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Abstract 

In evaluating the personality attributes and performance of the self, people are inclined to view 

themselves superior to others, a phenomenon known as superiority illusion (SI). This illusive 

outlook pervades people’s thoughts, creating hope for the future and promoting mental health. 
Although a specific cortico-striatal functional connectivity (FC) under dopaminergic modulation was 

previously shown to be implicated in SI, the underlying whole-brain mechanisms have remained 

unclarified. Herein, to reveal the neural network subserving individual’s SI, we conducted a data-

driven, machine-learning investigation to explore the resting-state FC network across the whole 

brain. Using the locally-acquired resting-state functional magnetic resonance imaging data (n = 

123), we identified a set of 15 FCs most informative in classifying individuals with higher- versus 

lower-than-average levels of SI in evaluating positive trait words (area under the curve [AUC] = 
0.81). Among the 15 FCs, the contribution level to the classification was 11% by the previously-

highlighted cortico-striatal FC alone, but 60% by the encompassing cortico-limbico-striatal network 

cluster. A newly-identified, cortico-thalamic FC and another FC cluster also demonstrated 

substantial contribution. The classification accuracy was generalized into an independent cohort (n 

= 36; AUC = 0.73). Importantly, using the same set of 15 FCs, we achieved prediction on an 

individual’s level of striatal dopamine D2 receptor availability (Pearson correlation, r = 0.46, P = 

0.005). This is the first successful identification of the whole-brain neural network that 

simultaneously predicts the behavioral manifestation and molecular underpinning of an essential 
psychological process that promotes well-being and mental health. 
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Significance Statement 

Superiority illusion (SI) is a basic self-referential framework that pervades people’s thoughts and 

promotes well-being and mental health. An aberrant form of SI has been reported in psychiatric 

conditions such as depression. Our hypothesis-free, data-driven investigation revealed the 
spatially-distributed neural network that for the first time achieved prediction on an individual’s 

levels of SI and the striatal dopaminergic transmission simultaneously. In principle, this multiple-

biological-layer framework can be applicable to any behavioral trait to establish a link with its 

underlying neural network and neurochemical properties, which could quantitatively present the 

relation of its aberrant form with the pathophysiology of neuropsychiatric disorders. Future clinical 

research may aid in deriving a diagnostic biomarker for examining the related behavioral and 

neurochemical characteristics within individuals. 
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Main Text 
Introduction 
Personality and social psychology research indicate that people naturally embrace positive views 

in self-perception (1). The views are not just positive but often deviate from reality even among 
normal people, providing illusive, self-serving cognition about one’s personality, attributes, and 

performance (1, 2). One such representative form was conceptualized nearly four decades ago as 

superiority illusion (SI; also known as “above-average effect”), which refers to people’s inclination 

toward evaluating themselves as being superior to others (3-5). For example, in comparison to the 

average peer, most people find desirable traits (such as honest and sociable) to be more self-

descriptive, whereas undesirable traits (boring and unpopular) less relevant (6, 7). Such a view is 

clearly illusive because, assuming a normal distribution, most people cannot be better than 
average. However, inflated positivity, or positive illusion, pervades people’s thoughts, affecting 

multiple facets of human cognitive, affective, and social functions, in a way that brings hope for the 

future, thereby promoting mental health (1). In fact, the diminished positive illusion has been 

reported in individuals with depressive symptoms who exhibit unrealistically negative predictions 

for future life events (8). 

Previously, two neuroimaging studies provided clues to the neural mechanisms underlying 

SI (7, 9). A task-based functional magnetic resonance imaging (fMRI) study investigated the 

engagement of cerebral regions in SI while participants performed a self-evaluation task to 
determine the self-descriptiveness of verbal stimuli depicting positive and negative personality traits 

(7). The study focused on activities in seven specific regions of interest known to be implicated in 

self-reference, availability heuristics, and valence and emotional processings (7). The analysis 

revealed cerebral activities susceptible to the SI judgments in the medial prefrontal cortex (MPFC; 

Brodmann area [BA] 9/10), the dorsal anterior cingulate cortex (dACC; BA24), the posterior 

cingulate cortex (PCC; BA23), and the orbitofrontal cortex (OFC; BA 11/47) (7). Importantly, the 

individuals with a minimal level of SI exhibited enhanced activities in the OFC and dACC, 

suggesting their inhibitory role in the heuristic search process that facilitated SI judgments (7). 
We further investigated the molecular underpinnings of SI using positron emission 

tomography (PET) and explored their relationship with the frontostriatal FC as measured by resting-

state fMRI (rsfMRI) (9). Resting-state functional connectivity (RSFC) refers to the temporal 

correlation of low-frequency spontaneous activities of spatially distributed regions, which has been 

shown to reflect the history of activation and learning in the brain (10, 11). Recently, RSFC has 

been used to probe the functional integrity of the brain that promotes various cognitive, 

psychological, and pathological processes (11, 12). Our previous study was motivated by the fact 
that the medial frontal regions such as the dACC project to the striatum to compose the frontostriatal 
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circuits mediating motivation and response selection in humans (13, 14). Since the striatum 

receives massive dopaminergic projections from the substantia nigra and the ventral tegmental 

area, it was hypothesized that the level of dopaminergic transmission could affect individual 

differences in SI through the mediation of the frontostriatal FC. Using a radioligand [11C]racropride 
with high affinity to the dopamine (DA) D2 receptor (D2R), we identified that the availability of striatal 

DA D2R was related to the individual’s level of SI, which was mediated by the frontostriatal FC 

between the sensorimotor striatum (SMST) and the dACC (9). The results suggested that DA acted 

on the striatal DA D2R inhibiting the SMST–dACC connectivity, thereby leading to SI enhancement. 

