
Peptide-based drug predictions for cancer therapy 

using deep learning 
 

Yih-Yun Suna, Tzu-Tang Linb, Wei-Chih Chengb, I-Hsuan Lub, Shu-Hwa Chenc, 

Chung-Yen Linb§ 

 
a Department of Public Health, College of Public Health, National Taiwan University, No. 1, Sec. 

4, Roosevelt Rd., Taipei 10617, TAIWAN  
b Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, 

Taipei 115, TAIWAN 
c Research Center of Cancer Translational Medicine, Taipei Medical University, 250 Wu-Xing 

Street, Taipei, TAIWAN 

§Corresponding author 

Contact: Chung-Yen Lin, cylin@iis.sinica.edu.tw 

 

   

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.01.478580doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478580
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 

Background: Therapeutic drugs used in cancer treatment have ineffectiveness and 

resistance to drug action problems. Anticancer peptides (ACPs) are selective and toxic 

to cancer cells and quickly produced. Thus, ACPs can be a satisfactory substitute for 

therapeutic drugs. We developed AI4ACP, a user-friendly web-server ACP predictor 

that can predict the anticancer property of query peptides, thus promoting the discovery 

of peptides with anticancer activity. 

Result: Our results revealed that the performance of our ACP predictor trained using 

the new ACP collection was superior to that of the available high-performance ACP 

predictors. 

Conclusions: AI4ACP is a user-friendly web-server ACP predictor that can be used to 

determine whether a query sequence is an ACP. This tool can be beneficial for drug 

development for cancer treatment. AI4ACP is freely accessible at 

 https://axp.iis.sinica.edu.tw/AI4ACP/ 
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Background 

Therapeutic drugs currently used in cancer treatment have ineffectiveness and 

resistance to drug action, thus increasing side effects [1]. Cell membrane properties 

differ between cancer and healthy cells. The membrane fluidity of cancer cells is higher 

than that of healthy cells [2]; this protects cancer cells from cell lysis. In addition, cancer 

cells are characterized by a negatively charged surface [3]. Anticancer peptides (ACPs), 

a subset of antimicrobial peptides (AMPs), are selective and toxic to cancer cells 

because of their physicochemical properties and secondary structures. ACPs can be 

divided into two types based on their anticancer mechanism: molecular-targeting 

peptides and cancer-targeting peptides. Compared with therapeutic drugs, ACPs have 

higher specificity and selectivity and can easily bind to various targeting drugs. ACPs 

can be easily synthesized and produced and can thus serve as a new cancer treatment 

modality [1]. 

Some state-of-the-art predictors have been constructed using traditional machine 

learning methods such as support vector machine (SVM) for AntiCP [4] and iACP [5] 

and random forest (RF) for ACPred [6] and MLACP [7]. However, because traditional 

machine learning methods depend on manual feature extraction, their performance may 

be affected by the experience and knowledge of researchers. 

Recently, deep learning models have been successfully applied in many fields (e.g., for 
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the prediction of ACPs). A study, PTPD, used a combination of Word2Vec and a deep 

learning network (DNN) model [8]. With the availability of deep learning methods, 

researchers are currently not required to extract features manually. Instead, a machine 

extracts the features of data automatically. Moreover, with an increase in the number of 

ACPs confirmed recently, deep learning models have increased accurately.  

To hasten the discovery of ACPs and improve the performance of ACP predictors, we 

built a deep learning model to detect peptides with anticancer activity. Our model was 

composed of peptide sequence encoding and machine learning. The protein-encoding 

stage involves using encoding methods, such as the analysis of amino acid and 

dipeptide composition, reported in previous studies. In this study, we used PC6 [9], a 

novel protein-encoding method, to convert a peptide sequence into a computational 

matrix, representing six physicochemical properties of each amino acid. We mainly 

applied the convolutional neural network in our model in the machine learning stage. 

Because of an increase in the number of ACPs confirmed recently, we could identify 

more ACP sequences and construct a highly accurate ACP prediction model. 
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Implementation 

1.1 Data collection and division  

Positive data collection 

We collected ACP sequences from four ACP and AMP databases: CancerPPD [10], 

DBAASP [11], DRAMP [12], and YADAMP [13]. In addition, we included sequences 

from the positive alternative set reported by Charoenkwan et al. 2021 [14]. We 

downloaded all peptides with anticancer activity from the four databases and previous 

studies. After excluding ACPs with unusual amino acids or a nonlinear structure, 

namely "B," "Z," "U," "X," "J," "O," "i," and "-," and duplicates between different 

databases, we obtained 2839 positive ACPs. Fig. 1 (Panel A) presents the length 

distribution of the 2839 ACPs; most of the sequences were shorter than 50 amino acids 

in length. Therefore, we excluded ACPs longer than 50 amino acids. Finally, 2815 ACP 

sequences were retained. Fig. 1 (Panel B) depicts the length distribution of the 2815 

ACPs. 

