

1 **An *in vitro* method for inducing titan cells reveals novel features of yeast-to-titan**
2 **switching in the human fungal pathogen *Cryptococcus gattii***

3
4 Lamin Saidykhhan^{1,3}, Joao Correia¹, Andrey Romanyuk^{1,2}, Guillaume E. Desanti¹, Leanne
5 Taylor-Smith¹, Maria Makarova¹, Elizabeth R. Ballou^{1*}, Robin C. May^{1*}
6
7
8
9

10 ¹Institute of Microbiology & Infection and School of Biosciences, University of Birmingham,
11 Edgbaston, Birmingham, United Kingdom.
12

13 ²School of Chemistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK.
14

15 ³Division of Physical and Natural Science, University of The Gambia, Brikama Campus,
16 West Coast Region, The Gambia.
17

18

19

20

21

22 ***Correspondence should be addressed to e.ballou@exeter.ac.uk or r.c.may@bham.ac.uk**
23

24

25 **Abstract**

26 Cryptococcosis is a potentially lethal fungal infection of humans caused by organisms within
27 the *Cryptococcus neoformans/gattii* species complex. Whilst *C. neoformans* is a relatively
28 common pathogen of immunocompromised individuals, *C. gattii* is capable of acting as a
29 primary pathogen of immunocompetent individuals. Within the host, both species undergo
30 morphogenesis to form titan cells: exceptionally large cells that are critical for disease
31 establishment. To date, the induction, defining attributes, and underlying mechanism of
32 titanisation have been mainly characterized in *C. neoformans*. Here, we report the
33 serendipitous discovery of a simple and robust protocol for *in vitro* induction of titan cells in
34 *C. gattii*. Using this *in vitro* approach, we reveal a remarkably high capacity for titanisation
35 within *C. gattii*, especially in strains associated with the Pacific Northwest Outbreak, and
36 characterise strain-specific differences within the clade. In particular, this approach
37 demonstrates for the first time that cell size changes, DNA amplification, and budding are not
38 always synchronous during titanisation. Interestingly, however, exhibition of these cell cycle
39 phenotypes was correlated with genes associated with cell cycle progression including *CDC11*,
40 *CLN1*, *BUB2*, and *MCM6*. Finally, our findings reveal exogenous p-Aminobenzoic acid to be
41 a key inducer of titanisation in this organism. Consequently, this approach offers significant
42 opportunities for future exploration of the underlying mechanism of titanisation in this genus.

43

44 **Introduction**

45 *C. neoformans* and *C. gattii* are two pathogenic species of *Cryptococcus* that cause invasive
46 cryptococcosis in immunocompromised patients as well as immunocompetent individuals [1-
47 3]. Upon inhalation into the lungs, *Cryptococcus* is exposed to a repertoire of hostile host
48 factors (e.g., elevated temperature, nutrient deprivation, higher physiological CO₂ and
49 hypoxia), [4, 5] which trigger adaptive phenotypes such as the formation of titan cells. Titan
50 cell formation is a dramatic morphological change as cryptococcal haploid yeast cells (5-7μm)
51 transform into enormous polyploid titan cells (50-100μm in diameter) [6, 7]. This atypical
52 morphotype is characterized by many attributes such as enlarged cell size, thicker cell wall,
53 and altered capsule composition, which confer resistance to host immune defence and enhance
54 survival in the host [8-10].

55

56 *C. neoformans* titan cells have been clinically observed [11, 12], studied *in vivo* [6, 7] and
57 recently induced *in vitro* [13-15]. The discovery of *in vitro* induction protocols is considered a
58 major breakthrough, as efforts employed towards understanding the biology and mechanism
59 underlying titanisation were impeded by the ethical and technical challenges associated with
60 using animal models. Although titanisation is also thought to be a major virulence factor of *C.*
61 *gattii* [16-18], the defining attributes and underlying mechanism of titanisation have thus far
62 been mainly characterized in *C. neoformans* [19-23].

63

64 Here we describe a facile *in vitro* induction approach that reveals a novel strategy for
65 titanisation in *C. gattii*. Specifically, this method reveals that the *C. gattii*/VGIIa strain R265
66 deviates from the usual synchronous occurrence of cell enlargement and polyploidization that
67 occurs in *C. neoformans*. Instead, R265 delays DNA endoreduplication, growing to around
68 30μm as a haploid cell over the first 3 days of induction before endoreduplicating its DNA to
69 become a uninucleate polyploid cell. Secondly, unlike *C. neoformans*, R265 titan cells produce

70 daughter cells before reaching their critical cell size, after which they permanently cease
71 budding unless they are exposed to conditions compatible with normal yeast growth. Although
72 occurrence of these cell cycle phenotypes is asynchronous, these behaviors during titanisation
73 are correlated with the expression levels of genes associated with cell cycle progression such
74 as *CLN1*, *CDC11*, *MCM6* and *BUB2*. By studying offspring from crosses between R265 and
75 other *C. gattii* strains, we show that the propensity to titanise is most likely a highly polygenic
76 trait and identify a number of hybrid strains in which *in vitro* titanisation levels approach 100%,
77 opening the door to future molecular studies of this biological phenomenon.

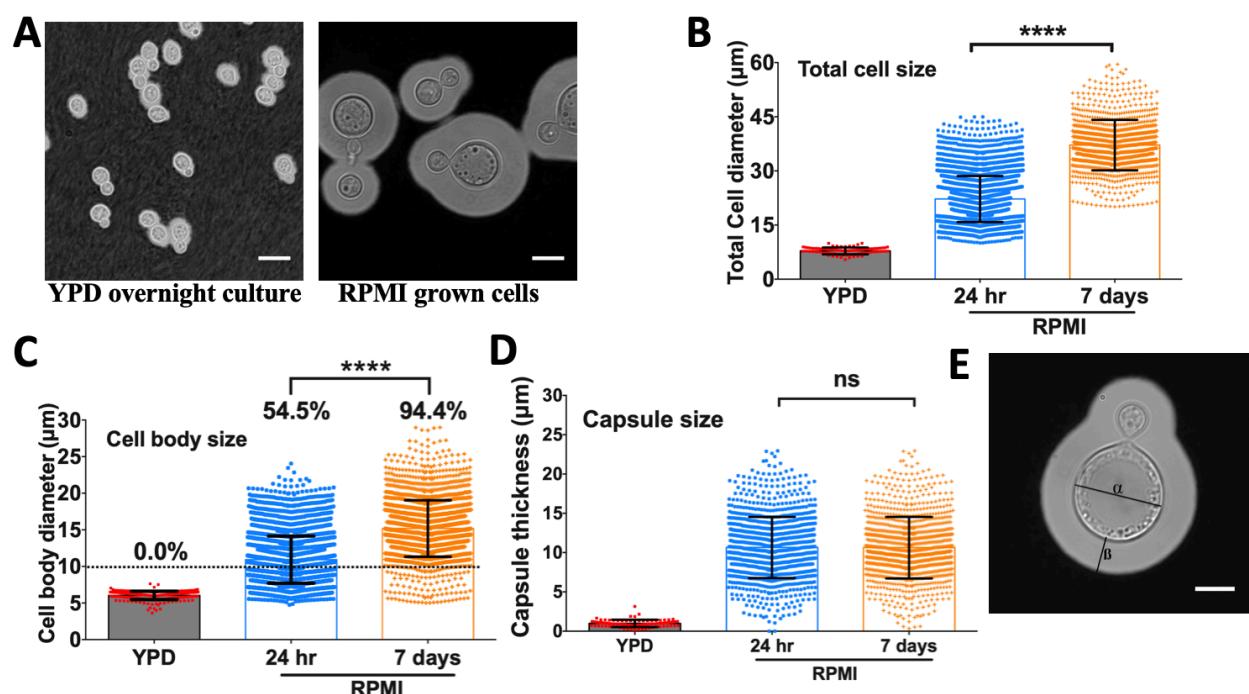
78

79 Finally, we discovered that the widespread metabolite and UV-scavenger p-Aminobenzoic acid
80 (pABA) is required for maximal titanisation *in vitro*, providing a molecular inroad to future
81 investigations of the titanisation pathway.

82

83 **Results**

84 **Titan cells are induced by growth in RPMI medium**


85 While characterizing co-culture of *C. gattii* with an alveolar macrophage cell line (MH-S) at a
86 low multiplicity of infection (MOI [5:1]), we made the serendipitous discovery that exposure
87 of low density R265 cultures to sterile RPMI growth media at 37°C in an atmosphere of 5%
88 CO₂ induced dramatic cell size increase within 24 hrs (Fig. 1A and B). Extending the
89 incubation period to seven days enabled these giant cells to achieve cell bodies of up to 30 μ m
90 in diameter, resulting in a population with a median size two-fold larger than yeast cells grown
91 in YPD overnight [median size: 13.7 μ m (5.1-29.8) vs 5.8 μ m (4.0 -7.6); (p<0.0001)] (Fig. 1C
92 and 1E [α =cell body diameter]).

93

94 The cryptococcal yeast-titan transition occurs concomitantly with increasing capsule thickness
95 [16]. Therefore, we characterized the capsule size (Fig. 1D and 1E [β =capsule size]) of our *in*

96 *vitro*-generated R265 giant cells. Relative to the YPD-grown capsule thickness, R265 giant
97 cells demonstrated significantly thicker capsule [median capsule thickness: 10.28 μ m (0.34-
98 22.9) vs 1.00 μ m (0.2-3.1), p<0.0001]. Although the cell body size progressively increased with
99 induction time from 24 hr to 7 days (Fig. 1C), the capsule size of the giant cells reached a
100 plateau at 24 hours and remained at a median size of 10.33 μ m (1.0-22.9) for the remaining six
101 days of the assay (Fig. 1D). This suggests that the giant cells achieve their maximum capsule
102 size much earlier than their maximum cell body size. In addition to displaying a titan-like
103 capsule and cell body, *C. gattii* (R265) giant cells bear a single large vacuole occupying almost
104 the entire protoplasmic space (Fig. 1E), a characteristic previously described with *in vivo* and
105 *in vitro*-derived *C. neoformans* titan cells [7, 13].

106

107

108 **Figure 1: *C. gattii* (R265) exhibits cell body and capsule enlargement in response to**
109 **growth in RPMI.** A) Micrographs of R265 cells grown overnight in YPD at 25°C in
110 atmospheric conditions (left panel) and grown in RPMI at low density for 24 hrs at 37 °C in an
111 atmosphere of 5% CO₂ (right panel). Scale bar=15 μ m. B) Total cell diameter (capsule
112 included), C) cell body diameter (percentages represent percentage of cells more than 10 μ m in

113 diameter) and D) capsule thickness of R265 cells all significantly increase after growth in
114 RPMI at 37°C in 5% CO₂. The graphs represent at least 3 biological experimental repeats, and
115 a one-way ANOVA was used to determine significance where *** = p<0.0001. E) Cellular
116 morphology of R265 giant cells: cell body diameter (α) and capsule thickness (β).


