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Abstract  

 

Skin aging is characterized by structural and functional changes that lead to slower wound 

healing and higher rate of infections, which contribute to age-associated frailty. This 

likely depends on synergy between alterations in the local microenvironment and stem 

cell–intrinsic changes, underscored by pro-inflammatory microenvironments that drive 

pleotropic changes. To date, little is known about the precise nature and origin of the 

proposed age-associated inflammatory cues, or how they affect different tissue resident 

cell types. Based on deep single-cell RNA-sequencing of the entire dermal compartment, 

we now provide a comprehensive understanding of the age-associated changes in all skin 

cell types. We show a previously unreported skew towards an IL-17–expressing 

phenotype of Th cells, γδ T cells and innate lymphoid cells in aged skin. Aberrant IL-17 

signaling is common to many autoimmune (e.g., rheumatoid arthritis and psoriasis) and 

chronic inflammatory diseases. Importantly, in vivo blockade of IL-17–triggered 

signaling during the aging process reduces the pro-inflammatory state by affecting 

immune and non-immune skin cells of both dermis and epidermis. Strikingly, IL-17 

neutralization significantly delays the appearance of age-related traits, such as decreased 

epidermal thickness, increased cornified layer thickness and ameliorated hair follicle stem 

cell activation and hair shaft regeneration. Our results indicate that the aged skin shows 

chronic and persistent signs of inflammation, and that age-associated increased IL-17 

signaling could be targeted as a strategy to prevent age-associated skin ailments in elderly. 
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Introduction 

Aging is characterized by an accumulation of cellular damage due to an imbalance 

between damage generation and clearance, in part due to an ineffective metabolism, 

circadian clock rewiring, increased systemic inflammation and accumulation of senescent 

cells1-6. This creates the perfect scenario for malfunctioning of the organism and eventual 

collapse when facing a challenge. 

 

The skin contains a multilayered epidermis interspersed with mini-organs (i.e. hair 

follicles [HFs] and sebaceous glands) embedded in it. The outermost layer of skin, the 

epidermis, is a stratified epithelium that forms an impermeable protection for the 

organism. Daily renewal of the epidermis is fueled by interfollicular epidermal (IFE) stem 

cells (IFE-SCs), whereas hair follicle-stem cells (HF-SCs) maintain the hair follicles by 

periodically generating new hair shafts7. In the dermis, an organized mesh of extracellular 

matrix (ECM) embedded with several types of cell lineages form the niche for all types 

of keratinocyte stem cells7. Aging causes architectural and functional changes in the 

epidermis that affect its regenerative potential and its function as a barrier8-12. Moreover, 

age-related changes in the cellular composition and ECM properties of the dermis, which 

are still ill-defined, affect the function of the dermis as a structural scaffold and as a niche 

for epidermal stem cells13-18. Collectively, these changes lead to a slower epidermal 

turnover, more breaching of the barrier, and a lower quality wound healing, all of which 

contribute to increasing the incidence of infections and chronic wounds in the elderly19-

21. In sum, there are dual characteristics of aging on skin homeostasis: i) it affects the 

interfollicular epidermal stem cells and hair follicle stem cells in a cell-autonomous 

manner; and ii) it leads to misregulation of the delicate dialogue between these stem cells 

and their subjacent niches in the dermis.  

 

Single cell RNA-seq efforts have been recently directed towards defining the relationship 

between the different skin cell types during homeostasis, aging and disease 13,22-27. These 

studies suggest that some immune cell types change their abundance or behavior during 

aging in skin, including regulatory T cells (T-regs), dendritic epidermal T cells and 

Langerhans cells28-31. Such changes are especially relevant, considering that the dialogue 

between immune cells and the epidermis is essential for wound healing 28,32. However, 

much is still unknown regarding the relationship between immune cells and non-immune 

cells of the dermis and the epidermis during aging.  
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Here, we have unbiasedly profiled and characterized to an unprecedented depth the 

single-cell transcriptome of dermal cells in aged skin in mice. Many cell types showed 

significant changes in their proportion and gene expression profile during aging; 

however, we functionally characterized dermal CD4+ T helpers, γδ T cells and innate 

lymphoid cells (ILCs), as those showing the most prominent transcriptional changes 

during aging that appeared to orchestrate many of the alterations observed in several other 

skin cell types. Specifically, these cell types showed a polarization towards an IL-17–

producing phenotype, strongly contributing to the inflammatory environment found in 

aged skin. Importantly, in vivo blockade of IL-17 signaling during the aging process 

delayed the development of several hallmarks of skin aging, such as an amelioration of 

hair follicle regeneration, lack of thinning of the epidermal layer and a decreased cornified 

layer thickness, as well as a reduced epidermal inflammatory state.  

 

Results 

Aged dermal cells reveal cell type–specific, age-related changes 

We analyzed the non-epithelial (e.g., negative for epithelial cell adhesion molecule 

[EpCAM–]) dermal population of dorsal skin from aged (80- to 90-week-old) and adult 

(17- to 25-week-old) mice, by single-cell RNA-sequencing (scRNA-seq). We first 

removed epidermal cells enzymatically and then we isolated dermal cells by 

fluorescence-activated cell sorting (FACS) (see workflow, Fig. 1a and Supplementary 

Fig. 1a). In order to maximize sampling of the less abundant immune cells, we enriched 

by FACS for CD45+ cells and sequenced them separately from the rest of dermal cells 

(EpCAM–/CD45–) (Supplementary Fig. 1a). Using the 10´ Genomics platform (version 

3), we characterized 11,940 cells for the CD45+ cells and 5,213 for their CD45–

/EpCAM– counterparts. After batch correction and data integration, we clustered all cells 

together by generating a shared nearest neighbor graph using the Louvain algorithm33. To 

visualize the clustering, we used Uniform Manifold Approximation and Projection 

(UMAP), which verified good sample mixing. We performed differential gene expression 

between cell populations to obtain cluster markers (Fig. 1b and Supplementary Table 1) 

and plotted discriminatory population markers to ensure correct clustering (Fig. 1c).  

 

The dermis is composed of several cell types that serve as structural and functional 

support for the skin7. In the UMAP visualization, we observed three major groups of 
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clusters pertaining to non-immune (CD45–/EpCAM–), immune lymphoid and immune 

myeloid lineages (both CD45+) (Fig. 1b). Fibroblasts were the most abundant CD45–

/EpCAM– cell type and separated in five clusters that contained subtypes with distinct 

features (Fig. 2a). Some of these clusters showed high similarities to well-defined 

fibroblast subtypes in terms of marker expression: cluster 2 was papillary-like; cluster 1, 

reticular-like; and cluster 3, pro-inflammatory23,24,34,35. These clusters differentially 

expressed distinct collagen types, as well as other ECM proteins, conferring them with 

distinct properties necessary to generate and maintain the dermal niche. Importantly, 

cluster fibroblast_1 expressed markers of dermal papilla cells36, a specialized cluster of 

fibroblasts located immediately beneath hair follicles that is essential for modulating the 

hair follicle cycle (Figs. 1c and 2a). We also detected clusters for lymphatic and vascular 

endothelial cells (ECs), along with pericytes and Schwann cells, in the CD45–/EpCAM– 

population (Figs. 1b,c and 2a). On the other hand, the CD45+ clusters of immune cells 

separated into two large groups based on their lymphoid or myeloid lineage, with several 

cell types and states among them (Fig. 1b,c).  

