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Summary  
Neuronal differentiation of pluripotent stem cells is an established method to study 
physiology, disease and medication safety. However, the sequence of events in human 
neuronal differentiation and the ability of in vitro models to recapitulate early brain 
development are poorly understood. We developed a protocol optimized for the study 
of early human brain development and neuropharmacological applications. We 
comprehensively characterized gene expression and epigenetic profiles at four 
timepoints, as the cells differentiate from embryonic stem cells towards a heterogenous 
population of progenitors, immature and mature neurons bearing telencephalic 
signatures. A multi-omics roadmap of neuronal differentiation, combined with 
searchable interactive gene analysis tools, allows for extensive exploration of early 
neuronal development and the effect of medications.  
 

Graphical Abstract 
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Highlights  
• Multi-omics charting a new neuronal differentiation protocol for human ES cells  
• Single-cell analyses reveals marker genes during neuronal differentiation  
• Identified transcriptional waves similar to early human brain development  
• Searchable tools to visualize single-cell gene expression and chromatin state 

 

In Brief  
We have developed a novel protocol for human embryonic stem cells to study neural 
induction and early neuronal differentiation. Multi-omics analyses uncovered cell 
populations, genes and transcriptional waves defining cell fate commitment. We 
comprehensively describe epigenetic landscapes and gene expression and provide 
searchable analysis tools for exploration of the data. 
 

Keywords 
Single-cell RNA-seq, scATAC-seq, human embryonic stem cells, neuronal 
differentiation, DNA methylation, telencephalic signatures 
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Introduction  
Neuronal differentiation of pluripotent stem cells (PSCs) is an established method used 
to study early development, physiology, disease and neurotoxicity (Riemens et al., 
2018). However, there is a need for robust protocols that systemically characterize 
cells at intermediate differentiation timepoints. These types of in vitro studies should 
offer the cell-type resolution necessary to characterize developmental trajectories. 
Improving the understanding of a protocol’s ability to recapitulate early brain 
development will aid future studies and increase applicability. 
 
The role of epigenetic regulation on the establishment and maintenance of cellular 
identity during early neuronal differentiation processes is not well understood  (Sun et 
al., 2021; Yao et al., 2016). Therefore, in-depth analyses describing epigenetic 
landscapes and the complex interplay with gene expression are required. Moreover, 
mapping derivative cells and their development- or region-specific transcriptional and 
epigenetic landscapes is fundamental for investigating disease mechanisms and for 
therapeutic interventions. 
 
In this study, we used a multi-omics approach to construct a molecular timeline of early 
human neuronal differentiation. We used a novel 2D neuronal differentiation protocol 
using dual SMAD/WNT signalling inhibitors LDN193189, SB431542 and XAV939 
(LSX) for neural induction of human embryonic stem cells (hESCs) (Cakir et al., 2019; 
Chavali et al., 2020; Major et al., 2016; Ohashi et al., 2018; Tchieu et al., 2017). The 
neuronal progenitors were allowed to self-pattern and mature towards a heterogenous 
population of immature and mature neurons bearing telencephalic signatures. We 
performed RNA-seq, global DNA methylation, single-cell RNA-seq and ATAC-seq data 
integration across timepoints (4D analysis), to correlate the expression of transcription 
factors with time- and population-specific chromatin states in hESCs, and during 
differentiation. This integration of comprehensive multi-omics data enabled the 
characterization of both the transcriptional and epigenetic landscapes in this model of 
early fate commitment. We provide access to single-cell data in user-friendly, 
interactive web applications that enable visualization of gene cluster regulation during 
the neuronal differentiation protocol.  
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Results 
Initial validation of the neuronal differentiation protocol 
 
The coating conditions and cell numbers were optimized to permit high cell contact, 
proliferation, and viability. Thus, based on confluency, morphology and viability, we 
analyzed the hESCs (Day 0) and derivative cell populations at three timepoints. We 
defined the end of the neural induction phase (Stage I) at Day 7, the end of the self-
patterning phase (Stage II) at Day 13 and at the end of the maturation phase (Stage 
III) at Day 20 (Fig. 1A). For the neural induction of undifferentiated HS360 hESCs 
(Main et al., 2020; Ström et al., 2010), we used LDN193189, SB431542 and XAV939 
(LSX). This LSX cocktail antagonizes the BMP, TGFβ and WNT signalling pathways 
to drive cells to anterior neuroectoderm (Cakir et al., 2019; Major et al., 2016; Ohashi 
et al., 2018; Tchieu et al., 2017). By the end of Stage I, neural induction morphogenetic 
events shape cells into thickened neural rosettes, whereas at Stage II, cells self-pattern 
before the Stage III FGF2/EGF maturation phase (Fig. 1B). In the absence of inhibitors 
at the self-patterning stage II, the cells retain their anterior forebrain identity and 
proceed to maturation, as shown by the ddPCR results (Fig. 1C).  
 
The expression of the pluripotency markers POU5F1 and NANOG decreased 
significantly after neural induction (p < 0.00001). Expression of the early neural 
markers SOX2 and NES increased and stabilized at Day 7, whereas PAX6 expression 
peaked at Day 7 before decreasing significantly at Days 13 and 20 (p < 0.0001). The 
expression of the transcription factor (TF) OTX2, which regulates neurogenesis and 
antagonizes ground state pluripotency, the late onset pan-neuronal marker TUBB3, 
and also MAP2 and FOXG1 increased as cells differentiated. Immunofluorescence 
imaging showed protein expression and localization of OCT4, OTX2, SOX2, PAX6, 
NES and ΤUBB3 (Fig. S1). 
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Figure 1. 2D protocol with neural induction followed by self-patterning and 
maturation. A) Schematic illustration of the 20 Day timeline of the neuronal 
differentiation protocol from hESCs. B) Representative 20x brightfield phase contrast 
images of hESCs at Days 0, 7, 13 and 20 (scale bar 100 μm). C) ddPCR results from 
4-6 replicates of mRNA expression of selected marker genes from Days 0, 7, 13 and 
20.  
 
Identification of heterogenous populations of progenitors, mature and immature 
neurons with telencephalic signatures 
To characterize the gene expression signatures, composition, differentiation pathway 
trajectories and the maturation level of the cell types derived, we performed single-cell 
RNA-seq (scRNA-seq) analyses at Days 0, 7, 13 and 20 (Figs. 2, S2, S3 and Table 
S1). The scRNA-seq data can be visualized in the open access webtool “hESC 
Neuronal Differentiation scRNA-seq” (hESCNeuroDiffscRNA) where expression of 
genes can be explored per cell, cluster and timepoint (Star methods). A total of 9,337 
cells were projected in UMAPs, 1,900 Day 0 cells, 2,368 Day 7cells, 2,045 Day 13 cells 
and 3,024 Day 20 cells). (Fig. 2A and hESCNeuroDiffscRNA, cell information tab, 
orig.ident). 
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Inferring quantitative analysis of cell cycle phase 
A hallmark of neuronal development involves major alterations in G1- and S-phase 
duration. G1-phase lengthening is associated with the transition to a more 
differentiated cell type, while S-phase duration is linked to progenitor cell expansion 
(Arai et al., 2011). The cell cycle-specific gene trajectories showed a transition from 
15.4 % to 54.1% cells in G1 phase from Day 0 to 20 (Fig. 2B, S2D, Table S2 and 
hESCNeuroDiffscRNA). This is consistent with previous studies showing that the 
maintenance of pluripotency, proliferation and differentiation of rapidly proliferating 
PSCs, neural stem cells and progenitor cells are regulated by the cell cycle (Becker et 
al., 2006; Boward et al., 2016; Liu et al., 2019; Soufi and Dalton, 2016). The cell cycle 
regulator CDK1 was expressed in 60% of the cells at Day 0, 45% at Day 7, 53% at 
Day 13, and reduced to 33% at Day 20 (Fig. S2E, % from the hESCNeuroDiffscRNA). 
CytoTRACE results confirmed that differentiation is consistent with the cell cycle phase 
inferred trajectory. As indicated by the higher CytoTRACE scores, cell potency 
gradually decreased from Day 0 to 20 (Fig. 2C), confirming the cell cycle phase 
prediction.   
 