117

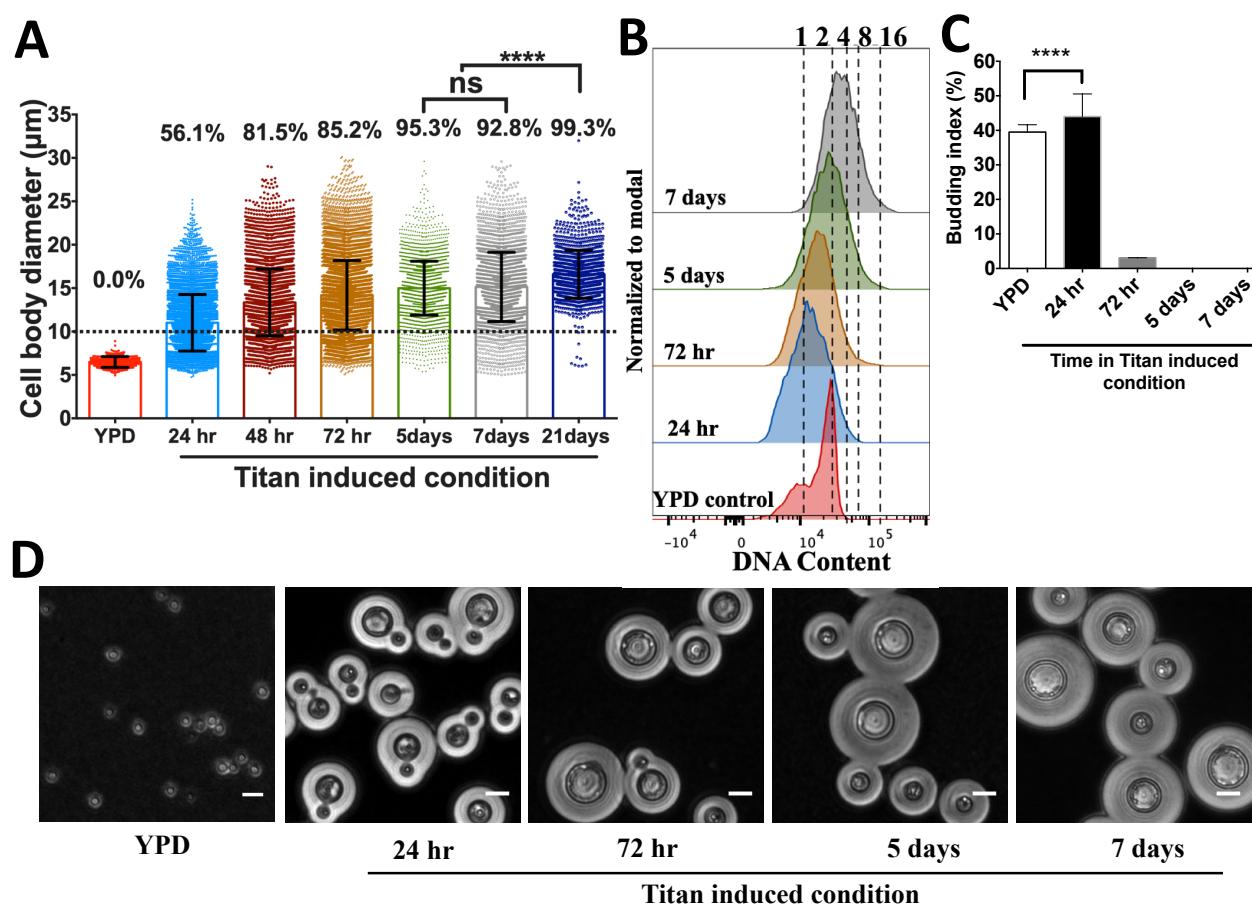
118 Titan cells exhibit altered cell wall composition [13, 15, 24]. Consequently, we characterized
119 the cell wall of R265 *in vitro*-derived giant cells by staining for chitin with calcofluor white
120 (CFW, Fig. 2A) [15]. In line with previous studies, we observed a significant increase (P<0.05)
121 in the chitin content of giant induced cells via flow cytometry (Fig 2B and 2C) that was also
122 evident via fluorescence microscopy (Fig. 2A).

123

124 In addition to changes in cellular morphology, the yeast-titan transition in *C. neoformans*
125 involves a switch from a haploid to highly polyploid state [6, 7, 13, 15]. Thus, we evaluated the
126 ploidy of RPMI *in vitro*-generated *C. gattii* giant cells. Whilst YPD grown yeast cells typically
127 displayed a mix of cells with 1C or 2C DNA content (depending on which phase of the cell cycle
128 they are in), RPMI-induced cells displayed DNA content ranging up to 16C after 7 days of
129 induction (Fig. 2D). By DAPI staining the nucleus and visualizing by microscopy, we confirmed
130 the giant cells were uninucleate (Fig. 2E). Thus, R265 titan-induced cells exhibit all the key
131 features of bona fide titan cells: cell enlargement, a large vacuole, altered cell wall composition
132 and high ploidy. Interestingly, however, we noted that in the case of R265, cell enlargement and
133 increased DNA content do not necessarily occur at the same time. Indeed, R265 cells achieve
134 significant cell body enlargement within 24hrs, but DNA content does not exceed 2C until much
135 later (Fig. 2D). Taken together, the structural attributes exhibited by the *in vitro* RPMI-induced
136 titan cells are typical of true titan cells.

137

138


139 **Figure 2: The cell wall chitin content and ploidy of enlarged cells are typical of titan cells.**

140 *In vitro* RPMI-generated giant cells displayed a significantly higher chitin level relative to YPD
141 grown R265 cells, as indicated by the calcofluor white (CFW) fluorescence intensity shown
142 using microscopy imaging in (A), via flow cytometry in (B) and graphically in (C, Median
143 Fluorescence Intensity, MFI) ($p<0.05$). Scale bar=15 μ m. Statistical significance was
144 confirmed by Two-tailed *t*-test. D) Ploidy measurement of RPMI-generated giants cells based
145 on flow cytometry analysis of DAPI staining. YPD grown cells (red) gated as 1C, 2C (haploid)
146 were used as a control to determine ploidy (DNA content) of enlarged cells after 24 hr (blue)
147 and 7days (orange) of induction. E) Micrographs showing the uninucleate nature of R265 titan
148 cells upon staining with DAPI to visualize the nucleus. Scale bar=15 μ m.

149

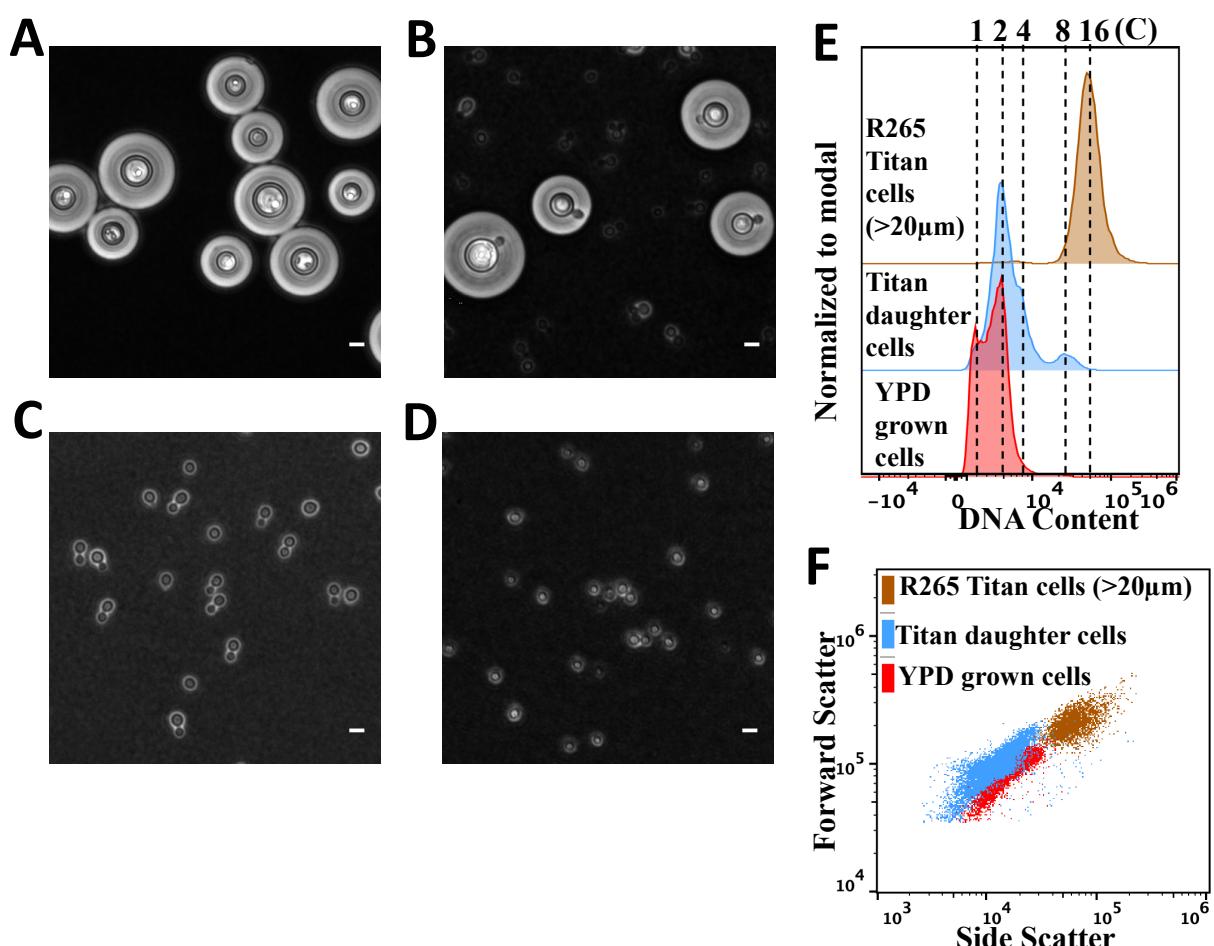
150 **In R265, cell enlargement is asynchronous with ploidy**

151 To characterise the kinetics of cell size and ploidy changes more fully, we carried out a detailed
152 time course analysis of R265 cells over a period of three weeks. By day 3 of induction, R265
153 cells showed significantly enlarged body diameter as compared with non-induced (YPD
154 grown) cells [median size: 13.7 μ m (5.1-29.8) vs 6.5 μ m (4.9-8.89); (p<0.0001)] with 81.5%
155 (5241/6431) of cells larger than 10 μ m (Fig. 3A). Despite this size increase, for the first three
156 days all cells were 1C or 2C (reflecting a haploid cell cycle) (Fig 3B). The population reached
157 the maximum cell size on day 5, and from day 5 to day 7, there was no change in the size of
158 induced cells [median size being 14.9 μ m at day 5 and 14.7 μ m at day 7]. However, the ploidy
159 of these cells increased, with tetraploid (4C) cells apparent at day 5 and cells exhibiting DNA
160 content of up to 16C by day 7. In parallel, although the maximum size of induced cells no
161 longer increased at this late stage of incubation, the proportion of the population with a large
162 cell phenotype rose from 92.8% to 99.3% (p<0.0001) (Fig 3A). Thus, it appears that: a) size
163 increase and ploidy increase are separable phenotypes during titanisation of R265, b) true titan
164 cells (large and polyploid) appear only after around 5 days of induction and c) their maximum
165 cell size is achieved rapidly during titanisation, but the proportion of cells adopting this fate
166 rises steadily over a long time period.

180 ***=p<0.05. D) Microscopy images showing the budding nature of cells obtained from YPD
181 or at various timepoints after titan induction. Scale bar: 15 μ m.

