bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478593; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Neural network of superiority illusion predicts the level of

dopamine in striatum

Noriaki Yahata®?, Ayako Isato®, Yasuyuki Kimura®®¢, Keita Yokokawa®, Ming-Rong Zhang, Hiroshi

Ito9, Tetsuya Suhara®°, Makoto Higuchi®®, and Makiko Yamada®®"

8 nstitute for Quantum Life Science, National Institutes for Quantum Science and Technology,
Chiba, Japan; "Department of Molecular Imaging and Theranostics, Institute for Quantum Medical
Science, National Institutes for Quantum Science and Technology, Chiba, Japan; °Department of
Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum
Science and Technology, Chiba, Japan; “Faculty of Humanities, Saitama Gakuen University,
Saitama, Japan; ®Department of Clinical and Experimental Neuroimaging, Center for Development
of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan;
‘Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science,
National Institutes for Quantum Science and Technology, Chiba, Japan; 9Department of Radiology

and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan.

"‘Corresponding author: Makiko Yamada
Email: yamada.makiko@gst.go.jp

Author Contributions: M.Y., M.H., T.S, H.l., and N.Y. conceived and designed the study. A.l.,
Y.K., and K.Y. recruited participants of the study and collected their demographic, behavioral, and
neuroimaging data. M.R.Z. was in charge of radioligand synthesis. N.Y and M.Y. analyzed the data
and evaluated the results. N.Y. and M.Y. wrote the manuscript. All authors have made substantial
intellectual contribution to the work and approved the final manuscript.

Competing Interest Statement: None.
Classification: Biological sciences.

Keywords: Superiority illusion, dopamine, striatum, resting-state functional connectivity, machine

learning.


https://doi.org/10.1101/2022.02.01.478593
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478593; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

In evaluating the personality attributes and performance of the self, people are inclined to view
themselves superior to others, a phenomenon known as superiority illusion (Sl). This illusive
outlook pervades people’s thoughts, creating hope for the future and promoting mental health.
Although a specific cortico-striatal functional connectivity (FC) under dopaminergic modulation was
previously shown to be implicated in Sl, the underlying whole-brain mechanisms have remained
unclarified. Herein, to reveal the neural network subserving individual’s Sl, we conducted a data-
driven, machine-learning investigation to explore the resting-state FC network across the whole
brain. Using the locally-acquired resting-state functional magnetic resonance imaging data (n =
123), we identified a set of 15 FCs most informative in classifying individuals with higher- versus
lower-than-average levels of Sl in evaluating positive trait words (area under the curve [AUC] =
0.81). Among the 15 FCs, the contribution level to the classification was 11% by the previously-
highlighted cortico-striatal FC alone, but 60% by the encompassing cortico-limbico-striatal network
cluster. A newly-identified, cortico-thalamic FC and another FC cluster also demonstrated
substantial contribution. The classification accuracy was generalized into an independent cohort (n
= 36; AUC = 0.73). Importantly, using the same set of 15 FCs, we achieved prediction on an
individual's level of striatal dopamine D2 receptor availability (Pearson correlation, r = 0.46, P =
0.005). This is the first successful identification of the whole-brain neural network that
simultaneously predicts the behavioral manifestation and molecular underpinning of an essential

psychological process that promotes well-being and mental health.
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Significance Statement

Superiority illusion (Sl) is a basic self-referential framework that pervades people’s thoughts and
promotes well-being and mental health. An aberrant form of S| has been reported in psychiatric
conditions such as depression. Our hypothesis-free, data-driven investigation revealed the
spatially-distributed neural network that for the first time achieved prediction on an individual's
levels of S| and the striatal dopaminergic transmission simultaneously. In principle, this multiple-
biological-layer framework can be applicable to any behavioral trait to establish a link with its
underlying neural network and neurochemical properties, which could quantitatively present the
relation of its aberrant form with the pathophysiology of neuropsychiatric disorders. Future clinical
research may aid in deriving a diagnostic biomarker for examining the related behavioral and

neurochemical characteristics within individuals.
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Main Text

Introduction

Personality and social psychology research indicate that people naturally embrace positive views
in self-perception (1). The views are not just positive but often deviate from reality even among
normal people, providing illusive, self-serving cognition about one’s personality, attributes, and
performance (1, 2). One such representative form was conceptualized nearly four decades ago as
superiority illusion (Sl; also known as “above-average effect”), which refers to people’s inclination
toward evaluating themselves as being superior to others (3-5). For example, in comparison to the
average peer, most people find desirable traits (such as honest and sociable) to be more self-
descriptive, whereas undesirable traits (boring and unpopular) less relevant (6, 7). Such a view is
clearly illusive because, assuming a normal distribution, most people cannot be better than
average. However, inflated positivity, or positive illusion, pervades people’s thoughts, affecting
multiple facets of human cognitive, affective, and social functions, in a way that brings hope for the
future, thereby promoting mental health (1). In fact, the diminished positive illusion has been
reported in individuals with depressive symptoms who exhibit unrealistically negative predictions
for future life events (8).

