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Summary

Neuronal differentiation of pluripotent stem cells is an established method to study
physiology, disease and medication safety. However, the sequence of events in human
neuronal differentiation and the ability of in vitro models to recapitulate early brain
development are poorly understood. We developed a protocol optimized for the study
of early human brain development and neuropharmacological applications. We
comprehensively characterized gene expression and epigenetic profiles at four
timepoints, as the cells differentiate from embryonic stem cells towards a heterogenous
population of progenitors, immature and mature neurons bearing telencephalic
signatures. A multi-omics roadmap of neuronal differentiation, combined with
searchable interactive gene analysis tools, allows for extensive exploration of early
neuronal development and the effect of medications.
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Highlights

J Multi-omics charting a new neuronal differentiation protocol for human ES cells
. Single-cell analyses reveals marker genes during neuronal differentiation

o Identified transcriptional waves similar to early human brain development

. Searchable tools to visualize single-cell gene expression and chromatin state
In Brief

We have developed a novel protocol for human embryonic stem cells to study neural
induction and early neuronal differentiation. Multi-omics analyses uncovered cell
populations, genes and transcriptional waves defining cell fate commitment. We
comprehensively describe epigenetic landscapes and gene expression and provide
searchable analysis tools for exploration of the data.

Keywords
Single-cell RNA-seq, scATAC-seq, human embryonic stem cells, neuronal
differentiation, DNA methylation, telencephalic signatures
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Introduction

Neuronal differentiation of pluripotent stem cells (PSCs) is an established method used
to study early development, physiology, disease and neurotoxicity (Riemens et al.,
2018). However, there is a need for robust protocols that systemically characterize
cells at intermediate differentiation timepoints. These types of in vitro studies should
offer the cell-type resolution necessary to characterize developmental trajectories.
Improving the understanding of a protocol’'s ability to recapitulate early brain
development will aid future studies and increase applicability.

The role of epigenetic regulation on the establishment and maintenance of cellular
identity during early neuronal differentiation processes is not well understood (Sun et
al., 2021; Yao et al., 2016). Therefore, in-depth analyses describing epigenetic
landscapes and the complex interplay with gene expression are required. Moreover,
mapping derivative cells and their development- or region-specific transcriptional and
epigenetic landscapes is fundamental for investigating disease mechanisms and for
therapeutic interventions.

In this study, we used a multi-omics approach to construct a molecular timeline of early
human neuronal differentiation. We used a novel 2D neuronal differentiation protocol
using dual SMAD/WNT signalling inhibitors LDN193189, SB431542 and XAV939
(LSX) for neural induction of human embryonic stem cells (hESCs) (Cakir et al., 2019;
Chavali et al., 2020; Major et al., 2016; Ohashi et al., 2018; Tchieu et al., 2017). The
neuronal progenitors were allowed to self-pattern and mature towards a heterogenous
population of immature and mature neurons bearing telencephalic signatures. We
performed RNA-seq, global DNA methylation, single-cell RNA-seq and ATAC-seq data
integration across timepoints (4D analysis), to correlate the expression of transcription
factors with time- and population-specific chromatin states in hESCs, and during
differentiation. This integration of comprehensive multi-omics data enabled the
characterization of both the transcriptional and epigenetic landscapes in this model of
early fate commitment. We provide access to single-cell data in user-friendly,
interactive web applications that enable visualization of gene cluster regulation during
the neuronal differentiation protocol.
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Results
Initial validation of the neuronal differentiation protocol

The coating conditions and cell numbers were optimized to permit high cell contact,
proliferation, and viability. Thus, based on confluency, morphology and viability, we
analyzed the hESCs (Day 0) and derivative cell populations at three timepoints. We
defined the end of the neural induction phase (Stage I) at Day 7, the end of the self-
patterning phase (Stage Il) at Day 13 and at the end of the maturation phase (Stage
lll) at Day 20 (Fig. 1A). For the neural induction of undifferentiated HS360 hESCs
(Main et al., 2020; Strom et al., 2010), we used LDN193189, SB431542 and XAV939
(LSX). This LSX cocktail antagonizes the BMP, TGF3 and WNT signalling pathways
to drive cells to anterior neuroectoderm (Cakir et al., 2019; Major et al., 2016; Ohashi
etal., 2018; Tchieu et al., 2017). By the end of Stage |, neural induction morphogenetic
events shape cells into thickened neural rosettes, whereas at Stage I, cells self-pattern
before the Stage |l FGF2/EGF maturation phase (Fig. 1B). In the absence of inhibitors
at the self-patterning stage Il, the cells retain their anterior forebrain identity and
proceed to maturation, as shown by the ddPCR results (Fig. 1C).

The expression of the pluripotency markers POUSF1 and NANOG decreased
significantly after neural induction (p < 0.00001). Expression of the early neural
markers SOX2 and NES increased and stabilized at Day 7, whereas PAX6 expression
peaked at Day 7 before decreasing significantly at Days 13 and 20 (p < 0.0001). The
expression of the transcription factor (TF) OTX2, which regulates neurogenesis and
antagonizes ground state pluripotency, the late onset pan-neuronal marker TUBBS3,
and also MAP2 and FOXG1 increased as cells differentiated. Immunofluorescence
imaging showed protein expression and localization of OCT4, OTX2, SOX2, PAX6,
NES and TUBB3 (Fig. S1).
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Figure 1. 2D protocol with neural induction followed by self-patterning and
maturation. A) Schematic illustration of the 20 Day timeline of the neuronal
differentiation protocol from hESCs. B) Representative 20x brightfield phase contrast
images of hESCs at Days 0, 7, 13 and 20 (scale bar 100 pm). C) ddPCR results from
4-6 replicates of mMRNA expression of selected marker genes from Days 0, 7, 13 and
20.

Identification of heterogenous populations of progenitors, mature and immature
neurons with telencephalic signatures

To characterize the gene expression signatures, composition, differentiation pathway
trajectories and the maturation level of the cell types derived, we performed single-cell
RNA-seq (scRNA-seq) analyses at Days 0, 7, 13 and 20 (Figs. 2, S2, S3 and Table
S1). The scRNA-seq data can be visualized in the open access webtool “hESC
Neuronal Differentiation scRNA-seq” (hESCNeuroDiffscRNA) where expression of
genes can be explored per cell, cluster and timepoint (Star methods). A total of 9,337
cells were projected in UMAPs, 1,900 Day 0 cells, 2,368 Day 7cells, 2,045 Day 13 cells
and 3,024 Day 20 cells). (Fig. 2A and hESCNeuroDiffscRNA, cell information tab,
orig.ident).
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Inferring quantitative analysis of cell cycle phase

A hallmark of neuronal development involves major alterations in G1- and S-phase
duration. G1-phase lengthening is associated with the transition to a more
differentiated cell type, while S-phase duration is linked to progenitor cell expansion
(Arai et al., 2011). The cell cycle-specific gene trajectories showed a transition from
15.4 % to 54.1% cells in G1 phase from Day 0 to 20 (Fig. 2B, S2D, Table S2 and
hESCNeuroDiffscRNA). This is consistent with previous studies showing that the
maintenance of pluripotency, proliferation and differentiation of rapidly proliferating
PSCs, neural stem cells and progenitor cells are regulated by the cell cycle (Becker et
al., 2006; Boward et al., 2016; Liu et al., 2019; Soufi and Dalton, 2016). The cell cycle
regulator CDK1 was expressed in 60% of the cells at Day 0, 45% at Day 7, 53% at
Day 13, and reduced to 33% at Day 20 (Fig. S2E, % from the hESCNeuroDiffscRNA).
CytoTRACE results confirmed that differentiation is consistent with the cell cycle phase
inferred trajectory. As indicated by the higher CytoTRACE scores, cell potency
gradually decreased from Day 0 to 20 (Fig. 2C), confirming the cell cycle phase
prediction.

Development and differentiation markers used for cluster resolution and
annotation

The four timepoints were resolved into 15 clusters (R1-R15, Fig. 2D). Corresponding
cell numbers per cluster and cells per timepoint per cluster are shown (Table S3). The
top ten most highly expressed genes for each cluster are plotted in a heatmap (Fig.
3), including many developmentally regulated TFs. Among these genes, POU5F1,
TDGF1, GAL, LRRC75A, RAX, LIX1, TYMS, HES1, HES5, HES6, FGF17, DLX5,
DLX6, GAP43, STMN2 and GNRH1 were used for R1-R13 cluster annotation. For
R14, consisting of 27 Day 0 cells, we used KPNA2, a gene associated with the
localization of OCT4 (Li et al., 2008). For R15, a pool of 90 cells from Days 7, 13 and
20, we used FABP7, which is expressed in NSCs during development (Kurtz et al.,
1994).

Characterizing the unsynchronized hESC population

We identified three distinct Day O clusters (R1-3) where all cells expressed POUSF1,
verifying their pluripotency. TFs essential in establishing and maintaining pluripotency
(i.e., GAL, TDGF1, ID1, FOXH1 and SOX2) were highly expressed in clusters R1-3
(observe in hESCNeuroDiffscRNA). R3 cells expressed the highest levels of NANOG
and LRRC75A. As others have reported (Chen et al.,, 2021), PHC1 was highly
expressed in hESC clusters R1-R3, and its expression was greatly reduced in
differentiating cells. Downregulation of PHC1 was compensated by increased PHC2
expression, indicating a role for PHC2 in human neuronal differentiation (Fig. 2E).
Focusing on the FOX family of TFs, FOXD3, which is required for pluripotency
(Krishnakumar et al., 2016), and the recently reported pluripotency marker FOXD3-
AS1 (Haswell et al., 2021), were expressed in R1-R3 (Fig. S3A). Furthermore, a clear
switch was observed from FOXHT1 and FOXD3-AS1 expression in R1-R3, to the
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expression of the master regulator of brain development FOXG1 (Beyer et al., 2013;
Chiu et al., 2014) in all other clusters (Fig. 2E and S3A).
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Figure 2. Identification of cell populations during neuronal differentiation of
hESCs. A) UMAP representing single-cell RNA-seq clusters per time-point. B) UMAP
of cell cycle analysis showing all cells analyzed and coloured by assigned cell cycle
phase. C) The inferred neuronal differentiation trajectory using CytoTRACE, where
less differentiated cells are shown in red and more differentiated cells are shown in
blue. D) The UMAP representing cell clusters R1 to R15 with corresponding gene
annotations mapped at resolution 0.55. The clusters are indicated by different colours
and gene annotations per cluster are given after each colour corresponding bullet
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below the UMAP. E) Violin plots representing gene expression levels and distribution
in clusters R1 to R15 for selected genes.

