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Abstract

Background and Purpose: Chronic active multiple sclerosis (MS) lesions are characterized by a
paramagnetic rim at the edge of the lesion and are associated with increased disability in patients.
Quantitative susceptibility mapping (QSM) is an MRI technique that is sensitive to chronic active
lesions, termed rim+ lesions on the QSM. We present QSMRim-Net, a data imbalance-aware deep
neural network that fuses lesion-level radiomic and convolutional image features for automated
identification of rim+ lesions on QSM.

Methods: QSM and T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI of the
brain were collected at 3T for 172 MS patients. Rim+ lesions were manually annotated by two
human experts, followed by consensus from a third expert, for a total of 177 rim+ and 3986 rim
negative (rim-) lesions. Our automated rim+ detection algorithm, QSMRim-Net, consists of a two-
branch feature extraction network and a synthetic minority oversampling network to classify rim+
lesions. The first network branch is for image feature extraction from the QSM and T2-FLAIR,
and the second network branch is a fully connected network for QSM lesion-level radiomic feature
extraction. The oversampling network is designed to increase classification performance with
imbalanced data.

Results: On a lesion-level, in a five-fold cross validation framework, the proposed QSMRim-Net
detected rim+ lesions with a partial area under the receiver operating characteristic curve (pROC
AUC) of 0.760, where clinically relevant false positive rates of less than 0.1 were considered. The
method attained an area under the precision recall curve (PR AUC) of 0.704. QSMRim-Net out-
performed other state-of-the-art methods applied to the QSM on both pROC AUC and PR AUC.

On a subject-level, comparing the predicted rim+ lesion count and the human expert annotated
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count, QSMRim-Net achieved the lowest mean square error of 0.98 and the highest correlation of
0.89 (95% CI: 0.86, 0.92).
Conclusion: This study develops a novel automated deep neural network for rim+ MS lesion

identification using T2-FLAIR and QSM images.
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1. INTRODUCTION

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system,
characterized by lesions in the brain and spinal cord [1]. A particular type of multiple sclerosis
(MS) lesion, called a chronic active lesion, is characterized by an iron-enriched rim of activated
macrophages and microglia in histopathology studies [2-5]. Chronic active lesions are visible with
in-vivo susceptibility magnetic resonance imaging (MRI) techniques, where these lesions show a
paramagnetic rim [2, 4, 6-15] on the edge. The presence of chronic active multiple sclerosis lesions
is associated with a more severe disease course [14, 16-19] and there is currently much interest in
using these lesions as an imaging biomarker.

In studies of chronic active MS lesions on MRI, lesions are typically identified on the T2-
weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) image and then are determined to be
chronic active through visual inspection on susceptibility imaging. This process is time consuming
and prone to inter- and intra-rater variability [20, 21]. For these lesions to be further studied at a
large scale and translated into clinical practice, there is a great need for automated methods to
identify chronic active MS lesions.

Quantitative susceptibility mapping (QSM) is an MRI technique that provides in vivo
quantification of magnetic susceptibility changes related to iron deposition [22-24]. QSM
identifies chronic active MS lesions as lesions with a hyperintense rim [25-27], which are termed
QSM rim positive (rim+) lesions. We propose an automated method to identify QSM rim+ lesions,
QSMRim-Net, using QSM and T2-FLAIR images of the brain. Our method is a deep
convolutional neural network which consists of a two-branch network that fuses QSM and T2-
FLAIR imaging features derived from a deep residual network [28] with lesion-level radiomic

features from the QSM [29], In addition, a Synthetic Minority Oversampling TEchnique
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(SMOTE)-based oversampling network (DeepSMOTE) is developed to alleviate data imbalance
issue caused by the small number of rim+ lesions. This is the first method proposed in the literature
to identify rim+ lesions using QSM and the first method to fuse convolutional imaging features
with radiomic features. Furthermore, QSMRim-Net with DeepSMOTE is the first end-to-end deep
neural network that can be trained with online minority oversampling for rim+ lesion
classification.

Two previous methods have been developed to identify chronic active MS lesions on phase
imaging [30, 31]. RimNet [30] uses convolutional features, while APRL [49] uses radiomic
features. To put the performance of QSMRim-Net into context, we compare it to these two

methods applied to the QSM using both lesion-level and patient-level performance metrics.