Previously, two neuroimaging studies provided clues to the neural mechanisms underlying
Sl (7, 9). A task-based functional magnetic resonance imaging (fMRI) study investigated the
engagement of cerebral regions in S| while participants performed a self-evaluation task to
determine the self-descriptiveness of verbal stimuli depicting positive and negative personality traits
(7). The study focused on activities in seven specific regions of interest known to be implicated in
self-reference, availability heuristics, and valence and emotional processings (7). The analysis
revealed cerebral activities susceptible to the Sl judgments in the medial prefrontal cortex (MPFC;
Brodmann area [BA] 9/10), the dorsal anterior cingulate cortex (dACC; BA24), the posterior
cingulate cortex (PCC; BA23), and the orbitofrontal cortex (OFC; BA 11/47) (7). Importantly, the
individuals with a minimal level of S| exhibited enhanced activities in the OFC and dACC,
suggesting their inhibitory role in the heuristic search process that facilitated Sl judgments (7).

We further investigated the molecular underpinnings of Sl using positron emission
tomography (PET) and explored their relationship with the frontostriatal FC as measured by resting-
state fMRI (rsfMRI) (9). Resting-state functional connectivity (RSFC) refers to the temporal
correlation of low-frequency spontaneous activities of spatially distributed regions, which has been
shown to reflect the history of activation and learning in the brain (10, 11). Recently, RSFC has
been used to probe the functional integrity of the brain that promotes various cognitive,
psychological, and pathological processes (11, 12). Our previous study was motivated by the fact
that the medial frontal regions such as the dACC project to the striatum to compose the frontostriatal
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circuits mediating motivation and response selection in humans (13, 14). Since the striatum
receives massive dopaminergic projections from the substantia nigra and the ventral tegmental
area, it was hypothesized that the level of dopaminergic transmission could affect individual
differences in Sl through the mediation of the frontostriatal FC. Using a radioligand [''CJracropride
with high affinity to the dopamine (DA) D2 receptor (D2R), we identified that the availability of striatal
DA D2R was related to the individual’'s level of Sl, which was mediated by the frontostriatal FC
between the sensorimotor striatum (SMST) and the dACC (9). The results suggested that DA acted
on the striatal DA D2R inhibiting the SMST—-dACC connectivity, thereby leading to S| enhancement.
This finding was consistent with the first task-based fMRI study in which the dACC appeared to
play an inhibitory role in generating Sl (7). Collectively, the two previous studies demonstrated the
pivotal role of the frontostriatal circuit in Sl, for which DA neurotransmission acts as a controller of
their activities, thereby affecting behavioral manifestations of Sl (7, 9).

However, the neural underpinnings of SI may be more complex than considered by the
previous region-of-interest-based investigations (7, 9). The Sl necessitates evaluation of self-value
against others warranting concomitant involvement of the distributed functional network of the brain
that enables self-reference, social comparison, language processing, autobiographic memory, and
so forth (7, 9, 15, 16). Furthermore, cerebral activities during these processing were shown to be
differential based on affective valence of the content of evaluation (17-19). These results
encouraged us to investigate the valence-specific neural manifestation of Sl across the whole brain.
Recently, the application of feature extraction techniques to a large data set of rsfMRI has propelled
data-driven, hypothesis-free exploration of the RSFC, which is critically involved in behavioral and
pathological attributes of interest (12). Importantly, this provides a common ground to quantitatively
delineate the brain state pertaining to a particular attribute, and then investigates the relationship
among multiple interrelated attributes. For example, we previously developed a machine-learning
algorithm to identify the set of inter-regional FCs that were most relevant to the classification of
patients with various psychiatric disorders and their normal controls (20-22). A metric derived from
the set of machine-learning selected FCs was used to quantitatively predict the liability to a disorder
of interest. Likewise, in the present study, an individual’s propensity to SI may be identifiable via
an FC-based measure; consequently, its behavioral and neurochemical manifestations could be
quantitatively interrelated.

Here, motivated by the arguments above, we present an RSFC-based investigation of the
brain that is critically involved in an individual’s propensity to the SI. We applied our previously
developed machine-learning technique to the rsMRI dataset (n = 123), and extracted the set of FCs
that were informative in classifying populations with high and low propensity to SI. Upon confirming
the reliability of the classification in an independent dataset (n = 36), we further attempted to predict
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individual levels of striatal DA D2R availability by using the properties of the same set of FCs. The
outcome of the present study is the whole-brain RSFC-based representation of the Sl that

simultaneously predicts the individual behavioral level and the underlying neurochemical property.

Results

Behavioral Results. Two groups of healthy adults, the discovery cohort (n = 123; 31 females) and
validation cohort (n = 36; all males) were established in the present study. See Table 1 for the
detailed description on the demographic information in each cohort. Between the two cohorts, there
were significant differences in age (two-sample t-test, P < 107) and sex composition (chi-square
test, x2=11.3, P=10.001), which were considered in the feature selection procedure (Materials and
Methods). The individual’s propensity to S| was measured separately for the positive and negative
trait words in each cohort (Fig. 1 and Table 1). For the positive trait words, the mean and the
standard deviation (SD) of the SI measurements (pSl) was 0.16 £ 0.20 and 0.19 £ 0.22 in the
discovery and validation cohort, respectively. Adopting the mean value of the discovery cohort as
a common threshold (pSlmean = 0.16), each cohort was split into two subgroups, pSi. and pSls,
wherein the participants had pSl values lower or higher than the pSlmean, respectively (Fig. 1A and
Table 1). We note that adopting the threshold this way was necessary in the validation cohort in
order to evaluate the generalization capability of the classifier constructed in the discovery cohort.
Likewise, for the negative trait words, the mean £ SD of the SI measurements (nSl) was 0.13 +
0.21 and 0.11 £ 0.21 in the discovery and validation cohort, respectively. Two groups, nSl. and
nSly, were formed by dividing each cohort at the threshold of NSlmean = 0.13 (Fig. 1B). In the
discovery cohort, the mean age of the Slu subgroup tended to be higher than that of the SIL
subgroup for both positive (P = 0.07) and negative (P = 0.06) trait words (Table 1). This trend in
the age difference was considered in the subsequent feature selection procedure (Materials and
Methods).