This finding was consistent with the first task-based fMRI study in which the dACC appeared to 

play an inhibitory role in generating SI (7). Collectively, the two previous studies demonstrated the 

pivotal role of the frontostriatal circuit in SI, for which DA neurotransmission acts as a controller of 
their activities, thereby affecting behavioral manifestations of SI (7, 9). 

However, the neural underpinnings of SI may be more complex than considered by the 

previous region-of-interest-based investigations (7, 9). The SI necessitates evaluation of self-value 

against others warranting concomitant involvement of the distributed functional network of the brain 

that enables self-reference, social comparison, language processing, autobiographic memory, and 

so forth (7, 9, 15, 16). Furthermore, cerebral activities during these processing were shown to be 

differential based on affective valence of the content of evaluation (17-19). These results 

encouraged us to investigate the valence-specific neural manifestation of SI across the whole brain. 
Recently, the application of feature extraction techniques to a large data set of rsfMRI has propelled 

data-driven, hypothesis-free exploration of the RSFC, which is critically involved in behavioral and 

pathological attributes of interest (12). Importantly, this provides a common ground to quantitatively 

delineate the brain state pertaining to a particular attribute, and then investigates the relationship 

among multiple interrelated attributes. For example, we previously developed a machine-learning 

algorithm to identify the set of inter-regional FCs that were most relevant to the classification of 

patients with various psychiatric disorders and their normal controls (20-22). A metric derived from 

the set of machine-learning selected FCs was used to quantitatively predict the liability to a disorder 
of interest. Likewise, in the present study, an individual’s propensity to SI may be identifiable via 

an FC-based measure; consequently, its behavioral and neurochemical manifestations could be 

quantitatively interrelated. 

Here, motivated by the arguments above, we present an RSFC-based investigation of the 

brain that is critically involved in an individual’s propensity to the SI. We applied our previously 

developed machine-learning technique to the rsMRI dataset (n = 123), and extracted the set of FCs 

that were informative in classifying populations with high and low propensity to SI. Upon confirming 
the reliability of the classification in an independent dataset (n = 36), we further attempted to predict 
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individual levels of striatal DA D2R availability by using the properties of the same set of FCs. The 

outcome of the present study is the whole-brain RSFC-based representation of the SI that 

simultaneously predicts the individual behavioral level and the underlying neurochemical property. 

 
Results 
Behavioral Results. Two groups of healthy adults, the discovery cohort (n = 123; 31 females) and 

validation cohort (n = 36; all males) were established in the present study. See Table 1 for the 

detailed description on the demographic information in each cohort. Between the two cohorts, there 

were significant differences in age (two-sample t-test, P < 10-7) and sex composition (chi-square 

test, c2 = 11.3, P = 0.001), which were considered in the feature selection procedure (Materials and 

Methods). The individual’s propensity to SI was measured separately for the positive and negative 

trait words in each cohort (Fig. 1 and Table 1). For the positive trait words, the mean and the 

standard deviation (SD) of the SI measurements (pSI) was 0.16 ± 0.20 and 0.19 ± 0.22 in the 

discovery and validation cohort, respectively. Adopting the mean value of the discovery cohort as 

a common threshold (pSImean = 0.16), each cohort was split into two subgroups, pSIL and pSIH, 

wherein the participants had pSI values lower or higher than the pSImean, respectively (Fig. 1A and 

Table 1). We note that adopting the threshold this way was necessary in the validation cohort in 
order to evaluate the generalization capability of the classifier constructed in the discovery cohort. 

Likewise, for the negative trait words, the mean ± SD of the SI measurements (nSI) was 0.13 ± 

0.21 and 0.11 ± 0.21 in the discovery and validation cohort, respectively. Two groups, nSIL and 

nSIH, were formed by dividing each cohort at the threshold of nSImean = 0.13 (Fig. 1B). In the 

discovery cohort, the mean age of the SIH subgroup tended to be higher than that of the SIL 

subgroup for both positive (P = 0.07) and negative (P = 0.06) trait words (Table 1). This trend in 

the age difference was considered in the subsequent feature selection procedure (Materials and 
Methods). 
Classification of populations above and below average SI. We sought the set of FCs 

informative to distinguish the SIL and SIH subgroups in the discovery cohort. Using the 

preprocessed rsfMRI datasets, we calculated the inter-regional correlation matrices which, for each 

participant, incorporated a total of 7,503 temporal Pearson correlation indices calculated among 

