

1 **NCOA4 drives ferritin phase separation to facilitate macroferritinophagy**
2 **and endosomal microferritinophagy**

3

4 Tomoko Ohshima^{1,3}, Hayashi Yamamoto^{1,3}, Yuriko Sakamaki², Chieko Saito¹,
5 Noboru Mizushima^{1,*}

6

7 ¹ Department of Biochemistry and Molecular Biology, Graduate School and

8 Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan

9 ² Microscopy Research Support Unit, Research Core, Tokyo Medical and

10 Dental University, Tokyo 113-8519, Japan

11 ³ These authors contributed equally: Tomoko Ohshima, Hayashi Yamamoto

12

13 *Correspondence: Noboru Mizushima (nmizu@m.u-tokyo.ac.jp)

14 **Abstract**

15 A ferritin particle consists of 24 ferritin proteins (FTH1 and FTL) and stores
16 iron ions within it. During iron deficiency, ferritin particles are transported to
17 lysosomes to release iron ions. Two transport pathways have been reported:
18 macroautophagy and ESCRT-dependent endosomal microautophagy. Although
19 the membrane dynamics of these pathways differ, both require NCOA4, which
20 is thought to be an autophagy receptor for ferritin. However, the exact function
21 of NCOA4 remains elusive. Here, we found that ferritin particles form liquid-like
22 condensates in a NCOA4-dependent manner. Homodimerization of NCOA4 and
23 interaction between FTH1 and NCOA4 (i.e., multivalent interactions between
24 ferritin particles and NCOA4) were required for the formation of ferritin
25 condensates. Disruption of these interactions impaired ferritin degradation.
26 Time-lapse imaging and three-dimensional correlative light and electron
27 microscopy revealed that these ferritin–NCOA4 condensates were directly
28 engulfed by autophagosomes and endosomes. In contrast, TAX1BP1 was not
29 required for the formation of ferritin–NCOA4 condensates but was required for
30 their incorporation into autophagosomes and endosomes. These results
31 suggest that NCOA4 acts not only as a canonical autophagy receptor but also
32 as a driver to form ferritin condensates to facilitate the degradation of these
33 condensates by macroautophagy (i.e., macroferritinophagy) and endosomal
34 microautophagy (i.e., microferritinophagy).

35 **Introduction**

36 Iron is essential for various biological processes, but in excess it can
37 cause deleterious effects (Pantopoulos et al., 2012; Bogdan et al., 2016;
38 Fenton, 1894; Haber and Weiss, 1934; Halliwell and Gutteridge, 1990). Thus,
39 the intracellular iron level must be tightly regulated. Ferritin is a key player in
40 the regulation of iron homeostasis and is highly conserved among organisms
41 except for some fungi (e.g., yeasts) and several bacterial and archaeal
42 species (Canessa and Larrondo, 2013; Bai et al., 2015). It forms a particle
43 consisting of 24 subunits of ferritin heavy chain 1 (FTH1) and ferritin light
44 chain (FTL), which incorporates up to 4,500 Fe²⁺ ions, oxidizes them to Fe³⁺,
45 and stores them as mineral cores in its hollow cavity (Mann et al., 1986).
46 During iron deficiency, ferritin particles are transported to lysosomes in order
47 to release the stored iron atoms (Kidane et al., 2006; Asano et al., 2011).
48 Ferritin delivery to lysosomes is mediated by two different pathways:
49 macroautophagy (Asano et al., 2011; Mancias et al., 2014; Dowdle et al.,
50 2014; Goodwin et al., 2017) and the endosomal sorting complexes required for
51 the transport (ESCRT)-mediated pathway (Goodwin et al., 2017). To degrade
52 ferritin, both pathways require nuclear receptor coactivator 4 (NCOA4),
53 currently considered to be a ferritin receptor, and the macroautophagy adaptor
54 Tax1-binding protein 1 (TAX1BP1) (Mancias et al., 2014; Dowdle et al., 2014;
55 Goodwin et al., 2017). Because NCOA4 and TAX1BP1 are degraded by not
56 only macroautophagy but also endosomal microautophagy (Mejlvang et al.,
57 2018), the ESCRT-dependent ferritin degradation reported by Goodwin et al.
58 (Goodwin et al., 2017) is likely mediated by microautophagy. Although NCOA4
59 has been shown to interact with TAX1BP1 (Goodwin et al., 2017), little is
60 known about how it is involved in ferritin degradation through the
61 morphologically and mechanistically distinct pathways of macroautophagy and
62 endosomal microautophagy.

63 Electron microscopy studies in cultured cells and tissues have
64 demonstrated that ferritin particles can be clustered in the cytosol (Heynen
65 and Verwilghen, 1982; Takano-Ohmuro et al., 2000) as well as within
66 membranous structures (Sullivan et al., 1976; Heynen and Verwilghen, 1982;

67 Iancu et al., 2014). Furthermore, our group previously found that clusters of
68 ferritin particles are enlarged in autophagy-deficient cells, some of which are
69 over 500 nm in size, and accumulate at autophagosome formation sites (Kishi-
70 Itakura et al., 2014). These ferritin clusters are spherical and often associate
71 with SQSTM1 (also called p62) bodies without mixing their contents. Based on
72 these findings, we hypothesized that ferritin clusters are liquid-like
73 condensates caused by liquid–liquid phase separation (LLPS).

74 In this study, we show that ferritin clusters indeed have liquid-like
75 properties and that NCOA4 is required for ferritin phase separation. The
76 ferritin–NCOA4 condensates are incorporated into autophagosomes and
77 endosomes in a TAX1BP1-dependent manner. Failure of condensate
78 formation impairs ferritin degradation. These data suggest that the formation
79 of liquid-like ferritin–NCOA4 condensates is a common mechanism to facilitate
80 degradation by both macroautophagy and endosomal microautophagy.

81

82 **Results**

83

84 **Ferritin particles assemble to form large condensates that exhibit liquid- 85 like properties**

86 To observe the distribution of ferritin particles in living cells, we
87 established HeLa cells stably expressing monomeric EGFP (mGFP)-tagged
88 FTH1 and FTL. Both mGFP-FTH1 and mGFP-FTL formed punctate structures
89 in the cytoplasm in wild-type (WT) cells under normal (Figure 1A) and iron-
90 replete conditions that induced ferritin expression (Figure 1B). The expression
91 levels of mGFP-FTH1 and mGFP-FTL were comparable to (or even lower
92 than) those of endogenous FTH1 and FTL (Figure 1C), suggesting that the
93 formation of puncta was not due to overexpression. The ferritin puncta
94 became larger in autophagy-deficient *FIP200* KO cells (Figures 1A, 1B).
95 Transmission electron microscopy (TEM) of *FIP200* KO cells expressing GFP-
96 FTH1 showed cytosolic spherical clusters of the electron-dense ferritin
97 particles (Figure 1D), consistent with our previous report (Kishi-Itakura et al.,
98 2014). In addition, the clustered ferritin structures were not enclosed by

99 membranes (Figure 1D, right panel). These structural characteristics (i.e., the
100 highly spherical shape and the lack of membranes) raised the possibility that
101 the ferritin clusters are biomolecular condensates driven by LLPS.
102 Fluorescence recovery after photobleaching (FRAP) measurements in WT
103 cells revealed that mGFP-FTH1 condensates exhibited approximately 20%
104 recovery within 10 min (Figures 1E, 1F). In addition, coalescence of two
105 discrete GFP-FTH1 condensates was observed (Figure 1G). These features,
106 together with the abovementioned structural characteristics, are consistent
107 with the current criteria for liquid-like biomolecular condensates formed via
108 LLPS (Alberti et al., 2019). Thus, these results suggest that ferritin particles
109 have the propensity to congregate to form liquid-like biomolecular
110 condensates.

111

112 **NCOA4 drives ferritin phase separation**

113 NCOA4 is involved in ferritin delivery to lysosomes by direct interaction
114 with FTH1 (Mancias et al., 2014; Dowdle et al., 2014; Mancias et al., 2015).
115 Thus, we investigated the relationship between ferritin condensates and
116 NCOA4. In WT and *FIP200* KO cells, mGFP-NCOA4 co-localized with the
117 mRuby3-FTH1 puncta (Figure 2A), indicating that NCOA4 is a component of
118 ferritin condensates. Then, to investigate the role of NCOA4 in condensate
119 formation, we generated *NCOA4* KO cells by using the CRISPR-Cas9 method
120 (Figure S1A). The resulting cells showed a defect in the degradation of FTH1
121 upon iron depletion, achieved via the iron chelator deferoxamine (DFO) (Figure
122 S1B), which was in line with previous reports (Mancias et al., 2014; Dowdle et
123 al., 2014). Fluorescence microscopy revealed that mGFP-FTH1, which formed
124 punctate structures in WT and *FIP200* KO cells, became diffuse in the
125 absence of NCOA4 (Figure 2B), suggesting that NCOA4 is indispensable for
126 the formation of ferritin condensates.

