

1

2 **A cell fate decision map reveals abundant direct neurogenesis**

3 **in the human developing neocortex**

4

5 Laure Coquand¹, Anne-Sophie Macé², Sarah Farcy¹, Clarisse Brunet Avalos¹, Amandine Di
6 Cicco¹, Marusa Lampic¹, Betina Bessières³, Tania Attie-Bitach³, Vincent Fraisier², Fabien
7 Guimiot⁴, Alexandre Baffet^{1,5}

8

9 1- Institut Curie, PSL Research University, CNRS UMR144, Paris, France

10 2- UMR 144-Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS-Institut Curie, Paris,
11 France.

12 3- UF Embryofœtopathologie, Hôpital Necker-enfants malades, Paris, France

13 4- UF de Fœtopathologie – Université de Paris et Inserm UMR1141, Hôpital Robert Debré,
14 Paris, France

15 5- Institut national de la santé et de la recherche médicale (Inserm)

16

17 **Abstract**

18 The human neocortex has undergone strong evolutionary expansion, largely due to an
19 increased progenitor population, the basal radial glial (bRG) cells. These cells are responsible
20 for the production of a diversity of cell types, but the successive cell fate decisions taken by
21 individual progenitors remains unknown. Here, we developed a semi-automated live/fixed
22 correlative imaging method to generate a map of bRG cell division modes in early fetal tissue
23 and cerebral organoids. Through the analysis of over 1,000 dividing progenitors, we show that
24 bRG cells undergo abundant symmetric amplifying divisions, followed by frequent direct
25 neurogenic divisions, bypassing intermediate progenitors. These direct neurogenic divisions are
26 more abundant in the upper part of the subventricular zone. We furthermore demonstrate
27 asymmetric Notch activation in the self-renewing daughter cells, independently of basal fiber
28 inheritance. Our results reveal a remarkable conservation of fate decisions in cerebral
29 organoids, supporting their value as models of early human neurogenesis.

30

31

32

33 **Introduction**

34 The human neocortex, composed of billions of neuronal and glial cells, is at the basis
35 of higher cognitive functions (Cadwell et al., 2019). Its evolutionary size expansion is
36 particularly important in the upper (supragranular) layer, leading to increased surface area and
37 folding (Nowakowski et al., 2016). This is largely due to progenitor cells called basal radial
38 glial cells (bRGs), also known as outer radial glial cells (Fietz et al., 2010; Hansen et al., 2010;
39 Reillo et al., 2011; Smart et al., 2002). These cells are highly abundant in human - but rare in
40 the lissencephalic mouse (Vaid et al., 2018; Wang et al., 2011) – and reside in the outer
41 subventricular zone (OSVZ) where they contribute to the majority of supragranular neurons
42 (Dehay et al., 2015).

43 bRG cells derive from apical (or ventricular) RG cells but have lost their connection to
44 the ventricular surface through a process resembling an epithelial-mesenchymal transition
45 (EMT) (**Figure 1A**) (LaMonica et al., 2013; Martínez-Martínez et al., 2016). A major feature
46 of bRG cells is the presence of an elongated basal process along which newborn neurons
47 migrate, though various morphologies have been reported including the presence of an apical
48 process that does not reach the ventricle (Betizeau et al., 2013). bRG cells express various RG
49 markers such as PAX6, Vimentin and SOX2, and undergo an unusual form of migration called
50 mitotic somal translocation (MST) which occurs shortly before cytokinesis (Ostrem et al.,
51 2014). Consistent with a steady increase of the bRG cell pool during development, live imaging
52 experiments have documented their high proliferative potential (Betizeau et al., 2013; Fietz et
53 al., 2010; Hansen et al., 2010). bRG cells are believed to increase the neurogenic output of the
54 cortex, while providing extra tracks for radial migration and tangential dispersion of neurons
55 (Fernández et al., 2016).

56 Genomic analyses have revealed the transcriptional profile of bRG cells as well as the
57 cellular diversity in the human developing neocortex (Florio et al., 2015; Nowakowski et al.,
58 2017; Pollen et al., 2015). They highlighted the conservation of cellular identities between fetal
59 tissue and cerebral organoids, despite some degree of metabolic stress (Amiri et al., 2018;
60 Bhaduri et al., 2020; Camp et al., 2015; Kanton et al., 2019; Pollen et al., 2019; Velasco et al.,
61 2019). Such studies led to the identification of several human bRG-specific genes with
62 important roles in bRG cell generation and amplification (Fiddes et al., 2018; Florio et al., 2015;
63 Lui et al., 2014; Suzuki et al., 2018). How these factors affect bRG cell fate decisions *in vivo*
64 remains however unclear.

65 Large scale genomic methods, or clonal methods such MADM or iTracer, are powerful
66 tools to identify cellular diversity and global lineage relationships, but do not allow the probing

67 of cell fate decisions taken by individual cells (Gao et al., 2014; He et al., 2021). Indeed, very
68 different sequences of progenitor divisions could lead to the same final cellular output (Fischer
69 and Morin, 2021). Identifying these progenitor cell fate decisions modes (i.e. the fate of their
70 daughter cells) is critical to understand how neurogenesis is regulated across species, and
71 affected in pathological contexts. Before gliogenic stages, bRG cells can, theoretically, undergo
72 several division modes: symmetric proliferative (two RG daughters), symmetric self-
73 consuming (two differentiating daughters) or asymmetric self-renewing divisions (one RG and
74 one differentiating daughter). Moreover, differentiating divisions can lead to the production of
75 a neuron (direct neurogenic division) or of an intermediate progenitor (IP, indirect neurogenic
76 division). This IP can itself have different proliferative properties.

77 Here, we developed a method to quantitatively map human bRG cell division modes.
78 Using a semi-automated live-fixed correlative imaging approach that enables the identification
79 of the fate of dividing bRG daughters in space and time, we have established a map of cell fate
80 decisions in human fetal tissue and cerebral organoids. We observe a remarkable similarity of
81 division modes between the two tissues, and identify a major – although not exclusive –
82 trajectory for bRG cells: symmetric amplifying divisions followed by self-consuming direct
83 neurogenic divisions, independently of IP generation. Within asymmetrically dividing cells, we
84 demonstrate that basal process inheritance does not correlate with self-renewal as it does in
85 aRG cells, and is a consequence rather than a cause of bRG cell fate. We show that this is due
86 to a difference in Notch signaling, possibly caused by the different microenvironments of these
87 two cell types.

88

89 **Results**

90 **Morphological identification of bRG cells**

91 In order to identify human bRG cell division modes using live imaging methods, we
92 first validated the identification of these cells based on morphological features. Human fetal
93 pre-frontal cortex tissues from Gestational Week (GW) 14-18 were stained for phospho-
94 Vimentin, which marks mitotic RG cells. Imaging within the SVZ revealed four different
95 morphologies for these cells: unipolar with a single apical process (not reaching the VZ),
96 unipolar with a basal process, bipolar with both an apical and a basal process, and cells with no
97 visible process (**Figure 1B, 1C**). Mitotic bipolar bRG cells always had a major thick process
98 and a minor thin process, which could be apical or basal (**Figure 1B**, zone 3). Overall, over
99 80% p-VIM+ cells displayed at least one process, and 60% a basal process. All process-

100 harboring p-VIM+ cells were also SOX2+, while 20% of non-polarized p-VIM+ cells were
101 negative for SOX2 (**Figure 1D**).

102 We then explored bRG cell morphology in non-mitotic cells marked with a cytoplasmic
103 GFP. Fetal brains slices were infected with retroviruses (RV) and stained for SOX2 (RG cells),
104 EOMES (IPs) and NEUN (Neurons) (**Figure 1E and S1A-S1B**). This analysis confirmed that
105 over 80% of SOX2+/EOMES-/NEUN- cells displayed apical and/or basal processes, while 20%
106 were non-polarized (**Figures 1F, 1G**). Moreover, the majority of process-harboring cells were
107 SOX2+/EOMES-/NEUN-, and around 40% of non-polarized cells were SOX2+/EOMES-
108 /NEUN- (**Figure 1H**). Therefore, human fetal bRG cells largely display elongated processes,
109 though 20% are non-polarized.

110 We next performed live imaging of GFP-expressing cells in fetal slices, focusing on
111 elongated bRG cells. Dividing cells had the same morphology as previously described in fixed
112 samples (**Figure S1C**). The majority of process-harboring cells performed mitotic somal
113 translocation (MST), though 25% performed stationary divisions (**Figure 1I, J; Video S1**).
114 MST could occur in the apical direction or in the basal direction, depending on their shape.
115 When bRG cells had two processes, MST occurred in the dominant (thick) process (**Figure 1J**).

116 Finally, we asked whether these morphological features were conserved in dorsal
117 forebrain organoids. Week 8-10 organoids were infected with GFP-expressing retroviruses and
118 stained for the cell fate marker SOX2, EOMES and NEUN, which revealed abundant SOX2+
119 bRG cells above the ventricular zone (**Figure 1K and S1D-S1E**). As in fetal tissue, the majority
120 of SOX2+/EOMES-/NEUN- cells displayed one or two elongated processes, and 20% were
121 non-polarized (**Figure 1L, M**). It was not possible to unambiguously identify whether processes
122 were apical or basal, as bRG cells were often located between two lumens. The vast majority
123 of process-harboring cells, and around 40% non-polarized cells, were SOX2+/EOMES-
124 /NEUN- (**Figure 1N**). Live imaging confirmed these morphologies and indicated that the
125 majority of bRG cells performed MST (**Figure 1O and S1F**). Therefore, the majority of human
126 bRG cells can be identified in live samples based on their elongated morphology and ability to
127 divide, which is conserved between fetal tissue and organoids.

128

129 **A semi-automated correlative microscopy method to identify cell fate decisions.**

130 We next developed a method to identify the fate acquired by daughter cells following
131 progenitor cell division, in week 8-10 cerebral organoids. We established a correlative
132 microscopy method consisting of live imaging GFP-expressing progenitors and, following
133 fixation and immunostaining, assigning a fate to the live imaged cells (**Figure 2A**). The

134 identification of corresponding cells between the live and fixed samples can be particularly
135 challenging as the tissue is complex and multiple slices are imaged in parallel in up to 4 dishes
136 (60-70 videos per acquisition). Moreover, slices rotate and even flip during the
137 immunofluorescence process. We therefore developed a computer-assisted method to automate
138 the localization of the videos in the immunostained samples (see methods). In brief, RV-
139 infected tissue slices are live imaged for 48 hours and, at the end of the movie, 4X brightfield
140 images of the slices containing positional information from each video are generated (**Figure**
141 **2B; Video S2**). Slices are then fixed, stained for the cell fate markers SOX2, EOMES and
142 NEUN, and mosaic (tiled) images of the entire slices are acquired. Both live and fixed images
143 are automatically segmented, paired, flipped and aligned. The position of each video is thereby
144 obtained on the immunostained images, leading to the identification of matching cells between
145 the live and fixed samples (**Figure 2B**). Using this method, bRG cells undergoing MST and
146 dividing can be live imaged and the fate of the two daughter cells identified (**Figure 2C; Video**
147 **S3**). Daughter cell fate was analyzed on average 30 hours after division. We noted that when a
148 daughter cell differentiated (e.g. into an EOMES+ IP), it always retained some expression of
149 the mother cell fate marker (SOX2) (**Figure 2C**). Expression of a novel fate marker was indeed
150 very rapid, with EOMES or NEUN being detected in daughter cells that had divided 1-2 hours
151 prior to the end of the movie (**Figure S2A**). Similarly, dividing IPs and migrating neurons could
152 be live imaged and cell fate analyzed at the last timepoint (**Figure 2D, 2E; Videos S4, S5**).
153 Therefore, this semi-automated correlative microscopy method allows the identification of cell
154 fate markers in live imaged cerebral organoids, in a highly reproducible and quantitative
155 manner.

156

157 **A map of cell fate decisions in cerebral organoids**

158 To generate a map of progenitor division modes, we analyzed 444 dividing bRG cells,
159 in week 8-10 cerebral organoids, prior to the start of gliogenesis (Pollen et al., 2019; Velasco
160 et al., 2019) (**Figures 3A, 3B, 3C ; Videos S6, S7, S8**). We first quantified the fraction of
161 proliferative divisions (leading to two SOX2+ cells) versus neurogenic divisions (leading to at
162 least one differentiating cell, EOMES+ or NEUN+). This analysis revealed a high rate of bRG
163 cell amplification at this stage, with over 60% of proliferative divisions (**Figures 3D, 3E**).
164 Within neurogenic divisions, different patterns could be observed. bRG cells performed
165 symmetric self-consuming divisions, leading to two differentiating cells, or asymmetric self-
166 renewing divisions, leading to one bRG cell and one differentiating cell. Self-consuming
167 divisions were quite frequent (close to 40% of neurogenic divisions) and therefore represent an

168 important mode of neuronal generation by bRG cells (**Figures 3D, 3F**). In both types of
169 neurogenic division (asymmetric or symmetric), bRG cells could divide directly into neurons
170 or indirectly, via the generation of IPs. Strikingly, we observed abundant direct neurogenesis
171 by bRG cells (60% of neurogenic divisions), indicating that generation of IPs is not a systematic
172 differentiation trajectory in these cells (**Figures 3D, 3G**). Notably, we never observed
173 asymmetrically dividing bRG cells generating one IP and one neuron. We next performed the
174 correlative microscopy analysis on dividing IPs. These cells were observed to perform over
175 60% of symmetric proliferative divisions, indicating a strong amplification potential (**Figure**
176 **S2B**). Overall, this analysis indicates that, in week 8-10 cerebral organoids, bRG cells are
177 highly proliferative and undergo important self-amplification. Upon differentiation, they
178 undergo different neurogenic routes, with frequent self-consuming terminal divisions, as well
179 as abundant direct neurogenesis.