Development and differentiation markers used for cluster resolution and 
annotation 
The four timepoints were resolved into 15 clusters (R1-R15, Fig. 2D). Corresponding 
cell numbers per cluster and cells per timepoint per cluster are shown (Table S3). The 
top ten most highly expressed genes for each cluster are plotted in a heatmap (Fig. 
3), including many developmentally regulated TFs. Among these genes, POU5F1, 
TDGF1, GAL, LRRC75A, RAX, LIX1, TYMS, HES1, HES5, HES6, FGF17, DLX5, 
DLX6, GAP43, STMN2 and GNRH1 were used for R1-R13 cluster annotation. For 
R14, consisting of 27 Day 0 cells, we used KPNA2, a gene associated with the 
localization of OCT4 (Li et al., 2008). For R15, a pool of 90 cells from Days 7, 13 and 
20, we used FABP7, which is expressed in NSCs during development (Kurtz et al., 
1994). 
 
Characterizing the unsynchronized hESC population  
We identified three distinct Day 0 clusters (R1-3) where all cells expressed POU5F1, 
verifying their pluripotency. TFs essential in establishing and maintaining pluripotency 
(i.e., GAL, TDGF1, ID1, FOXH1 and SOX2) were highly expressed in clusters R1-3 
(observe in hESCNeuroDiffscRNA). R3 cells expressed the highest levels of NANOG 
and LRRC75A. As others have reported (Chen et al., 2021), PHC1 was highly 
expressed in hESC clusters R1-R3, and its expression was greatly reduced in 
differentiating cells. Downregulation of PHC1 was compensated by increased PHC2 
expression, indicating a role for PHC2 in human neuronal differentiation (Fig. 2E). 
Focusing on the FOX family of TFs, FOXD3, which is required for pluripotency 
(Krishnakumar et al., 2016), and the recently reported pluripotency marker FOXD3-
AS1 (Haswell et al., 2021), were expressed in R1-R3 (Fig. S3A). Furthermore, a clear 
switch was observed from FOXH1 and FOXD3-AS1 expression in R1-R3, to the 
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expression of the master regulator of brain development FOXG1 (Beyer et al., 2013; 
Chiu et al., 2014) in all other clusters (Fig. 2E and S3A). 

 
Figure 2. Identification of cell populations during neuronal differentiation of 
hESCs. A) UMAP representing single-cell RNA-seq clusters per time-point. B) UMAP 
of cell cycle analysis showing all cells analyzed and coloured by assigned cell cycle 
phase. C) The inferred neuronal differentiation trajectory using CytoTRACE, where 
less differentiated cells are shown in red and more differentiated cells are shown in 
blue. D) The UMAP representing cell clusters R1 to R15 with corresponding gene 
annotations mapped at resolution 0.55. The clusters are indicated by different colours 
and gene annotations per cluster are given after each colour corresponding bullet 
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below the UMAP. E) Violin plots representing gene expression levels and distribution 
in clusters R1 to R15 for selected genes. 
 
LSX forebrain induction cues evident at the end of Stage I 
Under LSX induction, hESCs undergo morphogenetic events and form neural rosettes. 
These Day 7 cells mapped to a single cluster (R4, Fig. 2D), enriched in the rostral 
markers SIX3 and LIX1 (Figs. 3, S2E and S3D). In contrast, the expression of the 
preplacodal genes EYA1 and SIX1 (Ikeda et al., 2007; Schlosser, 2014) was low, 
including SIX3-AS1. Furthermore, expression of caudal markers PAX5 and GBX2 
(Kirkeby et al., 2012; Maroof et al., 2013) was low throughout differentiation. This 
confirms the efficacy of LSX forebrain induction, enabling cell-fate commitment 
persistence. 

Upon neural induction, the key neural TF PAX6 is upregulated and interacts with SOX2 
(Zhang et al., 2019). R4 cells were SOX2 positive showing high PAX6 and RAX 
expression (Fig. S2E), and express neuronal rosette markers, such as DACH1, 
POU3F2, NR2F1 and NR2F2 (Fedorova et al., 2019). A distinct switch from CDH1 
(Epithelial Cadherin) to CDH2 (Neural Cadherin) expression was observed (Fig. 2E), 
and other developing forebrain specification and differentiation stage markers (such 
as OTX2, HESX1, FOXG1, LIN28A and FABP7) were detected. 

Self-patterning does not affect fate commitment 
At Day 13, which marks the end of the self-patterning stage, 75% of the cells mapped 
to cluster R5 and most of them expressed REST (Figs. 2E and S2E). SIX3, DLX5 and 
BMP4 (Figs. S2E and S3D) were expressed in R6 cells that are enriched in FGF8 and 
HES1. Moreover, R6 was enriched in TAGLN, which was also expressed in 44% of R5 
cells but absent in the R5 cells co-expressing NKX2.1, DCT and SOX6. CNTN1, an 
active ligand of Notch (Hu et al., 2003) and potent inducer of neuronal migration (Lee 
et al., 2014), was expressed in R6. CNTN1 was exclusively expressed in cells negative 
for NTN1, DLL1, FABP7 and POU3F2. Comparing to results of 8 week human 
embryonic tissue (Kirkeby et al., 2012), no midbrain and hindbrain markers were 
detected at Day 13, confirming that the self-patterning phase does not affect fate 
commitment. 
 
Characterization of the Day 20 heterogenous population  
Day 20 cells retained their identity and clustered in R7-13 (Figs. S2E and 3). Some 
cells expressed high levels of CDK1 (Fig. S2E), whereas other cells were still regulated 
by REST and expressed DLX5 and CDKN1C. CDKN1C, which forms complexes with 
histone deacetylases to repress neuronal genes in non-neuronal cells (Laukoter et al., 
2020) is inversely correlated with REST expression and enhanced in R11-13 (Figs. 
2E and 3). Interestingly, ARX, a regulator of cortical progenitor expansion by 
repression of CDKN1C (Colasante et al., 2015) was only expressed in R13 cells (Fig. 
S2E). Neuronal differentiation correlated with CDK6 upregulation and G1 shortening. 
CDK6 is directly regulated by GLI3 and expression of GLI3 (Hasenpusch-Theil et al., 
2018)(detectable at R4) dropped significantly in R12-13. REST is known to be 
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downregulated during neurogenesis and in differentiating neurons  and the pattern was 
recapitulated in this study (Fig. 2E).  

Neuronal maturation signatures  
Day 20 cells were highly enriched for MAP2, and clusters R11-13 were enriched for 
DCX, which is a marker of migratory neurons. Genes expressed in proliferating 
neuroblasts associated with cortical migration control and developing rostral brain 
structural patterning, such as EMX2 (Pang et al., 2008; Spalice et al., 2009; Verrotti et 
al., 2010), decreased in clusters R11-R12 and were undetectable in R13 (Fig. S2E). 
FGF8, an anterior-posterior patterning molecule, acting mainly via EMX2 repression 
(Hao et al., 2019), was expressed in R4 and R6 cells and in a few Day 20 cells, mainly 
in R8 and R10 clusters. Furthermore, FGF17 (Figs. 3 and S2E) and FGF18 were 
mostly expressed at Day 20 R8 cluster. HES6-enriched cluster R11 (Fig. S2E) was 
composed of Day 13 and 20 cells, and most of the R11 NEUROG1-negative cells were 
Day 13 cells. Neural stem and progenitor marker ZEB1, which was downregulated 
upon neuronal differentiation to permit proper migration of immature neurons (Wang 
et al., 2019a), was expressed in almost all cells (Figs. 3 and S2E). In addition, FOXG1-
enriched R13 cells also express high levels of DLX6-AS and DLX5 (Figs. 3, S2E and 
S3B).  
 