127 Next, we examined whether FTH1 and FTL were necessary for the
128 formation of ferritin–NCOA4 condensates. Knockdown of FTH1 but not FTL
129 impeded mGFP-NCOA4 puncta formation in *FIP200* KO cells (Figures 2C,
130 2D). Although this result suggests that FTH1, but not FTL, is required for the

131 formation of NCOA4 condensate, knockdown of FTH1 also reduced the
132 expression levels of mGFP-NCOA4, which made it difficult to evaluate the
133 specific role of FTH1 (Figures 2C, 2D).

134 Given that FTH1 interacts with NCOA4 (Mancias et al., 2015), we further
135 investigated whether FTH1 and NCOA4 were sufficient for the formation of
136 ferritin condensates. When muGFP-tagged human NCOA4 was exogenously
137 expressed in yeast cells (ferritin and NCOA4 homologs are not present in
138 yeast), it mostly dispersed in the cytoplasm and occasionally formed some
139 small dots. In contrast, when co-expressed with FTH1, muGFP-NCOA4
140 formed one large punctum per cell (Figure 2E). These results suggest that
141 FTH1 and NCOA4 are sufficient for the formation of ferritin–NCOA4
142 condensates.

143

144 **Ferritin–NCOA4 condensate formation is driven by NCOA4 self- 145 interaction and NCOA4-FTH1 interaction**

146 NCOA4 consists of the N-terminal coiled-coil domain (N), middle domain
147 (M), and C-terminal domain (C), which are interconnected with intrinsically
148 disordered regions (IDRs) (IDR1 and IDR2) (Figure 3A). To determine which
149 domain(s) of NCOA4 is required for the formation of ferritin condensates, we
150 constructed domain truncation mutants (Figure 3A). NCOA4 KO cells
151 expressing 3×FLAG-tagged NCOA4 (FLAG-NCOA4) restored the formation of
152 mGFP-FTH1 puncta (Figures 3B, 3C). The ΔM and ΔC mutants of FLAG-
153 NCOA4 also recovered the formation of puncta, and the ΔIDR1 mutant
154 partially recovered it. In contrast, the ΔN and ΔIDR2 mutants failed to form
155 mGFP-FTH1 puncta (Figures 3B, 3C). These results indicate the importance
156 of the N and IDR2 domains of NCOA4 in the formation of ferritin condensates,
157 which could be partly explained by the interaction of IDR2 with FTH1 (Mancias
158 et al., 2015; Gryzik et al., 2017).

159 The N-terminal coiled-coil domain of NCOA4 is known as a self-
160 oligomerization domain (Monaco et al., 2001). In fact, full-length FLAG-
161 NCOA4 interacted with the N-terminal domain of NCOA4 (NCOA4N) fused
162 with mGFP (Figure 3D). The HHpred search (Soding et al., 2005) identified

163 that the N-terminal coiled-coil domain in NCOA4 is structurally similar to that in
164 TRIM28. TRIM28 forms a homodimer (Stoll et al., 2019), and Ile-299 and Leu-
165 306 are located at the homodimerization interface (Figure S2). Thus, we
166 introduced mutations in the corresponding residues in NCOA4 (I56E and
167 L63R), which were predicted via trRosetta (Yang et al., 2020) (Figure S2).
168 These mutations blocked self-interaction via the N-terminal domain (Figure
169 3D). The yeast two-hybrid assay using NCOA4N also showed that the I56E or
170 L63R mutants were defective in self-interaction (Figure S3). Fluorescence
171 microscopy revealed that the I56E or L63R mutants did not show GFP-FTH1
172 puncta in *NCOA4* KO cells (Figure 3E), indicating that NCOA4 self-interaction
173 is required for the formation of ferritin–NCOA4 condensates. Taken together,
174 we concluded that the formation of ferritin–NCOA4 condensates is driven by
175 NCOA4-mediated multivalent interactions (i.e., NCOA4-FTH1 interaction and
176 NCOA4 self-interaction).

177

178 **Ferritin–NCOA4 condensate formation is required for ferritin degradation**

179 We then determined whether condensate formation was required for the
180 degradation of ferritin. When introduced into *NCOA4* KO cells, WT and all the
181 NCOA4 mutants that restored the formation of mGFP-FTH1 puncta (Δ M, Δ C,
182 and Δ IDR1) also rescued FTH1 degradation upon iron depletion, whereas the
183 Δ N and Δ IDR2 mutants, which failed to form mGFP-FTH1 puncta, also failed
184 to degrade FTH1 (Figures 3F, 3G). Furthermore, the dimerization-defective
185 NCOA4 mutants (I56E and L63R) failed to restore FTH1 degradation (Figures
186 3H, 3I). It should be noted that these I56E and L63R mutants retained the
187 binding ability to FTH1 and FTL (likely through FTH1 in ferritin particles)
188 (Figure 3D). Thus, these results suggest that condensate formation rather than
189 NCOA4–ferritin binding itself is important for ferritin degradation.

190

191 **Ferritin–NCOA4 condensates are common substrates for** 192 **macroautophagy and endosomal microautophagy**

193 Next, we investigated whether ferritin–NCOA4 condensates were
194 targeted by autophagosomes. WT cells expressing mGFP-FTH1 and

195 HaloTag7-tagged LC3B (Halo-LC3), an autophagosomal membrane marker
196 (Kabeya et al., 2000; Mizushima, 2004), were observed under iron-deficient
197 conditions. Time-lapse fluorescence microscopy showed that some mGFP-
198 FTH1 puncta were sequestered by cup-shaped autophagosomal membranes
199 in a piecemeal manner (Figure 4A and Movie S1). To obtain more detailed
200 morphological information, we conducted three-dimensional correlative light
201 and electron microscopy (3D-CLEM). In line with the observations under a
202 fluorescence microscope, we observed an electron-dense ferritin condensate
203 with a diameter of ~500 nm being sequestered partly by a Halo-LC3-positive
204 autophagosomal membrane (Figure 4B). The autophagosomal membrane
205 appeared to be in close contact with the ferritin condensate, similar to the
206 fluidophagy of the SQSTM1 bodies (Agudo-Canalejo et al., 2021). The
207 remaining region not engulfed by the autophagosomal membrane retained a
208 spherical shape, consistent with its liquid-like property. These results suggest
209 that ferritin–NCOA4 condensates are selective substrates for
210 macroautophagy.

211 We also examined the involvement of endosomal microautophagy. To
212 enlarge endosomes so that we could see intraluminal vesicles (ILVs) by
213 fluorescence microscopy, we took advantage of mRuby3-RAB5^{Q79L}, a
214 constitutively active mutant of RAB5 (Stenmark et al., 1994; Mejlvang et al.,
215 2018). After doxycycline-induced expression of mRuby3-RAB5^{Q79L}, some
216 GFP-FTH1 puncta were seen trapped in enlarged endosomes even under
217 normal growth conditions (Figure 4C, upper panels). Similar results were
218 obtained when mGFP-NCOA4 was used (Figure 4C, middle panels). The
219 magnified images showed that the fluorescence intensity of the GFP-FTH1
220 puncta inside the enlarged endosomes (Figure 4C, lower panels, arrows) was
221 similar to that in the cytosol (Figure 4C, lower panels, arrowhead), suggesting
222 that ferritin condensates were directly incorporated into endosomes. These
223 puncta in enlarged endosomes moved quickly (Movies S2–S4). Some diffuse
224 GFP signals were detected inside endosomes, likely representing the
225 disruption of ILV membranes (Figure 4C). In addition, 3D-CLEM using
226 scanning electron microscopy (SEM) revealed that the enlarged endosomes

227 containing mGFP-FTH1 puncta were electron-dense and contained electron-
228 dense ILVs (Figure 4D). By TEM, ferritin particles were detected in these ILVs
229 (Figure 4E). In contrast to WT cells, *NCOA4* KO cells did not incorporate
230 mGFP-FTH1 into enlarged endosomes at all (Figure 4F), suggesting that the
231 formation of *NCOA4*-mediated condensates is required for the incorporation of
232 ferritin into endosomes. Collectively, these observations demonstrate that
233 ferritin–*NCOA4* condensates are targeted not only by macroautophagy but
234 also by endosomal microautophagy.

235

236 **TAX1BP1 is dispensable for the formation of ferritin–*NCOA4*
237 condensates but required for their recognition by macroautophagy and
238 microautophagy**

239 We further examined whether *TAX1BP1*, an adaptor protein required for
240 ferritin turnover (Goodwin et al., 2017), was involved in ferritin–*NCOA4*
241 condensate formation. Fluorescence microscopy showed that mGFP-
242 *TAX1BP1* co-localized with mRuby3-FTH1 puncta in WT and *FIP200* KO cells
243 (Figure 5A), suggesting that *TAX1BP1* is also a component of ferritin–*NCOA4*
244 condensates. These FTH1⁺*TAX1BP1*⁺ condensates often associated with
245 FTH1–*TAX1BP1*⁺ condensates, which were likely SQSTM1 bodies as we
246 previously observed (Kishi-Itakura et al., 2014). However, knockout of
247 *TAX1BP1* (Figure S1A) did not impede condensate formation (Figure 5B).
248 These results denote that *TAX1BP1* interacts with component(s) of ferritin-
249 *NCOA4* condensates, probably with *NCOA4* (Goodwin et al., 2017), but is
250 dispensable for the formation of ferritin condensates. Given that ferritin
251 turnover was blocked in the absence of *TAX1BP1*, as reported previously
252 (Goodwin et al., 2017) (Figure S1B), we assumed that *TAX1BP1* functions
253 after the formation of condensates, more specifically, at the recognition step of
254 ferritin–*NCOA4* condensates by macroautophagy and/or microautophagy. In
255 WT cells under iron-depleted conditions, Halo-LC3 frequently co-localized with
256 mGFP-FTH1 puncta (Figures 5C, 5D). By contrast, *TAX1BP1* KO cells did not
257 show co-localization of Halo-LC3 with mGFP-FTH1 puncta (Figures 5C, 5D),
258 suggesting that *TAX1BP1* is required for the recognition of ferritin-*NCOA4*

259 condensates by macroautophagy. Likewise, mGFP-FTH1 puncta were
260 frequently trapped in endosomes in WT cells, but not in *TAX1BP1* KO cells
261 (Figures 5E, 5F). Taken together, we concluded that *TAX1BP1* is dispensable
262 for ferritin–NCOA4 condensate formation, but is required for the recognition of
263 ferritin condensates as a common adaptor for macroautophagy and
264 endosomal microautophagy.

