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Abstract
Localising accurate brain regions needs careful evaluation in each experimental species due to their individual variability.
However, the function and connectivity of brain areas is commonly studied using a single-subject cranial landmark-based
stereotactic atlas in animal neuroscience. Here, we address this issue in a small primate, the common marmoset, which is
increasingly widely used in systems neuroscience. We developed a non-invasive multi-modal neuroimaging-based
targeting pipeline, which accounts for intersubject anatomical variability in cranial and cortical landmarks in marmosets.
This methodology allowed creation of multi-modal templates (MarmosetRIKEN20) including head CT and brain MR
images, embedded in coordinate systems of anterior and posterior commissures (AC-PC) and CIFTI grayordinates. We
found that the horizontal plane of the stereotactic coordinate was significantly rotated in pitch relative to the AC-PC
coordinate system (10 degrees, frontal downwards), and had a significant bias and uncertainty due to positioning
procedures. We also found that many common cranial and brain landmarks (e.g., bregma, intraparietal sulcus) vary in
location across subjects and are substantial relative to average marmoset cortical area dimensions. Combining the
neuroimaging-based targeting pipeline with robot-guided surgery enabled proof-of-concept targeting of deep brain
structures with an accuracy of 0.2 mm. Altogether, our findings demonstrate substantial intersubject variability in
marmoset brain and cranial landmarks, implying that subject-specific neuroimaging-based localization is needed for
precision targeting in marmosets. The population-based templates and atlases in grayordinates, created for the first time
in marmoset monkeys, should help bridging between macroscale and microscale analyses.

Highlights

Achieved sub-millimeter localization accuracy of subject-wise brain region

Propose a dedicated non-invasive multi-modal subject-specific registration pipeline
Construct brain coordinate system in AC-PC and grayordinate spaces

Establish multi-modal MRI and CT brain and cortical templates, MarmosetRIKEN20
Quantify intersubject variabilities in marmoset brain

Significant bias and uncertainty exist in marmoset stereotactic positioning
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Abbreviations:
AC-PC: Anterior commissure-posterior commissure
BBR: Boundary-based registration
Cau: Caudate nucleus
CIFTI: Connectivity InFormatics Technology Initiative
COV: Coefficient of variation
CSF: Cerebrospinal fluid
CT: Computed Tomography
FEF: Frontal eye field
FLIRT: FMRIB’s Linear Image Registration Tool
FMRIB: Functional Magnetic Resonance Imaging of the Brain
FNIRT: FMRIB's Nonlinear Image Registration Tool
FOV: Field-of-view
GIFTIl: Geometry format under the Neuroimaging Informatics Technology Initiative
HCP: Human Connectome Project
IPS: Intraparietal sulcus
MarmosetRIKEN20: RIKEN marmoset MRI & CT template
MBFR: Marker-based fiducial registration
MRE: Marker registration error
MRI: Magnetic Resonance Imaging
MSM: Multi-modal Surface-Matching
MT: Middle temporal area
NHP: Non-human primate
HCP-NHP: human connectome project non-human primate
NMI: Normalized mutual information
SN: Substantia nigra
T1lw: T1-weighted MRI
T2w: T2-weighted MRI
V1: primary visual cortex
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1. Introduction
Spatial coordinates are a fundamental framework for understanding the brain through mapping cells, architectures and
functions. Stereotactic devices are widely used in animal neuroscience and offer a coordinate to map and target specific
brain regions (Hardman and Ashwell, 2012; Palazzi and Bordier, 2009; Paxinos et al., 2012; Stephan et al., 1980; Yuasa et
al., 2010). Atlases in stereotactic coordinates are commonly based on a single subject’s ex-vivo brain histology data
(Bowden and Martin, 2000; Hardman and Ashwell, 2012; Paxinos and Franklin, 2019; Paxinos and Watson, 2017; Saleem
and Logothetis, 2006). The assumption behind the stereotactic approach is that each brain structure has consistent
coordinates across individuals relative to cranial landmarks (e.g., the bregma, the interaural line, the infra-orbital ridges)
(Horsley and Clarke, 1908). While this assumption may hold true in rodents that have low intersubject variability of brain
structure and function, it remains unclear in increasingly used small primates such as the New World monkey, common
marmoset (Callithrix jacchus). For example, the brain volume of marmosets is likely more variable than inbred laboratory
strains of rodents: the coefficient of variation (COV) of brain volume is 2.3% in mice (Ma et al., 2008), 3.2% in rats
(Hasegawa et al., 2010), and 6.6% in marmosets (Hayashi et al., 2021), and little is known about the positional variability
of marmoset cranial and brain landmarks. Intersubject variability of lissencephalic marmoset brains is likely low in terms of
neuroanatomy and functional areas but is largely unexplored. It is an intriguing question to ask how brain organisation
varies with primate behaviours (Mikula et al., 2007; Pomberger et al., 2019; Yokoyama et al., 2021; De Castro et al., 2021).

The anterior commissure-posterior commissure (AC-PC) coordinate system is another approach originally
developed for human neurosurgery and is now routinely used in human neuroimaging. The pioneering work of Tarailach
et al. (Talairach et al., 1988) used this approach for deep brain surgery in humans using X-ray ventriculography; brains
were standardised to a set of coordinates based in part on the distance between the two landmarks. Reorientation and
rescaling of the brain using these intracerebral landmarks was useful to reduce brain variability in size and shape. The
origin of AC-PC coordinates is defined in relation to the AC (e.g., its centre or posterior margin) where it intersects the
midsagittal plane. The approach was elaborated by improved neuroimaging techniques in particular, magnetic resonance
imaging (MRI), which increased the accuracy of brain localization and targeting in both clinical and basic neuroscience.
Compensation for subject variability was also elaborated by using automated registration of brain with linear and non-
linear algorithm (Evans et al., 1992; Fonov et al., 2011), yielding the Montreal neurological institute (MNI) 152 human
template, which is widely used in human neuroimaging. An analogous population-based template and atlas were also
developed using MRI in macaques using MRI (Frey et al., 2011; Rohlfing et al., 2012; Seidlitz et al., 2018). Similar approach
was also very recently applied for rodents using ex-vivo data at Allen Institute for Brain Science (AIBS) (Hawrylycz et al.,
2011; Kuan et al., 2015; Wang et al., 2020).

Neuroimaging-based systems use all structural features (grey matter, white matter, CSF) for registration across
subjects but in practice rarely achieve precise alignment of human cerebral cortex owing to the complexity and variability
of cortical folding. This has been addressed by accurate cortical segmentation and surface reconstruction by treating the
cortex as a 2D sheet-like structure (Dale et al., 1999; Van Essen and Maunsell, 1980). This approach has significantly
improved standardisation of cortical anatomy and evaluation of folding pattern and cortical thickness. Glasser et al.
(Glasser et al., 2013) further developed a ‘grayordinate’ system which takes into account both the 2D topology of the
cortical sheet (ignoring for the moment its finite thickness) and the 3D-volume structure of globular deep brain grey
matter structures. A further advance was to apply areal-feature-based alignment using myelin content and fMRI-based
resting state networks, which enabled successful definition of cortical areas in in-vivo human brains (Glasser et al., 2016a).
Neuroimaging also triggered development of sophisticated targeting systems of brain areas for neurosurgery. However, it
has not been established whether a comparably complicated neuroimaging pipeline is needed for a small-brained primate
like the marmoset. The stereotactic and AC-PC horizontal planes have been suggested to be parallel to one another in
non-human primates (NHPs) (Risser et al., 2019; Saleem and Logothetis, 2006), but this has not, to our knowledge, been
critically evaluated. The marmoset’s cortex may be an intermediate between two extremes in mammalian systems
neuroscience (i.e., rodents and humans), but it remains unclear which approach is most suitable for achieving maximal
accuracy for neuroanatomical and functional targeting.

Here, we explore the variability of cranial landmarks, brain size, and cortical surface landmarks of marmosets to
investigate the impact of different coordinate systems and the accuracy of brain localization. Currently available brain
coordinate systems in modern neuroscience can be grouped into four types (Table 1): 1) stereotactic coordinates in 3D
space mostly based on ex-vivo brain and cranial landmarks in a single-subject (e.g., bregma or interauricular lines) and less
commonly in population and/or on the brain landmarks such as AC-PC and midsagittal lines, 2) standard coordinates in a
3D template space based on in-vivo neuroimaging volumes in population mostly oriented using the AC-PC line and
midsagittal plane but sometimes using cranial landmarks, 3) coordinates only for the cortical sheet using FreeSurfer based
on neuroimaging data, and 4) grey matter-based cortical surface and subcortical volume coordinates (grayordinate) based
on neuroimaging data. Rodents, without cortical convolutions, are commonly analysed in stereotactic coordinates created
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in a single subject (coordinate type 1), whereas recent studies suggest that humans and macaques with cortical folding are
most accurately analysed in grayordinate system (type 4) (Autio et al., 2020; Donahue et al., 2016; Glasser et al., 2013;
Hayashi et al., 2021; Van Essen et al., 2012). We developed a multi-modal marmoset brain targeting system with
submillimeter accuracy by utilising a non-invasive head holder, multi-modal marker (Ose et al., 2019), robust image
registration initialization using marker-based fiducial registration (MBFR), fine-tuning using a powerful cross-modal
registration tool, boundary-based registration (BBR) (Greve and Fischl, 2009), and an analysis pipeline for grayordinates
(HCP-NHP pipeline) previously applied in other primate species (human, chimpanzee, macaque) (Autio et al., 2020;
Donahue et al., 2016; Glasser et al., 2013; Hayashi et al., 2021). Multi-modal cranial bone, brain template and atlases of
the marmoset in the grayordinate system (“MarmosetRIKEN20"”) were generated. We also examined the intersubject
variability of ‘gold-standard’ stereotactic coordinates and the reproducibility of stereotactic positioning using a
stereotactic device in marmosets and evaluated how these are different from AC-PC coordinate system of
MarmosetRIKEN20. We demonstrate significant intersubject variability in location of cranial landmarks and cortical
surfaces, indicating a need for subject-wise targeting. We also demonstrate a robot-guided neurosurgery with
submillimeter accuracy in targeting deep brain structures. We discuss registration accuracy, anatomical variability,
templates and atlas, bias between stereotactic and AC-PC coordinates, and neuroimage-based targeting in marmoset.

Table 1. Types of brain coordinates used in neuroscience in rodents, non-human primates, and humans.