Of note, the expression of GNRH1 (Gonadotropin Releasing Hormone 1) was 
expressed in 30% of the R12-13 cells (9% of Day 20 cells) (Figs. 3 and S2E). Of these 
cells, some expressed GABAergic or glutaminergic processing enzymes. As the 
mechanisms that contribute to the development of extrahypothalamic GnRH neurons 
are not fully described, such data are vital for studies of development, puberty and 
reproduction. 
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Figure 3. Cluster analysis of differential gene expression. Heatmap of the top ten 
most highly expressed genes in all clusters. Rows represents single genes and column 
represents single cells. Cell clusters are ordered sequentially and coloured according 
to the UMAP annotation shown to the right (yellow represents high expression and 
blue low expression). 
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Global expression profiles reveal neuronal differentiation and maturation 
signatures  
To increase gene expression sensitivity, we performed bulk gene expression analysis 
with higher sequencing depth (Fig. 4 and S4). Overall, we found 11,313 differentially 
expressed genes (DEGs) comparing cells from Day 0 to 20 (Table S4). More genes 
were differentially expressed during neural induction (Day 0 to 7), compared to the 
later stages, with self-patterning (Day 7 to 13) and maturation (Day 13 to 20) stages 
(Table S4). The most extensive transcriptional changes occurred between Day 0 and 
Stage I, with loss of pluripotency and gain of neuralization markers (Figs. 4A, S4A and 
S4F). We confirmed that bulk RNA-seq analysis for selected marker genes correlates 
well with ddPCR (Fig. 4B and S4G). 
 
The analysis shows the specific gene expression patterns as cells lose pluripotency 
and move towards neuronal maturation (Fig. 4). These may be steep decreases after 
neuronal induction, as seen for LIN28A and CDH1. For other genes expression peaks 
at Day 7 or Day 13, such as RAX and FOXG1, respectively. Expression increases 
gradually for genes such as OTX2 and SOX6. Moreover, the expression of 
neuroectodermal patterning Wnt/β-Catenin negative regulator AMER2 (Pfister et al., 
2012), and neuronal differentiation marker STMN2 (Wang et al., 2019b) increase at 
Day 13 and increase further at Day 20 (Fig. 4A). On Day 20 we also find genes 
correlated to specific neuronal types, such as GRIA1, SLC17A6, GNRH1 and GAP43 
(Fig. 4A and S4F).  
 
We next performed gene ontology (GO) analyses to identify shared biological 
processes (BP) among the DEGs during differentiation (Fig. 4D and Table S5). These 
analyses revealed enrichment of upregulated BPs related to pattern specification, 
neuronal maturation and migration from Day 0 to 20 (Fig. 4D). Stage-specific GO 
analyses revealed enrichment of BPs involved in neurogenesis and neuron 
development differentiation at stage I (Day 0 to 7), and BPs involving synaptic 
organization and signalling, and neurotransmitter regulation and secretion at the end 
of the maturation stage (Day 13 to 20; Table S5). The RNA-seq analysis is in line with 
single-cell analysis showing downregulation of pluripotency genes and upregulation of 
brain development genes. 
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Figure 4. Correlation of RNA-seq to ddPCR and GO analyses results. A) 
Normalized gene expression counts for selected genes showing transcriptome 
expression patterns from loss of pluripotency towards neuronal maturation. B) Scatter 
plots of RNA-seq and ddPCR for marker genes NANOG, PAX6, OTX2, FOXG1, 
NEUROD1 and MAP2 at Days 0, 7, 13 and 20. C) Heatmap of top 50 differentially 
expressed genes between Days 0 and 20 replicates. Fold change is shown to the left. 
D) GSEA analysis of differentially expressed genes from Days 0 and 20. 
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DNA methylation correlates with neuronal transcriptional programs during 
differentiation 
DNAm in human cells is mainly restricted to CpG sites and essential for normal 
development (Smith and Meissner, 2013). As hESCs transition to differentiated 
neurons, dynamic DNAm changes regulate gene expression and the establishment of 
cell-type specificity (Stricker and Götz, 2018). To assess DNAm in the present protocol, 
we identified CpGs which are differentially methylated (DMCs) between Day 0, 7, 13 
and 20 (Figs. 5 and S5). As expected, comparing Day 0 and 20 reveals massive DNAm 
changes (n=210,049 DMCs, Table S4). Although we observe major changes in DNAm 
during the differentiation protocol (Table S4), the bulk DNAm levels and the distribution 
of unmethylated and methylated CpGs remains the same across all four timepoints 
(Figs. 5A and S5B-C). 
 
Deconvoluting these changes temporally, the highest number of DMCs was observed 
between Day 0 and 7 (n=161,600), with fewer changes in the self-patterning phase 
(Days 7-13, n=39,545) and during cell maturation (Days 13-20, n=47,676) (Table S4). 
Next, we used GOMETH analysis (Maksimovic et al., 2021) to explore shared 
biological functions among the DMCs. In line with the gene expression results, from 
Day 0 to 20 we observed enrichment of BPs involved in neural induction, 
neurogenesis, and brain development (Fig. 5C). This suggests that DNAm is 
modulating the neuronal transcriptional programs during the course of differentiation 
(Fig. 5A). Similarly, these analyses identified DMCs between Day 0 to 7 and Day 0 to 
13, with BPs involved in cell adhesion and neuron projection morphology, which fits 
well with the stage cell transitions (Fig. S5D and E). One of the most significant GO 
terms is “neuron migration”, evidenced by expression of genes such as DCX and its 
partner PAFAH1B1 (Nadarajah and Parnavelas, 2002) (Fig. 5C), both highly 
expressed in R11-13 (Fig. 2 and hESCNeuroDiffscRNA). 
 
To explore the correlation between DNAm and gene expression, we combined the 
DNAm and RNA-seq data sets based on CpG probe location and gene locus (Figs. 
5D, S57-G, and Table S4). Of the Stage I gene annotated DMCs, 72% overlap with 
differentially expressed genes, inferring functional impact on gene expression. For 
genes with DMCs we generally observed a decrease upon transcriptional activation or 
an increase for genes becoming repressed during the course of differentiation. The 
expression levels of the majority of the differentially expressed genes between Day 0 
and 20 are predicted to be associated with DNAm changes (8,011 of the 11,313 
DEGs). The expression of markers of late trophectoderm (e.g., KRT18), pluripotency 
maintenance (POU5F1), suppression of pluripotency (NR6A1) (Wang et al., 2016), 
metabolic reprogramming (LDHA) (Zheng et al., 2016), or spatiotemporally regulated 
cortical TFs and cell cycle related genes (LHX2, CDKN1C) (Chou and Tole, 2019; 
Laukoter et al., 2020); and neuronal differentiation and maturation markers, (such as 
DCX), may be regulated by one or more CpGs (Fig. 5C, S5F, S5G and Table S6).  
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Of note, the average non-CpG DNAm levels, and the distribution of unmethylated and 
methylated CpHs vary across time points. CpH DNAm is associated with 
transcriptional repression in the mouse genome (Xie et al., 2012) and non-CpG DNAm 
levels are enhanced at Day 0 cells and decline during differentiation (Fig. 5B). 
 

 
Figure 5. Specific DNAm changes during neuronal differentiation 
A) Mean DNAm levels for each sample across all CpGs and non-CpGs (grouped in 
bins of 0.25) at Days 0, 7, 13, and 20. B) Mean DNAm levels for each sample across 
all non-CpGs (grouped in bins of 0.25) from Days 0, 7, 13 and 20. C) GOMETH 
analysis of top 30 BPs based on top 10% DMCs for Day 0 to 7. D) Significant CpGs of 
gene expression (derived from MORE) for Days 0, 7, 13 and 20. Top panels show 
DNAm mean +/- standard deviation whereas bottom panels show normalized RNA-
seq counts for selected genes.  
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Chromatin accessibility analysis identifies regulation signatures during 
differentiation  
To further assess the changes in the epigenetic landscape upon differentiation, we 
performed single-cell assay for transposase accessible chromatin sequencing 
(scATAC-seq). This analysis aimed at understanding chromatin-based gene regulation 
during neuronal differentiation from the loss of pluripotency at Day 0 to Day 20 (Fig. 6 
and S6).  
 
Reanalyzing scRNA-seq datasets for integration with scATAC-seq data  
To integrate scATAC-seq and scRNA-seq, the scRNA-seq datasets for Day 0 and Day 
20 were reanalyzed. 1910 Day 0, and 3033 Day 20 cells were projected in 14 clusters 
(Fig. 6A) and in accordance with the maturation trajectory seen in the corresponding 
CytoTRACE plot (Fig. 6B). The scRNA-seq clusters were numbered and annotated 
similarly to old clusters (Fig. 6A, S6A and B). Day 0 cells resolved into five clusters 
(R0-3 and R14) whereas Day 20 clusters were numbered as R7-15, cohering to the 
initial four-timepoint analysis. 
 