265

266 **Discussion**

267 In this study, we revealed that ferritin particles undergo phase separation
268 in the cytosol (Figure 5G) and that NCOA4 functions as a driver of ferritin
269 phase separation by providing multivalent interactions (i.e., homodimerization
270 and the direct binding to FTH1) (Figure 3). We also showed that resultant
271 ferritin–NCOA4 condensates were eventually sorted into two different
272 pathways, macroautophagy and endosomal microautophagy (Figure 5G), in a
273 *TAX1BP1*-dependent manner (Figure 5). Increasing reports have pointed out
274 the relationship between macroautophagy and phase separation of autophagic
275 cargos in various species and contexts, including SQSTM1 bodies in
276 mammalian cells (Sun et al., 2018), Ape1 condensates in the cytoplasm-to-
277 vacuole targeting (Cvt) pathway in yeast (Yamasaki et al., 2020), and PGL
278 granules during embryogenesis of *C. elegans* (Zhang et al., 2018). Recently, it
279 was demonstrated that the autophagosomal sequestration of liquid droplets is
280 promoted by the wetting effect resulting from contact between liquid droplets
281 and membranes (Agudo-Canalejo et al., 2021). This process was termed
282 “fluidophagy,” highlighting the importance of the liquidity of droplets in the
283 deformation of the autophagosomal membranes. During ferritin
284 macroautophagy, we observed that the autophagosomal membranes adhered
285 to the surface of liquid-like ferritin–NCOA4 condensates (Figure 3B), which
286 appears to be comparable to that observed during SQSTM1 fluidophagy
287 (Agudo-Canalejo et al., 2021). Thus, we propose that ferritin macroautophagy
288 (macroferritinophagy) is a type of “macrofluidophagy.” It is possible that ferritin
289 condensates with a liquid-like property promote the elongation of
290 autophagosomal membranes along the surface of ferritin condensates to

291 achieve highly selective degradation.

292 In addition to ferritin macrofluidophagy, we found that ferritin–NCOA4
293 condensates were also incorporated into endosomes, suggesting that LLPS
294 promotes cargo sorting into endosomes for lysosomal degradation. We assume
295 that the endosomal microautophagy of ferritin condensates can be regarded as
296 “microfluidophagy,” which may also be promoted by the abovementioned
297 wetting effect. If this is the case, LLPS might be a common mechanism for the
298 two distinct lysosomal ferritin transport pathways. Although selective sorting of
299 microRNAs into exosomes by LLPS of RNA-binding protein has been reported
300 (Liu et al., 2021), little is known about the relationship between LLPS and the
301 endosomal sorting and microautophagy pathways. It is well known that ferritin is
302 secreted and this secretion is enhanced in some diseases, including
303 hemophagocytic lymphohistiocytosis and adult-onset Still’s disease (Rosario et
304 al., 2013). Moreover, autophagy-related proteins such as NCOA4 were found to
305 be secreted via extracellular vesicles (Solvik et al., 2021). Furthermore, a
306 recent paper reported that ferritin secretion via extracellular vesicles depends
307 on NCOA4 (Yanatori et al., 2021). Thus, ferritin–NCOA4 condensates may be
308 directed to both lysosomal degradation and secretion after incorporation into
309 endosomes; this needs to be investigated in further studies.

310 We also distinguished the roles of NCOA4 and TAX1BP1 in ferritin
311 turnover (Figure 5G). NCOA4 has been thought to be an autophagy receptor
312 for ferritin (Mancias et al., 2014; Dowdle et al., 2014), but we discovered its
313 important additional role in acting as a scaffold of ferritin phase separation by
314 providing multivalent interactions (Figure 3). It is possible that the degradation
315 efficiency of the ferritin–NCOA4 condensates are regulated by the expression
316 levels and ratio of NCOA4, FTH1, and FTL. In fact, the expression levels of
317 FTH1 and FTL respond to iron concentration (Theil, 1987; Munro, 1990), and
318 the FTH1:FTL ratio differs among organs (Arosio et al., 1976). On the other
319 hand, TAX1BP1 is required for the recognition of ferritin condensates rather
320 than condensate formation. TAX1BP1 has a noncanonical LC3-interacting
321 region at residues 141–143 (Newman et al., 2012; Tumbarello et al., 2015)
322 and binds to LC3 family proteins, which play a central role in selective

323 autophagy (Birgisdottir et al., 2013; Johansen and Lamark, 2020). Thus, the
324 association of ferritin–NCOA4 condensates with autophagosomes can be
325 explained by the direct binding of TAX1BP1 to LC3 family proteins. However,
326 the mechanism by which TAX1BP1 links ferritin–NCOA4 condensates to
327 endosomal microautophagy has yet to be elucidated. This pathway may not
328 require LC3 binding given that lysosomal degradation of NCOA4 is partially
329 independent of the LC3 lipidation machinery (Goodwin et al., 2017; Mejlvang et
330 al., 2018). An as yet unidentified factor might be involved in the endosomal
331 microautophagy of ferritin–NCOA4 condensates.

332 Ferritin clusters have been observed in several types of cells under
333 physiological conditions, including reticulocytes (Sullivan et al., 1976; Heynen
334 and Verwilghen, 1982), Caco-2 cells (Meyron-Holtz et al., 2014), and human
335 kidney proximal tubule brush border cells (Cohen et al.) as well as in some
336 disease conditions such as in erythroblasts in sideroblastic anemia (Ghadially,
337 1975) and in hepatocytes in hemochromatosis (Iancu, 1992). Further studies
338 are needed to confirm that these structures are indeed ferritin–NCOA4
339 condensates and are degraded by macroautophagy and/or endosomal
340 microautophagy. We also observed the engulfment of ferritin–NCOA4
341 condensates by autophagosomes under iron-deficient conditions (Figures 4, 5)
342 and incorporation into endosomes under normal growth conditions (Figures 4,
343 5), both of which require TAX1BP1 as an adaptor protein. However, the
344 mechanism by which the sorting of ferritin–NCOA4 condensates into the two
345 different pathways (or three if the exosome pathway is included) is regulated
346 remains unclear and needs to be elucidated in the future. Cellular iron
347 metabolism is a network of many reactions and pathways that require various
348 kinds of molecules, including proteins, inorganic iron, and RNAs (Pantopoulos
349 et al., 2012; Bogdan et al., 2016). Biomolecular condensates can function as
350 an organization hub that couples different reactions (Shin and Brangwynne,
351 2017). Further studies will be required to reveal which molecules exist and what
352 kind of reactions occur in ferritin–NCOA4 condensates so that we can gain an
353 understanding of their exact role in iron metabolism.

354

355 **Acknowledgements**

356 We are grateful to Maya Shirakawa for technical assistance with the cell
357 biology experiments; Satoru Takahashi, Yoko Ishida, and Keiko Igarashi for
358 technical assistance with the 3D-CLEM experiments; Shoji Yamaoka for the
359 pMRXIP plasmid; and Teruhito Yasui for the pCG-gag-pol and pCG-VSV-G
360 plasmids. This work was supported by the Exploratory Research for Advanced
361 Technology (ERATO) research funding program of the Japan Science and
362 Technology Agency (JST) (JPMJER1702 to N.M.) and a Grant-in-Aid for
363 Transformative Research Areas (A) from the Japan Society for the Promotion
364 of Science (JSPS) (21H05256 to H.Y.).

365

366 **Author Contributions**

367 T.O., H.Y., and N.M. designed the project. T.O. and H.Y. performed the cell
368 biology experiments. Y.S. and C.S. performed the TEM and 3D-CLEM
369 experiments. T.O., H.Y., and N.M. wrote the manuscript. All authors
370 commented on the manuscript.