123 regions of interest (ROIs) (Materials and Methods). The cascade of feature selection algorithms 

was applied to the pool of correlation matrices to identify the FCs that were most relevant to the 

distinction between the SIL and SIH subgroups while masking out the FCs affected by the covarying 
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factors of the participants, such as age, sex, score of the Beck Depression Inventory (BDI), and 

head motion-related measurements (Materials and Methods). 
For the positive trait words, the algorithms identified a total of 15 FCs distributed across 

the whole brain (Fig. 2 and Table 2). The weights determined in the feature selection procedure 
were then used to calculate the weighted linear summation (WLS) of the corresponding correlation 

indices of the selected 15 FCs (Materials and Methods). Specifically, we constructed a classifier in 

the form of a logistic function of the WLS by which an individual was classified into the pSIL or pSIH 

subgroups if the WLS was smaller or greater than zero, respectively. The leave-one-out cross 

validation (LOOCV) procedure revealed that the accuracy of the classification with respect to the 

actual subgroup identity was 73% (area under the curve [AUC] = 0.81; sensitivity = 80% and 

specificity = 67%) (Fig. 3), which was statistically significant (permutation test, P < 10-4). We 
confirmed that this classification scheme was generalized to an independent validation cohort with 

an accuracy of 72% (AUC = 0.73; sensitivity = 73% and specificity = 71%) (Fig. 3). Thus, we 

concluded that the WLS of the selected 15 FCs can be regarded as a neural network marker of the 

pSI that predicts one’s propensity to the SI for positive trait words. 

An identical analysis was repeated to evaluate the negative trait words. We were unable 

to identify the FCs that could classify the nSIL and nSIH subgroups (AUC = 0.41). We discuss the 

possible interpretation of this result in the Discussion, where a follow-up, preliminary analysis is 

described (see also Supplementary Information Text). 
Properties of the 15 FCs selected in the classifier for pSI subgroups. We focus on SI in the 

evaluation of the positive trait words. The 15 FCs selected in the pSI classifier were formed by 21 

cortical and subcortical terminal regions that included two limbic structures (dACC and amygdala) 

connecting two striatal (putamen and caudate) and cortical regions, thereby forming a spatially 

distributed network across the brain (Fig. 4 and Table 2). In detail, we identified the following 

characteristics in the FCs. First, FC #3 is the connection between the putamen and the dACC, 

highlighted in our previous study (9). Its node, the dACC, acted as a hub, forming a cortico-limbico-

striatal FC involving the occipital regions (FC #5 and #8). A similar pattern of connectivity was 
observed for FC #13, another limbico-striatal connection between the caudate and amygdala. Its 

node, the amygdala, acted as a hub, extending the connectivity to the parietal cortex (FC #7) and 

the cerebellum (FC #11). Second, FC #1 is a connection between the thalamus and the middle 

frontal gyrus, presenting as the most contributing FC to the classification of pSIL and pSIH 

subgroups (color-coded in yellow in Fig. 4). The contribution level to the classification was 16%, 

which was higher than that of the previously-highlighted FC #3 (11%) (see Table 2). The previous 

PET studies revealed the distribution of DA D2-like receptors in the human thalamus (23). FC #1 
could therefore present as an alternative FC that bridges the site of DA transmission and the 
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prefrontal cortex. Third, most FCs (8 out of 15) are cortico-cortical connections (FC #2, #4, #6, #9, 

#10, #12, #14, and #15) that incorporated various frontal and temporal regions not directly related 

to the striatum. Overall, two large network clusters emerged from these FCs (orange and green 

nodes in Fig. 4), each incorporating distinct limbico-striatal FC, i.e., one involving FC #3 and 
another involving FC #13. Altogether, these results underscored the importance of exploring whole-

brain FCs to attain a comprehensive picture of the neural mechanisms subserving SI. 

We confirmed the significance of the selected 15 FCs in the classification of the two pSI 

subgroups based on their weights assigned in the feature selection procedure as follows: First, the 

cumulative absolute weights across the LOOCV indicated that these 15 FCs constituted an 

important subset of the 47 (out of 7,503) FCs that were selected at least once throughout the 

LOOCV procedure (Fig. S1). Second, for each of the 15 FCs, the set of weights assigned in the 
LOOCV procedure was significantly non-zero (one-sample t-test, P < 0.019 adjusted for false 

discovery rate; see Materials and Methods). These results demonstrate the significance of the 15 

FCs in the classification of the pSI subgroups. 
Prediction of individual DA D2R availability by the 15 FCs in the pSI classifier. We investigated 

the relationship between the propensity to the SI for positive trait words and striatal DA D2R 

availability, as measured by the non-displaceable binding potential (BPND) of a PET radioligand 

[11C]raclopride. As a target ROI, we focused on the left sensorimotor striatum (SMST) whose FC 

with the dACC was previously shown to be significantly correlated with BPND (7). In the present 
analysis, the BPND in the left SMST negatively correlated with individual pSI’s (Figure S2; r = –0.43, 

P = 0.008). In the group level, the mean ± SD of the BPND was 2.44 ± 0.23 and 2.29 ± 0.25 for the 

pSIL and pSIH subgroups, respectively. We observed that the former was significantly higher than 

the latter (P = 0.034, Wilcoxon rank sum test) (Figure 5A). This replicates our previous finding (7) 

using a larger sample. 