To ensure that the characteristics of the ACPs learned by the model were balanced, we 

filtered out the remaining ACPs sharing >99% sequence identity with existing ACPs by 

calculating the sequence identity by using CD-HIT [9]. A total of 2124 ACPs were 

included as positive data. To evaluate the performance of our model and compare it 
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with that of other state-of-the-art predictors, we used 10% of all the positive data as the 

testing set after excluding sequences from the positive set of other predictors. Fig. 2 

presents the detailed positive data collection and division process. 

Negative data collection 

The negative data set consisted of 1062 non-ACP peptides from UniProt [15] and 1062 

manually generated peptides. From UniProt, we collected peptides shorter than 50 

amino acids in length and without anticancer, antiviral, antimicrobial, or antifungal 

activities. Manually generated peptides were randomly generated using the same length 

of the positive data set and 20 essential amino acids. Finally, we obtained 2124 

sequences as the negative data set. We used 90% of the negative data set (1912 

sequences) as the negative training set and the remaining 10% (212 sequences) as the 

negative testing set. Fig. 3 presents the detailed negative data collection and division 

process. 

 

1.2 Protein-encoding method 

This study used the PC6 protein-encoding method [9] to convert a peptide sequence 

into a computational matrix. PC6 is a novel protein-encoding method that can encode 

a sequence based on both the order and physicochemical properties of the amino acids 
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of the sequence. After benchmarking with other encoding methods, the PC6 encoding 

method exhibited the most satisfactory performance. Therefore, we applied PC6 in the 

encoding stage in our final prediction model. 

1.3 Developing a deep learning model 

We implemented Keras, a high-level API from Tensorflow, to construct and train a 

deep learning model. We first applied the PC6 protein-encoding method [9] to all 

sequences and converted them into 50 ൈ 6 matrices. Fig. 4 presents the process of 

the PC6 protein-encoding method. 

 

Subsequently, we implemented the neural network using Keras 

(https://github.com/keras-team/keras) from Tensorflow2 (https://www.tensorflow.org/). 

The model architecture consists of three blocks composed of convolutional layers, 

batch normalization, max pooling, dropout layers, and two dense layers (Fig. 5). The 

first dense layer contains 128 units with a 50% dropout rate. The last layer in the model 

is the output layer and is composed of a one-dimensional dense layer with the sigmoid 

activation function that produces a value ranging from 0 to 1; this value can indicate 

whether a peptide is an ACP. The convolutional layer in the three blocks in our model 

was built using 64, 32, and 8 one-dimensional filters of length 20 with the ReLU 

activation function, respectively. After the convolutional layer was built, batch 
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normalization and max-pooling were applied with a 25% dropout rate in every block. 

Binary cross entropy was implemented as the loss function. With a learning rate of 

0.0001, the Adam optimizer was used as our optimizer. We trained the model using the 

training data set (90%) and evaluated its performance using the validation data set 

(10%). Finally, all available data, namely 2124 positive and 2124 negative data, were 

used to train the final model. 

 

1.4 Data for the final model 

After we confirmed the most favorable model architecture and hyperparameters, we 

trained the model using all the available data (2124 positive and 2124 negative data) 

and eventually produced the final prediction model for the website. The data set used 

in this study can be found on our online HELP page. 

(https://axp.iis.sinica.edu.tw/AI4ACP/helppage.html) The positive and negative data 

sets will be continuously updated with the same criteria if new ACPs are discovered in 

the future. 

1.5 System Implementation and Workflow 

For the intuitive user experience and easy understanding, we built AI4ACP composed 

of the LAMP system architecture (Linux Ubuntu 16.04, Apache 2.04, MySQL 5.7, and 
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PHP 5.1) with the Bootstrap 3 CSS framework (http://getbootstrap.com/), jQuery1.11.1, 

and jQuery Validation version 1.17. Furthermore, the core of the analysis process was 

implemented in the neural network by using Keras from Tensorflow. AI4ACP runs as a 

virtual machine (CPU of 2.27 GHz, 20 cores, 32-GB RAM, and 500-GB storage) on 

the cloud infrastructure of the Institute of Information Science, Academia Sinica, 

Taiwan. 

