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Abstract 

Background and Purpose: Chronic active multiple sclerosis (MS) lesions are characterized by a 

paramagnetic rim at the edge of the lesion and are associated with increased disability in patients. 

Quantitative susceptibility mapping (QSM) is an MRI technique that is sensitive to chronic active 

lesions, termed rim+ lesions on the QSM. We present QSMRim-Net, a data imbalance-aware deep 

neural network that fuses lesion-level radiomic and convolutional image features for automated 

identification of rim+ lesions on QSM.  

Methods: QSM and T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI of the 

brain were collected at 3T for 172 MS patients. Rim+ lesions were manually annotated by two 

human experts, followed by consensus from a third expert, for a total of 177 rim+ and 3986 rim 

negative (rim-) lesions. Our automated rim+ detection algorithm, QSMRim-Net, consists of a two-

branch feature extraction network and a synthetic minority oversampling network to classify rim+ 

lesions. The first network branch is for image feature extraction from the QSM and T2-FLAIR, 

and the second network branch is a fully connected network for QSM lesion-level radiomic feature 

extraction. The oversampling network is designed to increase classification performance with 

imbalanced data.  

Results: On a lesion-level, in a five-fold cross validation framework, the proposed QSMRim-Net 

detected rim+ lesions with a partial area under the receiver operating characteristic curve (pROC 

AUC) of 0.760, where clinically relevant false positive rates of less than 0.1 were considered. The 

method attained an area under the precision recall curve (PR AUC) of 0.704. QSMRim-Net out-

performed other state-of-the-art methods applied to the QSM on both pROC AUC and PR AUC. 

On a subject-level, comparing the predicted rim+ lesion count and the human expert annotated 
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count, QSMRim-Net achieved the lowest mean square error of 0.98 and the highest correlation of 

0.89 (95% CI: 0.86, 0.92).  

Conclusion: This study develops a novel automated deep neural network for rim+ MS lesion 

identification using T2-FLAIR and QSM images. 
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1. INTRODUCTION 

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system, 

characterized by lesions in the brain and spinal cord [1]. A particular type of multiple sclerosis 

(MS) lesion, called a chronic active lesion, is characterized by an iron-enriched rim of activated 

macrophages and microglia in histopathology studies [2-5].  Chronic active lesions are visible with 

in-vivo susceptibility magnetic resonance imaging (MRI) techniques, where these lesions show a 

paramagnetic rim [2, 4, 6-15] on the edge.  The presence of chronic active multiple sclerosis lesions 

is associated with a more severe disease course [14, 16-19] and there is currently much interest in 

using these lesions as an imaging biomarker.  

In studies of chronic active MS lesions on MRI, lesions are typically identified on the T2-

weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) image and then are determined to be 

chronic active through visual inspection on susceptibility imaging.  This process is time consuming 

and prone to inter- and intra-rater variability [20, 21]. For these lesions to be further studied at a 

large scale and translated into clinical practice, there is a great need for automated methods to 

identify chronic active MS lesions. 

Quantitative susceptibility mapping (QSM) is an MRI technique that provides in vivo 

quantification of magnetic susceptibility changes related to iron deposition [22-24]. QSM 

identifies chronic active MS lesions as lesions with a hyperintense rim [25-27], which are termed 

QSM rim positive (rim+) lesions.  We propose an automated method to identify QSM rim+ lesions, 

QSMRim-Net, using QSM and T2-FLAIR images of the brain.  Our method is a deep 

convolutional neural network which consists of a two-branch network that fuses QSM and T2-

FLAIR imaging features derived from a deep residual network [28] with lesion-level radiomic 

features from the QSM [29], In addition, a Synthetic Minority Oversampling TEchnique 
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(SMOTE)-based oversampling network (DeepSMOTE) is developed to alleviate data imbalance 

issue caused by the small number of rim+ lesions. This is the first method proposed in the literature 

to identify rim+ lesions using QSM and the first method to fuse convolutional imaging features 

with radiomic features.  Furthermore, QSMRim-Net with DeepSMOTE is the first end-to-end deep 

neural network that can be trained with online minority oversampling for rim+ lesion 

classification. 

Two previous methods have been developed to identify chronic active MS lesions on phase 

imaging [30, 31]. RimNet [30] uses convolutional features, while APRL  [49] uses radiomic 

features.  To put the performance of QSMRim-Net into context, we compare it to these two 

methods applied to the QSM using both lesion-level and patient-level performance metrics.  