 

To gain an overview of the transcriptomic changes induced by aging, we compared the 

100 top marker expression in the clusters between adult and aged cells and plotted the 

Jaccard index between the adult and aged cells in each cluster. This analysis indicated 

that different cell types showed a progressive range of age-associated changes, from very 

small ones (e.g. monocyte_3 and lymphatic ECs) to major changes (e.g. ILCs or CD8+ T 

cells) (Supplementary Fig. 1b). Strikingly, this indicated that the transcriptional changes 

accumulated during aging were cell type–specific and varied between cell lineages even 

within the same tissue. Due to this, we focused on the age-associated changes separately 

for the different groups of cell clusters and the cell states obtained in our analysis.  

 

Distinct non-immune cells in aged skin show changes related to defective functions 

and increased inflammation 

 

Schwann cells 

We identified two clusters of Schwann cells within the CD45–/EpCAM– fraction (Fig. 

1c and 2a, and Supplementary Table 1). Schwann cells are neural crest–derived glial cells 

of the peripheral nervous system37 that are important for regenerating injured axons as 

well as for initiating and promoting the healing of damaged peripheral tissues (including 
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skin)38-40. Schwann cells need to undergo epithelial-to-mesenchymal transition (EMT) 

and migrate into the wounded area to exert their correct regenerative function. There, they 

remodel the ECM around the damaged nerves and proceed to repair them41,42. Their 

primary location in skin is at the dermal–epidermal junction, where they serve as initiators 

of pain and thermal sensation43. Importantly, aged mice exhibit reduced regeneration of 

peripheral nerves, such as the sciatic nerve, partially due to decreased Schwann cell 

functioning44,45. Little is known, however, about how the specialized cutaneous Schwann 

cells are affected during aging at the molecular level. The two clusters of Schwann cells 

that we observed represented a myelinating-differentiated (Schwann_1) versus a more 

precursor-like state (Schwann_2) (Fig. 2a). Interestingly, genes relevant for EMT, ECM 

remodeling and myelination (such as Ezh2, Itga4, Nf1) along with several types of 

collagen genes became downregulated in Schwann_2 of aged dermis (Supplementary 

Table 2), which was confirmed by gene ontology (GO) analysis (Fig. 2b and 

Supplementary Table 3). Altogether, our data suggested that aged Schwann cells could 

be less efficient in their regenerative functions in skin (Fig. 2b and Supplementary Table 

3).   

 

Endothelial cells 

We detected three clusters of endothelial cells (ECs): one corresponding to lymphatic 

ECs, and two representing vascular ECs (arteriole and capillary ECs in one cluster, and 

venule ECs in the other) (Fig. 1c and 2a). Microcirculation constitutes the blood flow 

through the network of small tissue-embedded microvessels. During aging, microvessels 

—arterioles, capillaries and venules— show decreased density and higher stiffness, 

accompanied by decreased reactivity to stimuli. These changes in blood flow negatively 

impact skin oxygenation and nutrient delivery, and lead to deregulation of the 

inflammatory responses, among other consequences46. Like all blood and lymph vessels, 

microvessels are lined by endothelial cells (ECs). Such vascular ECs constitute key 

players in the immune response and are among the first line of cells that detect external 

pathogens in the bloodstream and become activated by them. Specifically, activated 

venules secrete cytokines and chemokines to recruit immune cells and even have a “non-

professional” antigen-presenting function during inflammation47; in chronic 

inflammation, activated venules can upregulate the expression of the class II major 

histocompatibility family of proteins (MHCII), one of the key molecules for antigen 

presentation to T cells48. Interestingly, we found that aged venule ECs showed higher 
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expression of genes involved in cytokine production and signaling, pointing to a more 

inflammatory state associated to skin aging (Fig. 2c and Supplementary Table 2 and 3). 

These gene expression changes were reminiscent to those associated to diseased states, 

such as psoriasis25. We then analyzed levels of MHCII proteins in the surface of adult and 

aged ECs by flow cytometry. Of note, although the number of CD31+ cells with MHCII 

on their surface increased with age, this was still not significant (Fig. 2d). However, the 

levels of MHCII on the surface of these CD31+/MHCII+ cells were significantly elevated 

in aged tissue (Fig. 2e). Taken together, our results indicate that venule ECs undergo a 

shift towards a more pro-inflammatory state, with features of non-professional antigen–

presenting cells, reminiscent of autoimmune diseases. This observation is in line with 

previous findings regarding the higher pro-inflammatory state of aged ECs in the 

cardiovascular system49. 

 

Fibroblasts  

During aging, mouse dermal fibroblasts reduce their production of ECM components, 

increase their expression of inflammation-related genes and acquire traits of 

adipocytes5,18,22,34. We did not observe notable changes in the proportions of any of the 

five fibroblast subpopulations in the aged skin as compared to the adult tissue 

(Supplementary Fig. 2a). However, cluster fibroblast_1 (corresponding to reticular-like 

fibroblasts) showed an upregulation of genes related to cytokine, chemokine and 

inflammatory responses during aging (Fig. 2f and Supplementary Table 3). Alterations in 

expression of pro-inflammatory genes were even more pronounced in fibroblasts in the 

cluster fibroblast_3, which define fibroblasts involved in inflammatory responses in the 

adult skin (Fig. 2a,g and Supplementary Fig. 2b).  

 

Increased IL-17–related inflammation in the immune compartment of aged skin  

Altogether, our results indicated an overall increase of inflammation as the predominant 

features in non-immune cells in the aged skin. To further dissect the origin of these 

changes, we subsequently focused on the immune cells, which are a major source of pro-

inflammatory cytokines. We identified two major groups of clusters in our analysis based 

on lineage of either lymphoid or myeloid (Fig. 3a).  

 

Dermal myeloid cells  
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Dermal myeloid cells balance pro- and anti-inflammatory functions in skin in a context-

dependent manner50. Specifically, they scan the tissue to detect antigens, orchestrate an 

early response to pathogens and trigger the first steps in the wound healing response51. 

We detected eight clusters of myeloid cells containing different subtypes of macrophages 

(macrophage_1 to _3), monocytes (monocyte_1 to _3), dendritic cells (DCs), and 

proliferating myeloid cells (Fig. 3a).  