Classification of populations above and below average Sl. We sought the set of FCs
informative to distinguish the SI. and Slu subgroups in the discovery cohort. Using the
preprocessed rsfMRI datasets, we calculated the inter-regional correlation matrices which, for each
participant, incorporated a total of 7,503 temporal Pearson correlation indices calculated among
123 regions of interest (ROIs) (Materials and Methods). The cascade of feature selection algorithms
was applied to the pool of correlation matrices to identify the FCs that were most relevant to the

distinction between the Sl and Sl subgroups while masking out the FCs affected by the covarying
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factors of the participants, such as age, sex, score of the Beck Depression Inventory (BDI), and
head motion-related measurements (Materials and Methods).

For the positive trait words, the algorithms identified a total of 15 FCs distributed across
the whole brain (Fig. 2 and Table 2). The weights determined in the feature selection procedure
were then used to calculate the weighted linear summation (WLS) of the corresponding correlation
indices of the selected 15 FCs (Materials and Methods). Specifically, we constructed a classifier in
the form of a logistic function of the WLS by which an individual was classified into the pSI. or pSiu
subgroups if the WLS was smaller or greater than zero, respectively. The leave-one-out cross
validation (LOOCV) procedure revealed that the accuracy of the classification with respect to the
actual subgroup identity was 73% (area under the curve [AUC] = 0.81; sensitivity = 80% and
specificity = 67%) (Fig. 3), which was statistically significant (permutation test, P < 10%). We
confirmed that this classification scheme was generalized to an independent validation cohort with
an accuracy of 72% (AUC = 0.73; sensitivity = 73% and specificity = 71%) (Fig. 3). Thus, we
concluded that the WLS of the selected 15 FCs can be regarded as a neural network marker of the
pSI that predicts one’s propensity to the Sl for positive trait words.

An identical analysis was repeated to evaluate the negative trait words. We were unable
to identify the FCs that could classify the nSI. and nSl4 subgroups (AUC = 0.41). We discuss the
possible interpretation of this result in the Discussion, where a follow-up, preliminary analysis is
described (see also Supplementary Information Text).

Properties of the 15 FCs selected in the classifier for pSl subgroups. We focus on Sl in the
evaluation of the positive trait words. The 15 FCs selected in the pSI classifier were formed by 21
cortical and subcortical terminal regions that included two limbic structures (dACC and amygdala)
connecting two striatal (putamen and caudate) and cortical regions, thereby forming a spatially
distributed network across the brain (Fig. 4 and Table 2). In detail, we identified the following
characteristics in the FCs. First, FC #3 is the connection between the putamen and the dACC,
highlighted in our previous study (9). Its node, the dACC, acted as a hub, forming a cortico-limbico-
striatal FC involving the occipital regions (FC #5 and #8). A similar pattern of connectivity was
observed for FC #13, another limbico-striatal connection between the caudate and amygdala. Its
node, the amygdala, acted as a hub, extending the connectivity to the parietal cortex (FC #7) and
the cerebellum (FC #11). Second, FC #1 is a connection between the thalamus and the middle
frontal gyrus, presenting as the most contributing FC to the classification of pSI. and pSiu
subgroups (color-coded in yellow in Fig. 4). The contribution level to the classification was 16%,
which was higher than that of the previously-highlighted FC #3 (11%) (see Table 2). The previous
PET studies revealed the distribution of DA D2-like receptors in the human thalamus (23). FC #1

could therefore present as an alternative FC that bridges the site of DA transmission and the
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prefrontal cortex. Third, most FCs (8 out of 15) are cortico-cortical connections (FC #2, #4, #6, #9,
#10, #12, #14, and #15) that incorporated various frontal and temporal regions not directly related
to the striatum. Overall, two large network clusters emerged from these FCs (orange and green
nodes in Fig. 4), each incorporating distinct limbico-striatal FC, i.e., one involving FC #3 and
another involving FC #13. Altogether, these results underscored the importance of exploring whole-
brain FCs to attain a comprehensive picture of the neural mechanisms subserving Sl.