 

2. MATERIALS AND METHODS 

2.1 Dataset 

2.1.1 MRI image acquisition and preprocessing 

QSMRim-Net was evaluated on an MS imaging dataset collected at Weill Cornell (Table 1). The 

dataset consists of 172 MS patients enrolled in an ongoing prospective database for MS research. 

The database was approved by the local Institutional Review Board and written informed consent 

was obtained from all patients prior to their entry into the database.  

 The imaging was performed on a 3T Magnetom Skyra scanner (Siemens Medical 

Solutions, Malvern, PA, USA). The Siemens scanning protocol consisted of the following 

sequences: 1) 3D sagittal T1-weighted (T1w) MPRAGE: Repetition Time (TR)/Echo Time 

(TE)/Inversion Time (TI) = 2300/2.3/900 ms, flip angle (FA) = 8°, GRAPPA parallel imaging 

factor (R) = 2, voxel size = 1.0 × 1.0 × 1.0 mm3; 2) 2D axial T2-weighted (T2w) turbo spin echo: 
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TR/TE = 5840/93 ms, FA = 90°, turbo factor = 18, R = 2, number of signal averages (NSA) = 2, 

voxel size = 0.5 × 0.5 × 3 mm3; 3) 3D sagittal fat-saturated T2w fluid attenuated inversion recovery 

(T2-FLAIR) SPACE: TR/TE/TI = 8500/391/2500 ms, FA = 90°, turbo factor = 278, R = 4, voxel 

size = 1.0 × 1.0 × 1.0 mm3. For axial 3D multi-echo GRE sequence for QSM: axial field of view 

(FOV) = 24 cm, TR/TE1/ΔTE = 48.0/6.3/4.1 ms, number of TEs = 10, FA = 15°, R = 2, voxel size 

= 0.75 x 0.93 x 3 mm3, scan time = 4.2 minutes. QSM images were reconstructed by MEDI-0 [32] 

algorithm from multi-echo GRE data. T2-FLAIR images were then preprocessed using the FSL 

toolbox [33]. We applied N4 inhomogeneity correction algorithm to the acquired images and 

linearly co-registered T2-FLAIR images to the magnitude space of QSM. 

 

2.1.2 Lesion segmentation and rim+ lesion annotation 

T2-FLAIR lesion masks were created for all patients in the dataset. These masks were 

obtained by segmenting the T2-FLAIR image using the LST-LPA algorithm in the LST toolbox 

version 3.0.0 (www.statisticalmodelling.de/lst.html) [34], followed by manual editing, and 

finalized by the consensus of two expert raters. Confluent lesions may occur when pathologically 

distinct lesions grow close to each other and form a large spatially connected lesion.  These 

confluent lesions in the dataset were identified, then broken up and labeled by a human expert. 

After lesion segmentation and confluent lesion separation, a total of 4,163 individual lesions were 

identified.  Masks were further edited on the QSM image to ensure that these masks matched the 

lesion on QSM. An overview of the annotation process is shown in Fig. 2.  

 Rim+ and rim- lesions were manually annotated by two human experts, who reviewed each 

of the 4,163 T2-FLAIR lesions for rim status on the QSM.  For lesions with disagreement, a final 

consensus was obtained from a third human expert. After the rim lesion annotation, 177 lesions 
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were identified as rim+ lesions and 3,986 lesions were identified as rim- lesions. An overview of 

the annotation process is shown in Fig. 2. and the distribution of rim+ lesions per patient is shown 

in Fig. 3. 

 

2.2 Methodology 

2.2.1 Network architecture 

QSMRim-Net is a two-branch network consisting of four parts: a convolutional network for image 

feature extraction, a fully connected network for radiomic feature extraction, a SMOTE-based 

oversampling network for synthesizing rim+ features in the latent feature space, and a final 

classifier that outputs the probability that a lesion is rim+ (see Fig. 4). For image feature extraction, 

we use a deep residual network (ResNet) [28] with 18 layers as our backbone network. We 

modified the convolutional kernels from 2D to 3D, used two input channels to accommodate the 

QSM and T2-FLAIR images, and used two categories (rim+ and rim-) for the last linear layer. For 

radiomic feature extraction, radiomic features [35, 36] were calculated on the QSM (described in 

detail in the section below). The multi-layer perceptron (MLP) for radiomic feature extraction 

consists of two fully connected layers. The first layer is a linear layer followed by a one-

dimensional batch normalization [37], a Swish activation function [38], and a dropout layer. The 

second layer has the same structure as the first layer, except that it does not include a dropout layer. 