AI4ACP is a website service that allows users to predict whether a query peptide 

sequence is an ACP. The input data should be in the FASTA format, and the query 

peptide sequence should be composed of only 20 essential amino acids; sequences 

would not be recognized if they contain unusual amino acids such as B, Z, U, X, J, or 

O. AI4ACP would output a CSV file containing a prediction score ranging from 0 to 1 

and the prediction result as YES or NO for each input peptide sequence. The prediction 

score represents the probability that the query peptide sequence is an ACP. The 

prediction results shown as a binary column in the output file indicate the ACP 

sequence(s). The prediction result is based on the prediction score with a threshold of 

0.472, which is the average of thresholds calculated by training the model five times. 

The workflow of AI4ACP is presented in Fig. 6 and explained as follows: First, the 

query peptide sequence is input in the FASTA format or as a FASTA file, and a valid 

job title is provided (Fig. 6A). After the query sequence is submitted, the result appears 
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in a three-column table composed of the input peptide's name, prediction score, and 

prediction result (Fig. 6B). In addition, a piechart presents the prediction result; this pie 

chart enables users to view the prediction results of the whole submission at the same 

time (Fig. 6C).  

Results   

We compared the performance of our model with those of other state-of-the-art ACP 

predictors. A previous study [14] indicated that most of the ACP predictors were trained 

and tested using two data sets: the main data set and an alternative data set. The main 

data set was 861 ACPs as the positive set and 861 AMPs as the negative set (80% for 

training and 20% for testing). The alternative data set consisted of 970 ACPs as the 

positive set and 970 peptide sequences randomly chosen from Swiss-Prot as the 

negative set (80% for training and 20% for testing). 

In addition to these two data sets, we obtained a new collection. Table 1 shows the 

comparison of the composition of the data sets, and Fig. 7 shows the Venn diagram of 

the positive set of the data sets. 

 

We compared AI4ACP, trained using the main data set and the alternative data set in 

the previous study, with other state-of-the-art ACP predictors. Most of the ACP 

predictors lack maintenance, and thus they were not working. The results shown in 
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Tables 2 and 3 were obtained from the published findings of AntiCP2.0 [16] and 

ACPred [14]. Table 2 presents the performance of ACP predictors trained and tested 

using the main data set. Most of the ACP predictors trained with the main data set did 

not perform efficiently. We observed that the specificities of most of the ACP predictors 

were not as satisfactory as their sensitivities. The composition of the negative main data 

set might have affected the ACP prediction performance of the ACP predictors. Because 

ACPs are a subset of AMPs, some of the AMPs may possess anticancer activity; thus, 

using AMPs as the negative set would be inappropriate. Thus, the ACP predictor was 

trained and tested in this study using the alternative data set. 

 

Table 3 shows the performance of ACP predictors trained and tested using the 

alternative data set. The performance of most of the ACP predictors was more favorable 

than those trained using the main data set; AntiCP2.0 [16] exhibited the highest 

performance. In this study, AI4ACP was constructed using a deep learning model and 

thus required more data to improve the prediction accuracy. 

 

Most of the state-of-the-art predictors lacked maintenance and were thus unable to 

predict the testing set of the new collection. AI4ACP and AntiCP2.0 [16], the only state-

of-the-art web-based ACP predictors available, were evaluated using the testing set of 
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the new collection. AI4ACP was trained using the alternative data set and the new 

collection with the model as mentioned earlier architecture, respectively, and both were 

tested using the testing set of the new collection. As shown in Table 4, the performance 

of our model was similar to AntiCP2.0 when trained using the alternative set but more 

favorable than that of AntiCP2.0 when trained using the new collection data set.  

 

Conclusion 

The identification and screening of novel ACPs in a wet lab is usually time-consuming 

and expensive. Exploring the anticancer activity of peptides by using ACP predictors 

can accelerate the development of new anticancer drugs. However, the prediction of an 

ACP predictor is merely speculative. Laboratory experiments would still be required to 

confirm whether a peptide sequence possesses anticancer activity. 

The results revealed that combining the PC6 encoding method and deep learning model 

could efficiently predict ACPs. The PC6 encoding method could exactly preserve the 

physicochemical properties of amino acids from original peptide sequences, and the 

deep learning model could learn these preserved features. In addition, with an increase 

in the number of peptide sequences confirmed as ACPs, we could build a predictor that 

exhibited more favorable performance and higher accuracy than other state-of-the-art 

ACP predictors. AI4ACP is a user-friendly web-based ACP predictor, and users can use 
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this tool to detect whether the query sequence is an ACP. This tool can be beneficial for 

drug development for cancer treatment. AI4ACP will be continuously updated once 

new ACPs are discovered in the future. Besides, the deep learning model is available at 

https://github.com/yysun0116/AI4ACP. 