182

183 **The polyploid titan cells are unbudded**


184 Within our *in vitro* model, after 3 days of induction, the R265 titan cells completely stop
185 budding despite being polyploid [Fig. 3]. This suggests that budding and DNA increase are
186 decoupled, consistent with endoreduplication. During the first 3 days, the budding index (the
187 number of mother cells producing buds) fell from 44.4% (2552/5749 cells) at 24 hr to 2.8%
188 (26/933) by day 3 and 0% (0/2971) by the fifth day of induction (Fig. 3C). Hence, we termed
189 the period before 3 days of induction as the budded phase and the later period as the unbudded
190 phase. During the budded phase, cells predominantly exhibited a 1C DNA content (Fig. 3B
191 and Fig. 3D). However, during the unbudded phase (3 to 7 days) cells rapidly became
192 polyploid, with DNA content rising from 2C to 4C to 16C (Fig. 3B and Fig. 3D). The 1C
193 DNA content during the budded phase, coupled with cell enlargement, suggests that the cells
194 spend longer in the G1 phase of their cell cycle during titan induction.

195

196 **The unbudded titan cells emerge slowly from growth arrest and produce yeast-like
197 daughter cells.**

198 The unbudded state of *C. gattii* (R265) titan cells prompted us to investigate whether this cell
199 cycle arrest occurs as a consequence of nutrient deprivation. By filtering 7 day old titan-
200 induced cultures, we obtained the largest (>20 μ m) titan cells and re-cultured them on a rotary
201 wheel at 20 rpm for i) 2 hr or ii) overnight at 25°C in YPD broth. These cells remained
202 unbudded during the first 2 hrs (the generation period of *Cryptococcus* yeast) (Fig. 4A) but
203 after overnight incubation produced daughter cells (Fig. 4B) resembling yeast cells in size and
204 morphology (round-shaped with small capsule size) (Fig. 4C and Fig. 4D). Time-lapse
205 observation revealed that titan cells starts budding after 2 hours (Video S1).

206

207

208 **Figure 4 Characterization of daughter cells of R265 titan cells.** 7 day old R265 titan cells
209 were purified using a 20 μm cell strainer (A) and then B) re-cultured overnight in YPD to induce
210 budding. C) After 24hrs, daughter cells of R265 titan cells were isolated by filtration of the
211 titan culture (through a >15 μm cell strainer) and microscopically compared with D) YPD
212 grown yeast R265 cells (control). Scale bar = 10 μm . E) DNA content of titan-derived daughter
213 cells (Blue) as compared to YPD grown (red) and >20 μm R265 titan cells (brown). F)
214 Size distribution of daughter cells (blue), YPD grown (red) and >20 μm R265 titan cells
215 (brown).

216

217 **Titan cells produce polyploid, yeast-sized, daughter cells**

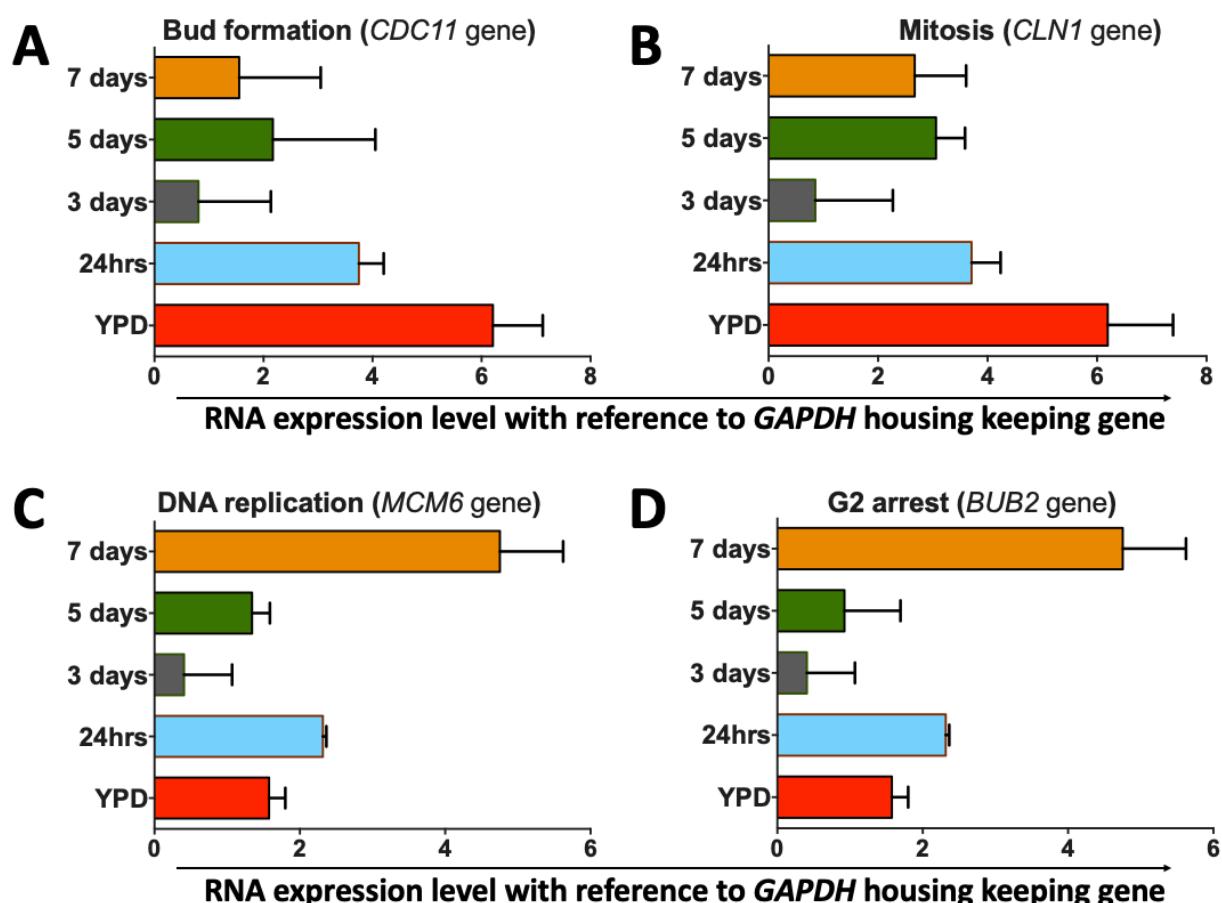
218 To investigate if the cellular similarities observed between titan-derived daughter cells and
219 yeast cells extend to their ploidy, we characterized the DNA content of daughter cells relative

220 to their highly polyploid titan mother cells ($>20\mu\text{m}$) and haploid yeast cells. Despite having
221 the cellular properties of yeast cells (Fig. 4C, 4D and 4F), titan-derived daughter cells exhibited
222 a higher DNA content than normal yeast, with most cells displaying either diploid (2C) or
223 polyploid ($>4C$) DNA content (Fig. 4E). Taken together, the delayed DNA replication of R265
224 titan cells (Fig. 3B) coupled with the production of polyploid daughter cells (up to 8C) (Fig.
225 4E) is indicative of high ploidy elasticity in *C. gattii* titan cells.

226

227 By re-culturing titan-derived daughter cells in titan inducing condition, we assessed the ability
228 of these ‘second generation’ cells to return to a titan state. Unlike the ‘original’ titan cells,
229 these titan-derived daughters increased their DNA content within 24 hours, achieving genome
230 sizes of 16C and 32C at 24hr and 7 days respectively (Fig. S1C and S1D). As with the original
231 mother titan cells, titan-induced daughter cells underwent budding during the early induction
232 period but formed unbudded titan cells by day 7 of induction (Fig. S1A and S1B).

233


234 **The titan cell cycle phenotypes are correlated with the expression of genes involved in cell
235 cycle progression**

236 The manner in which R265 progressively exhibits cell-cycle-associated phenotypes (cell
237 enlargement, budding, DNA replication and finally growth arrest) to form unbudded polyploid
238 titan cells led us to question the underlying cell cycle regulatory mechanism. We extracted
239 RNA from R265 titan induced cells between 24 hr and 7 days of our *in vitro* protocol and then
240 investigated the expression of a panel of cell cycle markers via quantitative RT-PCR (Table
241 S1).

242 In line with the phenotypic changes that we observe during titan cell formation, the cell cycle
243 markers we examined showed a clear shift from budding and mitosis to DNA replication and
244 eventually cell-cycle arrest (Fig. 5). Thus, the *CDC11* gene, encoding a septin protein involved
245 in bud formation, was highly expressed in YPD grown cells and for the first 24hrs of induction,

246 but downregulated in the "unbudded phase" timepoints (Fig. 5A). The expression of the G1
247 cyclin *CLN1* similarly was reduced at day 3 compared to 24 hrs, while expression was
248 somewhat restored by day 5 (Fig. 5B). In contrast, *MCM6* and *BUB2*, associated with DNA
249 replication and G2 arrest respectively, both peaked at 7 days where the titan cells exhibit
250 maximum ploidy and remain unbudded (Fig. 5C and Fig. 5D).

251

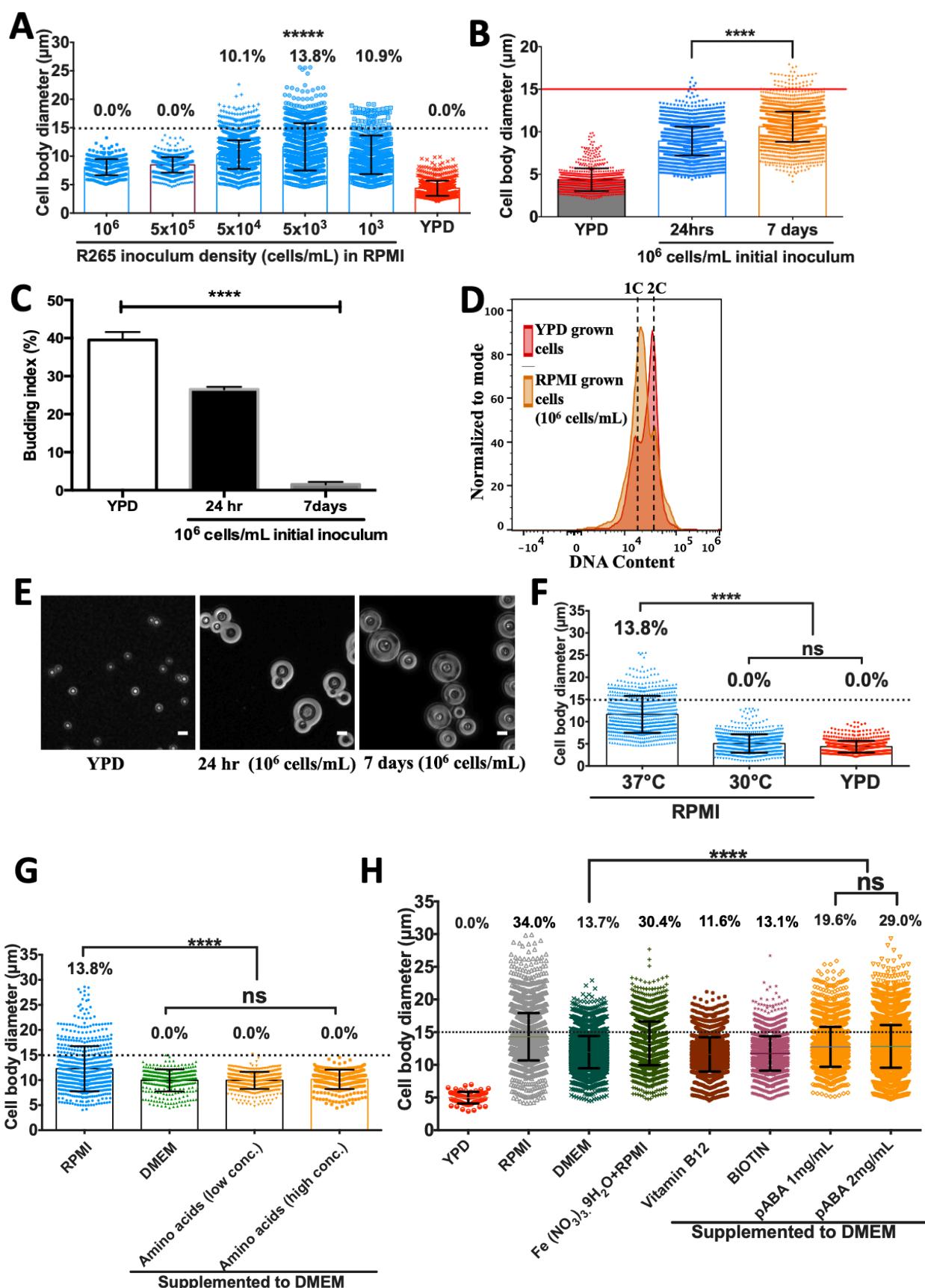
252

253 **Figure 5 Transcription profile of R265 cell-cycle-regulating genes during titanisation.**
254 Quantitative expression analysis of four different cell cycle associated genes in R265 grown in
255 either YPD (control) or titanising conditions for the indicated time points. Expression is shown
256 relative to the housekeeping gene GAPDH. Genes quantified were A) *CDC11* (CNBG_5339),
257 involved in bud formation; B) *CLN1* (CNBG_4803), associated with balancing cell division
258 and DNA replication [25]; C) *MCM6* (CNBG_5506), involved in DNA replication; and D)

259 *BUB2* (*CNBG_4446*), involved in G2 arrest. The graphs represent 3 biological repeats (3
260 technical replicates each), with error bars depicting the standard deviation of *delta-delta CT*
261 values.