To fuse the convolutional and radiomic features, we performed vector concatenation for feature 

vectors from both the output of the residual network and the MLP and processed the new feature 

vector with another fully connected layer (see Figs. 4 and 5). To alleviate the data class imbalance 

issue, we further applied the DeepSMOTE network (described in detail in the section 2.2.3) to 

oversample these latent features of rim+ lesions during the training phase. 
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2.2.2 Radiomic feature analysis 

Radiomic features have been shown to be effective in many applications of medical image analysis 

[40-43]. For QSMRim-Net, radiomic features were calculated over each lesion using the 

pyradiomics package [44].  Specifically, we calculated four different types of radiomic features on 

the input image: 1) first-order statistics such as harmonic mean and geometric mean, 2) gray-level 

co-occurrence matrix (GLCM) statistics such as interquartile range and energy sum, 3) gray-level 

run-length matrix (GLRLM) statistics such as run-percentage, and 4) geometric-based parameters 

such as ratio of lesion surface to volume. In addition, Coiflet wavelet filters were applied to yield 

the 8 decompositions of the input image and radiomic features were calculated on the wavelet 

images. Wavelet filters were implemented with the PyWavelet package [45]. In total, 527 radiomic 

features were calculated over each lesion on the QSM for our model. 

 

2.2.3 SMOTE-based oversampling network 

Rim+ lesions are rare, with a prevalence of 4.25% in our dataset. This poses a great challenge to 

training any learning model. To overcome this challenge, we propose DeepSMOTE, a novel 

oversampling network that leverages the latent features extracted from deep neural network.  

Intuitively, DeepSMOTE can be thought of as finding the two nearest neighbors of each rim+ 

lesion and taking a linear combination of the lesion’s features with each of the neighbors’ features 

to produce synthetic observations. DeepSMOTE consists of a multi-layer perceptron (MLP) for 

feature transformation followed by the synthetic sample generation.  The MLP is designed in a 

similar style as the network branch for radiomic feature extraction, where there are two consecutive 

fully connected networks, each having a linear layer, a 1-dimensional batch normalization, and a 
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Swish activation function. The MLP is used to fuse features from the two network branches and 

reduces the feature dimension from 1024 to 512 for efficient computation (Figs. 4 and 5). Next, 

the two nearest neighbors for each rim+ lesion in the mini-batch are determined using Euclidean 

distance. To train QSMrim-Net on a modern GPU, a small portion (mini-batch) of size 𝑁 (64 

samples in a mini-batch in our implementation) from the entire training dataset was randomly 

sampled during one forward-backward pass. Suppose there are 𝑛 rim+ lesions in a particular mini-

batch. Let 𝑥! (𝑝 ∈ {1,2,3…𝑛}) be the latent feature vector of a rim+ lesion in the mini-batch. Let 

𝑥!!  and  𝑥!"be the two nearest rim+ lesions to this lesion in the mini-batch, with respect to 

Euclidean distance.  We generate two synthetic samples: 

𝐱.!! = 𝛼!!𝒙! + 31 − 𝛼!!5𝒙!! (1) 

𝐱.!" = 𝛼!"𝒙! + 31 − 𝛼!"5𝒙!" (2) 

where 𝛼!!and 𝛼!" are randomly generated numbers in (0,1).  The result, 𝐱.!! and 𝐱.!", are linear 

combinations of the rim+ lesion and its nearest neighbors. This results in 𝑁 + 2𝑛 observations on 

which to train the network, the 𝑁 samples in the mini-batch and the and the 2𝑛 synthetic samples.  

DeepSMOTE differs from the original SMOTE algorithm, which oversamples the minority class 

by the reciprocal of the percentage of the minority class present in the dataset. DeepSMOTE 

instead samples 2𝑛  synthetic samples for each mini-batch during training, as each forward-

backward pass of the deep neural network is done in a mini-batch of the entire dataset and 

oversampling too many rim+ lesions in a single mini-batch may result in overfitting of the network.  

 

2.3 Training details 

We applied a stratified five-fold cross-validation procedure to train and validate the performance 

of QSMRim-Net and the other methods. The stratified procedure was performed to balance the 
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number of rim+ lesions in each of the five folds. As seen in Fig. 3, we first grouped subjects into 

four groups, where the first group contained subjects with no rim+ lesion, the second subjects with 

1-3 rim+ lesions, the third subjects with 4-6 rim+ lesions, and the fourth subjects with more than 

6 rim+ lesions. The data was then randomly split into the five folds within each of these groups. 