 

Abbreviations 
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List of Figure Legends  

Fig. 1 Histogram of the length of ACPs. 

Fig. 2 Positive data collection and division process. 

Fig. 3 Negative data collection and division process. 

Fig. 4 PC6 protein-encoding method. A padded ACP is transformed into a 50 ൈ 6 

matrix. 

Fig. 5 Model architecture in this study. After PC6 encoding, protein sequences go 

through every layer in this model. 

Fig. 6 AI4ACP website. A) Web portal of AI4ACP for sequence submission in FASTA. 

B) Output of ACP activity for each submitted sequence with a prediction score. 

C) A piechart presenting the prediction of the whole submission. Moreover, the 

submission with files generated during the prediction.  

Fig. 7 Venn diagram of the positive data sets. 
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Table 1. Comparison of the composition of three data sets. 

Dataset Positive set Negative set 

Main set  

(𝑷𝟖𝟔𝟏 ൅ 𝑵𝟖𝟔𝟏) 

Training set 689 ACPs 689 AMPs 

Testing set 172 ACPs 172 AMPs 

Alternative set 

(𝑷𝟗𝟕𝟎 ൅ 𝑵𝟗𝟕𝟎) 

Training set 776 ACPs 776 peptides from Swiss-Prot 

Testing set 194 ACPs 194 peptides from Swiss-Prot 

New collection 

(𝑷𝟐𝟏𝟐𝟒 ൅ 𝑵𝟐𝟏𝟐𝟒) 

Training set 1912 ACPs 
956 peptides from UniProt + 956 

randomly generated sequences 

Testing set 212 ACPs 
106 peptides from UniProt + 106 

randomly generated sequences 
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Table 2. Comparison of ACP predictors trained and tested with the main data set. 

Results were obtained from the published findings of AntiCP2.0 and ACPred. 

Predictors Methods Ac Sn Sp MCC 

AntiCP SVM 0.506 1.000 0.012 0.070 

iACP SVM 0.551 0.779 0.322 0.110 

ACPred SVM 0.535 0.856 0.214 0.090 

PEPred-Suite 
ensemble 

approach 
0.535 0.331 0.738 0.080 

ACPred-FL 
ensemble 

approach 
0.448 0.671 0.225 -0.120 

ACPred-Fuse RF 0.689 0.692 0.686 0.380 

AntiCP_2.0 ETree 0.754 0.775 0.734 0.510 

iACP-FSCM SVM 0.825 0.726 0.903 0.646 

AI4ACP CNN 0.718 0.802 0.633 0.442 
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Table 3. Comparison of ACP predictors trained and tested using the alternative data 

set. Results were obtained from the published findings of AntiCP2.0 and 

ACPred. 

Predictors Classifier Ac Sn Sp MCC 

AntiCP SVM 0.900 0.897 0.902 0.800 

iACP SVM 0.776 0.784 0.768 0.550 

ACPred SVM 0.853 0.871 0.835 0.710 

PEPred-Suite 
ensemble 

approach 
0.575 0.402 0.747 0.160 

ACPred-FL 
ensemble 

approach 
0.438 0.602 0.256 -0.150 

ACPred-Fuse RF 0.789 0.644 0.933 0.600 

AntiCP_2.0 ETree 0.920 0.923 0.918 0.840 

iACP-FSCM SVM 0.889 0.876 0.902 0.779 

AI4ACP CNN 0.894 0.871 0.918 0.790 
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Table 4. Comparison of ACP predictors tested using the testing set of the new collection. 

Predictors Classifier Training set Ac Sp Sn MCC 

AntiCP2.0 ETree Alternative set 0.792 0.717 0.868 0.592 

AI4ACP CNN Alternative set 0.802 0.750 0.854 0.607 

AI4ACP CNN New collection 0.913 0.925 0.901 0.826 
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Fig. 1 Histogram of the length of ACPs. 
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Fig. 2 Positive data collection and division process. 
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Fig. 3 Negative data collection and division process. 
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Fig. 4 PC6 protein-encoding method. A padded ACP is transformed into a 50 6 matrix. 
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Fig. 5 Model architecture in this study. After PC6 encoding, protein sequences go through every layer in this model. 
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Fig. 6 AI4ACP website. A) Web portal of AI4ACP for sequence submission in FASTA. B) Output of ACP activity for each submitted sequence 

with a prediction score. C) A pie chart presenting the prediction of the whole submission. Moreover, the submission with files generated 

during the prediction.  
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Fig. 7 Venn diagram of the positive data sets. 
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