180

181 **A map of cell fate decisions in human fetal tissue**

182 We next adapted this correlative microscopy method to human frontal cortex samples
183 at GW 14-17. These stages were selected to match week 8-10 cerebral organoids, based on
184 transcriptomics and because both are mostly pre-gliogenic (Pollen et al., 2019). While slices
185 were substantially larger, the macro proved to be very efficient at automatically identifying and
186 aligning corresponding regions between the live and fixed datasets (**Figures 4A, 4B**). We
187 analyzed the division modes of 522 human fetal bRG cells, following 48-hour live imaging
188 (**Figures 4C, 4D; Videos S9, S10**). We confirmed rapid expression of differentiation markers
189 following cell division (**Figure S3A**). As in cerebral organoids, the majority of bRG cells
190 performed symmetric proliferative division (70%), generating two SOX2+ daughters (**Figures**
191 **4E, 4F**). Within the neurogenic divisions, we again observed abundant symmetric self-
192 consuming divisions (40% of all neurogenic divisions) (**Figures 4E, 4G**). We confirmed that
193 direct neurogenic divisions are a major bRG cell division mode (over 40% of all neurogenic
194 divisions) (**Figures 4E, 4H**). Finally, we analyzed the division modes of human IPs in fetal
195 samples. These cells also demonstrated a high proliferative potential, with 85.7% symmetric
196 amplifying divisions (**Figure S3B**). Therefore, division patterns in week 14-17 fetal cortex
197 closely match those of week 8-10 cerebral organoids, with bRG cells showing strong
198 amplification potential and, upon differentiation, frequent direct neurogenic divisions and self-
199 consuming divisions.

200

201

202 **Increased direct neurogenesis in the basal part of the human fetal OSVZ**

203 The human OSVZ is extremely large (approximately 3 mm at GW17) and bRG cells
204 may therefore be exposed to different microenvironments depending on their position, which
205 may influence their division modes. Moreover, bRG cells progressively migrate through the
206 SVZ and have a different history depending on their position. We therefore explored whether
207 bRG division modes vary along the apico-basal axis in the human fetal brain. To test this, we
208 adapted the above-described macro to automatically record the position of each dividing bRG
209 cell within the tissue. Distance to the apical surface was measured at the time of cytokinesis.
210 We then plotted the different division modes depending on bRG cell position within the tissue.
211 The position of bRG cells along the apico-basal axis did not influence the rate of symmetric
212 proliferative versus neurogenic division (**Figure 5A, 5B, 5C**). Similarly, the rate of symmetric
213 self-consuming versus asymmetric self-renewing divisions was not apparently different
214 (**Figure 5D, 5E, 5F**). However, we observed a significant difference in the rates of direct versus
215 indirect neurogenesis. Indeed, indirect neurogenic divisions (EOMES+ cells) occurred on
216 average 736 μ m from the apical surface, while direct neurogenic divisions (NEUN+ cells)
217 occurred much more basally, 1,114 μ m from the apical surface (**Figure 5G, 5H, 5I**). Therefore,
218 at this developmental stage, bRG self-amplification is abundant and does not vary along the
219 apico-basal axis. Dividing bRG cells however undergo more direct neurogenic divisions when
220 located in the basal part of the SVZ.

221
222 **Basal process inheritance does not predict bRG fate upon asymmetric division**

223 The mechanism of bRG cell asymmetric division remains unknown. In mouse aRG
224 cells, growing evidence support the role of basal process inheritance in stem cell fate
225 maintenance (Alexandre et al., 2010; Peyre and Morin, 2012; Shitamukai et al., 2011). We
226 therefore used our correlative imaging method to test whether process inheritance correlates
227 with bRG fate maintenance upon asymmetric division of human bRG cells. We first live imaged
228 79 asymmetrically-dividing bRG cells (one bRG daughter – one differentiating daughter)
229 within week 8-10 cerebral organoids, and analyzed daughter cell fate depending on process
230 inheritance (**Figures 6A, 6B; Videos S11, S12**). In half of these cells, process-inheriting
231 daughters maintained a bRG fate but in the other half, process-inheriting daughters
232 differentiated (**Figures 6C, 6D**). This was the case whether the asymmetric divisions generated
233 an IP or directly a neuron. These results suggest no role for process inheritance in bRG fate
234 upon asymmetric cell division in cerebral organoids. We next performed a similar analysis in
235 GW 14-17 human fetal brain tissue. We analyzed 82 asymmetrically dividing bRG cells and

236 again found no correlation between basal process inheritance and bRG cell fate (**Figures 6E**,
237 **6F; Videos S13, S14**) 52.4% of basal process-inheriting daughters remained bRG cells, and
238 47.6% differentiated (**Figures 6G, 6H**). We did not observe any effect of the apical process on
239 cell fate either (not shown). In support of these results, SOX2+ daughter cells that did not inherit
240 a process could be observed to regrow a novel basal process after division (**Figure S4A; Video**
241 **S15**). Therefore, in human bRG cells, the basal process appears to be a consequence, rather
242 than a cause, of bRG cell fate upon asymmetric division. Its presence during interphase may
243 however participate in long-term bRG fate maintenance.

244

245 **Notch signaling is active in bRG daughters, not in process-inheriting cells**

246 We next addressed why basal process inheritance correlates with stem cell fate in mouse
247 aRG cells but not in human bRG cells. In aRG cells, it was proposed that the basal process acts
248 as an antenna for the reception of Notch signaling from the surrounding cells, in particular
249 neurons (Peyre and Morin, 2012; Shitamukai et al., 2011). We therefore investigated Notch
250 signaling in bRG daughter cells, depending on process inheritance. As a readout, we analyzed
251 expression of its downstream target HES1. In cerebral organoids, HES1 was strongly expressed
252 in the VZ where aRG cells are highly abundant and in a sparse manner in the SVZ, reflecting
253 the SOX2+ bRG cell distribution (**Figure 7A**). Week 8-11 organoid slices were live imaged for
254 48 hours, stained for HES1, EOMES and NEUN, and processed through the correlative imaging
255 protocol. Cell fate was determined based on EOMES and NEUN expression, double-negative
256 cells being identified as bRG cells. Out of 276 bRG cell, 186 performed symmetric proliferative
257 divisions, 53 asymmetric divisions, and 37 symmetric self-consuming divisions (**Figure 7B**).
258 Consistent with its oscillatory behavior in RG cells (Ochi et al., 2020), HES1 was only detected
259 in a subset of bRG cells, whether these cells were generated following symmetric or asymmetric
260 divisions (**Figures 7C, 7D; Video S16**). As expected, HES1 was never detected in
261 differentiating cells (n=90 cells) (**Figure 7D**). In total, out of 276 live imaged bRG cells, we
262 identified 16 cells that divided asymmetrically, with detectable HES1 expression in daughter
263 cell (**Figure 7D**). HES1 was always detected in the non-differentiating daughter (EOMES- and
264 NEUN-), supporting preferential Notch signaling in the self-renewing bRG daughter upon
265 asymmetric division (**Figure 7D**). We found no correlation between HES1 expression and
266 process inheritance: 8 HES1-expressing cells inherited the basal process and 8 did not (**Figure**
267 **7E, 7F; Video S17**). These data further support that process inheritance does not correlate with
268 bRG cell fate, and that the basal process is not involved in differential Notch signaling upon
269 asymmetric division in bRG cells, as it is believed to in aRG cells. We propose that this is due

270 to the different microenvironments in which the soma of aRG and bRG cells localize (**Figure**
271 **7G**).

272

273 **Discussion**

274 bRG cells are key actors in the evolutionary expansion of the human brain, but the
275 sequence of events leading to their massive neuronal output is unknown. Using live/fixed
276 correlative imaging, we provide a map of their division modes at early – pre-gliogenic – stages.
277 Identifying the precise cell fate decisions that lead to given neuronal outputs is critical to
278 understand the diversity of differentiation trajectories taken by bRG cells. In mouse, aRG cells
279 undergo a precise switch in division modes at E12.5, from mostly symmetric amplifying
280 divisions to mostly asymmetric divisions generating one self-renewing aRG cell and one IP that
281 will divide once to generate two neurons (Haubensak et al., 2004; Miyata et al., 2004; Noctor
282 et al., 2004). Here we show that at GW 14-17 of human neocortex development, multiple bRG
283 cell division modes co-exist, pointing to a more complex regulation of neurogenesis. At these
284 stages, bRG amplification through symmetric cell divisions is dominant, in agreement with the
285 increase of the bRG cell pool during early development (Fietz et al., 2010; Hansen et al., 2010).
286 This result confirms that the high proliferative potential of human bRG cells is an important
287 criterion to define them, in addition to morphology, localization and fate. bRG amplification
288 may nevertheless substantially vary between species (Wang et al., 2011).

289 Our results indicate that a major trajectory for bRG cells consists of symmetric
290 amplifying divisions, followed by self-consuming divisions that generate neurons directly,
291 independently of IPs. These results are consistent with the lower abundance of EOMES+ cells
292 in the human OSVZ, as compared to the ISVZ (Fietz et al., 2010). This represents another major
293 difference with mouse aRG cells that largely rely on IPs to amplify the neurogenic output.
294 Evolution of cortical neurogenesis in amniotes is regulated by the balance between direct and
295 indirect neurogenesis (Cárdenas et al., 2018). aRG cells in sauropsids undergo direct
296 neurogenesis, while mammals largely rely on indirect divisions in the evolutionary more recent
297 neocortex, a process associated with size expansion and regulated by Robo signaling levels
298 (Cárdenas et al., 2018). We show that this rule does however not apply to bRG cells, in which
299 direct neurogenesis is common. aRG cells rely on IPs to amplify their neurogenic output, as
300 their own amplification is limited by spatial constraints. They must indeed divide at the
301 ventricular surface to precisely segregate their apical junctions between daughters and maintain
302 a proper neuroepithelial structure. Interkinetic Nuclear Migration (INM) leads to the formation
303 of a pseudostratified epithelium that allows an increase in the aRG cell pool, but their

304 amplification still reaches a physical limit (Baffet et al., 2015; Hu et al., 2013; Lee and Norden,
305 bRG cells on the other hand are not subject to this physical limitation and can amplify
306 their own pool both radially and tangentially, and thus IPs are less relied upon to increase the
307 neurogenic output. Whether direct and indirect divisions ultimately lead to the formation of
308 different neuronal subtypes, as observed in aRG cells, remains to be tested (Cárdenas et al.,
309 2018).

310 Cerebral organoids have emerged as a powerful system to investigate human brain
311 development (Lancaster et al., 2013; Pașca et al., 2015; Qian et al., 2016). To what degree they
312 faithfully recapitulate fetal neurogenesis is however important to monitor. Genomics studies
313 have highlighted the similarity of transcriptional profiles, though substantial metabolic stress
314 has been reported in organoids (Amiri et al., 2018; Bhaduri et al., 2020; Camp et al., 2015;
315 Kanton et al., 2019; Pollen et al., 2019; Velasco et al., 2019). Here, we report a high similarity
316 of bRG cell division modes between week 8-10 organoids and gestational week 14-17 fetal
317 tissue. Importantly, an advantage of imaging approaches such as ours is that the necrotic core
318 (from where most stress likely originates) can be avoided, focusing on the cortical-like lobes at
319 the periphery of the organoids. These cortical-like structures are however much thinner than in
320 the fetal brain, limiting the ability to probe how bRG cell position impacts their division modes,
321 as performed here in fetal tissue. An open question is whether cell fate decisions remain highly
322 similar at later stages of development.

323 The molecular mechanism regulating asymmetrical division in RG cells has been a
324 matter of controversy. In aRG cells, increasing evidence support a role for the basal process in
325 cell fate, which correlates with Notch activation and self-renewal (Alexandre et al., 2010; Peyre
326 and Morin, 2012; Shitamukai et al., 2011). We however do not observe such a correlation in
327 human bRG cells where Notch signaling is activated in the self-renewing daughter irrespective
328 of basal process inheritance. aRG somas are located in the ventricular zone and their basal
329 process extends through the cortex, contacting neurons from which Notch-Delta signaling can
330 be activated. bRG somas on the other hand are located in the SVZ and both their daughter cells
331 are in close proximity to neurons (**Figure 7G**). Therefore, due to the bRG cell
332 microenvironment, it is consistent that their basal process does not confer differential Notch
333 signaling. Other factors, such as centriole age, mitochondrial dynamics, mitotic spindle
334 positioning or Sara endosomes are promising candidates (Iwata et al., 2020; Kressmann et al.,
335 2015; Wang et al., 2009).