371

372 **Conflict of Interest**

373 The authors declare no competing interests.

374 **Materials and Methods**

375

376 **Cell lines and culture conditions**

377 HeLa and HEK293T cells (authenticated by RIKEN) were cultured in Dulbecco's
378 modified Eagle medium (DMEM) (D6546; Sigma-Aldrich) supplemented with
379 10% fetal bovine serum (FBS) (173012; Sigma-Aldrich) and 2 mM L-glutamine
380 (25030-081; GIBCO) in a 5% CO₂ incubator at 37°C. For the iron-replete
381 conditions, HeLa cells were treated with 10, 50, or 100 µg/mL ferric ammonium
382 citrate (FAC) (F5879; Sigma-Aldrich). For iron-deficient conditions, cells were
383 treated with FAC for 24 h followed by 50 µM deferoxamine (DFO) (D9533;
384 Sigma-Aldrich).

385 *FIP200* KO HeLa cells have been described previously (Tsuboyama et al.,
386 2016). *NCOA4* KO, *FIP200 NCOA4* DKO, *TAX1BP1* KO, and *FIP200 TAX1BP1*
387 DKO HeLa cells were generated as follows: DNA fragments encoding the
388 neomycin-resistant cassette flanked by 500-bp sequences homologous to exon
389 4 and exon 6 of the *NCOA4* gene or homologous to exon 4 of the *TAX1BP1*
390 gene were prepared. WT and *FIP200* KO HeLa cells were cotransfected with
391 the DNA fragment and the PX459 (Addgene #48139)-based plasmid expressing
392 Cas9 and gRNA (GTCTTAGAAGCCGTGAGGTA for the *NCOA4* gene) or gRNA
393 (GTTCTGTTACGTTACCCATA for the *TAX1BP1* gene) using FuGENE HD
394 (E2311; Promega) for 4 h. The cells were cultured for 5 days in DMEM, treated
395 with 1.5 mg/mL G418 (09380-86; Nacalai Tesque) for 1 week, and the clones
396 were selected. HeLa cells inducibly expressing mRuby3-RAB5^{Q79L} were
397 generated as follows: a DNA fragment encoding mRuby3-RAB5^{Q79L} under the
398 Tet-on promoter with the hygromycin-resistant cassette was flanked by 500-bp
399 sequences homologous to the AAVS1 locus. WT, *NCOA4* KO, and *TAX1BP1*
400 KO HeLa cells were cotransfected with the DNA fragment and the PX459
401 (Addgene #48139)-based plasmid expressing Cas9 and gRNA
402 (GGGGCCACTAGGGACAGGAT). The cells were cultured for 5 days, treated
403 with 50 µg/mL hygromycin (10687010; Thermo Fisher Scientific) for 1 week, and
404 the clones were selected.

405

406 **Plasmids**

407 Plasmids for stable expression in HeLa cells were generated as follows: DNA
408 fragments encoding enhanced GFP, monomeric enhanced GFP (mGFP)
409 harboring A206K mutation, mRuby3 (codon-optimized from Addgene #74252),
410 HaloTag7 (Halo) (G1891; Promega), or 3×FLAG were inserted into the retroviral
411 plasmid pMRX-IP (Kitamura et al., 2003; Saitoh et al., 2003) or pMRX-IB
412 (Morita et al., 2018) by the seamless ligation cloning extract (SLiCE) method
413 (Motohashi, 2017). Then, DNA fragments encoding human FTH1
414 (NP_002023.2), FTL (NP_000137.2), NCOA4 (NP_001138734.1, isoform 3), or
415 TAX1BP1 (NP_001073333.1, isoform 2) were inserted into the pMRX-IP-based
416 or pMRX-IB-based plasmids by the SLiCE method.

417 For expression in yeast cells, pRS316-based plasmids expressing
418 monomeric ultra-stable GFP (muGFP) (Scott et al., 2018) or muGFP-NCOA4
419 were generated as follows: a DNA fragment encoding muGFP or muGFP-
420 NCOA4 was inserted downstream of the GPD promoter of pRS316-GPDpro by
421 the SLiCE method. pRS314-based plasmids expressing FTH1 were generated
422 as follows: a DNA fragment encoding FTH1 was inserted downstream of the
423 GPD promoter of pRS314-GPDpro by the SLiCE method.

424 For the yeast two-hybrid assay, DNA fragments encoding the N-terminal
425 domain (residues 1–182) of NCOA4 (WT, I56E, or L63R) were inserted into the
426 pGADT7 or pGBK7 vector by the SLiCE method.

427

428 **Stable expression in HeLa cells by retrovirus infection**

429 For preparation of the retrovirus solution, HEK293T cells were transfected with
430 the pMRX-IP-based or pMRX-IB-based retroviral plasmid (Kitamura et al., 2003;
431 Saitoh et al., 2003) together with pCG-gag-pol and pCG-VSV-G using
432 Lipofectamine 2000 (11668019; Thermo Fisher Scientific) for 4–6 h. After the
433 cells were cultured for 2–3 days in DMEM, the retrovirus-containing medium
434 was harvested and filtered through a 0.45-μm filter unit (Ultrafree-MC; Millipore)
435 and added to HeLa cells with 8 μg/mL polybrene (H9268; Sigma-Aldrich). After
436 the cells were cultured for 1 day, selection was performed with 1–2 μg/mL

437 puromycin (P8833; Sigma-Aldrich) or 2–3 µg/mL blasticidin (022-18713; Fujifilm
438 Wako Pure Chemical Corporation).

439

440 **RNA interference**

441 Stealth RNAi siRNAs (Thermo Fisher Scientific) were used for RNA
442 interference. HeLa cells were transfected with siLuc
443 (CGCGGUCGGUAAAGTTGUUCCAUUU), siFTH1 #1
444 (CCAGAACUACCACCAGGACUCAGAG), siFTH1 #2
445 (CAUGUCUUACUACUUUGACCGCGAU), siFTH1 #3
446 (AGUCACUACUGGAACUGCACAAACU), and/or siFTL
447 (GCAAAGUAAUAGGGCUUCUGCCUAA) using lipofectamine RNAiMAX
448 (13778150; Thermo Fisher Scientific) for 4 h. Then, the cells were cultured for
449 46 h (siFTH1 and siFTH1 siFTL) or 66 h (siLuc and siFTL) in DMEM.

450

451 **Preparation of whole cell lysates**

452 HeLa cells were harvested by centrifugation at 3,000 × g for 1 min at 4°C and
453 lysed with 0.2% *n*-dodecyl-β-D-maltoside (DDM) (14239-54; Nacalai Tesque) in
454 25 mM HEPES-KOH pH 7.2, 150 mM NaCl, 2 mM MgSO₄, and 1% protease
455 inhibitor cocktail (P8340; Sigma-Aldrich) for 20 min on ice and then treated with
456 0.1% benzonase (70664; Millipore). The protein concentrations were
457 determined by a microvolume spectrophotometer (NanoDrop One; Thermo
458 Fisher Scientific). Whole cell lysates were mixed with 2×SDS-PAGE sample
459 buffer and boiled at 98°C for 5 min and the protein concentrations were
460 adjusted with 1×SDS-PAGE sample buffer.

461

462 **Co-immunoprecipitation**

463 HeLa cells were solubilized with 0.1% DDM in HNE buffer (25 mM HEPES-KOH
464 pH 7.2, 150 mM NaCl, 2 mM EDTA) containing 1% protease inhibitor cocktail
465 (P8340; Sigma-Aldrich) for 20 min on ice and then centrifuged at 17,700 × g for
466 15 min. The supernatants were incubated with anti-DYKDDDDK/FLAG
467 magnetic beads (017-25151; Fujifilm Wako Pure Chemical Corporation) for 3 h
468 at 4°C. The beads were washed three times with HNE buffer containing 0.05%

469 DDM, and bound proteins were eluted with SDS-PAGE sample buffer at 98°C
470 for 5 min.

471

472 **Immunoblotting**

473 Immunoblotting was performed using anti-FTH1 (MA5-32244; Thermo Fisher
474 Scientific), anti-FTL (MA5-32755; Thermo Fisher Scientific), anti-NCOA4
475 (SAB1409837; Sigma-Aldrich), anti-TAX1BP1 (HPA024432; Sigma-Aldrich),
476 anti-FIP200 (17250-1-AP; Proteintech), anti-HSP90 (610419; BD Transduction
477 Laboratories), anti-GFP (A-6455; Thermo Fisher Scientific), and HRP-
478 conjugated anti-DYKDDDDK/FLAG (015-22391; Fujifilm Wako Pure Chemical
479 Corporation) as primary antibodies, and HRP-conjugated anti-rabbit IgG (111-
480 035-144; Jackson ImmunoResearch) and HRP-conjugated anti-mouse IgG
481 (315-035-003; Jackson ImmunoResearch) as secondary antibodies.
482 SuperSignal West Pico Chemiluminescent Substrate (1856135; Thermo Fisher
483 Scientific) and Immobilon Western Chemiluminescent HRP Substrate (P90715;
484 Millipore) were used to visualize the signals, which were detected by an image
485 analyzer (FUSION SOLO.7S.EDGE; Vilber-Lourmat). Contrast and brightness
486 adjustments were performed using the ImageJ (National Institutes of Health) or
487 Photoshop CC 2019/2020 (Adobe) software.