Type of brain Landmarks Data used Subject(s)  References
coordinates
1. Stereotactic cranial landmarks Anatomy and Individual Rodents (Paxinos and Franklin, 2019; Paxinos and
(bregma, auditory histology Watson, 2017), Marmoset (Hardman and Ashwell,
canals, infraorbital Ex-vivo MRI 2012; Palazzi and Bordier, 2009; Paxinos et al., 2012;
line) with an origin of Stephan et al., 1980; Yuasa et al., 2010; Woodward
bregma or mid- et al., 2018), Macaque (Horsley and Clarke, 1908;
infraorbital point Paxinos et al., 1999; Saleem and Logothetis, 2006;
Hartig et al., 2021; Saleem et al., 2021)
Histology Population  Rodents (Kuan et al., 2015; Wang et al., 2020),
Ex-vivo MRI Marmoset (Majka et al., 2021)
3rd yentricle, AC-PC Anatomy and Individual Macaque (Francois et al., 1984; Percheron, 1997),
and midsagittal Histology Human (Mai et al., 2015; Talairach et al., 1988)
interhemispheric plane
with an origin of AC Anatomy and Population Rodents (Hawrylycz et al., 2011)
Histology
2. Brain volume (3D cranial landmarks Neuroimaging  Individual Marmoset (Mundinano et al 2016)
image-based) (bregma, auditory
canals, infraorbital
line) Population Marmoset (Hikishima et al., 2011; Risser et al., 2019;
Liu et al., 2021)
AC-PC Neuroimaging  Population Rodents (Papp et al. 2014), Macaque (Frey et al.,
midsagittal plane 2011; Rohlfing et al., 2012; Seidlitz et al., 2018),
Human (Holmes et al., 1998; Mazziotta et al., 2001;
Rohlfing et al., 2010; Shattuck et al., 2008; Tzourio-
Mazoyer et al., 2002)
3. Surface-based FreeSurfer surface Neuroimaging  Population Macaque (Van Essen and Maunsell 1980), Human
coordinates (Dale et al., 1999)
4. Grayordinates (3D  AC-PC, midsagittal Neuroimaging  Population Marmoset (Ose et al., 2022), Macaque (Autio et al.,

image and 2D
surface-based)

plane, grayordinates

2020; Donahue et al., 2016), Human (Glasser et al.,
2013)

2. Materials and methods

We used a multi-modal brain targeting system which includes multi-modal markers positioned relative to a head holder,
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MBFR and BBR for CT and MRI, and a grayordinate analysis pipeline based on high-resolution MRI images. The head holder
with multi-modal markers was designed for accurate cross-modal registration between CT and MRI images (Fig. 1). We
used a total of 28 common marmosets (Callithrix jacchus) (male N = 23, female N = 5, age 5.1 + 2.7 years and weight 378 +
59 g; values reported as mean * SD). For cross-subject standardisation, we generated multi-modal cranial bone, brain and
cortical templates of the marmoset (“MarmosetRIKEN20"), which were embedded in AC-PC coordinates and grayordinates
using MRI (N = 20) and CT data (N = 10) using the HCP-NHP pipeline. Three animal experiments were conducted: 1)
evaluation of the accuracy of the multi-modal brain targeting system and investigation of the intersubject variability of
cranial landmarks (N = 10) and cortical landmarks and subcortical structures (N = 20) including cortical sulci (intraparietal
(IPS), lateral and calcarine sulci), and subcortical structures, 2) assessment of the reproducibility of stereotactic positioning
(N =5), 3) a proof-of-concept application of the multi-modal brain targeting system to image-guided neurosurgery (N = 1).
All the MRI images in this article were obtained using MRI scanner (3-Tesla, MAGNETOME Prisma, Siemens AG, Erlangen,
Germany) equipped with a custom-made 16-ch marmoset head coil (Hori et al., 2018). The animals were maintained and
handled in accordance with the recommendations of the United States National Institutes of Health. The study was
approved by the Institutional Animal Care and Use Committee of the RIKEN Institute in Kobe (MAH28-08).

2.1 Experiment 1 — registration accuracy of the multi-modal brain targeting system.

The registration accuracy of the multi-modal brain targeting system was evaluated using CT and MRI. In each animal, the
two scans were performed on the same day on a total of ten marmosets (male N = 7, female N = 3, age 4.0 + 2.2 years,
weight 354 + 33 g) over a period of ~2 hours, during which the custom-made plastic head holder with the multi-modal
marker was attached to the head. The animals were pretreated with an intramuscular injection of ketamine (30 mg/kg)
and dexmedetomidine (5.0 pg/kg) plus atropine sulphate (50 pug/kg). After sedation and respiration were stabilised, the
anaesthesia level was maintained with inhaled isoflurane (0.5 %), and intravenous infusion of dexmedetomidine (5.0
ug/kg/hr). Physiology was monitored using a pulse oximeter (7500FO, Nonin, MN, USA); pulse (120 bpm/min) and oxygen
saturation (94 ~ 98 %) were maintained by adjusting the flow rate of anaesthetic gas. Rectal temperature was monitored
(Model 1030; SA Instruments, Inc., Stony Brook, NY, USA), and maintained at around 34°C using a custom-made warm
water circulation system.

The custom-made plastic head holder with the multi-modal marker consisted of the marker container (Fig. 1a)
and head holder (Fig. 1b), which were designed using a 3D software (Rhinoceros 3D v5.0, McNeel & Associates, USA) and
produced using a 3D printer (Agillista, Keyence, Osaka, Japan). A compact stereotactic device that couples to the head
holder and scanner gantry that we use was also produced (Supplementary Fig. S1). The cylindrical container had outer
dimensions of 3.2 mm diameter and 3.55 mm length, inner dimensions of 2.0 mm diameter and 2.0 mm length, and the
cap dimensions were 3.2 mm diameter and 0.45 mm length. The container was filled with Tungsten solution (lithium
heteropolytungstate [LST]) (Ose et al., 2019) with density (1.9 g/mL) adjusted to be close to the density of cortical bone
(White et al., 1989). To prevent evaporation of the liquid, the container was sealed with a cap using a UV-curable resin
(Bondic®, Laser Bonding Tech, Inc., Aurora, ON, Canada). However, due to the small size of the marker container and the
high viscosity of the marker solution, it was challenging to avoid inclusion of air bubbles that reduced the accuracy with
which the marker centroid could be determined. Since MBFR requires a minimum of three non-coplanar markers, we
included at least six marker containers to ensure a sufficient number of good markers. The shape of the head holder (Fig.
1b) was based on the MR image of a marmoset (male, age 5.1 years, weight 407 g) that represented one of the largest
head sizes in our marmoset population (N = 10). To efficiently place the markers around the brain, marker containers were
placed so that any combination of three markers was not coplanar (Fig. 1b, yellow cylinders). The head holder was fixed
on the animal’s cranium using 8 to 12 resin screws (RENY Pan head machine screw M2.6, SUNCO Industries co.,ltd, Japan)
(length: 2-8 mm) tightened to the skin/cranial bone. Before this procedure, the screw points in the skin were locally
anaesthetised (lidocaine, 2%, 0.05 ml). This procedure was relatively noninvasive and the skin and bone were not
noticeably damaged after removal of the head holder.
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Figure 1. Design and construction of non-invasive head holder equipped with multi-modal markers.
(a) A multi-modal marker container (outer diameter 3.2 mm, inner diameter 2.0 mm). (b) A head holder with six markers (yellow
cylinders) (left) was fixed to the marmoset’s head noninvasively (right).

After the head-holder was attached, the subject was transported to the MRI scanner (3-Tesla, MAGNETOME
Prisma, Siemens AG, Erlangen, Germany) equipped with a custom-made 16-ch marmoset head coil (Hori et al., 2018). T1-
weighted (T1w, MPRAGE sequence, TR = 2200 ms, TE = 2.58 ms, Tl = 700 ms, flip angle = 8°, averages = 3, scan time = 17.8
min, isotropic voxel size = 0.36 mm, FOV = 70 x 59 x 46 mm) and T2-weighted (T2w, SPACE sequence, TR = 3000 ms, TE =
558 ms, turbo factor = 160, averages = 1, scan time = 6.2 min, isotropic voxel size = 0.36 mm, FOV = 70 x 59 x 46 mm)
images were acquired. Next, the animals were transferred from the MRI to the CT. CT was performed on an animal micro
CT scanner (R_mCT2, RIGAKU, Japan). The scan parameters were: X-ray voltage of 90 kVp, tube current of 0.2 mA, FOV =
diameter 73 mm x height 57 mm, and acquisition time 2.0 min. The CT data was reconstructed (isotropic voxel size = 0.12
mm, matrix =512 x 512 x 512) with the Feldkamp cone-beam algorithm (Feldkamp et al., 1984). The CT scanner was
calibrated to Hounsfield units so that the output images have a value of -1000 for air and O for water. This calibration
allows us to obtain CT values of -30 to -70 for fat, 20 to 100 for soft tissue, and >1000 for bone (Lev and Gonzalez, 2002).

2.2 Experiment 2 — accuracy and reproducibility of stereotactic positioning

Previous studies have not reported the reproducibility of ‘gold-standard’ stereotactic positioning in marmosets. We
carried out a rigorous assessment of the bias and reproducibility of stereotaxic positioning using CT imaging (2 female and
3 male, age 5.7 £ 2.4 years, weight 420 + 42 g). Marmoset heads were fixed to the stereotactic device (Fig. S1), which was
custom-constructed to adapt the small bore and FOV of our animal CT scanner (bore diameter = 19 cm, FOV diameter =
7.3 cm). The design of this device was based on commonly available ones (Hardman and Ashwell, 2012; Palazzi and
Bordier, 2009; Stephan et al., 1980; Yuasa et al., 2010) and allows secure fixation of the marmoset cranium with ear bars
that were firmly inserted into the external auditory canals, eye bars placed above the orbital bones and tooth bars that
pushed the upper jaw up to keep tight against the eye bars. This fixation enabled horizontal zero and anterior-posterior
zero planes to be perpendicularly oriented with respect to the stereotactic device (Fig. S1a). The tip of the ear bar was set
to 2.4 mm diameter, based on the diameter of the external auditory canal (~¥2-3 mm) (Kurihara et al., 2019) (Fig. S1c). The
animal’s head was fixed to the stereotactic device with ear bars, mouth/tooth bar, and eye bars by an expert
experimenter (A.K.) and then CT scanning of the animal’s head and stereotactic device was performed (without the head
holder) (Fig. S1d). Then the animal’s head was removed from the scanner gantry and stereotactic device. We repeated the
same procedure (positioning, scanning [a 2-min scan], and removal) five times during one session for each animal (a total
session duration =1 hour). During these experiments the animals were deeply anaesthetised.