262

263 **Titan cell formation is inversely correlated to cell density**


264 Previous work in *C. neoformans* has shown that titan cells are preferentially produced at low
265 cell density [7, 14, 15, 26]. We tested whether the same was true of R265 by growing yeast
266 cells in RPMI at five decreasing inoculum concentrations (10^6 , 5×10^5 , 5×10^4 , 5×10^3 and 10^3
267 cells/mL) and incubating for 24hr at 37°C in 5% CO₂. The formation of titan cells was maximal
268 [14.0% titan cells (408/2999) $> 15\mu\text{m}$] at an initial inoculum of 5×10^3 cells/mL, producing cells
269 with a median cell body size of $10.5\mu\text{m}$ (4.2-26.28) (Fig. 6A). The percentage of titan cells
270 decreased with increasing cell densities, indicating that in *C. gattii*, as in *C. neoformans*, titan
271 induction occurs primarily in low density cultures.

272

273 **High density growth in RPMI produces large, haploid, non-titan cells**

274 The impact of culture density led us to ask what happens to R265 in non-titanising (high
275 density) conditions. To answer this, we inoculated R265 cells in RPMI at 10^6 cells/mL and
276 measured cell body size, capsule size, and ploidy over 7 days. At high density, there was a
277 statistically significant increase in cell body size from 24 hr to 7days (median size: $9.0\mu\text{m}$ vs
278 $10.5\mu\text{m}$, $p < 0.0001$) (Fig 6B), but they did not become the very large titan cells that appear in
279 low density cultures (Fig. 1C). At both time points in these high-density conditions, cell
280 enlargement reached a maximum threshold of $15\mu\text{m}$ with 0.1% (4/4302) and 1.3% (46/3489)
281 of cells scoring $> 15\mu\text{m}$ at 24 hr and 7 days respectively (Fig. 6B). The 7-day cultures were
282 fully growth-arrested, as evidenced by their very low budding index of 2.1% (67/3122) (Fig.
283 6C and Fig 4E). Interestingly, however, these 7-day, non-titan cells displayed a dramatic
284 capsule size increase as compared to YPD grown cells (Fig 6E), perhaps due to the effect of

285 RPMI media and CO₂, which have been employed for capsule induction in *Cryptococcus* [16,
286 27-29]. Interestingly, unlike cells grown in low-density titan-inducing conditions, cells grown
287 at high density remained haploid over the entire 7 day period (Fig 4D). We conclude that high-
288 density long-term culture in RPMI induces a degree of cell enlargement in R265, but these
289 large cells are distinct from the true titans that appear in low density culture.

290

291

292 **Figure 6 Effect of cell density, environmental conditions and media factors on R265 titan**
 293 **cell formation.** A) The effect of cell density on cell enlargement was determined by growing

294 R265 cells in titan inducing conditions at varying concentrations (between 10^6 and 10^3
295 cells/mL, as indicated) and cell size being measured 24hrs later (percentages indicate
296 proportion of the population $>15\text{ }\mu\text{m}$). Maximum cell enlargement capacity (B), budding index
297 (C) and ploidy (D) of R265 cells in RPMI at 10^6 cells/mL (high density growth) at 37°C with
298 5% CO_2 for 24 hr and 7 days. Budding index was expressed as percentage of budded cells per
299 total number of cells. At least >3000 cells were analysed for each sample from two independent
300 repeats and significance was determined by one-way ANOVA ($****=p<0.0001$). Cells
301 recovered from 7 day high density induction cultures were analysed for ploidy (orange) which
302 was consistent with a 1C and 2C haploid DNA content as found for the YPD grown cells (red).
303 E) Microscopy images depicting the budding index of cells grown in YPD (left panel), RPMI
304 for 24hr (middle panel) and RPMI for 7days (right panel). Scale bar: $10\mu\text{m}$. F) Impact of
305 temperature and 5% CO_2 growth: cell body diameter of R265 cells after 24hrs of growth in
306 RPMI with 5% CO_2 at 37°C or 30°C . The effect of RPMI-specific compounds on R265 titan
307 cell formation (G,H). RPMI-specific amino acids (L-Glutamic acid, L-Aspartic acid, L-
308 Arginine, L-Glutathione, L-Asparagine and L-Proline) were added to DMEM either at the
309 concentration used in RPMI ('low conc.') or two-fold higher ('high conc.') and tested for their
310 capacity to trigger titan cell formation after 24 hr induction at 37°C in 5% CO_2 G). RPMI-
311 specific compounds (Vitamin B12, Biotin, and para aminobenzoic acid (pABA) were
312 supplemented to DMEM at the levels present in RPMI and then evaluated for their capacity to
313 induce titan cell formation after 3 days incubation at 37°C in 5% CO_2 H). The graphs are
314 representation of 3 biological repeats and statistical significance was determined by one-way
315 ANOVA, where $****=p<0.0001$.

316

317 **Impact of temperature and CO_2 on Titan cell formation**

318 *Cryptococcus* responds to human physiological temperature (37°C) by exhibiting a variety of
319 morphological changes including capsule elaboration, cell body enlargement and cell shape

320 alteration [13, 30, 31]. Hence, we investigated the role of temperature on R265 yeast-titan cell
321 transformation by comparing cells grown in the presence of 5% CO₂ at either 37°C or 30°C.
322 At 30°C incubation, no titan cells were generated and the median cell body size [5.03μm (1.04-
323 12.85)] was significantly lower than at 37°C [11.17μm (4.04-28.6)] (Fig 6B). Thus, elevated
324 temperature is essential to produce titan cells in our *in vitro* protocol.

325

326 The most dramatic biological response of *Cryptococcus* to CO₂ is capsule biosynthesis which
327 occurs concurrently with cell body enlargement [16, 28, 29]. Consequently, we compared cells
328 grown at 37°C in 5% CO₂ with those grown under normal atmospheric conditions at 37°C.
329 Relative to growth in 5% CO₂, the proliferation of R265 was significantly inhibited in ambient
330 atmosphere [Mean CFU: CO₂=28.5 x10⁵ cells/mL vs CO₂- free 0.29 x10⁵ cells/mL; (p<0.001)]
331 and no titan cells were observed in this condition (Fig. S2). Thus, both elevated temperature
332 and high CO₂ are required for *in vitro* titan cell formation.

333

334 **P-aminobenzoic acid is a major trigger of titanisation in RPMI**

335 While comparing the titan induction capacity of RPMI against DMEM media, we noticed that
336 the giant cell phenotype emerged in RPMI but not DMEM. This raised the hypothesis that
337 either RPMI is enriched with a trigger of titan cell formation that is lacking in DMEM, or that
338 DMEM contains a factor that suppresses titan cell formation. Since RPMI and DMEM media
339 have a close chemical composition, we took advantage of this similarity and sequentially
340 supplemented DMEM with RPMI-specific compounds with the aim of identifying an RPMI-
341 specific factor that triggers titanisation in R265 cells. Compared to RPMI, DMEM lacks the
342 capacity to produce giant cells after 24 hr (Fig. 6G) and generates a much lower proportion
343 (13.7%) when the induction period is prolonged to 3 days (Fig. 6H). RPMI differs from DMEM
344 in its amino acid composition and so we first supplemented DMEM with ‘RPMI-specific’

345 amino acids (L-Glutamic acid, L-Aspartic acid, L-Arginine, L-Glutathione, L-Asparagine and
346 L-Proline) either singly (data not shown) or as a mixture. However, none of these conditions
347 were sufficient to confer titan-inducting capacity to DMEM, even when supplemented at twice
348 their normal concentration (Fig. 6G). Based on these results, we conclude that amino acid
349 availability is not the trigger for R265 titanisation.

350

351 We continued by testing three additional compounds that are present in RPMI but absent from
352 DMEM: Vitamin B12, Biotin, and para-aminobenzoic acid (pABA). Whilst vitamin B12 or
353 biotin supplementation into DMEM had relatively little effect, addition of pABA significantly
354 increased the production of titan cells from 13.7% to 29.0% (median cell diameter = 11.94 μ m
355 vs 12.82 μ m, $p < 0.0001$) (Fig. 6H). Consequently, pABA appears to be a major trigger for titan
356 cell formation in RPMI.

357

358 Finally, we noted that supplementary iron (in the form of Iron (III) nitrate nonahydrate-Fe
359 (NO_3)₃.9H₂O) is present in DMEM but absent from RPMI. We therefore tested whether iron
360 availability may actively inhibit titanisation. Indeed, adding iron to RPMI (Fe
361 (NO_3)₃.9H₂O+RPMI) slightly reduced the induction capacity of RPMI by ~4%. In summary,
362 therefore, the efficient induction of titan cells in RPMI likely results from the combined
363 presence of pABA and the absence of supplementary iron.

364

365 **Strain specificity**

366 There is considerable evolutionary divergence between clades within the *Cryptococcus* genus
367 and indeed the nomenclature of this group is rapidly changing in recognition of potential
368 cryptic species [32]. To begin to assess variation in titanisation capacity, we screened 25
369 different cryptococcal isolates comprising 15 *C. gattii* species complex strains (VGI – VGIV),
370 8 *C. neoformans* strains (VNI and VNII) and 2 *C. deneoformans* strains (VNIV) for their

371 capacity to form titan cells in our *in vitro* protocol (3 days incubation in RPMI with 5% CO₂ at
372 37°C). Overall, the capacity to form titan cells in *C. gattii* strains was significantly higher than
373 either *C. neoformans* or *C. deneoformans*. All 15 *C. gattii* strains produced titan cells, with an
374 average of 73% titan cells at the end of the assay (Table 1). In contrast, only 4/8 (*C.*
375 *neoformans*) and 0/2 (*C. deneoformans*) strains showed any level of titanisation (Table 1).
376 Within the *C. gattii* species complex, VGII genotype strains (*C. deuterogattii*) displayed the
377 highest titanisation capacity (averaging 79.0%) while VGI (*C. gattii*) scored the lowest at
378 64.8% (Table 1).