Chromatin accessibility changes globally during differentiation 
The analysis of 4,901 Day 0 nuclei and 2,847 Day 20 nuclei and the scATAC-seq data 
showed a good distribution of fragment sizes, fragment numbers, and TSS enrichment 
(Fig. S6C, D, E and F). The supervised pseudotime trajectory analysis, which predicts 
paths for gene regulatory changes in cells during differentiation, showed a similar 
profile to the gene expression CYTOTRACE analysis (Fig. 6B and C). We mapped 
four chromatin accessibility clusters at Day 0 (C1-4) and five at Day 20 (C5-9; Fig. 6D) 
and observed differential chromatin opening in these cell clusters for many loci, 
including POU5F1, REST, GAD2, and DCT (Figs. 2, S2, S3 and S6G). We next 
generated a gene score matrix heatmap incorporating regulatory elements, 
representing a score of chromatin opening of 200 kb gene regions. The heatmap 
shows a selection of marker genes based on their relevance to pluripotency and brain 
development and the previously described scRNA-seq cluster annotation (Fig. 6F). 
Higher gene scores for genes that are known for their role in the regulation of 
pluripotency, such as POU5F1, NANOG, ID1, and known enhancer specific binding 
factors in development, such as ZIC2 (Hong et al., 2011) were found in Day 0 clusters 
(Fig. 6F, 2 and S6B). SOX2 is regulated by several enhancers and interacts with 
multiple but distinct groups of transcription factors, including POU3 class partners (Iida 
et al., 2020; Mistri et al., 2015; Tang et al., 2015; Zhu et al., 2014). Chromatin 
accessibility for SOX2, POU3F1/BRN1 and POU3F3/BRN3 increased with 
differentiation (Fig. 6F). Moreover, genes expressed at the differentiation endpoint 
clusters, such as ASCL1 and SOX21 which are implicated in neurogenesis (Fig. 2 and 
S3), NFIB which is crucial in neural progenitor cell renewal (Piper et al., 2014), and 
OTX2 which is associated with early neuronal development regulation, showed a more 
open chromatin structure in neuronal clusters C5-C9. The gene score of NEUROD1 is 
highest in the trajectory end-point cluster C5 (Fig. 6F).  
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Correlation of chromatin regulatory dynamics and gene expression  
To better understand the regulatory interactions with gene expression we performed 
integrated analysis of scATAC-seq with scRNA-seq using ArchR (Granja et al., 2021). 
Following constrained alignment of cell populations after integration of scATAC-seq 
and scRNA-seq, the integrated clusters were renamed to correspond to the previously 
annotated scRNA-seq clusters (Figs. 6E and S6B). Pluripotency clusters C1-C4 
remapped to scRNA-seq Day 0 clusters R0 and R2, whereas clusters C7-C9 mapped 
to cluster R7, correlating chromatin openness and gene expression in single cells for 
markers such as REST, HES1, and CDK1 (Figs. 6B, D, E, S6B and S6I). Cluster C6 
mapped to R9, which was marked by expression of REST, HES5 and ASCL1, and C5 
remapped to one of the endpoint clusters, R12, having high NTRK1 expression (Fig. 
S6I). We assessed scATAC-seq peaks across TGDF1, CDH1, CDH2, STMN2, and 
DCX loci across the integrated clusters and found cluster specific chromatin opening 
(Fig. 6I and S6J). Moreover, the peak-to-gene co-accessibility arcs show gene 
expression linked to chromatin opening during differentiation of putative distal 
regulatory elements at TGDF1 and CDH1. 
 
To explore the integration of chromatin accessible regions and gene expression, we 
mapped 95,800 peak-to-gene links and observed a clear correlation of chromatin 
regulatory dynamics in the different integrated clusters (Fig. 6G). Moreover, chromatin 
accessibility was clearly enriched at transcriptional start sites (TSS) in every cluster 
(Fig. 6H). However, chromatin accessibility peak annotation analysis revealed varying 
enrichment across integrated clusters at promoters, intronic, exonic and distal regions 
(Fig. S6H). The number of peaks at promoters were very similar across the five 
clusters, with fewer peaks in cluster R9. Interestingly, more peaks were detected at 
intronic and distal regions in clusters R7 and R12 than in the other clusters. These 
results agree with previous studies showing that neuronal gene activation depends on 
multiple regulatory regions, many of which are located far from the gene locus itself.  
 
We next aimed to explore the dynamics of lineage-defining factors at pluripotency and 
differentiation endpoint. Using ArchR, we identified specific TF motifs across 
differentiation (Fig. 6J). Motif footprinting for POU5F1 underlies a regulatory function 
in accessible chromatin in pluripotent clusters R0 and R2, whereas motifs for ASCL1 
and OTX2 footprints were more enriched in differentiated clusters R7 and R12. We 
further mapped the enrichment of POU5F1, DLX6, ASCL1 and OTX2 motifs in open 
chromatin in individual cells (Figs. 6J and S6K). These examples illustrate how 
lineage-defining TFs dynamically regulate gene expression programs during neuronal 
differentiation. 
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Figure 6. Integration of single-cell chromatin opening with scRNA-seq during 
neuronal differentiation. A) Multidimensional reduction UMAP plot of scRNA-seq 
corresponding to the timepoints used for scATAC-seq analysis. B) UMAP plot showing 
original identity of cells at scRNA-seq modality and corresponding differentiation 
trajectory. C) UMAP plot showing original identity of cells at scATAC-seq modality and 
corresponding supervised pseudo time trajectories. D) UMAP plot showing clusters at 
scATAC-seq modality. E) Remap UMAP plot of renamed clusters following constrained 
alignment of cell populations after integration of scATAC-seq and scRNA-seq. F) Top 
selected marker genes from scRNA-seq data shown on a heatmap plot computed on 
Gene Score Matrix. G) Peak to gene linkage heatmap for scRNA-seq clusters and 
corresponding gene scores for integrated scATAC-seq clusters. H) Chromatin 
openness of integrative cluster R0, R2, R7, R9 and R12 over all TSS. I) Tracks shown 
on peak browser for selected gene STMN2 on integrated cell clusters. Bottom panel 
shows co-accessibility interactions around TSS. J) Motif footprinting for selected 
transcription factors POU5F1, ASCL1 and OTX2 demonstrating preferential opening 
in different cell clusters. The middle panel shows the corresponding motif deviation 
scores of ArchR identified TFs POU5F1, ASCL1 and OTX2. The scores are calculated 
for each TF motif observed in an accessible region and in each cell for the deviation 
from expected average accessibility across all the cells. The representative sequence 
logos identified in accessible regions across the dataset are shown below.  
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Exploration of single-cell data using interactive webtools 
Large dataset analyses, such as single-cell sequence analysis, generally require 
bioinformatics expertise for interpretation. We have made our scRNA- and scATAC-
seq data accessible to a broader audience by providing open access web-interfaces 
based on open-source tools, abiding by the Findability, Accessibility, Interoperability, 
and Reusability (FAIR) principles (Ouyang et al., 2021; Sharma et al., 2021). The users 
can explore scRNA-seq data in hESCNeuroDiffscRNA and plot high resolution 
figures of their genes of interest under seven different tabs (Fig S7A-H). This includes 
exploration of 1) Gene expression UMAPS as illustrated for POU5F1 and NTRK1; 2) 
gene co-expression analysis, here shown for PHC1/PHC2 and NEUROG1/NTRK1; 3) 
different gene and cluster expression configurations, such as heatmaps, violin-, box-, 
proportion- and bubble plots. The platform also allows for correlation with other 
published gene expression datasets (Fig. S7H).  
 