2. MATERIALS AND METHODS

2.1 Dataset

2.1.1 MRI image acquisition and preprocessing

QSMRim-Net was evaluated on an MS imaging dataset collected at Weill Cornell (Table 1). The
dataset consists of 172 MS patients enrolled in an ongoing prospective database for MS research.
The database was approved by the local Institutional Review Board and written informed consent
was obtained from all patients prior to their entry into the database.

The imaging was performed on a 3T Magnetom Skyra scanner (Siemens Medical
Solutions, Malvern, PA, USA). The Siemens scanning protocol consisted of the following
sequences: 1) 3D sagittal T1-weighted (T1w) MPRAGE: Repetition Time (TR)/Echo Time
(TE)/Inversion Time (TI) = 2300/2.3/900 ms, flip angle (FA) = 8°, GRAPPA parallel imaging

factor (R) = 2, voxel size = 1.0 x 1.0 x 1.0 mm3; 2) 2D axial T2-weighted (T2w) turbo spin echo:
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TR/TE = 5840/93 ms, FA = 90°, turbo factor = 18, R = 2, number of signal averages (NSA) = 2,
voxel size = 0.5 X 0.5 x 3 mm3; 3) 3D sagittal fat-saturated T2w fluid attenuated inversion recovery
(T2-FLAIR) SPACE: TR/TE/TI = 8500/391/2500 ms, FA = 90°, turbo factor = 278, R = 4, voxel
size = 1.0 x 1.0 x 1.0 mm3. For axial 3D multi-echo GRE sequence for QSM: axial field of view
(FOV) =24 cm, TR/TE1/ATE =48.0/6.3/4.1 ms, number of TEs = 10, FA = 15°, R =2, voxel size
=0.75x0.93 x 3 mm3, scan time = 4.2 minutes. QSM images were reconstructed by MEDI-0 [32]
algorithm from multi-echo GRE data. T2-FLAIR images were then preprocessed using the FSL
toolbox [33]. We applied N4 inhomogeneity correction algorithm to the acquired images and

linearly co-registered T2-FLAIR images to the magnitude space of QSM.

2.1.2 Lesion segmentation and rim+ lesion annotation
T2-FLAIR lesion masks were created for all patients in the dataset. These masks were
obtained by segmenting the T2-FLAIR image using the LST-LPA algorithm in the LST toolbox

version 3.0.0 (www.statisticalmodelling.de/Ist.html) [34], followed by manual editing, and

finalized by the consensus of two expert raters. Confluent lesions may occur when pathologically
distinct lesions grow close to each other and form a large spatially connected lesion. These
confluent lesions in the dataset were identified, then broken up and labeled by a human expert.
After lesion segmentation and confluent lesion separation, a total of 4,163 individual lesions were
identified. Masks were further edited on the QSM image to ensure that these masks matched the
lesion on QSM. An overview of the annotation process is shown in Fig. 2.

Rim+ and rim- lesions were manually annotated by two human experts, who reviewed each
of the 4,163 T2-FLAIR lesions for rim status on the QSM. For lesions with disagreement, a final

consensus was obtained from a third human expert. After the rim lesion annotation, 177 lesions
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were identified as rim+ lesions and 3,986 lesions were identified as rim- lesions. An overview of
the annotation process is shown in Fig. 2. and the distribution of rim+ lesions per patient is shown

in Fig. 3.

2.2 Methodology

2.2.1 Network architecture

QSMRim-Net is a two-branch network consisting of four parts: a convolutional network for image
feature extraction, a fully connected network for radiomic feature extraction, a SMOTE-based
oversampling network for synthesizing rim+ features in the latent feature space, and a final
classifier that outputs the probability that a lesion is rim+ (see Fig. 4). For image feature extraction,
we use a deep residual network (ResNet) [28] with 18 layers as our backbone network. We
modified the convolutional kernels from 2D to 3D, used two input channels to accommodate the
QSM and T2-FLAIR images, and used two categories (rim+ and rim-) for the last linear layer. For
radiomic feature extraction, radiomic features [35, 36] were calculated on the QSM (described in
detail in the section below). The multi-layer perceptron (MLP) for radiomic feature extraction
consists of two fully connected layers. The first layer is a linear layer followed by a one-
dimensional batch normalization [37], a Swish activation function [38], and a dropout layer. The
second layer has the same structure as the first layer, except that it does not include a dropout layer.
To fuse the convolutional and radiomic features, we performed vector concatenation for feature
vectors from both the output of the residual network and the MLP and processed the new feature
vector with another fully connected layer (see Figs. 4 and 5). To alleviate the data class imbalance
issue, we further applied the DeepSMOTE network (described in detail in the section 2.2.3) to

oversample these latent features of rim+ lesions during the training phase.


