T, Mondal MS, Ashitani J, Hiratsuka T, Kubo S,
1545 Kohno S, Nakazato M. Identification of hBD-3 in respiratory tract and serum: the increase in
1546 pneumonia. *European Respiratory Journal*. 2006 Feb 1;27(2):253-60.
1547 <https://doi.org/10.1183/09031936.06.00105904>
1548 PMid:16452577
1549
1550 70. Judge CJ, Reyes-Aviles E, Conry SJ, Sieg SS, Feng Z, Weinberg A, Anthony DD. HBD-3
1551 induces NK cell activation, IFN- γ secretion and mDC dependent cytolytic function. *Cellular*
1552 *immunology*. 2015 Oct 1;297(2):61-8.
1553 <https://doi.org/10.1016/j.cellimm.2015.06.004>
1554 PMid:26302933 PMCid:PMC4682877
1555

1556 71. Leikina E, Delanoe-Ayari H, Melikov K, Cho MS, Chen A, Waring AJ, Wang W, Xie Y,
1557 Loo JA, Lehrer RI, Chernomordik LV. Carbohydrate-binding molecules inhibit viral fusion
1558 and entry by crosslinking membrane glycoproteins. *Nature immunology*. 2005 Oct;6(10):995-
1559 1001.
1560 <https://doi.org/10.1038/ni1248>
1561 PMid:16155572
1562
1563 72. Arai, R., Ueda, H., Kitayama, A., Kamiya, N. and Nagamune, T., 2001. Design of the
1564 linkers which effectively separate domains of a bifunctional fusion protein. *Protein*
1565 *engineering*, 14(8), pp.529-532.
1566 <https://doi.org/10.1093/protein/14.8.529>
1567 PMid:11579220
1568
1569 73. Tahir Ul Qamar, M., Shokat, Z., Muneer, I., Ashfaq, U. A., Javed, H., Anwar, F., Bari, A.,
1570 Zahid, B., & Saari, N. (2020). Multiepitope-Based Subunit Vaccine Design and Evaluation
1571 against Respiratory Syncytial Virus Using Reverse Vaccinology Approach. *Vaccines*, 8(2),
1572 288.
1573 <https://doi.org/10.3390/vaccines8020288>
1574 PMid:32521680 PMCid:PMC7350008
1575
1576 74. Syeda Tahira Qousain Naqvi, Mamoon Yasmeen, Mehreen Ismail, Syed Aun Muhammad,
1577 Syed Nawazish-i-Husain, Amjad Ali, Fahad Munir, QiYu Zhang, "Designing of Potential
1578 Polyvalent Vaccine Model for Respiratory Syncytial Virus by System Level
1579 Immunoinformatics Approaches", *BioMed Research International*, vol. 2021, Article ID
1580 9940010, 18 pages, 2021.
1581 <https://doi.org/10.1155/2021/9940010>
1582 PMid:34136576 PMCid:PMC8177976
1583
1584 75. Gu, Y., Sun, X., Li, B., Huang, J., Zhan, B. and Zhu, X., 2017. Vaccination with a
1585 paramyosin-based multi-epitope vaccine elicits significant protective immunity against
1586 *Trichinella spiralis* infection in mice. *Frontiers in microbiology*, 8, p.1475.
1587 <https://doi.org/10.3389/fmicb.2017.01475>
1588 PMid:28824599 PMCid:PMC5540943
1589
1590 76. Magnan, C.N., Randall, A. and Baldi, P., 2009. SOLpro: accurate sequence-based
1591 prediction of protein solubility. *Bioinformatics*, 25(17), pp.2200-2207.
1592 <https://doi.org/10.1093/bioinformatics/btp386>
1593 PMid:19549632
1594
1595 77. Saha S, Raghava GP. AlgPred: prediction of allergenic proteins and mapping of IgE
1596 epitopes. *Nucleic acids research*. 2006 Jul 1;34(suppl_2):W202-9.
1597 <https://doi.org/10.1093/nar/gkl343>
1598 PMid:16844994 PMCid:PMC1538830
1599
1600 78. Ullah A, Sarkar B, Islam SS. Exploiting the reverse vaccinology approach to design novel
1601 subunit vaccine against ebola virus. *Immunobiology*. 2020a May 1:151949.

1602 <https://doi.org/10.1101/2020.01.02.20016311>

1603

1604

1605 79. Hebditch, M., Carballo-Amador, M.A., Charonis, S., Curtis, R. and Warwicker, J., 2017.

1606 Protein-Sol: a web tool for predicting protein solubility from sequence. *Bioinformatics*, 33(19),

1607 pp.3098-3100.

1608 <https://doi.org/10.1093/bioinformatics/btx345>

1609 PMid:28575391 PMCid:PMC5870856

1610

1611 80. Buchan DW, Jones DT. The PSIPRED protein analysis workbench: 20 years on. *Nucleic acids research*. 2019 Jul 2;47(W1):W402-7.

1612 <https://doi.org/10.1093/nar/gkz297>

1613 PMid:31251384 PMCid:PMC6602445

1614

1615 81. Jones DT. Protein secondary structure prediction based on position-specific scoring

1616 matrices. *Journal of molecular biology*. 1999 Sep 17;292(2):195-202.

1617 <https://doi.org/10.1006/jmbi.1999.3091>

1618 PMid:10493868

1619

1620

1621 82. Garnier J, Gibrat JF, Robson B. [32] GOR method for predicting protein secondary

1622 structure from amino acid sequence. In: *Methods in enzymology* 1996 Jan 1 (Vol. 266, pp. 540-

1623 553). Academic Press.

1624 [https://doi.org/10.1016/S0076-6879\(96\)66034-0](https://doi.org/10.1016/S0076-6879(96)66034-0)

1625

1626

1627 83. Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure

1628 prediction by consensus prediction from multiple alignments. *Bioinformatics*. 1995 Dec

1629 1;11(6):681-4.

1630 <https://doi.org/10.1093/bioinformatics/11.6.681>

1631 PMid:8808585

1632

1633 84. Levin JM, Robson B, Garnier J. An algorithm for secondary structure determination in

1634 proteins based on sequence similarity. *FEBS letters*. 1986 Sep 15;205(2):303-8

1635 [https://doi.org/10.1016/0014-5793\(86\)80917-6](https://doi.org/10.1016/0014-5793(86)80917-6)

1636

1637

1638 85. Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., Xu, J., 2012. Template-

1639 based protein structure modeling using the RaptorX web server. *Nat. protoc.* 7, 1511.

1640 <https://doi.org/10.1038/nprot.2012.085>

1641 PMid:22814390 PMCid:PMC4730388

1642

1643 86. Wang S, Li W, Zhang R, Liu S, Xu J. CoinFold: a web server for protein contact prediction

1644 and contact-assisted protein folding. *Nucleic acids research*. 2016 Apr 25;44(W1):W361-6.

1645 <https://doi.org/10.1093/nar/gkw307>

1646 PMid:27112569 PMCid:PMC4987891

1647

1648 87. Nugent, T., Cozzetto, D. and Jones, D.T., 2014. Evaluation of predictions in the CASP10
1649 model refinement category. *Proteins: Structure, Function, and Bioinformatics*, 82, pp.98-111.
1650 <https://doi.org/10.1002/prot.24377>
1651 PMid:23900810 PMCid:PMC4282348
1652
1653 88. Ko, J., Park, H., Heo, L. and Seok, C., 2012. GalaxyWEB server for protein structure
1654 prediction and refinement. *Nucleic acids research*, 40(W1), pp.W294-W297.
1655 <https://doi.org/10.1093/nar/gks493>
1656 PMid:22649060 PMCid:PMC3394311
1657
1658 89. Laskowski, R.A., MacArthur, M.W. and Thornton, J.M., 2006. PROCHECK: validation of
1659 protein-structure coordinates.
1660
1661 90. Morris, A.L., MacArthur, M.W., Hutchinson, E.G. and Thornton, J.M., 1992.
1662 Stereochemical quality of protein structure coordinates. *Proteins: Structure, Function, and*
1663 *Bioinformatics*, 12(4), pp.345-364.
1664 <https://doi.org/10.1002/prot.340120407>
1665 PMid:1579569
1666
1667 91. Wiederstein, M. and Sippl, M.J., 2007. ProSA-web: interactive web service for the
1668 recognition of errors in three-dimensional structures of proteins. *Nucleic acids research*,
1669 35(suppl_2), pp.W407-W410.
1670 <https://doi.org/10.1093/nar/gkm290>
1671 PMid:17517781 PMCid:PMC1933241
1672
1673 92. Craig, D.B. and Dombkowski, A.A., 2013. Disulfide by Design 2.0: a web-based tool for
1674 disulfide engineering in proteins. *BMC bioinformatics*, 14(1), p.346.
1675 <https://doi.org/10.1186/1471-2105-14-346>
1676 PMid:24289175 PMCid:PMC3898251
1677
1678 93. Dombkowski AA. Disulfide by DesignTM: a computational method for the rational design
1679 of disulfide bonds in proteins. *Bioinformatics*. 2003 Sep 22;19(14):1852-3.
1680 <https://doi.org/10.1093/bioinformatics/btg231>
1681 PMid:14512360
1682
1683 94. Dombkowski AA, Crippen GM. Disulfide recognition in an optimized threading potential.
1684 *Protein engineering*. 2000 Oct 1;13(10):679-89.
1685 <https://doi.org/10.1093/protein/13.10.679>
1686 PMid:11112506
1687
1688 95. Dombkowski AA, Sultana KZ, Craig DB. Protein disulfide engineering. *FEBS letters*. 2014
1689 Jan 21;588(2):206-12.
1690 <https://doi.org/10.1016/j.febslet.2013.11.024>
1691 PMid:24291258
1692

1693 96. Petersen, M.T.N., Jonson, P.H., Petersen, S.B., 1999. Amino acid neighbours and detailed
1694 conformational analysis of cysteines in proteins. *Protein Eng.* 12, 535-548.
1695 <https://doi.org/10.1093/protein/12.7.535>
1696 PMid:10436079
1697

1698 97. Cai CZ, Han LY, Ji ZL, Chen X, Chen YZ. SVM-Prot: web-based support vector machine
1699 software for functional classification of a protein from its primary sequence. *Nucleic acids*
1700 *research.* 2003 Jul 1;31(13):3692-7.
1701 <https://doi.org/10.1093/nar/gkg600>
1702 PMid:12824396 PMCid:PMC169006
1703

1704 98. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT,
1705 Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R. Precision mapping of the
1706 human O-GalNAc glycoproteome through SimpleCell technology. *The EMBO journal.* 2013
1707 May 15;32(10):1478-88.
1708 <https://doi.org/10.1038/emboj.2013.79>
1709 PMid:23584533 PMCid:PMC3655468
1710

1711 99. Stern, L.J., Calvo-Calle, J.M., 2009. HLA-DR: molecular insights and vaccine design. *Curr.*
1712 *Pharm. Des.* 15, 3249-3261.
1713 <https://doi.org/10.2174/138161209789105171>
1714 PMid:19860674 PMCid:PMC3615543
1715

1716 100. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z. ZDOCK server: interactive
1717 docking prediction of protein-protein complexes and symmetric multimers. *Bioinformatics.*
1718 2014 Jun 15;30(12):1771-3.
1719 <https://doi.org/10.1093/bioinformatics/btu097>
1720 PMid:24532726 PMCid:PMC4058926
1721

1722 101. Berendsen HJ, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel
1723 molecular dynamics implementation. *Computer physics communications.* 1995 Sep 2;91(1-
1724 3):43-56.
1725 [https://doi.org/10.1016/0010-4655\(95\)00042-E](https://doi.org/10.1016/0010-4655(95)00042-E)
1726

1727

1728 102. Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, MacKerell Jr AD. Optimization of
1729 the additive CHARMM all-atom protein force field targeting improved sampling of the
1730 backbone ϕ , ψ and side-chain χ_1 and χ_2 dihedral angles. *Journal of chemical theory and*
1731 *computation.* 2012 Sep 11;8(9):3257-73.
1732 <https://doi.org/10.1021/ct300400x>
1733 PMid:23341755 PMCid:PMC3549273
1734

1735 103. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E,
1736 Guvench O, Lopes P, Vorobyov I, Mackerell Jr AD. CHARMM general force field: A force
1737 field for drug-like molecules compatible with the CHARMM all-atom additive biological force
1738 fields. *Journal of computational chemistry.* 2010 Mar;31(4):671-90.

