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Abstract

Background: Therapeutic drugs used in cancer treatment have ineffectiveness and
resistance to drug action problems. Anticancer peptides (ACPs) are selective and toxic
to cancer cells and quickly produced. Thus, ACPs can be a satisfactory substitute for
therapeutic drugs. We developed AI4ACP, a user-friendly web-server ACP predictor
that can predict the anticancer property of query peptides, thus promoting the discovery
of peptides with anticancer activity.

Result: Our results revealed that the performance of our ACP predictor trained using
the new ACP collection was superior to that of the available high-performance ACP
predictors.

Conclusions: AI4ACP is a user-friendly web-server ACP predictor that can be used to
determine whether a query sequence is an ACP. This tool can be beneficial for drug
development for cancer treatment. AI4ACP is freely accessible at

https://axp.iis.sinica.edu.tw/AI4ACP/
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Background

Therapeutic drugs currently used in cancer treatment have ineffectiveness and
resistance to drug action, thus increasing side effects [1]. Cell membrane properties
differ between cancer and healthy cells. The membrane fluidity of cancer cells is higher
than that of healthy cells [2]; this protects cancer cells from cell lysis. In addition, cancer
cells are characterized by a negatively charged surface [3]. Anticancer peptides (ACPs),
a subset of antimicrobial peptides (AMPs), are selective and toxic to cancer cells
because of their physicochemical properties and secondary structures. ACPs can be
divided into two types based on their anticancer mechanism: molecular-targeting
peptides and cancer-targeting peptides. Compared with therapeutic drugs, ACPs have
higher specificity and selectivity and can easily bind to various targeting drugs. ACPs
can be easily synthesized and produced and can thus serve as a new cancer treatment
modality [1].

Some state-of-the-art predictors have been constructed using traditional machine
learning methods such as support vector machine (SVM) for AntiCP [4] and iACP [5]
and random forest (RF) for ACPred [6] and MLACP [7]. However, because traditional
machine learning methods depend on manual feature extraction, their performance may
be affected by the experience and knowledge of researchers.

Recently, deep learning models have been successfully applied in many fields (e.g., for
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the prediction of ACPs). A study, PTPD, used a combination of Word2Vec and a deep

learning network (DNN) model [8]. With the availability of deep learning methods,

researchers are currently not required to extract features manually. Instead, a machine

extracts the features of data automatically. Moreover, with an increase in the number of

ACPs confirmed recently, deep learning models have increased accurately.

To hasten the discovery of ACPs and improve the performance of ACP predictors, we

built a deep learning model to detect peptides with anticancer activity. Our model was

composed of peptide sequence encoding and machine learning. The protein-encoding

stage involves using encoding methods, such as the analysis of amino acid and

dipeptide composition, reported in previous studies. In this study, we used PC6 [9], a

novel protein-encoding method, to convert a peptide sequence into a computational

matrix, representing six physicochemical properties of each amino acid. We mainly

applied the convolutional neural network in our model in the machine learning stage.

Because of an increase in the number of ACPs confirmed recently, we could identify

more ACP sequences and construct a highly accurate ACP prediction model.
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Implementation

1.1Data collection and division

Positive data collection

We collected ACP sequences from four ACP and AMP databases: CancerPPD [10],

DBAASP [11], DRAMP [12], and YADAMP [13]. In addition, we included sequences

from the positive alternative set reported by Charoenkwan et al. 2021 [14]. We

downloaded all peptides with anticancer activity from the four databases and previous

studies. After excluding ACPs with unusual amino acids or a nonlinear structure,

namely "B," "Z," "U," "X," "IL," "O," "i," and "-," and duplicates between different

databases, we obtained 2839 positive ACPs. Fig. 1 (Panel A) presents the length

distribution of the 2839 ACPs; most of the sequences were shorter than 50 amino acids

in length. Therefore, we excluded ACPs longer than 50 amino acids. Finally, 2815 ACP

sequences were retained. Fig. 1 (Panel B) depicts the length distribution of the 2815

ACPs.

To ensure that the characteristics of the ACPs learned by the model were balanced, we

filtered out the remaining ACPs sharing >99% sequence identity with existing ACPs by

calculating the sequence identity by using CD-HIT [9]. A total of 2124 ACPs were

included as positive data. To evaluate the performance of our model and compare it
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with that of other state-of-the-art predictors, we used 10% of all the positive data as the

testing set after excluding sequences from the positive set of other predictors. Fig. 2

presents the detailed positive data collection and division process.