2.3. Experiment 3 —image-guided neurosurgery

The multi-modal brain targeting system was applied to image-guided neurosurgery in marmosets, and its spatial accuracy
to target deep brain structures was evaluated. Specifically, the aim of the surgery was to insert a guide cannula into the
caudate nucleus (Cau) or substantia nigra (SN) to administer a-synuclein to induce Parkinson’s Disease-like symptoms in
marmosets (Eslamboli et al., 2007; Shimozawa et al., 2017).
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Pre-surgery, MRI and CT experiments were performed to guide surgical planning: MRI was used to identify target
areas (Cau and SN) and to determine the projection trajectory for surgical operation (Fig. 10a) and reconstruction of
cranial surfaces. CT imaging was used to reconstruct the cranial surface and identify initialization landmarks. During MRI
and CT scanning, the subject was attached to the non-invasive head holder and registration between images was
performed with multi-modal markers as described above.

For surgery, the animal was first anaesthetised with a combination of 0.12 mg/kg medetomidine (0.12 mg/kg),
midazolam (0.6 mg/kg), and butorphanol (0.8 mg/kg) (i.m.). The anaesthesia level was maintained with a half volume of
the initial anaesthesia dose every two hours. The head of the animal was fixed in the stereotactic cassette of the
microsurgical neuronavigation robot (Brainsight, Rogue Research Inc., Montreal, Canada). The robotic components were
calibrated in a registration step beforehand (e.g., between two cameras, followed by between the cameras and surgical
robot arm). After incision of the skin over the cranium, two cranial landmarks were identified both in a real space with the
robot’s laser pointer and in the CT image and used for initialising the registration between the surgical field and the CT
image. Then a cranial surface was reconstructed from a point cloud dataset that was scanned using the robot’s laser
pointer. Using the CT, the cranial bone was segmented and used to create the CT image-derived cranial surface. The two
surfaces were co-registered to each other using the robot’s computer. The target points were defined in the individual
brain’s real physical AC-PC native coordinates (SN: X, Y,Z=2.2,-5.6,-4.9 mm, Cau: X, Y, Z=3.2,-0.3, 1.9 mm) and the
coordinates were registered to robot’s coordinates. The trajectories of the insertion needle were planned using the
robot's controller to define appropriate entry holes and paths for SN and Cau. The cranium was drilled to make these two
entry holes (w/ diameter of 1 mm), placed in the medial frontal and parietal areas, to insert guide cannulas into the Cau
and SN, respectively. The planned trajectories avoided passing through the lateral ventricles so as to avoid dislocating or
deforming the brain (Starr et al., 2010). The dura was pierced with a 26 ga needle, followed by insertion of the guide
cannulas and needles into the brain at a velocity of 0.01 mm/sec. The inserted guide cannulas were immobilised to the
cranium using resin and the scalp was sutured. The anaesthesia was reversed with atimepazole (antisedan, 0.35 mg/kg,
i.m.). All surgical procedures were performed in a sterilised room using sterilised instruments.

Post-surgery, an MRI experiment was performed to evaluate the position of the cannulae in relation to the target
(Cau or SN). Because the head together with the attached cannula was larger than the inner size of the marmoset head
coil, the scan was performed using a larger 24-channel head coil originally designed for macaque monkeys (Autio et al.,
2020). Scanning parameters for the acquired Tiw MPRAGE were TR = 2200 ms, TE = 2.23 ms, Tl = 700 ms, flip angle = 8°,
averages = 6, scan time = 35.0 min, isotropic voxel size = 0.50 mm, and FOV = 56 x 101 x 97 mm. During MRI, anaesthesia
was maintained and physiology monitored following the procedures described above (see section 2.1.).

2.4. Registration workflow between coordinate systems

As described in the introduction, our primary aim was to establish a multi-modal brain targeting system to enable precise
registration between coordinate systems (Fig. 2). The CT images were preprocessed to precisely register to MRl images
using MBFR and BBR (Fig 2a, left column). The MR images were processed using the HCP-NHP pipelines (Fig. 2a, right
column) (Donahue et al., 2016, Hayashi et al., 2021) (https://github.com/Washington-University/NHPPipelines), which
includes three structural pipelines (PreFreeSurfer, FreeSurfer, and PostFreeSurfer) to generate cortical surfaces models of
each marmoset hemisphere and register them to a standard grayordinates meshes in CIFTI (Connectivity Informatics
Technology Initiative) format (Fig. 2d), a data file format recently standardised to make it easier to work with brain data
from multiple disjoint grey matter structures at the same time only including cerebral cortices and other grey matter
structures and excluding those not of interest (medial wall, white matter, cerebrospinal fluid) (Glasser et al., 2013).

The CT image was aligned to the T2w image in MRI scanner coordinates using MBFR, followed by fine tuned
registration with BBR. The workflow of MBFR begins by initial alignment of the original CT to the original T2w image using
point registrations (Arun et al., 1987; Kobsch, 1976; Ose et al., 2019), followed by fine-tuning using BBR which uses
bone/soft-tissue boundary information of CT in the co-registration process to T2w. For MBFR, each marker’s coordinates
in each CT and MRI was identified by calculating the marker centroid after thresholding and binarization for classification
of marker and background. The marker coordinates for both CT and T2w were used for registration between CT and T2w
using a Kabsch algorithm for point-based registration (Kabsch, 1976). The initial transformation matrix from CT to T2w and
resliced CT volume (initialised CT) were generated. We used a custom script, ‘point_reg.py’ for running MBFR, which is
made publicly available (https://github.com/RIKEN-BCIL/MultimodalRigidTransform). Then, for BBR, the initialised CT
image was threshold at a value of -250, so that images included voxels with soft tissues and bones, then segmented using
FSL FAST, and the output of the bone segmentation was fed as a boundary prior into the BBR registration to T2w (in AC-PC
native coordinates). The default value of the BBR slope (-0.5) was used. For BBR between CT and T2w, we used ‘epi_reg’ in
FSL by specifying CT volume as <whole head T1w image> and T2w image as <EPI image> of epi_reg inputs. We used the
T2w for registering CT to MRI images, based on a preliminary analysis that showed the T2w to work better than the T1lw
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because T2w has clear contrast both at the inner and outer boundary of cranial bone. For evaluation of registration, the
minimum cost of FSL BBR was calculated using a schedule file (SFSLDIR/etc/flirtsch/measurecost1.sch). The ‘ground truth’
stereotactic coordinates were determined based on the CT image-derived cranial landmarks in each animal (image-based
stereotactic coordinates, Fig. 2c), in which the horizontal zero plane passes through both sides of the infra-orbital ridge
and the interaural line (the centres of the external auditory canal), and the origin is the point where the interaural line
intersects the midsagittal plane (Fig. 2c). To evaluate rotation and translation bias between stereotactic and AC-PC
coordinates (Fig. 2b,c), the CT image was also manually aligned using FSL Nudge to ‘ground truth’ image-based
stereotactic coordinates using cranial landmarks (i.e., the external auditory canal and infra-orbital margin) and resliced in
the stereotactic coordinates in dimensions of X, Y, Z = 254, 254, 136, isotropic voxel size of 0.2 mm, and originat X, Y, Z =
25.4,-15.4, -4.4 mm (process #4 in Fig. 2b). These ‘ground truth’ image-based stereotactic coordinates were also used as a
reference coordinate for measuring the systematic bias and the reproducibility of manual stereotactic positioning (see
2.7).

In the initial step of MRI preprocessing, PreFreeSurfer pipeline, the original T1w and T2w images (in MRl scanner
coordinates) were aligned to the individual’s AC-PC native coordinates (Fig. 2b) using a rigid-body transformation (degrees
of freedom = 6) with FLIRT in FSL (FMRIB’s Linear Image Registration Tool). The AC-PC line was defined as a line connecting
the centre positions of the AC and PC (Schaltenbrand et al., 1977). A CT image in AC-PC native coordinates was generated
by applying the transformation matrix (converting original T2w to AC-PC coordinates, Fig. 2, dashed arrow #1) to CT
volume realigned to the original T2w by MBFR and BBR (see above) and resampling with spline interpolation. The
PreFreeSurfer pipeline calculated the non-linear registration from the T1w in the AC-PC native coordinates to the AC-PC
MarmosetRIKEN20 template coordinates described below (Fig. 2, dashed arrow #2) using FNIRT in FSL
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT) and species-specific configuration that scaled size-dependent variables
(Hayashi et al., 2021). The linear transformation of original to AC-PC native was combined with a warpfield from AC-PC
native to the template to form a single warpfield from the original scanner coordinates to the template, which was then
applied to the original CT image with spline interpolation to generate a CT image in the AC-PC template coordinates.

The MarmosetRIKEN20 template was created from 20 marmoset (20 male, age 5.5 + 2.8 years, weight 380.0
61.0 g) scans using high-resolution T1w images and non-linear registration between subjects using FNIRT. The registrations
were iterated three times, with ‘de-drifting’ after each iteration, i.e., removal of the ‘drift’ in mean spatial locations that
can occur with registration (Glasser et al., 2016b) in order to approximate the original locations of the marmoset brain.
The resultant T1w template volume was embedded in the AC-PC coordinates with dimensions of X, Y, Z = 254, 254, 136,
isotropic voxel size of 0.2 mm and origin at X, Y, Z=25.4, -26.4, -14.8 mm.