1739 <https://doi.org/10.1002/jcc.21367>
1740 PMid:19575467 PMCid:PMC2888302

1741

1742 104. Zielkiewicz J. Structural properties of water: Comparison of the SPC, SPCE, TIP4P, and
1743 TIP5P models of water. *The Journal of chemical physics*. 2005 Sep 8;123(10):104501.
1744 <https://doi.org/10.1063/1.2018637>
1745 PMid:16178604

1746

1747 105. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. *The
1748 Journal of chemical physics*. 2007 Jan 7;126(1):014101.
1749 <https://doi.org/10.1063/1.2408420>
1750 PMid:17212484

1751

1752 106. Berendsen HJ, Postma JV, van Gunsteren WF, DiNola AR, Haak JR. Molecular dynamics
1753 with coupling to an external bath. *The Journal of chemical physics*. 1984 Oct 15;81(8):3684-
1754 90.
1755 <https://doi.org/10.1063/1.448118>

1756

1757

1758 107. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular
1759 dynamics method. *Journal of Applied physics*. 1981 Dec;52(12):7182-90.
1760 <https://doi.org/10.1063/1.328693>

1761

1762

1763 108. Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: a linear constraint solver for
1764 molecular simulations. *Journal of computational chemistry*. 1997 Sep;18(12):1463-72.
1765 [https://doi.org/10.1002/\(SICI\)1096-987X\(199709\)18:12<1463::AID-JCC4>3.0.CO;2-H](https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H)

1766

1767

1768 109. Petersen HG. Accuracy and efficiency of the particle mesh Ewald method. *The Journal of
1769 chemical physics*. 1995 Sep 1;103(9):3668-79.
1770 <https://doi.org/10.1063/1.470043>

1771

1772

1773 110. Rapin, N., Lund, O., Bernaschi, M. and Castiglione, F., 2010. Computational immunology
1774 meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the
1775 immune system. *PLoS One*, 5(4).
1776 <https://doi.org/10.1371/journal.pone.0009862>
1777 PMid:20419125 PMCid:PMC2855701

1778

1779 111. Castiglione, F., Mantile, F., De Berardinis, P. and Prisco, A., 2012. How the interval
1780 between prime and boost injection affects the immune response in a computational model of
1781 the immune system. *Computational and mathematical methods in medicine*, 2012.
1782 <https://doi.org/10.1155/2012/842329>
1783 PMid:22997539 PMCid:PMC3446774

1784

1785 112. Sarkar B, Ullah MA, Araf Y, Das S, Rahman MH, Moin AT. Designing novel epitope-
1786 based polyvalent vaccines against herpes simplex virus-1 and 2 exploiting the
1787 immunoinformatics approach. *Journal of Biomolecular Structure and Dynamics*. 2020b Aug
1788 6:1-21.
1789 <https://doi.org/10.1080/07391102.2020.1803969>
1790 PMid:32762514
1791
1792 113. Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D. JCat: a novel
1793 tool to adapt codon usage of a target gene to its potential expression host. *Nucleic Acids Res*
1794 2005;33:W526-31.
1795 <https://doi.org/10.1093/nar/gki376>
1796 PMid:15980527 PMCid:PMC1160137
1797
1798 114. Chang KY, Yang JR. Analysis and prediction of highly effective antiviral peptides based
1799 on random forests. *PLoS one*. 2013 Aug 5;8(8):e70166.
1800 <https://doi.org/10.1371/journal.pone.0070166>
1801 PMid:23940542 PMCid:PMC3734225
1802
1803 115. Choi ES, Lee SG, Lee SJ, Kim E. Rapid detection of 6×-histidine-labeled recombinant
1804 proteins by immunochromatography using dye-labeled cellulose nanobeads. *Biotechnology*
1805 letters. 2015 Mar;37(3):627-32.
1806 <https://doi.org/10.1007/s10529-014-1731-y>
1807 PMid:25388454
1808
1809 116. Solanki, V. and Tiwari, V., 2018. Subtractive proteomics to identify novel drug targets
1810 and reverse vaccinology for the development of chimeric vaccine against *Acinetobacter*
1811 *baumannii*. *Scientific reports*, 8(1), pp.1-19.
1812 <https://doi.org/10.1038/s41598-018-26689-7>
1813 PMid:29899345 PMCid:PMC5997985
1814
1815 117. Biswal, J.K., Bisht, P., Mohapatra, J.K., Ranjan, R., Sanyal, A. and Pattnaik, B., 2015.
1816 Application of a recombinant capsid polyprotein (P1) expressed in a prokaryotic system to
1817 detect antibodies against foot-and-mouth disease virus serotype O. *Journal of virological*
1818 methods, 215, pp.45-51.
1819 <https://doi.org/10.1016/j.jviromet.2015.02.008>
1820 PMid:25701759
1821
1822 118. Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction.
1823 *Nucleic acids research*, 31(13), pp.3406-3415.
1824 <https://doi.org/10.1093/nar/gkg595>
1825 PMid:12824337 PMCid:PMC169194
1826
1827 119. Mathews, D.H., Sabina, J., Zuker, M. and Turner, D.H., 1999. Expanded sequence
1828 dependence of thermodynamic parameters improves prediction of RNA secondary structure.
1829 *Journal of molecular biology*, 288(5), pp.911-940.
1830 <https://doi.org/10.1006/jmbi.1999.2700>

1831 PMid:10329189
1832
1833 120. Mathews, D.H., Turner, D.H. and Zuker, M., 2007. RNA secondary structure prediction.
1834 Current protocols in nucleic acid chemistry, 28(1), pp.11-2.
1835 <https://doi.org/10.1002/0471142700.nc1102s28>
1836 PMid:18428968 PMCid:PMC5115178
1837
1838 121. Khan MT, Islam R, Jerin TJ, Mahmud A, Khatun S, Kobir A, Islam MN, Akter A, Mondal
1839 SI. Immunoinformatics and molecular dynamics approaches: Next generation vaccine design
1840 against West Nile virus. Plos one. 2021 Jun 17;16(6):e0253393.
1841 <https://doi.org/10.1371/journal.pone.0253393>
1842 PMid:34138958 PMCid:PMC8211291
1843
1844 122. Lobanov MYu, Bogatyreva NS, Galzitskaya OV. Radius of gyration as an indicator of
1845 protein structure compactness. Mol Biol. 2008 Aug;42(4):623-8.
1846 <https://doi.org/10.1134/S0026893308040195>
1847
1848
1849 123. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF
1850 ChimeraX : Structure visualization for researchers, educators, and developers. Protein Science.
1851 2021 Jan;30(1):70-82.
1852 <https://doi.org/10.1002/pro.3943>
1853 PMid:32881101 PMCid:PMC7737788
1854
1855 124. Ndure J, Flanagan KL. Targeting regulatory T cells to improve vaccine immunogenicity
1856 in early life. Frontiers in microbiology. 2014 Sep 11;5:477.
1857 <https://doi.org/10.3389/fmicb.2014.00477>
1858 PMid:25309517 PMCid:PMC4161046
1859
1860 125. Carbone A, Zinovyev A, Képes F. Codon adaptation index as a measure of dominating
1861 codon bias. Bioinformatics 2003;19:2005-15.
1862 <https://doi.org/10.1093/bioinformatics/btg272>
1863 PMid:14594704
1864
1865 126. Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis.
1866 Virology. 2001;279(2):pp.371-374.
1867 <https://doi.org/10.1006/viro.2000.0757>
1868 PMid:11162792 PMCid:PMC7133764
1869
1870 127. Almofti YA, Abd-elrahman KA, Gassmallah SAE, et al. Multi epitopes vaccine prediction
1871 against severe acute respiratory syndrome (sars) coronavirus using immunoinformatics
1872 approaches. Am J Microbiol Res. 2018;6(3):pp.94-114.
1873 <https://doi.org/10.12691/ajmr-6-3-5>
1874
1875

1876 128. Carvalho LH, Sano GI, Hafalla JC, et al. IL-4-secreting CD4+ T cells are crucial to the
1877 development of CD8+ T-cell responses against malaria liver stages. *Nat Med.*
1878 2002;8(2):pp.166-170.
1879 <https://doi.org/10.1038/nm0202-166>
1880 PMid:11821901
1881
1882 129. Shey RA, Ghogomu SM, Esoh KK, et al. In-silico design of a multi-epitope vaccine
1883 candidate against onchocerciasis and related filarial diseases. *Sci Rep.* 2019;9(1):pp.1-18.
1884 <https://doi.org/10.1038/s41598-019-40833-x>
1885 PMid:30867498 PMCid:PMC6416346
1886
1887 130. Hoque MN, Istiaq A, Clement RA, et al. Metagenomic deep sequencing reveals
1888 association of microbiome signature with functional biases in bovine mastitis. *Sci Rep.*
1889 2019;9(1):pp.1-14.
1890 <https://doi.org/10.1038/s41598-019-49468-4>
1891 PMid:31537825 PMCid:PMC6753130
1892
1893 131. Kambayashi T, Laufer TM. Atypical MHC class II-expressing antigen-presenting cells:
1894 can anything replace a dendritic cell? *Nat Rev Immunol.* 2014;14(11):pp.719-730.
1895 <https://doi.org/10.1038/nri3754>
1896 PMid:25324123
1897
1898 132. Štěpánová S, Kašička V. Application of Capillary Electromigration Methods for
1899 Physicochemical Measurements. InCapillary Electromigration Separation Methods 2018 Jan 1
1900 (pp. 547-591). Elsevier.
1901 <https://doi.org/10.1016/B978-0-12-809375-7.00024-1>
1902
1903
1904 133. Hamasaki-Katagiri N, Lin BC, Simon J, Hunt RC, Schiller T, Russek-Cohen E, Komar
1905 AA, Bar H, Kimchi-Sarfaty C. The importance of mRNA structure in determining the
1906 pathogenicity of synonymous and non-synonymous mutations in haemophilia. *Haemophilia.*
1907 2017 Jan;23(1):e8-17.
1908 <https://doi.org/10.1111/hae.13107>
1909 PMid:27933712 PMCid:PMC5226872
1910
1911 134. Ikai, A., 1980. Thermostability and aliphatic index of globular proteins. *The Journal of*
1912 *Biochemistry*, 88(6), pp.1895-1898.
1913
1914 135. Panda, S. and Chandra, G., 2012. Physicochemical characterization and functional
1915 analysis of some snake venom toxin proteins and related non-toxin proteins of other chordates.
1916 *Bioinformation*, 8(18), p.891.
1917 <https://doi.org/10.6026/97320630008891>
1918 PMid:23144546 PMCid:PMC3489095
1919
1920 136. Pei H, Liu J, Cheng Y, Sun C, Wang C, Lu Y, Ding J, Zhou J, Xiang H. Expression of
1921 SARS-coronavirus nucleocapsid protein in *Escherichia coli* and *Lactococcus lactis* for

1922 serodiagnosis and mucosal vaccination. Applied microbiology and biotechnology. 2005
1923 Aug;68(2):220-7.
1924 <https://doi.org/10.1007/s00253-004-1869-y>
1925 PMid:15660214 PMCid:PMC7079895
1926
1927 137. Morla S, Makhija A, Kumar S. Synonymous codon usage pattern in glycoprotein gene of
1928 rabies virus. Gene. 2016 Jun 10;584(1):1-6.
1929 <https://doi.org/10.1016/j.gene.2016.02.047>
1930 PMid:26945626
1931
1932 138. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a
1933 protein. Journal of molecular biology. 1982 May 5;157(1):105-32.
1934 [https://doi.org/10.1016/0022-2836\(82\)90515-0](https://doi.org/10.1016/0022-2836(82)90515-0)
1935
1936
1937 139. Chang, K.Y. and Yang, J.R., 2013. Analysis and prediction of highly effective antiviral
1938 peptides based on random forests. PloS one, 8(8).
1939 <https://doi.org/10.1371/journal.pone.0070166>
1940 PMid:23940542 PMCid:PMC3734225
1941
1942 140. Zhang, L. (2018). Multi-epitope vaccines: A promising strategy against tumors and viral
1943 infections. Cellular & Molecular Immunology, 15(2), 182-184.
1944 <https://doi.org/10.1038/cmi.2017.92>
1945 PMid:28890542 PMCid:PMC5811687
1946
1947 141. Bacchetta, R., Gregori, S., & Roncarolo, M. G. (2005). CD4 β regulatory T cells:
1948 Mechanisms of induction and effector function. Autoimmunity Reviews, 4(8), 491-496.
1949 <https://doi.org/10.1016/j.autrev.2005.04.005>
1950 PMid:16214084
1951
1952 142. Cano, R.L.E. and Lopera, H.D.E., 2013. Introduction to T and B lymphocytes. In
1953 Autoimmunity: From Bench to Bedside [Internet]. El Rosario University Press.
1954
1955 143. Raza MT, Mizan S, Yasmin F, Akash AS, Shahik SM. Epitope-based universal vaccine
1956 for Human T-lymphotropic virus-1 (HTLV-1). PloS one. 2021 Apr 2;16(4):e0248001.
1957 <https://doi.org/10.1371/journal.pone.0248001>
1958 PMid:33798232 PMCid:PMC8018625
1959
1960 144. Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. Fundamentals and methods for T-
1961 and B-cell epitope prediction. Journal of immunology research. 2017 Oct;2017.
1962 <https://doi.org/10.1155/2017/2680160>
1963 PMid:29445754 PMCid:PMC5763123
1964
1965 145. Shachar I, Karin N. The dual roles of inflammatory cytokines and chemokines in the
1966 regulation of autoimmune diseases and their clinical implications. Journal of leukocyte biology.
1967 2013 Jan;93(1):51-61.