LSX forebrain induction cues evident at the end of Stage |

Under LSX induction, hESCs undergo morphogenetic events and form neural rosettes.
These Day 7 cells mapped to a single cluster (R4, Fig. 2D), enriched in the rostral
markers SIX3 and LIX1 (Figs. 3, S2E and S3D). In contrast, the expression of the
preplacodal genes EYA1 and SIX71 (lkeda et al., 2007; Schlosser, 2014) was low,
including SIX3-AS1. Furthermore, expression of caudal markers PAX5 and GBX2
(Kirkeby et al., 2012; Maroof et al., 2013) was low throughout differentiation. This
confirms the efficacy of LSX forebrain induction, enabling cell-fate commitment
persistence.

Upon neural induction, the key neural TF PAX6 is upregulated and interacts with SOX2
(Zhang et al., 2019). R4 cells were SOX2 positive showing high PAX6 and RAX
expression (Fig. S2E), and express neuronal rosette markers, such as DACH1,
POUS3F2, NR2F1 and NR2F2 (Fedorova et al., 2019). A distinct switch from CDH1
(Epithelial Cadherin) to CDH2 (Neural Cadherin) expression was observed (Fig. 2E),
and other developing forebrain specification and differentiation stage markers (such
as OTX2, HESX1, FOXG1, LIN28A and FABP7) were detected.

Self-patterning does not affect fate commitment

At Day 13, which marks the end of the self-patterning stage, 75% of the cells mapped
to cluster R5 and most of them expressed REST (Figs. 2E and S2E). SIX3, DLX5 and
BMP4 (Figs. S2E and S3D) were expressed in R6 cells that are enriched in FGF8 and
HES1. Moreover, R6 was enriched in TAGLN, which was also expressed in 44% of R5
cells but absent in the R5 cells co-expressing NKX2.1, DCT and SOX6. CNTN1, an
active ligand of Notch (Hu et al., 2003) and potent inducer of neuronal migration (Lee
etal., 2014), was expressed in R6. CNTN1 was exclusively expressed in cells negative
for NTN1, DLL1, FABP7 and POU3F2. Comparing to results of 8 week human
embryonic tissue (Kirkeby et al., 2012), no midbrain and hindbrain markers were
detected at Day 13, confirming that the self-patterning phase does not affect fate
commitment.

Characterization of the Day 20 heterogenous population
Day 20 cells retained their identity and clustered in R7-13 (Figs. S2E and 3). Some

cells expressed high levels of CDK1 (Fig. S2E), whereas other cells were still regulated
by REST and expressed DLX5 and CDKN1C. CDKN1C, which forms complexes with
histone deacetylases to repress neuronal genes in non-neuronal cells (Laukoter et al.,
2020) is inversely correlated with REST expression and enhanced in R11-13 (Figs.
2E and 3). Interestingly, ARX, a regulator of cortical progenitor expansion by
repression of CDKN1C (Colasante et al., 2015) was only expressed in R13 cells (Fig.
S2E). Neuronal differentiation correlated with CDK6 upregulation and G1 shortening.
CDKE6 is directly regulated by GLI3 and expression of GLI3 (Hasenpusch-Theil et al.,
2018)(detectable at R4) dropped significantly in R12-13. REST is known to be
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downregulated during neurogenesis and in differentiating neurons and the pattern was
recapitulated in this study (Fig. 2E).

Neuronal maturation signatures

Day 20 cells were highly enriched for MAP2, and clusters R11-13 were enriched for
DCX, which is a marker of migratory neurons. Genes expressed in proliferating
neuroblasts associated with cortical migration control and developing rostral brain
structural patterning, such as EMX2 (Pang et al., 2008; Spalice et al., 2009; Verrotti et
al., 2010), decreased in clusters R11-R12 and were undetectable in R13 (Fig. S2E).
FGF8, an anterior-posterior patterning molecule, acting mainly via EMX2 repression
(Hao et al., 2019), was expressed in R4 and R6 cells and in a few Day 20 cells, mainly
in R8 and R10 clusters. Furthermore, FGF17 (Figs. 3 and S2E) and FGF18 were
mostly expressed at Day 20 R8 cluster. HES6-enriched cluster R11 (Fig. S2E) was
composed of Day 13 and 20 cells, and most of the R11 NEUROG 7-negative cells were
Day 13 cells. Neural stem and progenitor marker ZEB1, which was downregulated
upon neuronal differentiation to permit proper migration of immature neurons (Wang
etal., 2019a), was expressed in almost all cells (Figs. 3 and S2E). In addition, FOXG1-
enriched R13 cells also express high levels of DLX6-AS and DLX5 (Figs. 3, S2E and
S3B).

Of note, the expression of GNRH1 (Gonadotropin Releasing Hormone 1) was
expressed in 30% of the R12-13 cells (9% of Day 20 cells) (Figs. 3 and S2E). Of these
cells, some expressed GABAergic or glutaminergic processing enzymes. As the
mechanisms that contribute to the development of extrahypothalamic GnRH neurons
are not fully described, such data are vital for studies of development, puberty and
reproduction.
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Figure 3. Cluster analysis of differential gene expression. Heatmap of the top ten
most highly expressed genes in all clusters. Rows represents single genes and column
represents single cells. Cell clusters are ordered sequentially and coloured according
to the UMAP annotation shown to the right (yellow represents high expression and
blue low expression).
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Global expression profiles reveal neuronal differentiation and maturation
signatures

To increase gene expression sensitivity, we performed bulk gene expression analysis
with higher sequencing depth (Fig. 4 and S4). Overall, we found 11,313 differentially
expressed genes (DEGs) comparing cells from Day 0 to 20 (Table S4). More genes
were differentially expressed during neural induction (Day O to 7), compared to the
later stages, with self-patterning (Day 7 to 13) and maturation (Day 13 to 20) stages
(Table S4). The most extensive transcriptional changes occurred between Day 0 and
Stage |, with loss of pluripotency and gain of neuralization markers (Figs. 4A, S4A and
S4F). We confirmed that bulk RNA-seq analysis for selected marker genes correlates
well with ddPCR (Fig. 4B and S4G).

The analysis shows the specific gene expression patterns as cells lose pluripotency
and move towards neuronal maturation (Fig. 4). These may be steep decreases after
neuronal induction, as seen for LIN28A and CDH1. For other genes expression peaks
at Day 7 or Day 13, such as RAX and FOXG1, respectively. Expression increases
gradually for genes such as OTX2 and SOX6. Moreover, the expression of
neuroectodermal patterning Wnt/B-Catenin negative regulator AMERZ2 (Pfister et al.,
2012), and neuronal differentiation marker STMN2 (Wang et al., 2019b) increase at
Day 13 and increase further at Day 20 (Fig. 4A). On Day 20 we also find genes
correlated to specific neuronal types, such as GRIA1, SLC17A6, GNRH1 and GAP43
(Fig. 4A and S4F).

We next performed gene ontology (GO) analyses to identify shared biological
processes (BP) among the DEGs during differentiation (Fig. 4D and Table S5). These
analyses revealed enrichment of upregulated BPs related to pattern specification,
neuronal maturation and migration from Day 0 to 20 (Fig. 4D). Stage-specific GO
analyses revealed enrichment of BPs involved in neurogenesis and neuron
development differentiation at stage | (Day 0 to 7), and BPs involving synaptic
organization and signalling, and neurotransmitter regulation and secretion at the end
of the maturation stage (Day 13 to 20; Table S5). The RNA-seq analysis is in line with
single-cell analysis showing downregulation of pluripotency genes and upregulation of
brain development genes.
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Figure 4. Correlation of RNA-seq to ddPCR and GO analyses results. A)
Normalized gene expression counts for selected genes showing transcriptome
expression patterns from loss of pluripotency towards neuronal maturation. B) Scatter
plots of RNA-seq and ddPCR for marker genes NANOG, PAX6, OTX2, FOXGT,
NEUROD1 and MAP2 at Days 0, 7, 13 and 20. C) Heatmap of top 50 differentially
expressed genes between Days 0 and 20 replicates. Fold change is shown to the left.
D) GSEA analysis of differentially expressed genes from Days 0 and 20.
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DNA methylation correlates with neuronal transcriptional programs during
differentiation

DNAm in human cells is mainly restricted to CpG sites and essential for normal
development (Smith and Meissner, 2013). As hESCs transition to differentiated
neurons, dynamic DNAm changes regulate gene expression and the establishment of
cell-type specificity (Stricker and Gotz, 2018). To assess DNAm in the present protocol,
we identified CpGs which are differentially methylated (DMCs) between Day 0, 7, 13
and 20 (Figs. 5 and S5). As expected, comparing Day 0 and 20 reveals massive DNAm
changes (n=210,049 DMCs, Table S4). Although we observe major changes in DNAm
during the differentiation protocol (Table S4), the bulk DNAm levels and the distribution
of unmethylated and methylated CpGs remains the same across all four timepoints
(Figs. 5A and S5B-C).

Deconvoluting these changes temporally, the highest number of DMCs was observed
between Day 0 and 7 (n=161,600), with fewer changes in the self-patterning phase
(Days 7-13, n=39,545) and during cell maturation (Days 13-20, n=47,676) (Table S4).
Next, we used GOMETH analysis (Maksimovic et al., 2021) to explore shared
biological functions among the DMCs. In line with the gene expression results, from
Day 0 to 20 we observed enrichment of BPs involved in neural induction,
neurogenesis, and brain development (Fig. 5C). This suggests that DNAm is
modulating the neuronal transcriptional programs during the course of differentiation
(Fig. 5A). Similarly, these analyses identified DMCs between Day 0 to 7 and Day 0 to
13, with BPs involved in cell adhesion and neuron projection morphology, which fits
well with the stage cell transitions (Fig. S5D and E). One of the most significant GO
terms is “neuron migration”, evidenced by expression of genes such as DCX and its
partner PAFAH1B1 (Nadarajah and Parnavelas, 2002) (Fig. 5C), both highly
expressed in R11-13 (Fig. 2 and hESCNeuroDiffscRNA).