All experiments were conducted with this stratified five-fold cross validation setting. 

Input images were cropped into image patches with a fixed size 32x32x16 voxels, followed 

by a masking out of non-lesion area.  The largest rim+ lesion had a size of 15x20x5 voxels and 

only 7 rim- lesions were above the size of 32x32x16.  As many lesions are confluent and may 

overlap in the patch, we only left the target lesion area in the patch. We then performed data 

augmentation to improve the performance of the model, providing better model generalizability. 

For augmentation in the training set, lesions were moved to align their center of mass to the 

geometric center of the image patch. We then used random flipping, random affine 

transformations, and random blurring to augment our data. Flipping was performed on an 

orthogonal direction randomly chosen from the axial, coronal, or sagittal direction. Affine 

transformations were performed with a random scale ranging from 0.95 to 1.05 and a random 

rotation degree between -5 and 5 degrees. The final transformed patch was obtained after a trilinear 

interpolation. The blurring was performed using a random-sized Gaussian filter where the kernel 

radius was determined by 4σ+0.5. The voxel size of our QSM image was 0.75 × 0.75 × 3, thus 

for the coronal and sagittal direction, we randomly sampled σ ∼ 𝒰(0.1,0.95), and for the axial 

direction we randomly sampled σ ∼ 𝒰(0.03,0.3). 

We implemented our network using the PyTorch library [46] on a computer equipped with 

a single Nvidia 1080Ti GPU. The Adam algorithm [47], with an initial learning rate of 0.0001 and 

multi-step learning rate scheduler with milestones at 50%, 70%, and 90% of the total epochs, was 
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used to train the network weights. A mini-batch size of 64 was used for training, and training was 

stopped after 40 epochs. We used three random seeds to train three models for each fold and the 

final prediction result was determined by majority voting. 

 

2.4 Comparator Methods  

Two automated methods have been developed to identify chronic active lesions on phase 

images [30, 31]. RimNet [30] develops a multi-modal VGGNet [48] to extract rim information 

from image patches of the phase and T2-FLAIR images.  APRL [49] applies a SMOTE and a 

random forest model to first-order radiomic features derived from individual lesions on the phase 

images.  To evaluate QSMRim-Net, we compared the performance of the proposed algorithm with 

these two methods.  Both methods were originally implemented on the phase, therefore we adapted 

these methods to a QSM implementation for use with our data.  For RimNet, we used the QSM 

image along with the T2-FLAIR image as the network inputs. For APRL, we used the QSM image 

to extract the first order radiomic features as done in the original implementation. We applied 

SMOTE as done in the original APRL method to oversample the rim+ lesion features by the 

reciprocal of its percentage present in our dataset. In addition to APRL, we also evaluated a neural 

network with the radiomic features, which is denoted as APRL (NN). The APRL (NN) uses the 

same network architecture as the radiomic branch of our QSMRim-Net and uses all 527 radiomic 

features instead of only the first order radiomic features.  In the remainder of the manuscript, we 

refer to the implementation of APRL with the random forest as APRL (RF).  

 

2.5 Statistical Evaluation 
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To evaluate the performance of each method, partial receiver operating characteristic 

(pROC) curves with false positive rates up to 0.1 and precision-recall (PR) curves of the different 

validation folds were interpolated using piecewise constant interpolation and averaged to show the 

overall performance at the lesion-level. For each curve, the area under the curve (AUC) was 

computed directly from the interpolated and averaged curves. As rim+ lesions are rare and a small 

subset of the total number of lesions (4.25% of the lesions), allowing a high false positive rate 

threshold would produce results that are not clinically relevant. We therefore examine the pROC 

for false positive rates between 0 and 0.1. In addition, to create binary maps of rim+ versus rim- 

lesions, we thresholded the model probabilities to optimize the F1 score. The F1 score is the 

harmonic mean of precision and sensitivity, where 𝐹" = 2 ⋅ #$%&'(')*⋅,%*('-'.'-/
#$%&'(')*0,%*('-'.'-/

. The thresholds for 

different folds of the cross-validation were chosen separately, and all results were obtained by a 

concatenation of the results for the five folds. For the lesion-wise analysis, accuracy, F1 score, 

sensitivity, specificity, and positive predicted value (PPV) were used to characterize the 

performance of each automated method.  