 

Monocyte_1 and macrophage_1 clusters were defined by pro-inflammatory features (e.g., 

among the markers for monocyte_1 we found Ccr2, Cxcl2, Fcgr4, Cxcr4 for; Il1b and 

Tnfaip3;  and for macrophage_1, MHCII complex genes such as H2Ab1, H2-Eb1. H2-Aa 

and CD74). Conversely, cluster macrophage_2 expressed markers of regulatory 

macrophages (such as Il4l1, Cd200r1 and Lgals1) (Supplementary Table 1). Of note, 

although the proportion of both macrophage_1 and macrophage_2 clusters increased in 

the aged tissue (Supplementary Fig. 2a), they showed no clear changes in their 

transcriptomes, indicating that aging induced alterations in their numbers rather than their 

state (Supplementary Table 2). Conversely, monocyte_1 and monocyte_2 clusters 

showed more pronounced changes in gene expression with aging, with a clear trend 

towards expressing higher levels of pro-inflammatory cytokine secretion and responses 

to pro-inflammatory stimuli (Supplementary Fig. 2c and Supplementary Tables 2 and 3); 

this included genes encoding IL1β and TNF, which are necessary for these immune cells 

to initiate a full immune response51. Interestingly, the expression of these genes also was 

upregulated in clusters macrophage_2, monocyte_1, monocyte_2 and dendritic cells 

during aging (Supplementary Table 2). Altogether, this indicates that myeloid cells 

exacerbate a chronic inflammatory state in aged skin.  

 

T cells and ILCs 

Lymphoid cells in the mouse dermis include several types of T cells (CD4+, CD8+, γδ T 

cells and regulatory T cells [T-regs]), innate lymphoid cells (ILCs) and natural killer cells 

(NKs), which vary in their abundance in homeostatic conditions (Fig. 3a, left panel).  

These cells scan for tissue damage and perform immune surveillance in steady-state, as 

well as trigger an inflammatory response during wound healing and tumorigenesis50. 

Strikingly, the proportion of γδ T cells and CD4+ T helper cells increased in aged dermis 

(Fig. 3a, right panel, and Supplementary Fig. 2a). Moreover, these cells types were among 

those with a higher proportion of cells affected by aging (Supplementary Fig. 2d). 
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Furthermore, in the aged tissue, γδ T cells, CD4+ T helper cells and ILCs expressed much 

higher levels of inflammatory genes when compared to their adult counterparts; 

interestingly, these genes were predominantly related to the pro-inflammatory cytokine 

interleukin 17 (IL-17) (Fig. 3b,c,d and Supplementary Tables 2 and 3).  

 

There are six IL-17 members, IL-17A to -F; all of these signal via binding to the IL-17R 

family of receptors. Of these, IL-17A and IL-17F are highly homologous and can function 

as heterodimers52. The IL-17 family of cytokines performs a plethora of activities, ranging 

from tissue repair and host defense, to pathogenic ones, such as in autoimmune and 

chronic inflammatory diseases52. Importantly, therapeutic inhibition of aberrant IL-17A 

and IL-17F activities is used as treatment for skin diseases, such as psoriasis, pemphigus 

and other autoimmune conditions53-56. Interestingly, during aging there is a polarization 

of circulating CD4+ T helper cells towards an IL-17 expressing phenotype, and in mice, 

gdT cells also show this skew in peripheral lymph nodes 57-59. However, whether these 

changes affect peripheral tissue aging (and if so, how they do it) is unknown. 

 

As mentioned above, we observed an increased expression of Il17a and Il17f in individual 

CD4+ Th cells, gd T cells and ILCs (Fig. 3b,c,d and Supplementary Table 2), suggesting 

that there was a polarization towards an IL-17–expressing phenotype (Fig. 4a). Zooming 

in the CD4+ Th cluster further revealed three subclusters with specific marker gene 

expression (Fig. 4b,c, and Supplementary Table 1). While cluster CD4+ Th_a could not 

be assigned to any specific Th subtype, the CD4+ Th_c cluster showed markers usually 

expressed by TH1 cells, such as Ifng. Interestingly, the cluster CD4+ Th_b showed 

markers compatible with being bona fide TH17 cells, such as Il17f, Rora, Tmem176a/b, 

Ccr6 and JunB, among others60-62 (Fig. 4c). This cell subtype, CD4+ Th_b (TH17), 

constituted the most remarkably abundant in aged dermis compared to control adult skin 

(Fig. 4d).  

 

Similar to Th cells, gd T cells could also be further clustered into two subpopulations 

whose proportion increased in aged skin (Fig. 4c,f and Supplementary Table 1). Cluster 

gdT_b, expressed markers compatible with gd T17 cells as indicated by the expression of 

Il17a, Rora, JunB and Jak1, among others62, whereas gdT_a cluster could not be assigned 

to any specific gd T cell subtype (Fig. 4e). Both gd T clusters were more abundant in aged 
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skin, showing an increased presence of  gd T cells and more importantly IL-17-expressing 

gd T cells in the aged murine skin. 

 

ILCs are crucial for the development of psoriatic pathogenesis through sustained 

increased secretion of IL-1763. Our analysis also showed a marked increase in the 

expression of genes associated to the switch from ILC subtype to ILC363, such as Il17a , 

Il17f , Rora and Ccr6, in aged skin (Fig. 4a and Supplementary Table 2).  

 

Inhibition of IL-17A/F signaling prevents age-related inflammation in dermal cells 

We next sought to study whether the significant increase in the expression of Il17a and 

Il17f in a subset of aged lymphoid cells contributes to the general pro-inflammatory state 

of the aged skin. Treatment with anti-IL-17A/F antibodies is currently used as a therapy 

for patients with inflammatory and autoimmune diseases, such a psoriasis56. We therefore 

blocked IL-17 signaling by systemically administering neutralizing antibodies against IL-

17A and IL-17F (or the IgG isotype control) to physiologically aging mice (73-week-old) 

for 12 weeks (Fig. 5a). We then isolated dermal cells by FACS and performed 10´ 

scRNA-seq, following the previous workflow (see Fig 1a). A total of 16,975 CD45+ cells 

and 33,262 CD45–/EpCAM– cells were analyzed with the same bioinformatics pipeline 

as the aged sample analysis.  

 

Non-immune dermal cells 

Neutralizing IL-17 did not change the proportions of any non-immune dermal cell type 

(Supplementary Fig. 3a,b and Supplementary Table 4), and some clusters did not show 

any significant changes in gene expression upon IL-17 inhibition. However, when we 

further zoomed into each cell type and carried out a subpopulation analysis, we observed 

a strong trend towards attenuating age-associated traits related to gene expression in 

specific cell states (Fig. 5b,c). For example, our previously defined fibroblast_1 cluster 

could be subclassified into three subclusters, of which only two (cluster_5 and cluster_16) 

significantly responded to inhibition of IL-17 (Supplementary Table 5).  