To explore the correlation between DNAmM and gene expression, we combined the
DNAm and RNA-seq data sets based on CpG probe location and gene locus (Figs.
5D, S57-G, and Table S4). Of the Stage | gene annotated DMCs, 72% overlap with
differentially expressed genes, inferring functional impact on gene expression. For
genes with DMCs we generally observed a decrease upon transcriptional activation or
an increase for genes becoming repressed during the course of differentiation. The
expression levels of the majority of the differentially expressed genes between Day 0
and 20 are predicted to be associated with DNAm changes (8,011 of the 11,313
DEGs). The expression of markers of late trophectoderm (e.g., KRT18), pluripotency
maintenance (POUSF1), suppression of pluripotency (NR6A1) (Wang et al., 2016),
metabolic reprogramming (LDHA) (Zheng et al., 2016), or spatiotemporally regulated
cortical TFs and cell cycle related genes (LHX2, CDKN1C) (Chou and Tole, 2019;
Laukoter et al., 2020); and neuronal differentiation and maturation markers, (such as
DCX), may be regulated by one or more CpGs (Fig. 5C, S5F, S5G and Table S6).
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Of note, the average non-CpG DNAm levels, and the distribution of unmethylated and
methylated CpHs vary across time points. CpH DNAm is associated with
transcriptional repression in the mouse genome (Xie et al., 2012) and non-CpG DNAm
levels are enhanced at Day O cells and decline during differentiation (Fig. 5B).
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Chromatin accessibility analysis identifies regulation signatures during
differentiation

To further assess the changes in the epigenetic landscape upon differentiation, we
performed single-cell assay for transposase accessible chromatin sequencing
(scATAC-seq). This analysis aimed at understanding chromatin-based gene regulation
during neuronal differentiation from the loss of pluripotency at Day 0 to Day 20 (Fig. 6
and S6).

Reanalyzing scRNA-seq datasets for integration with scATAC-seq data
To integrate scATAC-seq and scRNA-seq, the scRNA-seq datasets for Day 0 and Day

20 were reanalyzed. 1910 Day 0, and 3033 Day 20 cells were projected in 14 clusters
(Fig. 6A) and in accordance with the maturation trajectory seen in the corresponding
CytoTRACE plot (Fig. 6B). The scRNA-seq clusters were numbered and annotated
similarly to old clusters (Fig. 6A, S6A and B). Day O cells resolved into five clusters
(RO-3 and R14) whereas Day 20 clusters were numbered as R7-15, cohering to the
initial four-timepoint analysis.

Chromatin accessibility changes globally during differentiation

The analysis of 4,901 Day 0 nuclei and 2,847 Day 20 nuclei and the scATAC-seq data
showed a good distribution of fragment sizes, fragment numbers, and TSS enrichment
(Fig. S6C, D, E and F). The supervised pseudotime trajectory analysis, which predicts
paths for gene regulatory changes in cells during differentiation, showed a similar
profile to the gene expression CYTOTRACE analysis (Fig. 6B and C). We mapped
four chromatin accessibility clusters at Day 0 (C1-4) and five at Day 20 (C5-9; Fig. 6D)
and observed differential chromatin opening in these cell clusters for many loci,
including POU5F1, REST, GAD2, and DCT (Figs. 2, S2, S3 and S6G). We next
generated a gene score matrix heatmap incorporating regulatory elements,
representing a score of chromatin opening of 200 kb gene regions. The heatmap
shows a selection of marker genes based on their relevance to pluripotency and brain
development and the previously described scRNA-seq cluster annotation (Fig. 6F).
Higher gene scores for genes that are known for their role in the regulation of
pluripotency, such as POUSF1, NANOG, ID1, and known enhancer specific binding
factors in development, such as Z/IC2 (Hong et al., 2011) were found in Day O clusters
(Fig. 6F, 2 and S6B). SOX2 is regulated by several enhancers and interacts with
multiple but distinct groups of transcription factors, including POUS3 class partners (lida
et al., 2020; Mistri et al., 2015; Tang et al., 2015; Zhu et al., 2014). Chromatin
accessibility for SOX2, POU3F1/BRN1 and POUS3F3/BRN3 increased with
differentiation (Fig. 6F). Moreover, genes expressed at the differentiation endpoint
clusters, such as ASCL1 and SOX21 which are implicated in neurogenesis (Fig. 2 and
S3), NFIB which is crucial in neural progenitor cell renewal (Piper et al., 2014), and
OTX2 which is associated with early neuronal development regulation, showed a more
open chromatin structure in neuronal clusters C5-C9. The gene score of NEUROD1 is
highest in the trajectory end-point cluster C5 (Fig. 6F).
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Correlation of chromatin regulatory dynamics and gene expression
To better understand the regulatory interactions with gene expression we performed

integrated analysis of sSCATAC-seq with scRNA-seq using ArchR (Granja et al., 2021).
Following constrained alignment of cell populations after integration of scCATAC-seq
and scRNA-seq, the integrated clusters were renamed to correspond to the previously
annotated scRNA-seq clusters (Figs. 6E and S6B). Pluripotency clusters C1-C4
remapped to scRNA-seq Day 0 clusters RO and R2, whereas clusters C7-C9 mapped
to cluster R7, correlating chromatin openness and gene expression in single cells for
markers such as REST, HES1, and CDK1 (Figs. 6B, D, E, S6B and S6l). Cluster C6
mapped to R9, which was marked by expression of REST, HES5 and ASCL1, and C5
remapped to one of the endpoint clusters, R12, having high NTRK1 expression (Fig.
S61). We assessed scATAC-seq peaks across TGDF1, CDH1, CDH2, STMNZ2, and
DCX loci across the integrated clusters and found cluster specific chromatin opening
(Fig. 61 and S6J). Moreover, the peak-to-gene co-accessibility arcs show gene
expression linked to chromatin opening during differentiation of putative distal
regulatory elements at TGDF1 and CDH1.

To explore the integration of chromatin accessible regions and gene expression, we
mapped 95,800 peak-to-gene links and observed a clear correlation of chromatin
regulatory dynamics in the different integrated clusters (Fig. 6G). Moreover, chromatin
accessibility was clearly enriched at transcriptional start sites (TSS) in every cluster
(Fig. 6H). However, chromatin accessibility peak annotation analysis revealed varying
enrichment across integrated clusters at promoters, intronic, exonic and distal regions
(Fig. S6H). The number of peaks at promoters were very similar across the five
clusters, with fewer peaks in cluster R9. Interestingly, more peaks were detected at
intronic and distal regions in clusters R7 and R12 than in the other clusters. These
results agree with previous studies showing that neuronal gene activation depends on
multiple regulatory regions, many of which are located far from the gene locus itself.

We next aimed to explore the dynamics of lineage-defining factors at pluripotency and
differentiation endpoint. Using ArchR, we identified specific TF motifs across
differentiation (Fig. 6J). Motif footprinting for POUSF 1 underlies a regulatory function
in accessible chromatin in pluripotent clusters RO and R2, whereas motifs for ASCL1
and OTX2 footprints were more enriched in differentiated clusters R7 and R12. We
further mapped the enrichment of POUSF1, DLX6, ASCL1 and OTX2 motifs in open
chromatin in individual cells (Figs. 6J and S6K). These examples illustrate how
lineage-defining TFs dynamically regulate gene expression programs during neuronal
differentiation.
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Figure 6. Integration of single-cell chromatin opening with scRNA-seq during
neuronal differentiation. A) Multidimensional reduction UMAP plot of scRNA-seq
corresponding to the timepoints used for scATAC-seq analysis. B) UMAP plot showing
original identity of cells at scRNA-seq modality and corresponding differentiation
trajectory. C) UMAP plot showing original identity of cells at scATAC-seq modality and
corresponding supervised pseudo time trajectories. D) UMAP plot showing clusters at
scATAC-seq modality. E) Remap UMAP plot of renamed clusters following constrained
alignment of cell populations after integration of scATAC-seq and scRNA-seq. F) Top
selected marker genes from scRNA-seq data shown on a heatmap plot computed on
Gene Score Matrix. G) Peak to gene linkage heatmap for scRNA-seq clusters and
corresponding gene scores for integrated scATAC-seq clusters. H) Chromatin
openness of integrative cluster RO, R2, R7, R9 and R12 over all TSS. I) Tracks shown
on peak browser for selected gene STMNZ on integrated cell clusters. Bottom panel
shows co-accessibility interactions around TSS. J) Motif footprinting for selected
transcription factors POU5F1, ASCL1 and OTX2 demonstrating preferential opening
in different cell clusters. The middle panel shows the corresponding motif deviation
scores of ArchR identified TFs POU5F1, ASCL1 and OTX2. The scores are calculated
for each TF motif observed in an accessible region and in each cell for the deviation
from expected average accessibility across all the cells. The representative sequence
logos identified in accessible regions across the dataset are shown below.
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Exploration of single-cell data using interactive webtools

Large dataset analyses, such as single-cell sequence analysis, generally require
bioinformatics expertise for interpretation. We have made our scRNA- and scATAC-
seq data accessible to a broader audience by providing open access web-interfaces
based on open-source tools, abiding by the Findability, Accessibility, Interoperability,
and Reusability (FAIR) principles (Ouyang et al., 2021; Sharma et al., 2021). The users
can explore scRNA-seq data in hESCNeuroDiffscRNA and plot high resolution
figures of their genes of interest under seven different tabs (Fig S7A-H). This includes
exploration of 1) Gene expression UMAPS as illustrated for POUSF1 and NTRK1; 2)
gene co-expression analysis, here shown for PHC1/PHC2 and NEUROG1/NTRK1; 3)
different gene and cluster expression configurations, such as heatmaps, violin-, box-,
proportion- and bubble plots. The platform also allows for correlation with other
published gene expression datasets (Fig. S7H).

To illustrate the utility of the web interface, we focus on ZIC2 and ZIC4, and their
expression and regulation during neuronal differentiation (Fig. 7). ZIC proteins are
known for their role in proliferation and differentiation of neural progenitors, neurulation,
neural tube formation, and neural plate closure (Al-Naama et al., 2020; Aruga and
Millen, 2018). Global expression analysis shows that Z/CZ2 is present at Day 0 and
peaks at Day 7, whereas expression of ZIC4, mostly undetectable at early timepoints,
appears at Day 13 and peaks at Day 20 (Fig. 7A). DNAm levels at the CpGs in the
ZIC2 locus were stable across differentiation. In contrast, DNAm of 13 CpGs in the
ZIC4 locus were positively or negatively correlated with gene expression across
differentiation (Fig. 7B). Differential expression of ZIC2 and ZIC4 across the individual
cells at Day 0, 7, 13 and 20 in UMAPs (Fig. 7C) can be compared and correlated with
selected TFs, shown here to be important for regulation in the neuronal differentiation
protocol (Fig. 7C).