 We also assessed performance at the subject-level. We used the F1 score criteria for 

thresholding and compared the number of predicted rim+ lesions and the expert count number of 

rim+ lesions for each subject. Pearson’s correlation coefficient was used to measure the correlation 

between the two values. Mean Squared Error (MSE) was also used to measure the averaged 

accuracy for the model predicted count. 

 

2.6 Ablation study 

We conducted an ablation study to evaluate the effects of changing components of the QSMRim-

Net network using ResNet as the backbone network. First, we examined two different fusion 
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methods for the image-level features. In RimNet, a multi-modal architecture was used to fuse 

image-level features. In QSMRim-Net we concatenated images in the channel dimension of the 

tensor for input into the network. Second, we investigated the effects of incorporating the radiomic 

feature as a separate network branch. Third, we studied how the DeepSMOTE layer affects the 

network performance. The following four schemes were evaluated based on the method for fusing 

the QSM and T2-FLAIR imaging features and whether we adopt radiomic feature or DeepSMOTE 

layer: 1) images were fused as in QSMRim-Net with no radiomic features, 2) images were fused 

as in RimNet with no radiomic features, 3) images were fused as in QSMRim-Net with radiomic 

features, 4) images were fused as in QSMRim-Net with radiomic feature and DeepSMOTE 

network was adopted. 

 

3. RESULTS 

3.1 Lesion-wise analysis 

Table 2 shows the lesion-wise performance metrics of the proposed QSMRim-Net and the other 

methods, using the F1-score as a threshold. QSMRim-Net outperformed the competitors in all 

metrics used for evaluation. With a slightly higher overall accuracy and specificity with other 

methods, QSMRim-Net resulted in a 9.8% and 23.3% improvement in F1 score, 3.5% and 14.3% 

improvement in sensitivity and 16.8% and 33.1% improvement in PPV compared to Rim-Net [30] 

and APRL (RF) [46], respectively. 

 Fig. 6 shows the pROC curves and the PR curves for the different methods. The proposed 

QSMRim-Net obtained 4.68% and 21.01% higher pROC AUC (0.760) than Rim-Net (0.726) and 

APRL (RF) (0.628), meaning that for more clinically relevant false positive rates of less than 0.1, 

QSMRim-Net has higher performance than the other methods. The proposed QSMRim-Net out-
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performed both Rim-Net and APRL (RF) by 9.8% and 60.0% respectively in PR AUC, indicating 

the effectiveness of the proposed DeepSMOTE network and fusion of information from both 

convolutional image and radiomic features. Interestingly, APRL (NN) that uses our neural network 

architecture outperformed APRL (RF) significantly in both pROC AUC and PR AUC, indicating 

the potential for the neural network to exploit high-dimensional non-linear relationships from the 

radiomic features.  

 

3.2 Subject-wise analysis 

We calculated the predicted count of rim+ lesions from each of the models and compared this to 

consensus expert count for each subject. The consensus expert count of rim+ lesions ranged from 

0 to 17 among the 172 subjects, with a median of 2 rim+ lesions among subjects with at least one 

rim (IQR 1–4). The predicted count of rim+ lesions from QSMRim-Net ranged from 0 to 14, with 

a median of 1 rim+ lesion among the subjects with at least one rim (IQR 1–4).  

 

The Pearson’s correlation between the predicted count and the gold standard count was 0.89 (95% 

CI: 0.86, 0.92). Fig. 7 shows the scatterplot for the predicted count versus the gold standard count, 

along with the identity line. The Pearson’s correlations for the other methods were found to be 

lower than QSMRim-Net: 0.88 (95% CI: 0.85. 0.91) for APRL (NN), 0.77 (95% CI: 0.70, 0.82) 

for APRL (RF), and 0.75 (95% CI: 0.67, 0.81) for Rim-Net. The MSE for the predicted count of 

the QSMRim-Net was 0.98.  The MSE for the other methods were found to be higher: 1.02 for 

APRL (NN), 2.26 for APRL (RF), and 2.47 for Rim-Net. 

 

3.3 Ablation study 
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Table 3 shows the results from the ablation study. For image fusion, the fusion technique in 

QSMRim-Net outperformed the fusion technique for RimNet. For radiomic feature fusion, we can 

see that the network with radiomic feature fusion performs better than the networks without 

radiomic feature fusion. The network with Deep SMOTE oversampling outperforms the other 

variants in all metrics. 