1968 <https://doi.org/10.1189/jlb.0612293>
1969 PMid:22949334

1970

1971 146. Holdsworth SR, Gan PY. Cytokines: names and numbers you should care about. *Clinical journal of the American Society of Nephrology*. 2015 Dec 7;10(12):2243-54.
1972 <https://doi.org/10.2215/CJN.07590714>
1973 PMid:25941193 PMCid:PMC4670773

1974

1975

1976 147. Cavaillon JM. Pro-versus anti-inflammatory cytokines: myth or reality. *CELLULAR AND MOLECULAR BIOLOGY-PARIS-WEGMANN-*. 2001 Jun 1;47(4):695-702.
1977

1978

1979 148. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. *Biochimica et Biophysica Acta (BBA)-Molecular Cell Research*. 2014 Nov 1;1843(11):2563-82.
1980 <https://doi.org/10.1016/j.bbamcr.2014.05.014>
1981

1982 PMid:24892271

1983

1984

1985 149. CHANG HD, Radbruch A. The pro-and anti-inflammatory potential of interleukin-12. *Annals of the New York Academy of Sciences*. 2007 Aug;1109(1):40-6.
1986 <https://doi.org/10.1196/annals.1398.006>
1987 PMid:17785289

1988

1989

1990 150. van Schaik SM, Obot N, Enhorning G, Hintz K, Gross K, Hancock GE, Stack AM, Welliver RC. Role of interferon gamma in the pathogenesis of primary respiratory syncytial virus infection in BALB/c mice. *Journal of medical virology*. 2000 Oct;62(2):257-66.
1991 [https://doi.org/10.1002/1096-9071\(200010\)62:2<257::AID-JMV19>3.0.CO;2-M](https://doi.org/10.1002/1096-9071(200010)62:2<257::AID-JMV19>3.0.CO;2-M)
1992

1993

1994

1995

1996 151. Sarkar SN, Sen GC. Novel functions of proteins encoded by viral stress-inducible genes. *Pharmacology & therapeutics*. 2004 Sep 1;103(3):245-59.
1997 <https://doi.org/10.1016/j.pharmthera.2004.07.007>
1998 PMid:15464592

1999

2000

2001 152. Fuse S, Molloy MJ, Usherwood EJ. Immune responses against persistent viral infections: possible avenues for immunotherapeutic interventions. *Critical Reviews™ in Immunology*. 2008;28(2).
2002 <https://doi.org/10.1615/CritRevImmunol.v28.i2.40>
2003

2004 PMid:18540829

2005

2006

2007 153. Juntila IS. Tuning the cytokine responses: an update on interleukin (IL)-4 and IL-13 receptor complexes. *Frontiers in immunology*. 2018 Jun 7;9:888.
2008 <https://doi.org/10.3389/fimmu.2018.00888>
2009

2010 PMid:29930549 PMCid:PMC6001902

2011

2012 154. Abinaya RV, Viswanathan P. Biotechnology-based therapeutics. *InTranslational Biotechnology* 2021 Jan 1 (pp. 27-52). Academic Press.
2013

2014 <https://doi.org/10.1016/B978-0-12-821972-0.00019-8>
2015 PMid:32660413
2016
2017 155. Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, Weinberg A, Sieg SF. Human β -defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. *Proceedings of the National Academy of Sciences*. 2007 Nov 20;104(47):18631-5.
2021 <https://doi.org/10.1073/pnas.0702130104>
2022 PMid:18006661 PMCid:PMC2141828
2023
2024 156. Judge CJ, Reyes-Aviles E, Conry SJ, Sieg SS, Feng Z, Weinberg A, Anthony DD. HBD-3 induces NK cell activation, IFN- γ secretion and mDC dependent cytolytic function. *Cellular immunology*. 2015 Oct 1;297(2):61-8.
2027 <https://doi.org/10.1016/j.cellimm.2015.06.004>
2028 PMid:26302933 PMCid:PMC4682877
2029
2030 157. Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, Weinberg A, Sieg SF. Human β -defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. *Proceedings of the National Academy of Sciences*. 2007 Nov 20;104(47):18631-5.
2034 <https://doi.org/10.1073/pnas.0702130104>
2035 PMid:18006661 PMCid:PMC2141828
2036
2037 158. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. *Immunity*. 2004 Aug 1;21(2):241-54.
2039 <https://doi.org/10.1016/j.immuni.2004.07.007>
2040 PMid:15308104
2041
2042 159. Sørensen OE, Cowland JB, Theilgaard-Mönch K, Liu L, Ganz T, Borregaard N. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. *The Journal of Immunology*. 2003 Jun 1;170(11):5583-9.
2046 <https://doi.org/10.4049/jimmunol.170.11.5583>
2047 PMid:12759437
2048
2049 160. Ferris LK, Mburu YK, Mathers AR, Fluharty ER, Larregina AT, Ferris RL, Falo Jr LD. Human beta-defensin 3 induces maturation of human Langerhans cell-like dendritic cells: an antimicrobial peptide that functions as an endogenous adjuvant. *Journal of Investigative Dermatology*. 2013 Feb 1;133(2):460-8.
2053 <https://doi.org/10.1038/jid.2012.319>
2054 PMid:22951718 PMCid:PMC3521079
2055
2056 161. Joly S, Organ CC, Johnson GK, McCray Jr PB, Guthmiller JM. Correlation between β -defensin expression and induction profiles in gingival keratinocytes. *Molecular immunology*. 2005 May 1;42(9):1073-84.
2059 <https://doi.org/10.1016/j.molimm.2004.11.001>

2060 PMid:15829297
2061
2062 162. Judge CJ, Reyes-Aviles E, Conry SJ, Sieg SS, Feng Z, Weinberg A, Anthony DD. HBD-3 induces NK cell activation, IFN- γ secretion and mDC dependent cytolytic function. *Cellular immunology*. 2015 Oct 1;297(2):61-8.
2065 <https://doi.org/10.1016/j.cellimm.2015.06.004>
2066 PMid:26302933 PMCid:PMC4682877
2067
2068 163. Röhrl J, Yang D, Oppenheim JJ, Hehlgans T. Human β -defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. *The Journal of Immunology*. 2010 Jun 15;184(12):6688-94.
2071 <https://doi.org/10.4049/jimmunol.0903984>
2072 PMid:20483750 PMCid:PMC6309988
2073
2074 164. Shental-Bechor D, Levy Y. Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. *Proceedings of the National Academy of Sciences*. 2008 Jun 17;105(24):8256-61.
2077 <https://doi.org/10.1073/pnas.0801340105>
2078 PMid:18550810 PMCid:PMC2448824
2079
2080 165. Ojha R, Prajapati VK. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. *Journal of Cellular Physiology*. 2021 Jun 25.
2082 <https://doi.org/10.1002/jcp.30483>
2083 PMid:34170014 PMCid:PMC8427110
2084
2085 166. Zarling AL, Ficarro SB, White FM, Shabanowitz J, Hunt DF, Engelhard VH. Phosphorylated peptides are naturally processed and presented by major histocompatibility complex class I molecules in vivo. *The Journal of experimental medicine*. 2000 Dec 18;192(12):1755-62.
2089 <https://doi.org/10.1084/jem.192.12.1755>
2090 PMid:11120772 PMCid:PMC2213507
2091
2092 167. Kawai T, Akira S. TLR signaling. In *Seminars in immunology* 2007 Feb 1 (Vol. 19, No. 1, pp. 24-32). Academic Press.
2094 <https://doi.org/10.1016/j.smim.2006.12.004>
2095 PMid:17275323
2096
2097 168. Murawski MR, Bowen GN, Cerny AM, Anderson LJ, Haynes LM, Tripp RA, Kurt-Jones EA, Finberg RW. Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. *Journal of virology*. 2009 Feb 1;83(3):1492-500.
2100 <https://doi.org/10.1128/JVI.00671-08>
2101 PMid:19019963 PMCid:PMC2620898
2102
2103 169. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. *Cell*. 2006 Feb 24;124(4):783-801.
2105 <https://doi.org/10.1016/j.cell.2006.02.015>

2106 PMid:16497588
2107
2108 170. Cyr SL, Jones T, Stoica-Popescu I, Burt D, Ward BJ. C57Bl/6 mice are protected from
2109 respiratory syncytial virus (RSV) challenge and IL-5 associated pulmonary eosinophilic
2110 infiltrates following intranasal immunization with Protollin-eRSV vaccine. *Vaccine*. 2007 Apr
2111 20;25(16):3228-32.
2112 <https://doi.org/10.1016/j.vaccine.2007.01.037>
2113 PMid:17374422
2114
2115 171. Hancock GE, Heers KM, Pryharski KS, Smith JD, Tiberio L. Adjuvants recognized by
2116 toll-like receptors inhibit the induction of polarized type 2 T cell responses by natural
2117 attachment (G) protein of respiratory syncytial virus. *Vaccine*. 2003 Oct 1;21(27-30):4348-58.
2118 [https://doi.org/10.1016/S0264-410X\(03\)00482-1](https://doi.org/10.1016/S0264-410X(03)00482-1)
2119
2120
2121 172. Janssen R, Pennings J, Hodemaekers H, Buisman A, van Oosten M, de Rond L, Öztürk
2122 K, Dormans J, Kimman T, Hoebee B. Host transcription profiles upon primary respiratory
2123 syncytial virus infection. *Journal of virology*. 2007 Jun 1;81(11):5958-67.
2124 <https://doi.org/10.1128/JVI.02220-06>
2125 PMid:17376894 PMCid:PMC1900269
2126
2127 173. Chang S, Dolganiuc A, Szabo G. Toll-like receptors 1 and 6 are involved in
2128 TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. *Journal of*
2129 *leukocyte biology*. 2007 Sep;82(3):479-87.
2130 <https://doi.org/10.1189/jlb.0207128>
2131 PMid:17595379
2132
2133 174. Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT, Finberg RW.
2134 Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like
2135 receptor 2. *Journal of virology*. 2003 Apr 15;77(8):4588-96.
2136 <https://doi.org/10.1128/JVI.77.8.4588-4596.2003>
2137 PMid:12663765 PMCid:PMC152130
2138
2139 175. Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM,
2140 Finberg RW. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal
2141 encephalitis. *Proceedings of the National Academy of Sciences*. 2004 Feb 3;101(5):1315-20.
2142 <https://doi.org/10.1073/pnas.0308057100>
2143 PMid:14739339 PMCid:PMC337050
2144
2145 176. Zhou S, Kurt-Jones EA, Mandell L, Cerny A, Chan M, Golenbock DT, Finberg RW.
2146 MyD88 is critical for the development of innate and adaptive immunity during acute
2147 lymphocytic choriomeningitis virus infection. *European journal of immunology*. 2005
2148 Mar;35(3):822-30.
2149 <https://doi.org/10.1002/eji.200425730>
2150 PMid:15724245
2151

2152 177. Jin B, Sun T, Yu XH, Yang YX, Yeo AE. The effects of TLR activation on T-cell
2153 development and differentiation. *Clinical and Developmental Immunology*. 2012;2012.
2154 <https://doi.org/10.1155/2012/836485>
2155 PMid:22737174 PMCid:PMC3376488
2156

2157 178. Gaddis DE, Michalek SM, Katz J. TLR4 signaling via MyD88 and TRIF differentially
2158 shape the CD4+ T cell response to *Porphyromonas gingivalis* hemagglutinin B. *The Journal of*
2159 *Immunology*. 2011 May 15;186(10):5772-83.
2160 <https://doi.org/10.4049/jimmunol.1003192>
2161 PMid:21498664 PMCid:PMC3809913
2162

2163 179. Kaisho T, Hoshino K, Iwabe T, Takeuchi O, Yasui T, Akira S. Endotoxin can induce
2164 MyD88-deficient dendritic cells to support Th2 cell differentiation. *International immunology*.
2165 2002 Jul 1;14(7):695-700.
2166 <https://doi.org/10.1093/intimm/dxf039>
2167 PMid:12096028
2168

2169 180. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE,
2170 Freeman MW, Golenbock DT, Anderson LJ, Finberg RW. Pattern recognition receptors TLR4
2171 and CD14 mediate response to respiratory syncytial virus. *Nature immunology*. 2000
2172 Nov;1(5):398-401.
2173 <https://doi.org/10.1038/80833>
2174 PMid:11062499
2175

2176 181. Tayyari F, Marchant D, Moraes TJ, Duan W, Mastrangelo P, Hegele RG. Identification
2177 of nucleolin as a cellular receptor for human respiratory syncytial virus. *Nature medicine*. 2011
2178 Sep;17(9):1132-5.
2179 <https://doi.org/10.1038/nm.2444>
2180 PMid:21841784
2181

2182 182. Johnson TR, Rao S, Seder RA, Chen M, Graham BS. TLR9 agonist, but not TLR7/8,
2183 functions as an adjuvant to diminish FI-RSV vaccine-enhanced disease, while either agonist
2184 used as therapy during primary RSV infection increases disease severity. *Vaccine*. 2009 May
2185 18;27(23):3045-52.
2186 <https://doi.org/10.1016/j.vaccine.2009.03.026>
2187 PMid:19428918 PMCid:PMC2680782
2188

2189 183. Grassin-Delyle S, Abrial C, Salvator H, Brollo M, Naline E, Devillier P. The role of toll-
2190 like receptors in the production of cytokines by human lung macrophages. *Journal of innate*
2191 *immunity*. 2020;12(1):63-73.
2192 <https://doi.org/10.1159/000494463>
2193 PMid:30557876 PMCid:PMC6959095
2194

2195 184. Almofti, Y.A., Abd-elrahman, K.A., Gassmallah, S.A.E. and Salih, M.A., 2018. Multi
2196 Epitopes Vaccine Prediction against Severe Acute Respiratory Syndrome (SARS) Coronavirus

2197 Using Immunoinformatics Approaches. American Journal of Microbiological Research, 6(3),
2198 pp.94-114.
2199 <https://doi.org/10.12691/ajmr-6-3-5>

2200

2201

2202 185. Carvalho, L.H., Sano, G.I., Hafalla, J.C., Morrot, A., De Lafaille, M.A.C. and Zavala, F.,
2203 2002. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses
2204 against malaria liver stages. *Nature medicine*, 8(2), pp.166-170.
2205 <https://doi.org/10.1038/nm0202-166>
2206 PMid:11821901

2207

2208 186. Shey, R.A., Ghogomu, S.M., Esoh, K.K., Nebangwa, N.D., Shintouo, C.M., Nongley,
2209 N.F., Asa, B.F., Ngale, F.N., Vanhamme, L. and Souopgui, J., 2019. In-silico design of a multi-
2210 epitope vaccine candidate against onchocerciasis and related filarial diseases. *Scientific
2211 reports*, 9(1), pp.1-18.
2212 <https://doi.org/10.1038/s41598-019-40833-x>
2213 PMid:30867498 PMCid:PMC6416346

2214

2215 187. Hoque, M.N., Istiaq, A., Clement, R.A., Sultana, M., Crandall, K.A., Siddiki, A.Z. and
2216 Hossain, M.A., 2019. Metagenomic deep sequencing reveals association of microbiome
2217 signature with functional biases in bovine mastitis. *Scientific reports*, 9(1), pp.1-14.
2218 <https://doi.org/10.1038/s41598-019-49468-4>
2219 PMid:31537825 PMCid:PMC6753130

