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ABSTRACT

Recent efforts to sequence the genomes of thousands of matched normal-tumor

samples have led to the identification of millions of somatic mutations, the major-

ity of which are non-coding. Most of these mutations are believed to be passengers,

but a small number of non-coding mutations could contribute to tumor initiation

or progression, e.g. by leading to dysregulation of gene expression. Efforts to iden-

tify putative regulatory drivers rely primarily on information about the recurrence

of mutations across tumor samples. However, in regulatory regions of the genome,

individual mutations are rarely seen in more than one donor. Instead of using re-

currence information, here we present a method to identify putative regulatory

driver mutations based on the magnitude of their effects on transcription factor-

DNA binding. For each gene, we integrate the effects of mutations across all its

regulatory regions, and we ask whether these effects are larger than expected by

chance, given the mutation spectra observed in regulatory DNA in the cohort of

interest. We applied our approach to analyze mutations in a liver cancer data set

with ample somatic mutation and gene expression data available. By combining

the effects of mutations across all regulatory regions of each gene, we identified

dozens of genes whose regulation in tumor cells is likely to be significantly per-

turbed by non-coding mutations. Overall, our results show that focusing on the

functional effects of non-coding mutations, rather than their recurrence, has the

potential to identify putative regulatory drivers and the genes they dysregulate

in tumor cells.
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INTRODUCTION

Studies of somatic mutations in cancer genomes are generally focused on mutations that alter the

amino acid sequences of protein-coding genes. However, whole-genome sequencing of human tumors

has revealed that the vast majority of somatic mutations in cancer are non-coding (ICGC/TCGA

Pan-Cancer Analysis of Whole Genomes Consortium 2020), suggesting that they could play a role

in cancer initiation and development. Tumorigenesis is thought to be due to the accumulation of

multiple driver mutations that confer a growth advantage to the tumor cells; some of these driver

mutations may be non-coding (Khurana et al. 2016). But only a small proportion of the mutations

present in cancer cells are drivers, so it is important to accurately identify them and distinguish

them from the much larger number of passenger mutations (Elliott and Larsson 2021).

Given that driver mutations are expected to be under positive selection, their identification

is generally based on patterns of recurrence among tumor samples. Several recent studies have

attempted to discover non-coding driver mutations in regulatory DNA sites using recurrence in-

formation (e.g. Lochovsky et al. 2015, 2018; Rheinbay et al. 2017; Weinhold et al. 2014). Such

studies usually involve the identification of genomic regions with high mutational frequency (i.e.

hotspots) by comparing the mutation rate within a DNA window to a background distribution.

However, it is generally challenging to precisely estimate the background mutation rate in small

genomic regions, given the heterogeneity across different patients and across the genome (Lawrence

et al. 2013). A recent meta-analysis of methods for predicting regulatory driver mutations reported

that hotspot-based methods can generate large sets of candidate drivers, many of which are false

positives (Rheinbay et al. 2020). To narrow down the list of candidates, one can also incorporate

information on the functional impacts of putative non-coding driver mutations, in particular their

effect on transcription factor (TF) binding. One of the most widely used approaches to prioritize

mutations in regulatory regions involves the identification of TF binding sites created or disrupted

by the mutations, which can be predicted using position weight matrices (PWMs) and motif pre-

diction algorithms (Link et al. 2018; Shen et al. 2020). However, such methods are limited by the

high false positive and false negative rates of binding site prediction algorithms.

In addition, Rheinbay et al. (Rheinbay et al. 2020) have recently reported that non-coding

regulatory driver mutations are much less frequent than protein-coding drivers, with the only

notable exception being driver mutations in the TERT gene promoter (Horn et al. 2013; Huang

et al. 2013). Moreover, some non-coding drivers identified in previous studies were found to be

the result of poorly-understood localized hypermutation processes such as mutations originating

from differential DNA damage (Buisson et al. 2019) or differential DNA repair (Mas-Ponte and

Supek 2020; Sabarinathan et al. 2016; Perera et al. 2016). On the other hand, recent studies of

cancer drivers have shown that mutations do not have to be highly recurrent in order to be true

drivers (Kim et al. 2016); in fact, even mutations that occur in individual tumor samples can drive

tumorigenesis.

Here, we describe a new method for analyzing non-coding cancer mutations in regulatory ge-

nomic regions (i.e. promoters and enhancers) with the goal of prioritizing mutations based on their
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effects on TF binding. Unlike previous methods for prioritizing putative non-coding drivers, our

method does not rely on the recurrence of mutations across tumor samples. Instead, we consider

mutations to be potentially ‘significant’ if they lead to larger changes in TF binding affinity than

expected by chance in that particular genomic region. Thus, the magnitude of the mutations’

effects, rather than their recurrence, is the basis for prioritizing mutations and regulatory regions

for further studies.