 

4. DISCUSSION 

In this paper, we propose QSMRim-Net, a deep convolutional neural network for identifying rim+ 

lesions on QSM MRI.  This is the first algorithm developed for rim+ lesion identification on QSM 

and the first study to introduce an end-to-end two-branch network enabled with the DeepSMOTE 

oversampling technique that can effectively fuse both convolutional image and radiomic features.  

             Our QSMRim-Net achieved better performance than two previously developed methods 

when applied to the QSM, APRL (RF) [49]  and Rim-Net [30]. The increase in performance can 

be attributed to our carefully designed convolutional neural network architecture (Fig. 4). Rim-

Net used VGG-Net [48] and APRL (RF) used a random forest. Our QSMRim-Net adopted a 

ResNet [28] architecture that uses identity shortcut connections to prevent gradient vanishing, 

which reduces computational complexity and allows for the training of deeper networks than 

VGG-Net. We also observed that a neural network with MLP (APRL (NN)) achieved better 

performance than a random forest model (APRL (RF)) on radiomic features. This shows that a 

properly designed neural network can extract discriminative information from highly non-linear 

radiomic feature data. Another contributor to QSMRim-Net’s performance is that it effectively 

fuses the complementary information from the convolutional image and radiomic features. We 

also showed in the ablation study that the neural network architecture design choices for fusing 
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features from different sources is important for improving rim+ lesion identification performance.  

             In addition to the deep neural network model, our result may also benefit from the 

utilization of QSM. Compared to the phase images used in the original implementation of Rim-

Net and APRL (RF), QSM can measure the underlying tissue apparent magnetic susceptibility, 

enabling the quantification of specific biomarkers, such as iron, that are independent of imaging 

parameters. Rim+ lesions are characterized by a paramagnetic rim with iron deposited at the edge 

of the lesion. QSM is sensitive to such magnetic susceptibility changes and provides consistent 

measurements of the susceptibility value of the rim across patients and scanners, which is 

beneficial for a machine learning model such as deep neural network to learn patterns of rim+ and 

rim- lesions. While our QSMRim-Net is inspired by Rim-Net and APRL (RF), we found that 

implementing these two methods on our dataset using QSM resulted in 10.2% and 25.0% 

improvement of PPV, 7.8% and 26.5% reduction in sensitivity respectively, compared to its 

original implementation of Rim-Net and APRL (RF) on phase images. 

             The high imbalance of rim+ and rim- lesions is a challenge for machine learning models. 

We found that APRL (RF) with SMOTE oversampling outperforms its counterpart without 

SMOTE by 2.9% in F1 score, indicating the importance of oversampling of the minority class. 

While it is feasible to synthesize radiomic features by linear interpolation using SMOTE, it is not 

possible to synthesize meaningful images by pixel-level linear interpolation. It has been shown 

empirically that deep neural networks can linearize the manifold of images into Euclidean 

subspace [50-52], enabling the possibility of linear interpolation using latent features from deep 

layers from the network. Inspired by the SMOTE results from APRL (RF) and the deep feature 

interpolation, we propose DeepSMOTE network to alleviate the data imbalance issue, and the 

results in Table 3 shows the effectiveness of applying DeepSMOTE for data oversampling. 
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              For the QSMRim-Net performance results, we thresholded the output probabilities from 

the algorithm using the optimized F1 score, resulting in a sensitivity of 0.678 for detecting rim+ 

lesions.  However, in a research scenario or in clinical practice, missing any rim+ lesions may not 

be acceptable. Thus, to demonstrate the performance of QSMRim-Net in these settings, we also 

applied a high sensitivity threshold, using the largest sensitivity below 0.95.  In practice, experts 

can use this high sensitivity threshold to reduce the number of lesions that need to be manually 

reviewed for rim+ status. QSMRim-Net performed with a false positive number of 538 lesions, a 

reduction of 14.2% and 19.1% compared to Rim-Net and APRL (RF). With QSMRim-Net, in this 

dataset, only 715 lesions would need to be reviewed by an expert instead of all 4163 lesions, saving 

82.8% of review time.  

             We also obtained results for all rim+ lesion identification algorithms on a patient-level, 

showing that QSMRim-NET outperformed the other methods.  In a previous study, as the overall 

total lesion burden increased, patients with at least one rim+ lesion on QSM performed worse on 

both physical disability and cognitive assessments [17].  Having four or more chronic active 

lesions on phase imaging has also been shown to correlate with disability [16].  In addition, these 

lesions have been used diagnostically to differentiate patients with MS from other neurological 

conditions [53].  If rim+ lesions are to be used prognostically or diagnostically, then the patient-

level results may be more important than identifying individual rim+ lesions for clinical translation.  