379 **Table 1. Capacity profile for titan cell formation among cryptococcal isolates.** Percentage
380 of titan cells was determined based on capacity to enlarge >10µm (Fig. S3) and having >2C
381 ploidy (Fig. S4)

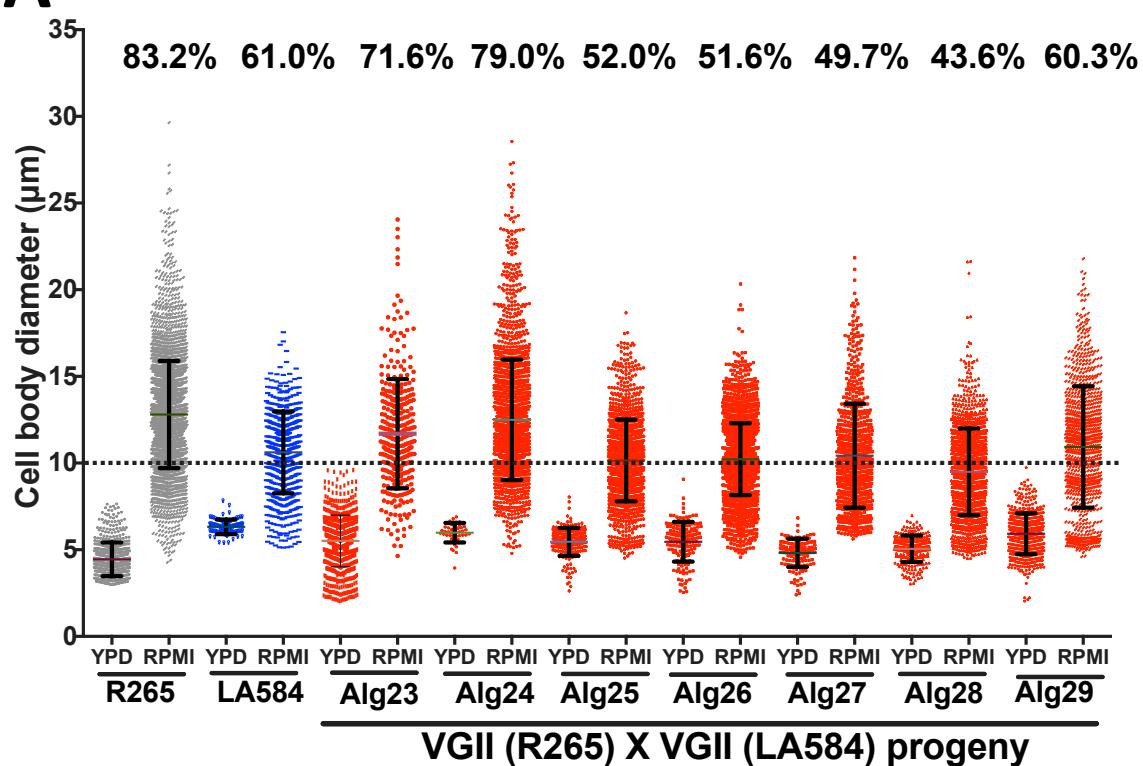
Species/strain	Genotype	Median size [size range] (µm)	% Titan cells[*]
<i>C. gattii</i>			
WM265	VGI	10.9 [4.1-28.4]	62.7
WM179	VGI	11.3 [4.1-25.0]	67
	Av. of VGI	11.1	64.8
R265	VGIIa	13.4 [5.1-29.6]	79.7
CDDR271	VGIIa	12.9 [4.4-26.5]	84.7
ENV152	VGIIa	10.6 [5.5-28.0]	54.8
ICB180	VGII	12.7 [3.4-26.3]	82.6
CBS10089	VGII	13.3 [5.6-25.1]	89.1
CDCR272	VGIIb	13.5 [6.8-39.2]	90
B7735	VGIIb	12.9 [5.5-26.3]	86.4
EJB18	VGIIc	11.3 [4.7-19.5]	75.6
EJB52	VGIIc	11.1 [4.8-19.5]	68.3
	Av. of VGII	12.3	79
CBS6955	VGIII	8.24 [4.34-17.9]	66.3
CBS6993	VGIII	9.9 [4.8-22.6]	45.7
	Av. of VGIII	9.1	56
WM779	VGIV	11.8 [4.2-25.5]	66.5
CBS1010	VGIV	12.6 [4.3-22.2]	80
	Av. of VGIV	12.2	73.2
All <i>C. gattii</i> (Average)		10.75	73.3

<i>C. neoformans</i>			
H99	VNI	7.7 [3.4-20.1]	21.3
ZC1	VNI	7.6 [4.46-15.9]	5.8
ZC8	VNI	12.4 [5.4-20.7]	76.1
ZC12	VNI	4.1 [2.1-7.0]	0
CBS8336	VNI	9.6 [4.6-24.8]	39.9
125.91	VNI	7.2 [4.6-16.3]	7.9
	Av. of VNI	8.1	23.8
TU 406 1	VNII	10.0 [4.9-18.5]	0
HAMDANC 3-1	VNII	9.3 [4.5-22.1]	0
	Av. of VNII	9.6	0
All <i>C. neoformans</i> (Average)		9.7	18.8
(AVERAGE)			
B3501	VNIV	7.2 [4.5-17.43]	0
CBS6995	VNIV	4.5 [3.4-11.1]	0
	Av. of VNIV	5.85	0
All <i>C. deneoformans</i> (Average)		5.85	14.2

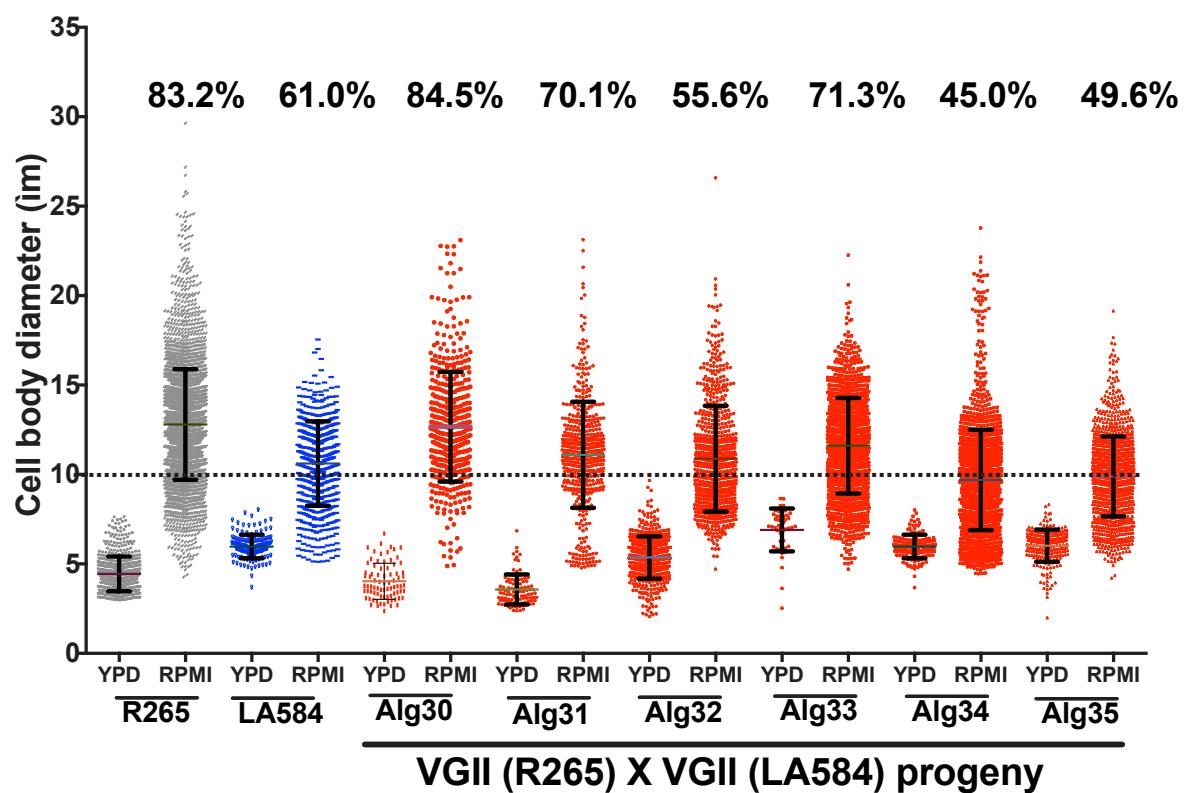
382

383 **Titanisation in *C. gattii* is a polygenic trait**

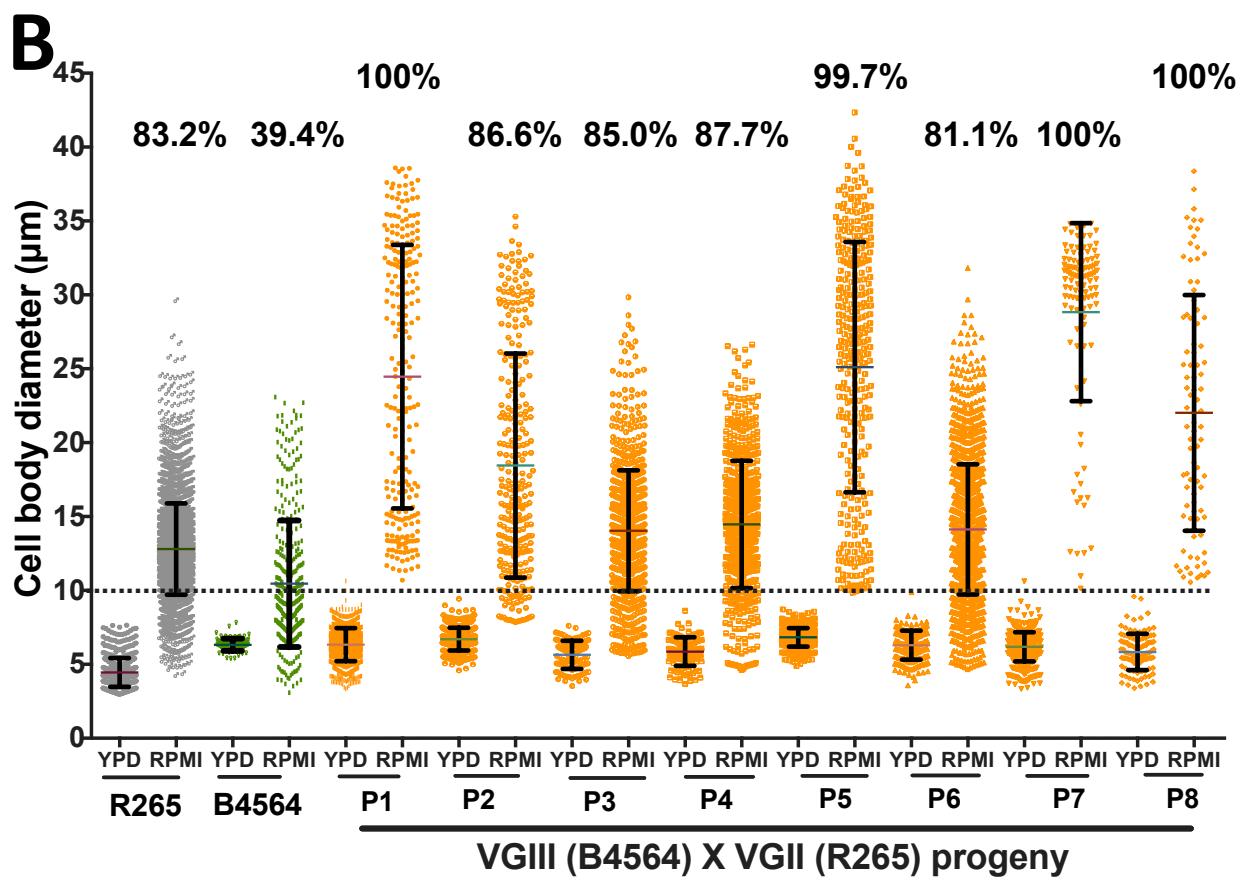
384 Several genetic regulators have been implicated in the control of titanisation in *C. neoformans*
385 [6, 7, 13, 15, 33]. The interaction between these (nuclear genome-encoded) genetic regulators
386 and mitochondrial activity has been proposed [22]. Consequently, we exploited a collection of
387 parent/progeny crosses that we generated as part of an earlier study, and for which
388 mitochondrial genotype is known, [34] to begin to investigate the genetic control of titanisation
389 in *C. gattii*. Mitochondrial genotype and inheritance was confirmed by the expression of *ATP6*
390 gene (encoded by the mitochondrial genome) [34].