 

Our previous single-cell analysis identified two clusters of dermal Schwann cells that 

corresponded to a more myelinating differentiated state and a progenitor population (Fig. 

2a). Interestingly, in the latter, now cluster_14, neutralization of IL-17 led to an 
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upregulation in the expression of genes important for EMT, ECM remodeling and 

myelination, whose expression was lower in the aged skin (Fig. 5d and Supplementary 

Tables 5 and 6). Conversely, genes downregulated in Schwann cells during aging, such 

as Itga4, Nf1 and some collagen isoforms, were upregulated following IL-17 inhibition. 

 

Of note, blocking IL-17 clearly reverted the trend of aged venule vascular ECs which 

showed an increased expression of genes related to inflammation (see Fig. 2c), as shown 

in cluster_9 (Fig. 5e and Supplementary Tables 5 and 6). Strikingly, it also downregulated 

the expression of genes such as Cd74, a key component of the MHCII complex, that we 

observed to be upregulated in aged ECs (see Fig. 2e). Moreover, Sele and Pecam1, which 

constitute markers of vessel activation that favor lymphocyte rolling and extravasation48, 

also were expressed at lower levels following IL-17 inhibition, indicative of a less pro-

inflammatory state of the IL-17-neutralized dermal post-capillary venules 

(Supplementary Tables 5 and 6)..  

 

Aged fibroblasts defined in clusters fibroblast_1 and fibroblast_3 showed an increase in 

the expression of genes related to inflammation and immune cell recruitment (Fig. 2f,g). 

Importantly, in vivo inhibition of IL-17 prevented these changes as compared to the 

control IgG–treated aged mouse cohorts, as shown by GO analysis of downregulated 

genes (Fig. 5f,g, and Supplementary Tables 5 and 6), confirming that fibroblasts are also 

sensitive to excessive age-related IL-17 signaling.  

 

Immune cells 

Myeloid cells are responders to IL-17 signaling in inflammatory situations, leading to the 

activation of the expression of more pro-inflammatory cytokines64. Importantly, the 

upregulation of pro-inflammatory cytokines (such as Il1b in clusters macrophage_2, 

monocyte_1 and dendritic cells) that we observed to be associated to aging was 

significantly attenuated upon neutralization of IL-17A/F signaling (Supplementary Fig. 

3c and Supplementary Tables 5 and 6). We also observed a general attenuation of pro-

inflammatory genes in the monocyte_1 cluster (Supplementary Fig. 3d), which we had 

previously identified as pro-inflammatory monocytes, and whose function was 

exacerbated during aging.  
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Altogether, our results indicate that attenuation of IL-17A/F signaling through treatment 

with neutralizing antibodies pleiotropically attenuated age-related phenotypes in most 

dermal cell types, with predominant changes observed in pro-inflammatory fibroblasts, 

vascular ECs and Schwann cells.  

 

Delay in age-associated traits of epidermal keratinocytes upon IL-17-blockade 

We next investigated whether anti-IL-17 treatment could also ameliorate age-associated 

traits in epidermal keratinocytes. Sustained inflammation in aged epidermis is thought to 

affect epidermal stem cell fitness, potentially by reducing their regenerative 

function2,10,13,17. In addition, the perturbed communication between epidermal stem cells 

and dendritic epidermal T cells contributes to delayed wound healing in aged skin28. 

 

Bulk RNA-seq of aged and adult epidermal cells confirmed that expression levels of pro-

inflammatory cytokines and chemokine signaling increased in aged skin (Supplementary 

Fig. 4a and Supplementary Table 7). We also observed an upregulation of genes 

important for other known epidermal aging traits, such as toxic reactive oxygen species 

(ROS)-related stress 2. Importantly, IL-17 blockade led to reduced expression of 

cytokine-related signaling and chemotactic genes, such as Ccl5 and Xcl1, as well as to 

downregulation of genes involved in pro-inflammatory and oxidative stress functions 

(Fig. 6a and Supplementary Table 7). Concomitant to this, there was a reduction in the 

exacerbated expression of differentiation markers of aged skin, exemplified by lower Flg 

and Lor expression, and an increase in the expression of genes related to healthier wound 

healing, such as Wnt7a65 (Fig. 6a and Supplementary Table 7).  

 

Youthful skin traits increase after IL-17 signaling is neutralized 

A well-defined age-related phenotype in the epidermis is the excessive differentiation 

program expressed by keratinocytes that leads to an increased thickness of the cornified 

layer, the outermost impermeable layer that is composed of highly-keratinized, dead 

enucleated cells2. Indeed, the thickness of the cornified layer doubled in the aged mice as 

compared to the control mice (Fig. 6b,c and Supplementary Fig. 4b). Strikingly, however, 

in vivo systemic inhibition of IL-17 (using anti-IL-17A/F antibodies) on aged mice 

resulted in a significantly thinner cornified layer, as compared to control (IgG-treated) 

aged mice (Fig. 6b,c).  
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We also observed a reduced thickness of the epidermis (which is another hallmark of 

aging in the skin9,28,66) in our mouse cohort (Fig. 6d,e). However, when aged mice were 

treated with neutralizing antibodies against IL-17A and IL-17F, epidermal thickness 

significantly increased, as compared to control-treated aged mice (Fig. 6d,e and 

Supplementary Fig. 4b). Thus, these data suggested that blocking IL-17 signaling could 

delay the acquisition of age-related traits and decrease the level of inflammation in the 

epidermis, even when treatment was done in the late adulthood stage of life. 

 

We next asked whether the neutralization of IL-17A/F affected stem cell behavior. Aged 

hair follicles show a significant lower capacity to enter the growing phase of the hair 

cycle (anagen)17. Anagen can be subdivided into several phases that indicate how far the 

growth of the hair follicles has advanced67. As expected, aged hair follicles in our cohort 

of aged mice showed a delay in the anagen stage as compared to the adult counterparts at 

8 days post-epilation (Fig. 6f). Strikingly, the HFs of the aged/anti-IL-17A/F–treated 

mice (but not the aged/IgG-treated mice) showed a faster pace in their anagen entry and 

progression, which was almost identical to adult mice, pointing towards a strong 

amelioration of the capacity of hair follicle stem cells to become activated as compared 

to aged IgG-treated control mice (Fig. 6f and Supplementary Fig. 4c). Dermal papilla 

fibroblasts (which are essential for hair follicle stem cell activation during anagen entry) 

that are represented in the cluster fibroblast_1 (Fig. 2a), now could be divided into 3 

subclusters (cluster_0, cluster_5 and cluster_16) (Fig. 5c). Analyzing the treatment-

dependent DEGs in these clusters, we found an upregulation of Rspo3, a Wnt agonist 

whose expression in dermal papilla cells triggers the active phases of hair cycling68,69 