             To further understand the limitations of the QSMRim-Net algorithm’s performance, we 

also examined the false positive and false negative results. The false positive and negative results 

tended to be lesions that the two human experts did not agree upon.  Using the F1 score threshold, 

40.9% of the false positive lesions and 35.1% of false negatives lesions were lesions with human 

expert disagreement. This contrasts with 22.5% of the true positives and 2.4% of the true negatives. 
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Visual examination (Fig. 8) of the lesions showed that veins were challenging for the algorithm, 

resulting in false positives.  On QSM the vein is hyperintense.  In cases where the vein formed a 

rim-like shape in a rim- lesion, this often resulted in a false positive (Fig. 8B). When a rim+ lesion 

was found heterogeneously hyperintense, this often resulted in a false negative (Fig. 8C). Rim- 

lesions with a higher intensity value on the QSM tended to cause false positives, while rim+ lesions 

with a lower intensity value tended to cause false negatives. Our future work involves further 

understanding of these patterns to reduce FPs and FNs from the algorithm in order to improve 

research and clinical translation. 

             One limitation of this work is that it relies on manual lesion segmentations that have been 

edited further on the QSM (Fig. 2). Future work involves pairing QSMRim-Net with an automated 

T2-FLAIR lesion segmentation algorithm, such as All-Net [21] with geometric loss [54] and 

attention-based approaches [55] [56], followed by an automated method to separate confluents 

lesions [57].  We plan to adapt and train the algorithm to work directly on T2-FLAIR lesion 

segmentations.  Another challenge for the algorithm is the rare nature of rim+ lesions. Only 4.25% 

of the lesions in this study were identified as rim+ lesions, posing a great challenge to learning 

based methods.  We proposed DeepSMOTE for data oversampling to alleviate the data class 

imbalance, but as future work we plan to develop techniques on imbalance-aware loss functions, 

such as geometric loss [54].  A further limitation is inter-rater variability in identifying rim+ lesions.  

To reduce the impact of this, we had two raters evaluate lesions for rim+ status and any 

disagreements were adjudicated by a third reviewer. In this work, we used a binary classification 

of whether a lesion had a rim.  As discussed in [49] there are many factors that influence the 

strength of the rim+ lesion signature on QSM and a more nuanced approach to classify these 

lesions may be beneficial.  
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             In conclusion, QSMRim-Net is the first deep learning-based method that integrates 

DeepSMOTE for data oversampling and fuses modern convolutional imaging features with 

traditional radiomic features to automatically identify rim+ MS lesions on QSM. QSMRim-Net 

out-performed other state of the art methods on rim+ lesion identification on QSM and has the 

potential to aid in the clinical translation for the rim+ lesion biomarker. 
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Fig. 1: Example of MS lesions on an axial slice of the QSM (left) and corresponding axial slice of 

the T2-FLAIR (right). The digit 1 marked with red indicates a rim+ lesion and the digit 2 marked 

with green indicates a rim- lesion. 
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Fig. 2: Schematic of the rim+ and rim- lesion annotation process. First, we use LST  [34] to obtain 

an initial lesion segmentation mask. Second, a human expert performs manual correction and 

confluent lesion separation, followed by mask edits based on QSM. Third, rim+ lesions are 

manually annotated by two human experts, followed by consensus from a third expert. 
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Fig. 3: Distribution of the number of paramagnetic rim lesions (rim+ lesions) per subject in the 

Weill Cornell dataset. The plot is colored by the groups used for the stratified five-fold cross 

validation.  
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Fig. 4: Schematic of the proposed QSMRim-Net for paramagnetic rim lesion identification. (Top 

Row) The deep residual network takes in both QSM and FLAIR images to extract convolutional 

features. (Bottom Row) The QSM image and the lesion mask are used to extract radiomic features, 

followed by feature extraction of an MLP. A tensor concatenation operation is performed to fuse 

convolutional and radiomic features, and a DeepSMOTE layer is used to perform synthetic 

minority feature over-sampling during the training phase. 
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Fig. 5: Schematic of the DeepSMOTE network layer. 𝑁 is the number of samples in a training 

mini-batch, and 𝑛 is the number of rim+ samples in the mini-batch. The input features go through 

an MLP for feature transformation, followed by selecting rim+ samples from the mini-batch. The 

transformed rim+ features are used to generate a Euclidean distance-based similarity followed by 

latent feature interpolation. The original features and the oversampled features are concatenated, 

resulting in a total of 𝑁 + 2𝑛 samples in the output of DeepSMOTE. 
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Fig. 6: The partial receiver operating characteristic (pROC) curve and precision-recall (PR) curves 

for the proposed (QSMRim-Net) and comparator methods. AUC denotes the area under the curve. 