To illustrate the utility of the web interface, we focus on ZIC2 and ZIC4, and their 
expression and regulation during neuronal differentiation (Fig. 7). ZIC proteins are 
known for their role in proliferation and differentiation of neural progenitors, neurulation, 
neural tube formation, and neural plate closure (Al-Naama et al., 2020; Aruga and 
Millen, 2018). Global expression analysis shows that ZIC2 is present at Day 0 and 
peaks at Day 7, whereas expression of ZIC4, mostly undetectable at early timepoints, 
appears at Day 13 and peaks at Day 20 (Fig. 7A). DNAm levels at the CpGs in the 
ZIC2 locus were stable across differentiation. In contrast, DNAm of 13 CpGs in the 
ZIC4 locus were positively or negatively correlated with gene expression across 
differentiation (Fig. 7B). Differential expression of ZIC2 and ZIC4 across the individual 
cells at Day 0, 7, 13 and 20 in UMAPs (Fig. 7C) can be compared and correlated with 
selected TFs, shown here to be important for regulation in the neuronal differentiation 
protocol (Fig. 7C).   
 
The scATAC-seq data can be explored in “hESC Neuro Differentiation scATAC seq” 
(hESCNeuroDiffscATAC) (Fig. S7I-N). Users can visualize chromatin accessibility, 
motif enrichment or integration of scATAC-seq with scRNA-seq in UMAPs. 
Furthermore, this webtool enables investigation of the gene score and motif matrix, 
also showing the representative sequence logo calculated from open regions. 
(Examples are given for the L1TD1, HES5 and ZEB1 genes at Fig. S7J). Chromatin 
opening can be explored across the genome for different clusters, as shown for SOX2 
and POU5F1 or in different heatmaps (Fig. S7K-N). Heatmap views could either be 
pseudotime trajectories or peak-to-gene linkage, which define linked chromatin 
opening peaks with promoters of expressed genes (Granja et al., 2021) and may 
deduce enhancer promoter interactions (Baek and Lee, 2020). In the case analysis of 
ZIC2 and ZIC4, gene score and gene integration analysis showed the genes were 
active in different cells (Fig. 7D) and the ZIC2 and ZIC4 footprints and representative 
sequence logos were identified. This 4D example analysis highlights the epigenetic 
regulation and gene expression of these genes in neuronal differentiation. 
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Figure 7. An example of the possibilities and potential applications of the 4D 
data showcasing the ZIC2 and ZIC4 genes. A) Normalized global gene expression 
counts for ZIC2 and ZIC4 from Days 0, 7, 13 and 20. B) Significant CpGs in gene loci 
ZIC2 and ZIC4 (derived from MORE) for Days 0, 7, 13 and 20. DNAm is represented 
as mean +/- standard deviation. C) Representative UMAPs showing cluster specific 
and differentiation-driven gene expression across all four timepoints for ZIC2 and ZIC4. 
A bubble plot representing gene expression and hierarchical clustering of TFs highly 
relevant to neuronal differentiation across Days 0, 7, 13 and 20. D). The upper UMAPS 
represent inferred gene scores of the openness of the ZIC2 and ZIC4 gene loci. In 
middle UMAPs the gene integration shows correlation of gene expression with 
chromatin opening of the ZIC2 and ZIC4 gene loci. The lower UMAPs represent motif 
footprinting demonstrating preferential opening in different cell clusters for ZIC2 and 
ZIC4 with the representative sequence logos identified in accessible regions in the 
dataset below. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.02.01.478732doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478732
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

Discussion 
Here we present comprehensive multi-omics analyses to characterize a novel 
neuronal differentiation protocol from pluripotent ESCs towards a ventrally committed, 
telencephalic population of progenitors, mature and immature neurons. We assessed 
stage-to-stage transition using ddPCR and immunofluorescence imaging, and used 
scRNA-seq and bulk RNA-seq to validate cell populations over time. scATAC-seq and 
DNAm analysis further characterized the epigenetic and gene regulatory landscapes. 
 
The deconvolution of early human neuronal differentiation at the level of molecular 
regulation provides insight to an otherwise inaccessible developmental window. 
Animal models are valuable, but evidence shows that the human neocortex develops 
under the effect of additional mechanism (Massimo and Long, 2021; Pinson and 
Huttner, 2021; Xing et al., 2021). Thus, neuronal differentiation studies from PSCs 
provide an alternative method to characterize developmental transcriptome trajectories 
and the roles of specific genes in human brain formation and patterning. 
 
To specify the patterning and maturation identities of the cells, we followed up the 
trajectories of major TFs (O’Leary and Sahara, 2008). Ventral telencephalic markers, 
such as EMX2 and ASCL1, were already expressed at the end of Stage II, while dorsal 
telencephalic markers such as EMX1 and NEUROG2 were absent. Absence of 
expression of HOXB2, PAX7 and GBX2 at any timepoint, confirmed that the self-
patterning phase after neural induction, had no effect on lineage commitment and no 
cells differentiated to hindbrain, midbrain or thalamic lineages. 
 
GO analyses revealed stage dependent enrichment of biological processes correlated 
to neurogenesis, pattern specification, signalling and neurotransmitter regulation, 
migration, synaptic organization and neuronal maturation. The DNAm analyses 
showed alternating, stage-dependent changes for various patterning genes and TFs 
important to neurogenesis. In most developmentally regulated genes involved in 
neuronal lineage commitment, DNAm levels decreased upon transcriptional activation 
and increased for genes becoming repressed during the time of differentiation. We 
also observed that sometimes downregulation of gene expression in the self-patterning 
stage might intersect the upregulation of gene expression seen both in stage I of neural 
induction of hESCs and during maturation at stage III. This could be due to the 
combined effect of non-CpG and CpG DNAm implicated in the regulation of RNA 
splicing in ESCs and neurons, respectively (Ball et al., 2009; Laurent et al., 2010). 
Non-CpG DNAm accumulates in neurons during synaptogenesis and synaptic pruning 
(Lister et al., 2013), but CpH DNAm is associated with transcriptional repression (Xie 
et al., 2012). Whether and how CpH DNAm plays a role in self patterning following the 
LSX induction is not known, and future studies are needed to explore this. 
Furthermore, the in vitro model for DNAm changes presented here, is advantageous 
for neuropharmacological studies. Whether these changes can be translated to distinct 
early developmental events, cannot be ascertained. The direction of causality of 
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epigenetic regulation for early brain development, can however further correlate in vitro 
models to sets of open cis-regulatory elements and the regulation of TF-centred 
networks. The identification of common DNAm modification sites and chromatin 
openness regions may present candidate loci for future studies of early human 
development and may advance translational studies of the impact of drugs used early 
in human pregnancy. 
 
The effect of loss of pluripotency towards neuralization, irrespective of the intermediate 
timepoints, was investigated through an integrative analysis of the scATAC- and 
scRNA-seq. We used ArchR (Granja et al., 2021) for this analysis as this pipeline was 
flexible for small ATAC-seq and scRNA-seq datasets. The juxtaposition of the 
transcriptome to the regulatory elements in ESC and differentiating Day 20 cells can 
infer gene regulatory network information. We identified linked sets of genes unique to 
each state, that may comprehensively profile individual cells. Such approaches are 
highly informative. They can infer epigenome causality not restricted to these analyses, 
but also to studies of the effect of drugs in early brain physiology and development. 
 
Strengths of study 
Although numerous studies have used the LSX cocktail for neural induction, to our 
knowledge this is the first study that has shared all scRNA data in such transparent 
and interactive format. Thus, a strength of this study is the presentation of our single-
cell data in two visualization tools, ShinyCell and inhouse developed ShinyArchR.UiO 
(Ouyang et al., 2021; Sharma et al., 2021), that are openly available for users. These 
tools allow the users to explore candidate genes and utilize a comprehensive set of 
functionalities, beyond the fate specification analysis presented here.  Furthermore, 
these tools enable insight into the molecular and structural partners of stage-specific 
markers and time-stamped TFs, their transcriptional regulation and cell cluster 
identities. Programming scripts for data analysis are made available and can be easily 
customized for further studies and the incorporation of other data. 
Although the protocol does not generate terminally differentiated neurons of a specific 
subtype, there are numerous advantages. The protocol is cost-effective at the level of 
culture coating reagents, vessel size and timed passaging. Moreover, the advantage 
of 2D culture, defined cell numbers at all passaging steps, reduces the human errors 
in reproducibility compared to protocols based on confluency evaluation and 
cumbersome 3D culture setup. As the protocol was designed for 
neuropharmacological studies, the daily media changes further diminish the effect of 
short drug half lives in such studies.  
 