We confirmed the significance of the selected 15 FCs in the classification of the two pSI

subgroups based on their weights assigned in the feature selection procedure as follows: First, the
cumulative absolute weights across the LOOCV indicated that these 15 FCs constituted an
important subset of the 47 (out of 7,503) FCs that were selected at least once throughout the
LOOCYV procedure (Fig. S1). Second, for each of the 15 FCs, the set of weights assigned in the
LOOCV procedure was significantly non-zero (one-sample f-test, P < 0.019 adjusted for false
discovery rate; see Materials and Methods). These results demonstrate the significance of the 15
FCs in the classification of the pSl subgroups.
Prediction of individual DA DzR availability by the 15 FCs in the pSI classifier. We investigated
the relationship between the propensity to the Sl for positive trait words and striatal DA D2R
availability, as measured by the non-displaceable binding potential (BPnp) of a PET radioligand
[''Clraclopride. As a target ROI, we focused on the left sensorimotor striatum (SMST) whose FC
with the dACC was previously shown to be significantly correlated with BPnp (7). In the present
analysis, the BPnp in the left SMST negatively correlated with individual pSI’s (Figure S2; r=-0.43,
P =0.008). In the group level, the mean + SD of the BPnp was 2.44 £ 0.23 and 2.29 £ 0.25 for the
pSiL and pSlx subgroups, respectively. We observed that the former was significantly higher than
the latter (P = 0.034, Wilcoxon rank sum test) (Figure 5A). This replicates our previous finding (7)
using a larger sample.

Furthermore, we examined whether the set of FCs for the pSl classifier could be used to
predict an individual’'s DA D2R availability in the striatum (Figure 5B). In the LOOCYV framework, a
linear regression model involving the correlation indices of the 15 FCs was fitted to the BPnp
measurements in the left SMST; thus, the model with the derived parameters could predict the
BPnp of the held-out individual. We observed that the measured and predicted BPno measurements
correlated significantly (r = 0.46, P = 0.005) (Figure 5B). The robustness of the prediction was
further confirmed by the permutation test (P = 0.003, 10,000 repetitions). Thus, we concluded that
the set of 15 FCs was the neural network manifestation of the Sl that interfaced its behavioral and

molecular counterparts simultaneously.

Discussion
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Here, we presented an rsMRI-based investigation to explore the RSFC of the whole brain that
underlies an individual’s propensity to SI. The machine learning-based feature selection algorithms
identified the set of 15 FCs that were most relevant in Sl for positive traits. The WLS of their
respective correlation indices reliably predicted an individual level of pSl, that is, below or above
the population average. The robustness of the classification was confirmed using an independent
validation cohort. Using the same set of 15 FCs, we succeeded in predicting the individual’s level
of DA Dz2R availability in the SMST. To the best of our knowledge, this is the first successful
identification of RSFC that neurally subserves a specific mental process and that allows the

simultaneous prediction of behavioral and molecular manifestations within the same individual.

The Sl entails self-referential and social comparative processing to enable evaluation of
self-value against others, suggesting a spatially distributed functional network of the brain that
underlies the SI. Previous task-based fMRI studies on the self-evaluation of personality traits
highlighted the central role of the midline structures, such as the MPFC, ventral and dorsal ACC,
and PCC, whereas other regions in the prefrontal, temporal, and parietal cortices exhibited
concomitant activities modulated by emotional and semantic attributes of the evaluated stimuli (7,
9, 15, 16). Social comparison has been mainly studied in competitive settings, and a recent meta-
analysis on 59 extant studies has revealed that downward social comparison (i.e., being better than
others) consistently activated the striatum and MPFC, while upward comparison (i.e., being worse
than others) recruited the insula and dACC activation (24). The present study provides a
comprehensive picture of the default functional relationships among the regions implicated in Si
(Fig. 4). Specifically, in addition to replicating our previous finding of the putamen (SMST)-dACC
connectivity as FC #3 (7), we demonstrated that this FC was a part of the large network cluster
composed of frontal, temporal, and occipital regions, overall exhibiting 60% of the contribution level
to the classification (orange nodes in Fig. 4). While it may be of future interest to find the specific
roles for these regions in Sl, our recent work has shown that resting-state functional networks in
the frontal and temporal regions are associated with positive memory-specific recollection (25).
Other FCs selected by the present algorithm included the cortico-thalamic connection (FC #1) and
the cortico-limbico-striatal connections comprised of the caudate, amygdala, and a parietal region
(FC #7 and #13). It is noteworthy that the dACC, striatum, and thalamus are major nodes of the
salience network involved in self-regulation of cognition, behavior, and emotion (26). The current
findings suggest that the cortico-striatal and cortico-thalamic connections, which are parts of the
salience network, appear to be central to mechanisms of cognitive control associated with SI (7, 9).
Both functional and structural abnormalities in the salience network have been observed in several

psychiatric disorders, such as depression and schizophrenia (27). Thus, aberrations of control over
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S| may take a form of depressive realism in case of over-suppression, and a form of delusion of

grandeur in case of insufficient suppression on the urge to expect positive self-view.

Although the present study focused on the SI, positive illusion can project as other forms
of manifestation known as optimism bias and illusion of control (1). Optimism bias refers to an over-
and under-estimation of the likelihood of experiencing positive and negative events, respectively
(28). In a previous fMRI study, neural correlates were sought by contrasting the activities when the
participants imagined future positive versus negative events (29). Enhanced activity was found in
the amygdala, the rostral ACC, the caudate, and other regions known to be implicated in
autobiographical memory retrieval and future projections, such as the inferior and medial frontal
gyri, and middle temporal gyrus (30). The illusion of control refers to a phenomenon where one
expects a success probability that is inappropriately higher than the objective probability would
warrant (31). A previous fMRI study investigated subjective belief in control in an uncertain
gambling setting (32). When comparing neural activities between the groups of participants with
and without experience of the illusion of control, the former group exhibited increased activity in the
nodes of the cortico-striatal network, including the nucleus accumbens and the right inferior frontal
gyrus (32). Based on these previous findings, it is suggested that the three forms of positive illusion,
the SI, optimism bias, and illusion of control, may have a common neural mechanism by sharing

the nodes of connections in the striatum and prefrontal cortex.