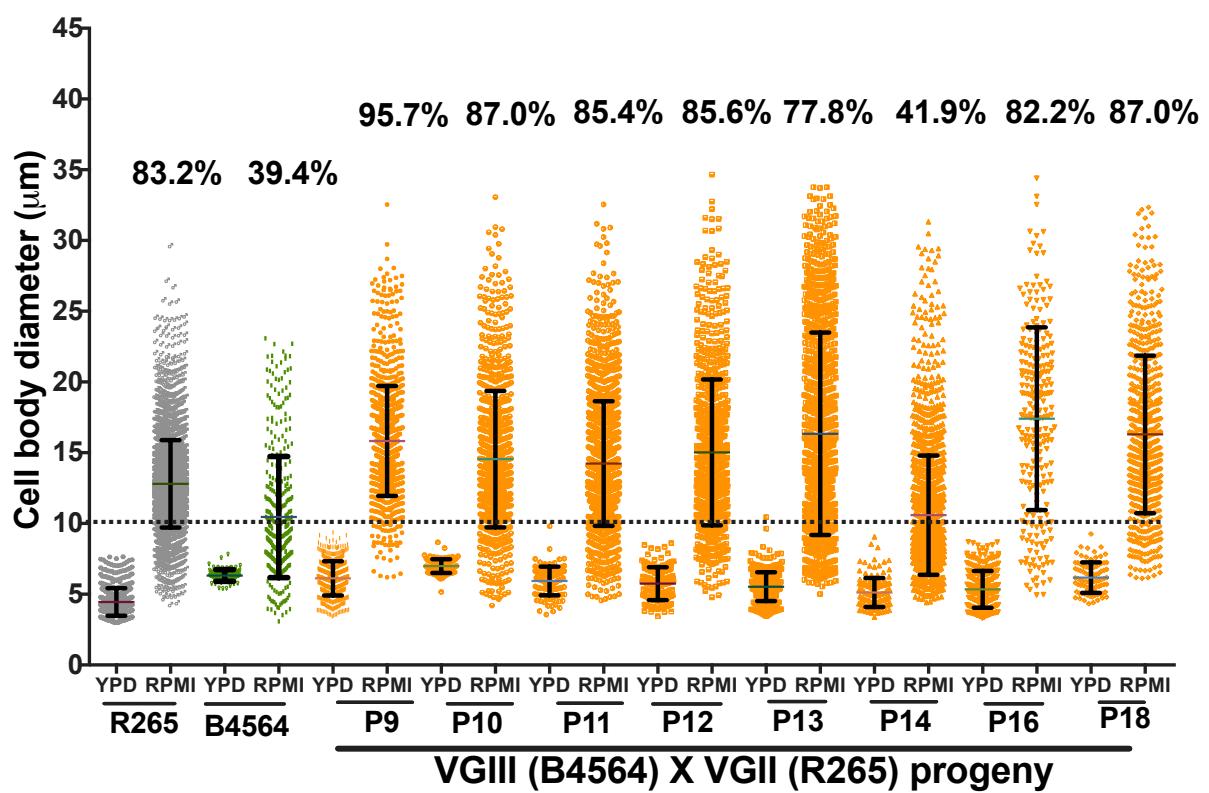

391 Firstly, we investigated a cross between *C. gattii* R265 and *C. gattii* LA584, a strain that
392 belongs to the same VGII group as R265 but shows a significantly lower capacity to titanise in
393 our *in vitro* conditions (Fig 7A). The progeny from this cross showed considerable variation in
394 titanisation capacity, although none exceeded the titanisation capacity of R265. Ploidy
395 measurement of parents/progeny based on flow cytometry analysis of DAPI staining for DNA

396 content is shown in Fig. S5. Notably, there was no correlation between titanisation capacity of
397 individual progeny and the mitochondrial genotype (R265 or LA584) that they had inherited,
398 suggesting that mitochondrial genotype is not a major driver of this phenotype.


399

400 We then turned our attention to a cross between R265 and a more distantly related strain, B4564
401 (VGIII), which shows relatively low levels of titanisation. In this outgroup cross, a 100%
402 inheritance of the mitochondrial genome from B4564 (*MATa*) was confirmed in 18 progeny
403 [34]. Despite this uniparental mitochondrial inheritance, all the progeny exhibit a significantly
404 higher capacity for titanization than B4564 (Fig. 7B). Ploidy measurement of parents/progeny
405 based on flow cytometry analysis of DAPI staining for DNA content is shown in Fig. S5.
406 Furthermore, 12/18 progeny showed a higher capacity for titanisation than either parent
407 ($p < 0.0001$) with 5 progeny (P1, P5, P7, P8, P9 and P18) showing a remarkable >95% titan cell
408 population by the end of the assay. Together, these data suggest that the nuclear genome, and
409 not the mitochondrial genome, is the major source of variation in the capacity of different
410 isolates to form titan cells.


A


411

412

413

414

415

416 **Figure 7 Titan cell formation capacity of *C. gattii* progeny arising from two crosses.** (A)
417 Titanisation pattern following three days of induction for R265 (VGII) x LA584 (VGII) and
418 13 progeny (Alg23-Alg35) arising from this cross [34]. (B) Titanisation pattern following three
419 days of induction of R265 (VGII) x B4564 (VGIII) and 18 of the progeny (P1-P18) arising
420 from this cross.

421

422 **Discussion**

423 *Cryptococcus* adaptation to the host environment is accompanied by phenotypic, metabolic and
424 genetic alterations that are essential for pathogenicity [13, 35-41]. Typically measuring 5-7
425 μm , the cryptococcal yeast cell can undergo a morphological switch in the lungs to form
426 enlarged polyploid titan cells, which have been studied *in vivo* [6, 7] and recently induced *in*
427 *vitro* [13-15].

428

429 Here we report a new *in vitro* model for induction of *bona fide* titan cells. Our protocol is a one-
430 step incubation of cryptococcal cells in serum-free RPMI media with 5% CO₂ at 37°C and is
431 therefore highly amenable to high-throughput screens.

432

433 Using our *in vitro* protocol, we conducted a detailed analysis of titanisation in the *C. gattii* strain
434 R265 (VGIIa). We show that R265 titan cells induced *in vitro* possess enlarged cell body size, a
435 large central vacuole, thick capsule and cell wall, and were polyploid after 5 days. Consequently,
436 they exhibit all the hallmarks of true titans produced during mammalian infection. Unlike other
437 cryptococcal strains, however, R265 shows a separation between size and ploidy increase. We
438 suggest that the asynchronous progression of these two events may be due to R265 undergoing

439 cell size increase without passage through the cell cycle and then subsequently switching to
440 DNA replication once the critical volume has been attained.

441

442 The lack of synchronisation between cell enlargement and DNA replication is a major difference
443 between R265 titan cells and other well-studied *Cryptococcus* titan cells [6, 7, 13, 14, 20, 22,
444 26]. We suggest that the asynchronous progression of these two events is due to the prolonged
445 time the titan cells spend in the G1 phase and/or cell cycle arrest at the G1/S checkpoint. This is
446 supported by the ploidy of the 24 hr induction samples, where the vast majority of cells show a
447 1C DNA content. In yeast, a late G1 cell cycle arrest, known as “Start”, is part of the core
448 cellular response to stress [42, 43].-In R265 we observe that cell enlargement occurs before
449 polyploidization during the early period of induction, so that the enlarged cells remain as 1C
450 haploid yeast cells for the first two days of induction. By day 3 of induction, the enlarged cells
451 begin to duplicate their DNA content to at least 2C but almost completely stop budding at the
452 same time [budding index: 2.8% (26/933)] (Fig 3C). This leads to a major distinction between
453 the species, in that *C. neoformans* titan cells can produce daughter cells within our *in vitro* titan
454 induction model (Fig. S6) whilst *C. gattii* R265 titans do not. We note that this observation may
455 be of value in studying cell cycle dynamics in *Cryptococcus* species (particularly *C. gattii*), since
456 producing synchronised cryptococcal populations for such investigations has previously been
457 methodologically challenging.

458

459 To explain the unbudded phase of the induced cells, we attempt to correlate this phenotype
460 with cell cycle progression with reference to *C. neoformans*. In *C. neoformans*, large unbudded
461 G2 cells have been shown to emerge during a stationary growth phase [44]. Recently, while
462 scrutinizing the cell cycle regulation of titan cells in *C. neoformans*, Altamirano *et al* [25]
463 described a two-step process of titanisation: a) typically-sized cells duplicate DNA to 2C and
464 arrest in G2 as unbudded cells; and b) then the cells are released (by the combined influence of

465 the cell cycle gene Cyclin Cln1 and “stress signals”) to form polyploid titan cells. Contrary to
466 this phenomenon, R265 cells exhibit an actively budding phase in the early period of induction
467 where the majority of the cells display 1C DNA content consistent with G1 and then undergo
468 DNA replication to form G2 arrested unbudded polyploid titan cells at the later time point (day
469 5 onwards) where the 1C DNA content is totally lost (Fig. 5B). In agreement with this
470 observation, we observed that the transcriptional profile of cells undergoing titanisation mirrors
471 their cell-cycle phenotype. Consequently, the budding and mitosis genes, *CDC11* and *CLN1*,
472 were expressed early and peaked at 24hrs (a point at which budding is prevalent and most cells
473 have a 1C DNA content), suggesting that the cells were predominantly in either G1 or M phase.
474 *CLN1* is required for releasing *C. neoformans* titan cells from G2 arrest (during cell cycle
475 progression) [25] and therefore it is not surprising for that *CLN1* is downregulated at day 3
476 (Fig. 5B) when the budding index drops significantly. However, it is intriguing that *CLN1* is
477 partially upregulated at day 5 and 7. In *C. neoformans*, *CLN1* forms a critical balance between
478 DNA replication and cell division [25]. Our data suggest that *CLN1* is involved in the
479 regulation of cell division during the first 24 hr of induction and in DNA replication during the
480 unbudded phases at 5 and 7 days. Although we did not study cell cycle regulation of *C.*
481 *neoformans* titan cells, *C. neoformans* titans generated via our *in vitro* system differ from R265
482 titan cell by profusely budding after 3 days of induction (Fig. S6). *C. neoformans* titan cells
483 can pass through the G2/M checkpoint (G2/M transition), commit to mitosis and produce buds
484 [6, 7, 13, 15].