Furthermore, we examined whether the set of FCs for the pSI classifier could be used to 

predict an individual’s DA D2R availability in the striatum (Figure 5B). In the LOOCV framework, a 

linear regression model involving the correlation indices of the 15 FCs was fitted to the BPND 
measurements in the left SMST; thus, the model with the derived parameters could predict the 

BPND of the held-out individual. We observed that the measured and predicted BPND measurements 

correlated significantly (r = 0.46, P = 0.005) (Figure 5B). The robustness of the prediction was 

further confirmed by the permutation test (P = 0.003, 10,000 repetitions). Thus, we concluded that 

the set of 15 FCs was the neural network manifestation of the SI that interfaced its behavioral and 

molecular counterparts simultaneously. 

 
Discussion  
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Here, we presented an rsMRI-based investigation to explore the RSFC of the whole brain that 

underlies an individual’s propensity to SI. The machine learning-based feature selection algorithms 

identified the set of 15 FCs that were most relevant in SI for positive traits. The WLS of their 

respective correlation indices reliably predicted an individual level of pSI, that is, below or above 
the population average. The robustness of the classification was confirmed using an independent 

validation cohort. Using the same set of 15 FCs, we succeeded in predicting the individual’s level 

of DA D2R availability in the SMST. To the best of our knowledge, this is the first successful 

identification of RSFC that neurally subserves a specific mental process and that allows the 

simultaneous prediction of behavioral and molecular manifestations within the same individual. 

 The SI entails self-referential and social comparative processing to enable evaluation of 

self-value against others, suggesting a spatially distributed functional network of the brain that 

underlies the SI. Previous task-based fMRI studies on the self-evaluation of personality traits 

highlighted the central role of the midline structures, such as the MPFC, ventral and dorsal ACC, 

and PCC, whereas other regions in the prefrontal, temporal, and parietal cortices exhibited 

concomitant activities modulated by emotional and semantic attributes of the evaluated stimuli (7, 

9, 15, 16). Social comparison has been mainly studied in competitive settings, and a recent meta-
analysis on 59 extant studies has revealed that downward social comparison (i.e., being better than 

others) consistently activated the striatum and MPFC, while upward comparison (i.e., being worse 

than others) recruited the insula and dACC activation (24). The present study provides a 

comprehensive picture of the default functional relationships among the regions implicated in SI 

(Fig. 4). Specifically, in addition to replicating our previous finding of the putamen (SMST)–dACC 

connectivity as FC #3 (7), we demonstrated that this FC was a part of the large network cluster 

composed of frontal, temporal, and occipital regions, overall exhibiting 60% of the contribution level 

to the classification (orange nodes in Fig. 4). While it may be of future interest to find the specific 
roles for these regions in SI, our recent work has shown that resting-state functional networks in 

the frontal and temporal regions are associated with positive memory-specific recollection (25). 

Other FCs selected by the present algorithm included the cortico-thalamic connection (FC #1) and 

the cortico-limbico-striatal connections comprised of the caudate, amygdala, and a parietal region 

(FC #7 and #13). It is noteworthy that the dACC, striatum, and thalamus are major nodes of the 

salience network involved in self-regulation of cognition, behavior, and emotion (26). The current 

findings suggest that the cortico-striatal and cortico-thalamic connections, which are parts of the 

salience network, appear to be central to mechanisms of cognitive control associated with SI (7, 9). 
Both functional and structural abnormalities in the salience network have been observed in several 

psychiatric disorders, such as depression and schizophrenia (27). Thus, aberrations of control over 
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SI may take a form of depressive realism in case of over-suppression, and a form of delusion of 

grandeur in case of insufficient suppression on the urge to expect positive self-view. 

 Although the present study focused on the SI, positive illusion can project as other forms 

of manifestation known as optimism bias and illusion of control (1). Optimism bias refers to an over- 

and under-estimation of the likelihood of experiencing positive and negative events, respectively 

(28). In a previous fMRI study, neural correlates were sought by contrasting the activities when the 

participants imagined future positive versus negative events (29). Enhanced activity was found in 

the amygdala, the rostral ACC, the caudate, and other regions known to be implicated in 

autobiographical memory retrieval and future projections, such as the inferior and medial frontal 
gyri, and middle temporal gyrus (30). The illusion of control refers to a phenomenon where one 

expects a success probability that is inappropriately higher than the objective probability would 

warrant (31). A previous fMRI study investigated subjective belief in control in an uncertain 

gambling setting (32). When comparing neural activities between the groups of participants with 

and without experience of the illusion of control, the former group exhibited increased activity in the 

nodes of the cortico-striatal network, including the nucleus accumbens and the right inferior frontal 

gyrus (32). Based on these previous findings, it is suggested that the three forms of positive illusion, 
the SI, optimism bias, and illusion of control, may have a common neural mechanism by sharing 

the nodes of connections in the striatum and prefrontal cortex. 