The scATAC-seq data can be explored in “hESC Neuro Differentiation scATAC seq’
(hESCNeuroDiffscATAC) (Fig. S7I-N). Users can visualize chromatin accessibility,
motif enrichment or integration of scATAC-seq with scRNA-seq in UMAPSs.
Furthermore, this webtool enables investigation of the gene score and motif matrix,
also showing the representative sequence logo calculated from open regions.
(Examples are given for the L1TD1, HESS and ZEB1 genes at Fig. S7J). Chromatin
opening can be explored across the genome for different clusters, as shown for SOX2
and POUSF1 or in different heatmaps (Fig. S7K-N). Heatmap views could either be
pseudotime trajectories or peak-to-gene linkage, which define linked chromatin
opening peaks with promoters of expressed genes (Granja et al., 2021) and may
deduce enhancer promoter interactions (Baek and Lee, 2020). In the case analysis of
ZIC2 and ZIC4, gene score and gene integration analysis showed the genes were
active in different cells (Fig. 7D) and the ZIC2 and ZIC4 footprints and representative
sequence logos were identified. This 4D example analysis highlights the epigenetic
regulation and gene expression of these genes in neuronal differentiation.
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Figure 7. An example of the possibilities and potential applications of the 4D
data showcasing the ZIC2 and ZIC4 genes. A) Normalized global gene expression
counts for ZIC2 and ZIC4 from Days 0, 7, 13 and 20. B) Significant CpGs in gene loci
ZIC2 and ZIC4 (derived from MORE) for Days 0, 7, 13 and 20. DNAm is represented
as mean +/- standard deviation. C) Representative UMAPs showing cluster specific
and differentiation-driven gene expression across all four timepoints for ZIC2 and ZIC4.
A bubble plot representing gene expression and hierarchical clustering of TFs highly
relevant to neuronal differentiation across Days 0, 7, 13 and 20. D). The upper UMAPS
represent inferred gene scores of the openness of the ZIC2 and ZIC4 gene loci. In
middle UMAPs the gene integration shows correlation of gene expression with
chromatin opening of the ZIC2 and ZIC4 gene loci. The lower UMAPs represent motif
footprinting demonstrating preferential opening in different cell clusters for ZIC2 and
ZIC4 with the representative sequence logos identified in accessible regions in the
dataset below.
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Discussion

Here we present comprehensive multi-omics analyses to characterize a novel
neuronal differentiation protocol from pluripotent ESCs towards a ventrally committed,
telencephalic population of progenitors, mature and immature neurons. We assessed
stage-to-stage transition using ddPCR and immunofluorescence imaging, and used
scRNA-seq and bulk RNA-seq to validate cell populations over time. scATAC-seq and
DNAm analysis further characterized the epigenetic and gene regulatory landscapes.

The deconvolution of early human neuronal differentiation at the level of molecular
regulation provides insight to an otherwise inaccessible developmental window.
Animal models are valuable, but evidence shows that the human neocortex develops
under the effect of additional mechanism (Massimo and Long, 2021; Pinson and
Huttner, 2021; Xing et al., 2021). Thus, neuronal differentiation studies from PSCs
provide an alternative method to characterize developmental transcriptome trajectories
and the roles of specific genes in human brain formation and patterning.

To specify the patterning and maturation identities of the cells, we followed up the
trajectories of major TFs (O’Leary and Sahara, 2008). Ventral telencephalic markers,
such as EMX2 and ASCL1, were already expressed at the end of Stage I, while dorsal
telencephalic markers such as EMX1 and NEUROG2 were absent. Absence of
expression of HOXB2, PAX7 and GBX2 at any timepoint, confirmed that the self-
patterning phase after neural induction, had no effect on lineage commitment and no
cells  differentiated to  hindbrain, midbrain  or  thalamic  lineages.

GO analyses revealed stage dependent enrichment of biological processes correlated
to neurogenesis, pattern specification, signalling and neurotransmitter regulation,
migration, synaptic organization and neuronal maturation. The DNAm analyses
showed alternating, stage-dependent changes for various patterning genes and TFs
important to neurogenesis. In most developmentally regulated genes involved in
neuronal lineage commitment, DNAm levels decreased upon transcriptional activation
and increased for genes becoming repressed during the time of differentiation. We
also observed that sometimes downregulation of gene expression in the self-patterning
stage might intersect the upregulation of gene expression seen both in stage | of neural
induction of hESCs and during maturation at stage Ill. This could be due to the
combined effect of non-CpG and CpG DNAm implicated in the regulation of RNA
splicing in ESCs and neurons, respectively (Ball et al., 2009; Laurent et al., 2010).
Non-CpG DNAm accumulates in neurons during synaptogenesis and synaptic pruning
(Lister et al., 2013), but CpH DNAm is associated with transcriptional repression (Xie
et al., 2012). Whether and how CpH DNAm plays a role in self patterning following the
LSX induction is not known, and future studies are needed to explore this.
Furthermore, the in vitro model for DNAm changes presented here, is advantageous
for neuropharmacological studies. Whether these changes can be translated to distinct
early developmental events, cannot be ascertained. The direction of causality of
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epigenetic regulation for early brain development, can however further correlate in vitro
models to sets of open cis-regulatory elements and the regulation of TF-centred
networks. The identification of common DNAm modification sites and chromatin
openness regions may present candidate loci for future studies of early human
development and may advance translational studies of the impact of drugs used early
in human pregnancy.

The effect of loss of pluripotency towards neuralization, irrespective of the intermediate
timepoints, was investigated through an integrative analysis of the scATAC- and
scRNA-seq. We used ArchR (Granja et al., 2021) for this analysis as this pipeline was
flexible for small ATAC-seq and scRNA-seq datasets. The juxtaposition of the
transcriptome to the regulatory elements in ESC and differentiating Day 20 cells can
infer gene regulatory network information. We identified linked sets of genes unique to
each state, that may comprehensively profile individual cells. Such approaches are
highly informative. They can infer epigenome causality not restricted to these analyses,
but also to studies of the effect of drugs in early brain physiology and development.

Strengths of study

Although numerous studies have used the LSX cocktail for neural induction, to our
knowledge this is the first study that has shared all scRNA data in such transparent
and interactive format. Thus, a strength of this study is the presentation of our single-
cell data in two visualization tools, ShinyCell and inhouse developed ShinyArchR.UiO
(Ouyang et al., 2021; Sharma et al., 2021), that are openly available for users. These
tools allow the users to explore candidate genes and utilize a comprehensive set of
functionalities, beyond the fate specification analysis presented here. Furthermore,
these tools enable insight into the molecular and structural partners of stage-specific
markers and time-stamped TFs, their transcriptional regulation and cell cluster
identities. Programming scripts for data analysis are made available and can be easily
customized for further studies and the incorporation of other data.
Although the protocol does not generate terminally differentiated neurons of a specific
subtype, there are numerous advantages. The protocol is cost-effective at the level of
culture coating reagents, vessel size and timed passaging. Moreover, the advantage
of 2D culture, defined cell numbers at all passaging steps, reduces the human errors
in reproducibility compared to protocols based on confluency evaluation and
cumbersome 3D culture setup. As the protocol was designed for
neuropharmacological studies, the daily media changes further diminish the effect of
short drug half lives in such studies.

Limitations of study

This study has several limitations at the level of cell characterization. The membrane
electrochemical and electrophysiological maturation properties were not evaluated.
Moreover, we did not assess neuropeptide diversity, secretion of neurotransmitters or
migration. Protein quantification or intracellular localization of markers and trajectories
were also beyond the scope of a multi-omics characterization. A limitation of sSCATAC-
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seq is the genome-per-cell coverage and open chromatin regions relevant for the
individual cell or cell populations may have been missed.

In conclusion, in this study we describe the generation of a novel neuronal
differentiation protocol where we used the unparalleled power of multi-omics to
understand early events of anterior neuroectodermal fate specification. We assessed
the functional regulation of transcription factors and developmentally regulated genes,
from loss of pluripotency towards neuronal differentiation. Integration of scCATAC-seq
and scRNA-seq provide invaluable insight on the complexity of fate decisions and
enabling other researchers to finetune future studies. Finally, the reader has access to
the single-cell sequencing data in two searchable, user-friendly webtools to visualize
intra- and inter- timepoint and cell cluster regulation, interactively.
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Star methods

KEY RESOURCES TABLE
REAGENT or RESOURCE

Antibodies

OCT4 (1/100)
B3-tubulin (1/250)
OTX2 (1/40)
SOX2 (1/200)
PAX6 (1/350)
NESTIN (1/200)

Donkey Anti-Goat IgG H&L (Alexa
Fluor® 555)
(1/500)

Donkey Anti-Mouse 1gG H&L (Alexa
Fluor® 555) (1/500)

Alexa Fluor® 488 AffiniPure Donkey
Anti-Rabbit IgG (H+L) (1/250)

SOURCE

Santa Cruz
Santa Cruz
R&D
Abcam
Abcam
Abcam

Abcam

Abcam

Jackson
ImmunoResearch

Chemicals, peptides, and recombinant proteins

Geltrex™ LDEV-Free, hESC-Qualified,
Reduced Growth Factor Basement
Membrane Matrix

KnockOut™ DMEM

PBS, no calcium, no magnesium

Dimethyl-sulfoxide, DMSO

Accutase™ Cell Detachment Solution

UltraPure 0.5 M EDTA, pH 8.0
RHO/ROCK Pathway Inhibitor Y-27632

ThermoFisher

ThermoFisher

ThermoFisher /
GIBCO

Sigma-Aldrich

STEMCELL
Technologies

ThermoFisher

STEMCELL
Technologies

IDENTIFIER

sc-5279

sc-80005
AF1979

ab79351
ab195045
ab22035
ab150130

ab150110

711-545-152

A1413302

10829018

14190

D8418
7920

15575020
SCMO075
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Essential 8™ Medium

Poly-L-ornithine hydrobromide

Fibronectin (Bovine Protein, Plasma)
N2 supplement (100X)
Advanced DMEM/F-12

GlutaMAX™ Supplement

Penicillin Streptomycin (10,000 U/mL)
LDN-193189

SB 431542 (hydrate)

XAV939

B-27™ Supplement (50X), serum free
Recombinant Human FGF basic
Recombinant Human EGF, Animal-Free