The methodological framework to identify Sl-related FCs worked successfully for positive
trait words but not negative trait words. We speculate the possibility of inhomogeneity in the
discovery cohort, that is, the presence of subgroups pertaining to the processing of negative trait
words. Previous studies have suggested that individuals with high anxiety, such as social anxiety
disorder, demonstrated altered patterns of neural activity during negative self-referential processing
(33). Individuals with high and low levels of anxiety may thus exhibit differential involvement of
RSFC in the manifestation of Sl for negative trait words. In the feature selection process, the
existence of heterogeneous subgroups in a single dataset makes identifying FCs that represent
the entire group difficult. As an illustrative example, we previously employed a similar scheme for
the investigation of major depressive disorder (MDD) (20). The scheme initially failed to identify
FCs that distinguished groups of patients with MDD and normal controls to a meaningful accuracy
(AUC = 0.62). However, considering MDD a generic label for a constellation of heterogeneous
subtypes, we narrowed the scope of analysis into one major subtype of MDD, namely, the
melancholic MDD characterized by anhedonia and lack of reactivity to pleasurable stimuli, and
other symptoms (34). We then found that the extracted set of FCs accurately distinguished the
melancholic patients with MDD from the control (AUC = 0.91); this classification scheme was
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generalized to an independent cohort (20). This underscores the fact that the efficacy of feature
extraction depends on the homogeneity of the population. In the present study, the limited sample
size of the dataset and incomplete demographic information did not permit a full investigation of
the validity of the current argument. We present a follow-up analysis in the Supplementary
Information Text. We attempted feature selection in a subsample of the discovery cohort (n = 95)
in which individuals with high state anxiety were maximally excluded using the available information.
The successful classification result (AUC = 0.78) in the subsample encourages a future in-depth

study to confirm the validity of the current proposal.

We acknowledge the following limitations in this study. First, feature selection using MRI
data is generally predestined to exploit nuisance variables (NVs) unique to a given sample data,
and select features correlated with the NVs (21). This results in overfitting of the sample data,
impairing its generalizability to independent data (35). NVs include both demographic factors and
instrumental biases (21, 36). In the present study, we used the previously established technique
(L+-SCCA algorithm) (21) to identify and mask out the features correlated with the demographic
(age, sex, and BDI score) and measurement factors (head motion-related parameters). However,
since the discovery data were acquired in a single protocol at a single site, it is possible that the
feature extraction was biased owing to the particular settings in the discovery data, such as the
choice of imaging apparatus and parameters. Future work should therefore incorporate multi-site
MRI data and thereby confirm the reproducibility of the Sl-related feature extraction by optimally
factoring out instrumental biases by applying post-hoc analytic algorithms (e.g., (36)). Second,
considering the limited sample size of the datasets, the reliability of the feature selection, the
classification between the high/low Sl subgroups, and the prediction of individual DA D2R
availability should be further evaluated in a larger population. In addition, the use of various
personality questionnaires and psychological instruments related to anxiety and depression could
help clarify the mechanisms underlying Sl for negative trait words. Third, since ["'C]racropride is
most sensitive in the striatum where the DA D2R density is high (~30 pmol/mL) (37), the present
results do not explain the role of the less-dense (< 2.5 pmol/mL) (38), extrastriatal DA D2R in SI
manifestation. Since the Sl entails a multitude of cognitive and affective functions involving the
prefrontal cortex and the limbic system, exploring the extrastriatal DA D2R function using other
radioligands may complement the findings of the present study. As an intriguing case, a previous
study used [''C]racropride and [''C]FLB 475 to measure the binding of the striatal and extrastriatal
DA DzR, respectively, clarifying their distinct roles in different aspects of social desirability (39). A
similar approach may help establish a more comprehensive picture of the molecular and neural

mechanisms underlying Sl.
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In conclusion, we conducted a data-driven, machine-learning-based investigation and
identified a set of 15 cortico-limbico-striatal, cortico-thalamic, and cortico-cortical FCs that were
most informative in classifying two groups with pSI higher and lower than the group average. Using
the same set of FCs, we were able to predict the individual levels of DA DzR in the SMST. Our
study clarified how an individual’s neurochemical and neural network properties interact with each
other to manifest Sl-related behavior, an essential psychological process promoting well-being and
mental health. We believe that the present methodological framework would be applicable to
various other behavioral traits to substantiate our understanding of the etiology and

pathophysiology of related neuropsychiatric disorders across multiple biological layers in the brain.