https://doi.org/10.1101/2022.01.31.478482
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478482; this version posted February 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

2.2.2 Radiomic feature analysis

Radiomic features have been shown to be effective in many applications of medical image analysis
[40-43]. For QSMRim-Net, radiomic features were calculated over each lesion using the
pyradiomics package [44]. Specifically, we calculated four different types of radiomic features on
the input image: 1) first-order statistics such as harmonic mean and geometric mean, 2) gray-level
co-occurrence matrix (GLCM) statistics such as interquartile range and energy sum, 3) gray-level
run-length matrix (GLRLM) statistics such as run-percentage, and 4) geometric-based parameters
such as ratio of lesion surface to volume. In addition, Coiflet wavelet filters were applied to yield
the 8 decompositions of the input image and radiomic features were calculated on the wavelet
images. Wavelet filters were implemented with the PyWavelet package [45]. In total, 527 radiomic

features were calculated over each lesion on the QSM for our model.

2.2.3 SMOTE-based oversampling network

Rim+ lesions are rare, with a prevalence of 4.25% in our dataset. This poses a great challenge to
training any learning model. To overcome this challenge, we propose DeepSMOTE, a novel
oversampling network that leverages the latent features extracted from deep neural network.
Intuitively, DeepSMOTE can be thought of as finding the two nearest neighbors of each rim+
lesion and taking a linear combination of the lesion’s features with each of the neighbors’ features
to produce synthetic observations. DeepSMOTE consists of a multi-layer perceptron (MLP) for
feature transformation followed by the synthetic sample generation. The MLP is designed in a
similar style as the network branch for radiomic feature extraction, where there are two consecutive

fully connected networks, each having a linear layer, a 1-dimensional batch normalization, and a
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Swish activation function. The MLP is used to fuse features from the two network branches and
reduces the feature dimension from 1024 to 512 for efficient computation (Figs. 4 and 5). Next,
the two nearest neighbors for each rim+ lesion in the mini-batch are determined using Euclidean
distance. To train QSMrim-Net on a modern GPU, a small portion (mini-batch) of size N (64
samples in a mini-batch in our implementation) from the entire training dataset was randomly
sampled during one forward-backward pass. Suppose there are n rim+ lesions in a particular mini-

batch. Let x,, (p € {1,2,3 ...n}) be the latent feature vector of a rim+ lesion in the mini-batch. Let

Xp, and x, be the two nearest rim+ lesions to this lesion in the mini-batch, with respect to

D

Euclidean distance. We generate two synthetic samples:

Xp, = ap,xp + (1 ap,)xp, (0
Rp, = ap,xp + (1= ap, )%y, (2)
where @, and a,, are randomly generated numbers in (0,1). The result, X, and X,,, are linear

combinations of the rim+ lesion and its nearest neighbors. This results in N + 2n observations on
which to train the network, the N samples in the mini-batch and the and the 2n synthetic samples.
DeepSMOTE differs from the original SMOTE algorithm, which oversamples the minority class
by the reciprocal of the percentage of the minority class present in the dataset. DeepSMOTE
instead samples 2n synthetic samples for each mini-batch during training, as each forward-
backward pass of the deep neural network is done in a mini-batch of the entire dataset and

oversampling too many rim+ lesions in a single mini-batch may result in overfitting of the network.

2.3 Training details
We applied a stratified five-fold cross-validation procedure to train and validate the performance

of QSMRim-Net and the other methods. The stratified procedure was performed to balance the
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number of rim+ lesions in each of the five folds. As seen in Fig. 3, we first grouped subjects into
four groups, where the first group contained subjects with no rim+ lesion, the second subjects with
1-3 rim+ lesions, the third subjects with 4-6 rim+ lesions, and the fourth subjects with more than
6 rim+ lesions. The data was then randomly split into the five folds within each of these groups.
All experiments were conducted with this stratified five-fold cross validation setting.