Invitrogen™
ProLong™
Gold Antifade
Mountant with
DAPI

Paraformaldehyde
Triton X-100
Tween-20

Normal-Horse-Serum-Blocking-Solution

Bovine Serum Albumin

Critical Commercial Assays

ThermoFisher

Sigma-Aldrich/
Merck

ThermoFisher
ThermoFisher
ThermoFisher

GIBCO/
ThermoFisher

ThermoFisher

STEMCELL
Technologies

Sigma-Aldrich /
Merck

STEMCELL
Technologies

ThermoFisher
Peprotech
Peprotech

Fisher Scientific/
Invitrogen

Sigma-Aldrich
ThermoFisher
Sigma-Aldrich

BioNordica/
Vectorlabs

Sigma-Aldrich

A1517001
P3655

33010018
17502048
12634028
35050061

15140122
72148

S4317

72674

17504044
100-18B
AF-100-15
P36931

158127
11332481001
P1379
S-2000-20

A2153
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Countess™ Cell Counting Chamber ThermoFisher C10312
Slides

RNeasy Mini Kit Qiagen 74106
RNAse-Free DNase Set Qiagen 79254

RNA/DNA purification kit Norgen Biotek Corp. 298-48700

RNase-Free DNase | Kit Norgen Biotek Corp. 298-25720

Qubit™ RNA BR Assay Kit ThermoFisher/Invitro Q10211

gen

QuantiTect Reverse Transcription Kit Qiagen 205311
ddPCR Supermix for Probes (no dUTP)  BioRad 186-3024
Droplet Generation Oil for Probes BioRad 186-3005
TruSeq Stranded mRNA Library Prep Kit ' lllumina 20020595
IDT for lllumina — TruSeq RNA UD lllumina 20022371
Indexes

NovaSeq 6000 S1 Reagent Kit v1.5 (200 Illumina 20028318
cycles)

Infinium MethylationEPIC BeadChip Kit  Illumina WG-317-1003
(96 samples)

30 mm MACS SmartStrainers Miltenyi Biotech 130-110-915
Chromium Single Cell 3" Library & Gel 10x Genomics 1000075
Bead Kit v3

Chromium i7 Multiplex Kit 10x Genomics 120262
NextSeq 500/550 High Output Kit (150 lHlumina 20024907
Cycles)

Next GEM Chip H Single Cell Kit 10x Genomics 1000162
Next GEM Single Cell ATAC Library & 10x Genomics 1000176
Gel Bead Kit v1.1

Chromium i7 Multiplex Kit N Set A 10x Genomics 1000084
NovaSeq 6000 SP Reagent Kit (100 lllumina 20028401

cycles)

Deposited data
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RNA-seq, DNAm, Infinium Methylation This paper NCBI GEO:
EPIC, scRNA-seq & scATAC-seq GSE192858

Experimental models: Human Embryonic Stem Cell lines

Human embryonic cells, HS360

Oligonucleotides

POUSF1

SOX2

NANOG

NES

FOXG1

TUBB3

MAP2

PAX6

OTX2

VIM

NEUROD1

Stockholms
Medicinska Biobank
/ Sweden

ThermoFisher/TagM

ThermoFisher/TagM

ThermoFisher/TagM

ThermoFisher/TagM

ThermoFisher/TagM

ThermoFisher/TagM

ThermoFisher/TagM

ThermoFisher/TagM

ThermoFisher/TagM

ThermoFisher/TagM

ThermoFisher/TagM

(Subseries

GSE192854,
GSE192855,
GSE192856,
GSE192857)

HS360

Hs00999632_g1

Hs01053049_s1

Hs04399610_g1

Hs04187831_g1

Hs01850784_s1

Hs00801390_s1

Hs00258900_m1

Hs00240871_m1

Hs00222238_m1

Hs00958111_m1

Hs01922995_s1

27


https://doi.org/10.1101/2022.02.01.478732
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478732; this version posted February 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

RPL30 ThermoFisher/TagM Hs00265497 m1
anTM

RAF1 Eurofins Roche Universal

F: tgggaaatagaagccagtgaa Probe Library/

R: cctttaggatctttactgcaacatc Probe 56
4688538001

Equipment

Hot plate Custom made uio

Microscope: EVOS® FL Cell Imaging ThermoFisher AMF4300

System

Cell counter: Countess® Il FL Automated ThermoFisher MQAF1000

Cell Counter

Qubit Fluorometer for nucleic acid ThermoFisher / Life | 2.0

quantification Technologies

Bioanalyzer for Nucleic Acid Quality Agilent 2100

analysis

Nanodrop ThermoFisher 2000

DG8™ Cartridges for QX200™/QX100™ BioRad 186-4008

Droplet Generator

DG8™ Gaskets for QX200™/QX100™ BioRad 186-3009

Droplet Generator

Droplet Generator BioRad QX200

Droplet Reader BioRad QX200

NovaSeq lllumina 6000

NextSeq lllumina 500

iScan system lllumina

10x Chromium controller 10x Genomics

Software

ArchR1.0.1 https://www.archrp
roject.com

Seurat Version 4 (Hao et al., 2021;

Stuart et al., 2019)  https://github.com/
satijalab/seurat
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Signac (Stuart et al., 2021)  https://satijalab.org
/signac/
BSgenome1.58.0 (Pageés, 2020) https://rdrr.io/bioc/
BSgenome/
ShinyCell (Ouyang et al., 2021) https://github.com/
SGDDNB/ShinyCe
Il
ShinyArchR.UiO (Sharma et al., 2021) https://github.com/
EskelandLab/Shin
yArchRUIO
CytoTRACE R package (v0.3.3) (Gulati et al., 2020)  https://cytotrace.st
anford.edu
10x Genomics Cell Ranger -Count and 10X genomics https://www.10xge
10x Genomics Cell Ranger -Count ATAC nomics.com
R Programming language https://www.r-
project.org/
FIJI (Schindelin et al., https://imagej.net/s
2012) oftwaref/fiji/
BSgenome.Hsapiens.UCSC.hg38 DOI:10.18129/B9.bio ' https://bioconducto
c.BSgenome.Hsapie r.org/packages/rel
ns.UCSC.hg38 ease/data/annotati
on/html/BSgenom
e.Hsapiens.UCSC.
hg38.html
EnsDb.Hsapiens.v86 DOI:10.18129/B9.bio  https://bioconducto
c.EnsDb.Hsapiens.v  r.org/packages/rel
86 ease/data/annotati

on/html/EnsDb.Hs
apiens.v86.html

clustree (Zappia and https://cran.r-
Oshlack, 2018) project.org/web/pa
ckages/clustree/vi
gnettes/clustree.ht
mi#references

scater (McCarthy et al., https://bioconducto
2017) r.org/packages/rel
ease/bioc/html/sca
ter.html
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DEseq2

GSEA

Minfi

limma

missMethyl

MORE

Additional tools and more detailed
methods can be found in Supplemental
information and Table S7.

(Love et al., 2014)

(Subramanian et al.,

2005)

(Aryee et al., 2014)

(Ritchie et al., 2015)

(Phipson et al.,
2016)

(Conesa, 2018)

This paper

https://bioconducto
r.org/packages/rel

ease/bioc/html/DE

Seq2.html

https://www.gsea-
msigdb.org/gseal/in
dex.jsp

https://www.biocon
ductor.org/packag
es/release/bioc/ht
ml/minfi.html

https://bioconducto
r.org/packages/rel
ease/bioc/html/lim
ma.htmi

https://bioconducto
r.org/packages/rel
ease/bioc/html/mis
sMethyl.html

https://github.com/
ConesalLab/MORE

Custom scripts for
computational
analysis are
available at
https://github.com/
EskelandLab/scNe
uronaldiff. Single-
cell data can be
explored in
webtools “hESC
Neuronal
Differentiation
scRNA-seq” and
‘hESC Neuro
Differentiation
scATAC seq”

at
https://cancell.med
isin.uio.no/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and
will be fulfilled by the lead contact Ragnhild Eskeland
(Ragnhild.Eskeland@medisin.uio.no).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human embryonic stem cell (hESC) culture and maintenance and neuronal
differentiation protocol

The full description of the differentiation protocol is described in our protocol
manuscript (bioRxiv https://doi.org/10.1101/2022.01.26.477818).

Immunofluorescence analysis

In brief, cells grown on 13mm glass coverslips, were washed once and fixed in 4%
paraformaldehyde for 15 min at room temperature (RT). After 3 washes, the cells were
permeabilized with 0.3% Triton X-100 (ThermoFisher) in blocking buffer containing 2%
BSA (Sigma-Aldrich) and 0.01% Tween in 1xPBS for 30 min at RT, washed 3 times,
and blocked with 10% horse serum for 30 min. Primary antibodies were diluted (as in
KRT) in 1xPBS containing 0.03% Triton X-100, and coverslips were incubated
overnight at 4°C. Next, coverslips were equilibrated at RT for 2 hours and washed 3
times. The secondary antibodies were diluted (see KRT) in 0.01% Tween-20 (Sigma-
Aldrich) and 0.1% horse serum (BioNordica) in 1xPBS, and coverslips were incubated
for one hour at RT. The coverslips were washed 3 times and mounted on microscope
slides using the ProLong™ Gold Antifade Mountant containing DAPI (Fisher Scientific)
to counterstain cell nuclei. Washing steps lasted 15 minutes and used 1xPBS. Images
were obtained with a DeltaVision high resolution widefield microscope (GE Life
Sciences, USA) using the Resolve 3D software and 100X 1.45NA oil objective and
processed using the open-source software Fiji (Schindelin et al., 2012).

DNA/RNA isolation

Genomic DNA and total RNA were isolated by direct lysis in the culture well followed
by column-based isolation using RNA/DNA purification kit (Norgen Biotek). The
RNase-Free DNase | Kit (Norgen Biotek) was applied for on-column removal of
genomic DNA contamination from RNA isolates. Three RNA isolates were processed
using RNeasy Mini Kit (Qiagen) followed by DNase-treatment using RNAse-Free
DNase Set (Qiagen). All isolations were done according to the manufacturer's
instructions. Nucleic acid quantification was performed using Qubit (ThermoFisher
Scientific), purity was measured using Nanodrop 2000 (ThermoFisher Scientific), while
RNA and DNA integrity was assessed using 2100 Bioanalyzer (Agilent Technologies)
and 4200 TapeStation (Agilent Technologies), respectively.
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Droplet Digital RT-PCR and RNA expression analysis

Reverse transcription of total RNA was performed using QuantiTect Reverse
Transcription Kit (Qiagen). Subsequent ddPCR reactions were set up using ddPCR
Supermix for Probes (No dUTP) (BioRad) and Tagman assays (ThermoFisher) or
Universal Probes (Roche) in combination with target primers (Eurofins) as outlined in
KRT/Oligonucleotides. Droplets for droplet PCR amplification were generated using
the QX200 Droplet Generator (BioRad). Data acquisition and primary analysis was
done using the QX200 Droplet Reader (BioRad) and QuantaSoft software (BioRad).
All steps were performed according to the manufacturer's instructions. To calculate the
number of target copies per ng RNA input, samples were normalized using RPL30 and
RAF1 as normalization genes (Coulter, 2018). Statistical comparisons were performed
in R using t-test in ggpubr package v.0.4.0 (Kassambara, 2020). Results were
visualized in R using the tidyverse package (Wickham et al., 2019).