336 Descriptions of clonal relationships are a powerful means to understand cellular
337 diversity. Key to this is the identification of the cell fate decision branch points along lineages.

338 The semi-automated correlative microscopy method enables us to quantitatively measure
339 progenitor cell division modes in human cortical tissue. This will allow to probe neuronal
340 subtype generation or the switch to gliogenesis, through time and space, across species, and in
341 pathological contexts.

342

343 **Material and methods**

344 **Ethics statement:**

345 Human fetal tissue samples were collected with previous patient consent and in strict
346 observance of legal and institutional ethical regulations. The protocol was approved by the
347 French biomedical agency (Agence de la Biomédecine, approval number: PFS17-003).

348

349 **Human iPSC culture**

350 The feeder-independent iPS cell line used for this study was a gift from Silvia Cappello
351 (Max-Plank Institute of Psychiatry - Munich). Cells were reprogrammed from NuFF3-RQ
352 human newborn foreskin feeder fibroblasts (GSC-3404, GlobalStel) (Kyrousi et al., 2021). iPS
353 cells were cultivated as colonies on vitronectin-coated B3 dishes, using mTser medium
354 (STEMCELL Technologies). Colonies were cleaned daily under a binocular stereo microscope
355 (Lynx EVO, Vision engineering), by manually removing differentiated cells with a needle.

356

357 **Cerebral organoids culture**

358 Cerebral organoids were derived from human iPS cells, following a previously
359 published protocol (Qian et al., 2016). Day 0 to day 4: iPS colonies of 1-2 mm of diameter were
360 detached with pre-warmed collagenase (1mg/mL) for 45 min at 37°C. After addition of 1 mL
361 of mTser, floating colonies were transferred with a cut tip into a 15 ml tube for two series of
362 gentle washing with medium 1 (DMEM-F12 without phenol red, 20% KOSR, 1X GlutaMAX,
363 1X MEM-NEAA, 1X 2-Mercaptoethanol, Pen/Strep, 2µM Dorsomorphin, 2 µM A-83).
364 Colonies were subsequently distributed in an ultra-low attachment 6-well plate with 3 mL of
365 medium 1 and cultivated at 37°C, 5% CO₂. Day 5-6: Half of medium 1 was replaced daily with
366 medium 2 (DMEM-F12 without phenol red, 1X N2 supplement, 1X GlutaMAX, 1X MEM-
367 NEAA, Pen/Strep, 1 µM CHIR-99021, 1 µM SB-421542). Day 7-14: At day 7, EBs were
368 embedded in Matrigel diluted in medium 2 at a ratio of 2:1. Matrigel-EB mixture was then
369 spread in an ultra-low attachment dish and incubated at 37°C for 30 min to solidify (10-20 EBs
370 per well). Finally, medium 2 was gently added to the well, without disturbing the Matrigel
371 patch. At day 14, Matrigel was mechanically broken by pipetting with a 5 mL pipet and

372 transferred into a 15 mL tube for gentle washing. Organoids were suspended in medium 3
373 (DMEM-F12 without phenol red, 1X N2 supplement, 1X b27 supplement, 1X GlutaMAX, 1X
374 MEM-NEAA, 1X 2-Mercaptoethanol, Pen/Strep, 2.5 µg/mL Insulin) and grown in ultra-low
375 attachment 6-well plates under agitation at 100 rpm (Digital Orbital Shaker DOS-10M from
376 ELMI). Day 35 to 84: Starting from day 35, medium 3 was supplemented with diluted Matrigel
377 (1:100) (Giandomenico et al., 2019).

378

379 **Infection of human fetal cortex and cerebral organoids**

380 Fresh tissue from human fetal cortex was obtained from autopsies performed at the Robert
381 Debré Hospital, and Necker enfants malades Hospital (Paris). A piece of pre-frontal cortex was
382 collected from one hemisphere, and transported on ice from the hospital to the lab. The tissue
383 was divided into smaller pieces and embedded 4% low-gelling agarose (Sigma) dissolved in
384 artificial cerebrospinal fluid (ACSF). Cerebral organoids (week 8-12) were embedded in 3%
385 low-gelling agarose. Gel blocks from both tissues were then sliced with a Leica VT1200S
386 vibratome (300 µm-thick slices) in ice-cold ACSF. Slices were infected with a GFP coding
387 retrovirus, diluted in DMEM-F12. After 2h of incubation, slices were washed three times with
388 DMEM-F12 and grown on Millicell culture inserts (Merck) in cortical culture medium
389 (DMEM-F12 containing B27, N2, 10 ng/ml FGF, 10 ng/ml EGF, 5% fetal bovine serum and
390 5% horse serum) for up to 5 days for human fetal brain and 48h for cerebral organoids. Medium
391 was changed every day.

392

393 **Live imaging in cerebral organoids and human fetal cortex slices**

394 To follow bRG cell divisions for approximatively 48h, we used the following approach. 48h
395 after infection (3-5 days for human fetal brain), slices were placed under the microscope by
396 transferring the culture inserts in a 35 mm FluoroDish (WPI) with 1 mL of culture medium
397 (DMEM-F12 containing B27, N2, 10 ng/ml FGF, 10 ng/ml EGF, 5% fetal bovine serum and
398 5% horse serum). Live imaging was performed on a spinning disk wide microscope equipped
399 with a Yokogawa CSU-W1 scanner unit to increase the field of view and improve the resolution
400 deep in the sample. The microscope was equipped with a high working distance (WD 6.9-8.2
401 mm) 20X Plan Fluor ELWD NA 0.45 dry (Nikon), and a Prime95B SC莫斯 camera. Z-stacks
402 of 80-100 µm range were taken with an interval of 4-5 µm, and maximum projections were
403 performed. Videos were mounted in Metamorph. Image treatments (maximum projections,
404 subtract background, Median filter, stackreg and rotation) were carried out on Fiji. Figures were
405 assembled with Affinity Designer.

406 **Immunostaining of brain slices**

407 Human fetal brain and cerebral organoid slices in culture were fixed in 4% PFA for 2 hours.
408 Slices were boiled in sodium citrate buffer (10 mM, pH 6) for 20 minutes and cooled down at
409 room temperature (antigen retrieval). Slices were then blocked in PBS-Triton 100X 0.3%-
410 donkey serum 2% at room temperature for 2 hours, incubated with primary antibody overnight
411 at 4°C in blocking solution, washed in PBS-Tween 0.05%, and incubated with secondary
412 antibody overnight at 4°C in blocking solution before final wash and mounting in
413 Aquapolymount. Mosaics (tilescans) of fixed tissue were acquired with a CFI Apo LWD
414 Lambda S 40X objective (WI NA 1.15 WD 0.61-0.59, Nikon).

415

416 **Live and fixed correlative microscopy analysis**

417 The correlative microscopy method enables to automatically pair and align live and fixed
418 samples, for cell-cell matching. The macro, based on ImageJ (Schindelin et al., 2012) and
419 Matlab, enables automated contouring of the slices, matching of the live and fixed samples
420 based on their area and shape, and alignment of the samples (rotation and flip if needed). This
421 leads to the precise positioning of the live imaged cells on the immunostained images. This
422 method is described in detail in the **Annex 1**.

423

424 **Retrovirus production**

425 To improve transfection efficiency, we used the HEK-Phoenix-GP cell line that stably
426 expresses the packaging enzymes GAL and POL. Cells were plated in 3xT300 (dilution at 1:20)
427 and grown 3 days to reach 70% of confluence in DMEM-GlutaMax medium, 10% FBS (50
428 mL/flask). At day 3, cells were transfected with envelope VSVG plasmid and transfer plasmid
429 (CAG-GFP or MSCV-IRES-GFP) using Lipofectamine 2000. The two plasmids were mixed
430 into 5.4 mL of OptiMEM medium (18 µg E-plasmid / 49.5 µg t-plasmid). 337.5 µL of
431 Lipofectamine 2000 was diluted in 5.4 mL of OptiMEM medium and incubated 5 min at room
432 temperature. The DNA preparation was thoroughly mixed into the Lipofectamine preparation
433 and incubated 30 min at room temperature. In the meantime, medium was changed by 30 mL
434 of DMEM-Glutamax (without FBS) per T300 flask. 3.6 mL of the DNA-Lipofectamine
435 mixture was then added to each T300 flask and incubated 5h in a 37°C incubator. After this
436 period, flasks were carefully transferred into an L3 lab and medium was changed for 30 mL of
437 fresh DMEM-GlutaMAX, 10% FBS. At day 5, medium was harvested into 50 mL tubes and
438 replaced by 30 mL of fresh medium (samples were stored at 4°C). At day 6, medium was
439 harvested, pooled with Day 5 samples and spun-down to pellet cell debris (1300 rpm, 5 min at

440 4°C). Supernatant was then filtered using 0.22 µm filter unit and divided into 6 Ultra-Clear tubs
441 (Beckman Coulter – Ref.344058). Tubes were ultra-centrifuged at 31000 G for 1h30 at 4°C.
442 Supernatant was removed, retroviruses were collected with multiple PBS washings and
443 transferred into a single new Ultra-Clear tub. Final ultra-centrifugation was performed (31000
444 G for 1h30 at 4°C), supernatant was carefully removed and the thin pellet of retroviruses was
445 suspended into 750 µL of DMEM-F12 medium, aliquoted (50 to 100 µL aliquots) and stored
446 at -80°C. Titer of the preparation was tested by infecting regular HEK cells at different dilution
447 and the percentage of GFP+ cells was measured by FACS.

448

449 **Expression constructs and antibodies**

450 The following plasmids were used in this study: CAG-GFP (a gift from Victor Borrell); MSCV-
451 IRES-GFP (Tannishtha Reya, Addgene 20672); VSVG (a gift from Philippe Benaroch).
452 Antibodies used in this study were mouse anti-SOX2 (Abcam Ab79351, 1/500), sheep anti-
453 EOMES (R&D Systems AF6166, 1/500), rabbit anti-NEUN (Abcam Ab177487, 1/500), chicken
454 anti-GFP (Abcam Ab13970, 1/500), mouse anti-pVimentin (Abcam Ab22651, 1/1000), rat anti-
455 HES1 (MBL D134-3, 1/500).

456

457 **Acknowledgements**

458 We acknowledge Institut Curie, member of the French National Research Infrastructure France-
459 BioImaging (ANR10-INBS-04) and the Nikon BioImaging Center (Institut Curie, France). We
460 thank Fiona Francis (IFRM) and Xavier Morin for helpful discussions and critical reading of
461 the manuscript. L.C. was funded by the French ministry of research (MESRI). A-S.M. was
462 funded by the Labex Cell(n)Scale and CNRS. A.D.B. is an INSERM researcher. This work was
463 supported by the CNRS, I. Curie, the ANR (ANR-20-CE16-0004-01) and the Ville de Paris
464 “Emergences” program.

465

466 **Author contributions**

467 L.C. performed experiments, analyzed data and wrote the manuscript. A-S.M. coded the
468 LiveFixedCorrelative macro, C.B.A. analyzed data, S.F., A.D.C. and M.L. generated organoids,
469 B.S, T.A-B. and F.G. provided fetal tissue, V.F. assisted with imaging and A.D.B. designed the
470 project and wrote the manuscript.

471

472

473

474 **References**

475

476 Alexandre, P., Reugels, A.M., Barker, D., Blanc, E., and Clarke, J.D.W. (2010). Neurons derive
477 from the more apical daughter in asymmetric divisions in the zebrafish neural tube. *Nat*
478 *Neurosci* *13*, 673–679.

479 Amiri, A., Coppola, G., Scuderi, S., Wu, F., Roychowdhury, T., Liu, F., Pochareddy, S., Shin,
480 Y., Safi, A., Song, L., et al. (2018). Transcriptome and epigenome landscape of human cortical
481 development modeled in organoids. *Science* *362*.

482 Baffet, A.D., Hu, D.J., and Vallee, R.B. (2015). Cdk1 Activates Pre-mitotic Nuclear Envelope
483 Dynein Recruitment and Apical Nuclear Migration in Neural Stem Cells. *Dev Cell* *33*, 703–
484 716.

485 Betizeau, M., Cortay, V., Patti, D., Pfister, S., Gautier, E., Bellemain-Ménard, A., Afanassieff,
486 M., Huissoud, C., Douglas, R.J., Kennedy, H., et al. (2013). Precursor diversity and complexity
487 of lineage relationships in the outer subventricular zone of the primate. *Neuron* *80*, 442–457.

488 Bhaduri, A., Andrews, M.G., Mancia Leon, W., Jung, D., Shin, D., Allen, D., Jung, D.,
489 Schmunk, G., Haeussler, M., Salma, J., et al. (2020). Cell stress in cortical organoids impairs
490 molecular subtype specification. *Nature* *578*, 142–148.