To predict the quantitative effects of non-coding variants on TF binding we use QBiC-Pred (Mar-

tin et al. 2019), a computational method based on regression models of TF-DNA binding specificity

trained on high-throughput in vitro data (Zhao et al. 2017). We focus on single-nucleotide muta-

tions, since they are the dominant type of somatic mutation identified in cancer genomes (Khurana

et al. 2016). Importantly, our method links enhancers and promoters to the genes they are likely to

regulate, and it combines evidence from all regulatory regions of each gene in order to infer whether

a gene is potentially dysregulated due to non-coding mutations. Finally, we use gene expression

data from donors with versus without mutations in promoters and enhancers in order to validate

that our method prioritizes biologically relevant mutations and regulatory regions.

METHODS

ICGC simple somatic mutations and gene expression data

To develop and test our new method for prioritizing putative regulatory driver mutations, we

used the Liver Cancer-RIKEN, Japan (LIRI-JP) project from the International Cancer Genome

Consortium (ICGC) (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium 2020).

We chose this project because it has a large number of donors with whole-genome simple somatic

mutation (SSM) data (258 donors), as well as gene expression data (RNA-seq) for 230 out of the

258 donors with SSM data. The study reported a total of ∼3.8 million mutations, most of which

are single nucleotide mutations (∼3.5 million). We used these mutations in our analyses.

Promoter and enhancer data

We focused our analyses on mutations within promoter and enhancer regions, as TF binding sites

are located in these regions. We defined promoters as the genomic sequences within +/- 1000 bp

of each RefSeq (O’Leary et al. 2016) transcription start site (TSS), excluding any RefSeq exon

sequences. We focused on promoters of protein-coding genes, using only TSSs that map to genes

within the HUGO gene nomenclature (HGNC) (Tweedie et al. 2021). These criteria resulted in a

set of 21,543 promoters.

For enhancers, we used the experimentally determined enhancers from the FANTOM5 project

(Andersson et al. 2014; Lizio et al. 2015), which are frequently used in studies of non-coding

mutations (e.g. Weinhold et al. 2014; Khurana et al. 2016). Importantly, the FANTOM consortium

provides information about the linkage between enhancers and associated TSSs, which is critical
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for being able to connect our enhancer results to gene expression data. After removing enhancers

that overlapped with promoter regions, we obtained a total of 41,254 enhancers.

We further filtered the 21,543 promoters and the 41,254 enhancers to keep only those that

contain mutations. Since most enhancers are hundreds of base pairs long (median=254bp) and

promoters are ∼2,000 bp, the majority of enhancers and a fair number of promoters do not contain

any mutations (Figure S1). Therefore, after removing these regulatory regions without mutations,

we obtained a set of 12,612 promoters and 9,018 enhancers with mutations in the LIRI-JP study.

Defining the effects of mutations on TF binding, and the significance of these

effects

We use TF binding changes to prioritize mutations that might act as drivers within each regulatory

region (enhancer or promoter). For each region, we ask whether the mutations detected in that

region lead to larger TF binding changes than expected by chance, i.e. according to a background

model of random mutations (Figure 1A). To assess the effect of non-coding mutations on TF-

DNA binding we use QBiC-Pred (Martin et al. 2019), a method we recently developed to quantify

TF binding changes based on regression models trained on high-throughput in vitro binding data.

While other binding specificity models can be used to predict the effects of mutations on TF binding,

here we use QBiC-Pred because it performed better than methods based on position weight matrix

or deep learning models of specificity (Martin et al. 2019; Zhao et al. 2017).

For each mutation of interest, QBiC-Pred reports its predicted effect on the binding specificity

of 582 human TFs, based on models derived from 667 universal protein binding microarray (PBM)

data sets. The effect of a mutation m on TF T is reported in terms of the difference (∆m) in the

logarithm of the PBM binding intensity signal for the mutated sequence relative to the wild-type

sequence according to the binding model for TF T , as described in detail in (Martin et al. 2019).

Positive values represent increased TF binding, while negative values represent decreased binding.

Although here we focus on binding changes predicted with QBiC-Pred, our approach can directly

use other binding specificity models, as long as they accurately reflect the quantitative TF binding

changes induced by DNA mutations.