 The methodological framework to identify SI-related FCs worked successfully for positive 

trait words but not negative trait words. We speculate the possibility of inhomogeneity in the 

discovery cohort, that is, the presence of subgroups pertaining to the processing of negative trait 

words. Previous studies have suggested that individuals with high anxiety, such as social anxiety 
disorder, demonstrated altered patterns of neural activity during negative self-referential processing 

(33). Individuals with high and low levels of anxiety may thus exhibit differential involvement of 

RSFC in the manifestation of SI for negative trait words. In the feature selection process, the 

existence of heterogeneous subgroups in a single dataset makes identifying FCs that represent 

the entire group difficult. As an illustrative example, we previously employed a similar scheme for 

the investigation of major depressive disorder (MDD) (20). The scheme initially failed to identify 

FCs that distinguished groups of patients with MDD and normal controls to a meaningful accuracy 
(AUC = 0.62). However, considering MDD a generic label for a constellation of heterogeneous 

subtypes, we narrowed the scope of analysis into one major subtype of MDD, namely, the 

melancholic MDD characterized by anhedonia and lack of reactivity to pleasurable stimuli, and 

other symptoms (34). We then found that the extracted set of FCs accurately distinguished the 

melancholic patients with MDD from the control (AUC = 0.91); this classification scheme was 
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generalized to an independent cohort (20). This underscores the fact that the efficacy of feature 

extraction depends on the homogeneity of the population. In the present study, the limited sample 

size of the dataset and incomplete demographic information did not permit a full investigation of 

the validity of the current argument. We present a follow-up analysis in the Supplementary 
Information Text. We attempted feature selection in a subsample of the discovery cohort (n = 95) 

in which individuals with high state anxiety were maximally excluded using the available information. 

The successful classification result (AUC = 0.78) in the subsample encourages a future in-depth 

study to confirm the validity of the current proposal. 

 We acknowledge the following limitations in this study. First, feature selection using MRI 
data is generally predestined to exploit nuisance variables (NVs) unique to a given sample data, 

and select features correlated with the NVs (21). This results in overfitting of the sample data, 

impairing its generalizability to independent data (35). NVs include both demographic factors and 

instrumental biases (21, 36). In the present study, we used the previously established technique 

(L1-SCCA algorithm) (21) to identify and mask out the features correlated with the demographic 

(age, sex, and BDI score) and measurement factors (head motion-related parameters). However, 

since the discovery data were acquired in a single protocol at a single site, it is possible that the 
feature extraction was biased owing to the particular settings in the discovery data, such as the 

choice of imaging apparatus and parameters. Future work should therefore incorporate multi-site 

MRI data and thereby confirm the reproducibility of the SI-related feature extraction by optimally 

factoring out instrumental biases by applying post-hoc analytic algorithms (e.g., (36)). Second, 

considering the limited sample size of the datasets, the reliability of the feature selection, the 

classification between the high/low SI subgroups, and the prediction of individual DA D2R 

availability should be further evaluated in a larger population. In addition, the use of various 

personality questionnaires and psychological instruments related to anxiety and depression could 
help clarify the mechanisms underlying SI for negative trait words. Third, since [11C]racropride is 

most sensitive in the striatum where the DA D2R density is high (~30 pmol/mL) (37), the present 

results do not explain the role of the less-dense (< 2.5 pmol/mL) (38), extrastriatal DA D2R in SI 

manifestation. Since the SI entails a multitude of cognitive and affective functions involving the 

prefrontal cortex and the limbic system, exploring the extrastriatal DA D2R function using other 

radioligands may complement the findings of the present study. As an intriguing case, a previous 

study used [11C]racropride and [11C]FLB 475 to measure the binding of the striatal and extrastriatal 

DA D2R, respectively, clarifying their distinct roles in different aspects of social desirability (39). A 
similar approach may help establish a more comprehensive picture of the molecular and neural 

mechanisms underlying SI. 
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In conclusion, we conducted a data-driven, machine-learning-based investigation and 

identified a set of 15 cortico-limbico-striatal, cortico-thalamic, and cortico-cortical FCs that were 

most informative in classifying two groups with pSI higher and lower than the group average. Using 

the same set of FCs, we were able to predict the individual levels of DA D2R in the SMST. Our 
study clarified how an individual’s neurochemical and neural network properties interact with each 

other to manifest SI-related behavior, an essential psychological process promoting well-being and 

mental health. We believe that the present methodological framework would be applicable to 

various other behavioral traits to substantiate our understanding of the etiology and 

pathophysiology of related neuropsychiatric disorders across multiple biological layers in the brain. 

  

Materials and Methods 
Participants. The present study was approved by the Ethics and Radiation Safety Committee of 

the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological 

Science and Technology, Japan, in accordance with the ethical standards laid down in the 1964 

Declaration of Helsinki and its later amendments. All participants provided written informed consent 

prior for participation in the study; all had normal or corrected-to-normal vision and had no history 

of neurologic or psychiatric disorders. No participant was taking any medications that could interfere 

with the interpretation of the results presented here. Two groups of participants, the discovery and 

validation cohorts, were established in the present study (Table 1). A total of 123 (age, mean ± SD 
= 31.4 ± 13.6; 31 females) and 36 healthy adults (age, 23.3 ± 4.4; all males) were included in the 

study for the discovery and validation cohort, respectively. The subset of the validation cohort (n = 

24) was also used in our previous study (9). The Japanese version of the Beck Depression 

Inventory (BDI) (40, 41) was administered to the discovery cohort (mean ± SD = 5.5 ± 4.9). In the 

feature selection step (see below), the age, sex, and BDI scale were treated as NVs to mitigate 

their confounding effects in the feature selection and thereby improve the generalization capability 

of the derived classifier. 