(Supplementary Fig. 4d). Altogether, we found that aberrant IL-17 signaling was at the 

hinge between dermal and epidermal cells, and neutralization of it in both cell 

compartments caused a synergy that worked towards delaying and even ameliorating age-

associated skin traits.  
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Discussion  

During aging, tissue-specific alterations in the niche synergize with stem cell–intrinsic 

changes to contribute to the development of age-associated traits17,70-72. Aging has been 

proposed to drive a pro-inflammatory microenvironment that perturbs adult stem cell 

behavior in several tissues, including that of neural, skeletal and hematopoietic stem 

cells73-76. Interestingly, the nature of these signals is highly tissue-dependent and include 

infiltration of immune cells into the stem cell niche73, or a transcriptional switch of the 

stem cells that create a pro-inflammatory environment that negatively feeds back to their 

own fitness74. Here, we have characterized for the first time, and in an unbiased manner, 

the effects of the pro-inflammatory cytokine IL-17 on an aging tissue—namely, skin. Our 

results show that elevated IL-17 signaling, which was specifically secreted by aged 

dermal CD4+ Th, gd T and ILCs, orchestrated many of the age-associated tissue 

dysfunction by exerting pleiotropic effects on all skin compartments (immune and non-

immune). IL-17-mediated signaling is heavily linked to the development of chronic 

inflammatory and autoimmune diseases54,58,77,78. In skin, these diseases include psoriasis, 

pemphigous and alopecia areata55. Even if none of the clinical signs of these diseases are 

common with physiological aging, they share an increased aberrant IL-17-based signaling 

that impedes correct skin function. Alopecia areata is an autoimmune disease 

characterized by loss of hair in defined areas79,80. This could point towards a relationship 

between IL-17 and HF cycling. Indeed, conflicting reports of psoriatic patients 

undergoing IL-17-neutralizing treatments show that they frequently develop either 

hypertrichosis or alopecia (e.g., excessive hair growth or loss, respectively), pointing out 

that blocking an excessive IL-17 signaling could influence hair follicle cycling in 

humans81,82. On the other hand, the excessive IL-17 signaling observed in aged dermal 

cells might underlie the development of bullous pemphigoid, an autoimmune disorder 

with aberrant IL-17 signaling that is characterized by skin blistering, and whose incidence 

is increased in elderly people53. Our results strongly suggest that the local environment 

of the aged skin intriguingly resembles a low-level but persistent state of chronic 

inflammation that is reminiscent of that in serious skin diseases. We hypothesize that 

treatments with biologicals already approved against psoriasis or pemphigus could also 

be useful for other age-associated ailments, such as the inability to repair damaged skin 

that is exemplified by chronic wounds in elderly. 
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Figure Legends  

Figure 1. Dermal cell characterization by scRNA-seq. a, Workflow used to obtain 

dermal cells of adult and aged murine backskin. The single-cell suspensions were 

enriched for EpCAM–/CD45– and CD45+ cells separately by fluorescence activated cell 

sorting (FACS). The transcriptomes of sorted single cells were then analyzed by 10´ 

scRNA-seq. For the CD45+ cells, n = 6 mice for the adult group, and n = 4 mice for the 

aged group, with three technical replicates; for the CD45–/EpCAM– cells, n = 2 mice for 

the control group, and n = 2 mice for the aged group, with two technical replicates. b, 

UMAP visualization of all adult and aged dermal cells analyzed by single-cell RNA-

sequencing. c, Dot plot showing discriminatory markers for each cell type, subtype or 

state found in panel b.  

 

Figure 2. Aged non-immune cells show a shift towards age-associated and pro-

inflammatory functions. a, UMAP visualization of cell subtype-specific signatures.  b, 

Plot of selected gene ontology (GO) categories belonging to biological processes (BP) 

analysis for genes downregulated during aging in cells included in Schwann_2 cluster. 

The x axis represents –(log10) of the P-value for each depicted GO category.  c, Plot of 

selected GO categories belonging to BP analysis for genes upregulated during aging in 

venule endothelial cells. The x axis represents –(log10) of the P-value for each depicted 

GO category. d, Percentage of endothelial cells (labeled by CD31+ expression) with 

MHCII expression on their surface detected by staining with fluorescently labeled 

antibodies and analyzed by flow cytometry. e, Mean fluorescence intensity (MFI) of 

MHCII staining in CD31+/MHCII+ dermal cells. For d and e, each data point shows 

individual value per mouse (n = 6 mice per age group); bars indicate median. P-values 

were obtained with Mann Whitney U test. g,h, Plot of selected GO categories belonging 

to BP analysis for genes upregulated during aging in fibroblasts included in clusters 

fibroblast_1 (f) and fibroblast_3 (g). The x axis represents –(log10) of the P-value for each 

depicted GO category. 

 

Figure 3. Lymphoid immune cells show increased IL-17A/F-related signaling. a, 

UMAP representation of immune (CD45+) cells. Left panel, adult cells, and right panel, 

aged cells. b–d, Plot of selected GO categories belonging to BP analysis for genes 

upregulated during aging in CD4+ Th cells (b), γδ T cells (c) and innate lymphoid cells 
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(ILC) (d). The x axis represents –(log10) of the P-value for each depicted GO category. 

Highlighted in bold are the IL-17-related GO categories.  

 

Figure 4. Lymphoid skew towards an IL-17 expressing phenotype upon aging. a, 

Violin plots comparing the expression values of Il17a and Il17f in aged and adult CD4+ 

Th, γδ T cells and innate lymphoid cells (ILC). b, UMAP representation of subclustering 

of the previously described CD4+ Th and γδ T clusters. Three new clusters of CD4+ Th 

were found (CD4+Th_a, _b and _c), shown here in blue and circled by the continuous 

line; and two new clusters of γδ T were found (γδ T_a, and _b), in green and circled by 

the dashed line. c, List of relevant markers that discriminate the subclusters belonging to 

specific CD4+ Th subtypes. d, Bar plot with the proportions of these subclusters in aged 

and adult samples. e, List of relevant markers that discriminate the subclusters belonging 

to specific γδ T cell subtypes. f, Bar plot with the proportions of the γδ T cell subclusters 

in aged and control groups.  