Input images were cropped into image patches with a fixed size 32x32x16 voxels, followed
by a masking out of non-lesion area. The largest rim+ lesion had a size of 15x20x5 voxels and
only 7 rim- lesions were above the size of 32x32x16. As many lesions are confluent and may
overlap in the patch, we only left the target lesion area in the patch. We then performed data
augmentation to improve the performance of the model, providing better model generalizability.
For augmentation in the training set, lesions were moved to align their center of mass to the
geometric center of the image patch. We then used random flipping, random affine
transformations, and random blurring to augment our data. Flipping was performed on an
orthogonal direction randomly chosen from the axial, coronal, or sagittal direction. Affine
transformations were performed with a random scale ranging from 0.95 to 1.05 and a random
rotation degree between -5 and 5 degrees. The final transformed patch was obtained after a trilinear
interpolation. The blurring was performed using a random-sized Gaussian filter where the kernel
radius was determined by 40+0.5. The voxel size of our QSM image was 0.75 X 0.75 X 3, thus
for the coronal and sagittal direction, we randomly sampled o ~ U(0.1,0.95), and for the axial
direction we randomly sampled o ~ U(0.03,0.3).

We implemented our network using the PyTorch library [46] on a computer equipped with
a single Nvidia 1080Ti GPU. The Adam algorithm [47], with an initial learning rate of 0.0001 and

multi-step learning rate scheduler with milestones at 50%, 70%, and 90% of the total epochs, was
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used to train the network weights. A mini-batch size of 64 was used for training, and training was
stopped after 40 epochs. We used three random seeds to train three models for each fold and the

final prediction result was determined by majority voting.

2.4 Comparator Methods

Two automated methods have been developed to identify chronic active lesions on phase
images [30, 31]. RimNet [30] develops a multi-modal VGGNet [48] to extract rim information
from image patches of the phase and T2-FLAIR images. APRL [49] applies a SMOTE and a
random forest model to first-order radiomic features derived from individual lesions on the phase
images. To evaluate QSMRim-Net, we compared the performance of the proposed algorithm with
these two methods. Both methods were originally implemented on the phase, therefore we adapted
these methods to a QSM implementation for use with our data. For RimNet, we used the QSM
image along with the T2-FLAIR image as the network inputs. For APRL, we used the QSM image
to extract the first order radiomic features as done in the original implementation. We applied
SMOTE as done in the original APRL method to oversample the rim+ lesion features by the
reciprocal of its percentage present in our dataset. In addition to APRL, we also evaluated a neural
network with the radiomic features, which is denoted as APRL (NN). The APRL (NN) uses the
same network architecture as the radiomic branch of our QSMRim-Net and uses all 527 radiomic
features instead of only the first order radiomic features. In the remainder of the manuscript, we

refer to the implementation of APRL with the random forest as APRL (RF).

2.5 Statistical Evaluation
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To evaluate the performance of each method, partial receiver operating characteristic
(pROC) curves with false positive rates up to 0.1 and precision-recall (PR) curves of the different
validation folds were interpolated using piecewise constant interpolation and averaged to show the
overall performance at the lesion-level. For each curve, the area under the curve (AUC) was
computed directly from the interpolated and averaged curves. As rim+ lesions are rare and a small
subset of the total number of lesions (4.25% of the lesions), allowing a high false positive rate
threshold would produce results that are not clinically relevant. We therefore examine the pROC
for false positive rates between 0 and 0.1. In addition, to create binary maps of rim+ versus rim-

lesions, we thresholded the model probabilities to optimize the F1 score. The F1 score is the

. . . el . Precision-Sensitivit
harmonic mean of precision and sensitivity, where F; = 2 - — —"Y_ The thresholds for
Precision+Sensitivity

different folds of the cross-validation were chosen separately, and all results were obtained by a
concatenation of the results for the five folds. For the lesion-wise analysis, accuracy, F1 score,
sensitivity, specificity, and positive predicted value (PPV) were used to characterize the
performance of each automated method.