491 Cadwell, C.R., Bhaduri, A., Mostajo-Radji, M.A., Keefe, M.G., and Nowakowski, T.J. (2019).
492 Development and Arealization of the Cerebral Cortex. *Neuron* *103*, 980–1004.

493 Camp, J.G., Badsha, F., Florio, M., Kanton, S., Gerber, T., Wilsch-Bräuninger, M., Lewitus,
494 E., Sykes, A., Hevers, W., Lancaster, M., et al. (2015). Human cerebral organoids recapitulate
495 gene expression programs of fetal neocortex development. *Proc Natl Acad Sci USA* *112*,
496 15672–15677.

497 Cárdenas, A., Villalba, A., De Juan Romero, C., Picó, E., Kyrousi, C., Tzika, A.C., Tessier-
498 Lavigne, M., Ma, L., Drukker, M., Cappello, S., et al. (2018). Evolution of Cortical
499 Neurogenesis in Amniotes Controlled by Robo Signaling Levels. *Cell* *174*, 590–606.e21.

500 Dehay, C., Kennedy, H., and Kosik, K.S. (2015). The outer subventricular zone and primate-
501 specific cortical complexification. *Neuron* *85*, 683–694.

502 Fernández, V., Llinares-Benadero, C., and Borrell, V. (2016). Cerebral cortex expansion and
503 folding: what have we learned? *Embo J.*

504 Fiddes, I.T., Lodewijk, G.A., Mooring, M., Bosworth, C.M., Ewing, A.D., Mantalas, G.L.,
505 Novak, A.M., van den Bout, A., Bishara, A., Rosenkrantz, J.L., et al. (2018). Human-Specific
506 NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis. *Cell* *173*, 1356–
507 1369.e22.

508 Fietz, S.A., Kelava, I., Vogt, J., Wilsch-Bräuninger, M., Stenzel, D., Fish, J.L., Corbeil, D.,
509 Riehn, A., Distler, W., Nitsch, R., et al. (2010). OSVZ progenitors of human and ferret
510 neocortex are epithelial-like and expand by integrin signaling. *Nat Neurosci* *13*, 690–699.

511 Fischer, E., and Morin, X. (2021). Fate restrictions in embryonic neural progenitors. *Current*
512 *Opinion in Neurobiology* *66*, 178–185.

513 Florio, M., Albert, M., Taverna, E., Namba, T., Brandl, H., Lewitus, E., Haffner, C., Sykes, A.,
514 Wong, F.K., Peters, J., et al. (2015). Human-specific gene ARHGAP11B promotes basal
515 progenitor amplification and neocortex expansion. *Science* *347*, 1465–1470.

516 Gao, P., Postiglione, M.P., Krieger, T.G., Hernandez, L., Wang, C., Han, Z., Streicher, C.,
517 Papusheva, E., Insolera, R., Chugh, K., et al. (2014). Deterministic progenitor behavior and
518 unitary production of neurons in the neocortex. *Cell* *159*, 775–788.

519 Giandomenico, S.L., Mierau, S.B., Gibbons, G.M., Wenger, L.M.D., Masullo, L., Sit, T.,
520 Sutcliffe, M., Boulanger, J., Tripodi, M., Derivery, E., et al. (2019). Cerebral organoids at the
521 air-liquid interface generate diverse nerve tracts with functional output. *Nat Neurosci* *22*, 669–
522 679.

523 Hansen, D.V., Lui, J.H., Parker, P.R.L., and Kriegstein, A.R. (2010). Neurogenic radial glia in
524 the outer subventricular zone of human neocortex. *Nature* *464*, 554–561.

525 Haubensak, W., Attardo, A., Denk, W., and Huttner, W.B. (2004). Neurons arise in the basal
526 neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. *Proc Natl
527 Acad Sci USA* *101*, 3196–3201.

528 He, Z., Maynard, A., Jain, A., Gerber, T., Petri, R., Lin, H.-C., Santel, M., Ly, K., Dupré, J.-S.,
529 Sidow, L., et al. (2021). Lineage recording in human cerebral organoids. *Nature Methods* 1–
530 10.

531 Hu, D.J.-K., Baffet, A.D., Nayak, T., Akhmanova, A.S., Doye, V., and Vallee, R.B. (2013).
532 Dynein recruitment to nuclear pores activates apical nuclear migration and mitotic entry in brain
533 progenitor cells. *Cell* *154*, 1300–1313.

534 Iwata, R., Casimir, P., and Vanderhaeghen, P. (2020). Mitochondrial dynamics in postmitotic
535 cells regulate neurogenesis. *Science* *369*, 858–862.

536 Kanton, S., Boyle, M.J., He, Z., Santel, M., Weigert, A., Sanchís-Calleja, F., Guijarro, P.,
537 Sidow, L., Fleck, J.S., Han, D., et al. (2019). Organoid single-cell genomic atlas uncovers
538 human-specific features of brain development. *Nature* *574*, 418–422.

539 Kressmann, S., Campos, C., Castanon, I., Fürthauer, M., and González-Gaitán, M. (2015).
540 Directional Notch trafficking in Sara endosomes during asymmetric cell division in the spinal
541 cord. *Nat Cell Biol* *17*, 333–339.

542 Kyrousi, C., O'Neill, A.C., Brazovskaja, A., He, Z., Kielkowski, P., Coquand, L., Di Giaimo,
543 R., D' Andrea, P., Belka, A., Forero Echeverry, A., et al. (2021). Extracellular LGALS3BP
544 regulates neural progenitor position and relates to human cortical complexity. *Nature
545 Communications* *12*, 6298–22.

546 LaMonica, B.E., Lui, J.H., Hansen, D.V., and Kriegstein, A.R. (2013). Mitotic spindle
547 orientation predicts outer radial glial cell generation in human neocortex. *Nature
548 Communications* *4*, 1665–11.

549 Lancaster, M.A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L.S., Hurles, M.E.,
550 Homfray, T., Penninger, J.M., Jackson, A.P., and Knoblich, J.A. (2013). Cerebral organoids
551 model human brain development and microcephaly. *Nature* *501*, 373–379.

552 Lee, H.O., and Norden, C. (2013). Mechanisms controlling arrangements and movements of
553 nuclei in pseudostratified epithelia. *Trends Cell Biol* *23*, 141–150.

554 Lui, J.H., Nowakowski, T.J., Pollen, A.A., Javaherian, A., Kriegstein, A.R., and Oldham, M.C.
555 (2014). Radial glia require PDGFD-PDGFR β signalling in human but not mouse neocortex.
556 *Nature* *515*, 264–268.

557 Martínez-Martínez, M.Á., De Juan Romero, C., Fernández, V., Cárdenas, A., Götz, M., and
558 Borrell, V. (2016). A restricted period for formation of outer subventricular zone defined by
559 Cdh1 and Trnp1 levels. *Nature Communications* *7*, 11812.

560 Miyata, T., Kawaguchi, A., Saito, K., Kawano, M., Muto, T., and Ogawa, M. (2004). Asymmetric
561 production of surface-dividing and non-surface-dividing cortical progenitor cells.
562 *131*, 3133–3145.

563 Noctor, S.C., Martínez-Cerdeño, V., Ivic, L., and Kriegstein, A.R. (2004). Cortical neurons
564 arise in symmetric and asymmetric division zones and migrate through specific phases. *Nat
565 Neurosci* *7*, 136–144.

566 Nowakowski, T.J., Bhaduri, A., Pollen, A.A., Alvarado, B., Mostajo-Radji, M.A., Di Lullo, E.,
567 Haeussler, M., Sandoval-Espinosa, C., Liu, S.J., Velmeshev, D., et al. (2017). Spatiotemporal
568 gene expression trajectories reveal developmental hierarchies of the human cortex. *Science*
569 *358*, 1318–1323.

570 Nowakowski, T.J., Pollen, A.A., Sandoval-Espinosa, C., and Kriegstein, A.R. (2016). Transformation
571 of the Radial Glia Scaffold Demarcates Two Stages of Human Cerebral Cortex
572 Development. *Neuron* *91*, 1219–1227.

573 Ochi, S., Imaizumi, Y., Shimojo, H., Miyachi, H., and Kageyama, R. (2020). Oscillatory
574 expression of Hes1 regulates cell proliferation and neuronal differentiation in the embryonic
575 brain. *Development* *147*.

576 Ostrem, B.E.L., Lui, J.H., Gertz, C.C., and Kriegstein, A.R. (2014). Control of outer radial glial
577 stem cell mitosis in the human brain. *Cell Reports* *8*, 656–664.

578 Pașca, A.M., Sloan, S.A., Clarke, L.E., Tian, Y., Makinson, C.D., Huber, N., Kim, C.H., Park,
579 J.-Y., O'Rourke, N.A., Nguyen, K.D., et al. (2015). Functional cortical neurons and astrocytes
580 from human pluripotent stem cells in 3D culture. *Nature Methods* *12*, 671–678.

581 Peyre, E., and Morin, X. (2012). An oblique view on the role of spindle orientation in vertebrate
582 neurogenesis. *Develop. Growth Differ.* *54*, 287–305.

583 Pollen, A.A., Bhaduri, A., Andrews, M.G., Nowakowski, T.J., Meyerson, O.S., Mostajo-Radji,
584 M.A., Di Lullo, E., Alvarado, B., Bedolli, M., Dougherty, M.L., et al. (2019). Establishing
585 Cerebral Organoids as Models of Human-Specific Brain Evolution. *Cell* *176*, 743–756.e17.

586 Pollen, A.A., Nowakowski, T.J., Chen, J., Retallack, H., Sandoval-Espinosa, C., Nicholas,
587 C.R., Shuga, J., Liu, S.J., Oldham, M.C., Diaz, A., et al. (2015). Molecular identity of human
588 outer radial glia during cortical development. *Cell* *163*, 55–67.

589 Qian, X., Nguyen, H.N., Song, M.M., Hadiono, C., Ogden, S.C., Hammack, C., Yao, B.,
590 Hamersky, G.R., Jacob, F., Zhong, C., et al. (2016). Brain-Region-Specific Organoids Using
591 Mini-bioreactors for Modeling ZIKV Exposure. *Cell* *165*, 1238–1254.

592 Reillo, I., De Juan Romero, C., García-Cabezas, M.Á., and Borrell, V. (2011). A role for
593 intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. *Cerebral*
594 *Cortex* *21*, 1674–1694.

595 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
596 S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for
597 biological-image analysis. *Nature Methods* *9*, 676–682.

598 Shitamukai, A., Konno, D., and Matsuzaki, F. (2011). Oblique radial glial divisions in the
599 developing mouse neocortex induce self-renewing progenitors outside the germinal zone that
600 resemble primate outer subventricular zone progenitors. *Journal of Neuroscience* *31*, 3683–
601 3695.

602 Smart, I.H.M., Dehay, C., Giroud, P., Berland, M., and Kennedy, H. (2002). Unique
603 morphological features of the proliferative zones and postmitotic compartments of the neural
604 epithelium giving rise to striate and extrastriate cortex in the monkey. *Cereb. Cortex* *12*, 37–
605 53.

606 Suzuki, I.K., Gacquer, D., Van Heurck, R., Kumar, D., Wojno, M., Bilheu, A., Herpoel, A.,
607 Lambert, N., Cheron, J., Polleux, F., et al. (2018). Human-Specific NOTCH2NL Genes Expand
608 Cortical Neurogenesis through Delta/Notch Regulation. *Cell* *173*, 1370–1384.e16.

609 Vaid, S., Camp, J.G., Hersemann, L., Eugster Oegema, C., Heninger, A.-K., Winkler, S.,
610 Brandl, H., Sarov, M., Treutlein, B., Huttner, W.B., et al. (2018). A novel population of Hopx-
611 dependent basal radial glial cells in the developing mouse neocortex. *Development* *145*,
612 dev169276–39.