 

Figure 5. Blockade of IL-17A/F function in aging mice leads to a delay in age-

associated traits in non-immune dermal cells. a, Diagram showing the anti-IL-17A/F 

treatment workflow. b, UMAP representation of the clusters of non-immune cell types 

found in the IgG control treated and the anti-IL-17A/F treated dermal preparations. c, 

UMAP representation of the subclusters found in the dermal non-immune population of 

IgG control treated and anti-IL-17A/F treated mice. For each subgroup of CD45+ cells 

and CD45–/EpCAM– cells, n = 8 mice for the non-aged control group, and n = 8 mice 

for the aged group, with four technical replicates. d, Plot of selected GO categories 

belonging to BP analysis for genes upregulated during IL-17A/F blocking treatment in 

cluster_14 (belonging to previously described Schwann_2 cells). e, Plot of selected GO 

categories belonging to BP analysis for genes downregulated during IL-17A/F blocking 

treatment in cluster_9 (belonging to previously described vascular EC-venule cells). f, g, 

Plot of selected GO categories belonging to BP analysis for genes downregulated during 

IL-17A/F blocking treatment in cluster_16 (f) and cluster_17 (g) (belonging to the 

fibroblast_1 and fibroblast_3 clusters, respectively). For d, e, f and g, the x axis represents 

–(log10) of the P-value for each depicted GO category. 

 

Figure 6. Decreased epidermal age-associated traits upon IL-17A/F blockade. a, Plot 

of selected GO categories belonging to BP analysis for genes upregulated (left panel) and 
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downregulated (right panel) during IL-17A/F blocking treatment in epidermal cells. The 

x axis represents –(log10) of the P-value for each depicted GO category. b, Dot plot with 

quantification of the cornified layer thickness (in µm) in adult control (gray), aged treated 

with control IgG (blue) and aged treated with anti-IL-17A/F (orange). c, Histogram 

showing the distribution of all the values obtained for cornified layer thickness to analyze 

their distribution; n = 8 mice. P-values were obtained using mixed linear models and 

multiple mean comparison using Tukey contrasts. d, Dot plot with measures of epidermal 

thickness (in µm). e, Histogram showing the distribution of all the values obtained for 

epidermal thickness in the 8 mice to analyze their distribution. P-values were obtained 

using mixed linear models and multiple mean comparison by Tukey contrasts. For b and 

d, each dot represents the mean of 10 measures (cornified layer) or 20 measures 

(epidermal thickness) per mouse (n = 8 mice) obtained in Hematoxylin and Eosin (H&E) 

staining of skin sections (see Supplementary Fig. 4b). The line depicts the median of these 

individual values per age and condition. P-values were calculated by Mann Whitney U 

test. f, Left, quantification of anagen stages in mouse back skin at 8 days after epilation 

of i) adult, ii) aged/control IgG, and iii) aged/anti-IL-17A/F antibodies. Right, details of 

H&E staining of epilated back skins at 8 days post-epilation; bar = 100 µm. 
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Methods 

Mouse handling and husbandry 

Mice were housed under a regimen of 12-h/12-h light/dark cycles and specific pathogen 

free conditions. All procedures were evaluated and approved by the Ethical Committee 

for Animal Experimentation (CEEA) from the Government of Catalunya. Retired 

C57Bl/6J breeder females were purchased from Charles River and were aged until the 

desired age in the animal facility at the Barcelona Science Park (PCB). Control adult mice 

were either bred in-house or purchased to Charles River to generate matching cohorts. 

Mostly female mice were used due to this fact, and to differences between skin digesting 

efficiency between sexes, as longer male skin digestion times are required and this 

reduced the survival of sorted dermal cells, skewing the results towards the most resilient 

cell types.  Mice were always sacrificed in the dark period, to coincide with their active 

phases. Old mice were between 80- to 90-weeks of age, and adult mice were between 17- 

to 25-weeks of age. 

 

In vivo anti-IL-17A/F neutralizing treatment 

A cohort of aging (73-week-old) mice was randomly distributed into two groups, and 

these were treated with either i) a mixture of 105 µg anti-IL-17A (clone 17F3, BioXCell) 

and 105 µg anti-IL-17F (clone MM17F8F5.1A9, BioXCell), or ii) 210 µg control IgG1 

(clone MOPC-2, BioXCell). Injections of 100 µl antibodies were administered 

intraperitoneally (i.p.) and performed 3 times per week at the same time of the day (at 2- 

to 3-h into the dark phase). After 12 weeks of treatment, mice were either sacrificed to 

obtain samples for dermal cells for 10´ scRNA-seq, bulk RNA-seq of the epidermis and 

histology, or they were used for epilation.  

 

Epilation 

Mice were anesthetized using a mixture of ketamine (75 mg/kg body weight) and 

medetomidine (1 mg/kg) via i.p. injection. Buprenorphine (0.05 mg/kg) was injected 

subcutaneously as a pain killer and an anti-inflammatory treatment. An area of about 2- 

to 3-cm2 of back skin was epilated using wax papers until no hair was visible (usually 2 

or 3 rounds were enough). Atipamezole (1 mg/kg) was injected to revert anesthesia, and 

mice were left on a warm blanket to recover. Afterwards, mice were housed individually 

to avoid contact of the epilated areas. Animal health status was monitored daily. At 8 days 

after hair removal, mice were sacrificed, and images of shaved back skin were taken. 
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Samples of small portions of back skin were fixed in neutral buffered formalin (10%) for 

3 h at room temperature, dehydrated, and included in paraffin blocks for later histological 

assessment.  

 

Epidermal and dermal cell isolation 

Mice were sacrificed, and whole torso skin was removed as fast as possible. Hypodermal 

fat was removed with scalpel and after 2 washes in PBS, skins were floated (dermis-side 

down) in a Dispase II solution (5 mg/mL; D4693 Sigma-Aldrich) in PBS for 30- to 40 

min at 37ºC. Epidermises were removed with a scalpel. For dermal cell isolation: 

dermises were mechanically dissociated using a McIlwain Tissue Chopper (The Mickle 

Laboratory Engineering Co. LTD) and then further digested in Liberase TM (6.5 Wünsch 

units/reaction, Roche) diluted in DMEM (41965, Thermo Fisher Scientific) for 20 to 30 

min at 37ºC with gentle agitation. Afterwards, DNase I (1 mg/ml DN25; Sigma-Aldrich) 

was added to the mix and incubated for 15 min at 37ºC without agitation. Digested 

dermises were strained first through a 100-µm strainer and then through a 40-µm strainer, 

to obtain single-cell suspensions. For epidermal cell isolation: epidermises were removed 

with a scalpel and mechanically dissociated using a McIlwain Tissue Chopper (The 

Mickle Laboratory Engineering Co. LTD). They were then strained through a 100-µm 

and then a 40-µm strainer to obtain single-cell suspensions. and frozen in 1 ml of TRIzol 

(Invitrogen) for posterior RNA isolation. RNA was extracted from epidermal cell pellets 

frozen in TRIzol using the RNeasy Mini Kit (Qiagen) and further processed for mRNA-

seq with the Illumina sequencing technology.   