We also assessed performance at the subject-level. We used the F1 score criteria for
thresholding and compared the number of predicted rim+ lesions and the expert count number of
rim+ lesions for each subject. Pearson’s correlation coefficient was used to measure the correlation
between the two values. Mean Squared Error (MSE) was also used to measure the averaged

accuracy for the model predicted count.

2.6 Ablation study
We conducted an ablation study to evaluate the effects of changing components of the QSMRim-

Net network using ResNet as the backbone network. First, we examined two different fusion
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methods for the image-level features. In RimNet, a multi-modal architecture was used to fuse
image-level features. In QSMRim-Net we concatenated images in the channel dimension of the
tensor for input into the network. Second, we investigated the effects of incorporating the radiomic
feature as a separate network branch. Third, we studied how the DeepSMOTE layer affects the
network performance. The following four schemes were evaluated based on the method for fusing
the QSM and T2-FLAIR imaging features and whether we adopt radiomic feature or DeepSMOTE
layer: 1) images were fused as in QSMRim-Net with no radiomic features, 2) images were fused
as in RimNet with no radiomic features, 3) images were fused as in QSMRim-Net with radiomic
features, 4) images were fused as in QSMRim-Net with radiomic feature and DeepSMOTE

network was adopted.

3. RESULTS
3.1 Lesion-wise analysis
Table 2 shows the lesion-wise performance metrics of the proposed QSMRim-Net and the other
methods, using the Fl-score as a threshold. QSMRim-Net outperformed the competitors in all
metrics used for evaluation. With a slightly higher overall accuracy and specificity with other
methods, QSMRim-Net resulted in a 9.8% and 23.3% improvement in F1 score, 3.5% and 14.3%
improvement in sensitivity and 16.8% and 33.1% improvement in PPV compared to Rim-Net [30]
and APRL (RF) [46], respectively.

Fig. 6 shows the pROC curves and the PR curves for the different methods. The proposed
QSMRim-Net obtained 4.68% and 21.01% higher pPROC AUC (0.760) than Rim-Net (0.726) and
APRL (RF) (0.628), meaning that for more clinically relevant false positive rates of less than 0.1,

QSMRim-Net has higher performance than the other methods. The proposed QSMRim-Net out-
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performed both Rim-Net and APRL (RF) by 9.8% and 60.0% respectively in PR AUC, indicating
the effectiveness of the proposed DeepSMOTE network and fusion of information from both
convolutional image and radiomic features. Interestingly, APRL (NN) that uses our neural network
architecture outperformed APRL (RF) significantly in both pPROC AUC and PR AUC, indicating
the potential for the neural network to exploit high-dimensional non-linear relationships from the

radiomic features.

3.2 Subject-wise analysis

We calculated the predicted count of rim+ lesions from each of the models and compared this to
consensus expert count for each subject. The consensus expert count of rim+ lesions ranged from
0 to 17 among the 172 subjects, with a median of 2 rim+ lesions among subjects with at least one
rim (IQR 1-4). The predicted count of rim+ lesions from QSMRim-Net ranged from 0 to 14, with

a median of 1 rim+ lesion among the subjects with at least one rim (IQR 1-4).

The Pearson’s correlation between the predicted count and the gold standard count was 0.89 (95%
CI: 0.86, 0.92). Fig. 7 shows the scatterplot for the predicted count versus the gold standard count,
along with the identity line. The Pearson’s correlations for the other methods were found to be
lower than QSMRim-Net: 0.88 (95% CI: 0.85. 0.91) for APRL (NN), 0.77 (95% CI: 0.70, 0.82)
for APRL (RF), and 0.75 (95% CI: 0.67, 0.81) for Rim-Net. The MSE for the predicted count of
the QSMRim-Net was 0.98. The MSE for the other methods were found to be higher: 1.02 for

APRL (NN), 2.26 for APRL (RF), and 2.47 for Rim-Net.

3.3 Ablation study
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Table 3 shows the results from the ablation study. For image fusion, the fusion technique in
QSMRim-Net outperformed the fusion technique for RimNet. For radiomic feature fusion, we can
see that the network with radiomic feature fusion performs better than the networks without
radiomic feature fusion. The network with Deep SMOTE oversampling outperforms the other

variants in all metrics.