488

489 **Yeast transformation**

490 For exogenous expression of muGFP-NCOA4 and FTH1 in yeast cells, BJ2168
491 *atg11Δ atg17Δ* cells were transformed with pRS316-muGFP or pRS316-
492 muGFP-NCOA4 by the high-efficiency yeast transformation method (Gietz and
493 Schiestl, 2007) and grown on SD (-Ura) plates at 30°C. The cells were further
494 transformed with pRS314 or pRS314-FTH1 and grown on SD (-Ura, -Trp)
495 plates. For the yeast two-hybrid assay, AH109 cells were transformed with the
496 pGBT7-based plasmid and grown on SD (-Trp) plates. The cells were further
497 transformed with the pGADT7-based plasmid and grown on SD (-Trp, -Leu)
498 plates.

499

500 **Fluorescence microscopy**

501 Live-imaging fluorescence microscopy was performed using the FV3000
502 confocal laser microscope (Olympus) equipped with a 60× oil-immersion
503 objective lens (NA 1.4, PLAPON60XOSC2; Olympus) and a stage top CO₂
504 incubator (STXG-IX3WX; Tokai Hit) at 37°C with 5% CO₂. HeLa cells were
505 grown in a glass-bottom dish (3910-035; Iwaki) and fluorescent images were
506 captured using the FluoView software (Olympus). For observation of Halo-LC3,
507 HeLa cells were incubated with 20 nM HaloTag SaraFluor 650T ligand
508 (GCKA308; Promega) for 15 min before observation. The numbers of punctate
509 structures were counted using Fiji software (National Institutes of Health)
510 (Schindelin et al., 2012).

511

512 **Fluorescence recovery after photobleaching (FRAP)**

513 FRAP experiments were performed using the FV3000 confocal laser
514 microscope system (Olympus) at 37°C with 5% CO₂. Photobleaching of mGFP-
515 FTH1 was achieved using a 488-nm laser with a bleaching time of 55.461 ms.
516 Images were captured at 10-s intervals for 20 min (120 time points).

517

518 **Transmission electron microscopy (TEM)**

519 HeLa cells were grown on a Celltight C-1 Celldesk LF coverslip (MS-0113K;
520 Sumitomo Bakelite) in DMEM and fixed with 2.5% glutaraldehyde (G018/1;
521 TAAB) in 0.1 M cacodylate buffer pH 7.4 (37237-35; Nacalai Tesque) for 2 h on
522 ice. Postfixation, embedding, and observation under a transmission electron
523 microscope (H-7100; Hitachi) have been described previously (Tamura et al.,
524 2017).

525

526 **3D-CLEM**

527 For observation of the ferritin condensates engulfed by the autophagosomes,
528 HeLa cells expressing mGFP-FTH1 and Halo-LC3 were grown on a glass-
529 bottom dish with 150-μm grids (TCI-3922-035R-1CS; Iwaki, a custom-made
530 product with cover glass attached in the opposite direction) coated with carbon
531 and 0.1% gelatin as described previously (Maeda et al., 2020) and treated with
532 20 nM HaloTag SaraFluor 650T ligand (GCKA308; Promega) for 15 min before

533 fixation. For observation of the ferritin condensates incorporated into the
534 endosomes or autophagosomes, HeLa cells expressing mGFP-FTH1 were
535 grown as described above and treated with 2 µg/mL doxycycline for 48 h before
536 fixation. The cells were fixed and observed by the FV3000 confocal laser
537 microscope system (Olympus), and then postfixed, embedded in EPON812 as
538 described previously (Maeda et al., 2020). Serial sections (25 nm thick) were
539 cut by an ultramicrotome (UC7; Leica) and observed by a scanning electron
540 microscope (SEM) (JSM7900F; JEOL) and TEM (JEM-1010; JEOL). CLEM
541 images were constructed using Fiji (National Institutes of Health) (Schindelin et
542 al., 2012) and Photoshop CC 2019/2020 (Adobe) software.

543 **References**

544 Agudo-Canalejo, J., Schultz, S. W., Chino, H., Migliano, S. M., Saito, C.,
545 Koyama-Honda, I., Stenmark, H., Brech, A., May, A. I., Mizushima, N.,
546 and Knorr, R. L. (2021). Wetting regulates autophagy of phase-separated
547 compartments and the cytosol. *Nature*, 591(7848), 142-146.

548 Alberti, S., Gladfelter, A., and Mittag, T. (2019). Considerations and Challenges
549 in Studying Liquid-Liquid Phase Separation and Biomolecular
550 Condensates. *Cell*, 176(3), 419-434.

551 Arosio, P., Yokota, M., and Drysdale, J. W. (1976). Structural and immunological
552 relationships of isoferritins in normal and malignant cells. *Cancer Res*,
553 36(5), 1735-1739.

554 Asano, T., Komatsu, M., Yamaguchi-Iwai, Y., Ishikawa, F., Mizushima, N., and
555 Iwai, K. (2011). Distinct mechanisms of ferritin delivery to lysosomes in
556 iron-depleted and iron-replete cells. *Mol Cell Biol*, 31(10), 2040-2052.

557 Bai, L., Xie, T., Hu, Q., Deng, C., Zheng, R., and Chen, W. (2015). Genome-
558 wide comparison of ferritin family from Archaea, Bacteria, Eukarya, and
559 Viruses: its distribution, characteristic motif, and phylogenetic
560 relationship. *Naturwissenschaften*, 102(9-10), 64.

561 Birgisdottir, A. B., Lamark, T., and Johansen, T. (2013). The LIR motif - crucial
562 for selective autophagy. *J Cell Sci*, 126(Pt 15), 3237-3247.

563 Bogdan, A. R., Miyazawa, M., Hashimoto, K., and Tsuji, Y. (2016). Regulators of
564 Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease.
565 *Trends Biochem Sci*, 41(3), 274-286.

566 Canessa, P., and Larrondo, L. F. (2013). Environmental responses and the
567 control of iron homeostasis in fungal systems. *Appl Microbiol Biotechnol*,
568 97(3), 939-955.

569 Cohen, L. A., Gutierrez, L., Weiss, A., Leichtmann-Bardoogo, Y., Zhang, D. L.,
570 Crooks, D. R., Sougrat, R., Morgenstern, A., Galy, B., Hentze, M. W.,
571 Lazaro, F. J., Rouault, T. A., and Meyron-Holtz, E. G. (2010). Serum
572 ferritin is derived primarily from macrophages through a nonclassical
573 secretory pathway. *Blood*, 116(9), 1574-1584.

574 Dowdle, W. E., Nyfeler, B., Nagel, J., Elling, R. A., Liu, S., Triantafellow, E.,
575 Menon, S., Wang, Z., Honda, A., Pardee, G., Cantwell, J., Luu, C.,
576 Cornella-Taracido, I., Harrington, E., Fekkes, P., Lei, H., Fang, Q., Digan,
577 M. E., Burdick, D., Powers, A. F., Helliwell, S. B., D'Aquin, S., Bastien, J.,
578 Wang, H., Wiederschain, D., Kuerth, J., Bergman, P., Schwalb, D.,
579 Thomas, J., Ugwonali, S., Harbinski, F., Tallarico, J., Wilson, C. J., Myer,

580 V. E., Porter, J. A., Bussiere, D. E., Finan, P. M., Labow, M. A., Mao, X.,
581 Hamann, L. G., Manning, B. D., Valdez, R. A., Nicholson, T., Schirle, M.,
582 Knapp, M. S., Keaney, E. P., and Murphy, L. O. (2014). Selective VPS34
583 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin
584 degradation and iron homeostasis in vivo. *Nat Cell Biol*, 16(11), 1069-
585 1079.

586 Fenton, H. J. H. (1894). LXXIII.—Oxidation of tartaric acid in presence of iron. *J.
587 Chem. Soc., Trans.*, 65(0), 899-910.

588 Ghadially, F. N. (1975). *Ultrastructural pathology of the cell*. Butterworths.

589 Gietz, R. D., and Schiestl, R. H. (2007). High-efficiency yeast transformation
590 using the LiAc/SS carrier DNA/PEG method. *Nat Protoc*, 2(1), 31-34.

591 Goodwin, J. M., Dowdle, W. E., DeJesus, R., Wang, Z., Bergman, P., Kobylarz,
592 M., Lindeman, A., Xavier, R. J., McAllister, G., Nyfeler, B., Hoffman, G.,
593 and Murphy, L. O. (2017). Autophagy-Independent Lysosomal Targeting
594 Regulated by ULK1/2-FIP200 and ATG9. *Cell Rep*, 20(10), 2341-2356.

595 Gryzik, M., Srivastava, A., Longhi, G., Bertuzzi, M., Gianoncelli, A., Carmona, F.,
596 Poli, M., and Arosio, P. (2017). Expression and characterization of the
597 ferritin binding domain of Nuclear Receptor Coactivator-4 (NCOA4).
598 *Biochim Biophys Acta Gen Subj*, 1861(11), 2710-2716.

599 Haber, F., and Weiss, J. (1934). The catalytic decomposition of hydrogen
600 peroxide by iron salts. *Proceedings of the Royal Society of London.
601 Series A - Mathematical and Physical Sciences*, 147(861), 332-351.

602 Halliwell, B., and Gutteridge, J. M. (1990). Role of free radicals and catalytic
603 metal ions in human disease: an overview. *Methods Enzymol*, 186, 1-85.