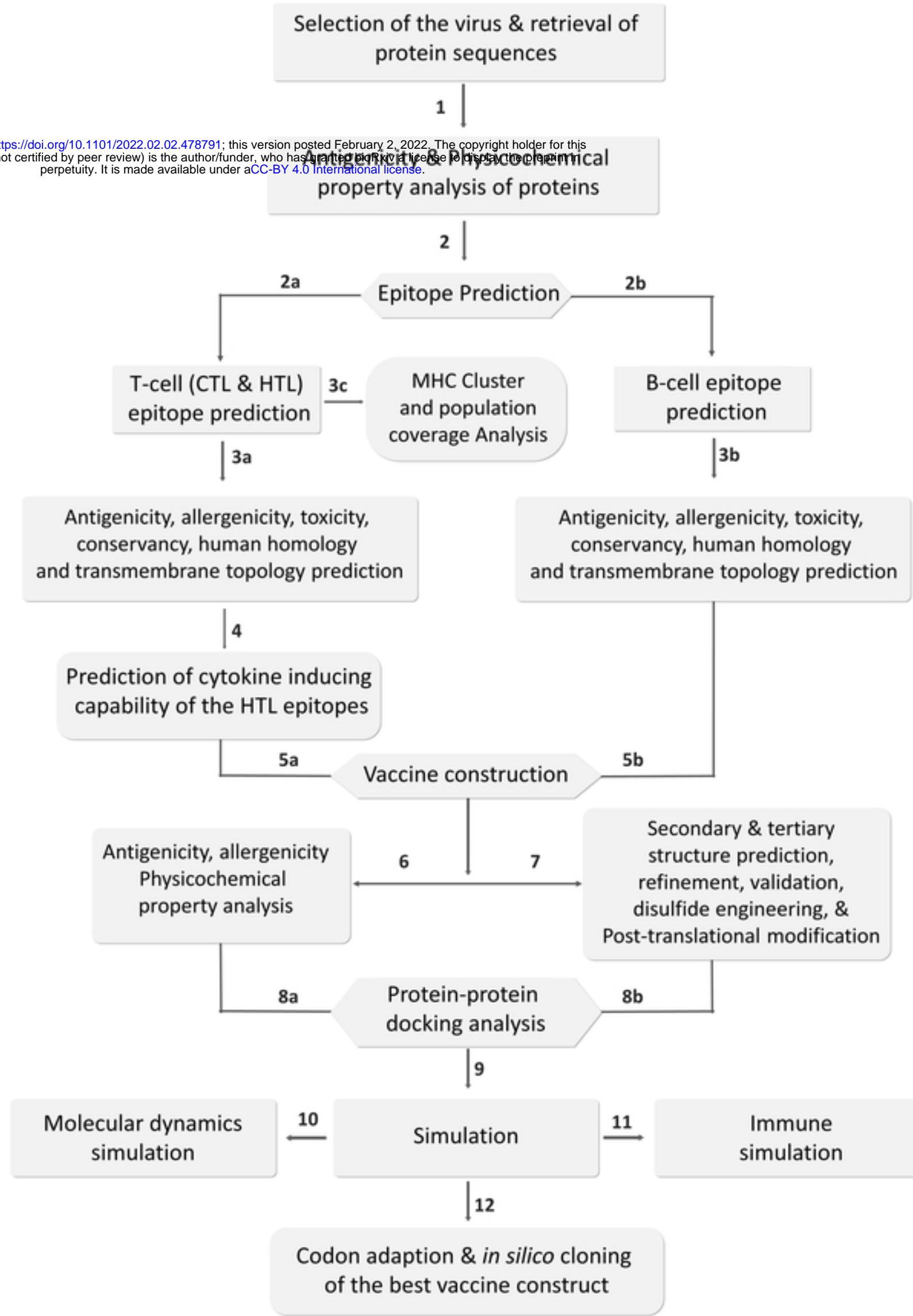
2220

2221 188. Kambayashi, T. and Laufer, T.M., 2014. Atypical MHC class II-expressing antigen-
2222 presenting cells: can anything replace a dendritic cell?. *Nature Reviews Immunology*, 14(11),
2223 pp.719-730.
2224 <https://doi.org/10.1038/nri3754>
2225 PMid:25324123

2226

2227 189. Sarkar B, Ullah MA, Johora FT, Taniya MA, Araf Y. Immunoinformatics-guided
2228 designing of epitope-based subunit vaccine against the SARS Coronavirus-2 (SARS-CoV-2).
2229 *Immunobiology*. 2020c.
2230 <https://doi.org/10.1016/j.imbio.2020.151955>
2231 PMid:32517882 PMCid:PMC7211625

2232


2233 190. Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. Mucosal immunity in COVID-19: a
2234 neglected but critical aspect of SARS-CoV-2 infection. *Frontiers in Immunology*. 2020 Nov
2235 30;11:3221.
2236 <https://doi.org/10.3389/fimmu.2020.611337>
2237 PMid:33329607 PMCid:PMC7733922

2238

2239 191. Wilczyński J, Lukasik B, Torbicka E, Tranda I, Brzozowska-Binda A. Respiratory
2240 syncytial virus (RSV) antibodies in different immunoglobulin classes in small children. *Acta
2241 Microbiologica Polonica*. 1994 Jan 1;43(3-4):359-68.

2242

2243 192. Ndure J, Flanagan KL. Targeting regulatory T cells to improve vaccine immunogenicity
2244 in early life. *Frontiers in microbiology*. 2014 Sep 11;5:477.
2245 <https://doi.org/10.3389/fmicb.2014.00477>
2246 PMid:25309517 PMCid:PMC4161046
2247
2248 193. Sarkar B, Ullah MA, Araf Y. A systematic and reverse vaccinology approach to design
2249 novel subunit vaccines against dengue virus type-1 and human Papillomavirus-16. *Informatics*
2250 in Medicine Unlocked. 2020d May 16:100343.
2251 <https://doi.org/10.1016/j imu.2020.100343>