The SI measurement. The procedure for SI measurement has been described in detail elsewhere 

(9). In brief, fifty-two socially desirable (positive) and undesirable (negative) trait words were 

selected from the previous literature (42) and translated into Japanese. Outside the scanner, 

participants were asked to rate how distant they were from the average peer on these personality 

traits using a visual analogue scale (ranging from 0 to 100 with an average of 50), yielding SI 

measurements. To derive the magnitude of the SI, the mean deviation from the average of 50 was 
calculated by reverse-scoring the ratings of negative traits to collapse with ratings of positive traits 
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for each participant. Finally, the range of the SI measurements were linearly rescaled from [0,100] 

to [-1, 1]. 

MRI data acquisition and analysis. All the participants underwent an MR scan with the imaging 

parameters and procedures summarized in Table S1. We utilized the CONN Toolbox (version 18b) 

(43) running with SPM12 (Wellcome Trust Centre for Neuroimaging, University College London, 

UK) software on MATLAB (R2018a, Mathworks, USA) to preprocess and denoise the raw data and 

to calculate the mean time course within the regions of interest. We used the default preprocessing 

pipeline that included realignment of the functional volumes to account for head motion, slice-timing 

correction, spatial normalization of the images to the Montreal Neurological Institute (MNI) space, 
and spatial smoothing using a Gaussian of full width at half maximum of 6 mm. To eliminate 

physiological and other noise of non-neuronal origins from the time course of blood oxygenation 

level dependent (BOLD) signal, subject-level denoising was performed using a regression model 

with the following confounds: (i) six motion parameters, their first-order derivatives, and their 

quadratic effects, (ii) five principal components in each of the white matter and cerebrospinal fluid 

(44), (iii) mean time course within the gray matter mask, and (iv) binary flags indicating the scan 

numbers where excessive frame-to-frame motion was detected. In (iv), the head motion was 
evaluated using the CONN’s built-in algorithm (ArtRepair (45)) with conservative thresholds (global 

signal z-value = 3, subject motion = 0.5 mm). The residual was then band-pass filtered in the range 

of [0.01, 0.1] Hz, yielding the BOLD time course for use in the subsequent calculation. 

Construction of composite atlas and calculation of interregional correlation matrices. In the 

present study, FCs were evaluated on an anatomical region basis using a composite atlas 

consisting of the Harvard-Oxford cortical and subcortical atlases (46) and the probabilistic 
cerebellar atlas (47) to cover the entire brain. The following two modifications were established 

based on this composite atlas. First, because previous studies on neural mechanisms of self-

referential processing commonly used fine parcellation into the anterior cingulate cortex (ACC) (48), 

the corresponding area in the Harvard-Oxford atlas was parcellated into the three subregions, that 

is, the perigenual, anterior middle, and posterior middle portions of the ACC. The anterior middle 

portion corresponds to the dACC. Second, visual inspection of the functional images in the present 

datasets revealed that the lobules Crus II and VII through X of the cerebellum fell outside the field 
of view in some participants. Therefore, these subregions in the cerebellum were excluded from 

the analysis. After these two modifications, the final composite atlas contained a total of 123 regions 

(100 cortical, 14 subcortical, and 9 cerebellar regions). For each participant in the dataset, we 

calculated the mean time course of the BOLD signal in each region using the CONN toolbox 
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following subject-level denoising. Finally, we calculated a pairwise interregional correlation matrix 

among 123 ROIs containing 7,503 (= 123 × 122 / 2) correlation indices. 

Feature Selection. Using the previously developed machine-learning algorithms (20-22), we 

identified the set of FCs by which the individuals in the discovery cohort were classified into one of 

the two subgroups according to their SI values. The description of the machine-learning 

methodology has been provided in detail previously (21). In brief, we applied a cascade of two 

algorithms, the L1-regularized sparse canonical correlation analysis (L1-SCCA) (49) and the sparse 

logistic regression (SLR) analysis (50), thereby effectively reducing the number of parameters (i.e., 

FCs) to avoid overfitting (35). First, the L1-SCCA was applied to the pool of correlation matrices to 
extract a subset of FCs relevant only to the neural substrates of the SI by eliminating the unwanted 

effects of NVs. In the present study, the L1-SCCA eliminated FCs that were correlated with age, 

sex, BDI score, and head motion-related parameters that exhibited statistically significant or trend 

towards differences between the two subgroups (see Table S2). The distributions of these 

parameters can differ from cohort to cohort, thereby hampering the generalization of the 

classification scheme (21). We then applied the SLR to further perform dimension reduction to 

extract the most informative FCs that reflected the neural substrates of the SI. The two algorithms 
were embedded in a framework of nested cross-validation and LOOCV. In the present study, we 

used 5-fold CV so that each fold incorporated approximately 24 participants. The output of the SLR 

is the final set of FCs and the associated weights. The weighted linear summation of the 

corresponding correlation indices was used to predict an individual’s identity to either of the two 

subgroups. Namely, P(z;w) = 1 / [ 1 + exp( –wTz ) ] determines the identity, where w and z are the 

vectors of the normalized correlation indices and the associated weights determined by the SLR, 

respectively (21). The individual is predicted to belong to SIL or SIH if the corresponding P is ≤ or > 

0.5, respectively. To evaluate the stability and robustness of the selection of the FCs in the LOOCV, 

we evaluated the cumulative absolute weight of the form ck = åi |wik|, where wik is the weight 

associated with the k-th FC during the i-th fold of the LOOCV and the sum runs over all folds. The 

greater magnitude of ck indicates a more significant contribution to the classification between the 

two subgroups. In addition, for each FC, we tested whether the set of weights assigned in the 

LOOCV was significantly non-zero using a one-sample t-test. P-values were adjusted for false 
discovery rate (FDR) based on the Benjamini-Hochberg method (51). 