For a transcription factor T and a regulatory region R that has one or more mutations in the

data set of interest, we compute the largest effect on TF binding (either positive or negative) over

all mutations in R (∆R,T , Figure 1A). Next, to determine if this effect is significant, we compare

it against the distribution of effects expected by chance, according to a background model that

takes into account: 1) the mutation spectra in that particular cohort, and 2) the particular DNA

sequence of regulatory region R. Conceptually, if there are k total mutations in region R (k = 3

in Figure 1A), the full distribution of possible binding effects will be computed taking into account

all possible sets of k mutations across the region. Each set i of k mutations will have a particular

effect on TF binding (Di) and will occur with a particular probability (Pi) (Figure 1B). The effect

Di is computed by taking the largest effect over the k mutations, similarly to the case of the real

mutations. The probability Pi of a particular set of k mutations is computed as described below.
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Figure 1. TF-centric approach to prioritize genes based on mutations in their regu-
latory regions. (A) For each regulatory region R and TF T , we aggregate the mutations across
all patients in the cohort of interest, and compute the largest effect (either positive or negative)
across all mutations. This effect, ∆R,T , is then compared to the distribution of effects computed
for all possible sets of k mutations, where k is the number of actual mutations observed in region
R (here, k = 3). (B) For any set i of k mutations, we compute the binding change with the
largest magnitude among these k mutations (Di), and the probability of that set of k mutations
(Pi), as described in Methods. (C) Comparison of p-values computed for mutation effects on MYC
binding, for 9,018 enhancers. Plot shows the high correlation between p-values calculated using the
analytical versus the simulation-based approach. (D) For genes with multiple regulatory regions,
we compute the combined significance of the TF binding changes for TF T across all regions Ri by
combining their p-values pRi,T using Liptak’s method, also known as weighted Stouffer’s method,
as described in Methods. We then use the combined p-values, adjusted for multiple hypothesis
testing, to rank genes according to the smallest p-value across all TFs.
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Using all single-nucleotide somatic mutations reported in the LIRI-JP study, we computed the

mutation spectra for this cohort, analyzing mutations in their trinucleotide contexts (Alexandrov

et al. 2020). As in previous studies (Alexandrov et al. 2020; Jusakul et al. 2017), we consider 6

mutation types (C>A,C>G,C>T,T>A,T>C,T>G) each in 16 possible contexts, based on the nu-

cleotide right before and right after the mutated position. Mutations and their reverse complements

(e.g. ATG>ACG and CAT>CGT) are counted together. For each trinucleotide, we estimate the

probability of mutating the central base by taking the ratio between how many times that base was

mutated in that context and how many times the wild-type trinucleotide occurs in regulatory re-

gions (enhancers or promoters) across all normal samples. For example, the probability of mutating

T in an ATG context in enhancers is:

P (t ̸= w|w = ATG) =
# of ATG to AVG mutations in enhancers

# of ATG in enhancers in all normal samples
(1)

where t is the trinucleotide in the tumor sample, w is the trinucleotide in the corresponding normal

sample, and V is the IUPAC code for {A, C, G} (i.e. not T). We calculate mutation probabilities

separately for enhancers versus promoters, since they may be affected differently by mutagenic

processes; indeed, we saw significant differences between the mutation spectra at enhancers versus

promoters (Figure S2).

When the central nucleotide of a trimer is mutated, i.e. t ̸= w, there are three possible mu-

tations, e.g. ATG to AAG, ACG, or AGG. We estimated the probability of each mutation type

(e.g. ATG to AAG), given that a mutation exists at the central nucleotide, as the number of

times we observed that particular mutation type divided by the total number of times the central

nucleotide was mutated in that context, in the regulatory regions of interest. For example, focusing

on enhancer regions, we compute:

P (t = AAG|w = ATG,w ̸= t) =
# of ATG to AAG mutations in enhancers

# of ATG to AVG mutations in enhancers
(2)

Next, to calculate the probability of a particular mutation in a particular trinucleotide context,

we multiply the probability that the trinucleotide is mutated with the probability of the specific

mutation, e.g.:

P (t = AAG|w = ATG) = P (w ̸= t|w = ATG)× P (t = AAG|w = ATG,w ̸= t) (3)

which can be simplified to the number of ATG to AAG mutations in enhancers divided by the

total number of ATG trinucleotides in enhancers across all normal samples.

We note that the k mutations aggregated over region R are typically from different samples

in our cohort, and can thus be considered independent. Therefore, for a set i of k mutations we

compute the overall probability Pi of that particular set by multiplying the individual probabilities

P (t|w) for each of the k mutations, as illustrated in Figure 1B. Finally, to assess the significance

of ∆R,T , we compare this value against the distribution of effects for random sets of k mutations

in region R, with the p-values being computed efficiently from Pi and Di values using either an
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analytical or a simulation-based approach, as described below.