Negative data collection

The negative data set consisted of 1062 non-ACP peptides from UniProt [15] and 1062
manually generated peptides. From UniProt, we collected peptides shorter than 50
amino acids in length and without anticancer, antiviral, antimicrobial, or antifungal
activities. Manually generated peptides were randomly generated using the same length
of the positive data set and 20 essential amino acids. Finally, we obtained 2124
sequences as the negative data set. We used 90% of the negative data set (1912
sequences) as the negative training set and the remaining 10% (212 sequences) as the
negative testing set. Fig. 3 presents the detailed negative data collection and division

process.

1.2Protein-encoding method

This study used the PC6 protein-encoding method [9] to convert a peptide sequence
into a computational matrix. PC6 is a novel protein-encoding method that can encode

a sequence based on both the order and physicochemical properties of the amino acids
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of the sequence. After benchmarking with other encoding methods, the PC6 encoding
method exhibited the most satisfactory performance. Therefore, we applied PC6 in the
encoding stage in our final prediction model.

1.3Developing a deep learning model

We implemented Keras, a high-level API from Tensorflow, to construct and train a
deep learning model. We first applied the PC6 protein-encoding method [9] to all
sequences and converted them into 50 X 6 matrices. Fig. 4 presents the process of

the PC6 protein-encoding method.

Subsequently, =~ we  implemented the neural network using Keras
(https://github.com/keras-team/keras) from Tensorflow?2 (https://www.tensorflow.org/).
The model architecture consists of three blocks composed of convolutional layers,
batch normalization, max pooling, dropout layers, and two dense layers (Fig. 5). The
first dense layer contains 128 units with a 50% dropout rate. The last layer in the model
is the output layer and is composed of a one-dimensional dense layer with the sigmoid
activation function that produces a value ranging from 0 to 1; this value can indicate
whether a peptide is an ACP. The convolutional layer in the three blocks in our model
was built using 64, 32, and 8 one-dimensional filters of length 20 with the ReL.U

activation function, respectively. After the convolutional layer was built, batch
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normalization and max-pooling were applied with a 25% dropout rate in every block.

Binary cross entropy was implemented as the loss function. With a learning rate of

0.0001, the Adam optimizer was used as our optimizer. We trained the model using the

training data set (90%) and evaluated its performance using the validation data set

(10%). Finally, all available data, namely 2124 positive and 2124 negative data, were

used to train the final model.

1.4Data for the final model

After we confirmed the most favorable model architecture and hyperparameters, we

trained the model using all the available data (2124 positive and 2124 negative data)

and eventually produced the final prediction model for the website. The data set used

in this study can be found on our online HELP page.

(https://axp.iis.sinica.edu.tw/AI4ACP/helppage.html) The positive and negative data

sets will be continuously updated with the same criteria if new ACPs are discovered in

the future.

1.5System Implementation and Workflow

For the intuitive user experience and easy understanding, we built AI4ACP composed

of the LAMP system architecture (Linux Ubuntu 16.04, Apache 2.04, MySQL 5.7, and
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PHP 5.1) with the Bootstrap 3 CSS framework (http://getbootstrap.com/), jQuery1.11.1,

and jQuery Validation version 1.17. Furthermore, the core of the analysis process was

implemented in the neural network by using Keras from Tensorflow. AI4ACP runs as a

virtual machine (CPU of 2.27 GHz, 20 cores, 32-GB RAM, and 500-GB storage) on

the cloud infrastructure of the Institute of Information Science, Academia Sinica,

Taiwan.

AI4ACP is a website service that allows users to predict whether a query peptide

sequence is an ACP. The input data should be in the FASTA format, and the query

peptide sequence should be composed of only 20 essential amino acids; sequences

would not be recognized if they contain unusual amino acids such as B, Z, U, X, J, or

O. AI4ACP would output a CSV file containing a prediction score ranging from 0 to 1

and the prediction result as YES or NO for each input peptide sequence. The prediction

score represents the probability that the query peptide sequence is an ACP. The

prediction results shown as a binary column in the output file indicate the ACP

sequence(s). The prediction result is based on the prediction score with a threshold of

0.472, which is the average of thresholds calculated by training the model five times.

The workflow of AI4ACP is presented in Fig. 6 and explained as follows: First, the

query peptide sequence is input in the FASTA format or as a FASTA file, and a valid

job title is provided (Fig. 6A). After the query sequence is submitted, the result appears
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in a three-column table composed of the input peptide's name, prediction score, and
prediction result (Fig. 6B). In addition, a piechart presents the prediction result; this pie
chart enables users to view the prediction results of the whole submission at the same

time (Fig. 6C).