PET data acquisition and analysis. The participants in the validation cohort underwent a PET 

scan to evaluate the striatal DA D2R availability. The procedures for data acquisition and analysis 

have been described in detail previously (9, 52). In short, following the intravenous rapid bolus 

injection of [11C]raclopride, a dynamic PET scan was conducted for 60 min. PMOD software (PMOD 
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Technologies Ltd., Zurich, Switzerland) was used to evaluate the temporal radioactivity of 

[11C]raclopride, thereby deriving a parametric image of non-displaceable binding potential (BPND), 

which represents the spatial distribution of DA D2R availability in the brain. Specifically, we 

estimated BPND in the left SMST (9) using the three-parameter simplified reference tissue model 
(53) with the cerebellum as a reference region (37). The boundary of the SMST was determined 

using the Oxford-GSK-Imanova Striatal Connectivity Atlas (54) which was transformed into the 

custom template space of the participants. Here, we used Advanced Normalization Tools (ANTs; 

http://stnava.github.io/ANTs/) to construct this custom template from pairs of PET parametric and 

T1-weighted MR structural images of all the participants. The deformation parameters from a 

participant’s native to the custom template space were also derived using this procedure. For each 

participant, the BPND in the SMST was estimated by calculating the mean of the BPND within the 
SMST on the individual’s parametric image in the custom template space. 

Linear regression of DA D2R BPND of [11C]raclopride. Using the 15 FCs incorporated in the pSI 

classifier, we attempted to predict the individual's striatal DA D2R availability. In the LOOCV 

framework, the individual BPND of [11C]raclopride in the SMST was linearly regressed by the 

correlation indices of the 15 FCs in the classifier. We incorporated age as an NV in the model, as 
previous studies have reported age dependence on DA D2R properties (55). [Note that sex and 

BDI were not incorporated as NVs in the model because the validation cohort comprised only male 

participants, for whom the BDI scores were not available.] Using the derived coefficients (i.e., 

weights), we predicted the BPND of the held-out individual as the weighted linear sum of the 

respective correlation indices. The agreement between the measured and predicted BPND was 

evaluated using Pearson’s correlation. To evaluate the reliability of the prediction, we conducted a 

bootstrapping analysis of 10,000 repetitions, and alternative models were constructed using 

randomly selected 15 FCs not incorporated in the pSI classifier (i.e., 15 FCs out of 7,488 (= 7503 
– 15) FCs). Reliability was evaluated by integrating the cumulative distribution of the pooled 

correlation indices obtained through the bootstrapping procedure. 
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Figures and Tables 
Figure 1.  

 
Distribution of the SI measurements for the (A) positive and (B) negative trait words in the discovery 

(top) and validation (bottom) cohorts. For each trait, the vertical line segment on the top of the 

histogram indicates the mean value of the superiority illusion (SI) measurement calculated in the 

discovery cohort. Two subgroups were formed within each cohort according to whether the 

individual has the SI value below (denoted by subscript L) or above (subscript H) the average value 

in the discovery cohort. 
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Figure 2. 

 

The 15 functional connectivities (FCs) used to classify the pSIL and pSIH subgroups as viewed from 

the (A) left side and (B) top of the brain. The ID numbers assigned to the terminal regions 

correspond to the Region ID in Table 2. 
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Figure 3. 

 

Distribution of weighted linear summation (WLS) of the 15 functional connectivities (FCs) selected 

by the machine learning algorithm (Materials and Methods) in the discovery cohort. The WLS 

smaller and greater than 0 is classified as pSIL and pSIH group, respectively. (Top) The number of 

individuals in the pSIL (open bar) and pSIH (filled bar) subgroups in the discovery cohort is shown 

as a histogram with the WLS width of 4. (Bottom) The WLS distribution of the validation cohort. 
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Figure 4. 

 

A schematic diagram depicting the mutual relationship among the 15 functional connectivities (FCs) 
used in the classification of the pSI subgroups. The number in the filled circle corresponds to the 

ID number in Table 2. The 15 FCs included two clusters of FCs, color-coded in orange and green, 

and their total contribution levels to the classification were 60% and 15%, respectively (see Table 

2). The former cluster included the previously-highlighted cortico-striatal FC #3 (9). The FC #1 is 

an isolated cortico-thalamic FC, color-coded in yellow, which exhibited the highest contribution level 

as a single FC (11%). 
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Figure 5. 