604 Heynen, M. J., and Verwilghen, R. L. (1982). A quantitative ultrastructural study
605 of normal rat erythroblasts and reticulocytes. *Cell Tissue Res*, 224(2),
606 397-408.

607 Iancu, T. C. (1992). Ferritin and hemosiderin in pathological tissues. *Electron
608 Microscopy Reviews*, 5(2), 209-229.

609 Iancu, T. C., Arad, T., Shams, I., and Manov, I. (2014). Iron-rich ferritin in the
610 hypoxia-tolerant rodent *Spalax ehrenbergi*: a naturally-occurring
611 biomarker confirms the internalization and pathways of intracellular
612 macromolecules. *J Struct Biol*, 187(3), 254-265.

613 Johansen, T., and Lamark, T. (2020). Selective Autophagy: ATG8 Family
614 Proteins, LIR Motifs and Cargo Receptors. *J Mol Biol*, 432(1), 80-103.

615 Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T.,
616 Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian

617 homologue of yeast Apg8p, is localized in autophagosome membranes
618 after processing. *EMBO J*, 19(21), 5720-5728.

619 Kidane, T. Z., Sauble, E., and Linder, M. C. (2006). Release of iron from ferritin
620 requires lysosomal activity. *Am J Physiol Cell Physiol*, 291(3), C445-455.

621 Kishi-Itakura, C., Koyama-Honda, I., Itakura, E., and Mizushima, N. (2014).
622 Ultrastructural analysis of autophagosome organization using
623 mammalian autophagy-deficient cells. *J Cell Sci*, 127(18), 4089-4102.

624 Kitamura, T., Koshino, Y., Shibata, F., Oki, T., Nakajima, H., Nosaka, T., and
625 Kumagai, H. (2003). Retrovirus-mediated gene transfer and expression
626 cloning: powerful tools in functional genomics. *Experimental Hematology*,
627 31(11), 1007-1014.

628 Liu, X. M., Ma, L., and Schekman, R. (2021). Selective sorting of microRNAs
629 into exosomes by phase-separated YBX1 condensates. *Elife*, 10.

630 Maeda, S., Yamamoto, H., Kinch, L. N., Garza, C. M., Takahashi, S., Otomo, C.,
631 Grishin, N. V., Forli, S., Mizushima, N., and Otomo, T. (2020). Structure,
632 lipid scrambling activity and role in autophagosome formation of ATG9A.
633 *Nat Struct Mol Biol*, 27(12), 1194-1201.

634 Mancias, J. D., Pontano Vaites, L., Nissim, S., Biancur, D. E., Kim, A. J., Wang,
635 X., Liu, Y., Goessling, W., Kimmelman, A. C., and Harper, J. W. (2015).
636 Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated
637 by iron dependent HERC2-mediated proteolysis. *Elife*, 4.

638 Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W., and Kimmelman, A. C.
639 (2014). Quantitative proteomics identifies NCOA4 as the cargo receptor
640 mediating ferritinophagy. *Nature*, 509(7498), 105-109.

641 Mann, S., Bannister, J. V., and Williams, R. J. P. (1986). Structure and
642 composition of ferritin cores isolated from human spleen, limpet (*Patella*
643 *vulgata*) hemolymph and bacterial (*Pseudomonas aeruginosa*) cells.
644 *Journal of Molecular Biology*, 188(2), 225-232.

645 Mejlvang, J., Olsvik, H., Svenning, S., Bruun, J. A., Abudu, Y. P., Larsen, K. B.,
646 Brech, A., Hansen, T. E., Brenne, H., Hansen, T., Stenmark, H., and
647 Johansen, T. (2018). Starvation induces rapid degradation of selective
648 autophagy receptors by endosomal microautophagy. *J Cell Biol*, 217(10),
649 3640-3655.

650 Meyron-Holtz, E. G., Cohen, L. A., Fahoum, L., Haimovich, Y., Lifshitz, L.,
651 Magid-Gold, I., Stuemler, T., and Truman-Rosentsvit, M. (2014). Ferritin
652 polarization and iron transport across monolayer epithelial barriers in
653 mammals. *Front Pharmacol*, 5, 194.

654 Mizushima, N. (2004). Methods for monitoring autophagy. *Int J Biochem Cell*
655 *Biol*, 36(12), 2491-2502.

656 Monaco, C., Visconti, R., Barone, M. V., Pierantoni, G. M., Berlingieri, M. T., De
657 Lorenzo, C., Mineo, A., Vecchio, G., Fusco, A., and Santoro, M. (2001).
658 The RFG oligomerization domain mediates kinase activation and re-
659 localization of the RET/PTC3 oncprotein to the plasma membrane.
660 *Oncogene*, 20(5), 599-608.

661 Morita, K., Hama, Y., Izume, T., Tamura, N., Ueno, T., Yamashita, Y., Sakamaki,
662 Y., Mimura, K., Morishita, H., Shihoya, W., Nureki, O., Mano, H., and
663 Mizushima, N. (2018). Genome-wide CRISPR screen identifies
664 TMEM41B as a gene required for autophagosome formation. *J Cell Biol*,
665 217(11), 3817-3828.

666 Motohashi, K. (2017). Seamless Ligation Cloning Extract (SLiCE) Method Using
667 Cell Lysates from Laboratory Escherichia coli Strains and its Application
668 to SLiP Site-Directed Mutagenesis. *Methods Mol Biol*, 1498, 349-357.

669 Munro, H. N. (1990). Iron regulation of ferritin gene expression. *J Cell Biochem*,
670 44(2), 107-115.

671 Newman, A. C., Scholefield, C. L., Kemp, A. J., Newman, M., McIver, E. G.,
672 Kamal, A., and Wilkinson, S. (2012). TBK1 kinase addiction in lung
673 cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-
674 canonical NF- κ B signalling. *PLoS One*, 7(11), e50672.

675 Pantopoulos, K., Porwal, S. K., Tartakoff, A., and Devireddy, L. (2012).
676 Mechanisms of mammalian iron homeostasis. *Biochemistry*, 51(29),
677 5705-5724.

678 Rosario, C., Zandman-Goddard, G., Meyron-Holtz, E. G., D'Cruz, D. P., and
679 Shoenfeld, Y. (2013). The hyperferritinemic syndrome: macrophage
680 activation syndrome, Still's disease, septic shock and catastrophic
681 antiphospholipid syndrome. *BMC Med*, 11, 185.

682 Saitoh, T., Nakayama, M., Nakano, H., Yagita, H., Yamamoto, N., and Yamaoka,
683 S. (2003). TWEAK induces NF- κ B2 p100 processing and long
684 lasting NF- κ B activation. *J Biol Chem*, 278(38), 36005-36012.

685 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch,
686 T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y.,
687 White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A.
688 (2012). Fiji: an open-source platform for biological-image analysis. *Nat
689 Methods*, 9(7), 676-682.

690 Scott, D. J., Gunn, N. J., Yong, K. J., Wimmer, V. C., Veldhuis, N. A., Challis, L.

691 M., Haidar, M., Petrou, S., Bathgate, R. A. D., and Griffin, M. D. W.
692 (2018). A Novel Ultra-Stable, Monomeric Green Fluorescent Protein For
693 Direct Volumetric Imaging of Whole Organs Using CLARITY. *Sci Rep*,
694 8(1), 667.

695 Shin, Y., and Brangwynne, C. P. (2017). Liquid phase condensation in cell
696 physiology and disease. *Science*, 357(6357).

697 Soding, J., Biegert, A., and Lupas, A. N. (2005). The HHpred interactive server
698 for protein homology detection and structure prediction. *Nucleic Acids
699 Res*, 33(Web Server issue), W244-248.

700 Solvik, T. A., Nguyen, T. A., Lin, Y.-H. T., Marsh, T., Huang, E. J., Wiita, A. P.,
701 Debnath, J., and Leidal, A. M. (2021). Autophagy cargo receptors are
702 secreted via extracellular vesicles and particles in response to
703 endolysosomal inhibition or impaired autophagosome maturation.
704 *bioRxiv*. doi: 10.1101/2021.08.12.456045.

705 Stenmark, H., Parton, R. G., Steele-Mortimer, O., Lütcke, A., Gruenberg, J., and
706 Zerial, M. (1994). Inhibition of rab5 GTPase activity stimulates membrane
707 fusion in endocytosis. *The EMBO Journal*, 13(6), 1287-1296.

708 Stoll, G. A., Oda, S. I., Chong, Z. S., Yu, M., McLaughlin, S. H., and Modis, Y.
709 (2019). Structure of KAP1 tripartite motif identifies molecular interfaces
710 required for retroelement silencing. *Proc Natl Acad Sci U S A*, 116(30),
711 15042-15051.

712 Sullivan, A. L., Grasso, J. A., and Weintraub, L. R. (1976). Micropinocytosis of
713 transferrin by developing red cells: an electron- microscopic study
714 utilizing ferritin-conjugated transferrin and ferritin-conjugated antibodies
715 to transferrin. *Blood*, 47(1), 133-143.

716 Sun, D., Wu, R., Zheng, J., Li, P., and Yu, L. (2018). Polyubiquitin chain-induced
717 p62 phase separation drives autophagic cargo segregation. *Cell Res*,
718 28(4), 405-415.