Analytical and simulation-based approaches to compute the significance of mu-

tation effects on TF binding

Our simulation-based approach uses the mutation probabilities described above to repeatedly sam-

ple mutations in the regulatory region of interest. Let us consider a regulatory region R of length

L that contains k mutations across all patients in our cohort. Since there are 3 possible mutations

for each position in R, we have a total of 3L mutations to consider in this region. At each iteration

of our simulation-based approach, we randomly sample k out of the 3L possible mutations, with

replacement. We do the sampling with replacement because the exact same mutation can occur in

two or more patients. For this sampling process, the probability of selecting a particular set i of k

mutations (Pi) is computed by multiplying the probabilities of the k mutations (Figure 1B). The

TF binding change for this set of mutations (Di) is computed by taking the maximum effect over

the k randomly chosen mutations, as described above and illustrated in Figure 1A,B. By repeatedly

sampling sets of k mutations using this procedure, we can approximate the distribution of muta-

tion effects on TF binding (Figure 1A), and use it to compute empirical p-values for ∆R,T , taking

the sign of the effect into account. This simulation-based approach is simple to understand and

implement. However, simulations are time consuming and unfeasible for generating background

distributions of mutations effects for all regulatory regions (totalling 12,612 promoters and 9,018

enhancers) and all TFs (totalling 582 TFs with 667 binding models available).

Alternatively, we can use an analytical approach to directly compute the p-value for the effect

∆R,T . Conceptually, the p-value of interest is the probability of obtaining an effect on TF binding

at least as large as ∆R,T when we randomly choose k of the 3L possible mutations in the regulatory

region R. For simplicity, let us consider these effects in absolute value. For a set i of k mutations,

if at least one of the mutations leads to an absolute change in binding of TF T that is ≥ |∆R,T |,
then |Di| ≥ |∆R,T |. On the other hand, if all the k mutations lead to absolute binding changes

< |∆R,T |, then we have |Di| < |∆R,T |. Thus, focusing on the absolute values of the effects of

mutations on TF binding, we can compute our p-value of interest as:

P (|effect of set of k mutations| ≥ |∆R,T |) = 1− P (|effect of random set of k mutations| < |∆R,T |)

= 1−
∑

Sets i of k mutations
s.t.|Di|<|∆R,T |

Pi (4)

The total number of possible sets i of k mutations in regulatory region R is
(
3L+k−1

k

)
, which is

the number of possible unordered outcomes when sampling k out of 3L mutations with replacement.

Even when choosing only the sets for which all k mutations have absolute binding changes < |∆R,T |,
the number of possibilities can be very large and not feasible to compute explicitly. To overcome

this problem, we compute a vector π = (π1, π2, . . . , πl), 0 ≤ l < 3L, with the probabilities of all

individual mutations m in region R for which |∆m| < |∆R,T |. The sum in Equation 4 can then be
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written in terms of the vector π, as the sum of the all elements in the outer product of π with itself,

taken k times. For example, for k = 3, each element Pi in Equation 4 is an element of π ⊗ π ⊗ π.

Importantly, we do not need to compute this outer product explicitly, as we are only interested in

the sum of all elements in the product, which can be written as (π1 + π2 + . . . + πl)
k. Thus, our

p-value of interest can be calculated as:

P (|effect of a set of k mutations| ≥ |∆R,T |) = 1−

 l∑
j=1

πj

k

(5)

Finally, since we want to take into account the directionality of the effect of mutations on TF

binding, i.e. decreased binding (∆R,T < 0) or increased binding (∆R,T > 0), we calculate the

one-sided p-value as pR,T = (1− (
∑l

j=1 πj)
k)/2.

We confirmed that the results from our analytical and simulation-based approaches agree with

each other (Figure 1C). For this test, we randomly picked one of the TFs, MYC, and we calcu-

lated the p-values for changes in MYC binding specificity for all 9018 mutated enhancers, using

a simulation process with one million iterations. Since the simulation-based approach is more

time consuming and has limited precision in estimating the p-values of interest (due to the limited

number of iterations), we used the analytical approach for all subsequent analyses.

Integrating results across all regulatory regions of a gene

Genes encoded in the human genome typically have multiple regulatory regions (enhancers and

promoters); mutations in either of these regions could affect a gene’s expression. Thus, it is of

interest to integrate the effects of mutations across all regulatory regions of each gene. As detailed

above, we define gene promoters based on TSS coordinates in the RefSeq database (O’Leary et al.