Results

We compared the performance of our model with those of other state-of-the-art ACP
predictors. A previous study [14] indicated that most of the ACP predictors were trained
and tested using two data sets: the main data set and an alternative data set. The main
data set was 861 ACPs as the positive set and 861 AMPs as the negative set (80% for
training and 20% for testing). The alternative data set consisted of 970 ACPs as the
positive set and 970 peptide sequences randomly chosen from Swiss-Prot as the
negative set (80% for training and 20% for testing).

In addition to these two data sets, we obtained a new collection. Table 1 shows the
comparison of the composition of the data sets, and Fig. 7 shows the Venn diagram of

the positive set of the data sets.

We compared AI4ACP, trained using the main data set and the alternative data set in
the previous study, with other state-of-the-art ACP predictors. Most of the ACP

predictors lack maintenance, and thus they were not working. The results shown in
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Tables 2 and 3 were obtained from the published findings of AntiCP2.0 [16] and

ACPred [14]. Table 2 presents the performance of ACP predictors trained and tested

using the main data set. Most of the ACP predictors trained with the main data set did

not perform efficiently. We observed that the specificities of most of the ACP predictors

were not as satisfactory as their sensitivities. The composition of the negative main data

set might have affected the ACP prediction performance of the ACP predictors. Because

ACPs are a subset of AMPs, some of the AMPs may possess anticancer activity; thus,

using AMPs as the negative set would be inappropriate. Thus, the ACP predictor was

trained and tested in this study using the alternative data set.

Table 3 shows the performance of ACP predictors trained and tested using the

alternative data set. The performance of most of the ACP predictors was more favorable

than those trained using the main data set; AntiCP2.0 [16] exhibited the highest

performance. In this study, AI4ACP was constructed using a deep learning model and

thus required more data to improve the prediction accuracy.

Most of the state-of-the-art predictors lacked maintenance and were thus unable to

predict the testing set of the new collection. AI4ACP and AntiCP2.0 [16], the only state-

of-the-art web-based ACP predictors available, were evaluated using the testing set of
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the new collection. AI4ACP was trained using the alternative data set and the new
collection with the model as mentioned earlier architecture, respectively, and both were
tested using the testing set of the new collection. As shown in Table 4, the performance
of our model was similar to AntiCP2.0 when trained using the alternative set but more

favorable than that of AntiCP2.0 when trained using the new collection data set.

Conclusion

The identification and screening of novel ACPs in a wet lab is usually time-consuming
and expensive. Exploring the anticancer activity of peptides by using ACP predictors
can accelerate the development of new anticancer drugs. However, the prediction of an
ACP predictor is merely speculative. Laboratory experiments would still be required to
confirm whether a peptide sequence possesses anticancer activity.

The results revealed that combining the PC6 encoding method and deep learning model
could efficiently predict ACPs. The PC6 encoding method could exactly preserve the
physicochemical properties of amino acids from original peptide sequences, and the
deep learning model could learn these preserved features. In addition, with an increase
in the number of peptide sequences confirmed as ACPs, we could build a predictor that
exhibited more favorable performance and higher accuracy than other state-of-the-art

ACP predictors. AI4ACP is a user-friendly web-based ACP predictor, and users can use
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this tool to detect whether the query sequence is an ACP. This tool can be beneficial for

drug development for cancer treatment. AI4ACP will be continuously updated once

new ACPs are discovered in the future. Besides, the deep learning model is available at

https://github.com/yysun0116/AI4ACP.
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List of Figure Legends

Fig. 1 Histogram of the length of ACPs.

Fig. 2 Positive data collection and division process.
Fig. 3 Negative data collection and division process.

Fig. 4 PC6 protein-encoding method. A padded ACP is transformed into a 50 X 6
matrix.

Fig. 5 Model architecture in this study. After PC6 encoding, protein sequences go
through every layer in this model.

Fig. 6 AI4ACP website. A) Web portal of AI4ACP for sequence submission in FASTA.
B) Output of ACP activity for each submitted sequence with a prediction score.
C) A piechart presenting the prediction of the whole submission. Moreover, the
submission with files generated during the prediction.

Fig. 7 Venn diagram of the positive data sets.


https://doi.org/10.1101/2022.02.01.478580
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478580; this version posted February 4, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Table 1. Comparison of the composition of three data sets.