Materials and Methods

Participants. The present study was approved by the Ethics and Radiation Safety Committee of
the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological
Science and Technology, Japan, in accordance with the ethical standards laid down in the 1964
Declaration of Helsinki and its later amendments. All participants provided written informed consent
prior for participation in the study; all had normal or corrected-to-normal vision and had no history
of neurologic or psychiatric disorders. No participant was taking any medications that could interfere
with the interpretation of the results presented here. Two groups of participants, the discovery and
validation cohorts, were established in the present study (Table 1). A total of 123 (age, mean + SD
=31.4 + 13.6; 31 females) and 36 healthy adults (age, 23.3 + 4.4; all males) were included in the
study for the discovery and validation cohort, respectively. The subset of the validation cohort (n =
24) was also used in our previous study (9). The Japanese version of the Beck Depression
Inventory (BDI) (40, 41) was administered to the discovery cohort (mean + SD = 5.5 + 4.9). In the
feature selection step (see below), the age, sex, and BDI scale were treated as NVs to mitigate
their confounding effects in the feature selection and thereby improve the generalization capability

of the derived classifier.

The Sl measurement. The procedure for SI measurement has been described in detail elsewhere
(9). In brief, fifty-two socially desirable (positive) and undesirable (negative) trait words were
selected from the previous literature (42) and translated into Japanese. Outside the scanner,
participants were asked to rate how distant they were from the average peer on these personality
traits using a visual analogue scale (ranging from 0 to 100 with an average of 50), yielding SI
measurements. To derive the magnitude of the Sl, the mean deviation from the average of 50 was

calculated by reverse-scoring the ratings of negative traits to collapse with ratings of positive traits
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for each participant. Finally, the range of the SI measurements were linearly rescaled from [0,100]
to [-1, 1].

MRI data acquisition and analysis. All the participants underwent an MR scan with the imaging
parameters and procedures summarized in Table S1. We utilized the CONN Toolbox (version 18b)
(43) running with SPM12 (Wellcome Trust Centre for Neuroimaging, University College London,
UK) software on MATLAB (R2018a, Mathworks, USA) to preprocess and denoise the raw data and
to calculate the mean time course within the regions of interest. We used the default preprocessing
pipeline that included realignment of the functional volumes to account for head motion, slice-timing
correction, spatial normalization of the images to the Montreal Neurological Institute (MNI) space,
and spatial smoothing using a Gaussian of full width at half maximum of 6 mm. To eliminate
physiological and other noise of non-neuronal origins from the time course of blood oxygenation
level dependent (BOLD) signal, subject-level denoising was performed using a regression model
with the following confounds: (i) six motion parameters, their first-order derivatives, and their
quadratic effects, (ii) five principal components in each of the white matter and cerebrospinal fluid
(44), (iii) mean time course within the gray matter mask, and (iv) binary flags indicating the scan
numbers where excessive frame-to-frame motion was detected. In (iv), the head motion was
evaluated using the CONN’s built-in algorithm (ArtRepair (45)) with conservative thresholds (global
signal z-value = 3, subject motion = 0.5 mm). The residual was then band-pass filtered in the range

of [0.01, 0.1] Hz, yielding the BOLD time course for use in the subsequent calculation.

Construction of composite atlas and calculation of interregional correlation matrices. In the
present study, FCs were evaluated on an anatomical region basis using a composite atlas
consisting of the Harvard-Oxford cortical and subcortical atlases (46) and the probabilistic
cerebellar atlas (47) to cover the entire brain. The following two modifications were established
based on this composite atlas. First, because previous studies on neural mechanisms of self-
referential processing commonly used fine parcellation into the anterior cingulate cortex (ACC) (48),
the corresponding area in the Harvard-Oxford atlas was parcellated into the three subregions, that
is, the perigenual, anterior middle, and posterior middle portions of the ACC. The anterior middle
portion corresponds to the dACC. Second, visual inspection of the functional images in the present
datasets revealed that the lobules Crus Il and VII through X of the cerebellum fell outside the field
of view in some participants. Therefore, these subregions in the cerebellum were excluded from
the analysis. After these two modifications, the final composite atlas contained a total of 123 regions
(100 cortical, 14 subcortical, and 9 cerebellar regions). For each participant in the dataset, we

calculated the mean time course of the BOLD signal in each region using the CONN toolbox
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following subject-level denoising. Finally, we calculated a pairwise interregional correlation matrix
among 123 ROls containing 7,503 (= 123 x 122 / 2) correlation indices.

Feature Selection. Using the previously developed machine-learning algorithms (20-22), we
identified the set of FCs by which the individuals in the discovery cohort were classified into one of
the two subgroups according to their Sl values. The description of the machine-learning
methodology has been provided in detail previously (21). In brief, we applied a cascade of two
algorithms, the Li-regularized sparse canonical correlation analysis (L1-SCCA) (49) and the sparse
logistic regression (SLR) analysis (50), thereby effectively reducing the number of parameters (i.e.,
FCs) to avoid overfitting (35). First, the L1-SCCA was applied to the pool of correlation matrices to
extract a subset of FCs relevant only to the neural substrates of the S| by eliminating the unwanted
effects of NVs. In the present study, the L+-SCCA eliminated FCs that were correlated with age,
sex, BDI score, and head motion-related parameters that exhibited statistically significant or trend
towards differences between the two subgroups (see Table S2). The distributions of these
parameters can differ from cohort to cohort, thereby hampering the generalization of the
classification scheme (21). We then applied the SLR to further perform dimension reduction to
extract the most informative FCs that reflected the neural substrates of the Sl. The two algorithms
were embedded in a framework of nested cross-validation and LOOCYV. In the present study, we
used 5-fold CV so that each fold incorporated approximately 24 participants. The output of the SLR
is the final set of FCs and the associated weights. The weighted linear summation of the
corresponding correlation indices was used to predict an individual’s identity to either of the two
subgroups. Namely, P(z;w) =1 /[ 1 + exp(—w'z ) ] determines the identity, where w and z are the
vectors of the normalized correlation indices and the associated weights determined by the SLR,
respectively (21). The individual is predicted to belong to Sl. or Sl if the corresponding P is < or >
0.5, respectively. To evaluate the stability and robustness of the selection of the FCs in the LOOCV,
we evaluated the cumulative absolute weight of the form ¢k = Y |[w/|, where w/ is the weight
associated with the k-th FC during the i-th fold of the LOOCV and the sum runs over all folds. The
greater magnitude of ¢ indicates a more significant contribution to the classification between the
two subgroups. In addition, for each FC, we tested whether the set of weights assigned in the
LOOCV was significantly non-zero using a one-sample t-test. P-values were adjusted for false
discovery rate (FDR) based on the Benjamini-Hochberg method (51).