 

(A) The DA D2R availability in the left sensorimotor striatum (SMST) of the validation cohort (n = 

36) as measured by non-displaceable binding potential (BPND) of a radioligand [11C]raclopride. The 

pSIL subgroup exhibited significantly higher DA D2 BPND than the pSIH subgroup (P = 0.034, 

Wilcoxon rank sum test). (B) Prediction of the DA D2 BPND using the correlation indices of the 15 

FCs. The actual and the predicted measurements were correlated significantly (r = 0.46, P = 0.005). 
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Table 1. Demographic information and the superiority illusion (SI) measurement for (A) positive 

and (B) negative trait words in the discovery and validation cohorts. *P-values were determined by 

a Wilcoxon rank sum test for SI, age, and BDI, and by a c2 test for sex. †BDI (Beck Depression 

Inventory) measurements were available only for the discovery cohort. 

A. Positive trait words 
  Discovery cohort  Validation cohort 
   Subgroup   Subgroup 

Item  All pSIL pSIH P*  All pSIL pSIH P* 
N  123 64 59 –  36 14 22 – 

pSI  0.16±0.20 0.01±0.11 0.33±0.13 < 0.001  0.19±0.22 –0.02±0.17 0.32±0.14 < 0.001 
Age (y)  31.4±13.6 29.3±11.4 33.5±15.4 0.07  23.3±4.4 22.9±3.5 23.6±4.9 0.84 

Sex (M/F)  92 / 31 48 / 16 44 / 15 0.96  36 / 0 14 / 0 22 / 0 – 
BDI†  5.5±4.9 6.4±5.7 4.5±3.6 0.13  (n/a) (n/a) (n/a) – 

B. Negative trait words 
  Discovery cohort  Validation cohort 
   Subgroup   Subgroup 

Item  All nSIL nSIH P*  All nSIL nSIH P* 
N  123 70 53 –  36 19 17 – 

nSI  0.13±0.21 –0.01±0.12 0.33±0.14 < 0.001  0.11±0.21 –0.03±0.19 0.26±0.10 < 0.001 
Age (y)  31.4±13.6 28.8±10.5 34.8±16.2 0.06  23.3±4.4 22.9±3.4 23.8±5.3 0.87 

Sex (M/F)  92 / 31 53 / 17 39 / 14 0.79  36 / 0 19 / 0 17 / 0 – 
BDI†  5.5±4.9 6.9±5.5 3.7±3.2 0.001  (n/a) (n/a) (n/a) – 
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Table 2. Properties of the 15 functional connectivities (FCs) used to classify the pSIL and pSIH 

subgroups. For each FC, the mean Pearson correlation index is calculated in each subgroup. 

Contribution was calculated as Weight × | r(pSIL) – r(pSIH) |, and the number in the parentheses 

indicates the relative fraction (%). Lat., laterality; BA, Brodmann area; Contrib., contribution; c., 
cortex; g., gyrus. *, see Figure 2.  

FC# 
Terminal regions Mean correlation 

Weight Contrib. 
(%) Map ID* Lat. Name BA r(pSIL) r(pSIH) 

1 (5) R Thalamus – 0.08 –0.03 –9.47 1.04 
 (15) R Middle frontal g. 6    (15.7) 

2 (18) R Temporal fusiform c. (anterior) 28 –0.09 0.03 6.14 0.74 
 (17) L Frontal pole 10    (11.2) 

3 (1) R Putamen – 0.21 0.31 7.64 0.72 
 (3) R Cingulate g. (anterior middle) 24    (10.9) 

4 (12) L Cerebellum VI – –0.15 –0.06 7.52 0.65 
 (13) L Inferior frontal g. (pars triangularis) 45    (9.8) 

5 (3) L Cingulate g. (anterior middle) 24 –0.07 0.03 6.24 0.63 
 (6) L Occipital pole 17    (9.5) 

6 (7) R Lateral occipital c. (superior) 31 0.33 0.21 –4.80 0.58 
 (21) R Inferior temporal g. (temporooccipital) 37    (8.8) 

7 (4) L Amygdala 34 –0.10 0.00 3.30 0.34 
 (10) R Superior parietal lobule 7    (5.1) 

8 (3) L Cingulate g. (anterior middle) 24 –0.21 –0.32 –3.03 0.34 
 (7) L Lateral occipital c. (superior) 19    (5.1) 

9 (8) L Cuneal c. 18 –0.10 0.00 2.65 0.26 
 (7) R Lateral occipital c. (superior) 31    (3.9) 

10 (19) R Parahippocampal g. (posterior) 35 –0.13 –0.20 –3.61 0.25 
 (17) R Frontal pole 10    (3.8) 

11 (11) R Cerebellum crus I – –0.01 –0.12 –2.41 0.25 
 (4) L Amygdala 34    (3.8) 

12 (16) L Frontal operculum c. 13 0.04 –0.05 –2.56 0.22 
 (20) R Middle temporal g. (temporooccipital) 22    (3.3) 

13 (2) R Caudate – 0.12 0.04 –2.86 0.22 
 (4) L Amygdala 34    (3.3) 

14 (21) R Inferior temporal g. (temporooccipital) 37 0.15 0.04 –1.89 0.21 
 (14) L Inferior frontal g. (pars opercularis) 44    (3.2) 

15 (9) R Supramarginal g. (anterior) 40 0.11 0.01 –1.88 0.17 
 (10) L Superior parietal lobule 7    (2.6) 
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