4. DISCUSSION
In this paper, we propose QSMRim-Net, a deep convolutional neural network for identifying rim+
lesions on QSM MRI. This is the first algorithm developed for rim+ lesion identification on QSM
and the first study to introduce an end-to-end two-branch network enabled with the DeepSMOTE
oversampling technique that can effectively fuse both convolutional image and radiomic features.
Our QSMRim-Net achieved better performance than two previously developed methods
when applied to the QSM, APRL (RF) [49] and Rim-Net [30]. The increase in performance can
be attributed to our carefully designed convolutional neural network architecture (Fig. 4). Rim-
Net used VGG-Net [48] and APRL (RF) used a random forest. Our QSMRim-Net adopted a
ResNet [28] architecture that uses identity shortcut connections to prevent gradient vanishing,
which reduces computational complexity and allows for the training of deeper networks than
VGG-Net. We also observed that a neural network with MLP (APRL (NN)) achieved better
performance than a random forest model (APRL (RF)) on radiomic features. This shows that a
properly designed neural network can extract discriminative information from highly non-linear
radiomic feature data. Another contributor to QSMRim-Net’s performance is that it effectively
fuses the complementary information from the convolutional image and radiomic features. We

also showed in the ablation study that the neural network architecture design choices for fusing
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features from different sources is important for improving rim+ lesion identification performance.

In addition to the deep neural network model, our result may also benefit from the
utilization of QSM. Compared to the phase images used in the original implementation of Rim-
Net and APRL (RF), QSM can measure the underlying tissue apparent magnetic susceptibility,
enabling the quantification of specific biomarkers, such as iron, that are independent of imaging
parameters. Rim+ lesions are characterized by a paramagnetic rim with iron deposited at the edge
of the lesion. QSM is sensitive to such magnetic susceptibility changes and provides consistent
measurements of the susceptibility value of the rim across patients and scanners, which is
beneficial for a machine learning model such as deep neural network to learn patterns of rim+ and
rim- lesions. While our QSMRim-Net is inspired by Rim-Net and APRL (RF), we found that
implementing these two methods on our dataset using QSM resulted in 10.2% and 25.0%
improvement of PPV, 7.8% and 26.5% reduction in sensitivity respectively, compared to its
original implementation of Rim-Net and APRL (RF) on phase images.

The high imbalance of rim+ and rim- lesions is a challenge for machine learning models.
We found that APRL (RF) with SMOTE oversampling outperforms its counterpart without
SMOTE by 2.9% in F1 score, indicating the importance of oversampling of the minority class.
While it is feasible to synthesize radiomic features by linear interpolation using SMOTE, it is not
possible to synthesize meaningful images by pixel-level linear interpolation. It has been shown
empirically that deep neural networks can linearize the manifold of images into Euclidean
subspace [50-52], enabling the possibility of linear interpolation using latent features from deep
layers from the network. Inspired by the SMOTE results from APRL (RF) and the deep feature
interpolation, we propose DeepSMOTE network to alleviate the data imbalance issue, and the

results in Table 3 shows the effectiveness of applying DeepSMOTE for data oversampling.
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For the QSMRim-Net performance results, we thresholded the output probabilities from
the algorithm using the optimized F1 score, resulting in a sensitivity of 0.678 for detecting rim+
lesions. However, in a research scenario or in clinical practice, missing any rim+ lesions may not
be acceptable. Thus, to demonstrate the performance of QSMRim-Net in these settings, we also
applied a high sensitivity threshold, using the largest sensitivity below 0.95. In practice, experts
can use this high sensitivity threshold to reduce the number of lesions that need to be manually
reviewed for rim+ status. QSMRim-Net performed with a false positive number of 538 lesions, a
reduction of 14.2% and 19.1% compared to Rim-Net and APRL (RF). With QSMRim-Net, in this
dataset, only 715 lesions would need to be reviewed by an expert instead of all 4163 lesions, saving
82.8% of review time.