719 Takano-Ohmuro, H., Mukaida, M., Kominami, E., and Morioka, K. (2000).
720 Autophagy in embryonic erythroid cells: its role in maturation. *Eur J Cell
721 Biol*, 79(10), 759-764.

722 Tamura, N., Nishimura, T., Sakamaki, Y., Koyama-Honda, I., Yamamoto, H., and
723 Mizushima, N. (2017). Differential requirement for ATG2A domains for
724 localization to autophagic membranes and lipid droplets. *FEBS Lett*,
725 591(23), 3819-3830.

726 Theil, E. C. (1987). Ferritin: structure, gene regulation, and cellular function in
727 animals, plants, and microorganisms. *Annu Rev Biochem*, 56, 289-315.

728 Tsuboyama, K., Koyama-Honda, I., Sakamaki, Y., Koike, M., Morishita, H., and
729 Mizushima, N. (2016). The ATG conjugation systems are important for
730 degradation of the inner autophagosomal membrane. *Science*,
731 354(6315), 1036-1041.

732 Tumbarello, D. A., Manna, P. T., Allen, M., Bycroft, M., Arden, S. D., Kendrick-
733 Jones, J., and Buss, F. (2015). The Autophagy Receptor TAX1BP1 and
734 the Molecular Motor Myosin VI Are Required for Clearance of *Salmonella*
735 *Typhimurium* by Autophagy. *PLoS Pathog*, 11(10), e1005174.

736 Yamasaki, A., Alam, J. M., Noshiro, D., Hirata, E., Fujioka, Y., Suzuki, K.,
737 Ohsumi, Y., and Noda, N. N. (2020). Liquidity Is a Critical Determinant for
738 Selective Autophagy of Protein Condensates. *Mol Cell*, 77(6), 1163-1175
739 e1169.

740 Yanatori, I., Richardson, D. R., Dhekne, H. S., Toyokuni, S., and Kishi, F. (2021).
741 CD63 is regulated by iron via the IRE-IRP system and is important for
742 ferritin secretion by extracellular vesicles. *Blood*, 138(16), 1490-1503.

743 Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., and Baker, D.
744 (2020). Improved protein structure prediction using predicted interresidue
745 orientations. *Proc Natl Acad Sci U S A*, 117(3), 1496-1503.

746 Zhang, G., Wang, Z., Du, Z., and Zhang, H. (2018). mTOR Regulates Phase
747 Separation of PGL Granules to Modulate Their Autophagic Degradation.
748 *Cell*, 174(6), 1492-1506 e1422.

749

750 **Figure Legends**

751

752 **Figure 1. Ferritin particles assemble to form liquid-like condensates**

753 **(A, B)** Fluorescent images of the ferritin subunits FTH1 and FTL. Wild-type
754 (WT) and autophagy-deficient *FIP200* KO HeLa cells stably expressing mGFP-
755 FTH1 or mGFP-FTL were grown in DMEM (A) or treated with 10 µg/mL ferric
756 ammonium citrate (FAC) for 24 h (B) and observed by fluorescence microscopy.
757 Scale bars, 10 µm (main) and 1 µm (inset). **(C)** Immunoblots showing the
758 expression levels of mGFP-FTH1 and mGFP-FTL in cells used in (A). **(D)** TEM
759 images of the ferritin condensates in *FIP200* KO HeLa cells expressing GFP-
760 FTH1. Scale bars, 500 nm (main) and 100 nm (magnified). **(E)** FRAP analyses
761 of the ferritin condensates. WT HeLa cells expressing mGFP-FTH1 were
762 treated with 100 µg/mL FAC for 24 h followed by 50 µM deferoxamine (DFO) for
763 5 h, and subjected to FRAP analyses. Scale bars, 10 µm (main) and 1 µm
764 (magnified). **(F)** Quantification of (E). Fluorescence intensities before
765 photobleaching were set to 1. Representative results from two independent
766 experiments are presented as means ± SEM ($n = 5$). **(G)** Coalescence of the
767 ferritin condensates. WT HeLa cells expressing GFP-FTH1 were grown in
768 DMEM and observed by time-lapse fluorescence microscopy at ~11-s intervals.
769 Scale bars, 10 µm (main) and 1.5 µm (magnified).

770

771 **Figure 2. NCOA4 drives ferritin condensate formation**

772 **(A)** Localization of NCOA4 in ferritin condensates. WT and *FIP200* KO cells
773 expressing both mGFP-NCOA4 and mRuby3-FTH1 were grown in DMEM and
774 observed by fluorescence microscopy. Scale bars, 10 µm (main) and 1 µm
775 (inset). **(B)** NCOA4 is essential for condensate formation. WT, NCOA4 KO,
776 *FIP200* KO, and *FIP200* NCOA4 double KO (DKO) cells expressing mGFP-
777 FTH1 were observed as in (A). Scale bar, 15 µm. **(C)** Knockdown of ferritin
778 subunits. *FIP200* KO cells expressing mGFP-NCOA4 were transfected with the
779 indicated siRNAs (siLuc, siFTH1 [three independent oligos were used], and
780 siFTL) and observed by fluorescence microscopy. Scale bar, 10 µm. **(D)**
781 Immunoblots showing the expression levels of FTH1, FTL, and NCOA4 in cells
782 used in (C). **(E)** NCOA4 and FTH1 are sufficient for condensate formation.
783 Yeast cells exogenously expressing muGFP-NCOA4 with or without FTH1 were
784 observed by fluorescence microscopy. Scale bar, 5 µm.

785

786 **Figure 3. Ferritin–NCOA4 condensate formation is driven by NCOA4 self-
787 interaction and responsible for ferritin degradation**

788 **(A)** Truncated constructs of NCOA4. IDR, intrinsically disordered region. **(B)** WT
789 or the truncated mutants of FLAG-NCOA4 were stably expressed in NCOA4 KO
790 cells harboring mGFP-FTH1. Scale bars, 10 μ m (main) and 1.5 μ m (inset). **(C)**
791 Numbers of mGFP-FTH1 puncta per cell in (B) were counted ($n = 269$ –344 cells
792 from three biological replicates). Solid bars indicate the medians, boxes the
793 interquartile ranges, and whiskers the 10th to 90th percentiles. Differences
794 among the cells expressing FLAG-NCOA4 were statistically analyzed by
795 Dunnett's multiple comparison test. **(D)** Defective self-interaction of the N-
796 terminal domain mutants of NCOA4. NCOA4 KO cells expressing both FLAG-
797 NCOA4 (full-length) and mGFP-NCOA4N (the N-terminal domain of NCOA4)
798 with or without I56E or L63R mutation were subjected to co-immunoprecipitation
799 using anti-FLAG antibody. The samples were analyzed by immunoblotting with
800 the antibodies against FLAG, GFP, FTH1, and FTL. **(E)** The I56E or L63R
801 mutant of FLAG-NCOA4 were stably expressed in NCOA4 KO cells harboring
802 GFP-FTH1. The cells were observed as in (A). **(F)** Cells used in (B) were grown
803 in DMEM and treated with 10 μ g/mL FAC for 24 h followed by 50 μ M DFO for 12
804 h. Whole-cell lysates were analyzed by immunoblotting with the antibodies
805 against FTH1, HSP90, and FLAG. **(G)** FTH1 degradation upon DFO treatment
806 in (F). The ratio of the FTH1 band intensities under DFO-treated conditions to
807 those under FAC-treated conditions is shown. Solid bars indicate the medians,
808 and dots the data from three independent experiments. Differences were
809 statistically analyzed by Dunnett's multiple comparison test. **(H)** The cells used
810 in (E) were examined as in (F). **(I)** Quantification of (H) as in (G).

811

812 **Figure 4. The ferritin–NCOA4 condensates are targeted by both
813 macroautophagy and endosomal microautophagy**

814 **(A)** Ferritin–NCOA4 condensates are engulfed by autophagosomes. WT cells
815 expressing mGFP-FTH1 (green) and Halo-LC3 (red) were treated with 50
816 μ g/mL FAC for 24 h followed by 50 μ M DFO for 5 h and then observed by time-
817 lapse fluorescence microscopy at 2-min intervals (see also Movie S1). Arrows
818 indicate part of ferritin condensates engulfed by an autophagosome. Scale bars,
819 5 μ m (main) and 1 μ m (magnified). **(B)** 3D-CLEM of cells treated as in (A).
820 Arrowheads indicate the surface of a ferritin–NCOA4 condensate exposed to
821 the cytosol, and arrows an elongating autophagosomal membrane. Scale bar,
822 500 nm. **(C)** The ferritin–NCOA4 condensates are incorporated into