PET data acquisition and analysis. The participants in the validation cohort underwent a PET
scan to evaluate the striatal DA D2R availability. The procedures for data acquisition and analysis
have been described in detail previously (9, 52). In short, following the intravenous rapid bolus
injection of [''C]raclopride, a dynamic PET scan was conducted for 60 min. PMOD software (PMOD
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Technologies Ltd., Zurich, Switzerland) was used to evaluate the temporal radioactivity of
[''Clraclopride, thereby deriving a parametric image of non-displaceable binding potential (BPnp),
which represents the spatial distribution of DA D2R availability in the brain. Specifically, we
estimated BPnp in the left SMST (9) using the three-parameter simplified reference tissue model
(53) with the cerebellum as a reference region (37). The boundary of the SMST was determined
using the Oxford-GSK-Imanova Striatal Connectivity Atlas (54) which was transformed into the
custom template space of the participants. Here, we used Advanced Normalization Tools (ANTs;
http://stnava.github.io/ANTs/) to construct this custom template from pairs of PET parametric and
Ts-weighted MR structural images of all the participants. The deformation parameters from a
participant’s native to the custom template space were also derived using this procedure. For each
participant, the BPnp in the SMST was estimated by calculating the mean of the BPnp within the
SMST on the individual’s parametric image in the custom template space.

Linear regression of DA DzR BPnp of [''C]raclopride. Using the 15 FCs incorporated in the pSI
classifier, we attempted to predict the individual's striatal DA D2R availability. In the LOOCV
framework, the individual BPnp of [''Clraclopride in the SMST was linearly regressed by the
correlation indices of the 15 FCs in the classifier. We incorporated age as an NV in the model, as
previous studies have reported age dependence on DA D2zR properties (55). [Note that sex and
BDI were not incorporated as NVs in the model because the validation cohort comprised only male
participants, for whom the BDI scores were not available.] Using the derived coefficients (i.e.,
weights), we predicted the BPnp of the held-out individual as the weighted linear sum of the
respective correlation indices. The agreement between the measured and predicted BPnp was
evaluated using Pearson’s correlation. To evaluate the reliability of the prediction, we conducted a
bootstrapping analysis of 10,000 repetitions, and alternative models were constructed using
randomly selected 15 FCs not incorporated in the pSl classifier (i.e., 15 FCs out of 7,488 (= 7503
— 15) FCs). Reliability was evaluated by integrating the cumulative distribution of the pooled

correlation indices obtained through the bootstrapping procedure.
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Distribution of the SI measurements for the (A) positive and (B) negative trait words in the discovery
(top) and validation (bottom) cohorts. For each trait, the vertical line segment on the top of the
histogram indicates the mean value of the superiority illusion (SI) measurement calculated in the
discovery cohort. Two subgroups were formed within each cohort according to whether the
individual has the Sl value below (denoted by subscript L) or above (subscript H) the average value
in the discovery cohort.
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Figure 2.
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The 15 functional connectivities (FCs) used to classify the pSIL and pSlx subgroups as viewed from
the (A) left side and (B) top of the brain. The ID numbers assigned to the terminal regions
correspond to the Region ID in Table 2.
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Figure 3.
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Distribution of weighted linear summation (WLS) of the 15 functional connectivities (FCs) selected
by the machine learning algorithm (Materials and Methods) in the discovery cohort. The WLS
smaller and greater than 0 is classified as pSl. and pSIu group, respectively. (Top) The number of
individuals in the pSIL (open bar) and pSlx (filled bar) subgroups in the discovery cohort is shown
as a histogram with the WLS width of 4. (Bottom) The WLS distribution of the validation cohort.
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Figure 4.
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A schematic diagram depicting the mutual relationship among the 15 functional connectivities (FCs)
used in the classification of the pSI subgroups. The number in the filled circle corresponds to the
ID number in Table 2. The 15 FCs included two clusters of FCs, color-coded in orange and green,
and their total contribution levels to the classification were 60% and 15%, respectively (see Table
2). The former cluster included the previously-highlighted cortico-striatal FC #3 (9). The FC #1 is
an isolated cortico-thalamic FC, color-coded in yellow, which exhibited the highest contribution level
as a single FC (11%).
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Figure 5.
A. DA D2R BPnp at L. SMST B. FC-based prediction
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(A) The DA DzR availability in the left sensorimotor striatum (SMST) of the validation cohort (n =
36) as measured by non-displaceable binding potential (BPnp) of a radioligand [''C]raclopride. The
pSIL subgroup exhibited significantly higher DA D2 BPnp than the pSly subgroup (P = 0.034,
Wilcoxon rank sum test). (B) Prediction of the DA D2 BPnp using the correlation indices of the 15