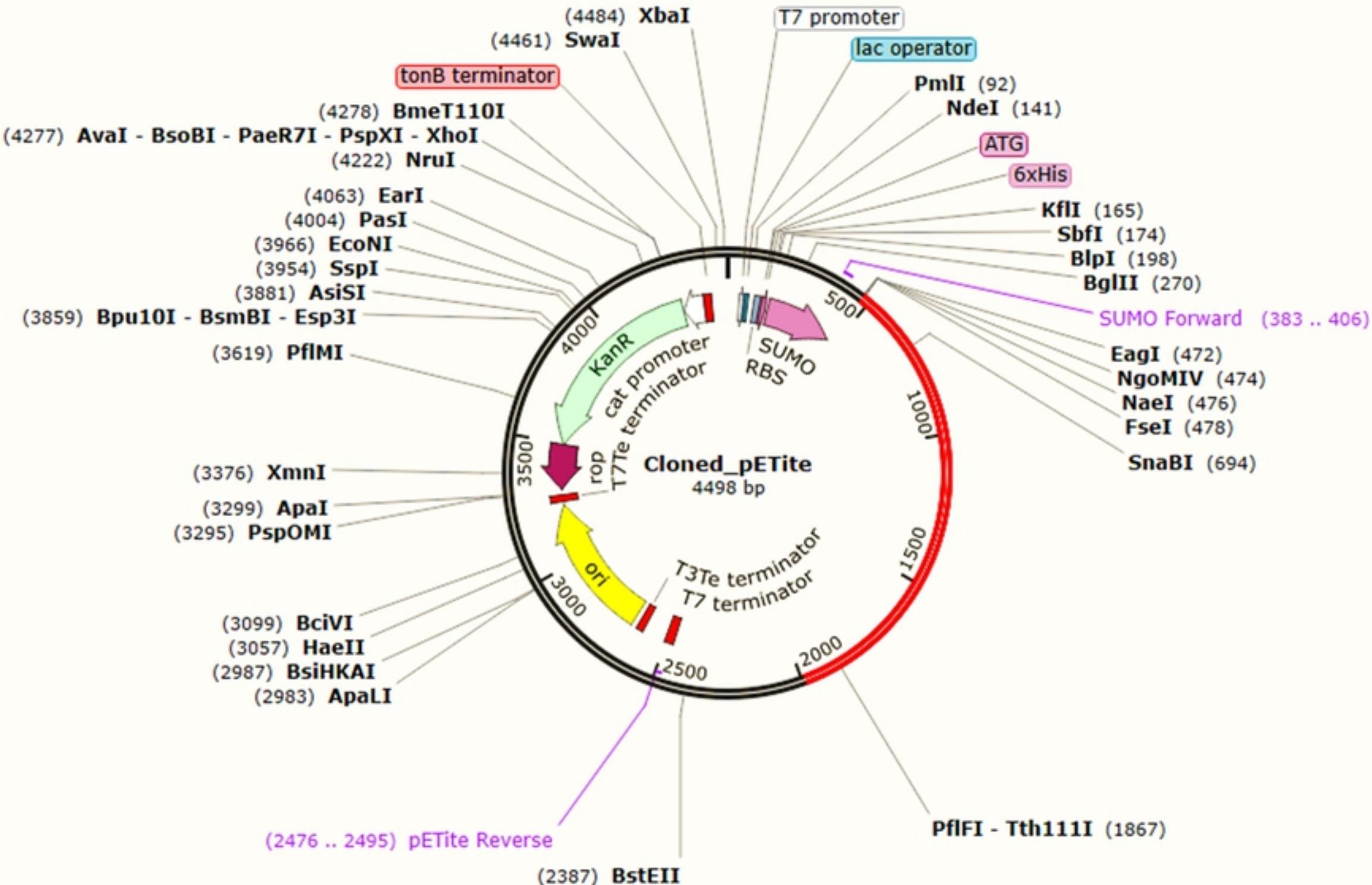


Fig 10

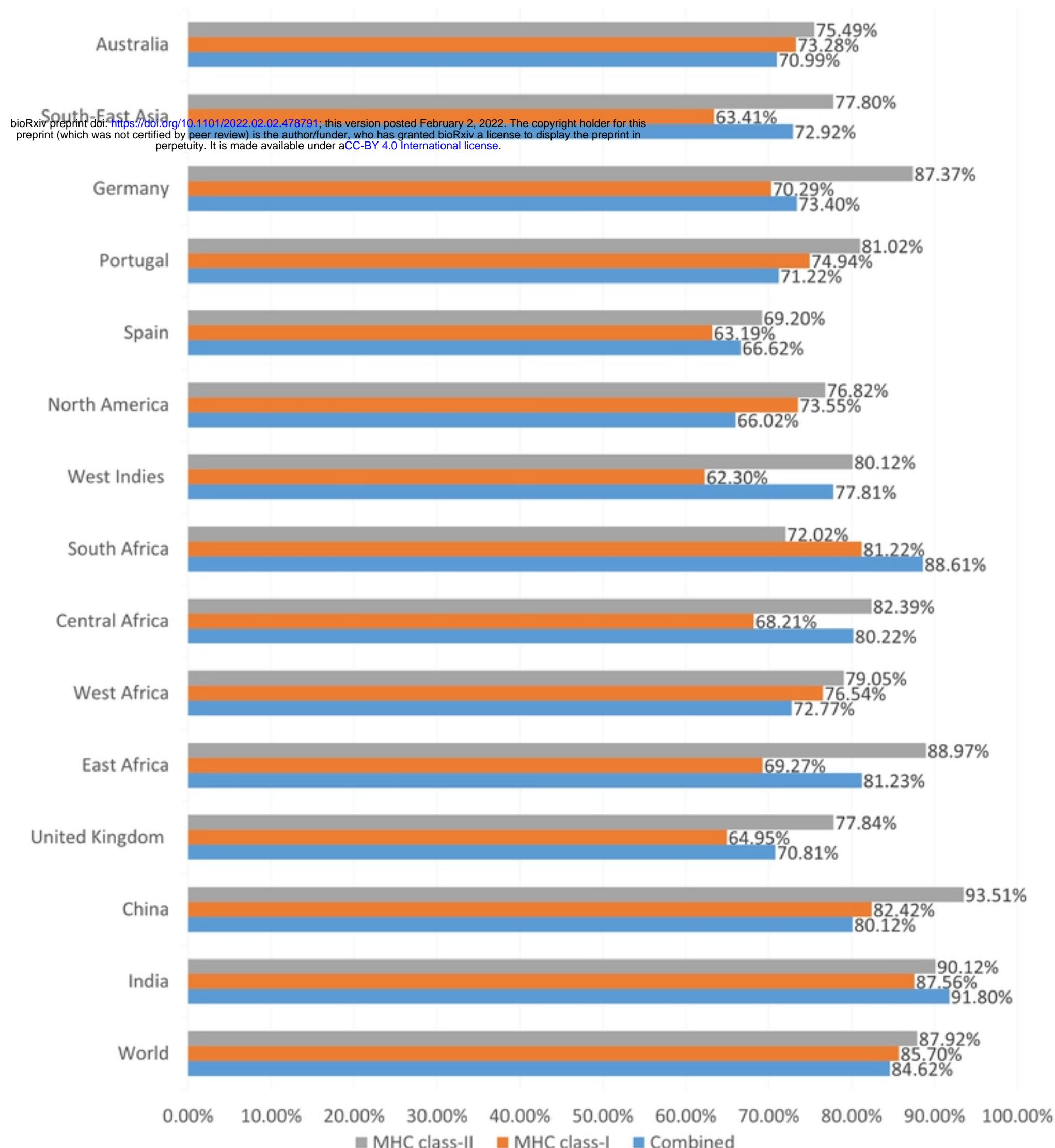
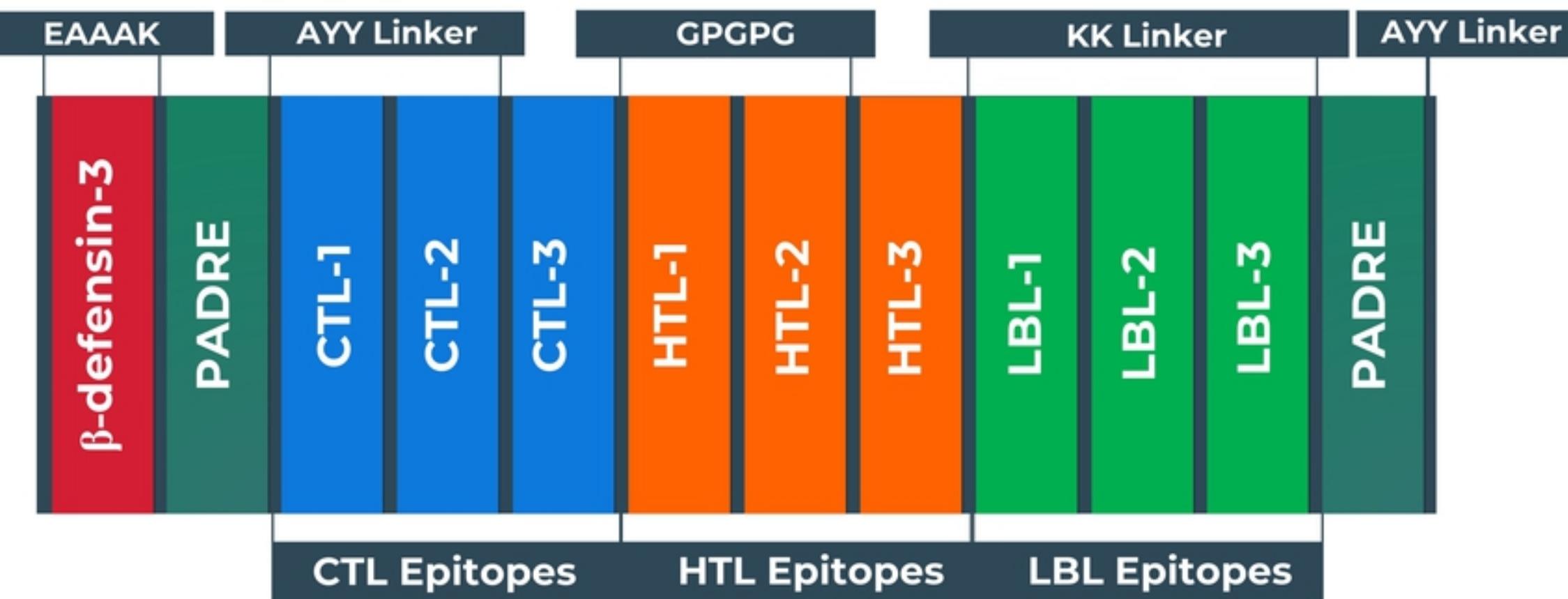
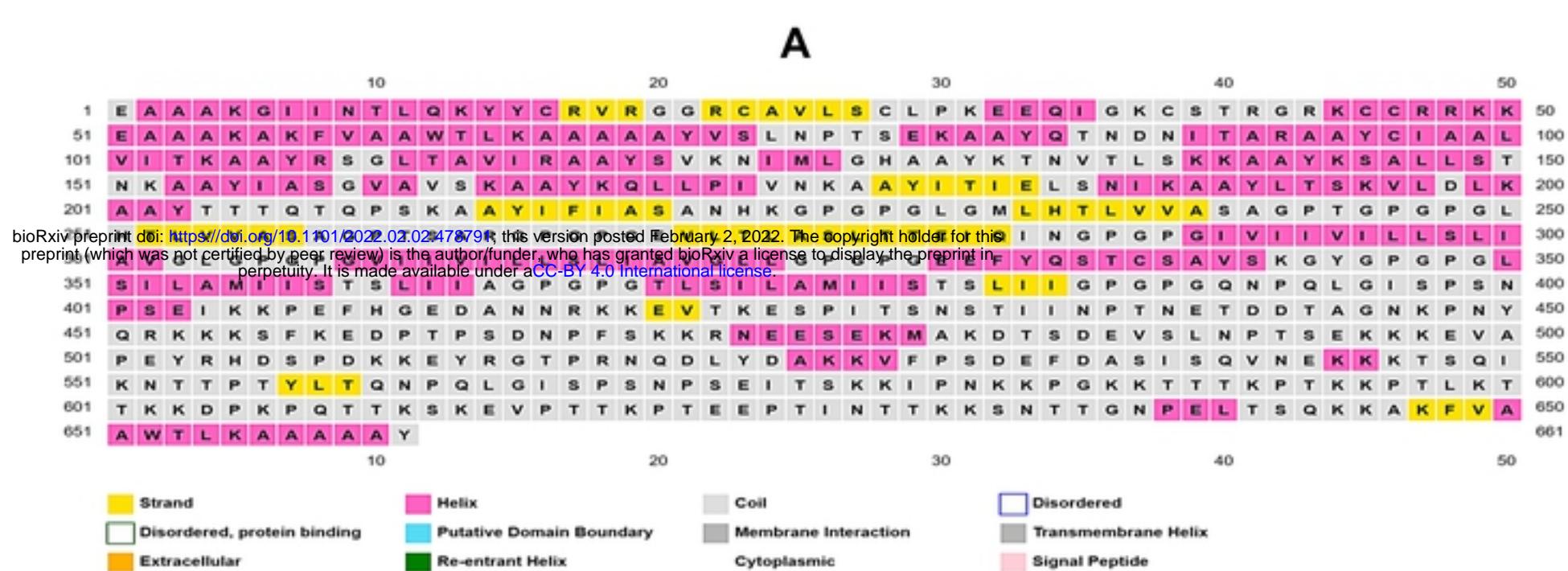
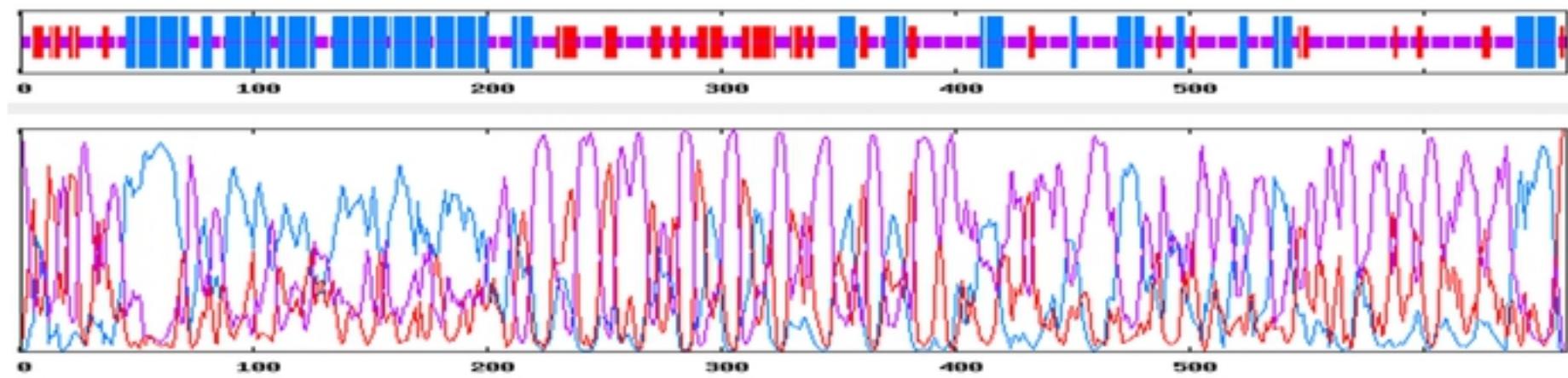
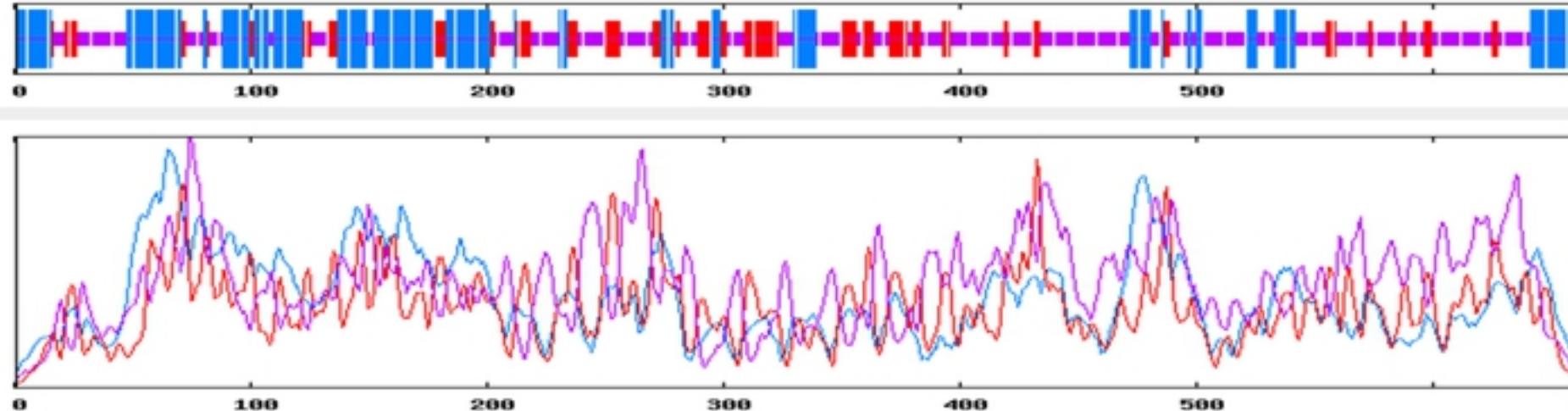




Fig 2


A**B**

EAAAKGIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKKEAAA
 KAKFVAAWTLKAAAAAYVSLNPTSEKAAYQTNDNITARAAYCIAALVITKAAY
 RSGLTAVIRAAYSVKNIMLGHAAAYKTNVTLSKKAAYKSALLSTNKAAYIASGV
 AVSKAAAYKQLLPIVNKAAYITIELSNIKAAAYLTSKVLDLKAAYTTTQTQPSKAAY
 IFIASANHK**GPGPGLGMLHTLVVASAGPTGPGPGLHTLVVASAGPTSARGPGP**
GEVLTLASLTTEIQINGPGPGIVIIVILLSLIAVGLGPGPVIIVILLSLIAVGLLGP
GPGEEFYQSTCSAVSKGYGPGPGLSILAMIISTSLIIAGPGPGTLSILAMIISTSLII
GPGPGQNPQLGISPSNPSEIKKPEFHGEDANNRKKEVTKESPITSNSTIINPTNET
 DDTAGNKP NYQRKKKSFKEDPTPSDNPFS**KKRNEESEKMAKDTSD**EVS LNPTSE
 KKKEVAPEYRHDSPD**KKEYRGTPRNQDLYDAKKV**FPSDEFDASISQVNEKKKT
 SQIKNTTPTYL TQNPQLGISPSNPSEITS**KKIPNKKPGKTTKPTK**PTLKKKD
 PKPQTTKSKEVPTTKPTEEPTINT**KKSNTTG**NPELTSQ**KKAKFVAAWTL**KA
AAAY