2016), and we leverage TSS-enhancer links from the FANTOM consortium (Lizio et al. 2015),

considering all the cell types and tissues with available data. In other words, if a genomic region

has been identified as an enhancer for gene G in one tissue, then we consider that region as part of

the regulatory landscape of gene G, in order to be as inclusive as possible. On average, each TSS is

associated with 4.9 enhancers according to the FANTOM data. For genes that have multiple TSSs

in RefSeq, we consider each TSS separately. Thus, some genes may appear multiple times in our

final results, with different p-values that correspond to its different TSSs.

Given a transcription factor T and a gene G with r regulatory regions containing at least one

mutation in our cohort of interest, we calculate the significance pRi,T of the effects (∆Ri,T ) of

mutations in each regulatory region Ri on the binding specificity of TF T . Next, we want to

integrate these effects over all r regulatory regions by combining their p-values. Intuitively, our

null hypothesis (H0) is that the effects for all regulatory regions (∆Ri,T ) come simply from the

background distribution of effects due to random mutations. The alternative hypothesis (H1) is

that at least one regulatory region of gene G has an effect ∆Ri,T significantly larger than expected

by chance according to the background model of mutations in regulatory regions. Importantly, as
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the promoter and enhancer regions used in our analysis do not overlap, we can consider the p-values

pRi,T as coming from independent tests.

One approach to combine the r p-values computed for gene G is Fisher’s method (Fisher 1934),

which is often used in meta-analyses, including analyses of non-coding mutations in cancer (Rhein-

bay et al. 2020; Lawrence et al. 2014; Araya et al. 2016). However, Fisher’s method would not take

into account the fact that different regulatory regions have different lengths and different proba-

bilities of harboring mutations. If a regulatory region Ri is very long, then the number of possible

mutations, and thus the number of possible effects on TF T , is also large. In comparison, a shorter

regulatory region, Rj , will have fewer possible mutations and fewer possible effects on TF T . If the

two regions have the same p-value, i.e. pRi,T = pRj ,T , we might still consider, intuitively, that the

mutation effect in Ri is more significant because for Ri it would be easier to achieve a large effect

on TF binding, since more mutations can occur in Ri than Rj . This is similar to meta-analyses of

studies with very different sample sizes, where a weighted version of Stouffer’s method, developed

by Liptak (Lipták 1958) and also known as the weighted Z-method or weighted Z-test, was found

to be superior to Fisher’s method when combining p-values from independent tests (Whitlock 2005;

Zaykin 2011).

Here, we use Liptak’s method (Lipták 1958) to combine the p-values of all regulatory regions of

a gene, with the weights computed based on the mutations probabilities in each region, combined

using Shannon’s entropy. Specifically, for a regulatory region R of length L we compute its weight

as wR = −
∑3L

m=1 pmlog(pm), where pm is the probability of the mth possible mutation, computed

according to the trinucleotide centered at that position (see Figure 1B). We note that weights

computed in this manner are overall correlated with the length of the regulatory regions, but avoid

giving an out-sized importance to very long regions (Figure S3). Thus, for TF T and gene G with r

regulatory regions, we compute the weighted test statistic
∑r

i=1wRizRi,T , where zRi,T = Φ−1(pRi,T )

and Φ−1 is the inverse of the standard normal cumulative distribution function, as initially proposed

by Liptak (Lipták 1958; van Zwet and Oosterhoff 1967). Under the null hypothesis (H0), this test

statistic follows a normal distribution N(0,
∑r

i=1wRi) for any choice of weights (van Zwet and

Oosterhoff 1967; Heard and Rubin-Delanchy 2018). This allows us to compute the p-value of the

combined test, PG,T , as follows:

ZG,T =

∑r
i=1wRizRi,T√∑r

i=1w
2
Ri

and PG,T = 2× (1− Φ(|ZG,T |)) (6)

where Φ is standard normal cumulative distribution function. Finally, we used the Benjamini-

Hochberg correction (Hochberg 1988) to adjust for multiple hypothesis testing across all genes and

all TFs. We then ranked genes according to the smallest p-value across all TFs, and we analyzed

the top genes for differences in gene expression. In total, we analyzed 5,336 genes with mutations

in enhancers, 11,721 genes with mutations in promoters, and 13,982 genes with mutations in at

least one regulatory region (enhancer or promoter).
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RESULTS

Integrated analysis across regulatory regions identifies 54 genes with significant