We use clinically relevant false positive rates of less than 0.1 to compute the pROC AUC, in order 

to account for the rare nature of rim+ lesions. Our QSMRim-Net algorithm outperformed all other 

algorithms on pROC AUC (FPR < 0.1) and PR AUC.  
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Fig. 7: The predicted count of rim+ lesions from QSMRim-Net versus the expert human count 

(𝜌 = 0.89	(95%	𝐶𝐼: 0.86, 0.92),𝑀𝑆𝐸 = 0.98). Points in the plot have been jittered for better 

visualization. The linear regression line for the predicted count versus the gold standard count with 

95% CI is also shown (solid blue) along with the identity line (dashed blue).  
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Fig. 8: Visual examples of a true positive, a false positive, a false negative and a true negative 

produced by QSMRim-Net. The QSM is shown on the left and the T2-FLAIR on the right.  The 

lesion of interest indicated with a red arrow. (A) A rim+ lesion that is correctly identified. (B) A 

rim- lesion with a vein forming a rim-like shape that was falsely identified as rim+ by QSMRim-

Net. (C) A rim+ lesion with that was missed by QSMRim-Net. (D) A rim- lesion that is correctly 

identified. 
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Table 1 

Demographics information for the study cohort.  

 

Demographics  
Number of Subjects 172 
Gender (count (%)) 
    Female 

 
124 (72.09%) 

    Male 48 (27.91%) 
Disease Subtypes (count (%)) 

RRMS 
SPMS 
CIS 

Disease Durations (mean ± STD) 
Age (mean ± STD) 
Expanded Disability Status Score (mean ± STD) 
Treatment Durations (mean ± STD) 

 
159 (92.44%) 

8 (4.65%) 
5 (2.91%) 

10.68 ± 7.37 
42.82 ± 10.27 
1.38 ± 1.64 
8.05 ± 5.79 

  
 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2022. ; https://doi.org/10.1101/2022.01.31.478482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.31.478482
http://creativecommons.org/licenses/by-nc/4.0/


 

Table 2  

Lesion-wise results of the QSMRim-Net and other methods using a stratified five-fold cross-

validation scheme. PPV denotes positive predictive value, TP# denotes the number of true 

positives, FP# denotes the number of false positives, FN# denotes the number of false negatives, 

and TN# denotes the number of true negatives. The best performing method for each of metrics is 

bolded.  

 

Lesion-wise results Accuracy F1 Sensitivity Specificity PPV TP # FP # FN # TN # 

APRL (NN) 0.969 0.614 0.588 0.985 0.642 104 58 73 3928 

APRL (RF) 0.962 0.571 0.593 0.978 0.550 105 86 72 3900 

Rim-Net 0.969 0.641 0.655 0.983 0.627 116 69 61 3917 

QSMRim-Net 0.976 0.703 0.680 0.989 0.732 120 44 57 3942 
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Table 3 

Ablation study on QSMRim-Net and its variants. PPV denotes positive predictive value, TP# 

denotes the number of true positives, FP# denotes the number of false positives, FN# denotes the 

number of false negatives, and TN# denotes the number of true negatives. Image Fusion indicates 

whether the model performed image-level feature fusion, Radiomic Fusion indicates whether the 

model performed feature fusion between image and radiomic features, and Deep SMOTE indicates 

whether the model applied the DeepSMOTE network for rim+ feature oversampling. The best 

performing method for each of metrics is bolded. 

 

Image 

Fusion 

Radiomic 

Fusion 

Deep 

SMOTE Accuracy F1 Sensitivity Specificity PPV TP# FP# FN# TN# 

            

ü × × 0.969 0.639 0.644 0.983 0.633 114 66 63 3920 

× × × 0.971 0.645 0.610 0.987 0.684 108 50 69 3936 

× ü × 0.975 0.685 0.650 0.989 0.723 115 44 62 3942 

× ü ü 0.976 0.703 0.680 0.989 0.732 120 44 57 3942 
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