 

Library construction and sequencing 

For the adult vs aged comparison, libraries were prepared using the TruSeq Stranded Total 

RNA Library Prep Kit with Ribo-Zero Human/Mouse/Rat Kit (cat. RS-122-2201/2202, 

Illumina) according to the manufacturer's protocol, using 150 to 300 ng of total RNA; 

ribosomal RNA depletion, RNA was then fragmented for 4.5 min at 94ºC. The remaining 

steps were followed according to the manufacturer’s instructions. Final libraries were 

analyzed on an Agilent Technologies 2100 Bioanalyzer system using the Agilent DNA 

1000 chip to estimate the quantity and validate the size distribution; libraries were then 

quantified by qPCR using the KAPA Library Quantification Kit KK4835 (cat. 

07960204001, Roche) prior to amplification with Illumina’s cBot. Finally, libraries were 
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sequenced on the Illumina HiSeq 2500 sequencing system using paired-end 50-base pair 

(bp)-long reads. 

 

For the IL-17 neutralized vs control samples, libraries were prepared using the TruSeq 

stranded mRNA Library Prep (cat. 20020595, Illumina) according to the manufacturer's 

protocol, to convert total RNA into a library of template molecules of known strand origin 

that is suitable for subsequent cluster generation and DNA sequencing. Briefly, 500–1000 

ng total RNA was used for poly(A)-mRNA selection using poly-T oligonucleotides 

attached to magnetic beads with two rounds of purification. During the second elution of 

the poly-A RNA, RNA was fragmented under elevated temperature and primed with 

random hexamers for cDNA synthesis. The cleaved RNA fragments were then copied 

into first-strand cDNA using reverse transcriptase (SuperScript II, ref. 18064-014, 

Invitrogen) and random primers. Note that addition of actinomycin D to the First Stand 

Synthesis Act D mix (FSA) improves strand specificity by preventing spurious DNA-

dependent synthesis while allowing RNA-dependent synthesis. Second-strand cDNA was 

then synthesized by removing the RNA template and synthesizing a replacement strand, 

incorporating dUTP in place of dTTP to generate ds cDNA using DNA polymerase I and 

RNase H. These cDNA fragments then had a single A base added to the 3¢-ends of the 

blunt fragments, to prevent them from ligating to one another during the adapter ligation. 

A corresponding single T-nucleotide on the 3¢-end of the adapter provided a 

complementary overhang for ligating the adapter to the fragments, ensuring a low rate of 

chimera (concatenated template) formation. Subsequent ligation of the multiple indexing 

adapter to the ends of the double-strand cDNA was carried out. Finally, PCR selectively 

enriched DNA fragments with adapter molecules on both ends, and the amount of DNA 

in the library was amplified. PCR was performed with a PCR Primer Cocktail that anneals 

to the ends of the adapters. Final libraries were analyzed using Bioanalyzer DNA 1000 

or Fragment Analyzer Standard Sensitivity (Agilent) to estimate the quantity and validate 

the size distribution; libraries were then quantified by qPCR using the KAPA Library 

Quantification Kit KK4835 (Roche) prior to amplification with Illumina’s cBot. Finally, 

libraries were sequenced on the Illumina HiSeq 2500 sequencing system using single-end 

50-bp-long reads. 

 

Hematoxylin and eosin staining  
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Paraffin blocks were cut in 4-µm sections. Hematoxylin and eosin (H&E) staining was 

performed according to the standard protocol. Images were acquired using a NanoZoomer 

scanner (Hamamatsu) at 20´ magnification. Scaled images were analyzed with Qupath 

v0.3.0, with the thicknesses measured. All values per mouse were averaged, and graphical 

representations were performed with GraphPad Prism 9. Eight mice per condition and 

age were used.  

 

Flow cytometry and cell sorting (giving CD45+, CD45–/EpCAM– and CD31+/MHCII) 

For 10´ scRNA-seq, single-cell dermal suspensions were incubated with CD45–APC 

(clone 30-F11, 1:100, BD Biosciences) and EpCAM–PE (clone G8.8, 1:200, BD 

Biosciences) for 45 min on ice. After two washes in PBS, cells were resuspended in 

2 µg/ml DAPI (32670, Sigma-Aldrich) to stain DNA and analysed using a BD FACSAria 

Fusion flow cytometer, in which CD45+/– cells were obtained and EpCAM+ cells 

excluded.  

 

For MHCII analysis in CD31+ cells, single-cell dermal suspensions were incubated with 

CD31-PE (clone MEC13.3, 1:100, BD Bioscience) MHCII-BV650 (I-A/I-E, clone 

M5/114.15.2, 1:500, BioLegend), LYVE1-eFluor 660 (clone ALY7, 1:100, Invitrogen), 

and (as exclusion markers) CD45–FITC (clone 30-F11, 1:100, eBioscience), CD117-

FITC (clone 2B8, 1:100, BDBiosciences), CD41-FITC (clone eBioMWReg30, 1:100, 

Invitrogen), and EpCAM–FITC (clone G8.8, 1:100, Biolegend). After two washes with 

PBS, cells were resuspended in 2 ug/ml DAPI (32670, Sigma-Aldrich) to stain DNA and 

analysed using a BD FACSAria Fusion flow cytometer. 

 

10´ scRNA-seq  

Stained dermal single-cell suspensions were prepared as explained above. CD45+ and 

CD45–/EpCAM– cells were FACS sorted in a BD Fusion cell sorter separately to enrich 

for the less abundant CD45+ cells, following the sorting strategy depicted in Suppl. Fig. 

1a. Cells were collected in PBS + 0.5% BSA at 4°C in LoBind tubes (Eppendorf) and 

processed immediately with the microfluidics Chromium platform (10´ Genomics). 

 

Data pre-processing 
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Sequences were demultiplexed and aligned according to Cell Ranger pipeline (version 

6.0.0) with default parameters. Sequencing reads were mapped against the mouse 

GRCm38 reference genome to generate feature-barcode matrixes, separately for all 

CD45+ and CD45 –replicates.  

 

QC and technical bias corrections 

Gene count matrixes were analyzed with Seurat package (version 4.0.4) in R (version 

4.0.3)83. The replicates were merged, analyzed, and annotated separately for CD45+ and 

CD45– datasets before their integration. Cells were filtered with more than 10% of 

mitochondrial gene content and genes not found in at least 5 cells. As part of the quality 

control, cells situated between the minimum and 1st quartile (according to the distribution 

of number of genes per cell of each compartment dataset) were removed. To avoid 

contamination of epithelial cells in the immune compartment, EPCAM+ cells found in 

CD45+ sorted cells were filtered out. Additionally, to remove the technical biases from 

merging replicates within CD45+, the differentially expressed (DE) genes between the 

replicates were computed using the FindAllMarkers function, and overlapping genes 

between the top 500 DE genes and the highly variable genes (HVGs) were removed 

before clustering.  