Limitations of study 
This study has several limitations at the level of cell characterization. The membrane 
electrochemical and electrophysiological maturation properties were not evaluated. 
Moreover, we did not assess neuropeptide diversity, secretion of neurotransmitters or 
migration. Protein quantification or intracellular localization of markers and trajectories 
were also beyond the scope of a multi-omics characterization. A limitation of scATAC-
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seq is the genome-per-cell coverage and open chromatin regions relevant for the 
individual cell or cell populations may have been missed. 
 
In conclusion, in this study we describe the generation of a novel neuronal 
differentiation protocol where we used the unparalleled power of multi-omics to 
understand early events of anterior neuroectodermal fate specification. We assessed 
the functional regulation of transcription factors and developmentally regulated genes, 
from loss of pluripotency towards neuronal differentiation. Integration of scATAC-seq 
and scRNA-seq provide invaluable insight on the complexity of fate decisions and 
enabling other researchers to finetune future studies. Finally, the reader has access to 
the single-cell sequencing data in two searchable, user-friendly webtools to visualize 
intra- and inter- timepoint and cell cluster regulation, interactively. 
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Star methods 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies  

OCT4 (1/100) Santa Cruz  sc-5279 

β3-tubulin (1/250) Santa Cruz  sc-80005 

OTX2 (1/40) R&D AF1979 

SOX2 (1/200) Abcam  ab79351 

PAX6 (1/350) Abcam ab195045 

NESTIN (1/200) Abcam ab22035 

Donkey Anti-Goat IgG H&L (Alexa 
Fluor® 555) 
(1/500) 

Abcam ab150130 

Donkey Anti-Mouse IgG H&L (Alexa 
Fluor® 555) (1/500) 

Abcam  ab150110 

Alexa Fluor® 488 AffiniPure Donkey 
Anti-Rabbit IgG (H+L) (1/250) 

Jackson 
ImmunoResearch 

711-545-152  

Chemicals, peptides, and recombinant proteins 

Geltrex™ LDEV-Free, hESC-Qualified, 
Reduced Growth Factor Basement 
Membrane Matrix 

ThermoFisher A1413302 

KnockOut™ DMEM ThermoFisher 10829018 

PBS, no calcium, no magnesium ThermoFisher / 
GIBCO 

14190 

Dimethyl-sulfoxide, DMSO Sigma-Aldrich D8418 

Accutase™ Cell Detachment Solution STEMCELL 
Technologies 

7920 

UltraPure 0.5 M EDTA, pH 8.0 ThermoFisher 15575020 

RHO/ROCK Pathway Inhibitor Y-27632 STEMCELL 
Technologies 

SCM075 
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Essential 8™ Medium ThermoFisher A1517001 

Poly-L-ornithine hydrobromide Sigma-Aldrich/ 
Merck 

P3655 

Fibronectin (Bovine Protein, Plasma) ThermoFisher 33010018 

N2 supplement (100X) ThermoFisher 17502048 

Advanced DMEM/F-12 ThermoFisher 12634028 

GlutaMAX™ Supplement GIBCO/ 
ThermoFisher 

35050061 

Penicillin Streptomycin (10,000 U/mL) ThermoFisher 15140122 

LDN-193189 STEMCELL 
Technologies 

72148 

SB 431542 (hydrate) Sigma-Aldrich / 
Merck 

S4317 

XAV939 STEMCELL 
Technologies 

72674 

B-27™ Supplement (50X), serum free ThermoFisher 17504044 

Recombinant Human FGF basic Peprotech 100-18B 

Recombinant Human EGF, Animal-Free Peprotech AF-100-15 

Invitrogen™ 
ProLong™ 
Gold Antifade 
Mountant with 
DAPI 

Fisher Scientific/ 
Invitrogen 

P36931 

Paraformaldehyde Sigma-Aldrich 158127 

Triton X-100 ThermoFisher 11332481001 

Tween-20 Sigma-Aldrich P1379 

Normal-Horse-Serum-Blocking-Solution BioNordica/ 
Vectorlabs 

S-2000-20 

Bovine Serum Albumin Sigma-Aldrich A2153 

Critical Commercial Assays 
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Countess™ Cell Counting Chamber 
Slides 

ThermoFisher C10312 

RNeasy Mini Kit Qiagen 74106 

RNAse-Free DNase Set Qiagen 79254 

RNA/DNA purification kit Norgen Biotek Corp. 298-48700 

RNase-Free DNase I Kit Norgen Biotek Corp. 298-25720 

Qubit™ RNA BR Assay Kit ThermoFisher/Invitro
gen 

Q10211 

QuantiTect Reverse Transcription Kit Qiagen 205311 

ddPCR Supermix for Probes (no dUTP) BioRad 186-3024 

Droplet Generation Oil for Probes BioRad 186-3005 

TruSeq Stranded mRNA Library Prep Kit Illumina 20020595 

IDT for Illumina – TruSeq RNA UD 
Indexes 

Illumina 20022371 

NovaSeq 6000 S1 Reagent Kit v1.5 (200 
cycles)  

Illumina 20028318 

Infinium MethylationEPIC BeadChip Kit 
(96 samples) 

Illumina WG-317-1003 

30 mm MACS SmartStrainers Miltenyi Biotech 130-110-915 

Chromium Single Cell 3´ Library & Gel 
Bead Kit v3  

10x Genomics 1000075 

Chromium i7 Multiplex Kit 10x Genomics 120262 

NextSeq 500/550 High Output Kit (150 
Cycles) 

Illumina 20024907 

Next GEM Chip H Single Cell Kit  10x Genomics 1000162 

Next GEM Single Cell ATAC Library & 
Gel Bead Kit v1.1 

10x Genomics 1000176 

Chromium i7 Multiplex Kit N Set A 10x Genomics 1000084 

NovaSeq 6000 SP Reagent Kit (100 
cycles) 

Illumina 20028401 

Deposited data 
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RNA-seq, DNAm, Infinium Methylation 
EPIC, scRNA-seq & scATAC-seq 

This paper NCBI GEO: 
GSE192858 
(Subseries 
GSE192854, 
GSE192855, 
GSE192856, 
GSE192857) 

Experimental models: Human Embryonic Stem Cell lines 

Human embryonic cells, HS360 Stockholms 
Medicinska Biobank 
/ Sweden 

HS360 

Oligonucleotides 

POU5F1 ThermoFisher/TaqM
an™ 

Hs00999632_g1 

SOX2 ThermoFisher/TaqM
an™ 

Hs01053049_s1 

NANOG ThermoFisher/TaqM
an™ 

Hs04399610_g1 

NES ThermoFisher/TaqM
an™ 

Hs04187831_g1 

FOXG1 ThermoFisher/TaqM
an™ 

Hs01850784_s1 

TUBB3 ThermoFisher/TaqM
an™ 

Hs00801390_s1 

MAP2 ThermoFisher/TaqM
an™ 

Hs00258900_m1 

PAX6 ThermoFisher/TaqM
an™ 

Hs00240871_m1 

OTX2 ThermoFisher/TaqM
an™ 

Hs00222238_m1 

VIM ThermoFisher/TaqM
an™ 

Hs00958111_m1 

NEUROD1 ThermoFisher/TaqM
an™ 

Hs01922995_s1 
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RPL30 ThermoFisher/TaqM
an™ 

Hs00265497_m1 

RAF1 
F: tgggaaatagaagccagtgaa 
R: cctttaggatctttactgcaacatc 

Eurofins 
  

Roche Universal 
Probe Library/ 
Probe 56 
4688538001 

Equipment 

Hot plate Custom made UiO 

Microscope: EVOS® FL Cell Imaging 
System 

ThermoFisher AMF4300 

Cell counter: Countess® II FL Automated 
Cell Counter 

ThermoFisher MQAF1000 

Qubit Fluorometer for nucleic acid 
quantification  

ThermoFisher / Life 
Technologies 

2.0 

Bioanalyzer for Nucleic Acid Quality 
analysis  

Agilent 2100 

Nanodrop ThermoFisher 2000 

DG8™ Cartridges for QX200™/QX100™ 
Droplet Generator 

BioRad 186-4008 

DG8™ Gaskets for QX200™/QX100™ 
Droplet Generator 

BioRad 186-3009 

Droplet Generator BioRad QX200 

Droplet Reader BioRad QX200 

NovaSeq  Illumina 6000 

NextSeq Illumina 500 

iScan system Illumina  

10x Chromium controller 10x Genomics  

Software 

ArchR1.0.1   https://www.archrp
roject.com 

Seurat Version 4 (Hao et al., 2021; 
Stuart et al., 2019) 

 
https://github.com/
satijalab/seurat 
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Signac (Stuart et al., 2021) https://satijalab.org
/signac/ 