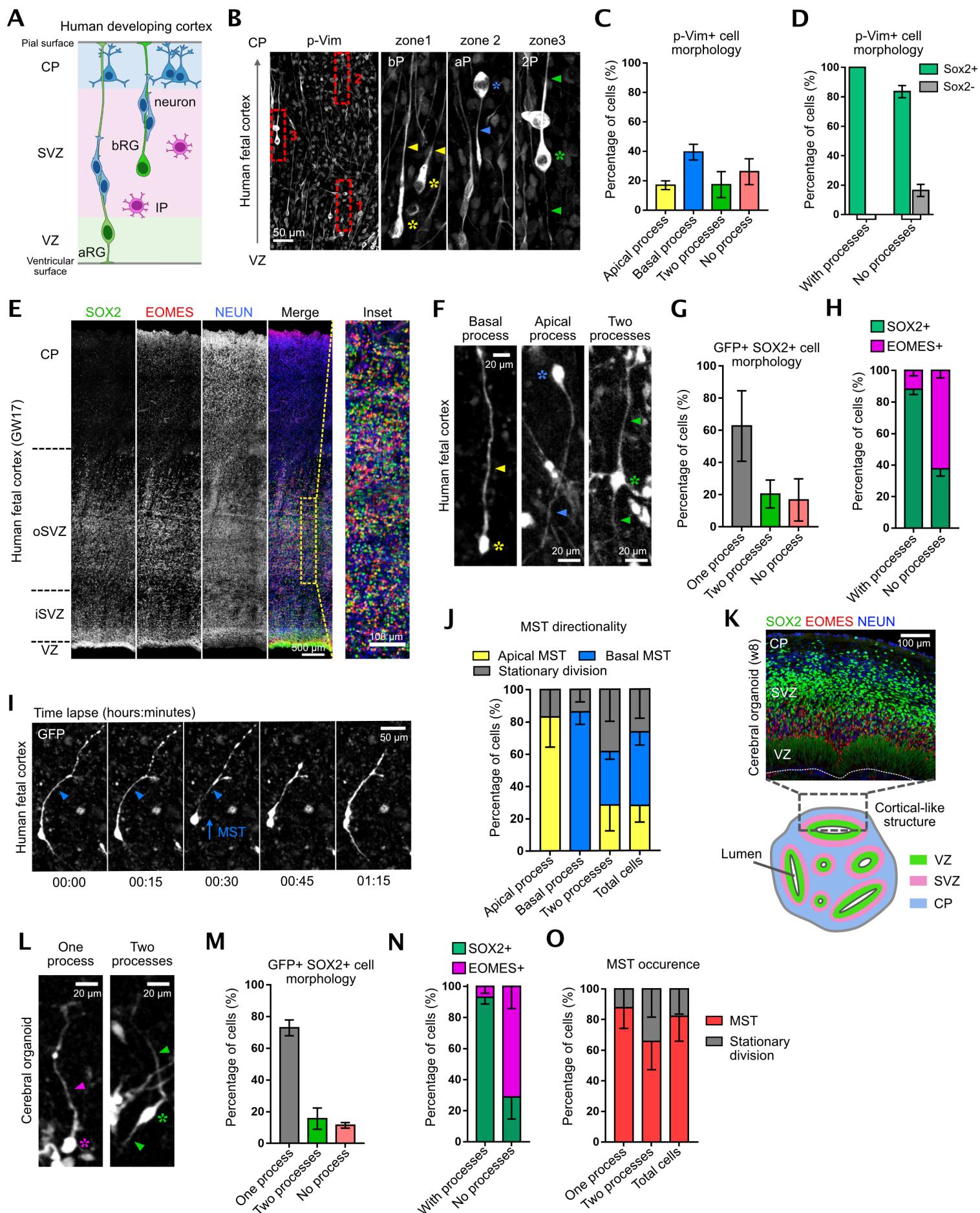
613 Velasco, S., Kedaigle, A.J., Simmons, S.K., Nash, A., Rocha, M., Quadrato, G., Paulsen, B.,
614 Nguyen, L., Adiconis, X., Regev, A., et al. (2019). Individual brain organoids reproducibly
615 form cell diversity of the human cerebral cortex. *Nature* *570*, 523–527.

616 Wang, X., Tsai, J.-W., Imai, J.H., Lian, W.-N., Vallee, R.B., and Shi, S.-H. (2009). Asymmetric
617 centrosome inheritance maintains neural progenitors in the neocortex. *Nature* *461*, 947–955.

618 Wang, X., Tsai, J.-W., LaMonica, B., and Kriegstein, A.R. (2011). A new subtype of progenitor
619 cell in the mouse embryonic neocortex. *Nat Neurosci* *14*, 555–561.

620

621

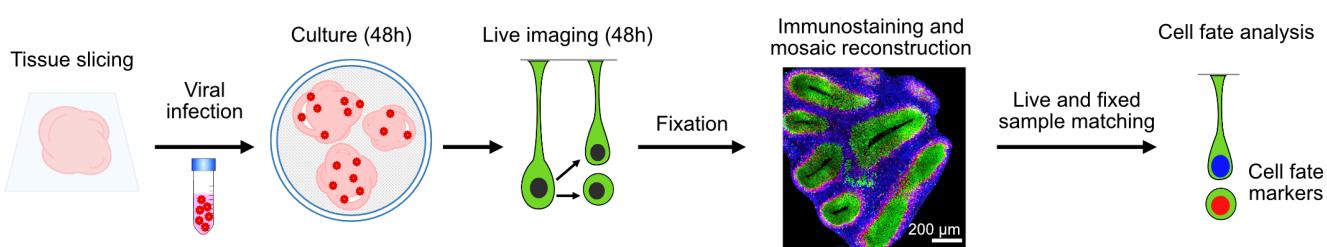

622

623

624

625

Figure 1



626 **Figure 1. Morphological characterization of bRG cells in human cerebral organoids and**
627 **fetal tissue. A.** Schematic representation of human neocortex development. VZ: ventricular
628 zone. SVZ: subventricular zone. CP: cortical plate. aRG: apical radial glial progenitor. bRG:
629 basal radial glial progenitor. IP: Intermediate progenitor. **B.** Phospho-Vimentin
630 immunostaining of human frontal cortex at GW18. Image is overexposed to visualize processes.
631 Insets show three bRG cells with basal process (zone 1), apical process (zone 2) and two
632 processes (zone 3). Asterix indicate soma and arrowheads indicate processes. **C.** Quantification
633 of mitotic bRG cell morphologies in GW 14-18 frontal cortex. (N=3 brains, 338 cells). **D.**
634 Percentage of p-VIM+ cells positive for SOX2, depending on morphology. (N=3 brains, 456
635 cells). **E.** SOX2, EOMES and NEUN immunostaining in human frontal cortex at GW17. **F.**
636 Morphologies of GFP-expressing SOX2+ cells in human frontal cortex at GW17. **G.**
637 Quantification of morphologies of GFP expressing SOX2+ cells in human frontal cortex at GW
638 14-17 (N=2 brains, 350 cells). **H.** Percentage of SOX2+ and EOMES+ progenitors, depending
639 on morphology in human frontal cortex at GW 14-17 (N=2 brains, 204 cells). **I.** Live imaging
640 of bRG cell performing MST in human fetal tissue. Arrowhead indicates basal process. **J.**
641 Directionality of MST depending on bRG cell morphology in human frontal cortex at GW 14-
642 18 (N=3 brains, 242 cells). **K.** (Top) SOX2, EOMES and NEUN immunostaining in week 8
643 cerebral organoid. (Bottom) Schematic representation of week 8-10 cerebral organoids. **L.**
644 Morphologies of GFP expressing SOX2+ cells in cerebral organoids at weeks 7-10. **M.**
645 Quantification of morphologies of GFP-expressing SOX2+ cells in cerebral organoids at weeks
646 7-8. (N=2 batches, 104 cells) **N.** Percentage of SOX2+ and EOMES+ progenitors, depending
647 on morphology in cerebral organoids at weeks 8-10. (N=3 batches, 205 cells) **O.** Directionality
648 of MST depending on bRG cell morphology cerebral organoids at weeks 8-9 (N=4 batches, 260
649 cells). Error bars indicate SD.

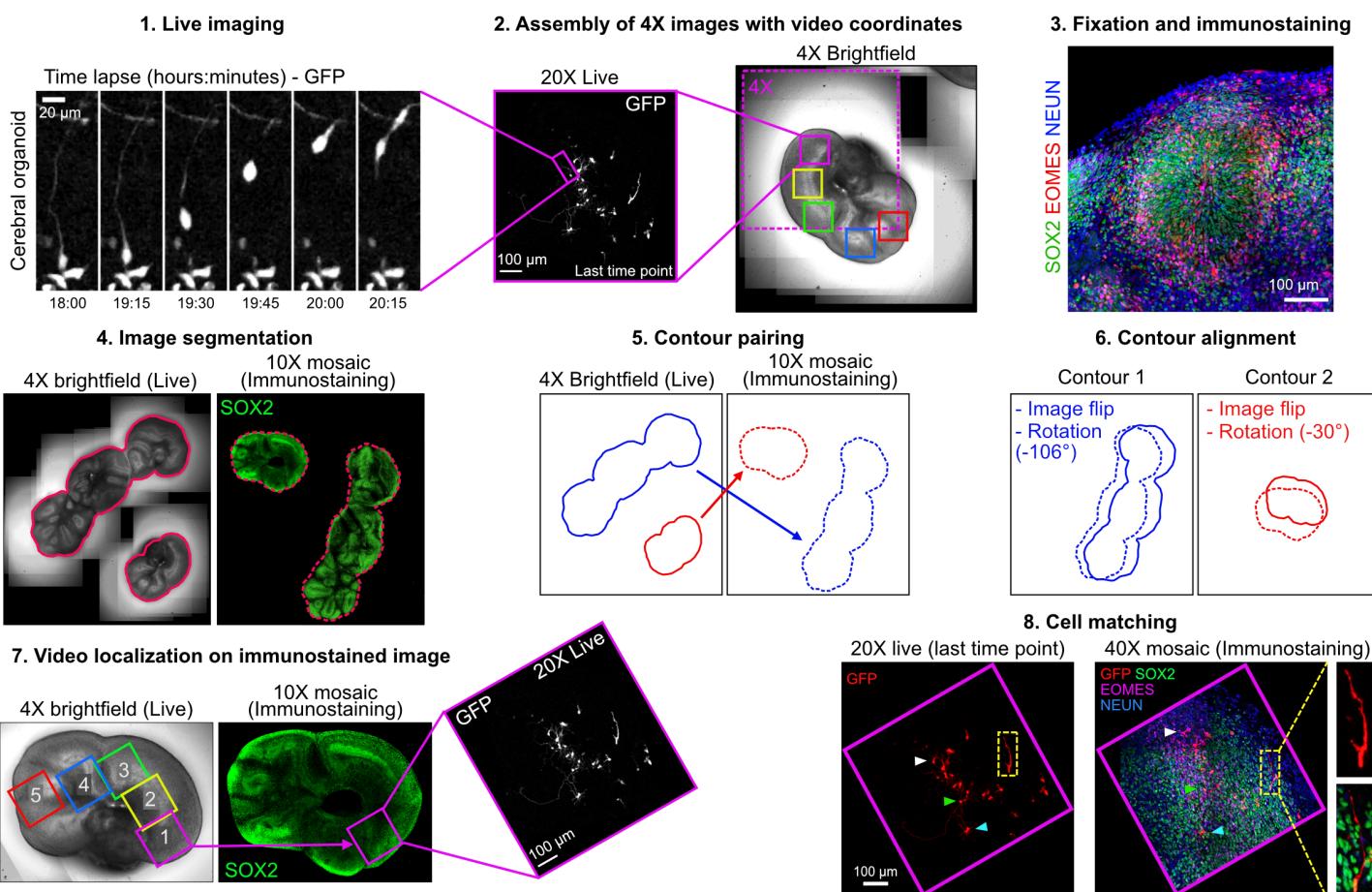
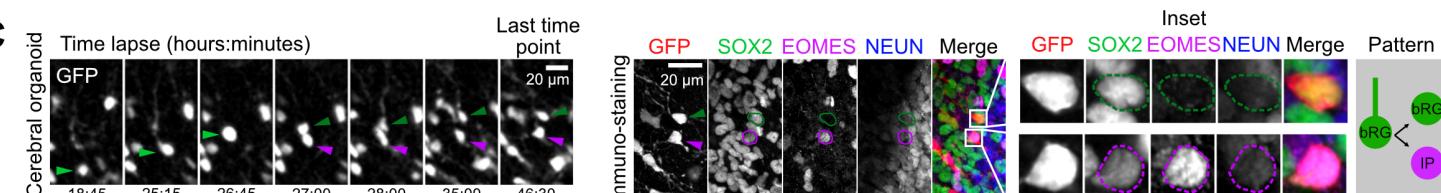
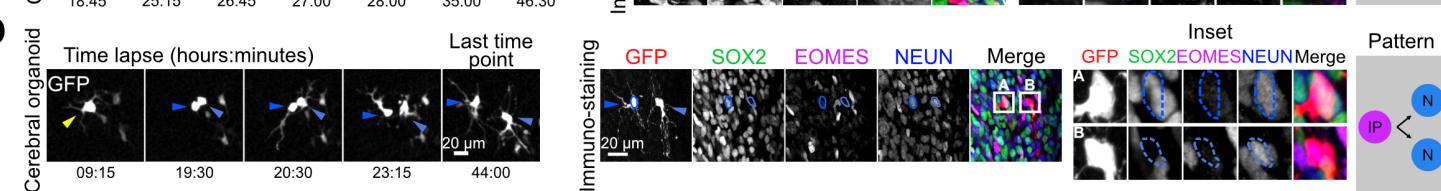
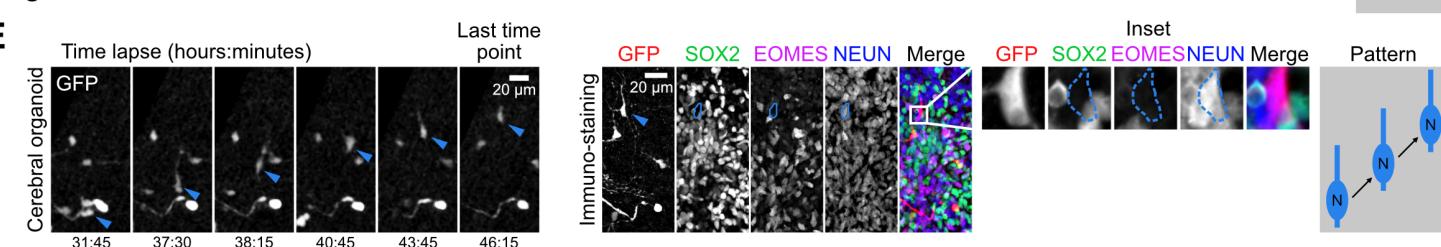