485
486 We also demonstrate that R265 titan cells produce daughter cells with a polyploid DNA content
487 similar to their mother cells. In contrast, *C. neoformans* titan cells produce both haploid and
488 aneuploid progeny [20], with sizes ranging between 5-7 μ m and 2-4 μ m respectively [13, 45].
489 Given that population heterogeneity in *C. neoformans* is associated with preferential
490 dissemination to the CNS [46, 47], it is possible that this lack of heterogeneity in *C. gattii* may

491 contribute to the differences in disease etiology in this species. In particular, murine models
492 have shown that *C. neoformans* isolates that produce high percentage of titan cells fail to
493 disseminate to the brain and instead remain in the lung, consistent with pneumonia or chronic
494 infection [48, 49]

495

496 The fact that RPMI, but not the very similar cell culture medium DMEM, induced R265 titan
497 cells enabled us to identify p-Aminobenzoic acid (pABA) as a major driver of titanisation. The
498 mechanism by which pABA does this remain unclear at present. However, we note that pABA
499 is an antifungal metabolite that has efficacy against several fungal plant pathogens such
500 *Fusarium graminearum*, *Magnaporthe oryzae*, *Rhizoctonia solani*, *Sclerotinia sclerotiorum*
501 and *Valsa ambiens* var. *pyri*. [50]. Since titanisation is linked to the fungal stress response, it
502 may be that low dose p-ABA induces a mild stress that triggers titanisation. In this context
503 modulation of the cell cycle and morphogenesis of *Colletotrichum fructicola* (a plant fungal
504 pathogen) by pABA has been documented [51]. Alternatively, pABA's well documented role
505 in oxidative damage tolerance [52] and the role of reactive oxygen species in titan cell induction
506 [23] may suggest a role for reactive oxygen balance in this phenomenon.

507

508 Finally, using our *in vitro* protocol, we evaluated the capacity for titan cell formation between
509 and within cryptococcal species. We found titanisation was particularly abundant within *C.*
510 *gattii* /VGII (*C. deuterogattii*). Interestingly, Fernandes and colleagues reported a similar cell
511 enlargement phenotype while screening for clinically relevant attributes in *C. gattii* [17]. To
512 start to dissect the genetic regulation of this process, we tested and analysed the titanisation
513 profile of a collection of parent/progeny crosses that we generated in our previous study [34].
514 It was striking to note the variation in this phenotype within recombinant progeny and, in
515 particular, the very high rates of titanisation found in the offspring of 'outgroup' hybrids. Most
516 of the progeny from this cross showed titanisation rates equal to or greater than that of R265

517 (the high titan cells generating parent). It is possible that this reflects a ‘hybrid vigour’ effect,
518 resulting from the outcross. In the future, more detailed genomic investigation of these and
519 other crosses may potentially facilitate a more comprehensive understanding of titan cell
520 formation in this genus.

521
522 Overall, our titan induction protocol is an efficient and high throughput approach for producing
523 titan cells at scale. By employing our *in vitro* protocol, we have discovered novel aspects of
524 titanisation in *C. gattii* and revealed the separation of DNA replication and cell size increase.
525 Together, we hope that this approach will provide a platform for the future mechanistic
526 investigation of titanisation in this important group of pathogens.

527
528

529 METHODS

530 Cryptococcal strains and culture conditions

531 Cryptococcal strains used in this study are listed in Table 2. Prior to use, cryptococcal strains
532 were maintained on Yeast Peptone Dextrose (YPD) (1% yeast extract, 2% bacto-peptone, 2%
533 glucose, 2% bacto-agar) agar at 4°C from which overnight cultures were prepared in YPD
534 broth at 25°C, 200rpm.

535 **Table 2. Cryptococcal species and strains used in this study**

Species and strains	Serotype	Genotype	Source
<i>C. gattii</i> WM265	B	VGI	Clinical isolate, Brazil
<i>C. gattii</i> WM179	B	VGI	Clinical isolate, Australia
<i>C. gattii</i> R265	B	VGIIa	Clinical isolate, Vancouver, Canada

<i>C. gattii</i> CDCR271	B	VGIIa	Clinical isolate, immunocompetent patient, Kelowna, British Columbia, Canada
<i>C. gattii</i> ENV152	B	VGIIa	Environmental isolate, Alder tree, Vancouver Island, Canada
<i>C. gattii</i> ICB180	B	VGII	Environmental isolate, Eucalyptus tree, Brazil
<i>C. gattii</i> CBS10089	B	VGII	Clinical isolate, Brazil
<i>C. gattii</i> CDC272	B	VGII	Clinical isolate, Greece
<i>C. gattii</i> B7735	B	VGIIb	Clinical isolate, Vancouver, Canada
<i>C. gattii</i> EJB1	B	VGIIb	
<i>C. gattii</i> EJB52	B	VGIIc	Clinical isolate, Oregon, USA
<i>C. gattii</i> CBS6955	B	VGIII	Clinical isolate, Oregon, USA
<i>C. gattii</i> CBS693	C	VGIII	Clinical isolate, USA

<i>C. gattii</i> LA584	B	VGII	Clinical isolate, Colombia
<i>C. gattii</i> B5464	C	VGIII	Clinical isolate, USA
<i>C. gattii</i> WM779	C	VGIV	Clinical isolate, USA
<i>C. gattii</i> CBS1010	C	VGIV	Veterinary, South Africa
<i>C. neoformans</i> H99	B	VGIV	Clinical isolate, USA
<i>C. neoformans</i> Zc1	A	VNI	
<i>C. neoformans</i> Zc8	A	VNI	Clinical, Zambia
<i>C. neoformans</i> Z12	A	VNI	Clinical, Zambia
<i>C. neoformans</i> 125.91	A	VNI	Clinical, Tanzania
<i>C. neoformans</i> Tu369-2	A	VNI	Environmental isolate, Mopane tree bark, Botswana
<i>C. neoformans</i> HAMDANC 3-1	A	VNII	Pigeon droppings, Belo Horizonte, Brazil
<i>C. neoformans</i> B3501	D	VNIV	Clinical isolate, usa

<i>C. neoformans</i> CBS6995	D	VNIV	Clinical isolate, USA
<i>C. neoformans</i> CBS8336	A	VNI	Wood of Cassia tree, Brazil

536

537 ***In vitro* induction of Titan cells**

538 Yeast cells from overnight cultures were collected (by centrifugation at 4000 r.p.m for 2 mins),
539 washed three times with phosphate buffered saline (PBS), re-suspended in 3mL PBS and
540 counted on a haemocytometer to determine cell densities [53, 54]. Except where otherwise
541 noted, titan induction was achieved by inoculating 5×10^3 yeast cells in 1 mL serum free-RPMI
542 1640 within a 24 well tissue culture plate for 24 hours to 21 days at 37°C in 5% CO₂ without
543 shaking.

544

545 For generation of daughter cells, the 7 day old titan-inducing culture was passed through a
546 >20μm cell strainer and >20μm-sized Titan cells were re-cultured in YPD overnight. Then, the
547 daughter cells were isolated by filtering the overnight culture using a 15μm cell strainer and
548 collecting the flow-through.

549

550 **Cell size measurement**

551 Cells recovered from titan induced or YPD grown cultures were washed in PBS and fixed with
552 50% methanol. After Indian ink staining for capsule visualization, cellular images were
553 obtained using a Nikon TiE microscope equipped with phase-contrast 20X optics. Cell body
554 and capsule sizes for individual cells were measured by using ImageJ software in combination
555 with automated measurement based on Circle Hough Transformation algorithm [55].

556 **Cell wall and capsule**

557 Cells were fixed with 4% methanol-free paraformaldehyde for 10 mins and stained with
558 calcofluor white (CFW, 10 μ g/ml) for another 10 mins [13]. Total chitin was determined by
559 flow cytometry on an Attune NXT instrument, with quantification of CFW staining using
560 FlowJo software. For capsule visualization, cells were counterstained with India Ink (Remel;
561 RMLR21518) and images acquired using a Nikon TE2000 microscope and analysed using
562 ImageJ software.

563 **DNA content measurement Ploidy**

564 RPMI and YPD grown cells were recovered, washed 3x in PBS, fixed in 50% methanol and
565 stained with 3 μ g/ml DAPI at 10^5 cells/mL. For each sample, about 10000 cells were acquired
566 on an Attune NXT flow cytometer and the result was analysed using FlowJo v. 10.7.1. Cells
567 were sorted for doublet and clump exclusion by using FSC-A vs FSC-H gating strategy and
568 compared to control, YPD grown, yeast cells.

569 **RNA extraction and purification**

570 Total RNA extraction was performed on uninduced (YPD grown) and titan-induced R265 cells
571 by employing the protocol of QIAGEN (RNeasy Micro Kit [50]); Cat. No./ID74004) with
572 slight modification. Samples of overnight YPD grown R265 cultures and titan-induced cells of
573 the different time-points (24 hr, 72 hr, 5 days and 7 days) were harvested, washed three times
574 in PBS, adjusted to $\sim 10^6$ cells/mL and pelleted in 1.5mL Eppendorf tubes. The cell pellets were
575 flash-frozen in liquid nitrogen and stored at -80°C overnight. The cells were lysed by mixing
576 in 400 μ L of RNAase, transferring to a 2 mL lysing tubes (MP Biomedicals™ 116960100) and
577 beating with a bead beater (MP Biomedicals 116004500 FastPrep 24 Instrument Homogenizer)
578 for thorough cell disruption. The homogenized sample was centrifuged for 3 min at 10,000 xg
579 at room temperature. The aqueous portion was separated, mixed with 70% ethanol at 1:1 ratio

580 and transferred to an RNeasy Mini Spin Column. Finally, RNA extraction and purification
581 were carried out as described in manufacturer's protocol.

582 **RT-qPCR and gene expression analysis**

583 The extracted RNAs from YPD grown and titan-induced samples were reversed transcribed
584 (RT) to cDNA by using FastSCRIPT™ cDNA Synthesis protocol (Catalogue Number: 31-
585 5300-0025R]. In brief, 15 μ L of RNA samples were mixed with 1 μ L of RTase and 4 μ L of
586 FastSCRIPT™ cDNA Synthesis Mix (5X) before 30 min incubation at 42°C and subsequent
587 10 min incubation at 85°C. Quantitative PCR for the selected putative cell cycle genes was
588 determined for each RT samples by mixing 2 μ L of the RT samples with 38 μ L master mixed
589 of KAPA enzyme (KABA SYBR FAST qPCR Kits) and designed primers (table S1) and run
590 in a real-time PCR detection system (CFX96 Touch Real-Time PCR Detection System; Ref.
591 no. :1845096). Gene expression level was obtained and normalized according to change
592 difference with the housekeeping gene, *GAPDH*. Finally, the relative expression profile was
593 expressed as a function of comparative threshold cycle (C_T) by using the follow formula (III):

594 I. Delta C_T= C_{T_{gene}} - C_{T_{GAPDH}}

595 II. Delta delta C_T= C_{T_{gene}}-average Delta C_T

596 III. Relative gene expression= 2^{-delta delta Ct}

597 **References**

- 598 1. May, R.C., et al., *Cryptococcus: from environmental saprophyte to global pathogen*. Nat Rev
599 Microbiol, 2016. **14**(2): p. 106-17.
- 600 2. Bielska, E. and R.C. May, *What makes Cryptococcus gattii a pathogen?* FEMS Yeast Res, 2016.
601 **16**(1): p. fov106.
- 602 3. Kwon-Chung, K.J., et al., *Cryptococcus neoformans and Cryptococcus gattii, the etiologic*
603 *agents of cryptococcosis*. Cold Spring Harb Perspect Med, 2014. **4**(7): p. a019760.
- 604 4. Cooney, N.M. and B.S. Klein, *Fungal adaptation to the mammalian host: it is a new world, after*
605 *all*. Curr Opin Microbiol, 2008. **11**(6): p. 511-6.
- 606 5. Ballou, E.R. and S.A. Johnston, *The cause and effect of Cryptococcus interactions with the host*.
607 Curr Opin Microbiol, 2017. **40**: p. 88-94.
- 608 6. Okagaki, L.H., et al., *Cryptococcal cell morphology affects host cell interactions and*
609 *pathogenicity*. PLoS Pathog, 2010. **6**(6): p. e1000953.