BSgenome1.58.0 (Pagès, 2020) https://rdrr.io/bioc/
BSgenome/ 

ShinyCell (Ouyang et al., 2021) https://github.com/
SGDDNB/ShinyCe
ll 

ShinyArchR.UiO (Sharma et al., 2021) https://github.com/
EskelandLab/Shin
yArchRUiO 

CytoTRACE R package (v0.3.3) (Gulati et al., 2020) https://cytotrace.st
anford.edu  

10x Genomics Cell Ranger -Count and 
10x Genomics Cell Ranger -Count ATAC 

10X genomics https://www.10xge
nomics.com 

R Programming language  https://www.r-
project.org/ 

FIJI (Schindelin et al., 
2012) 

https://imagej.net/s
oftware/fiji/ 

BSgenome.Hsapiens.UCSC.hg38 DOI:10.18129/B9.bio
c.BSgenome.Hsapie
ns.UCSC.hg38  
 

https://bioconducto
r.org/packages/rel
ease/data/annotati
on/html/BSgenom
e.Hsapiens.UCSC.
hg38.html 

EnsDb.Hsapiens.v86 DOI:10.18129/B9.bio
c.EnsDb.Hsapiens.v
86  
 

https://bioconducto
r.org/packages/rel
ease/data/annotati
on/html/EnsDb.Hs
apiens.v86.html 

clustree 
 

(Zappia and 
Oshlack, 2018) 

https://cran.r-
project.org/web/pa
ckages/clustree/vi
gnettes/clustree.ht
ml#references 

scater (McCarthy et al., 
2017)  

https://bioconducto
r.org/packages/rel
ease/bioc/html/sca
ter.html 
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DEseq2 (Love et al., 2014) https://bioconducto
r.org/packages/rel
ease/bioc/html/DE
Seq2.html 

GSEA (Subramanian et al., 
2005) 

https://www.gsea-
msigdb.org/gsea/in
dex.jsp 

Minfi (Aryee et al., 2014) https://www.biocon
ductor.org/packag
es/release/bioc/ht
ml/minfi.html 

limma (Ritchie et al., 2015) https://bioconducto
r.org/packages/rel
ease/bioc/html/lim
ma.html 

missMethyl (Phipson et al., 
2016) 

https://bioconducto
r.org/packages/rel
ease/bioc/html/mis
sMethyl.html 

MORE (Conesa, 2018) https://github.com/
ConesaLab/MORE 

Additional tools and more detailed 
methods can be found in Supplemental 
information and Table S7.  

This paper Custom scripts for 
computational 
analysis are 
available at 
https://github.com/
EskelandLab/scNe
uronaldiff. Single-
cell data can be 
explored in 
webtools “hESC 
Neuronal 
Differentiation 
scRNA-seq” and 
“hESC Neuro 
Differentiation 
scATAC seq”  
at 
https://cancell.med
isin.uio.no/ 
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RESOURCE AVAILABILITY 

Lead contact 
Further information and requests for resources and reagents should be directed to and 
will be fulfilled by the lead contact Ragnhild Eskeland 
(Ragnhild.Eskeland@medisin.uio.no). 
 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  
 
Human embryonic stem cell (hESC) culture and maintenance and neuronal 
differentiation protocol  
The full description of the differentiation protocol is described in our protocol 
manuscript (bioRxiv https://doi.org/10.1101/2022.01.26.477818).  
 
Immunofluorescence analysis 
In brief, cells grown on 13mm glass coverslips, were washed once and fixed in 4% 
paraformaldehyde for 15 min at room temperature (RT). After 3 washes, the cells were 
permeabilized with 0.3% Triton X-100 (ThermoFisher) in blocking buffer containing 2% 
BSA (Sigma-Aldrich) and 0.01% Tween in 1×PBS for 30 min at RT, washed 3 times, 
and blocked with 10% horse serum for 30 min. Primary antibodies were diluted (as in 
KRT) in 1×PBS containing 0.03% Triton X-100, and coverslips were incubated 
overnight at 4°C. Next, coverslips were equilibrated at RT for 2 hours and washed 3 
times. The secondary antibodies were diluted (see KRT) in 0.01% Tween-20 (Sigma-
Aldrich) and 0.1% horse serum (BioNordica) in 1×PBS, and coverslips were incubated 
for one hour at RT. The coverslips were washed 3 times and mounted on microscope 
slides using the ProLong™ Gold Antifade Mountant containing DAPI (Fisher Scientific) 
to counterstain cell nuclei. Washing steps lasted 15 minutes and used 1×PBS. Images 
were obtained with a DeltaVision high resolution widefield microscope (GE Life 
Sciences, USA) using the Resolve 3D software and 100X 1.45NA oil objective and 
processed using the open-source software Fiji (Schindelin et al., 2012). 
 
DNA/RNA isolation 
Genomic DNA and total RNA were isolated by direct lysis in the culture well followed 
by column-based isolation using RNA/DNA purification kit (Norgen Biotek). The 
RNase-Free DNase I Kit (Norgen Biotek) was applied for on-column removal of 
genomic DNA contamination from RNA isolates. Three RNA isolates were processed 
using RNeasy Mini Kit (Qiagen) followed by DNase-treatment using RNAse-Free 
DNase Set (Qiagen). All isolations were done according to the manufacturer's 
instructions. Nucleic acid quantification was performed using Qubit (ThermoFisher 
Scientific), purity was measured using Nanodrop 2000 (ThermoFisher Scientific), while 
RNA and DNA integrity was assessed using 2100 Bioanalyzer (Agilent Technologies) 
and 4200 TapeStation (Agilent Technologies), respectively. 
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Droplet Digital RT-PCR and RNA expression analysis 
Reverse transcription of total RNA was performed using QuantiTect Reverse 
Transcription Kit (Qiagen). Subsequent ddPCR reactions were set up using ddPCR 
Supermix for Probes (No dUTP) (BioRad) and Taqman assays (ThermoFisher) or 
Universal Probes (Roche) in combination with target primers (Eurofins) as outlined in 
KRT/Oligonucleotides. Droplets for droplet PCR amplification were generated using 
the QX200 Droplet Generator (BioRad). Data acquisition and primary analysis was 
done using the QX200 Droplet Reader (BioRad) and QuantaSoft software (BioRad). 
All steps were performed according to the manufacturer's instructions. To calculate the 
number of target copies per ng RNA input, samples were normalized using RPL30 and 
RAF1 as normalization genes (Coulter, 2018). Statistical comparisons were performed 
in R using t-test in ggpubr package v.0.4.0 (Kassambara, 2020). Results were 
visualized in R using the tidyverse package (Wickham et al., 2019). 
 
Global RNA-seq 
The sequencing library was prepared with TruSeq Stranded mRNA Library Prep 
(Illumina) according to manufacturer's instructions. The 19 libraries were pooled at 
equimolar concentrations and sequenced on an Illumina NovaSeq 6000 S1 flow cell 
(Illumina) with 100 bp paired end reads. The quality of sequencing reads was assessed 
using BBMap (Bushnell, 2014), and adapter sequences and low-quality reads were 
removed. The sequencing reads were then mapped to the GRCh38.p5 index using 
HISAT2 (Kim et al., 2015). Mapped paired end reads were counted to protein coding 
genes using featureCounts (Liao et al., 2014). Differential expression analysis was 
conducted in R version 3.5.1 (R Core Team, 2019) using SARTools v.1.6.8 (Varet et 
al., 2016) and the DESeq2 v.1.22.1 (Love et al., 2014), and genes were considered 
significantly differentially expressed with an FDR < 0.01. Normalized counts were 
visualized using the tidyverse package v.1.3.0 (Wickham et al., 2019). The heatmaps 
were generated using the pheatmap package version 1.0.12 (Kolde, 2019). The Wald-
test was used to calculate p-values and Benjamini-Hochberg was used to correct for 
multiple testing. The gene ontology (GO) analysis of a ranked list of differential 
expressed genes were performed using GSEA software (Subramanian et al., 2005) 
looking at biological process (BP) terms.  
 