TF binding changes due to mutations in regulatory DNA

Using the single nucleotide mutation data from the LIRI-JP study, we identified 13,982 genes with

mutations in either the promoter or the enhancer regions. For each of these genes, we analyzed all

582 human TFs for which QBiC-Pred models are available (Martin et al. 2019), and we computed

the smallest p-value PG,T across all TFs, adjusted for multiple testing, as described in the Methods

section (Figure 1). We chose to take the minimum p-value, rather than integrate the p-values across

factors, because TF binding specificities are oftentimes highly correlated, especially for closely-

related paralogous TFs. Next, we ranked genes according to the smallest adjusted p-value across

all TFs, and we identified 54 genes for which this p-value was < 0.05 (Figure 2, Table S1). In other

words, for each of these 54 genes, our analysis revealed at least one TF for which the mutations in

the regulatory regions of the gene have larger effects on TF binding specificity than expected by

chance based on the mutation spectra in our cohort.

To determine if these 54 prioritized genes are potentially relevant in cancer, we first asked

whether this set is enriched for cancer prognostic genes. Using pathology data from The Human

Protein Atlas (Uhlen et al. 2017), we found that 33 out of the 54 prioritized genes are indeed

prognostic markers in at least one cancer type (Figure 2B). This represents a significant enrichment

(p = 0.095, Fisher’s exact test) when compared to genes ranked in the bottom half of our ranked

list. In addition, the top gene on our prioritized list (FDPS), as well as four other genes on the list

(CENPA, PEX26, FXYD6, and TM4SF18) are prognostic markers in liver cancer.

We performed similar analyses focusing only on promoters or only on enhancer regions. For the

enhancer-only analysis, we identified 5 significant genes (at a minimum adjusted p-value cutoff of

0.05) among the 5,336 genes with enhancer mutations (Table S1). For the promoter-only analysis,

we identified 73 significant genes among the 11,721 genes with promoter mutations (Table S1),

none of which were also prioritized in the enhancer-only analysis. These results are not surprising,

given that some genes only have either enhancer or promoter mutations, but not both. In addition,

here we use a stringent set of enhancers, as reported by the FANTOM consortium, in order to

limit the number of false positive enhancer calls; however, there are likely a large number of false

negatives, i.e. enhancers that are missing from our data. Among the 54 genes identified in the

combined analysis of promoters and enhancers, 4 of them are also prioritized in the enhancer-only

analysis, and 47 of them are prioritized in the promoter-only analysis (Figure S4). Three genes,

ETS1, CELF6, and PALT1 were identified only in the combined analysis (Figure 2B).

We also found a significant enrichment of cancer prognostic genes in the set of 73 genes priori-

tized in the promoter-only analysis (44 of the 73 prioritized genes are prognostic markers, Fisher’s

exact test p = 0.084). For the enhancer-only analysis, we found that 3 of the 5 prioritized genes

are prognostic markers. However, given the small number of genes prioritized in this analysis, the

enrichment in prognostic markers was not significant.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.01.31.478493doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478493
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

. . .

. . .

. . .

. . .

-lo
g(

m
in

_a
dj

us
te

d_
p)

Not prognostic

Prognostic

Figure 2. Genes prioritized based on mutations in their regulatory regions. (A) Top
genes with the smallest adjusted p-values. The table shows each gene’s name, the number of
mutations in all its regulatory regions, the minimum p-value after adjusting for multiple testing,
and the TF with the most significant binding changes for that gene. (B) Barplot showing the top
54 prioritized genes from our combined promoter and enhancer analysis. Y-axis shows the negative
logarithm of the minimum adjusted p-value. Cancer prognostic markers, as reported in The Human
Protein Atlas, are shown in yellow.

Genes with significant mutations in their regulatory regions show large expres-

sion differences in mutated versus non-mutated samples

For the 54 genes prioritized based on mutations in enhancers and promoters, we also asked whether

the mutations are likely to affect gene expression. To test this, we leveraged the gene expression

data (EXP-S) available in ICGC for our cohort of interest, LIRI-JP (Methods). For each gene, we

compared its expression level (i.e. normalized read counts, or normalized TPM values) for donors

with versus without mutations in the regulatory regions of that gene, and we used a Wilcoxon

rank-sum test to assess the significance of the observed gene expression differences. Our analysis

revealed that the difference in gene expression between donors with vs. without mutations in

regulatory regions are much more significant for the set of 54 prioritized gene (i.e. those with

minimum adjusted Liptak’s test p < 0.05) compared to a control set of genes (i.e. those with

p ≥ 0.1) (Figure 3A). Gene with intermediate p-values (0.05 ≤ p < 0.1) also showed significant

gene expression differences, although less so than the top 54 prioritized genes (Figure 3A).