Fig 3

B

C

D

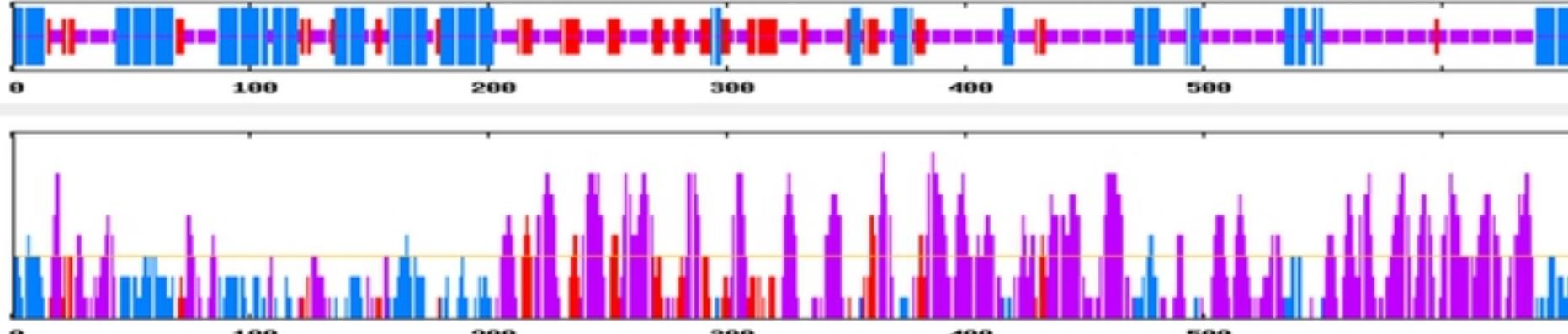
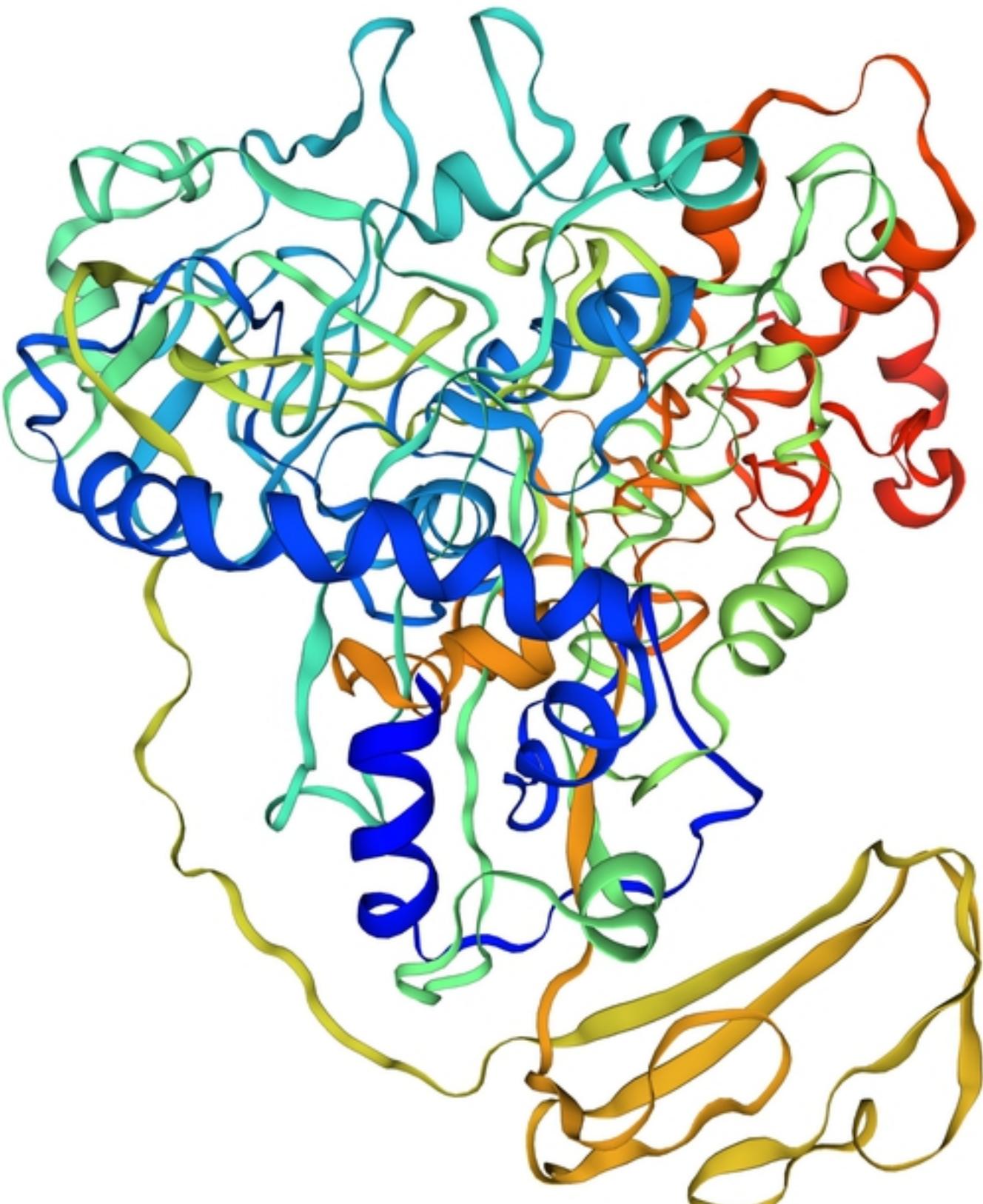
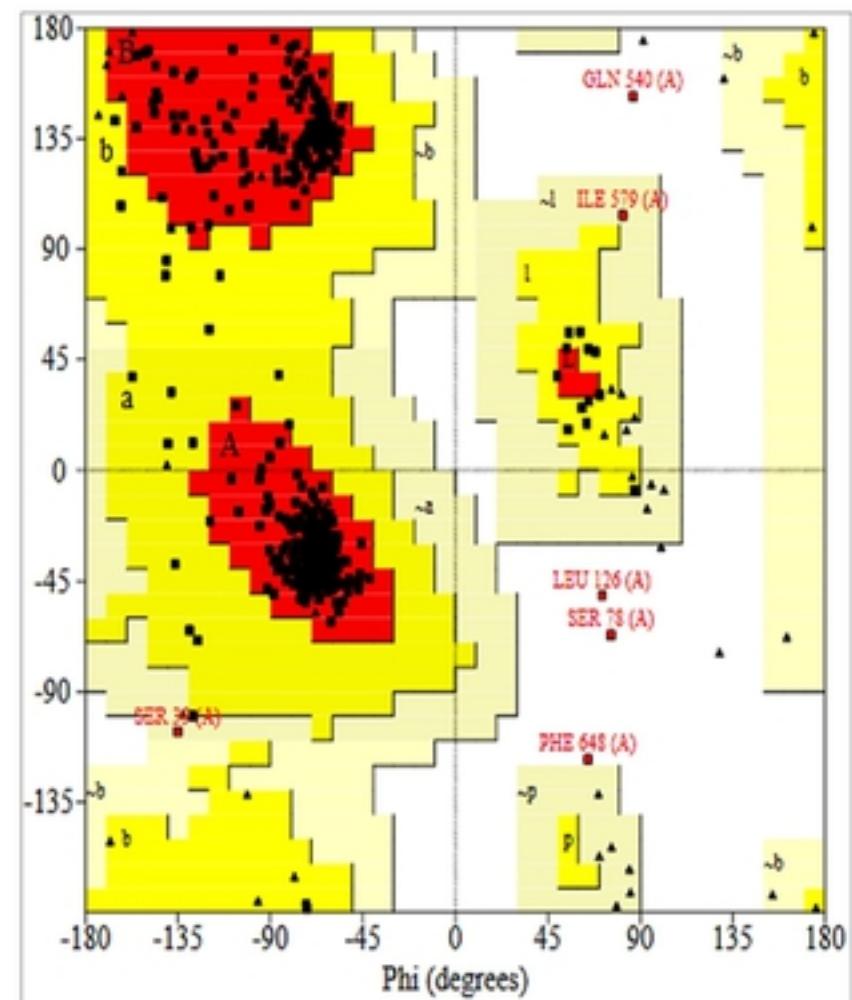