Global RNA-seq

The sequencing library was prepared with TruSeq Stranded mRNA Library Prep
(Mlumina) according to manufacturer's instructions. The 19 libraries were pooled at
equimolar concentrations and sequenced on an lllumina NovaSeq 6000 S1 flow cell
(lumina) with 100 bp paired end reads. The quality of sequencing reads was assessed
using BBMap (Bushnell, 2014), and adapter sequences and low-quality reads were
removed. The sequencing reads were then mapped to the GRCh38.p5 index using
HISAT2 (Kim et al., 2015). Mapped paired end reads were counted to protein coding
genes using featureCounts (Liao et al., 2014). Differential expression analysis was
conducted in R version 3.5.1 (R Core Team, 2019) using SARTools v.1.6.8 (Varet et
al., 2016) and the DESeq2 v.1.22.1 (Love et al., 2014), and genes were considered
significantly differentially expressed with an FDR < 0.01. Normalized counts were
visualized using the tidyverse package v.1.3.0 (Wickham et al., 2019). The heatmaps
were generated using the pheatmap package version 1.0.12 (Kolde, 2019). The Wald-
test was used to calculate p-values and Benjamini-Hochberg was used to correct for
multiple testing. The gene ontology (GO) analysis of a ranked list of differential
expressed genes were performed using GSEA software (Subramanian et al., 2005)
looking at biological process (BP) terms.

lllumina EPIC array

DNA methylation status of 22 samples were assessed using the Infinium
MethylationEPIC BeadChip v.1.0_B3 (lllumina). Quality control and pre-processing of
the raw data was performed in R using Minfi v.1.36.0 (Aryee et al., 2014). No samples
were removed due to poor quality (detection p values >0.05). Background correction
was performed using NOOB method (Triche et al., 2013) and B values (ratio of
methylated signal divided by the sum of the methylated and unmethylated signal) were
normalized using functional normalization (Fortin et al., 2014). Probes with unreliable
measurements (detection p values >0.01) (n = 8,818) and cross-reactive probes (Chen
et al., 2013) (n = 43,256) were then removed, resulting in a final data set consisting of
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814,112 probes and 22 samples. Probes were annotated with Illumina Human
Methylation EPIC annotation 1.0 BS (hg38). Differential methylation (DM) analysis was
performed on the M values (log2 of the 3 values) using the limma package (Ritchie et
al., 2015), and CpGs were considered significantly differentially methylated with an
FDR < 0.01. GO analysis was performed using top 10 % DM CpGs (DMCs) as input
to GOMETH in the missMethyl package version 1.24.0 (Phipson et al., 2016) for BP
terms.

Integration of RNA-seq and DNA methylation data

Data from matching DNA and RNA samples (extracted from the same wells, n = 16)
were subsetted to undergo statistical integration. Multi-Omics Regulation (MORE)
(Conesa, 2018) was used to identify CpGs that regulate gene expression by applying
Generalized Linear Models: normalized counts for differentially expressed genes (from
DEseq2) were used as the response variable, CpG M-values (from Minfi) and
experimental covariates (Day) were used as predictors. First, CpGs with low variability
were filtered and multicollinearity was reduced by grouping highly correlated CpGs.
Variable selection was then performed with Elastic Net regression and stepwise (two-
ways backward) regression. CpGs were considered to significantly regulate gene
expression when the regression coefficient p-value was < 0.05. Significant CpG
regulators of gene expression were visualized using the Tidyverse package (Wickham
et al., 2019) using beta values (n = 22) and normalized counts (n = 19) from all
samples.

Collection of cells and scRNA-seq

Cells harvested on Days 0, 7, 13 and 20 were washed twice in wells with 1xPBS and
detached using Accutase (STEMCELL Technologies) at 37 °C for 7 min. Cells were
triturated 10-15 times to separate into single cells and transferred to centrifuge tubes
containing the appropriate base media with 0.05 % BSA (Sigma-Aldrich). Counts were
performed using Countess Il FL Cell Counter (ThermoFisher Scientific), cells were
centrifuged at 300x g for 5 min and the supernatant was discarded. Cell pellets were
then resuspended in base medium containing 0.05 % BSA and cell aggregates were
filtered out using MACS SmartStrainers (Miltenyi). The cells were recounted and
processed within 1 hour on the 10x Chromium controller (10x Genomics).
Approximately 2,300 cells were loaded per channel on the Chromium Chip B (10x
Genomics) to give an estimated recovery of 1,400 cells. The Chromium Single Cell 3°
Library & Gel Bead Kit v3 (10x Genomics) and Chromium i7 Multiplex Kit (10x
Genomics) were used to generate scRNA-seq libraries, according to the
manufacturer's instructions. Libraries from 16 samples were pooled together based on
molarity and sequenced on a NextSeq 550 (lllumina) with 28 cycles for read 1, 8 cycles
for the 17 index and 91 cycles for read 2. For the second sequencing run, libraries were
pooled again based on the number of recovered cells to give a similar number of reads
per cell for each sample (33,000 - 44,000 reads/cell).
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scRNA-seq data analysis

The Cell Ranger 3.1.0 Gene Expression pipeline (10x Genomics) was used to
demultiplex the raw base-call files and convert them into FASTQ files. The FASTQ files
were aligned to the GRCh38-3.0.0 human reference genome, and Cell Ranger count
was used with default parameters for computing read counts for Days 0, 7, 13 and 20.
The sequenced replicates for each day were aggregated into single datasets using
Cell Ranger Aggr command. Duplicates, dead cells and cells with greater than 5
median absolute deviations (MADs) for mitochondrial reads were filtered out
(McCarthy et al.,, 2017). We used scTRANSFORM for normalization to better
understand cell to cell heterogeneity after performing cell cycle regression analysis
(Hafemeister and Satija, 2019; Tirosh et al., 2016) (for more details, see supplemental
information). We used a resolution of 0.55 to cluster cells, obtained by determining the
optimum number of clusters (cell grouped together sharing similar expression profiles)
in the dataset using the Clustree R package (Zappia and Oshlack, 2018) (Fig. S2B
and C).

scATAC-seq Library Preparation and Sequencing

Cells were washed twice with 1xPBS and detached to single cell suspension by
application of Accutase (STEMCELL Technologies) at 37 °C for 7 min. The detached
cells were washed with appropriate base media with added 0.04% BSA (Sigma-
Aldrich) and filtered using MACS SmartStrainers (Miltenyi Biotech) to remove cell
aggregates. Nuclei isolation was done according to the 10x Genomics protocol
CG000169 (Rev D) using 2 minutes of incubation in lysis buffer diluted to 0.1x and 0.5x
for Day 0 and Day 20 cells, respectively. We used the Countess |l FL Cell Counter
(ThermoFisher Scientific) to quantify nuclei and confirm complete lysis and microscopy
to confirm high nuclei quality. Nuclei were further processed on the 10x Chromium
controller (10x Genomics) using Next GEM Chip H Single Cell Kit (10x Genomics),
Next GEM Single Cell ATAC Library & Gel Bead Kit v1.1 (10 x Genomics) and
Chromium i7 Multiplex Kit N Set A (10x Genomics) according to the Next GEM Single
Cell ATAC Reagent Kits v1.1 User Guide (CG000209, Rev C). The targeted nuclei
recovery was 5,000 nuclei per sample. The resulting 4 sample libraries were
sequenced on a NovaSeq Sp flow cell (Illumina) with 50 cycles for read 1, 8 cycles for
the i7 index read, 16 cycles for the i5 index read and 49 cycles for read 2.

scATAC sequencing analysis

Cell Ranger ATAC version 1.2.0 with reference genome GRCh38-1.2.0 was used to
pre-process sSCATAC-seq raw sequencing data into FASTQ files. Single cell
accessibility counts for the cells were generated from reads using the ‘cellranger-atac
count’ pipeline. Reference genome HG38 used for alignment and generation of single-
cell ~accessibility counts was obtained from the 10x Genomics
(https://support.10xgenomics.com/single-cell-atac/software/downloads/).

Downstream analysis of the scATAC-seq data was performed using the R package
ArchR v1.0.1 (Granja et al., 2021). A tile matrix of 500-bp bins was constructed after
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quality control, removal of low-quality cells and doublet removal using the doubletfinder
function of ArchR. The ArchR Project contained the filtered cells that had a TSS
enrichment below 3 and <1000 fragments. A layered dimensionality reduction
approach utilizing Latent Semantic Indexing (LSI) and Singular Value Decomposition
(SVD) applied on Genome-wide tile matrix. Uniform Manifold approximation and
projection (UMAP) was performed to visualize data in 2D space. Louvain Clustering
methods implemented in R package Seurat (Stuart et al., 2019) was used for clustering
of the single-cell accessibility profiles.

References

Al-Naama, N., Mackeh, R., and Kino, T. (2020). C2H2-Type Zinc Finger Proteins in Brain
Development, Neurodevelopmental, and Other Neuropsychiatric Disorders: Systematic
Literature-Based Analysis. Front Neurol 171, 32.

Arai, Y., Pulvers, J.N., Haffner, C., Schilling, B., Nusslein, I., Calegari, F., and Huttner, W.B.
(2011). Neural stem and progenitor cells shorten S-phase on commitment to neuron
production. Nat Commun 2, 154.

Aruga, J., and Millen, K.J. (2018). ZIC1 Function in Normal Cerebellar Development and
Human Developmental Pathology. In Zic Family: Evolution, Development and Disease, J.
Aruga, ed. (Singapore: Springer), pp. 249-268.

Aryee, M.J., Jaffe, A.E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A.P., Hansen, K.D.,
and Irizarry, R.A. (2014). Minfi: a flexible and comprehensive Bioconductor package for the
analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363—1369.

Baek, S., and Lee, I. (2020). Single-cell ATAC sequencing analysis: From data
preprocessing to hypothesis generation. Computational and Structural Biotechnology Journal
18, 1429-1439.