650
651
652
653
654
655
656
657
658

Figure 2


A


B


C

D

E

659 **Figure 2. A semi-automated correlative imaging method to identify cell fate decisions in**
660 **cerebral organoids.**

661 **A.** Schematic representation of correlative microscopy pipeline. **B.** Step-by-step protocol for
662 semi-automated correlative microscopy. (1) bRG cells are live imaged for 48 hours. (2) 4X
663 brightfield images containing the video coordinates are assembled. (3) Organoid slices are
664 fixed, immunostained for SOX2, EOMES and NEUN and imaged. (4) Images are automatically
665 segmented to outline slices from live and fixed samples. (5) Slice contours are automatically
666 paired based on shape and area and (6) aligned (including a horizontal flip if needed). (7) Video
667 fields of view are automatically annotated on the immunostaining images. (8) Regions of
668 interest are re-imaged at higher resolution 40X and cells from live and fixed samples are
669 manually matched. **C.** Live/fixed correlative analysis of a dividing bRG cell generating a self-
670 renewing bRG daughter and a differentiating IP daughter. **D.** Live/fixed correlative analysis of
671 a dividing IP cell generating two neuronal daughters. **E.** Live/fixed correlative analysis of a
672 migrating neuron.

673

674

675

676

677

678

679

680

681

682

683

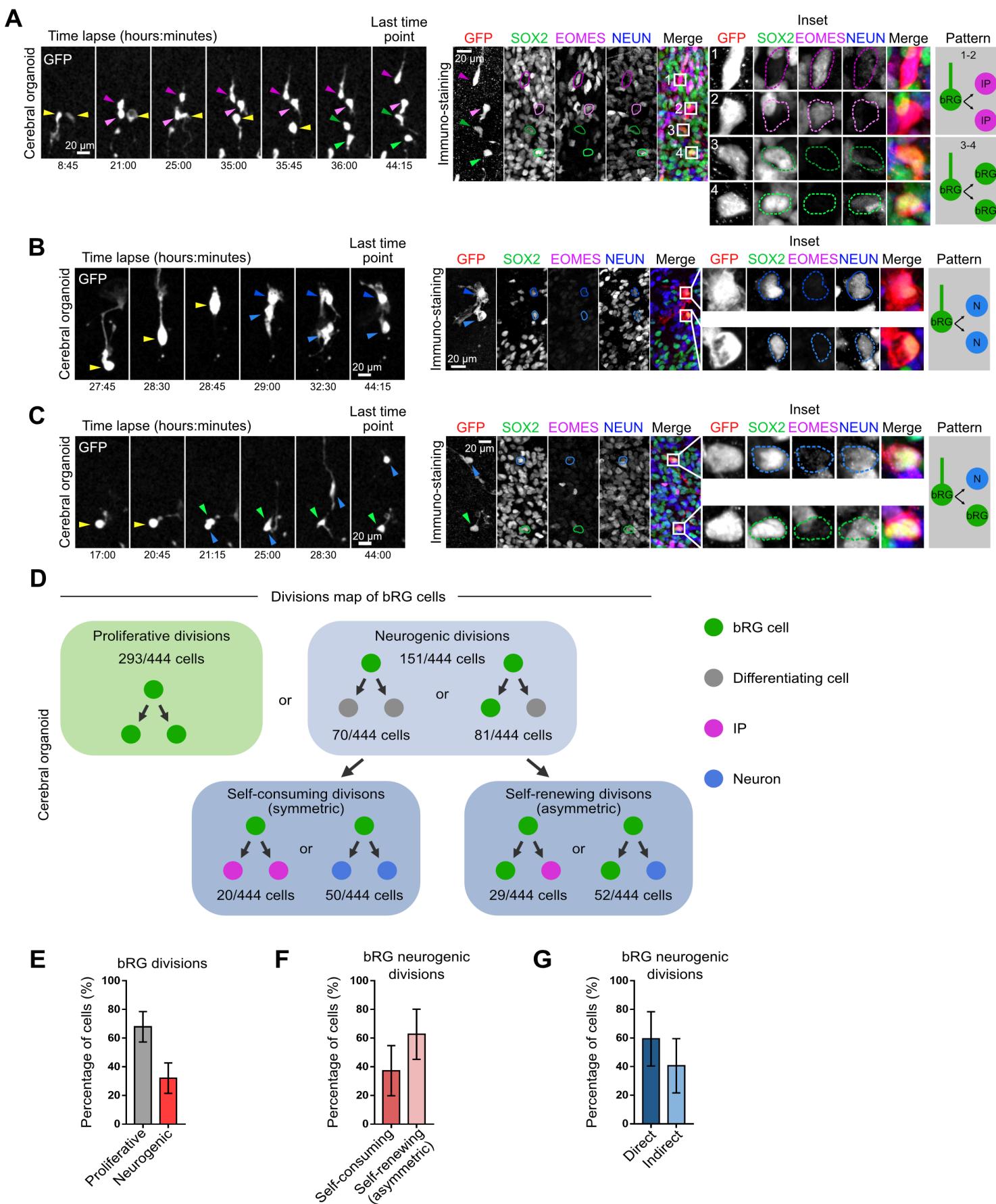
684

685

686

687

688


689

690

691

692

Figure 3

693 **Figure 3. A map of cell fate decisions in human cerebral organoids**

694 **A.** (Top) Live/fixed correlative analysis of a dividing bRG cell generating two IP daughters.
695 (Bottom). Live/fixed correlative analysis of a dividing bRG cell generating two bRG daughters.
696 **B.** Live/fixed correlative analysis of a dividing bRG cell generating two neuronal daughters. **C.**
697 Live/fixed correlative analysis of a dividing bRG cell generating a bRG daughter and a neuronal
698 daughter. **D.** Summary of all division patterns identified in bRG cells within week 8-10 cerebral
699 organoids (N=444 bRG cells from 3 batches). **E.** Quantification of the percentage of
700 proliferative versus neurogenic divisions of bRG cells in week 8-10 cerebral organoids. (N=5
701 batches, 444 cells). **F.** Quantification of the percentage of self-consuming versus asymmetric
702 self-renewing divisions of bRG cells in week 8-10 cerebral organoids (N=5 batches, 151 cells).
703 **G.** Quantification of the percentage of direct versus indirect neurogenic divisions of bRG cells
704 in week 8-10 cerebral organoids (N=5 batches, 151 cells). Error bars indicate SD.

705

706

707

708

709

710

711

712

713

714

715

716

717

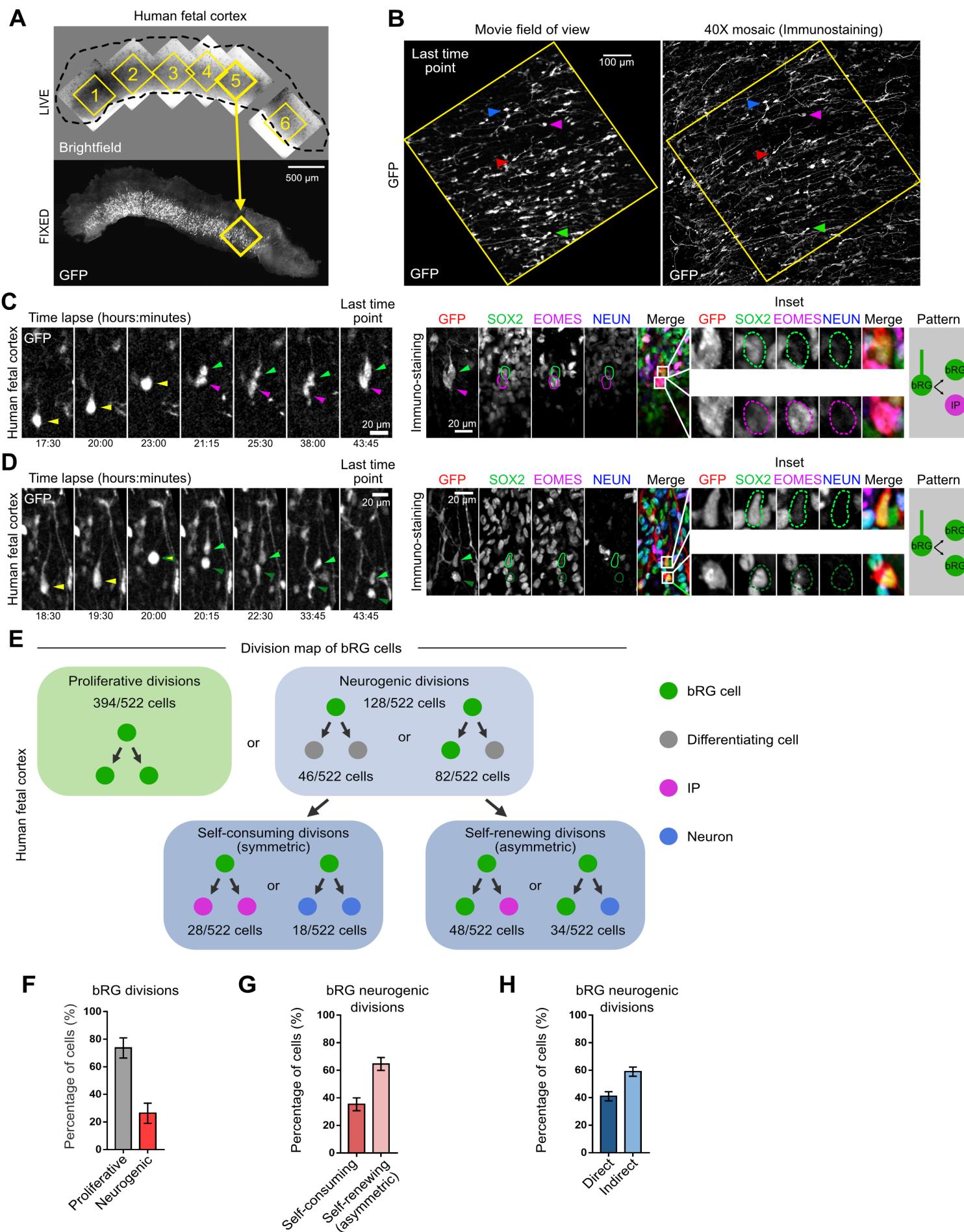
718

719

720

721

722


723

724

725

726

Figure 4

727 **Figure 4. A map of cell fate decisions in fetal human frontal cortex**

728 **A.** Automated pairing of live and fixed samples and annotation of the video fields of view on
729 the immunostained fixed samples. **B.** GFP+ cell matching between the live images and the
730 fixed images. Arrowheads indicate equivalent cells. **C.** Live/fixed correlative analysis of a
731 dividing bRG cell generating a bRG daughter and an IP daughter. **D.** Live/fixed correlative
732 analysis of a dividing bRG cell generating two bRG daughters. **E.** Summary of all division
733 patterns identified in bRG cells within GW 14-17 human frontal cortex (N=522 bRG cells from
734 2 fetal tissues). **F.** Quantification of the percentage of proliferative versus neurogenic divisions
735 of bRG cells in GW 14-17 human frontal cortex (N=522 bRG cells from 2 fetal tissues). **G.**
736 Quantification of the percentage of self-consuming versus asymmetric self-renewing divisions
737 of bRG cells in GW 14-17 human frontal cortex (N=128 bRG cells from 2 fetal tissues). **H.**
738 Quantification of the percentage of direct versus indirect neurogenic divisions of bRG cells in
739 GW 14-17 human frontal cortex (N=128 bRG cells from 2 fetal tissues). Error bars indicate
740 SD.