Fig 4

A

B

C

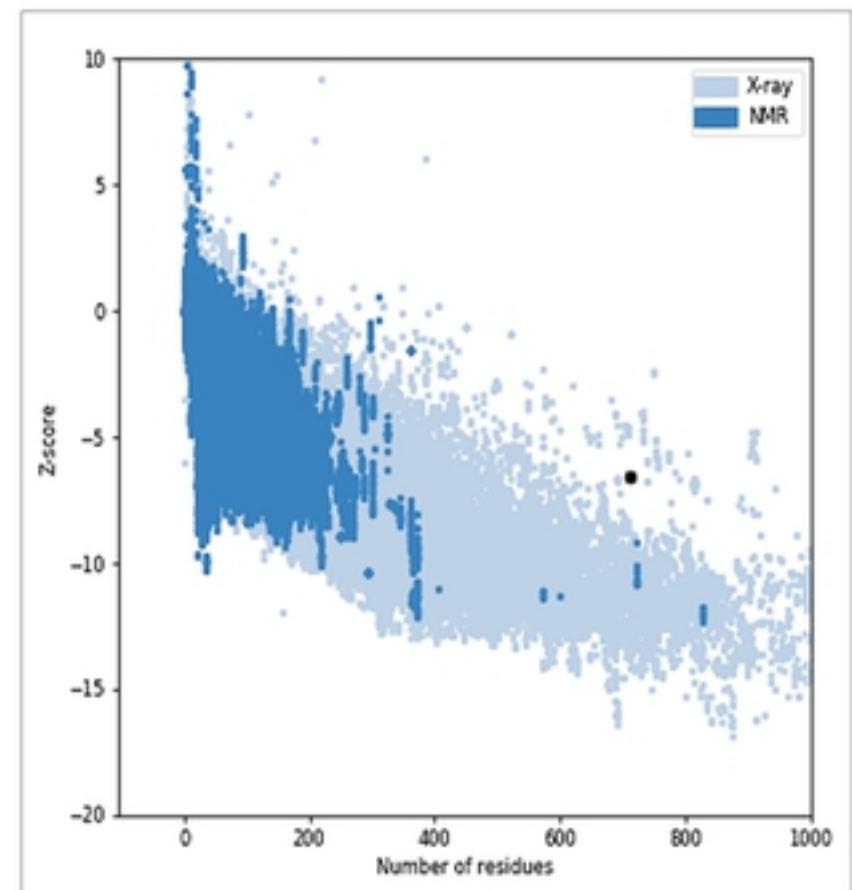


Fig 5

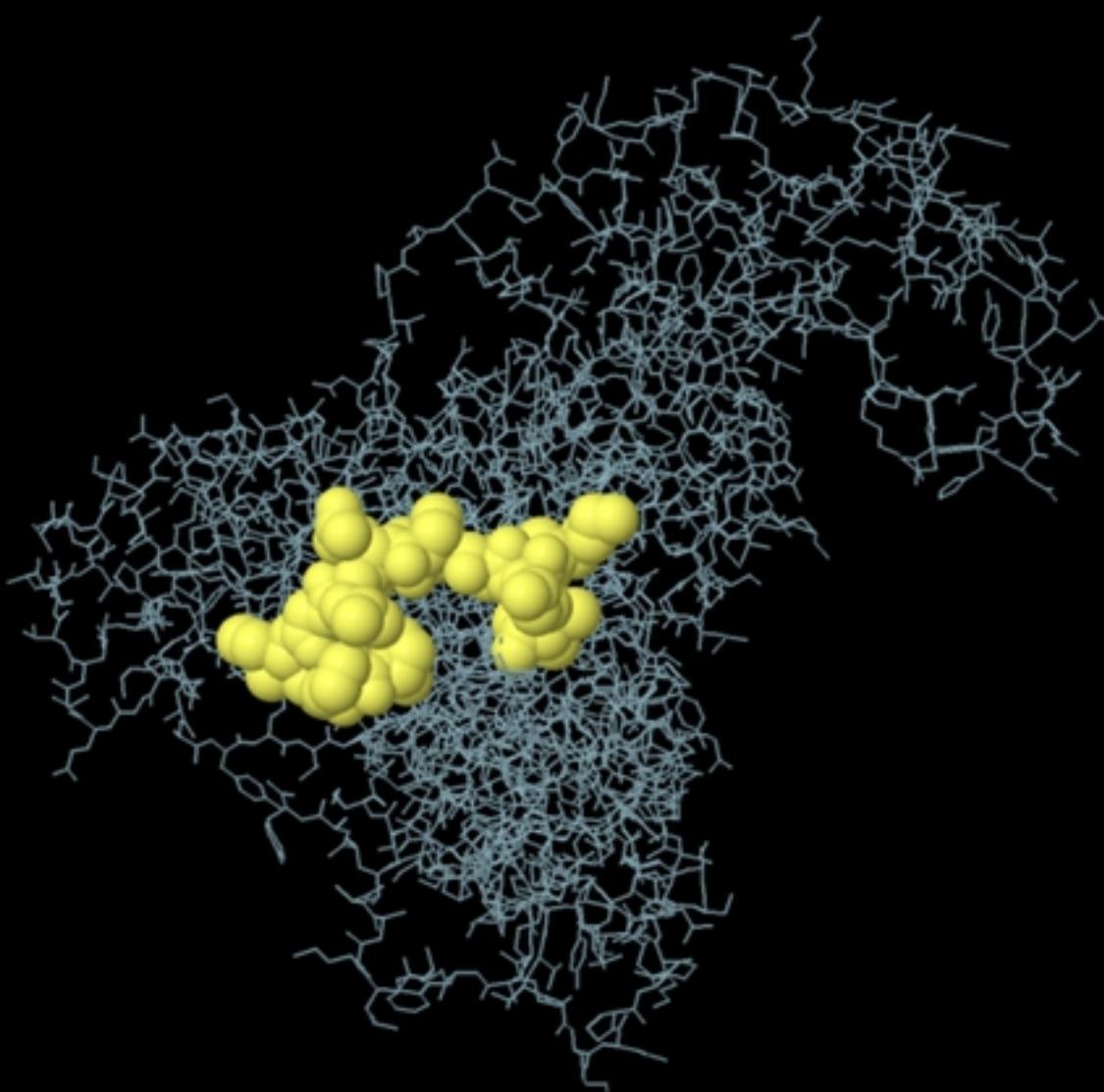
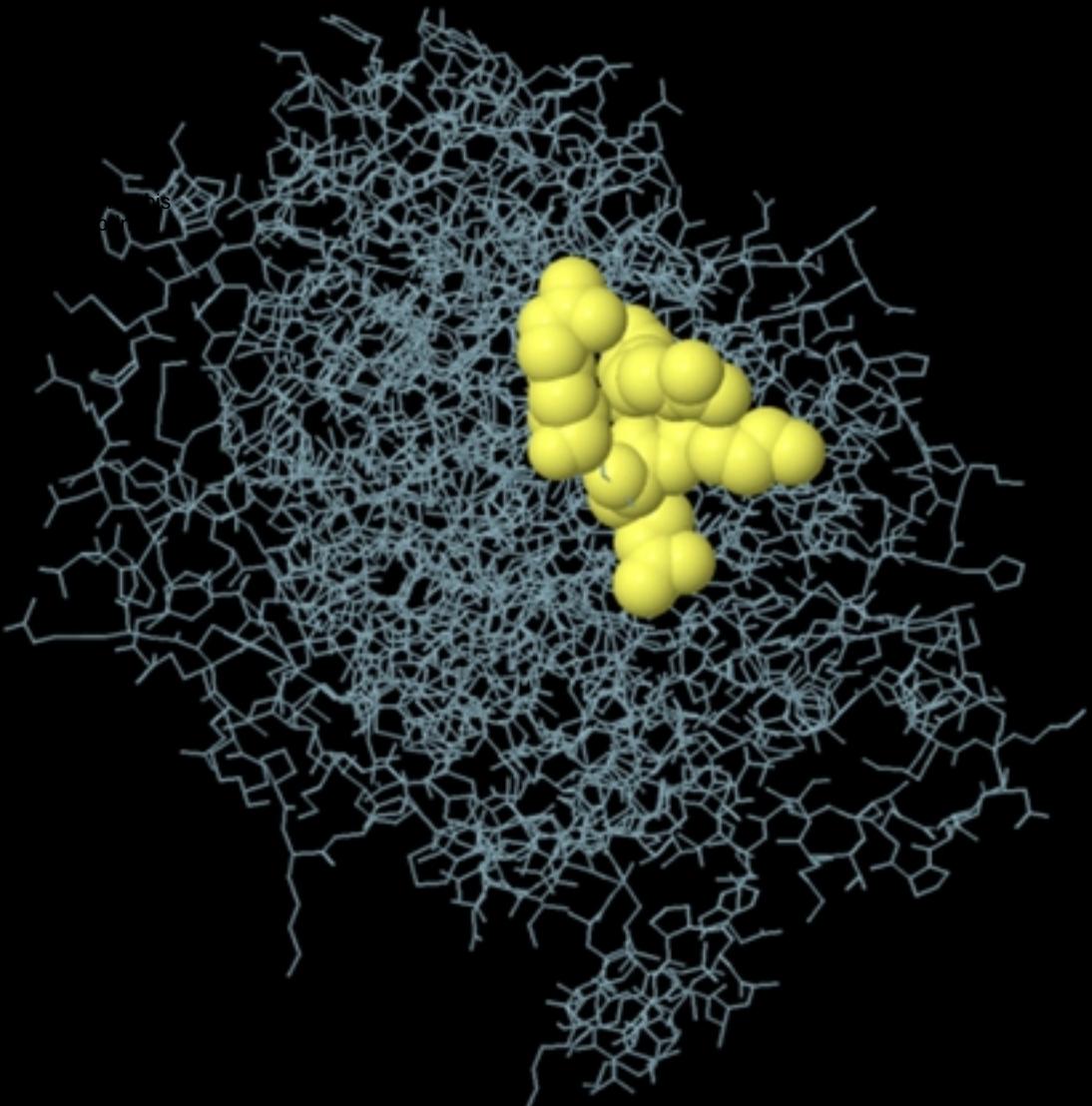
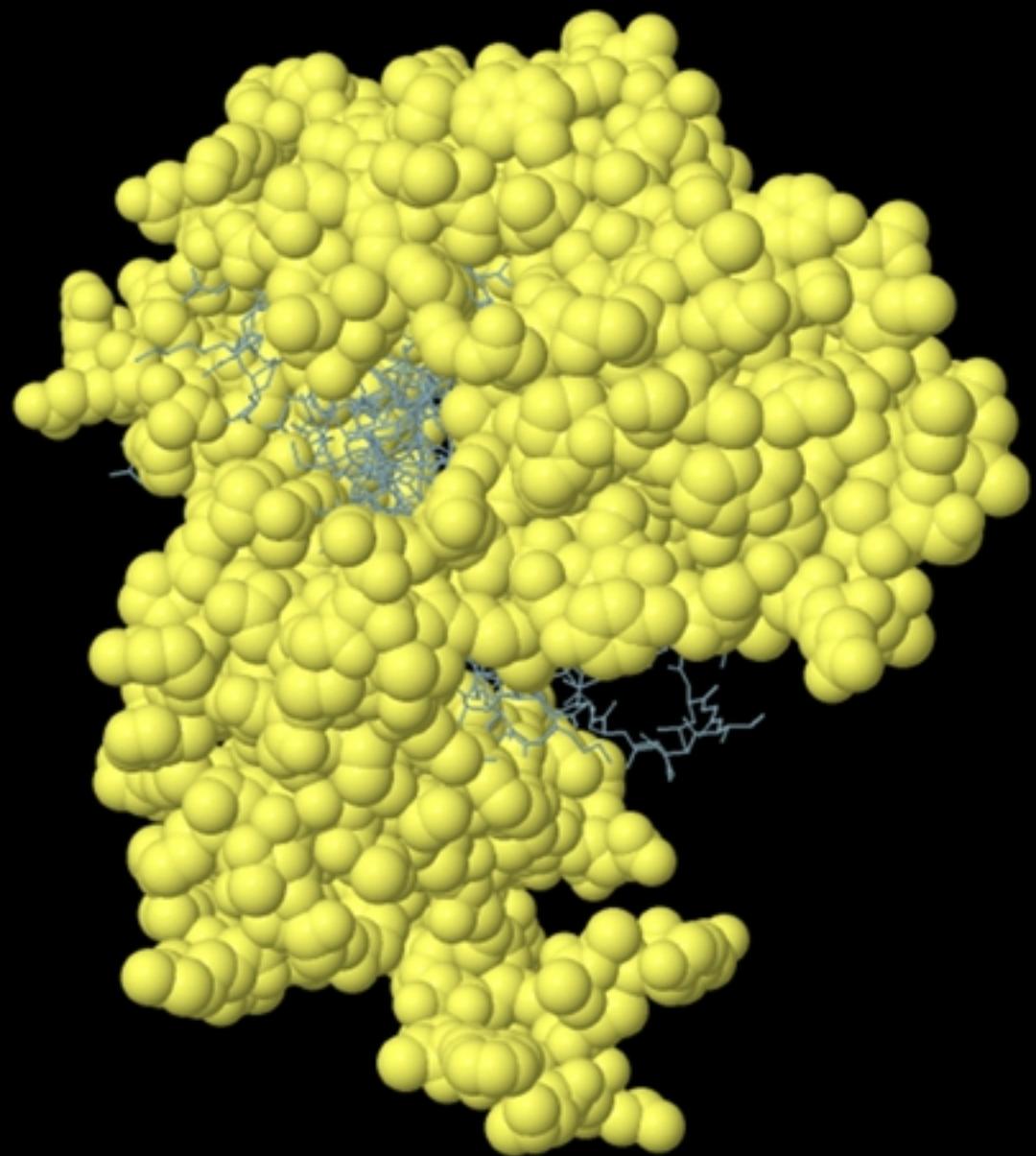
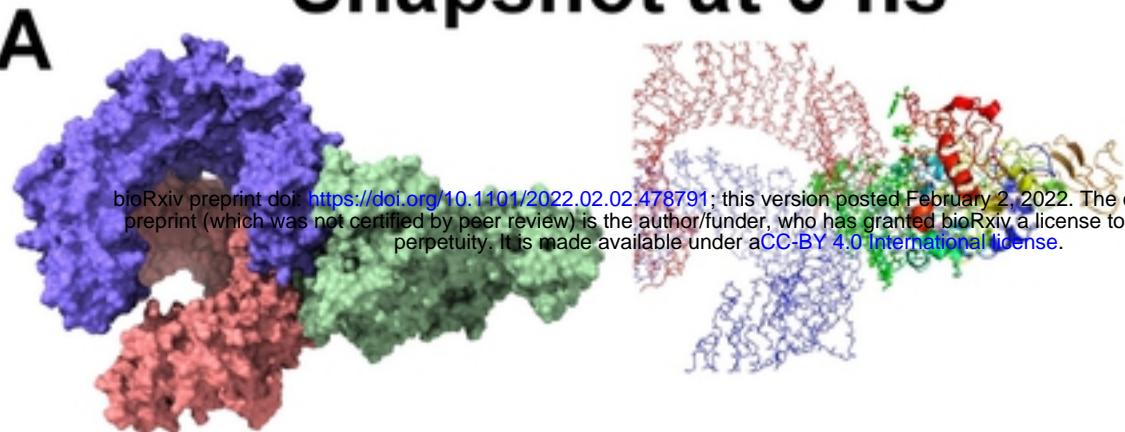
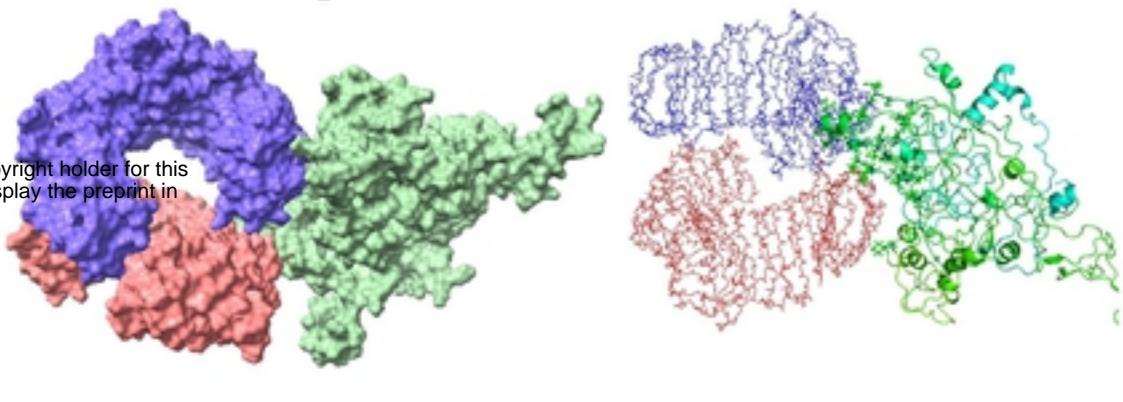
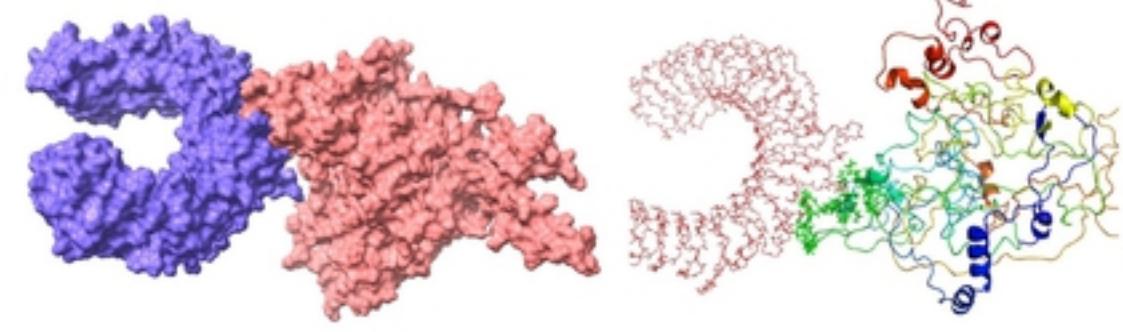
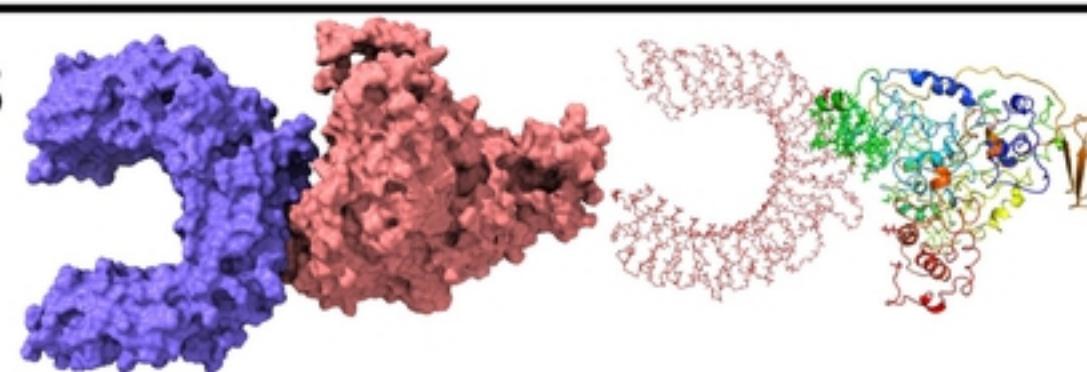
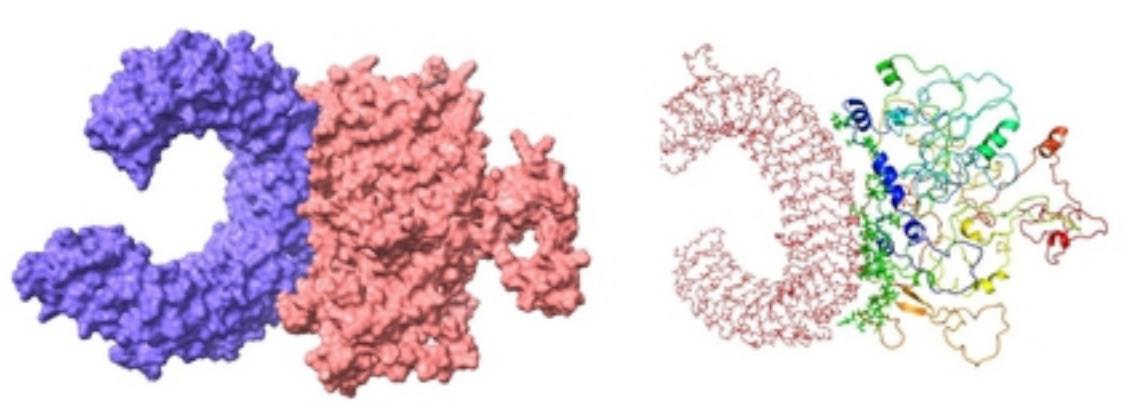
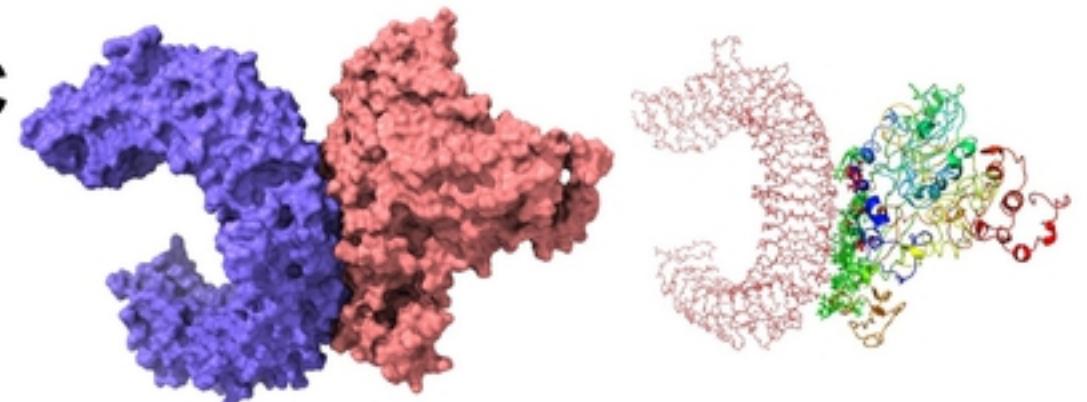
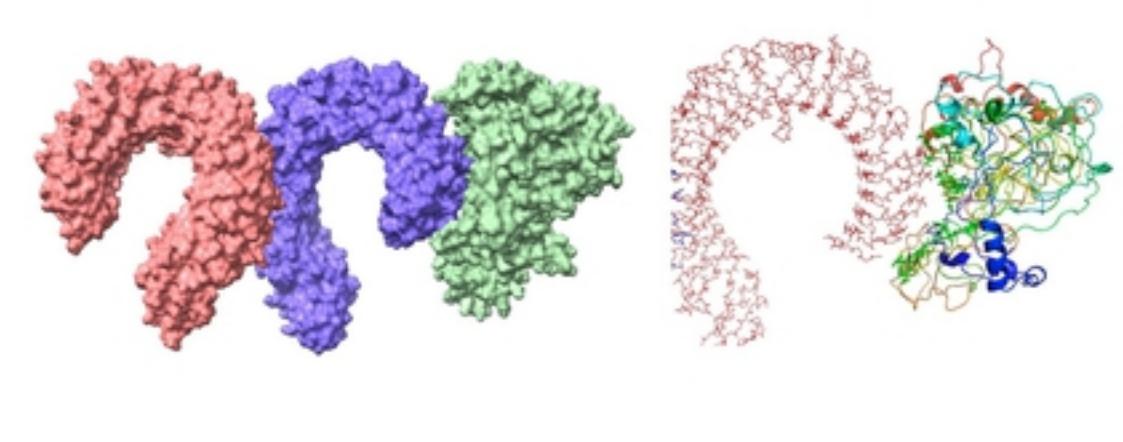
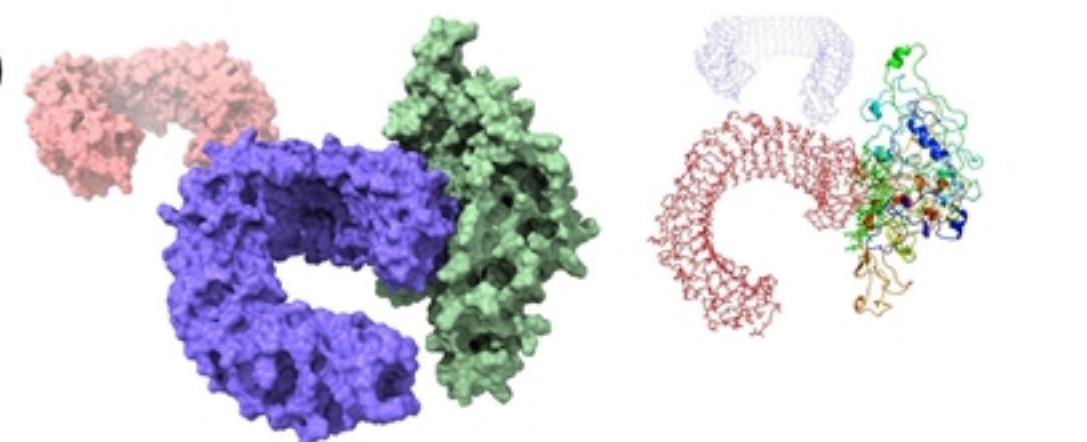