Ball, M.P, Li, J.B., Gao, Y., Lee, J.-H., LeProust, E.M., Park, |.-H., Xie, B., Daley, G.Q., and
Church, G.M. (2009). Targeted and genome-scale strategies reveal gene-body methylation
signatures in human cells. Nat Biotechnol 27, 361-368.

Becker, K.A., Ghule, P.N., Therrien, J.A., Lian, J.B., Stein, J.L., van Wijnen, A.J., and Stein,
G.S. (2006). Self-renewal of human embryonic stem cells is supported by a shortened G1
cell cycle phase. J Cell Physiol 209, 883—-893.

Beyer, T.A., Weiss, A., Khomchuk, Y., Huang, K., Ogunjimi, A.A., Varelas, X., and Wrana,
J.L. (2013). Switch Enhancers Interpret TGF-$ and Hippo Signaling to Control Cell Fate in
Human Embryonic Stem Cells. Cell Reports 5, 1611-1624.

Boward, B., Wu, T., and Dalton, S. (2016). Concise Review: Control of Cell Fate Through
Cell Cycle and Pluripotency Networks. STEM CELLS 34, 1427-1436.

Bushnell, B. (2014). BBMap: A Fast, Accurate, Splice-Aware Aligner (Lawrence Berkeley
National Lab. (LBNL), Berkeley, CA (United States)).

Cakir, B., Xiang, Y., Tanaka, Y., Kural, M.H., Parent, M., Kang, Y.-J., Chapeton, K.,

Patterson, B., Yuan, Y., He, C.-S., et al. (2019). Engineering of human brain organoids with a
functional vascular-like system. Nat Methods 716, 1169-1175.

35


https://doi.org/10.1101/2022.02.01.478732
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478732; this version posted February 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Chavali, V.R.M., Haider, N., Rathi, S., Vrathasha, V., Alapati, T., He, J., Gill, K., Nikonov, R.,
Duong, T.T., McDougald, D.S., et al. (2020). Dual SMAD inhibition and Wnt inhibition enable
efficient and reproducible differentiations of induced pluripotent stem cells into retinal
ganglion cells. Sci Rep 10, 11828.

Chen, L., Tong, Q., Chen, X,, Jiang, P., Yu, H., Zhao, Q., Sun, L., Liu, C., Gu, B., Zheng, Y.,
et al. (2021). PHC1 maintains pluripotency by organizing genome-wide chromatin
interactions of the Nanog locus. Nat Commun 12, 2829.

Chen, Y., Lemire, M., Choufani, S., Butcher, D.T., Grafodatskaya, D., Zanke, B.W., Gallinger,
S., Hudson, T.J., and Weksberg, R. (2013). Discovery of cross-reactive probes and
polymorphic CpGs in the lllumina Infinium HumanMethylation450 microarray. Epigenetics 8,
203-209.

Chiu, W.T., Charney Le, R., Blitz, I.L., Fish, M.B., Li, Y., Biesinger, J., Xie, X., and Cho,
K.W.Y. (2014). Genome-wide view of TGFB/Foxh1 regulation of the early mesendoderm
program. Development 7141, 4537-4547.

Chou, S.-J., and Tole, S. (2019). Lhx2, an evolutionarily conserved, multifunctional regulator
of forebrain development. Brain Res 1705, 1-14.

Colasante, G., Simonet, J.C., Calogero, R., Crispi, S., Sessa, A., Cho, G., Golden, J.A., and
Broccoli, V. (2015). ARX Regulates Cortical Intermediate Progenitor Cell Expansion and
Upper Layer Neuron Formation Through Repression of Cdkn1c. Cerebral Cortex 25, 322—
335.

Conesa, A. (2018). Multi-Omics REgulation by regression models.

Coulter, S.J. (2018). Mitigation of the effect of variability in digital PCR assays through use of
duplexed reference assays for normalization. BioTechniques 65, 86-91.

Fedorova, V., Vanova, T., Elrefae, L., Pospisil, J., Petrasova, M., Kolajova, V., Hudacova, Z.,
Baniariova, J., Barak, M., Peskova, L., et al. (2019). Differentiation of neural rosettes from
human pluripotent stem cells in vitro is sequentially regulated on a molecular level and
accomplished by the mechanism reminiscent of secondary neurulation. Stem Cell Research
40, 101563.

Fortin, J.-P., Labbe, A., Lemire, M., Zanke, B.W., Hudson, T.J., Fertig, E.J., Greenwood,
C.M., and Hansen, K.D. (2014). Functional normalization of 450k methylation array data
improves replication in large cancer studies. Genome Biology 75, 503.

Granja, J.M., Corces, M.R., Pierce, S.E., Bagdatli, S.T., Choudhry, H., Chang, H.Y., and
Greenleaf, W.J. (2021). ArchR is a scalable software package for integrative single-cell
chromatin accessibility analysis. Nature Genetics 53, 403—411.

Gulati, G.S., Sikandar, S.S., Wesche, D.J., Manjunath, A., Bharadwaj, A., Berger, M.J.,
llagan, F., Kuo, A.H., Hsieh, R.W., Cai, S., et al. (2020). Single-cell transcriptional diversity is
a hallmark of developmental potential. Science.

Hafemeister, C., and Satija, R. (2019). Normalization and variance stabilization of single-cell
RNA-seq data using regularized negative binomial regression. Genome Biology 20, 296.

Hao, Y., Tang, S., Yuan, Y., Liu, R., and Chen, Q. (2019). Roles of FGF8 subfamily in
embryogenesis and oral-maxillofacial diseases (Review). International Journal of Oncology
54, 797-806.

36


https://doi.org/10.1101/2022.02.01.478732
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478732; this version posted February 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk,
AJ., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data.
Cell 184, 3573-3587.e29.

Hasenpusch-Theil, K., West, S., Kelman, A., Kozic, Z., Horrocks, S., McMahon, A.P., Price,
D.J., Mason, J.O., and Theil, T. (2018). Gli3 controls the onset of cortical neurogenesis by
regulating the radial glial cell cycle through Cdk6 expression. Development 145.

Haswell, J.R., Mattioli, K., Gerhardinger, C., Maass, P.G., Foster, D.J., Peinado, P., Wang,
X., Medina, P.P., Rinn, J.L., and Slack, F.J. (2021). Genome-wide CRISPR interference
screen identifies long non-coding RNA loci required for differentiation and pluripotency. PLoS
One 16, e0252848.

Hong, S.-H., Lee, J.-H., Lee, J.B., Ji, J., and Bhatia, M. (2011). ID1 and ID3 represent
conserved negative regulators of human embryonic and induced pluripotent stem cell
hematopoiesis. Journal of Cell Science 124, 1445-1452.

Hu, Q.-D., Ang, B.-T., Karsak, M., Hu, W.-P., Cui, X.-Y., Duka, T., Takeda, Y., Chia, W.,
Sankar, N., Ng, Y.-K., et al. (2003). F3/Contactin Acts as a Functional Ligand for Notch
during Oligodendrocyte Maturation. Cell 7115, 163-175.

lida, H., Furukawa, Y., Teramoto, M., Suzuki, H., Takemoto, T., Uchikawa, M., and Kondoh,
H. (2020). Sox2 gene regulation via the D1 enhancer in embryonic neural tube and neural
crest by the combined action of SOX2 and ZIC2. Genes to Cells 25, 242-256.

Ikeda, K., Ookawara, S., Sato, S., Ando, Z., Kageyama, R., and Kawakami, K. (2007). Six1 is
essential for early neurogenesis in the development of olfactory epithelium. Developmental
Biology 31717, 53—68.

Kassambara, A. (2020). ggpubr: “ggplot2” Based Publication Ready Plots.

Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low
memory requirements. Nat Methods 72, 357-360.

Kirkeby, A., Grealish, S., Wolf, D.A., Nelander, J., Wood, J., Lundblad, M., Lindvall, O., and
Parmar, M. (2012). Generation of Regionally Specified Neural Progenitors and Functional
Neurons from Human Embryonic Stem Cells under Defined Conditions. Cell Reports 7, 703—
714.

Kolde, R. (2019). pheatmap: Pretty Heatmaps.

Krishnakumar, R., Chen, A.F., Pantovich, M.G., Danial, M., Parchem, R.J., Labosky, P.A.,
and Blelloch, R. (2016). FOXD3 Regulates Pluripotent Stem Cell Potential by Simultaneously
Initiating and Repressing Enhancer Activity. Cell Stem Cell 18, 104-117.

Kurtz, A., Zimmer, A., Schnitgen, F., Brining, G., Spener, F., and Miiller, T. (1994). The
expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with
neuronal and glial cell development. Development 120, 2637-2649.

Laukoter, S., Beattie, R., Pauler, F.M., Amberg, N., Nakayama, K.l., and Hippenmeyer, S.
(2020). Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral
cortex development. Nat Commun 77, 195.

Laurent, L., Wong, E., Li, G., Huynh, T., Tsirigos, A., Ong, C.T., Low, H.M., Kin Sung, K.W.,

Rigoutsos, I., Loring, J., et al. (2010). Dynamic changes in the human methylome during
differentiation. Genome Res 20, 320-331.

37


https://doi.org/10.1101/2022.02.01.478732
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478732; this version posted February 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Lee, S.-J,, Jung, Y.H., Oh, S.Y., Yong, M.S., Ryu, J.M., and Han, H.J. (2014). Netrin-1
Induces MMP-12-Dependent E-Cadherin Degradation Via the Distinct Activation of PKCa
and FAK/Fyn in Promoting Mesenchymal Stem Cell Motility. Stem Cells Dev 23, 1870-1882.

Li, X., Sun, L., and Jin, Y. (2008). Identification of karyopherin-alpha 2 as an Oct4 associated
protein. Journal of Genetics and Genomics 35, 723-728.

Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930.

Lister, R., Mukamel, E.A., Nery, J.R., Urich, M., Puddifoot, C.A., Johnson, N.D., Lucero, J.,
Huang, Y., Dwork, A.J., Schultz, M.D., et al. (2013). Global epigenomic reconfiguration
during mammalian brain development. Science 341, 1237905.

Liu, L., Michowski, W., Kolodziejczyk, A., and Sicinski, P. (2019). The cell cycle in stem cell
proliferation, pluripotency and differentiation. Nat Cell Biol 271, 1060-1067.

Love, M.l., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

Main, H., Hedenskog, M., Acharya, G., Hovatta, O., and Lanner, F. (2020). Karolinska
Institutet Human Embryonic Stem Cell Bank. Stem Cell Research 45, 101810.