We also obtained results for all rim+ lesion identification algorithms on a patient-level,
showing that QSMRim-NET outperformed the other methods. In a previous study, as the overall
total lesion burden increased, patients with at least one rim+ lesion on QSM performed worse on
both physical disability and cognitive assessments [17]. Having four or more chronic active
lesions on phase imaging has also been shown to correlate with disability [16]. In addition, these
lesions have been used diagnostically to differentiate patients with MS from other neurological
conditions [53]. If rim+ lesions are to be used prognostically or diagnostically, then the patient-
level results may be more important than identifying individual rim+ lesions for clinical translation.

To further understand the limitations of the QSMRim-Net algorithm’s performance, we
also examined the false positive and false negative results. The false positive and negative results
tended to be lesions that the two human experts did not agree upon. Using the F1 score threshold,
40.9% of the false positive lesions and 35.1% of false negatives lesions were lesions with human

expert disagreement. This contrasts with 22.5% of the true positives and 2.4% of the true negatives.
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Visual examination (Fig. 8) of the lesions showed that veins were challenging for the algorithm,
resulting in false positives. On QSM the vein is hyperintense. In cases where the vein formed a
rim-like shape in a rim- lesion, this often resulted in a false positive (Fig. 8B). When a rim+ lesion
was found heterogeneously hyperintense, this often resulted in a false negative (Fig. 8C). Rim-
lesions with a higher intensity value on the QSM tended to cause false positives, while rim+ lesions
with a lower intensity value tended to cause false negatives. Our future work involves further
understanding of these patterns to reduce FPs and FNs from the algorithm in order to improve
research and clinical translation.

One limitation of this work is that it relies on manual lesion segmentations that have been
edited further on the QSM (Fig. 2). Future work involves pairing QSMRim-Net with an automated
T2-FLAIR lesion segmentation algorithm, such as All-Net [21] with geometric loss [54] and
attention-based approaches [55] [56], followed by an automated method to separate confluents
lesions [57]. We plan to adapt and train the algorithm to work directly on T2-FLAIR lesion
segmentations. Another challenge for the algorithm is the rare nature of rim+ lesions. Only 4.25%
of the lesions in this study were identified as rim+ lesions, posing a great challenge to learning
based methods. We proposed DeepSMOTE for data oversampling to alleviate the data class
imbalance, but as future work we plan to develop techniques on imbalance-aware loss functions,
such as geometric loss [54]. A further limitation is inter-rater variability in identifying rim+ lesions.
To reduce the impact of this, we had two raters evaluate lesions for rim+ status and any
disagreements were adjudicated by a third reviewer. In this work, we used a binary classification
of whether a lesion had a rim. As discussed in [49] there are many factors that influence the
strength of the rim+ lesion signature on QSM and a more nuanced approach to classify these

lesions may be beneficial.
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In conclusion, QSMRim-Net is the first deep learning-based method that integrates
DeepSMOTE for data oversampling and fuses modern convolutional imaging features with
traditional radiomic features to automatically identify rim+ MS lesions on QSM. QSMRim-Net
out-performed other state of the art methods on rim+ lesion identification on QSM and has the

potential to aid in the clinical translation for the rim+ lesion biomarker.
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Fig. 1: Example of MS lesions on an axial slice of the QSM (left) and corresponding axial slice of
the T2-FLAIR (right). The digit 1 marked with red indicates a rim+ lesion and the digit 2 marked

with green indicates a rim- lesion.
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Fig. 2: Schematic of the rim+ and rim- lesion annotation process. First, we use LST [34] to obtain
an initial lesion segmentation mask. Second, a human expert performs manual correction and
confluent lesion separation, followed by mask edits based on QSM. Third, rim+ lesions are

manually annotated by two human experts, followed by consensus from a third expert.
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Fig. 3: Distribution of the number of paramagnetic rim lesions (rim+ lesions) per subject in the
Weill Cornell dataset. The plot is colored by the groups used for the stratified five-fold cross

validation.
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Fig. 4: Schematic of the proposed QSMRim-Net for paramagnetic rim lesion identification. (Top
Row) The deep residual network takes in both QSM and FLAIR images to extract convolutional
features. (Bottom Row) The QSM image and the lesion mask are used to extract radiomic features,
followed by feature extraction of an MLP. A tensor concatenation operation is performed to fuse
convolutional and radiomic features, and a DeepSMOTE layer is used to perform synthetic