Fig 6



Snapshot at 0 ns



Snapshot at 100 ns



B

C

D

E

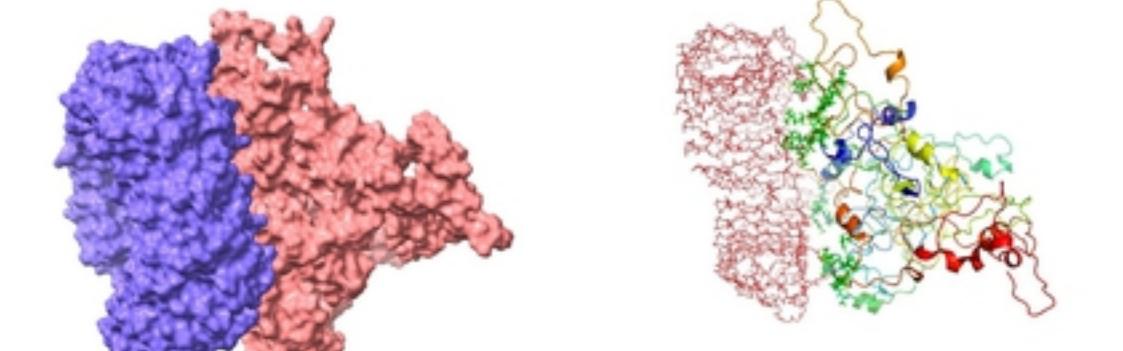
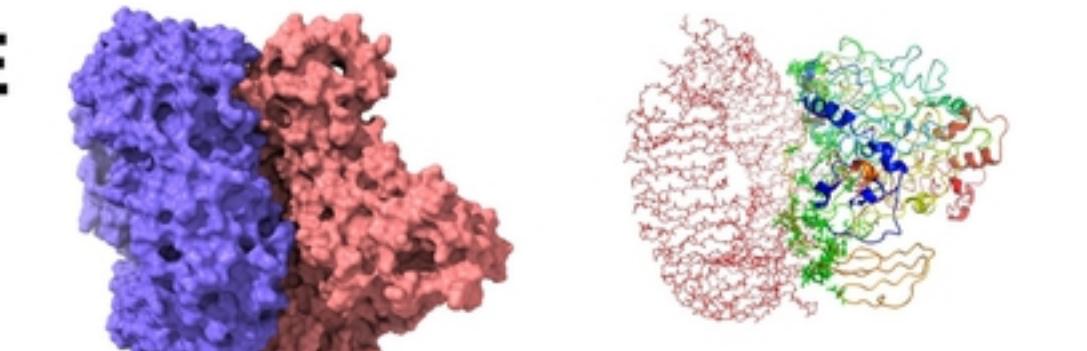



Fig 7

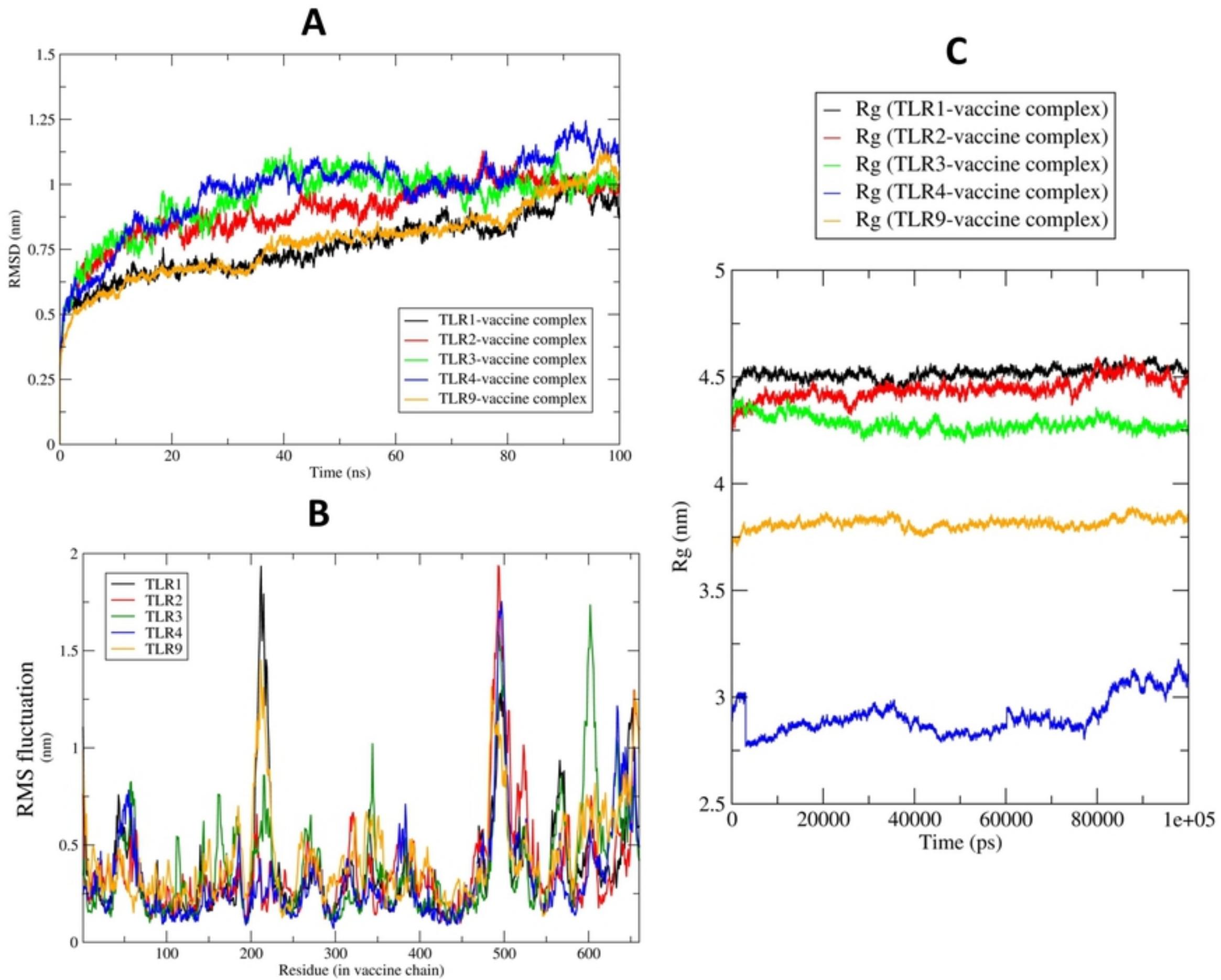


Fig 8

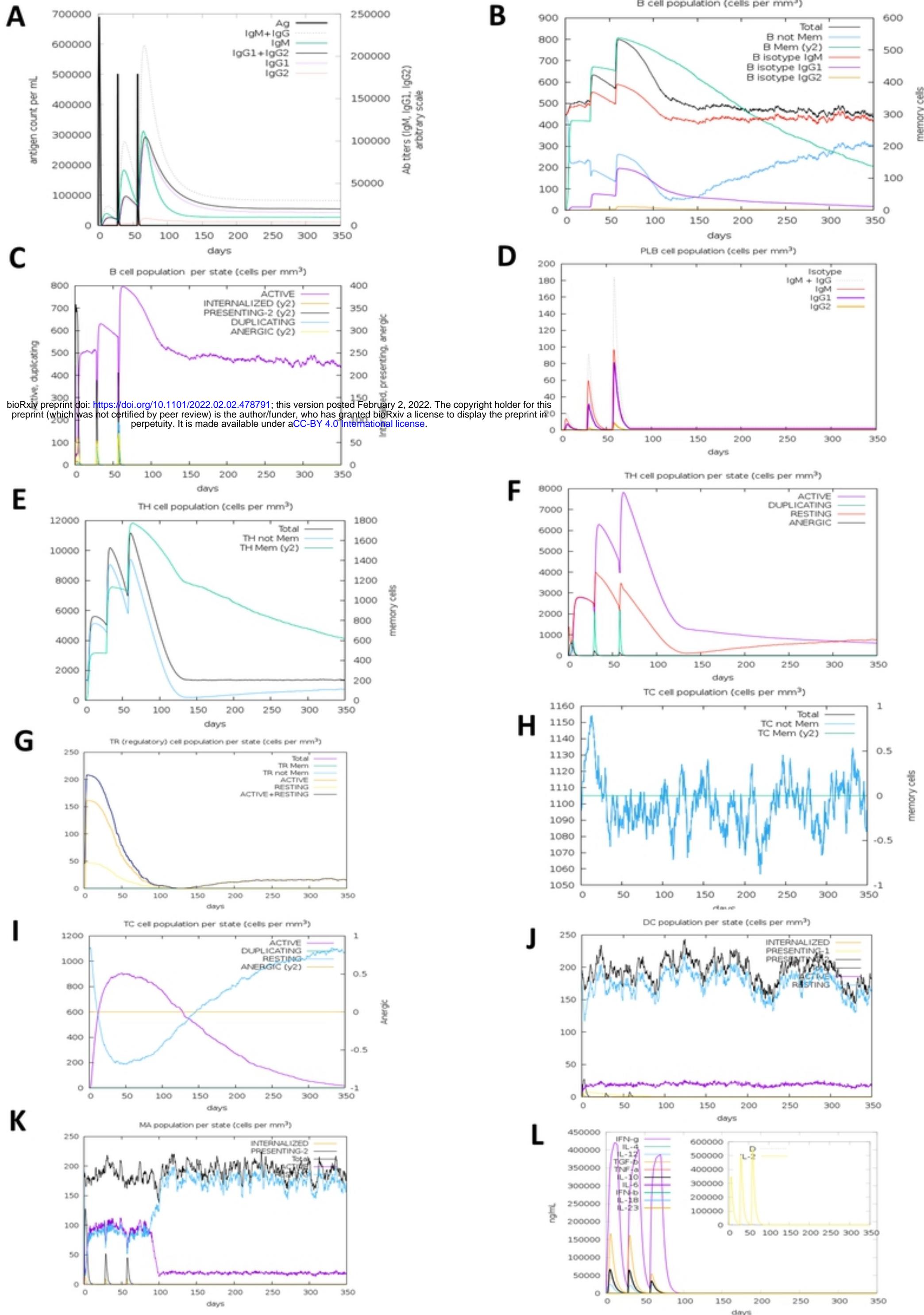


Fig 9