The FreeSurfer pipeline used FreeSurfer ver. 5.3-HCP and the T1w and T2w volumes aligned in AC-PC native
coordinates for brain signal homogeneity correction, segmentation of white and grey matter and reconstruction of the
cortical white and pial surfaces. For this stage, the marmoset brain was scaled five times larger than its original size, so
that FreeSurfer could perform high resolution estimation of the subcortical segmentation and then the white matter
surfaces. The images were corrected for signal inhomogeneity using a script IntensityCor.sh using fsl_anat in FSL and
FreeSurfer normalisation algorithms, mri_normlize. Subcortical segmentation was done using a customised probabilistic
template of marmosets using FreeSurfer Gaussian Classifier Atlas (Fischl et al., 2002). The white matter segmentation was
further tuned using customised white matter skeletons (Autio et al., 2020; Hayashi et al., 2021) that significantly improved
the white surface estimation, particularly in the thin white matter blades in the anterior temporal and occipital lobes. The
white surface was estimated using a FreeSurfer program customised for the HCP (mris_make_surface, in FreeSurfer 5.3-
HCP) (Glasser et al., 2013) and then registered across subjects using the FreeSurfer mris_register using the marmoset
specific option of distance (= 20, default is 5) and maximum search angle (= 50, default is 68) to adjust for the
lissencephalic marmoset brain (Hayashi et al., 2021). As a reference for surface registration, a custom population average
surface curvature map was created for marmosets using the mris_make_template (Fischl et al., 1999). Then, the brain
volumes and surfaces were rescaled back to the AC-PC native coordinates, and the pial surfaces were estimated using
high-resolution T1lw and T2w volumes. We used mris_make_surface with the optional argument of max cortical thickness
=3 mm. During pial surface estimation, the corpus callosum was labelled as an area with absent pial surface to avoid the
false sulci formation in the retrospleneal region. The PostFreeSurfer pipeline converted the FreeSurfer-based native
surface meshes to GIFTI format and resampled them to 164k, 32k, 10k, and 4k meshes in the GIFTI format. The FreeSurfer-
based anatomical surfaces (pial and white) were non-linearly warped in 3D to the standard AC-PC template coordinates.
The subcortical segmentations of 19 parcels were resampled to a volume with a spatial resolution of 0.8 mm isotropic. The
initial cortical surface registration of FreeSurfer concatenated with a group registration across left and right hemispheres
(Van Essen et al., 2012) using a multi-modal Surface Matching (MSM) and a folding map (i.e., FreeSurfer ‘sulc’) (Robinson
et al., 2014; 2018). The individual to group average registration was performed using a gentle nonlinear registration
(MSMSulc) based on folding maps (FreeSurfer ‘sulc’) to an average folding map created from 20 marmoset brains. The
Tlw divided by T2w image was used for generating cortical myelin maps, after removal of any low spatial frequency



https://doi.org/10.1101/2022.01.31.478477
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478477; this version posted February 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
intensity biases using the smoothed (sigma=3mm) difference with a reference myelin map (Glasser et al., 2013; Glasser
and Van Essen, 2011). All the surface metrics (myelin, thickness, sulc, curvature) were resampled into meshes of 164k,
32k, 10k, and 4k surfaces aligned by MSMSulc surface registration. The 4k meshes of the left and right hemispheres were
combined to make CIFTI grayordiantes consisting of 2840 vertices in each hemisphere (excluding medial wall surface) and
4056 voxels in the subcortical structures (Fig. 2d). The mean spacing of vertices in the 4k mesh was 0.62 + 0.18 mm on the
averaged midthickness surface of the AC-PC template coordinates; median cortical thickness was 1.6 mm (max = 2.6 mm,
min = 0.5 mm), and average cortical surface area was 9.9 + 0.5 cm? (Hayashi et al., 2021).

10


https://doi.org/10.1101/2022.01.31.478477
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478477; this version posted February 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Scanner Coordinate

Original CT ~ Original MRl ———_

l !

Identification of Marker Coordinates

!

Marker-based FR (MBFR)
(CT to MR reference)
|

Reslicing

— HCP-NHP Pipeline

PreFreesurfer
Align + Average

Initial Registration (CT to AC-PC Coordinate)

Fine Tune with BBR

AC-PC Native

Coordinate l
CTinAC-PC MRI in AC-PC
Native Space Native Space

l ]
|

Manual Cranium Landmark-based Registration
(CT to Stereotaxic Coordinate)

Image-based {4 1=
Stereotactic Coordinate i
t
CT in Stereotactic MRI in Stereotactic
Native Space Native Space

AC-PC Native Corelifféte

i’

Image-based
Stereotactic Cooudinate

4,

\ Infra-orbital ridge

Brain-size Specific AC-PC
Alignment

FNIRT-based Brain Extract
}

T1w in Native Space T2w in
Initial Native Space

BBR Cross-modal Registration
(T1w and T2w in Native Space)

Bias Field Correction Using
sqri(T1w*T2w)

AC-PC Template
Coordinate

..... ﬂiz;“’

Nonlinear Registration to AC-PC
Template Space
(MarmosetRIKEN20)

|
: Freesurfer
Surface Reconstruction

Grayordinate l

* PostFreesurfer
Surface Registration &
Resampling

Convert to CIFTI

- Grayordinates



https://doi.org/10.1101/2022.01.31.478477
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478477; this version posted February 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 2. Registration pipeline between coordinates of scanner, anterior-posterior commissure (AC-PC), stereotactic, and
grayordinates.

(a) The workflow describes registration of CT and MR images between different coordinate systems. It contains three main processes: 1)
alignment between subject’s CT and MR images, 2) cortical surface reconstruction and registration to AC-PC coordinates using MRI
images and the HCP-NHP pipelines, 3) alignment to stereotactic coordinates using the CT image-derived cranial landmarks. From left top:
the original CT image was first registered to the original MRI image using a marker-based fiducial registration (MBFR). Then, the CT was
transformed to the AC-PC native coordinates and to the AC-PC template coordinates (#1 and #2). On the top right, the original MR image
was registered to the AC-PC coordinates in native and the template coordinates using the HCP-NHP pipeline, which generates three
transformations: rigid-body matrix (dashed arrows #1), nonlinear warpfield (#2), and resampling to the 4k vertices of the standard-mesh
marmoset cortical surface plus the subcortical parcellation (19 parcels, 0.8 mm isovoxels). (#3). The matrix #1 is a linear (rigid-body)
registration between the scanner and AC-PC coordinates, the warpfield #2 is a non-linear registration between the AC-PC native and the
template coordinates. Finally, the AC-PC-aligned CT in native coordinates was aligned to the image-based stereotactic coordinates using
cranial landmarks including external auditory canals and infra-orbital ridge (#4). (b) A midline sagittal Tlw image aligned in the AC-PC
native coordinates. (c) Maximum intensity projection of the CT image aligned in stereotactic coordinates, which are orthogonal to the
horizontal zero plane passing through both sides of infra-orbital ridges and the interaural line. (d) The midthickness surface vertices of 4k
CIFTI ‘grayordinates’ in the AC-PC template coordinates. Abbreviations: HCP-NHP, non-human primate human connectome project; BBR,
boundary-based registration.

2.5. Analysis of accuracy of the multi-modal brain targeting system

The CT and MR image alignment accuracy was calculated using marker registration error (MRE), which is determined as
the root-mean-square of distances (d) between the centroid of each corresponding marker point (1,2,,...n) in the
registered CT vs reference MR images.

MRE = J% (d2 + dZ +-- d2) Eq. 1

Although there are known limitations in the accuracy of MRE estimation (Danilchenko and Fitzpatrick, 2011; Fitzpatrick,
2009), in our experience it provides a valuable index for the registration accuracy and comparison across registration
methods (Ose et al., 2019). The MRE was compared between MBFR, normalised mutual information (NMl), BBR and a
combination of MBRF and BBR. The registration was performed using either of two ways to specify the region of interest:
full FOV and a partial FOV thresholded to remove background (partial FOV and threshold). Thresholds of 2 and -1000 were
used in MRI and CT, respectively, to set background (air) to zero. The partial FOV tightly enclosed the marmoset head.
Registration was reported as ‘failed’ when the MRE was greater than 1 mm, since errors this size are unacceptable for
many purposes. The probability of registration failure was calculated by dividing the number of failed trials by the total
number of registrations. The failure probability was evaluated and compared across different registration methods.

2.6. Analysis of intersubject variability of brain and cranial landmarks

To evaluate intersubject variability of the cranial volume and shape, we investigated cranial contours in both AC-PC native
and AC-PC template coordinates. We also evaluated the pitch rotation angle (frontal downward direction) of the AC-PC
coordinates compared with the ‘true’ (image-based) stereotactic coordinates. The brain and intracranial volume were
obtained in AC-PC native coordinates from segmented Tlw and CT images, respectively. In addition, stereotactic surgery
reference (bregma) and cephalometric (inion, rhinion, and zygion) points were identified from the CT in the native AC-PC
coordinates, based on a previously described method (Paxinos and Franklin, 2019). The landmark variations were
displayed with respect to the average cortical white and pial surfaces generated from a large population of marmosets (N
= 20). We also calculated the maximum intensity projection of the CT images so that we could visualise where the bregma
is located and define the x-y plane of each subject.

We also investigated cortical surface landmark intersubject variability. Specifically, we focused on the
intraparietal sulcus (IPS) because it is a recognizable landmark in marmosets (Fig. 7b) (Chaplin et al., 2013; Paxinos et al.,
2012). We quantitatively defined the presence of the IPS based on the values of the FreeSurfer ‘sulc’ measure in each
subject’s 32k mesh, and identified the local minimum in a region of interest (IPS ROI), which comprises four intraparietal
areas (anterior intraparietal [AIP], medial intraparietal [MIP], lateral intraparietal [LIP], and ventral intraparietal [VIP]
areas). These intraparietal regions were created from a volume representation of the Paxinos atlas which was non-linearly
warped to the AC-PC template coordinates and mapped onto the surface (Paxinos et al., 2012). The IPS was considered to
be present if the minimum of sulc was lower than -0.37 in the ROI. The 3D coordinates of the vertex with the minimum
sulc was identified on the midthickness surface in the subject’s 32k native (AC-PC) coordinates. We also identified the
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coordinates of the calcarine and lateral sulcal terminations (extrema) in the T1w AC-PC native coordinates in all the
animals (N = 20), and calculated average and standard deviations.

We also evaluated the average and variability for the volumes of subcortical regions across subjects. The high-
resolution non-linear registration warp field was applied to the 11 subcortical atlas regions (amygdala, habenular nucleus,
inferior colliculus, internal pallidum, lateral geniculate nucleus, medial geniculate nucleus, nucleus accumbens, red
nucleus, stria terminalis, subthalamic nucleus) and embedded in the T1w AC-PC native coordinates of each animal. The
volume and the coordinate of the centroid was evaluated in each animal and the mean and standard deviation were
calculated across subjects (N = 20). Six distances between the landmarks including brain length, brain width, anterior-
posterior length of corpus callosum, anterior tip of frontal pole to anterior tip of temporal pole, anterior tip of temporal
pole to posterior tip of lateral sulcus, anterior to posterior tip of calcarine sulcus (see Supplementary Fig. S2) were also
evaluated across subjects.