Maijor, T., Powers, A., and Tabar, V. (2016). Derivation of Telencephalic Oligodendrocyte
Progenitors from Human Pluripotent Stem Cells. Current Protocols in Stem Cell Biology 39,
1H.10.1-1H.10.23.

Maksimovic, J., Oshlack, A., and Phipson, B. (2021). Gene set enrichment analysis for
genome-wide DNA methylation data. Genome Biology 22, 173.

Maroof, A.M., Keros, S., Tyson, J.A., Ying, S.-W., Ganat, Y.M., Merkle, F.T., Liu, B.,
Goulburn, A., Stanley, E.G., Elefanty, A.G., et al. (2013). Directed Differentiation and
Functional Maturation of Cortical Interneurons from Human Embryonic Stem Cells. Cell Stem
Cell 12, 559-572.

Massimo, M., and Long, K.R. (2021). Orchestrating human neocortex development across
the scales; from micro to macro. Semin Cell Dev Biol S1084-9521(21)00242-1.

McCarthy, D.J., Campbell, K.R., Lun, A.T.L., and Wills, Q.F. (2017). Scater: pre-processing,
quality control, normalization and visualization of single-cell RNA-seq data in R.
Bioinformatics 33, 1179-1186.

Mistri, T.K., Devasia, A.G., Chu, L.T., Ng, W.P., Halbritter, F., Colby, D., Martynoga, B.,
Tomlinson, S.R., Chambers, |., Robson, P., et al. (2015). Selective influence of Sox2 on POU
transcription factor binding in embryonic and neural stem cells. EMBO Reports 16, 1177—
1191.

Nadarajah, B., and Parnavelas, J.G. (2002). Modes of neuronal migration in the developing
cerebral cortex. Nat Rev Neurosci 3, 423—432.

Ohashi, M., Korsakova, E., Allen, D., Lee, P., Fu, K., Vargas, B.S., Cinkornpumin, J., Salas,
C., Park, J.C., Germanguz, |., et al. (2018). Loss of MECP2 Leads to Activation of P53 and
Neuronal Senescence. Stem Cell Reports 10, 1453-1463.

O’Leary, D.D.M., and Sahara, S. (2008). Genetic regulation of arealization of the neocortex.
Curr Opin Neurobiol 18, 90-100.

38


https://doi.org/10.1101/2022.02.01.478732
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478732; this version posted February 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Ouyang, J.F., Kamaraj, U.S., Cao, E.Y., and Rackham, O.J.L. (2021). ShinyCell: simple and
sharable visualization of single-cell gene expression data. Bioinformatics.

Pages, H. (2020). BSgenome: Software infrastructure for efficient representation of full
genomes and their SNPs version 1.58.0 from Bioconductor.

Pang, T., Atefy, R., and Sheen, V. (2008). Malformations of cortical development.
Neurologist 74, 181-191.

Pfister, A.S., Tanneberger, K., Schambony, A., and Behrens, J. (2012). Amer2 Protein Is a
Novel Negative Regulator of Wnt/B-Catenin Signaling Involved in Neuroectodermal
Patterning®. Journal of Biological Chemistry 287, 1734—-1741.

Phipson, B., Maksimovic, J., and Oshlack, A. (2016). missMethyl: an R package for
analyzing data from lllumina’s HumanMethylation450 platform. Bioinformatics 32, 286—288.

Pinson, A., and Huttner, W.B. (2021). Neocortex expansion in development and evolution-
from genes to progenitor cell biology. Curr Opin Cell Biol 73, 9-18.

Piper, M., Barry, G., Harvey, T.J., McLeay, R., Smith, A.G., Harris, L., Mason, S., Stringer,
B.W., Day, B.W., Wray, N.R., et al. (2014). NFIB-Mediated Repression of the Epigenetic
Factor Ezh2 Regulates Cortical Development. J. Neurosci. 34, 2921-2930.

R Core Team (2019). A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing.

Riemens, R.J.M., van den Hove, D.L.A., Esteller, M., and Delgado-Morales, R. (2018).
Directing neuronal cell fate in vitro: Achievements and challenges. Progress in Neurobiology
168, 42—-68.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015).
limma powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res 43, e47.

Schindelin, J., Arganda-Carreras, |., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source
platform for biological-image analysis. Nat Methods 9, 676—-682.

Schlosser, G. (2014). Early embryonic specification of vertebrate cranial placodes. WIREs
Developmental Biology 3, 349-363.

Sharma, A., Akshay, A., Rogne, M., and Eskeland, R. (2021). ShinyArchR.UiO: user-friendly,
integrative and open-source tool for visualization of single-cell ATAC-seq data using ArchR.
Bioinformatics.

Smith, Z.D., and Meissner, A. (2013). DNA methylation: roles in mammalian development.
Nat Rev Genet 14, 204-220.

Soufi, A., and Dalton, S. (2016). Cycling through developmental decisions: how cell cycle
dynamics control pluripotency, differentiation and reprogramming. Development 7143, 4301—
4311.

Spalice, A., Parisi, P., Nicita, F., Pizzardi, G., Del Balzo, F., and lannetti, P. (2009). Neuronal

migration disorders: clinical, neuroradiologic and genetics aspects. Acta Paediatrica 98, 421-
433.

39


https://doi.org/10.1101/2022.02.01.478732
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478732; this version posted February 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Stricker, S.H., and G6tz, M. (2018). DNA-Methylation: Master or Slave of Neural Fate
Decisions? Front Neurosci 12, 5.

Strém, S., Holm, F., Bergstrom, R., Strémberg, A.-M., and Hovatta, O. (2010). Derivation of
30 human embryonic stem cell lines--improving the quality. In Vitro Cell. Dev. Biol. Anim. 46,
337-344.

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y.,
Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-Cell
Data. Cell 177, 1888-1902.e21.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A,
Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment
analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
PNAS 102, 15545-15550.

Sun, J., Yang, J., Miao, X., Loh, H.H., Pei, D., and Zheng, H. (2021). Proteins in DNA
methylation and their role in neural stem cell proliferation and differentiation. Cell Regen 10,
7.

Tang, K., Peng, G., Qiao, Y., Song, L., and Jing, N. (2015). Intrinsic regulations in neural fate
commitment. Development, Growth & Differentiation 57, 109—-120.

Tchieu, J., Zimmer, B., Fattahi, F., Amin, S., Zeltner, N., Chen, S., and Studer, L. (2017). A
Modular Platform for Differentiation of Human PSCs into All Major Ectodermal Lineages. Cell
Stem Cell 21, 399-410.e7.

Tirosh, 1., Izar, B., Prakadan, S.M., Wadsworth, M.H., Treacy, D., Trombetta, J.J., Rotem, A.,
Rodman, C., Lian, C., Murphy, G., et al. (2016). Dissecting the multicellular ecosystem of
metastatic melanoma by single-cell RNA-seq. Science 352, 189-196.

Triche, T.J., Weisenberger, D.J., Van Den Berg, D., Laird, P.W., and Siegmund, K.D. (2013).
Low-level processing of lllumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res
41, e90.

Varet, H., Brillet-Guéguen, L., Coppée, J.-Y., and Dillies, M.-A. (2016). SARTools: A
DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq
Data. PLOS ONE 11, e0157022.

Verrotti, A., Spalice, A., Ursitti, F., Papetti, L., Mariani, R., Castronovo, A., Mastrangelo, M.,
and lannetti, P. (2010). New trends in neuronal migration disorders. European Journal of
Paediatric Neurology 74, 1-12.

Wang, H., Wang, X., Xu, X., Kyba, M., and Cooney, A.J. (2016). Germ Cell Nuclear Factor
(GCNF) Represses Oct4 Expression and Globally Modulates Gene Expression in Human
Embryonic Stem (hES) Cells. J Biol Chem 291, 8644-8652.

Wang, H., Xiao, Z., Zheng, J., Wu, J., Hu, X.-L., Yang, X., and Shen, Q. (2019a). ZEB1
Represses Neural Differentiation and Cooperates with CTBP2 to Dynamically Regulate Cell
Migration during Neocortex Development. Cell Reports 27, 2335-2353.€6.

Wang, Q., Zhang, Y., Wang, M., Song, W.-M., Shen, Q., McKenzie, A., Choi, |., Zhou, X.,

Pan, P.-Y., Yue, Z., et al. (2019b). The landscape of multiscale transcriptomic networks and
key regulators in Parkinson’s disease. Nat Commun 70, 5234.

40


https://doi.org/10.1101/2022.02.01.478732
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478732; this version posted February 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., Frangois, R., Grolemund,
G., Hayes, A., Henry, L., Hester, J., et al. (2019). Welcome to the Tidyverse. Journal of Open
Source Software 4, 1686.

Xie, W., Barr, C.L., Kim, A,, Yue, F., Lee, A.Y., Eubanks, J., Dempster, E.L., and Ren, B.
(2012). Base-Resolution Analyses of Sequence and Parent-of-Origin Dependent DNA
Methylation in the Mouse Genome. Cell 148, 816-831.

Xing, L., Wilsch-Brauninger, M., and Huttner, W.B. (2021). How neural stem cells contribute
to neocortex development. Biochemical Society Transactions 49, 1997-2006.

Yao, B., Christian, K.M., He, C., Jin, P., Ming, G., and Song, H. (2016). Epigenetic
mechanisms in neurogenesis. Nat Rev Neurosci 717, 537-549.

Zappia, L., and Oshlack, A. (2018). Clustering trees: a visualization for evaluating clusterings
at multiple resolutions. GigaScience 7.

Zhang, S., Bell, E., Zhi, H., Brown, S., Imran, S.A.M., Azuara, V., and Cui, W. (2019). OCT4
and PAX6 determine the dual function of SOX2 in human ESCs as a key pluripotent or
neural factor. Stem Cell Research & Therapy 10, 122.

Zheng, X., Boyer, L., Jin, M., Mertens, J., Kim, Y., Ma, L., Ma, L., Hamm, M., Gage, F.H., and
Hunter, T. (2016). Metabolic reprogramming during neuronal differentiation from aerobic
glycolysis to neuronal oxidative phosphorylation. Elife 5, e13374.

Zhu, Q., Song, L., Peng, G., Sun, N., Chen, J., Zhang, T., Sheng, N., Tang, W., Qian, C.,
Qiao, Y., et al. (2014). The transcription factor Pou3f1 promotes neural fate commitment via
activation of neural lineage genes and inhibition of external signaling pathways. ELife 3,
e02224.

41


https://doi.org/10.1101/2022.02.01.478732
http://creativecommons.org/licenses/by-nc-nd/4.0/