741

742

743

744

745

746

747

748

749

750

751

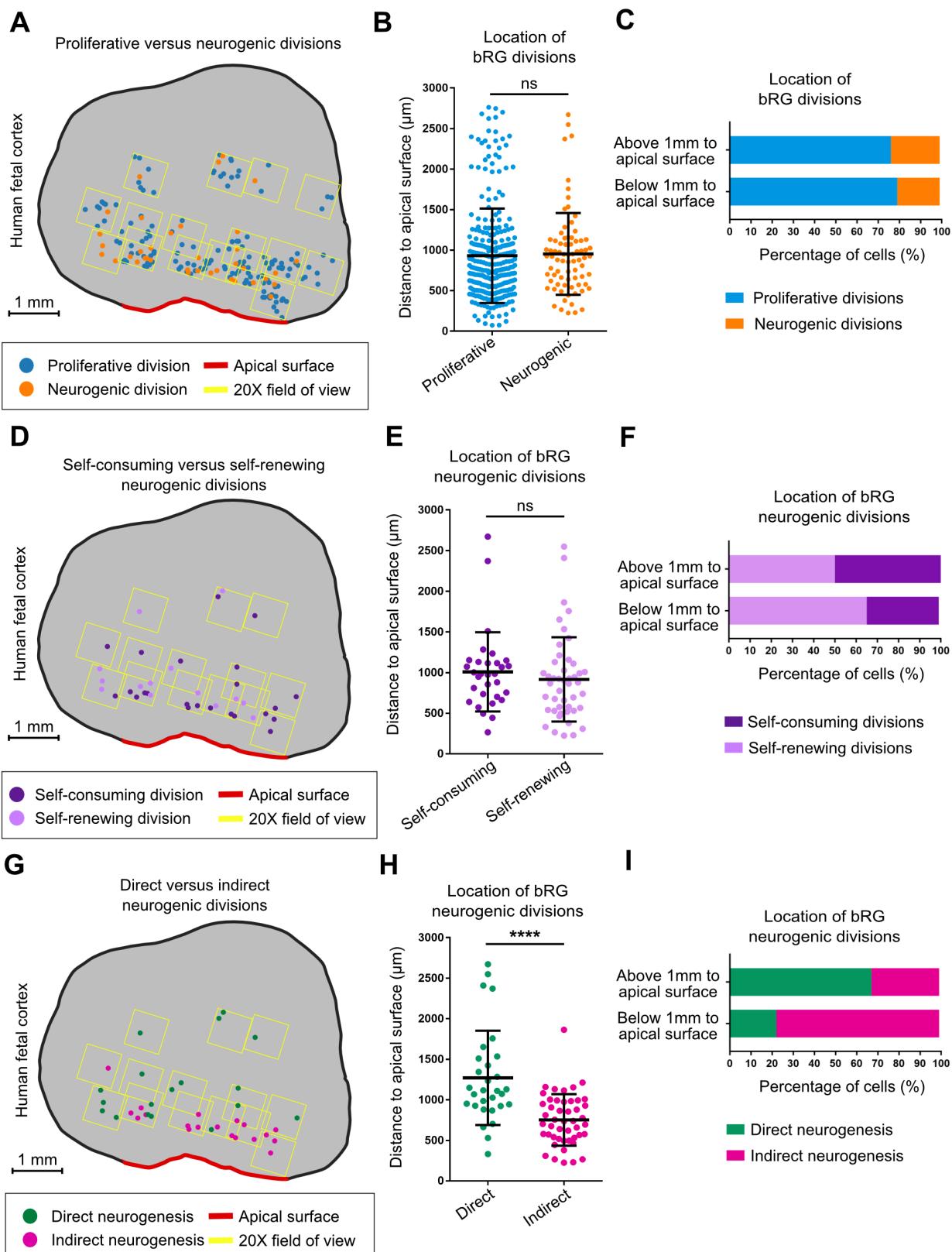
752

753

754

755

756


757

758

759

760

Figure 5

761 **Figure 5. Spatial distribution of division modes in human fetal cortex**

762 **A.** Spatial distribution of proliferative versus neurogenic divisions in GW17 human frontal
763 cortex. **B.** Quantification of proliferative versus neurogenic divisions (N=355 cells from 1 fetal
764 sample) **C.** Percentage of proliferative versus neurogenic divisions, below or above 1 mm to
765 the apical surface (N=355 cells from 1 fetal sample). **D.** Spatial distribution of self-consuming
766 versus asymmetric self-renewing divisions in GW17 human frontal cortex. **E.** Quantification
767 of self-consuming versus asymmetric self-renewing divisions (N=75 cells from 1 fetal sample).
768 **F.** Percentage of self-consuming versus asymmetric self-renewing divisions, below or above 1
769 mm from the apical surface (N=75 cells from 1 fetal sample). **G.** Spatial distribution of direct
770 versus indirect neurogenic divisions in GW17 human frontal cortex. **H.** Quantification of direct
771 versus indirect neurogenic divisions (N=75 cells from 1 fetal sample). **I.** Percentage of direct
772 versus indirect neurogenic divisions, below or above 1 mm from the apical surface (N=75 cells
773 from 1 fetal sample).

774

775

776

777

778

779

780

781

782

783

784

785

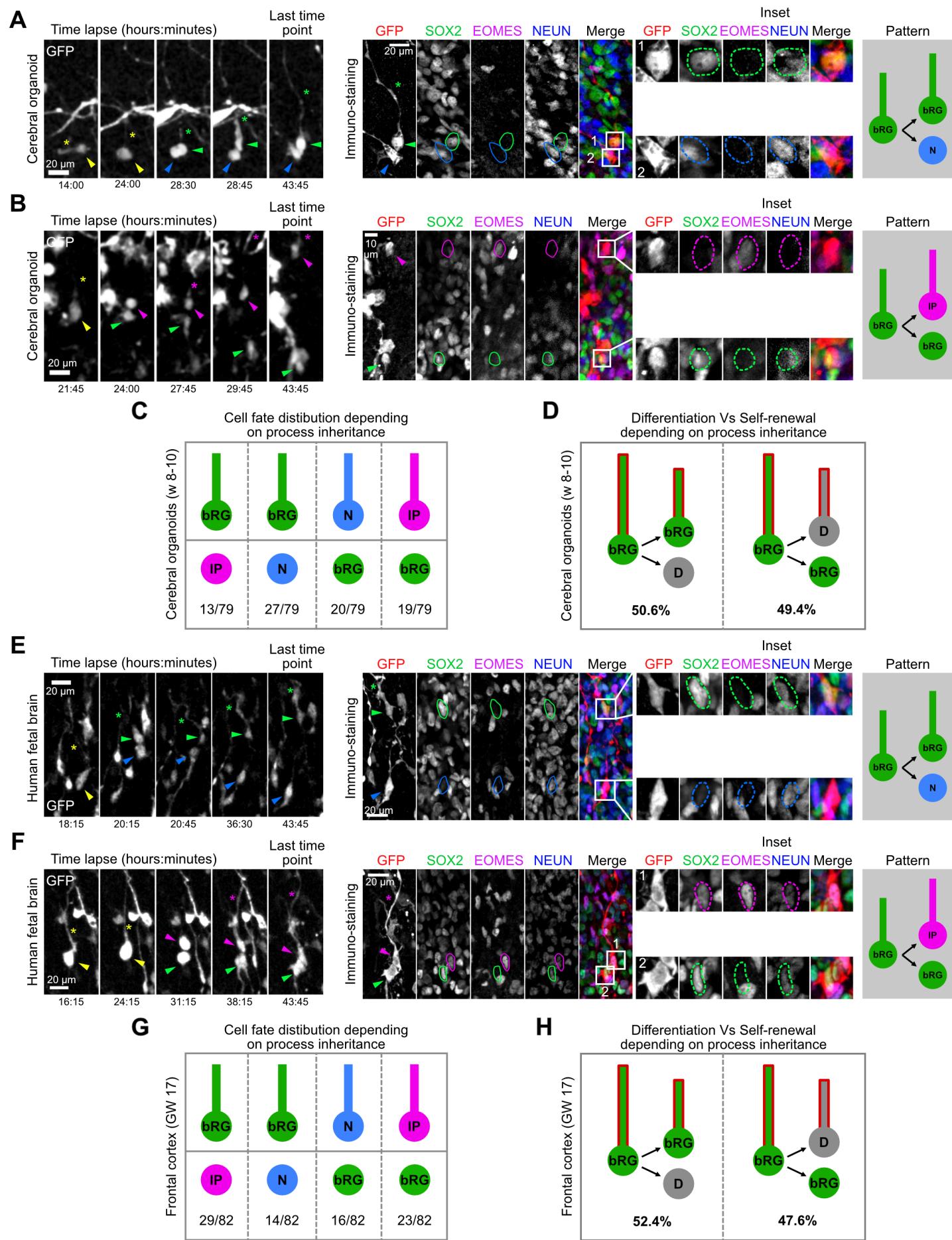
786

787

788

789

790


791

792

793

794

Figure 6

795 **Figure 6. Basal process inheritance does not predict bRG fate upon asymmetric division**

796 **A.** Live/fixed correlative analysis of basal process inheritance in a dividing bRG cell generating
797 a process-inheriting bRG daughter and neuron, within a cerebral organoid. **B.** Live/fixed
798 correlative analysis of basal process inheritance in a dividing bRG cell generating a process-
799 inheriting IP daughter and a bRG daughter, within a cerebral organoid. **C.** Distribution of cell
800 fates depending on process inheritance upon asymmetric cell division in week 8-10 cerebral
801 organoids (N=79 asymmetrically dividing cells from 5 experiments). **D.** Percentage of self-
802 renewing versus differentiating daughter cells upon asymmetric division, depending on process
803 inheritance in week 8-10 cerebral organoids (N=79 asymmetrically dividing cells from 5
804 experiments). **E.** Live/fixed correlative analysis of basal process inheritance in a dividing bRG
805 cell generating a process-inheriting bRG daughter and a neuron, within fetal frontal cortex. **F.**
806 Live/fixed correlative analysis of basal process inheritance in a dividing bRG cell generating a
807 process-inheriting IP daughter and a bRG daughter, within fetal frontal cortex. **G.** Distribution
808 of cell fates depending on process inheritance upon asymmetric cell division in GW 14-17
809 human frontal cortex (N=82 asymmetrically dividing cells from 2 experiments). **H.** Percentage
810 of self-renewing versus differentiating daughter cells upon asymmetric division, depending on
811 process inheritance in GW 14-17 human frontal cortex (N=82 asymmetrically dividing cells
812 from 2 experiments).

813

814

815

816

817

818

819

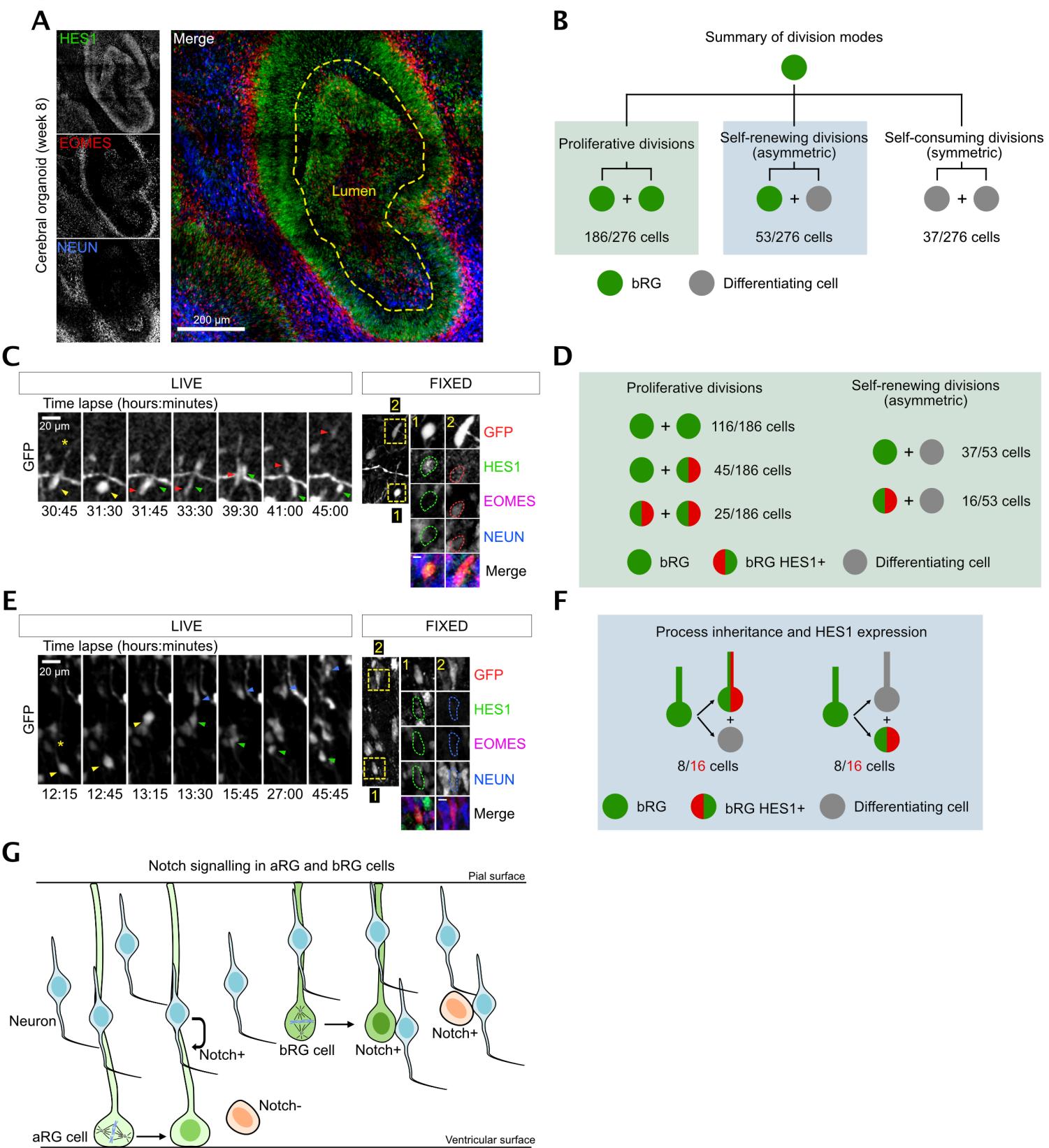
820

821

822

823

824


825

826

827

828

Figure 7

829 **Figure 7. HES1 is preferentially expressed in bRG daughters, irrespective of process**
830 **inheritance.**