2.7. Analysis of precision and reproducibility of stereotactic positioning

The reproducibility of manual positioning of the cranium within the stereotactic device (device-based stereotactic
coordinates) was investigated using repeated mounting (N = 5, n = 5; total 25 experiments) and bias was determined by
comparison with the ‘true’ (image-based) stereotactic coordinates. After each mounting, the marmoset head and
stereotactic device was scanned using CT. All the CT images were registered using a rigid-body transformation by
weighting the mask for the stereotactic device, resulting in the same location relative to the stereotactic device, which we
refer to as device-based stereotactic coordinates that include experimenter's fixation errors. Then, the error between
device-based and ‘true’ (image-based) stereotactic coordinates were estimated by using FSL Nudge and a rigid-body
transformation (a rotation and translation for each of three axes, see Fig. 4a). The mean and 95% confidence interval of
transformation parameters were calculated using averaged data of repeated positioning as a representative value for each
animal (N = 5) and analysed to assess the bias of device-based stereotactic coordinates by using a Wilcoxson signed rank
test. To evaluate reproducibility of the device-based stereotactic coordinates, the intraclass correlation coefficient (ICC,
type 1,1) (Shrout and Fleiss, 1979) of repeated measures of transformation parameters was calculated using the R package
“psych” (William, 2020).

2.8. Analysis of accuracy of neurosurgical localization

The operational accuracy (to insert a guide tube into the brain) was estimated by the target error defined as the distance
between the pre-operational plan in the SN and the postoperative trajectory of the guide cannula. The target location was
determined using the preoperative MR image, and the trajectory of the guide cannula was evaluated using the
postoperative MR image. The orthogonal distance between the preoperative target point and actual operative trajectory
was calculated to estimate the target error.

3. Results
3.1. Registration accuracy and precision between multi-modal images

The CT to MRI MRE (see Eq. 1) was compared among registration methods (NMI, BBR and MBFR) as shown in Figure 3. The
MRE was very small using MBFR w/o BBR (0.15 * 0.04), whereas those of software-based registrations (NMI or BBR) were
significantly larger using all FOV setups (p-values < 0.05, one-way repeated measures ANOVA) (Fig. 3a). The large MRE
errors (> 1.0 mm) can be ascribed to initialization failure (Greve and Fischl, 2009). Initialization failure probability (with a
threshold at MRE > 1.0 mm) was very high for software-based methods, ranging from 0.3 to 1.0 (0.7 in NMI and full FOV;
1.0 in NMI and partial FOV; 0.3 in BBR and full FOV; 0.7 in BBR and partial FOV), whereas it was zero using MBFR. The high
initialization failure of software-based methods may be ascribed to the sphere-like shape of the marmoset head. The
failed registration of BBR resulted in higher values of the minimum cost (> 0.8), whereas those of the successful
registrations were reasonably small (mean 0.56 + 0.06 in full FOV; 0.59 + 0.06 in partial FOV). When the BBR followed the
MBFR, there were no failures in any subjects, and it resulted in a small number of min costs (0.68 + 0.05). Importantly,
while this MBFR+BBR approach resulted in relatively higher values of MRE than with a MBFR only approach, this is likely
due to circularity in defining the MRE based on the MBFR landmarks, as the registration of the brain and cranium were
improved for MBFR+BBR compared with MBFR by visual inspection of all ten subjects (Fig. 3b,c). Therefore, these findings
demonstrate the robustness and accuracy of the MBFR+BBR approach as compared with software-only registrations.
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Figure 3. Comparison of accuracy and precision between registration methods.

(a) Comparison of the marker registration error (MRE) between normalized mutual information (NMI), boundary-based registration
(BBR) marker-based fiducial registration (MBFR) and MBFR followed by BBR methods. Registration between CT and MR images of
marmosets (N = 10) was performed with NMI and BBR using full and partial field-of-view (FOV), and MBFR. Note that MBFR provided
significantly smaller MRE in comparison to other approaches (p-values ** < 0.01, **** < 0.001). The threshold of failure was defined as 1
mm (dotted line). (b) The results of MBFR between CT and T2w. Note the small but clearly visible error in registration (yellow arrows) of
inner cranium boundary (red line) extends into the brain parenchyma, (c) MBFR followed by BBR tuneup shows more precise alignment
of cranium inner surface to the outline of cortical surface. Note also that the outer cranium boundary was also well aligned to the signal
loss boundary of the T2w (aqua arrows). Study ID: (CT: 19042302, MRI: A19042302).

Although the MBFR showed 100% success rate of the registration and alignment was fairly good, a careful
inspection revealed subtle (potential) misalignments at the cranium-brain interface in some of the subjects (Fig. 3b, see
magnified snippets). This is probably because accuracy of the marker-based registration should depend on the accurate
identification of the marker centroid (see section 4.1). To overcome this limitation, we applied a second stage of
registration using BBR which registers cranium boundary and head image and found excellent image alignment for brain
and cranium boundaries (Fig. 3c). Thus, two-stage registration using MBFR followed by BBR achieved the most robust and
accurate registrations between CT and MRI images.

3.2. Intersubject variability of cranial contours and coordinate bias between stereotactic and AC-PC space

The measured volume was 6,180 *+ 524 mm?3 and 6,912 + 470 mm?3 for brain and cranial cavity, respectively. The
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intersubject variability (coefficient of variation) was 8.5% and 6.8% respectively. Cranium contours were also highly
variable across subjects both in ‘true’ image-based stereotactic coordinates (Fig. 4a) and AC-PC native coordinates (Fig.
4b). Notably, the cranial positions in the image-based stereotactic coordinates (Fig. 4a) are significantly rotated from the
AC-PC native coordinates (Fig. 4b), with frontal regions downwards at an average pitch (rotation around X-axis) of 10.0 *
1.3° (N =10, p = 0.02). Rotation bias was also found in the roll (Y-rotation) albeit by a much smaller angle (0.6 £ 0.1°, p =
0.002) (see mid panel for coronal section in Fig. 4a), whereas bias in yaw (Z-rotation) was negligible (0.2 + 0.6°, p = 0.32)
(see right panel for axial sections in Fig. 4a). After non-linear registration across subjects, cranial contours were reasonably
well registered across subjects in the AC-PC template coordinates (Fig. 4c). There seems to be asymmetry of auditory
canals ‘with respect to’ the symmetric brain, as was shown by non-zero roll (0.6 £ 0.1°) and yaw (0.2 £ 0.6°) between
“true” stereotactic coordinates (i.e., symmetrical ear canal) and AC-PC template (i.e., symmetrical brain), which is likely
due to asymmetry of the auditory bone canals relative to the brain.
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Figure 4. Marmoset intersubject variability in AC-PC and stereotactic coordinates.
The cranial bone contours, obtained using CT (N = 10), are displayed in black lines (a) in the ‘true’ (image-based) stereotactic coordinates, (b)
the AC-PC native coordinates and (c) in the AC-PC template coordinates. The crosshair shows the origins (mid interauricular line in stereotactic
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and the centre of AC in AC-PC coordinates). Cranial position was tilted downwards (pitch) from AC-PC native coordinates to stereotactic
coordinates (10.0 + 1.3°, p < 0.0001), whereas roll, 0.6 + 0.1° and yaw 0.2 + 0.6°. Note that the cross-subject variability of the cranial contours
in stereotactic coordinates are relatively small in the areas close to the origin but large in the distant areas from the origin, particularly in the
dorsal convexity of the cranium. In contrast, the extent of the cross-subject variability is similar in the dorsal, ventral and fronto-occipital areas
in AC-PC coordinates. The cross-subject variability in the AC-PC template was smaller than the AC-PC native coordinates, suggesting successful
non-linear registration of the brain and cranium between subjects. Study ID: (CT: 19021301, 19022601, 19022602, 19022603, 19022701,
19022702, 19042301, 19042302, 19060401, 19060402)

3.3. Stereotactic positioning bias and reproducibility

The errors of manual positioning of the cranium are shown in Figure 5. When evaluated in the manually positioned device-
based stereotactic coordinates (Fig. 5a), the variability of the cranial contours is caused by both intrasubject (e.g.,
experimenter’s positioning reproducibility) and intersubject variability (e.g., animal’s cranial shape and size). Therefore,
the variability of the contours is not only found in the dorsal convexity of the cranium but also in the areas around the
auricular canals (Fig. 5a). In contrast, the contour errors in the image-based stereotactic coordinates almost exclusively
demonstrate intersubject variability and no intrasubject variability can be seen (Fig. 5b). Figure 5c shows the bias of the
manually positioned device-based stereotactic coordinates with respect to the ‘true’ image-based coordinates. There
were trends of rotation biases in pitch (1.6 £ 0.4°, p = 0.06) and roll (rotation in Y-axis) (1.1 £ 0.5°, p = 0.06), but not yaw
(rotation in Z-axis) (-0.2 £ 0.7°, p = 0.8) (Fig. 5c, left panel). These biases may be coming from the instability of the fixation
device at the skin and soft tissue in the orbital ridge bone and the auditory canal bone. Translation exhibited no significant
bias (Fig. 5c, right panel). The ICC (1,1), a measure of the intrasubject reproducibility, was poor in X-rotation (-0.11) and Z-
translation (0.33), moderate in X and Y translations (0.80 and 0.84, respectively) and excellent in Y and Z rotations (0.93
and 0.98, respectively) (Fig. 5e). The poor reproducibility in x-rotation and z-translation is likely due to the imperfect
accuracy in positioning the fixation device at the orbital ridges or to variability of the skin and soft tissue.
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Figure 5. The stereotactic positioning bias and reproducibility

(a) Cranial contours of five repeated positioning in five subjects in manually positioned device-based stereotactic coordinates. Each colour
indicates a subject’s cranial contour, and the crosshair is placed at the centre of the tip of the ear bar. The cranial contours demonstrated
variability both in intrasubject (e.g., experimenter’s positioning reproducibility) and in intersubject (e.g., animal’s cranial shape and size). Note
that the variability of the contours is particularly evident in the dorsal convexity of the cranium, which is distant from the ear canal. (b) Cranial
contours of five subjects in ‘true’ image-based stereotactic coordinates. Note that the locations of the cranial contours are highly variable
across subjects although the fixation points (ear canal and orbital ridge) are well colocalized across subjects. In (a) and (b), the colours indicate
different subjects. Inset denotes two lines in each colour, one for the outer cranium and the other for inner cranium boundary. (c) Bias of the
device-based stereotactic coordinates in rotations (left) and translations (right) relative to the ‘true’ image-based stereotactic coordinates (N =
5). (d) Intra-class correlation (ICC(1,1)) of rotations and translations of device-based stereotactic coordinates (N =5, n = 5, total 25
experiments).The error bars indicate the 95% confidence interval. Study ID: (CT: 19051001, 19082102, 19082103, 19082104, 19082105)

3.4. Intersubject variability of landmark locations, distances, and volumes of interest in AC-PC native coordinates

Intersubject variations of the positions of the bregma in top-to-bottom view of cranium are shown in Fig. 6 and other
cranial and cortical landmarks in Fig. 7a, respectively (N = 10). Among the investigated landmarks, the largest variation
was unexpectedly found in the bregma in the anterior-posterior direction (+1.0 mm, SD, Table 2, Fig. 6,7) in AC-PC
coordinates. This size of the variability is notable as it represents over 5% of the average marmoset brain length in AP-
direction (31 £ 0.8 mm, N = 10). Also we note that the shape of the bregma was highly variable across subjects (see Fig. 6
for maximum intensity projections of the cranium for all the subjects examined). In addition, moderately high variability
(£1.0-1.1 mm) was found in the inion and rhinion in the superior-inferior direction (Z) and the right zygion in the anterior-
posterior direction (Y).
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Figure 6. Variability of cranial sutures and bregma in marmoset.