FCs. The actual and the predicted measurements were correlated significantly (r= 0.46, P = 0.005).
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Table 1. Demographic information and the superiority illusion (SI) measurement for (A) positive

and (B) negative trait words in the discovery and validation cohorts. *P-values were determined by

a Wilcoxon rank sum test for S, age, and BDI, and by a 2 test for sex. 1BDI (Beck Depression

Inventory) measurements were available only for the discovery cohort.

A. Positive trait words

Discovery cohort

Validation cohort

Subgroup Subgroup
Item All pSi pSlH P* All pSi. pSlH P
N 123 64 59 - 36 14 22 -
pSl 0.16+£0.20  0.01+0.11  0.33+0.13 < 0.001 0.19+0.22 -0.02+0.17 0.32+0.14 < 0.001
Age (y) 31.4+13.6  29.3+11.4  33.5+#15.4 0.07 23.3+4 4 22.9+3.5 23.6+4.9 0.84
Sex (M/F) 92/ 31 48/16 44 /15 0.96 36/0 14/0 22/0 -
BDIt+ 5.5+4.9 6.4+5.7 4.5+3.6 0.13 (n/a) (n/a) (n/a) —
B. Negative trait words
Discovery cohort Validation cohort
Subgroup Subgroup
Item All nSl nSlH P* All nSl nSlH P
N 123 70 53 - 36 19 17 -
nSl| 0.13+0.21 -0.01+0.12 0.33+0.14 < 0.001 0.11£0.21 -0.03+0.19 0.26%0.10 < 0.001
Age (y) 31.4+13.6 28.8+410.5 34.8+16.2 0.06 23.3+4 4 22.9+3.4 23.845.3 0.87
Sex (M/F) 92/ 31 53/17 39/14 0.79 36/0 19/0 171/0 -
BDIt+ 5.5+4.9 6.9+5.5 3.7+3.2 0.001 (n/a) (n/a) (n/a) —
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Table 2. Properties of the 15 functional connectivities (FCs) used to classify the pSI. and pSiu
subgroups. For each FC, the mean Pearson correlation index is calculated in each subgroup.
Contribution was calculated as Weight x | (pSI.) — (pSIn) |, and the number in the parentheses
indicates the relative fraction (%). Lat., laterality; BA, Brodmann area; Contrib., contribution; c.,
cortex; g., gyrus. *, see Figure 2.

o Terminal regions Mean correlation Weight Coro1trib
Map ID* Lat. Name BA  rpSlL) r(pSh) (%)
1 (5) R Thalamus - 0.08 -0.03 -9.47 1.04
(15) R Middle frontal g. 6 (15.7)
2 (18) R Temporal fusiform c. (anterior) 28 -0.09 0.03 6.14 0.74
17) L Frontal pole 10 (11.2)
3 (1) R Putamen - 0.21 0.31 7.64 0.72
(3) R Cingulate g. (anterior middle) 24 (10.9)
4 (12) L Cerebellum VI - -0.15 -0.06 7.52 0.65
(13) L Inferior frontal g. (pars triangularis) 45 (9.8)
5 (3) L Cingulate g. (anterior middle) 24 -0.07 0.03 6.24 0.63
(6) L  Occipital pole 17 (9.5)
6 (7) R Lateral occipital c. (superior) 31 0.33 0.21 —4.80 0.58
(21) R Inferior temporal g. (temporooccipital) 37 (8.8)
7 (4) L Amygdala 34 -0.10 0.00 3.30 0.34
(10) R Superior parietal lobule 7 (5.1)
8 (3) L Cingulate g. (anterior middle) 24 -0.21 -0.32 -3.03 0.34
(7) L Lateral occipital c. (superior) 19 (5.1)
9 (8) L Cunealc. 18 -0.10 0.00 2.65 0.26
(7) R Lateral occipital c. (superior) 31 (3.9)
10 (19) R Parahippocampal g. (posterior) 35 -0.13 -0.20 -3.61 0.25
17) R Frontal pole 10 (3.8)
1" (11) R Cerebellum crus | - —-0.01 -0.12 —2.41 0.25
(4) L Amygdala 34 (3.8)
12 (16) L Frontal operculum c. 13 0.04 -0.05 —2.56 0.22
(20) R Middle temporal g. (temporooccipital) 22 (3.3)
13 (2) R Caudate - 0.12 0.04 -2.86 0.22
(4) L Amygdala 34 (3.3)
14 (21) R Inferior temporal g. (temporooccipital) 37 0.15 0.04 -1.89 0.21
(14) L Inferior frontal g. (pars opercularis) 44 (3.2)
15 9) R Supramarginal g. (anterior) 40 0.11 0.01 -1.88 0.17
(10) L  Superior parietal lobule 7 (2.6)
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