Dataset Positive set

Main set Training set 689 ACPs

861 861
(P™" + N™>7) Testing set 172 ACPs

Alternative set Training set 776 ACPs

970 970
(PTT 4N Testing set 194 ACPs

New collection Training set 1912 ACPs

p2124 | p2124
( * ) Testing set 212 ACPs

Negative set
689 AMPs
172 AMPs
776 peptides from Swiss-Prot

194 peptides from Swiss-Prot

956 peptides from UniProt + 956
randomly generated sequences
106 peptides from UniProt + 106

randomly generated sequences
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Table 2. Comparison of ACP predictors trained and tested with the main data set.

Results were obtained from the published findings of AntiCP2.0 and ACPred.

Predictors Methods Ac Sn Sp MCC

AntiCP SVM 0.506 1.000 0.012 0.070

iACP SVM 0.551 0.779 0.322 0.110

ACPred SVM 0.535 0.856 0214 0.090

PEPred-Suite ensemble 0.535 0331 0.738 0.080
approach

ACPred-FL ersemole 0.448 0.671 0.225 -0.120
approach

ACPred-Fuse RF 0.689 0.692 0.686 0.380

AntiCP_2.0 ETree 0.754 0.775 0.734 0.510

iACP-FSCM SVM 0.825 0.726 0.903 0.646

AI4ACP CNN 0.718 0.802 0.633 0.442
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Table 3. Comparison of ACP predictors trained and tested using the alternative data

set. Results were obtained from the published findings of AntiCP2.0 and

ACPred.

Predictors Classifier MCC

AntiCP SVM 0.900 0.897 0.902 0.800

iACP SVM 0.776 0.784 0.768 0.550

ACPred SVM 0.853 0.871 0.835 0.710

PEPred-Suite ensemble 0.575 0.402 0.747 0.160
approach

ACPred-FL ersemole 0.438 0.602 0.256 -0.150
approach

ACPred-Fuse RF 0.789 0.644 0.933 0.600

AntiCP_2.0 ETree 0.920 0.923 0918 0.840

iACP-FSCM SVM 0.889 0.876 0.902 0.779

AI4ACP CNN 0.894 0.871 0918 0.790
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Table 4. Comparison of ACP predictors tested using the testing set of the new collection.

Sn MCC

Predictors Classifier Training set Ac Sp

AntiCP2.0 ETree Alternative set ~ 0.792 0.717 0.868 0.592
AI4ACP CNN Alternative set ~ 0.802 0.750 0.854 0.607
AI4ACP CNN New collection ~ 0.913 0.925 0.901 0.826
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Fig. 2 Positive data collection and division process.
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Fig. 4 PC6 protein-encoding method. A padded ACP is transformed into a 50 X 6 matrix.

Padding with X

to alength of 50

e N X

1ACP
sequence

A

N

Convert an amino acids into
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" H1 V P1 P2 pKa NCN

0.62 -.123 -0.08 -0.01 0.70 -0.44
0.29 -0.76 -1.04 -0.53 -0.93 -1.11
1.06 0.57 -1.27 0.02 0.78 0.24
1.06 0.57 -1.27 0.02 0.78 0.24
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Fig. 6 AI4ACP website. A) Web portal of AI4ACP for sequence submission in FASTA. B) Output of ACP activity for each submitted sequence

with a prediction score. C) A pie chart presenting the prediction of the whole submission. Moreover, the submission with files generated

during the prediction.

Input FASTA:
(Protein Sequence)

or Fileupload|(”.txt):

Encoding Method:

Job title :

Your Email (optional):

Choase File | No fie cosen

®PC 6

1 have read and acoept the Terms of Use

Suomit Reset Demo.

Job title:Demo , Encoding Method:PC_6

Total uplaod: 10
Total input sequences : 10 ,Unrecognized: 0

Show 10 v entries search:l

L e Peptide Score Prediction results
1 ACP_a2502 0.9996780157089233 Yes
2 ACP_a1302 0.9032835698127747 Yes
ACP_a2546 0.9900080867210388 Yes
4 ACP_a1368 0.5793116668728333 Yes
5 ACP_a1539 0.9938004016876221 Yes
spIPE6459INATD_BUNCN 0.1750510334968567 No
$p|PB44T7IMBSP_CYPCA 0.019389748573303223 No
sp|PS5938|HSP71_LEITA 0.07415872812271118 No
$plPO1287|SLIB_PIG 0.02186208963394165 No
10 sp|PODKM4|TU25_LOPOL 0.24513450264930725 No
Showing 110 10 of 10 enlries Previous 1 Next
=.

Download area
Result

Submission in fasta file

Sequence Count: 10 Log file
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Fig. 7 Venn diagram of the positive data sets.
Testing set of
new collection (n = 212)
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