Each panel shows the maximum intensity projection of CT images in the x-y plane (N = 9), demonstrating the coronal and sagittal cranial
sutures and the estimated location of bregma (black arrow). The lines indicate the y-axis in the midline (red line), x-axis of the interauricular
line (green) and AC origin (blue). The bregma was defined as the midpoint of the curve of best fit along the coronal suture (Paxino and Franklin
2019). Note that the coronal suture splits in some of the subjects (e.g., #3) and in other subjects turn sharply (e.g., #5, 6) just before midline,
which makes determining the bregma ambiguous based on extrapolation of coronal sutures from lateral to medial. The right panel of the
animal #9 shows a photograph of the dorsal view of exposed cranium and sutures. In one of the subjects (#10), cranial sutures and bregma
could not be reliably identified (data not shown). Study ID: (CT: 19021301, 19022601, 19022602, 19022603, 19022701, 19022702, 19042301,
19042302, 19060401)

Intersubject variation of cortical landmarks (i.e., IPS) is shown in Fig. 7b,c. Among all animals (N = 20), the IPS was
not identified in both hemispheres in all the animals: 5% of animals (N = 1) had IPS in both hemispheres, 10% (N = 2) only
in the right, 30% (N = 6) only in the left. The locations of IPS deepest points were variable across subjects (Fig. 7b and
Table 2, N = 20) variability was moderate in anterior-posterior direction (2SD = 1.2 and 1.6 mm in right and left
hemispheres, respectively), followed by left-right (25D = 1.0 and 1.0 mm), and inferior-superior (0.6 and 0.6 mm,
respectively) directions, corresponding to 4 - 5%, 4%, and 3% of the average brain lengths in each direction. An example of
the variability of IPS is shown in two representative individuals (Fig. 7c). In the animal with a clear IPS (Fig.7c, left panel),
the IPS was easily identifiable and the deepest point of cortical midthickness is easily identifiable (blue line), whereas in
subject #2 (Fig.7c, middle panel), identification of IPS was challenging, and the cortical midthickness (aqua) was relatively
smooth and shallow. Note that the deepest points of the IPS varied by approximately 0.5 mm in the vertical direction
when these two subjects’ midthickness surfaces were displayed over the cross-subject average volumes (Fig.7c, right
panel) after a warpfield from AC-PC native to the AC-PC template coordinates. We also assessed the location of the end of
the lateral fissure, anterior and posterior ends of the calcarine sulcus (Table 2). The variability of y-dimension of lateral
fissures were comparable with those of IPS, while variability of the coordinates of calcarine sulcus ends were slightly
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smaller in both native coordinates of AC-PC and stereotactic spaces (Table 2).

a Bregma Bregma Rhinion ’

~Rhinion

. Zygion
Zygion :
(ggﬂ) (Right)

Figure 7. Landmark variability across common marmosets.

(a) Cranial landmark (bregma, inion, rhinion, zygion-left, and zygion-right.) intersubject variability (N = 10) displayed on the AC-PC template pial
surface. (b) The deepest points of the intraparietal sulcus (IPS) and their intersubject variability displayed on the white matter surface of the
AC-PC template (white nodes, N = 20). The inset shows the macroscopic view of the ex vivo brain, demonstrating the IPS in both hemispheres.
(c) Midthickness surfaces in the AC-PC native coordinates in an animal with moderate IPS (left) and with negligible IPS (middle). The right panel
shows all the midthickness surfaces (N = 20) warped into the AC-PC template coordinates (right), demonstrating the cross-subject variability of
midthickness surfaces around IPS even after non-linear volume registration to the AC-PC template coordinates. Study ID: (CT: 19021301,
19022601, 19022602, 19022603, 19022701, 19022702, 19042301, 19042302, 19060401, 19060402, MRI: A19021301, A19022601, A19022602,
A19022603, A19022701, A19022702, A19042301, A19042302, A19060401, A19060402, A17051101, A17041201)
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Table 2. Intersubject variability of cranial and cortical landmark coordinates (N = 20)

Side AC-PC Native Coordinates Stereotactic Coordinates
X Y z X Y Z

Cranial
Bregma - -0.1+0.1 -7.0+1.0 10.0+0.3 -0.3+0.2 6.0+1.1 20.4+0.5
Inion - 0.1+0.1 -23.0+0.5 -3.0+1.1 -0.2+0.2 -12.0+0.7 10.5+1.2
Rhinion - -0.1+0.3 19.6+0.9 -3.2+1.0 0.1+0.2 29.9+0.8 29+0.5

L -15.1+0.4 -0.2+0.8 -10.0+0.5 -15.1+0.5 9.4+0.6 -0.4+0.1
Zygion

R 149+0.7 -0.1+1.1 -10.0+0.5 149+0.5 9.2+0.8 -0.3+£0.3
Cortical
IPS L -5.5+0.5 -10.3+0.8 55%0.3 -5.5+0.5 2.3+0.8 16.4+0.3

R 48+0.5 -10.0+0.6 5.6+0.4 4.8+0.5 2.5+0.7 16.4+0.3
Posterior tip of lateral sulcus L -7.8+0.6 -6.8+0.9 43+0.7 -7.7+0.6 5.5+0.8 14.7+0.8

R 7.8+0.5 -6.5+0.7 41+04 7.8+0.5 5.7+0.7 14.4+0.4
Anterior tip of calcarine L -1.8+0.3 -11.4+0.3 1.6+0.7 -1.8+0.3 0.5+0.3 129+0.4
sulcus

R 1.8+0.3 -11.5+0.3 1.7+0.2 1.8+0.3 0.4+03 129+0.2
Posterior tip of calcarine L -2.2+0.3 -20+04 -1.2+04 -2.2+0.3 -8.6+04 11.6+0.4
sulcus

R 2003 -20.2+0.3 -1.3+0.5 2.0£0.3 -8.7+0.4 11504

X, Y, and Z indicate the coordinates for cranial (N = 10) and cortical (N = 20) landmarks in the AC-PC native and stereotactic coordinates (mm;
mean = SD). Note that the left intraparietal sulcus (IPS) was identified in seven subjects and the right IPS in three subjects. The coordinates of
cranial landmarks were transferred from AC-PC native coordinates to stereotactic coordinates using the subject-specific warp file and the
cortical landmarks were transferred using the template warp file.

Intersubject average and variations in the volume of brain and subcortical structures are shown in Table 3. The
coordinates of the centre of the gravity in AC-PC native coordinates, as well as distances of the brain landmarks, are
shown. The results indicate that the overall subject variability in regional volume was 5 to 12% by coefficient of variation
(COV), and the variability in distance of several landmarks was 3 to 8%.

Table 3. The intersubject variability in volumes of brain and subcortical structures and distances of landmarks of interest
(N =20)

Coordinates of center-of-gravit
mean 1 SD (mm3 / mm) & v

Volumes / distances of interest Side (COV %)
X Y z
Whole brain - 7683.2 £ 440.2 (6) - - -
Amygdala L 43.2£2.3(5) -5.2+0.2 -0.4+0.4 -5.2+0.3
R 42.8+2.0(5) 5.2+0.2 -0.4+0.3 -5.2+0.3
Habenular nucleus L 1.5+0.1(8) -0.9+0.1 -6.5+0.3 1.2+0.1
R 1.4+0.1(8) 09+0.1 -6.5+0.3 1.2+0.1
Inferior colliculus L 8.3+0.5(6) -2.6+0.1 -10.3+0.3 -2.7+0.3
R 8.4+0.7 (8) 25+0.1 -10.2+0.2 -2.7+0.3
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3.5. Averaged AC-PC template coordinates of marmoset brain and cranium

Using the multi-modal brain targeting system we generated multi-modal MRI (N = 20) and CT (N = 10) AC-PC templates
(Fig. 8). These templates provide detailed positional relationships between the brain and cranium. Interestingly, the CT

template also reveals physiological calcifications, which were colocalized in the globus pallidus and dentate nuclei
bilaterally in the MRI template (Fig. 8a, green and cyan arrow). Figure 8b shows the subcortical parcellations of

MarmosetRIKEN20 (version 1.0), which included 21 subcortical grey matter regions (caudate, putamen, external segment
of globus pallidus, internal segment of globus pallidus, nucleus accumbens, stria terminalis, claustrum and end-piriformis,

thalamus, habenular nucleus, red nucleus, subthalamic nucleus, substantia nigra, superior colliculus, inferior colliculus,

lateral geniculate nucleus, medial geniculate nucleus, amygdala, hippocampus, periagueductal grey, dorsal raphe nucleus,
cerebellar cortex) and anterior and posterior commissures. The templates also included T1w-divided-by-T2w myelin map

(Fig. 8c) and surface version of the marmoset cortical parcellation atlas of Paxinos, Watson, Petrides, Rosa and Tokuno