610 7. Zaragoza, O., et al., *Fungal cell gigantism during mammalian infection*. PLoS Pathog, 2010.
611 6(6): p. e1000945.

612 8. Feldmesser, M., Y. Kress, and A. Casadevall, *Dynamic changes in the morphology of*
613 *Cryptococcus neoformans during murine pulmonary infection*. Microbiology, 2001. **147**(Pt 8):
614 p. 2355-65.

615 9. Okagaki, L.H. and K. Nielsen, *Titan Cells Confer Protection from Phagocytosis in <span*
616 *class="named-content genus-species" id="named-content-1">Cryptococcus*
617 *neoformans Infections*. Eukaryotic Cell, 2012. **11**(6): p. 820.

618 10. Crabtree, J.N., et al., *Titan cell production enhances the virulence of Cryptococcus neoformans*.
619 *Infect Immun*, 2012. **80**(11): p. 3776-85.

620 11. Cruickshank, J.G., R. Cavill, and M. Jelbert, *Cryptococcus neoformans of unusual morphology*.
621 *Applied microbiology*, 1973. **25**(2): p. 309-312.

622 12. Love, G.L., G.D. Boyd, and D.L. Greer, *Large Cryptococcus neoformans isolated from brain*
623 *abscess*. *Journal of clinical microbiology*, 1985. **22**(6): p. 1068-1070.

624 13. Dambuza, I.M., et al., *The Cryptococcus neoformans Titan cell is an inducible and regulated*
625 *morphotype underlying pathogenesis*. PLoS Pathog, 2018. **14**(5): p. e1006978.

626 14. Trevijano-Contador, N., et al., *Cryptococcus neoformans can form titan-like cells in vitro in*
627 *response to multiple signals*. PLoS Pathog, 2018. **14**(5): p. e1007007.

628 15. Hommel, B., et al., *Titan cells formation in Cryptococcus neoformans is finely tuned by*
629 *environmental conditions and modulated by positive and negative genetic regulators*. PLoS
630 *Pathog*, 2018. **14**(5): p. e1006982.

631 16. García-Rodas, R., et al., *Cryptococcus neoformans capsular enlargement and cellular*
632 *gigantism during Galleria mellonella infection*. PLoS One, 2011. **6**(9): p. e24485.

633 17. Fernandes, K.E., et al., *Species in the Cryptococcus gattii Complex Differ in Capsule and Cell*
634 *Size following Growth under Capsule-Inducing Conditions*. mSphere, 2016. **1**(6): p. e00350-16.

635 18. Fernandes, K.E., et al., *Phenotypic Variability Correlates with Clinical Outcome in Cryptococcus*
636 *Isolates Obtained from Botswanan HIV/AIDS Patients*. mBio, 2018. **9**(5): p. e02016-18.

637 19. Okagaki, L.H., et al., *Cryptococcal titan cell formation is regulated by G-protein signaling in*
638 *response to multiple stimuli*. Eukaryotic cell, 2011. **10**(10): p. 1306-1316.

639 20. Gerstein, A.C., et al., *Polyplloid titan cells produce haploid and aneuploid progeny to promote*
640 *stress adaptation*. mBio, 2015. **6**(5): p. e01340-15.

641 21. <The_Cryptococcus_neoformans_Titan_Cell_From_In_Viv.pdf>.

642 22. Zhou, X. and E.R. Ballou, *The Cryptococcus neoformans Titan Cell: From In Vivo Phenomenon*
643 *to In Vitro Model*. Current Clinical Microbiology Reports, 2018. **5**(4): p. 252-260.

644 23. Zhou, X., et al., *Host-derived Reactive Nitrogen Species mediate the Cryptococcus*
645 *neoformans yeast-to-titan switch via fungal-derived superoxide*. bioRxiv, 2021: p.
646 2021.03.01.433276.

647 24. Mukaremera, L., et al., *Titan cell production in Cryptococcus neoformans reshapes the cell wall*
648 *and capsule composition during infection*. The Cell Surface, 2018. **1**: p. 15-24.

649 25. Altamirano, S., et al., *The cyclin Cln1 controls polyplloid titan cell formation following a stress-*
650 *induced G2 arrest in Cryptococcus*. bioRxiv, 2021: p.
651 2021.08.24.457603.

652 26. Zaragoza, O. and K. Nielsen, *Titan cells in Cryptococcus neoformans: cells with a giant impact*.
653 *Curr Opin Microbiol*, 2013. **16**(4): p. 409-13.

654 27. Zaragoza, O. and A. Casadevall, *Experimental modulation of capsule size in Cryptococcus*
655 *neoformans*. Biol Proced Online, 2004. **6**: p. 10-15.

656 28. Mogensen, E.G., et al., *Cryptococcus neoformans senses CO2 through the carbonic anhydrase*
657 *Can2 and the adenylyl cyclase Cac1*. Eukaryotic cell, 2006. **5**(1): p. 103-111.

658 29. Bahn, Y.S., et al., *Carbonic anhydrase and CO2 sensing during Cryptococcus neoformans*
659 *growth, differentiation, and virulence*. Curr Biol, 2005. **15**(22): p. 2013-20.

660 30. Fries, B.C., et al., *Phenotypic switching in Cryptococcus neoformans results in changes in*
661 *cellular morphology and glucuronoxylomannan structure*. Infect Immun, 1999. **67**(11): p.
662 6076-83.

663 31. Fuchs, B.B., R.J. Tang, and E. Mylonakis, *The temperature-sensitive role of Cryptococcus*
664 *neoformans ROM2 in cell morphogenesis*. PloS one, 2007. **2**(4): p. e368-e368.

665 32. Hagen, F., et al., *Recognition of seven species in the Cryptococcus gattii/Cryptococcus*
666 *neoformans species complex*. Fungal Genetics and Biology, 2015. **78**: p. 16-48.

667 33. Okagaki, L.H., et al., *Cryptococcal Titan Cell Formation Is Regulated by G-Protein Signaling in*
668 *Response to Multiple Stimuli V*. Eukaryotic Cell, 2011. **10**(10): p. 1306-1316.

669 34. Voelz, K., et al., *Transmission of Hypervirulence traits via sexual reproduction within and*
670 *between lineages of the human fungal pathogen cryptococcus gattii*. PLoS Genet, 2013. **9**(9):
671 p. e1003771.

672 35. Kronstad, J., et al., *Adaptation of Cryptococcus neoformans to mammalian hosts: integrated*
673 *regulation of metabolism and virulence*. Eukaryotic cell, 2012. **11**(2): p. 109-118.

674 36. Feldmesser, M., Y. Kress, and A. Casadevall, *Dynamic changes in the morphology of*
675 *Cryptococcus neoformans during murine pulmonary infection*. Microbiology (Reading), 2001.
676 **147**(Pt 8): p. 2355-2365.

677 37. Fries, B.C., et al., *Phenotypic switching of Cryptococcus neoformans occurs in vivo and*
678 *influences the outcome of infection*. The Journal of clinical investigation, 2001. **108**(11): p.
679 1639-1648.

680 38. Li, Z. and K. Nielsen, *Morphology Changes in Human Fungal Pathogens upon Interaction with*
681 *the Host*. Journal of fungi (Basel, Switzerland), 2017. **3**(4): p. 66.

682 39. Chang, A.L. and T.L. Doering, *Maintenance of Mitochondrial Morphology in <span*
683 *class="named-content>genus-species id="named-content-*
684 *1">Cryptococcus neoformans Is Critical for Stress Resistance and*
685 *Virulence*. mBio, 2018. **9**(6): p. e01375-18.

686 40. May, R.C., et al., *Cryptococcus: from environmental saprophyte to global pathogen*. Nature
687 reviews. Microbiology, 2016. **14**(2): p. 106-117.

688 41. O'Meara, T.R. and J.A. Alspaugh, *The Cryptococcus neoformans capsule: a sword and a shield*.
689 Clin Microbiol Rev, 2012. **25**(3): p. 387-408.

690 42. Hartwell, L.H. and M.W. Unger, *Unequal division in *Saccharomyces cerevisiae* and its*
691 *implications for the control of cell division*. The Journal of cell biology, 1977. **75**(2 Pt 1): p. 422-
692 435.

693 43. Hartwell, L.H., et al., *Genetic control of the cell division cycle in yeast*. Science, 1974.
694 **183**(4120): p. 46-51.

695 44. Takeo, K., et al., *Unbudded G2 as well as G1 arrest in the stationary phase of the*
696 *basidiomycetous yeast Cryptococcus neoformans*. FEMS Microbiol Lett, 1995. **129**(2-3): p. 231-
697 5.

698 45. Zhou, X., et al., *Host environmental conditions induce small fungal cell size and alter*
699 *population heterogeneity in Cryptococcus neoformans*. bioRxiv, 2020: p.
700 2020.01.03.894709.

701 46. Ngamskulrungroj, P., et al., *The primary target organ of Cryptococcus gattii is different from*
702 *that of Cryptococcus neoformans in a murine model*. mBio, 2012. **3**(3): p. e00103-12.

703 47. Fernandes, K.E., et al., *Phenotypic Variability Correlates with Clinical Outcome in Cryptococcus*
704 *Isolates Obtained from Botswanan HIV/AIDS Patients*. MBio, 2018. **9**(5).

705 48. Reuwsaat, J.C.V., et al., *The Transcription Factor Pdr802 Regulates Titan Cell Formation and*
706 *Pathogenicity of Cryptococcus neoformans*. mBio, 2021. **12**(2): p. e03457-20.

707 49. Dambuza, I.M., et al., *The Cryptococcus neoformans Titan cell is an inducible and regulated*
708 *morphotype underlying pathogenesis*. PLoS pathogens, 2018. **14**(5): p. e1006978-e1006978.

709 50. Laborda, P., et al., *Production of Antifungal p-Aminobenzoic Acid in Lysobacter antibioticus*
710 *OH13*. J Agric Food Chem, 2018. **66**(3): p. 630-636.

711 51. Laborda, P., et al., *Antifungal Metabolite p-Aminobenzoic Acid (pABA): Mechanism of Action*
712 *and Efficacy for the Biocontrol of Pear Bitter Rot Disease*. J Agric Food Chem, 2019. **67**(8): p.
713 2157-2165.

714 52. Lu, Z., et al., *Para-aminobenzoic acid (PABA) synthase enhances thermotolerance of*
715 *mushroom Agaricus bisporus*. PloS one, 2014. **9**(3): p. e91298-e91298.

716 53. Smith, L.M., E.F. Dixon, and R.C. May, *The fungal pathogen Cryptococcus neoformans*
717 *manipulates macrophage phagosome maturation*. *Cell Microbiol*, 2015. **17**(5): p. 702-13.

718 54. Olszewski, M.A., et al., *In Vitro Analysis of Metabolites Secreted during Infection of Lung*
719 *Epithelial Cells by Cryptococcus neoformans*. *Plos One*, 2016. **11**(4).

720 55. Dragotakes, Q. and A. Casadevall, *Automated Measurement of Cryptococcal Species*
721 *Polysaccharide Capsule and Cell Body*. *J Vis Exp*, 2018(131).

722