831 **A.** HES1, EOMES and NEUN immunostaining in human cerebral organoid at week 8. **B.**
832 Distribution of division modes identified in bRG cells within week 8-11 cerebral organoids.
833 bRG daughter (EOMES- and NEUN-), differentiating daughter (EOMES+ or NEUN+) (N=276
834 bRG cells from 3 batches of organoids). **C.** Live/fixed correlative analysis of an asymmetrically
835 dividing bRG cell revealing HES1 expression specifically in self-renewing daughter (EOMES-
836 and NEUN-). **D.** Summary of HES1 expression in daughter cells depending on division modes
837 (N= 239 cells from 3 batches of organoids). **E.** Live/fixed correlative analysis in asymmetrically
838 dividing bRG cells revealing lack of correlation between HES1 expression and basal process
839 inheritance. **F.** Summary of HES1 expression depending on process inheritance in
840 asymmetrically dividing bRG cells, within week 8-11 cerebral organoids (N= 16 cells from 3
841 batches of organoids). **G.** Model for Notch activation in aRG and bRG cells. In aRG cells, basal
842 process inheritance leads to differential Notch signaling between daughters. In bRG cells, the
843 soma of both daughters is located in a neuron-rich region, impairing differential Notch signaling
844 by the basal process.

845

846

847

848

849

850

851

852

853

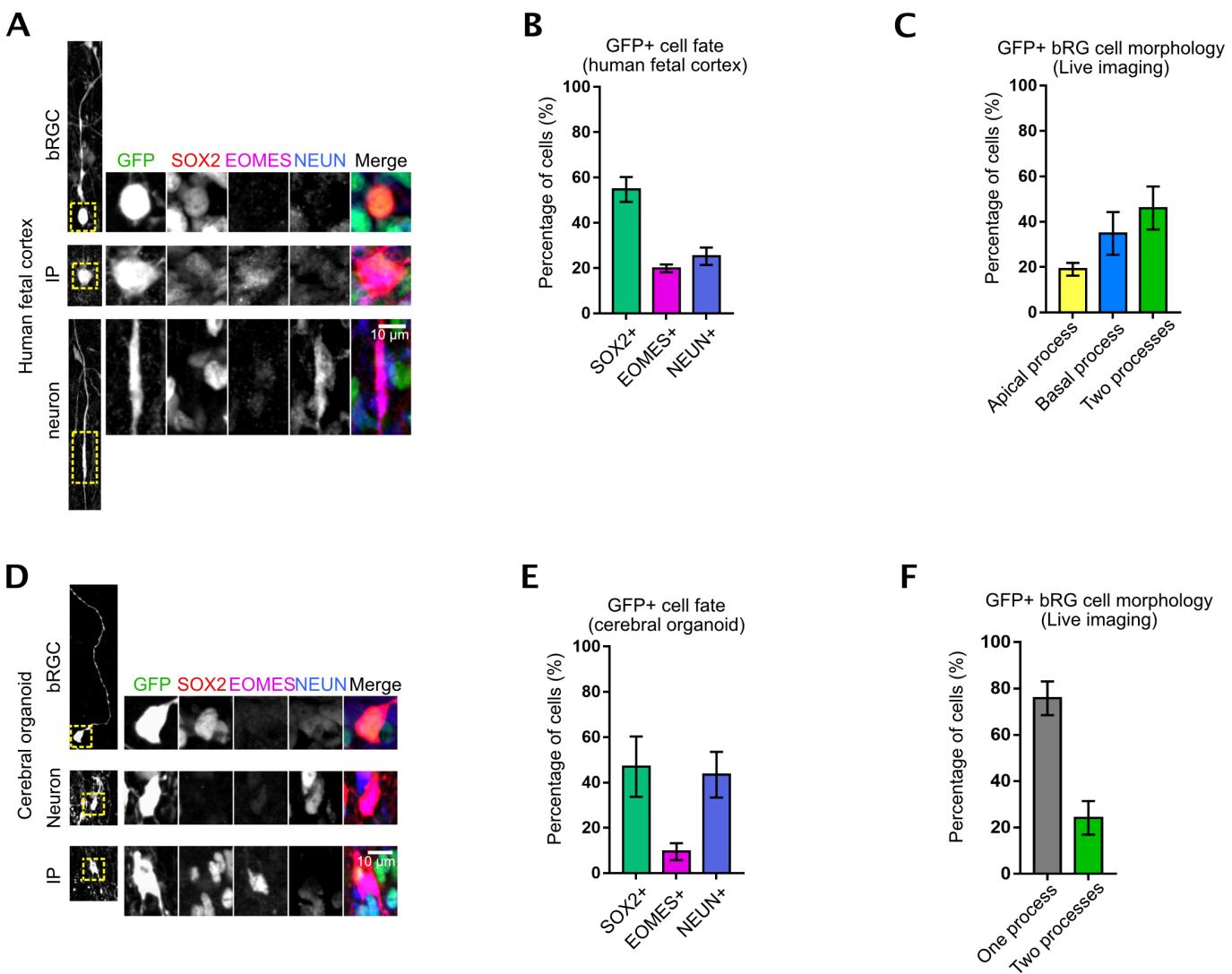
854

855

856

857

858


859

860

861

862

Figure S1

863 **Figure S1. Fate and shape of GFP+ cells in cerebral organoids and fetal tissue.**

864 **A.** Immunostaining for SOX2, EOMES and NEUN in GFP-infected human fetal cortex at GW
865 17. **B.** Fate of GFP+ cells in human fetal cortex at GW 14-18. **C.** Morphology of GFP+ bRG
866 cells in live imaged human fetal samples at GW 14-18. **D.** Immunostaining for SOX2, EOMES
867 and NEUN in GFP-infected cerebral organoids at week 8. **E.** Fate of GFP+ cells in cerebral
868 organoids at week 8-10. **F.** Morphology of GFP+ bRG cells in live imaged cerebral organoids
869 at week 8-10.

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

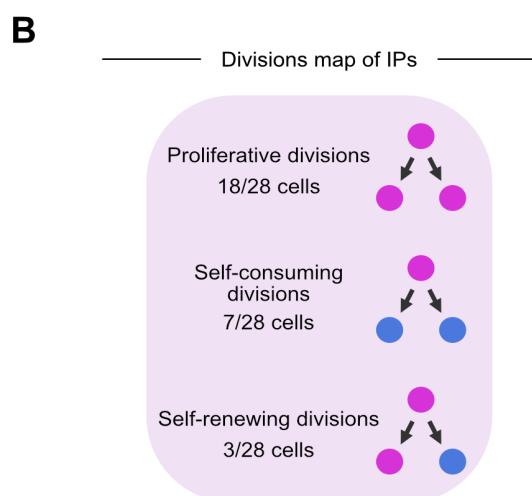
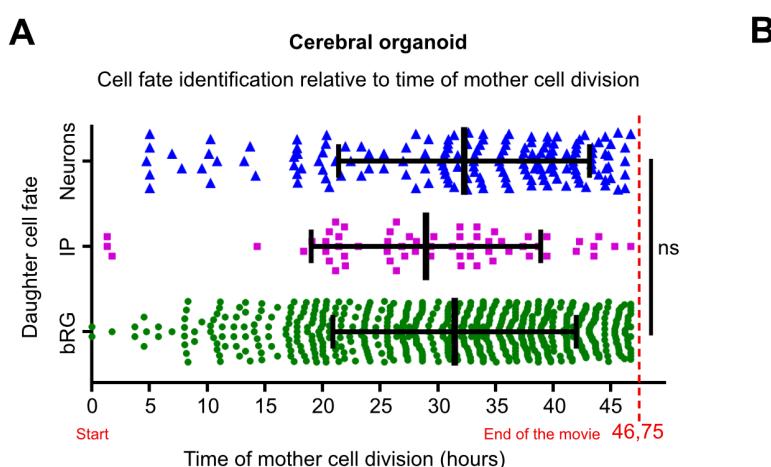
888

889

890

891

892



893

894

895

896

Figure S2

897 **Figure S2. Cell fate identification timing and IP division modes in cerebral organoids.**

898 **A.** Detection of bRG, IP or neuronal cell fate relative to the time of division of the bRG mother
899 cell in cerebral organoids at week 8-10. **B.** Summary of division patterns identified in IPs within
900 week 8-10 cerebral organoids (N=28 IPs).

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

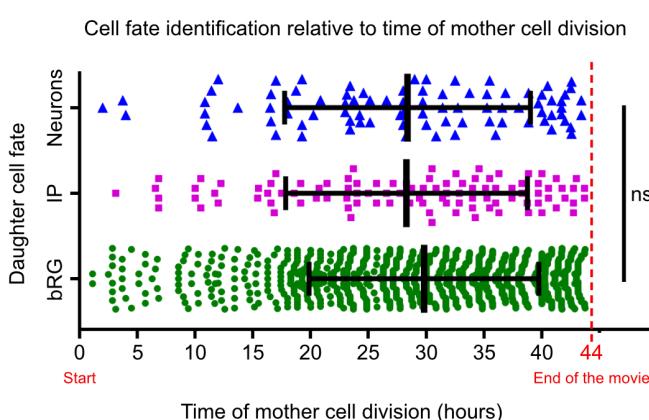
924

925

926

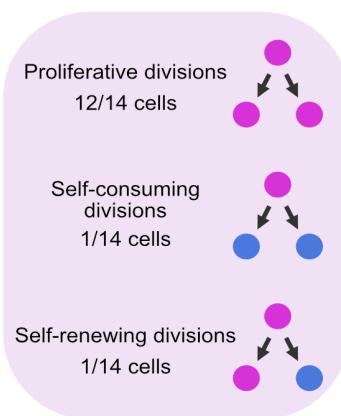
927

928


929

930

Figure S3


A

Fetal tissue

B

Division map of IPs

931 **Figure S3. Cell fate identification timing and IP division modes in fetal tissue.**

932 **A.** Detection of bRG, IP or neuronal cell fate relative to the time of division of the bRG mother
933 cell in human fetal samples at GW 14-18. **B.** Summary of division patterns identified in IPs
934 within human fetal samples at GW 14-18 (N=14 IPs).

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

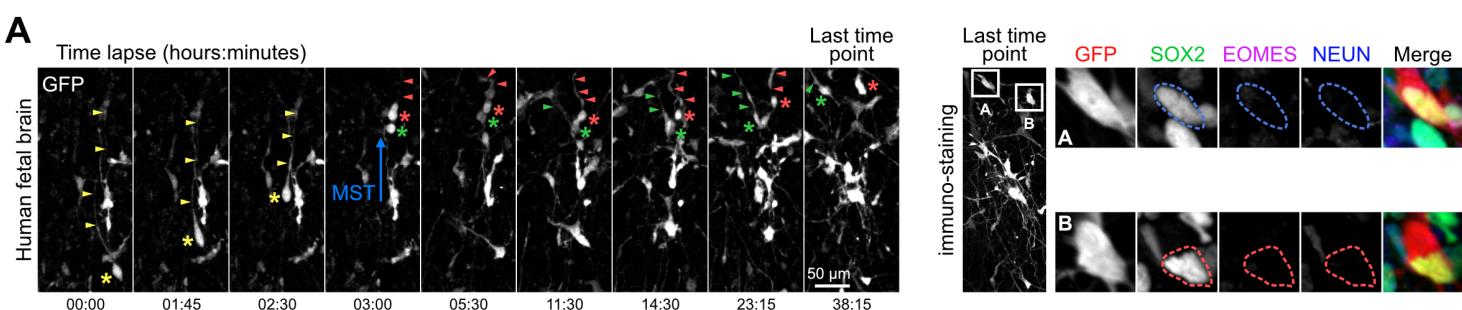
956

957

958

959

960


961

962

963

964

Figure S4

965 **Figure S4. SOX2+ bRG daughter cells regrow a basal process if at birth.**

966 **A.** Live/fixed correlative analysis of a dividing bRG cell generating two bRG daughters. Asterix
967 indicates cell soma and arrowhead indicates basal process. Mother cell (yellow) divides into a
968 process-inheriting cell (red) and a cell that regrows a basal process (green).

969

970

971

972