(Paxinos et al., 2012) including 116 cortical areas (Fig.8d). The distribution of the cortical myelin showed that high myelin
signal is colocalized with the parcellations of MT, somatomotor (4ab) and somatosensory (3a, 3b) areas and visual cortex
(V1), and modestly high myelin with the frontal eye field (FEF, area 8av) (Fig. 8e).
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Figure 8. The MarmosetRIKEN20 multi-modal templates (version 1.0) in AC-PC and grayordinates.
(a) The multi-modal templates with T1w (greyscale, N = 20) overlaid with thresholded CT (red-yellow, N = 10). Each subject’s CT image
was registered to T1w in AC-PC native coordinates using the MBFR+BBR, warped to the AC-PC template coordinates using an MRI warp
field, and averaged across subjects. Note that physiological calcifications were found bilaterally in the globus pallidus (green arrow, z =
0) and dentate nucleus (cyan arrow, z = -5). (b) the subcortical grey matter atlas of MarmosetRIKEN20 including 21 subcortical grey
matter regions, and anterior and posterior commissures (colour coded, outlined by black line) overlaid on the T1w template image
(grey colour). Readers can find annotations of each region by accessing the data at BALSA database. (c) T1w divided by T2w myelin map
overlaid on the average midthickness surfaces of MarmosetRIKEN20. (d) Surface version of marmoset cortical parcellation atlas of
Paxinos, Watson, Petrides, Rosa and Tokuno (Paxinos et al., 2012) including 116 cortical areas. (e) Outlines of the cortical parcellations
overlaid on the myelin map (left, lateral; right, medial view). Note that high myelin contrast is colocalized with the parcellations at MT,
somatomotor sensory areas (4ab, 3a, 3b) and visual cortex (V1), and relatively high myelin with the area 8av, frontal eye field (FEF).
Data at BALSA: https://balsa.wustl.edu/study/p005n

3.6. Application to image-guided neurosurgery

Distinct neurosurgical strategies guiding surgical instruments for operations into cortical or subcortical locations are
illustrated in Figure 9. For subcortical neurosurgery (right), the 3D coordinates (either in template or native coordinates)
are selected and the target is warped to the subject’s AC-PC native coordinates. A robot, such as Brainsight, can transform
these coordinates online to surgical native stereotactic coordinates. For cortical neurosurgery (left), the target is first
identified by the vertex on the cortical midthickness surface in the ‘grayordinate’ system and its 3D coordinates in the
subject's AC-PC native coordinates. Then the robot provides the coordinates in the surgical stereotactic coordinates.

Comparison between the registration guided surgery plan and postoperative MR image demonstrates precise
insertion of the guiding cannula deep into the brain (Fig. 10). The cannula-insertion positions were identified with respect
to the native surface of the cranium using Brainsight, and the cannula-insertion trajectories were planned according to the
native MRI space to Cau and SN, respectively (Fig. 10b). The coronal sections of the cannula for SN and Cau were tilted in
the posterior direction from vertical by 12° and 1°, respectively (Fig. 10c). The postoperative MR image confirmed that the
distance between the tip of the guiding cannulas and the targets were 1.6 mm, enabling precise injection cannula
insertion for drug delivery (Fig. 10c). The target error in SN was 0.2 mm. However, this experiment was done only in a
single subject, and therefore we cannot estimate the consistency with which such precision can be achieved (see
Discussion).

23


https://doi.org/10.1101/2022.01.31.478477
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478477; this version posted February 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Cortical target? ’

HCP-NHP pipeline
Yes No
v ¥
Identify the target vertex number in cortical 2D ]In native or template coordinates? ]
coordinates in either native or template midthickness :
Native Template
surface o
Native | Template Subcortical target 3D coordinates in AC-PC
\L J, template space

=—-Myelin map

WS Z
| vertex ID = 5539 Warping
Neuronavigation robot 1
Identify the target vertex on the midthickness Subcortical target in subject’'s AC-PC native AC-PC
surface in subject’'s AC-PC native coordinates coordinates

X, Y, Z LGN (74
Apply linear matrix Apply linear matrix

|T1w and T2w-based robot-guided surgery in native stereotactic coordinates ‘

Figure 9. Neuronavigation strategy for cortical and subcortical targets in marmosets.

For cortical surgery, the target is first identified on the vertex in cortical 2D coordinates (in either native or template midthickness
surface). Next, the 3D coordinates corresponding to the vertex number of interest are read in the subject's AC-PC native coordinates.
For subcortical surgery, the target is identified in the 3D coordinate system (either in template or native coordinates). When the
template coordinate system is used, the target’s 3D coordinates are warped to the subject's AC-PC native coordinates. The robot-
guided neurosurgery utilises these 3D coordinates by transforming from subject’s AC-PC native to the stereotactic coordinates. Study
ID: (MRI: A17051101)
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Figure 10. Exemplar application of neuronavigation system.

(a) The targets were set in the substantia nigra (SN) and the caudate nucleus (Cau) in the AC-PC template coordinates. Template is
overlaid with Paxinos atlas (Paxinos et al., 2012).The target locations were non-linearly warped to the subject’s AC-PC native coordinates
(left panel to middle panel). The subject’s MR and CT images are pre-registered by the marker-based fiducial registration (MBFR) and
then fine-tuned by the boundary-based registration (BBR) methods (middle and right panels). The neuronavigation robot imports the MR
or CT images in subjects’ AC-PC native coordinates to navigate to the target in the surgery space. (b) The cannula-insertion positions
were identified with respect to the location over the surface of the cranium. Presurgical trajectories aiming for Cau (pink) and SN (red)
are shown in native MRI space. Note that the cannula-insertion trajectory to SN avoided Cau and ventricles (middle panel). (c)
Postoperative MR images. Confirmation of guide cannula insertion to SN and to Cau. The tip of the cannula was planned at a position of
1.6 mm from targets, because the needle used for the drug administration extends 1.6 mm from the tip of the cannula. (d) Subcortical
atlas (in color) registered to AC-PC native coordinates with the target position of the SN (cyan point, middle panel), the planned
trajectory in the preoperative MR image (green line, middle panel), and the position of the cannula position (arrow head) and planned
trajectory (green line) in the postoperative MRI (right panel). (e) Subcortical atlas (in colour) registered to AC-PC native coordinates with
the target position of the Cau in AC-PC native coordinates (cyan point, middle panel), the planned trajectory in the preoperative MR
image (green line, middle panel), and the position of the cannula position (arrowhead) and planned trajectory (green line) in the
postoperative MRI (right panel). Study ID: (CT: 19060401, MRI: A19060401, A19081902)

4. Discussion

The marmoset is an increasingly important NHP laboratory model in neuroscience and biomedical research due to its
evolutionary proximity to humans relative to intensively studied rodents (Okano et al., 2016), and complex social
behaviours (Miller et al., 2016). Recent developments in gene manipulation (Sasaki et al., 2009), functional imaging (Hori
et al., 2020; Liu et al., 2019, 2021; Sadakane et al., 2015), white matter pathways and neural tracing (Liu et al., 2020,
Majka et al., 2020, 2021), and cellular mapping (Murakami et al., 2018) are also expected to provide evidence how
variability of the behaviours are associated with brain and functional segregation and diversity in this species. In this
study, we found that common marmosets have substantial intersubject variability in cranial contours and landmarks, size
of brain and brain regions, and cortical surface landmarks so that it significantly impacts the choice of coordinate system
when experimenters perform brain localization and targeting. Spatial localization of cranial and brain landmarks,
commonly used in stereotactic procedures, have substantial uncertainty. This ambiguity arises mainly from anatomical
variability in cranial and brain morphology but also from experimental variability in positioning the ear canals and orbital
ridges relative to the stereotaxic frame. To overcome these limitations for interventional brain studies, we introduced a
methodology utilising marker and boundary-based brain registration and targeting systems in marmosets.

4.1 Marker and boundary-based registration

We demonstrated that image alignment using a combination of MBFR initialization and BBR fine-tuning allows more
robust and accurate registration as compared to software-only or marker only methods. MBFR was effective for robust
initialization, which has been often problematic in software-based registration (Greve and Fischl, 2009; Hill et al., 2001).
Indeed, our study showed that software-based registration resulted in frequent initialization failures (Fig. 3). In contrast,
MBFR did not result in any failures. The software-based registration methods depend on the accuracy of initialization,
whereas the MBFR is only dependent on the accuracy of determination of the centroid of markers. Application of BBR
after MBFR further improved the accuracy of registering the cortical surface and bones (Fig. 3b,c). The registration error in
MBFR+BBR was larger than MBFR alone which can be attributed to the identification errors of the centroid of the markers
depending on the image resolution and asymmetry of the marker and the fact that the MRE itself was measured based on
the markers, a form of circularity. The cost function of BBR is reasonably low in all cases, which indicates high reliability
and accuracy. Therefore, the MBFR combined with BBR enabled highly accurate registration by compensating for the weak
points of each other (the initialization dependency or the marker centroid).

4.2 Individual variability of marmosets

Using the multi-modal brain targeting system, we demonstrated substantial intersubject variability of cranial and brain
landmarks, particularly the bregma. This intersubject variability causes uncertainty in conventional stereotactic surgery.
Bregma location varied by 2.0 mm (in 2SD) in the anterior-posterior direction across marmosets (Table 2, Fig. 6,7a).
Previous studies of rodents reported much smaller variability (2SD): ~0.6 mm in rats (Paxinos and Watson, 2017) and 0.5
mm in mice (Paxinos and Franklin, 2019). Larger intersubject variability of the marmoset bregma may be ascribed to larger
cranial size or to larger individual variability than in rodents, but we consider the former is not likely the case. To
normalise differences in scales and dimensions, we calculated the isometric ratio of brain scales and variability (Hayashi et
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al., 2021) (Fig.11). The results disclosed that marmosets had high variability of bregma (4.0) and brain volume (3.6) relative
to other rodents (rat 1.2 and 1.6; mouse 1.0 and 1.0 respectively), whereas the size of the brain is only 2-fold difference
(marmoset 2.3, rat 1.4, mouse 1.0). Taken together, these findings indicate the intersubject positional variability of
bregma and size variability of the brain are approximately 3 to 4-fold larger in marmosets than in laboratory rodents and
can be ascribed largely to high intersubject variability rather than large brain scale in primates.

9 T Isometric scale ratio of

M Brain volume
Variability of brain volume
B Variability of bregma

27 .
I I 1.0 1.0 1.0

0
marmoset rat mouse

—
L

Figure 11. Variability of the bregma and brain volume across species.

The variability of the bregma is larger in marmosets compared to rats and mice. Thus, the bregma is not recommended as a cranial landmark in
marmoset neurosurgery. The isometric scale ratio of the 3D brain volume (or variability) was calculated using the ratio between the cube root
of each species’ brain volume (or its variability) relative to that in mice. The isometric scale ratio of bregma variability in the Y-direction was
calculated using the ratio between bregma variability in each species relative to that in mice. All the marmoset data is from the current study,
whereas the rodent bregma data from Paxinos and Watson, 2017 and Paxinos and Franklin, 2019, and brain volume data from Hasegawa et
al., 2010 and Ma et al., 2008. Note that all the data is from animals housed for experimental use, but sampling is not harmonised (e.g., age and
degree of inbreeding) across species.