We note that gene expression analyses could not be performed for all genes, as for some genes

with mutations in regulatory regions there was no expression data available from the donors where

the mutations were observed. Among the 54 prioritized genes, 43 genes had expression data for

one or more donors with mutations in enhancers or promoters, and in most of those cases the

number of such donors was one, making it difficult to reach statistical significance. Nevertheless,

we found significant gene expression differences for 8 of the 43 prioritized genes with available data:

TM4SF18, CENPA, CTNNA3, DPM3, C1R, CEBPD, ZNF561 and ATXN3 (Figure 3B-H).

Among these genes, TM4SF18 and CENPA (Figure 3B,C) are prognostic markers in liver can-

cers according to The Human Protein Atlas (Uhlen et al. 2017). In addition, CENPA has been
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Figure 3. Analysis of differences in gene expression for genes with mutations in en-
hancer and promoter regions, comparing donors with vs. without mutations in regu-
latory DNA. (A) Genes prioritized by our analysis (minimum adjusted Liptak’s test p < 0.05)
have larger expression differences due to mutations in regulatory regions compared to intermediate
(0.05 ≤ p ≤ 0.1) and control (p ≥ 0.1) genes. To represent the expression differences (y-axis), we
show the negative logarithm of the Wilcoxon rank-sum test p-values between the gene’s expres-
sion level in the two donor groups, i.e. with vs. without mutations in regulatory regions. (B-H)
Boxplots showing the 8 prioritized genes with significant gene expression differences. The y-axes
show the gene expression levels, as normalized read counts, as reported in ICGC. P-values are
calculated using a two-sided Wilcoxon rank-sum test, with ** denoting p < 0.05 and * denoting
0.05 ≤ p < 0.1.

shown to be aberrantly expressed in hepatocellular carcinomas (HCCs) compared to non-tumor

tissues (Li et al. 2011). Another one of the significant genes, CTNNA3, is a tumor suppressor in

HCCs (He et al. 2016); according to our analysis, its expression is very low in the only donor with

mutations in the regulatory regions of CTNNA3 (Figure 3D), which is consistent with the gene’s

role as a tumor suppressor. Gene DPM3 is part of the DPM family, whose members were found

to be significantly correlated with shorter overall survival in liver cancer patients (Li et al. 2020);

in our analysis, the only one donor with mutations in the regulatory regions of DPM3 had a very

high DPM3 expression level (Figure 3E). Genes C1R, CEBPD, and ZNF561 (Figure 3F,G,H) are

prognostic markers in renal cancers, which have been shown to metastasize to liver (Bianchi et al.

2012).

The remaining prioritized gene with significant expression differences, ATXN3 (Figure 3I), was

interestingly not among the genes characterized as prognostic markers in cancer. ATXN3 is a

member of the deubiquitinating enzymes family (DUBs). These enzymes catalyze the removal

of ubiquitin from protein substrates and regulate several aspects of protein fate. ATXN3 was

found to play important roles in several tumours, for example by deubiquitinating PTEN in lung

cancer (Sacco et al. 2014) and KLF4 in breast cancer (Zou et al. 2019), although a role for ATXN3 in

liver cancer has not yet been reported. According to our analysis, mutations in the ATXN3 enhancer

regions result in significant gain-of-binding mutations for TF RUNX1 (Figure 4), a protein involved
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Figure 4. Mutations in the ATXN3 enhancers that alter the binding specificity of TF
RUNX1. Out of 8 patients with ATXN3 regulatory mutations, 5 patients have significant (p < 0.1,
one-sided Wilcoxon rank-sum test) mutations in enhancers which result in the gain of binding of
TF RUNX1. Two enhancers where RUNX1 have the most significant binding changes among
all TFs are shown. Donors with significant gain-of-binding RUNX1 mutations (orange boxplot)
have higher ATXN3 expression compared to donors without ATXN3 regulatory mutations (grey
boxplot), p < 0.011 two-sided Wilcoxon rank-sum test.

in tumour initiation and development in hematopoietic cells and in several tissues (Taniuchi et al.

2012; Otálora-Otálora et al. 2019; Lie-A-Ling et al. 2020). Among the eight donors with mutations

in ATXN3 enhancers, five have mutations that lead to significant changes in RUNX1 binding

specificity, and for these five donors the expression level of ATXN3 is significantly higher than for

all other donors (p = 0.011, Wilcoxon rank-sum test), despite the small sample size. Overall, these

results show that our method is able to identify and prioritize relevant genes that are likely to be

significantly affected by mutations in their regulatory regions.