 

Clustering 

Cell-to-cell variations were normalized by the expression values using a scale factor of 

100,000 and a log transformation. The gene expression measurements were scaled and 

centered. The scaled Z-score values were then used as normalized gene measurement 

input for clustering and for visualizing differences in expression between cell clusters. 

HVGs were selected by assessing the relationship of log(variance) and log(mean) and 

choosing those with highest variance-to-mean ratio. Principal components analysis 

(PCA) was used to reduce the dimensionality of the dataset, and ElbowGraph was used 

to select the number of dimensions for the clustering for significant principal components. 

Cluster identification was performed using the functions FindNeighbors and 

FindClusters, which calculates the k-nearest neighbors and generates the shared nearest 

neighbor (SNN) graph to cluster the cells. The algorithm applied was the Louvain 

method, which allows the number of clusters to be tuned with a resolution parameter. To 

explore the clusters in more detail, the resolution parameter was increased in FindClusters 

function or FindSubCluster was used for specific clusters. The Uniform Manifold 
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Approximation and Projection (UMAP) was used as a non-dimensional reduction 

method, to visualize the clustering.  

 

Cell type annotation 

To annotate the cell types and states, enriched genes were first identified in each of the 

clusters using FindAllMarkers function, using the Wilcoxon Rank Sum test to find 

cluster-specific markers. These cluster-specific genes were then explored to find 

previously reported cell population marker genes. Some examples of marker genes used 

to annotate the cell populations are given here: Cd4+ T cells: Cd28, Cd4; Cd8+ T cells: 

Cd8a, Cd8b1; dermal cells (DC): Cd207; fibroblast_1: Crabp1, Inhba, Notum; 

fibroblast_2: Col1a1, Col1a2, Cd34, Robo1, Col3a1; fibroblast_3: Efemp1, Il1r2, Ccl11; 

fibroblast_4: Col11a1, Aspn, Coch; fibroblast_5: Myoc, Dcn; ILC: Il13, Kit; lymphatic 

endothelial cells (ECs): Lyve1, Hes1; macrophage_1: Il1b; macrophage_2: Tnfsf9; 

macrophage_3: Ear2, Cd163; monocyte_1: Plac8, Cd14; monocyte_2: Ccl8, C1qa; 

monocyte_3: Retnla, C1qb, Ccr2; NK cells: Gzmc, Ccl5, Nkg7; pericytes: Acta2, Rgs5; 

proliferating macrophages: Mki67; proliferating T cells: Hmgb2proliferating T cell; 

Schwann cells: Cryab, Plekha4, Scn7a; Schwann cells_1: Kcna1; Schwann cells_2: 

Sox10; T regulatory cells: Foxp3; VEC arterioles and capillary: Ptprb, Flt1; VEC 

venules: Aqp1, Sele, Pecam1; and γδ T cells: Trdc, Tcrg-C1. 

 

Differential expression (DE) analysis for each cluster 

To find differentially expressed genes between adult vs. aged, and IgG treated vs. anti-

IL-17A/F treated, in the different annotated cell type populations, DE analysis was 

performed between conditions for each cluster with FindMarkers function.  

 

Age effect analysis 

The effects of aging on dermis were evaluated based on how cell types differ 

transcriptionally between adult and aged mice. For this, the similarities of cell type–

specific markers were evaluated by comparing the Jaccard Indexes between age groups 

across cell types. The Jaccard Index was computed using MatchScore2, which considers 

the top 100 DE markers as a signature of each population84. To further assess the age-

related effects among the immune cells, a deep-learning approach was created that is 

based on auto-encoders. During training, this method can identify features that are 

relevant for the data structure and then use them to predict the different cell types in a test 
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dataset. To generate the model, adult data was divided into two smaller subsets that could 

be used as training and test sets. The model displayed high probability scores (P > 0.5) in 

the prediction of cell types from the test set among the different immune cell types and a 

low rate of unpredicted cells (unclassified rate < 5%). If the rate of unclassified cell type 

is strictly biased for aged cells, this would reflect the effect of aging on the cell phenotype. 

Based on this assumption, an age deviance score was defined as 1-q, whereby q is the 

probability of the unpredicted cell being in the true corresponding cell type class in aged 

cells. The proportion of unclassified cells within each cell type in aged cells, and the 

proportion of age-affected cells, were then measured and was normalized by the model's 

error rate (e.g., by subtracting the cell proportion in each adult cell type that could not be 

predicted by the model).  

 

Bioinformatics analyses of bulk RNA-seq data 

FastQ files were aligned against the mm10 reference genome using STAR 2.5.2b85 using 

default options. Unless otherwise specified, all downstream analyses were performed 

using R 3.5.1. Differentially expressed genes (DEGs) between conditions were 

determined using DESeq2 1.22.186, 

using mm10 gene counts as generated with the featureCounts function from the RSubread 

package version 1.32.487 with options: 

annot.inbuilt='mm10',allowMultiOverlap=TRUE,countMultiMappingReads=FALSE,mi

nMQS=1,ignoreDup=FALSE). Genes were selected as DEGs using the thresholds 

|lfcShrink foldChange|>1.25 and Benjamini-Hochberg–determined P < 0.1, using 

experimental batch as covariate. Gene set enrichment analysis was performed using gene 

set collections at Mus musculus gene symbol level. The gene set collections used were: 

GOBP, GOMF, GOCC, and KEGG, obtained using the org.Mm.eg.db package, 

November 2014; GOSLIM, obtained from geneontology.org, November 2014; and Broad 

Hallmarks, obtained from the Broad Institute MSigDB website (https://www.gsea-

msigdb.org/gsea/msigdb/) and mapped from human to mouse genes using homology 

information from Ensembl biomart archive July 2016. Analyses were performed using 

regularized log transformation (rlog) applied to the count data using the DESeq2 R 

package 1.22, with ROAST88 and the MaxMean statistic 

(http://statweb.stanford.edu/~tibs/GSA/). 

 

GO analysis 
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GO analysis was performed with enrichR89 (https://maayanlab.cloud/Enrichr/). A 

category was considered significant if P < 0.01.  

 

Statistical analysis 

Generally, graphs show median and P-values were obtained with the Mann-Whitney U 

test with Prism v9, unless otherwise stated in the figure legend. Statistical analyses of 

epidermal skin and cornified layer thickness were performed using mixed linear models 

in R3.5.1 with lme4 library 1.1-23 and multcomp 1.4-9. 

 

Data availability 

10X Single cell sequencing data is deposited at the NCBI GEO repository, accession 

GSE193920. 

Bulk RNA-seq data is deposited at the NCBI GEO repository, accessions GSE190182 

and GSE190393. 
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