Illumina EPIC array 
DNA methylation status of 22 samples were assessed using the Infinium 
MethylationEPIC BeadChip v.1.0_B3 (Illumina). Quality control and pre-processing of 
the raw data was performed in R using Minfi v.1.36.0 (Aryee et al., 2014). No samples 
were removed due to poor quality (detection p values >0.05). Background correction 
was performed using NOOB method (Triche et al., 2013) and β values (ratio of 
methylated signal divided by the sum of the methylated and unmethylated signal) were 
normalized using functional normalization (Fortin et al., 2014). Probes with unreliable 
measurements (detection p values >0.01) (n = 8,818) and cross-reactive probes (Chen 
et al., 2013) (n = 43,256) were then removed, resulting in a final data set consisting of 
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814,112 probes and 22 samples. Probes were annotated with Illumina Human 
Methylation EPIC annotation 1.0 B5 (hg38). Differential methylation (DM) analysis was 
performed on the M values (log2 of the β values) using the limma package (Ritchie et 
al., 2015), and CpGs were considered significantly differentially methylated with an 
FDR < 0.01. GO analysis was performed using top 10 % DM CpGs (DMCs) as input 
to GOMETH in the missMethyl package version 1.24.0 (Phipson et al., 2016) for BP 
terms. 
 
Integration of RNA-seq and DNA methylation data 
Data from matching DNA and RNA samples (extracted from the same wells, n = 16) 
were subsetted to undergo statistical integration. Multi-Omics Regulation (MORE) 
(Conesa, 2018) was used to identify CpGs that regulate gene expression by applying 
Generalized Linear Models: normalized counts for differentially expressed genes (from 
DEseq2) were used as the response variable, CpG M-values (from Minfi) and 
experimental covariates (Day) were used as predictors. First, CpGs with low variability 
were filtered and multicollinearity was reduced by grouping highly correlated CpGs. 
Variable selection was then performed with Elastic Net regression and stepwise (two-
ways backward) regression. CpGs were considered to significantly regulate gene 
expression when the regression coefficient p-value was < 0.05. Significant CpG 
regulators of gene expression were visualized using the Tidyverse package (Wickham 
et al., 2019) using beta values (n = 22) and normalized counts (n = 19) from all 
samples.  
 
Collection of cells and scRNA-seq 
Cells harvested on Days 0, 7, 13 and 20 were washed twice in wells with 1xPBS and 
detached using Accutase (STEMCELL Technologies) at 37 °C for 7 min. Cells were 
triturated 10-15 times to separate into single cells and transferred to centrifuge tubes 
containing the appropriate base media with 0.05 % BSA (Sigma-Aldrich). Counts were 
performed using Countess II FL Cell Counter (ThermoFisher Scientific), cells were 
centrifuged at 300x g for 5 min and the supernatant was discarded. Cell pellets were 
then resuspended in base medium containing 0.05 % BSA and cell aggregates were 
filtered out using MACS SmartStrainers (Miltenyi). The cells were recounted and 
processed within 1 hour on the 10x Chromium controller (10x Genomics). 
Approximately 2,300 cells were loaded per channel on the Chromium Chip B (10x 
Genomics) to give an estimated recovery of 1,400 cells. The Chromium Single Cell 3´ 
Library & Gel Bead Kit v3 (10x Genomics) and Chromium i7 Multiplex Kit (10x 
Genomics) were used to generate scRNA-seq libraries, according to the 
manufacturer's instructions. Libraries from 16 samples were pooled together based on 
molarity and sequenced on a NextSeq 550 (Illumina) with 28 cycles for read 1, 8 cycles 
for the I7 index and 91 cycles for read 2. For the second sequencing run, libraries were 
pooled again based on the number of recovered cells to give a similar number of reads 
per cell for each sample (33,000 - 44,000 reads/cell).  
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scRNA-seq data analysis 
The Cell Ranger 3.1.0 Gene Expression pipeline (10x Genomics) was used to 
demultiplex the raw base-call files and convert them into FASTQ files. The FASTQ files 
were aligned to the GRCh38-3.0.0 human reference genome, and Cell Ranger count 
was used with default parameters for computing read counts for Days 0, 7, 13 and 20. 
The sequenced replicates for each day were aggregated into single datasets using 
Cell Ranger Aggr command. Duplicates, dead cells and cells with greater than 5 
median absolute deviations (MADs) for mitochondrial reads were filtered out 
(McCarthy et al., 2017). We used scTRANSFORM for normalization to better 
understand cell to cell heterogeneity after performing cell cycle regression analysis 
(Hafemeister and Satija, 2019; Tirosh et al., 2016) (for more details, see supplemental 
information). We used a resolution of 0.55 to cluster cells, obtained by determining the 
optimum number of clusters (cell grouped together sharing similar expression profiles) 
in the dataset using the Clustree R package (Zappia and Oshlack, 2018) (Fig. S2B 
and C).  
 
scATAC-seq Library Preparation and Sequencing 
Cells were washed twice with 1xPBS and detached to single cell suspension by 
application of Accutase (STEMCELL Technologies) at 37 °C for 7 min. The detached 
cells were washed with appropriate base media with added 0.04% BSA (Sigma-
Aldrich) and filtered using MACS SmartStrainers (Miltenyi Biotech) to remove cell 
aggregates. Nuclei isolation was done according to the 10x Genomics protocol 
CG000169 (Rev D) using 2 minutes of incubation in lysis buffer diluted to 0.1x and 0.5x 
for Day 0 and Day 20 cells, respectively. We used the Countess II FL Cell Counter 
(ThermoFisher Scientific) to quantify nuclei and confirm complete lysis and microscopy 
to confirm high nuclei quality. Nuclei were further processed on the 10x Chromium 
controller (10x Genomics) using Next GEM Chip H Single Cell Kit (10x Genomics), 
Next GEM Single Cell ATAC Library & Gel Bead Kit v1.1 (10 x Genomics) and 
Chromium i7 Multiplex Kit N Set A (10x Genomics) according to the Next GEM Single 
Cell ATAC Reagent Kits v1.1 User Guide (CG000209, Rev C). The targeted nuclei 
recovery was 5,000 nuclei per sample. The resulting 4 sample libraries were 
sequenced on a NovaSeq Sp flow cell (Illumina) with 50 cycles for read 1, 8 cycles for 
the i7 index read, 16 cycles for the i5 index read and 49 cycles for read 2. 
 
scATAC sequencing analysis  
Cell Ranger ATAC version 1.2.0 with reference genome GRCh38-1.2.0 was used to 
pre-process scATAC-seq raw sequencing data into FASTQ files. Single cell 
accessibility counts for the cells were generated from reads using the ‘cellranger-atac 
count’ pipeline. Reference genome HG38 used for alignment and generation of single-
cell accessibility counts was obtained from the 10x Genomics 
(https://support.10xgenomics.com/single-cell-atac/software/downloads/). 
Downstream analysis of the scATAC-seq data was performed using the R package 
ArchR v1.0.1 (Granja et al., 2021). A tile matrix of 500-bp bins was constructed after 
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quality control, removal of low-quality cells and doublet removal using the doubletfinder 
function of ArchR. The ArchR Project contained the filtered cells that had a TSS 
enrichment below 3 and <1000 fragments. A layered dimensionality reduction 
approach utilizing Latent Semantic Indexing (LSI) and Singular Value Decomposition 
(SVD) applied on Genome-wide tile matrix. Uniform Manifold approximation and 
projection (UMAP) was performed to visualize data in 2D space. Louvain Clustering 
methods implemented in R package Seurat (Stuart et al., 2019) was used for clustering 
of the single-cell accessibility profiles. 
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