minority feature over-sampling during the training phase.
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Fig. 5: Schematic of the DeepSMOTE network layer. N is the number of samples in a training
mini-batch, and n is the number of rim+ samples in the mini-batch. The input features go through
an MLP for feature transformation, followed by selecting rim+ samples from the mini-batch. The
transformed rim+ features are used to generate a Euclidean distance-based similarity followed by
latent feature interpolation. The original features and the oversampled features are concatenated,

resulting in a total of N + 2n samples in the output of DeepSMOTE.
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Fig. 6: The partial receiver operating characteristic (pROC) curve and precision-recall (PR) curves
for the proposed (QSMRim-Net) and comparator methods. AUC denotes the area under the curve.
We use clinically relevant false positive rates of less than 0.1 to compute the pROC AUC, in order
to account for the rare nature of rim+ lesions. Our QSMRim-Net algorithm outperformed all other

algorithms on pPROC AUC (FPR <0.1) and PR AUC.
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Fig. 7: The predicted count of rim+ lesions from QSMRim-Net versus the expert human count
(p = 0.89 (95% CI:0.86,0.92), MSE = 0.98). Points in the plot have been jittered for better
visualization. The linear regression line for the predicted count versus the gold standard count with

95% Cl is also shown (solid blue) along with the identity line (dashed blue).
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A. True Positive

C. False Negative

B. False Positive

D. True Negative

Fig. 8: Visual examples of a true positive, a false positive, a false negative and a true negative
produced by QSMRim-Net. The QSM is shown on the left and the T2-FLAIR on the right. The
lesion of interest indicated with a red arrow. (A) A rim+ lesion that is correctly identified. (B) A
rim- lesion with a vein forming a rim-like shape that was falsely identified as rim+ by QSMRim-
Net. (C) A rim+ lesion with that was missed by QSMRim-Net. (D) A rim- lesion that is correctly

identified.
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Table 1

Demographics information for the study cohort.

Demographics
Number of Subjects 172
Gender (count (%))
Female 124 (72.09%)
Male 48 (27.91%)
Disease Subtypes (count (%))
RRMS 159 (92.44%)
SPMS 8 (4.65%)
CIS 5(2.91%)
Disease Durations (mean + STD) 10.68 = 7.37
Age (mean = STD) 42.82 +£10.27
Expanded Disability Status Score (mean + STD) 1.38+1.64
Treatment Durations (mean + STD) 8.05+5.79
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Table 2

Lesion-wise results of the QSMRim-Net and other methods using a stratified five-fold cross-
validation scheme. PPV denotes positive predictive value, TP# denotes the number of true
positives, FP# denotes the number of false positives, FN# denotes the number of false negatives,

and TN# denotes the number of true negatives. The best performing method for each of metrics is

bolded.

Lesion-wise results ~ Accuracy F1 Sensitivity ~ Specificity PPV TP # FP # FN # TN #

APRL (NN) 0.969 0.614 0.588 0.985 0.642 104 58 73 3928
APRL (RF) 0.962 0.571 0.593 0.978 0.550 105 86 72 3900
Rim-Net 0.969 0.641 0.655 0.983 0.627 116 69 61 3917

QSMRim-Net 0.976 0.703 0.680 0.989 0.732 120 44 57 3942
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Table 3

Ablation study on QSMRim-Net and its variants. PPV denotes positive predictive value, TP#
denotes the number of true positives, FP# denotes the number of false positives, FN# denotes the
number of false negatives, and TN# denotes the number of true negatives. Image Fusion indicates
whether the model performed image-level feature fusion, Radiomic Fusion indicates whether the
model performed feature fusion between image and radiomic features, and Deep SMOTE indicates
whether the model applied the DeepSMOTE network for rim+ feature oversampling. The best

performing method for each of metrics is bolded.

Image Radiomic Deep

Fusion Fusion SMOTE  Accuracy F1 Sensitivity ~ Specificity PPV~ TP# FP# FN# TN#

v X X 0.969 0.639 0.644 0.983 0.633 114 66 63 3920
x X X 0.971 0.645 0.610 0.987 0.684 108 50 69 3936
x v X 0.975 0.685 0.650 0.989 0.723 115 44 62 3942

X v 4 0.976 0.703 0.680 0.989 0732 120 44 57 3942
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