We also analyzed the expression levels of genes prioritized in the promoter-only and enhancer-

only analyses. For the 5 genes prioritized according to mutations in enhancer regions, we found more

significant expression differences (between donors with vs. without regulatory mutations) than in

the control gene set (p = 0.03, one-sided Wilcoxon rank-sum test; Figure S6B). Interestingly, the

set of 73 genes prioritized in the promoter-only analysis (Figure S5) did not differ significantly

from a control set of genes (p = 0.231; Figure S6A). Of these 73 genes, 47 were also prioritized

in the combined analysis of promoters and enhancers, while the remaining 26 genes appeared only

in the promoter-only analysis, suggesting that the promoter-only analysis may be more prone to

false positive, i.e. prone to prioritizing genes for which promoter mutations do not correspond to

changes in gene expression. To further investigate this, we focused on the 26 genes, and found

that only one of these genes (DDX21) has significant expression differences between donors with

vs. without mutations (Figure S6C). This suggests that integrating regulatory mutations over

enhancers and promoters, rather than promoters alone, has the best potential to prioritize genes

that are dysregulated in cancer cells, likely due to non-coding mutations in the regulatory regions

of the genes.
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DISCUSSION

In summary, we developed a new approach to identify putative regulatory driver mutations in

cancer, based on quantitative predictions of the effects of single nucleotide variants on TF bind-

ing (Martin et al. 2019). Our method is orthogonal to existing tools (e.g. (Lochovsky et al. 2015,

2018; Rheinbay et al. 2017; Weinhold et al. 2014)), in that it does not require the putative driver

mutations to be highly recurrent; instead, we assess the significance of the mutations by testing

whether they cause larger TF binding changes than expected in the case of completely random

mutations. Using this approach, we identified 54 potentially dysregulated genes (Figure 2) by

prioritizing genes for which mutations in their enhancers or promoters lead to significant changes

in TF binding specificity. Our analyses show that these genes are enriched for cancer prognostic

markers, and they have higher differences in expression levels between donors with vs. without

mutations in regulatory regions, compared to control gene sets (Figure 3). We also linked the

potentially dysregulated genes with the TFs whose binding events are altered the most by putative

regulatory mutations, such as shown in the example of ATXN3 (Figure 4).

We note that our method can be applied to any somatic mutation data. Here, we used single

nucleotide mutations; however, our method can also be applied, with minor modifications, to small

indels. Furthermore, we expect the results of our method to improve as higher quality data is used

as input, including expanded sets of accurate TF-DNA specificity models, additional enhancer

regions and accurate enhancer-promoter mappings. In addition, our method can be adapted for

patient-level analyses. We note that current driver identification approaches combine mutations

from different patients to gain more statistical power to identify significant regulatory mutations.

However, a potential disadvantage of such approaches is that they may not work well on small

cohorts or on cohorts that are highly heterogeneous. For approaches that identify drivers based on

recurrence, it is impossible to run the analysis for individual patients. However, since our method

does not require the driver mutations to be recurrent, it can be applied to identify potentially

dysregulated genes for each patient, using our simulation-based approach, with minor modifications

to the resampling process. Briefly, instead of using sampling with replacement, we would sample

without replacement for patient-level analyses because a patient cannot have the same mutation

more than once. The patient-level analysis would need to be further refined so that it has more

coherent evidence to prioritize genes for follow-up experimental validations; however, it would

provide a very different perspective than the cohort-level approaches.

Overall, the TF-centric approach described here uses a distinctive pipeline to identify putative

regulatory driver mutations in cancer, by focusing on the magnitude of the effect of the mutations.

Our approach is orthogonal to existing methods and thus serves to complement existing tools and

resources for analyzing and prioritizing putative non-coding drivers (e.g. (Liu et al. 2021; Zhu et al.

2020; Zhang et al. 2018)). Our results show that most of the potentially dysregulated genes priori-

tized by our method either have large expression differences in donors with vs. without mutations,

or are cancer prognostic genes, or both. Experimental validations (such as tumorigenicity experi-

ments (Kim et al. 2016)) are needed to determine whether these genes actually contribute to cancer
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development. Nevertheless, our results suggest that regulatory mutations should be investigated

further, not just based on their recurrence, but also based on their functional effects, in order to

uncover dysregulated genes that may drive tumorigenesis.

DATA ACCESS

The R code used in this work is available in GitHub at https://github.com/jz132/cancer-mutations.
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