The intersubject variability of cortical landmarks is also significant in marmosets. The variability of brain
organisation is of particular interest in this species as social behaviours and personality are significantly variable
(Yokoyama et al., 2013; Miller et al., 2016; Okano et al., 2016; Yokoyama et al., 2021). Since major functions of the
inferior parietal region include motor coordination, spatial perception, visual attention, and social perceptions (Sui et al.,
2015), the structural and functional variability of the inferior parietal region may also impact subject-specific behavioural
capabilities (Mikula et al., 2007; Pomberger et al., 2019; Yokoyama et al., 2021). Our results demonstrated that the
location and presence of the marmoset IPS also significantly varies between subjects and hemispheres. Since the
asymmetry of IPS is also found in its ramification patterns of the human brain (Zlatkina, V., Petrides, M., 2014), it is of
interest to investigate the variability of cortical functional areas and morphology of marmoset in future studies.

Marmoset electrophysiological recordings (Rosa et al., 1997; Rosa and Elston, 1998; Rosa and Schmid, 1995) and
tracer injections (Burman et al., 2014, 2006; Reser et al., 2013) have often used cortical landmarks when targeting the
needles (e.g., IPS, calcarine sulcus, lateral sulcus, superior temporal sulcus). However, the precise coordinates of these
landmarks are not easily defined in their exact spatial location on the cortical sheet. For example, our results indicate that
the IPS exists in either or both hemispheres fewer than half of animals investigated (section 3.4). In addition, the location
of the deepest point of IPS was variable across subjects in the y direction by over 5% of anterior-posterior length of the
average brain size (Table 2), which is comparable with those in humans (variability of location in y direction of the central
and superior temporal sulcus was 10-14 % of the brain) (Steinmetz et al., 1990). We also found significant cross-subject
variability in the termination of the lateral fissure and in sulcal depth of superior temporal sulcus (data not shown),
regions that are involved in social behaviours (Suzuki et al., 2015).

Taken together, we conclude that cranial and brain surface landmarks are not precise reference points to guide
stereotactic surgery in the small NHP brain. Instead, we argue that surgical planning in small NHPs may benefit from being
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specifically designed according to each subject’s own anatomy in a grayordinate system based on multi-modal
neuroimaging data. Recent human neuroimaging studies suggest that intersubject alignment based on the highly variable
folding/sulcal patterns fail to achieve accurate cortical functional localization (Glasser et al., 2016; Coalson et al., 2018), whereas
multi-modal registration using functional connectivity as well as myelin content more accurately compensates for individual
variability.

4.3. Grayordinates, templates and atlases of marmoset brain

To account for cortical intersubject variability in cortical curvature and total surface area, we introduced a CIFTI
grayordinate space (Glasser et al., 2013) for common marmosets. The primary purposes of the grayordinate space are to
respect the topology of the cortical sheet, whether lissencephalic or gyrencephalic, to explicitly map cortical data onto a
standardised 2D surfaces (Glasser et al., 2013). This approach has already been applied to macaque brains (Autio et al.,
2020; Donahue et al., 2018), which enables surface areal feature-based registration and comparison of cortical features
across species. The cortical surface approach also enables more precise registration across subjects using the Multi-modal
Surface-Matching (MSM) algorithm (Robinson et al., 2018, 2014). This grayordinate-based approach in marmosets may
also be advantageous for handling subject variability of cortical folding (e.g., IPS Fig. 7b,c) and functional areas (Glasser et
al., 2016).

The multi-modal templates and atlases of the marmoset in grayordinates and volume space are presented. The
templates included standardised CT and MR images so that both cranial and brain landmarks are visible in the averaged
template space. Very small physiological calcifications in the pallidum and cerebellar nuclei are visible in the CT template,
as found in the human brain (de Brouwer et al., 2021), whereas the bregma is not clearly seen due to subject variability
(Fig. 6). The cortical areal and subcortical volume parcellations were created based on the image contrasts of T1w and
T2w and the histology atlas of Paxinos et al. (2012). We found the close similarity between the myelin contrast (a ratio of
Tlw divided by T2w) and the the cortical parcellations of some cortical areas (e.g., visual, somatosensory, auditory, MT,
and FEF), as well as T1lw and T2w contrasts of many subcortical volume structures (e.g., basal ganglia, thalamus,
periaqueductal grey, habenular nucleus, lateral and medial geniculate nucleus). However, further validation of brain
parcellations are needed in future studies by combining histology data (e.g., Majka et al., 2021), as well as functional
connectivity data as has been done in humans (Glasser et al., 2016). This may require refinement of technologies in terms
of spatial mapping of 2D-histology data into 3D neuroimaging data (Wang et al., 2020; Majka et al., 2021; Hayashi et al.,
2021) and intersubject registration based on multi-modal data for cortical surfaces (Robinson et al., 2018) and brain
volume (Lange et al., 2020).

4.4 The size of the eyeball and pitch angle between AC-PC and stereotactic coordinates

We found significant bias of brain coordinates between traditional stereotactic and intracerebral landmarks (AC-PC). The
marmoset stereotactic horizontal plane is tilted by + 10.0° + 1.3 pitch (i.e., frontal downward direction by 10.0°) relative to
the AC-PC plane (Fig. 4). This result conflicts with a prior report that these coordinate systems have the same orientation
(Risser et al., 2019). Importantly, this pitch bias is different across species, as the macaque stereotactic plane is tilted by —
3 to — 15° pitch (i.e., frontal upward by 3 to 15°) relative to AC-PC plane (Jung et al., 2021; Klink et al., 2020). Moreover, in
humans, the stereotactic plane is approximately tilted by -10° pitch (i.e., frontal upward direction by 10°) with respect to
the AC-PC plane (Park et al., 2010). This coordinate system bias across species may originate from the size of the eyeball
relative to that of the brain and other factors such as shape of the cranium and face. For example, species with large eyes
relative to the brain size (e.g., marmosets) tend to have a large or positive pitch (frontal downward direction) of the
stereotactic coordinate relative to AC-PC plane, whereas species (e.g., human and macaque) with relatively smaller eyes
tend to have a smaller or negative pitch (frontal upward direction). Indeed, the volume ratio of eyeball to brain is
substantially larger in marmoset (10%) (Korbmacher et al., 2017) in comparison to macaque monkeys (3%) (Atsumi et al.,
2013) and humans (0.4%) (Heymsfield et al., 2016).

4.5 Neuroimage-guided neurosurgery

The combination of MBFR and BBR enabled robust and accurate cross-modal registration between MRI, CT, and the
surgical device (Figs. 3,9). MBFR provided a 100% success rate and performed well as an initialization for BBR. Thus, the
combined approach achieved reproducible and accurate registrations across subjects (Fig. 3). Indeed, this result was
supported by the accurate proof-of-concept insertion of cannula into the deep brain structures (Fig. 10). Importantly, the
cross-modal registration method can overcome cranial (e.g., bregma location) and brain (e.g., IPS location) subject
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variability in marmosets (Table 2). Taken together, the combination of MBFR and BBR registration may be a practical as
well as accurate tool for image-guided neurosurgery.

High registration accuracy is critical to neurosurgery of small regions/areas. Since the average marmoset cortical
hemisphere surface area is 9.9 cm? (Hayashi et al., 2021) and number of cortical areas is ~116 (Paxino et al., 2012), the
average cortical area size is ~8.5 mm? (minimum of 0.18 mm? in area 25). This finding suggests that the minimum desired
accuracy to target the smallest cortical areas is 0.4 x 0.4 mm. Our proof-of-concept MBFR and BBR-guided robot
microsurgery suggests that such accuracy may be achieved even for deep brain structures (error ~0.2 mm, Fig. 10). For
perspective, the average macaque monkey cortical hemisphere area is 106 cm? (Hayashi et al., 2021), number of
estimated cortical areas is ~130-140 (Van Essen et al., 2012) and the average cortical area size is ~70 mm? (minimum of 5
mm?) (Autio et al., 2020). Since frameless neuronavigation system surgery error is 1.05 to 1.2 mm in macaques (Frey et al.,
2004; Sudhakar et al., 2019; Zhu et al., 2019), surgical accuracy of the targeting relative to the average cortical area may
be comparable in macaque and marmoset (error / average cortical area = 2%). However, it should also be noted that the
requirement for final targeting precision depends on the size of the target, which may differ across applications (e.g.,
electrophysiological recording, microelectrode stimulation, or infusion of drugs, tracers, viral vectors). For example,
injections of solution are likely dependent on size of the injected reagent: for viral vectors, volume spread is the same as
or a bit larger (1.5 times) than the volume of injected solution (Watakabe et al., 2015), whereas it is much larger (20-30
times) when used with small-molecule drugs like muscimol (Murata et al., 2015). In electrophysiology, the spatial size of a
single neuron recording is likely less than 100um, where that of local field potential (LFP) is reported to be as large as 0.5
to 3mm (Logothetis et al., 2003).

Overall, the image-guided robot microsurgery improved the utility, flexibility and accuracy in a variety of
interventional experimental procedures. A similar MRI-guided approach was recently demonstrated in the marmoset
(Mundinano et al., 2016), however, this approach required that the surgery was immediately performed after the MRI
scan to ensure the same position of the stereotactic device during the procedure. In addition, the stereotactic injection
can only be performed in a limited range of angles restricting operational degree of freedom. The operational range is an
important factor, for example, when the trajectory of the cannula needs to circumvent lateral ventricle (as in the case of
targeting SN, Fig. 10). Since a cannula penetrating a ventricle may increase the target error by multiple passes through the
brain (Zrinzo et al., 2009), here we planned the operation by avoiding ventricles at an optimal angle and demonstrated
successful targeting of the SN. Future studies should assess the effect of image-guided microsurgery by a larger number of
cases and by histological verification of injection sites. Finer interventional techniques (e.g., ultra-fine cannula and needle)
may also need to be developed for more accurate targeting. Even if the experimenters have no direct access to MR and
CT, the multi-modal templates may be useful for more accurate targeting by taking into account the bias between
stereotactic and AC-PC spaces.

5. Conclusion

In this study, we evaluated the accuracy of different brain coordinate systems to target specific brain structures in
marmosets. We found substantial intersubject variability in brain and cranial landmarks in marmosets. In particular, the
variabilities of the cranial landmarks (e.g., bregma, interauricular line) are substantial enough to bias the brain orientation
in surgical interventions. Thus, it is recommended to use the brain image and/or cranial landmarks for spatial localization.
The population-based volume and surface templates and atlas in grayordinates were created for the first time in
marmoset monkeys, which may provide a basis for accurately combining function and histology data in future.

Notes
Supplementary Information is available in the online version of the paper.
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