823 endosomes. WT cells expressing GFP-FTH1 or mGFP-NCOA4 were treated
824 with 2 μ g/mL doxycycline for 48 h to induce mRuby3-RAB5^{Q79L} expression and
825 then observed by time-lapse fluorescence microscopy at 4-s intervals under
826 normal growing conditions (see also Movies S2–S4). Arrowheads indicate
827 ferritin–NCOA4 condensates in the cytosol, and arrows the ferritin–NCOA4
828 condensates in enlarged endosomes. Scale bars, 5 μ m. (D, E) 3D-CLEM of
829 cells expressing mGFP-FTH1 treated as in (C). Correlative scanning electron
830 microscopy (SEM) and fluorescent images are shown. An enlarged endosome
831 containing mGFP-FTH1 puncta is magnified. Scale bars, 5 μ m (main) and 1 μ m
832 (magnified) (D). TEM images of the enlarged endosome indicated by arrows in
833 SEM and fluorescent images are shown. Scale bars, 5 μ m (SEM and
834 fluorescent images), 1 μ m (TEM), and 100 nm (magnified TEM) (E). (F) NCOA4
835 KO cells expressing mGFP-FTH1 were examined as in (C). Scale bar, 10 μ m.
836

837 **Figure 5. TAX1BP1 is dispensable for ferritin–NCOA4 condensate
838 formation but required for their recognition for macroautophagy and
839 endosomal microautophagy**

840 (A) Co-localization of TAX1BP1 with ferritin condensates. WT and *FIP200* KO
841 cells expressing mGFP-TAX1BP1 and mRuby3-FTH1 were grown in DMEM
842 and observed by fluorescence microscopy. Scale bars, 10 μ m (main) and 1 μ m
843 (inset). (B) TAX1BP1 is dispensable for condensate formation. *TAX1BP1* KO
844 and *FIP200 TAX1BP1* DKO cells expressing mGFP-FTH1 were observed as in
845 (A). Scale bar, 10 μ m. (C) Ferritin–NCOA4 condensates are recognized by
846 autophagosomes in a TAX1BP1-dependent manner. WT and *TAX1BP1* KO
847 cells expressing mGFP-FTH1 (green) and Halo-LC3 (red) were treated with 100
848 μ g/mL FAC for 24 h followed by 50 μ M DFO for 5.5 h and then observed by
849 fluorescence microscopy. Scale bars, 5 μ m (main) and 1 μ m (inset). (D) The co-
850 localization rate of mGFP-FTH1 puncta with Halo-LC3 in (C) was quantified (n =
851 265–1455). Solid bars indicate the medians, dots indicate the data from three
852 independent experiments. Differences were statistically analyzed by Welch's t-
853 test. (E) Ferritin–NCOA4 condensates are incorporated into endosomes in a
854 TAX1BP1-dependent manner. mRuby3-RAB5^{Q79L} was expressed by treatment
855 with 2 μ g/mL doxycycline for 48 h in WT and *TAX1BP1* KO cells expressing
856 mGFP-FTH1. Scale bars, 10 μ m. (F) The rate of the endosomes containing
857 mGFP-FTH1 puncta in (E) was quantified (n = 100–198). Solid bars indicate the
858 medians, and dots indicate the data from three independent experiments.
859 Differences were statistically analyzed by Welch's t-test. (G) A model of

860 NCOA4-dependent formation of ferritin condensates and TAX1BP1-dependent
861 recognition of condensates by macroautophagy and endosomal
862 microautophagy.

863

864 **Supplementary Figure S1. NCOA4 and TAX1BP1 are involved in ferritin
865 degradation**

866 **(A)** WT, NCOA4 KO, TAX1BP1 KO, FIP200 KO, FIP200 NCOA4 DKO, and
867 FIP200 TAX1BP1 DKO HeLa cells were grown in DMEM. Whole-cell lysates
868 were analyzed by immunoblotting with antibodies against NCOA4, TAX1BP1,
869 FIP200, and HSP90. **(B)** WT, NCOA4 KO, and TAX1BP1 KO cells were grown
870 in DMEM and treated with 10 µg/mL FAC for 24 h followed by 50 µM DFO for
871 the indicated hours. Whole-cell lysates were analyzed by immunoblotting with
872 antibodies against FTH1 and HSP90.

873

874 **Supplementary Figure S2. The N-terminal domain of NCOA4 is predicted
875 to form a homodimer**

876 **(A)** An HHpred search showed that the N-terminal domain of NCOA4 is similar
877 to the coiled-coil domain (residues 244–405) of TRIM28, which forms a
878 homodimer. The coiled-coil domains of TRIM28 (green and gray) are shown
879 (PDB ID: 6QAJ). **(B)** The structure of the N-terminal domain (residues 1–182) of
880 NCOA4 is predicted by trRosetta. The putative self-interaction sites Ile-56
881 (magenta) and Leu-63 (red) are shown.

882

883 **Supplementary Figure S3. The I56E or L63R mutants of NCOA4 are
884 defective in self-interaction**

885 Yeast AH109 cells were transformed with plasmids expressing the N-terminal
886 domain (residues 1–182) of NCOA4 with or without I56E or L63R mutation
887 fused with a transcription activation domain (AD) or a DNA-binding domain
888 (BD). The cells were grown on SD (-Leu, -Trp) or SD (-Leu, -Trp, -Ade) plates.

889

890 **Supplementary Movie S1. A ferritin–NCOA4 condensate is engulfed by an
891 autophagosome**

892 Fluorescent images of mGFP-FTH1 (green) and Halo-LC3 (red) in WT HeLa
893 cells (used in Figure 4A) were captured at 2-min intervals and are shown at 7
894 fps.

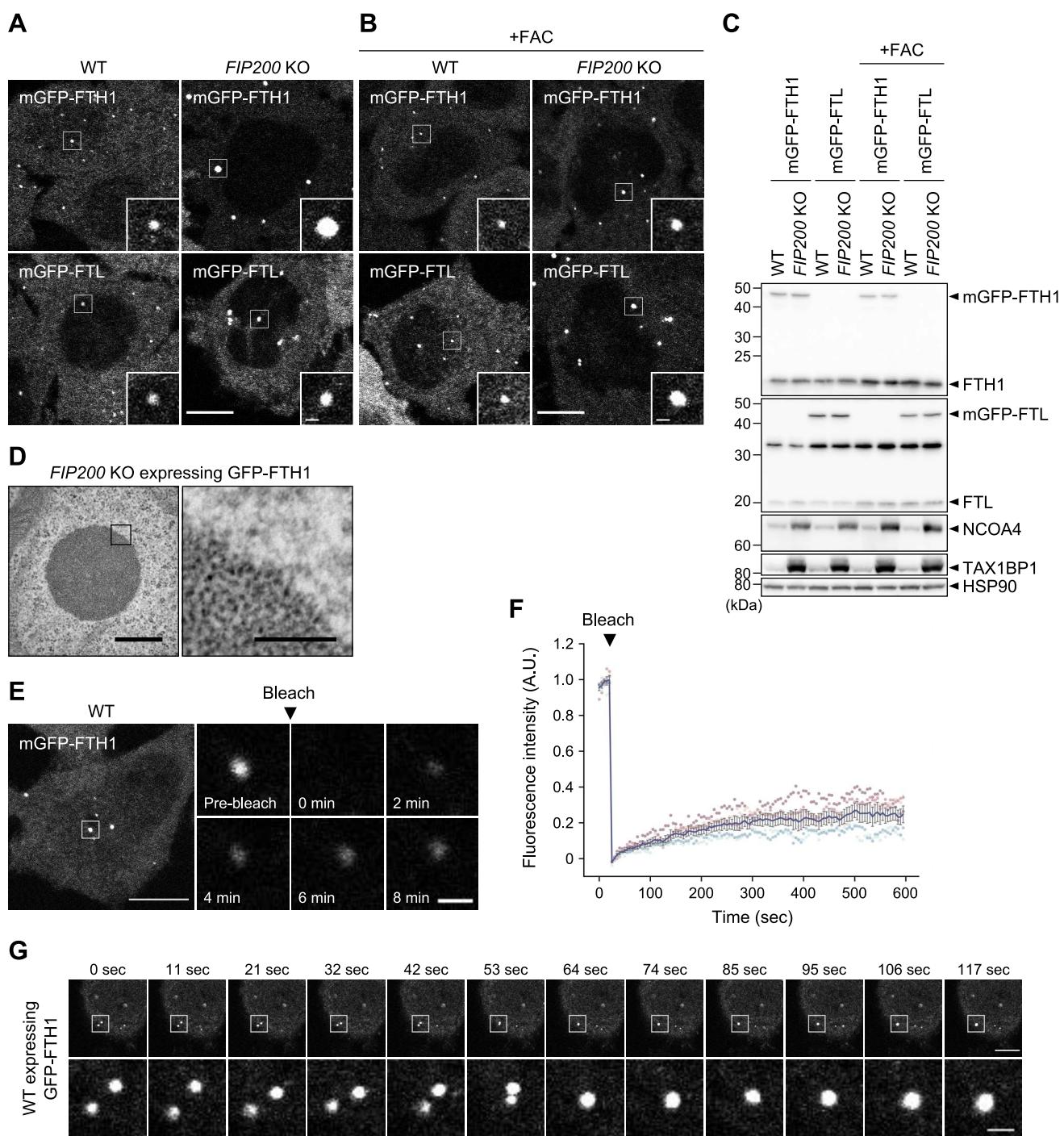
895

896 **Supplementary Movie S2. Ferritin–NCOA4 condensates labeled with GFP–**

897 **FTH1 are incorporated into enlarged endosomes**

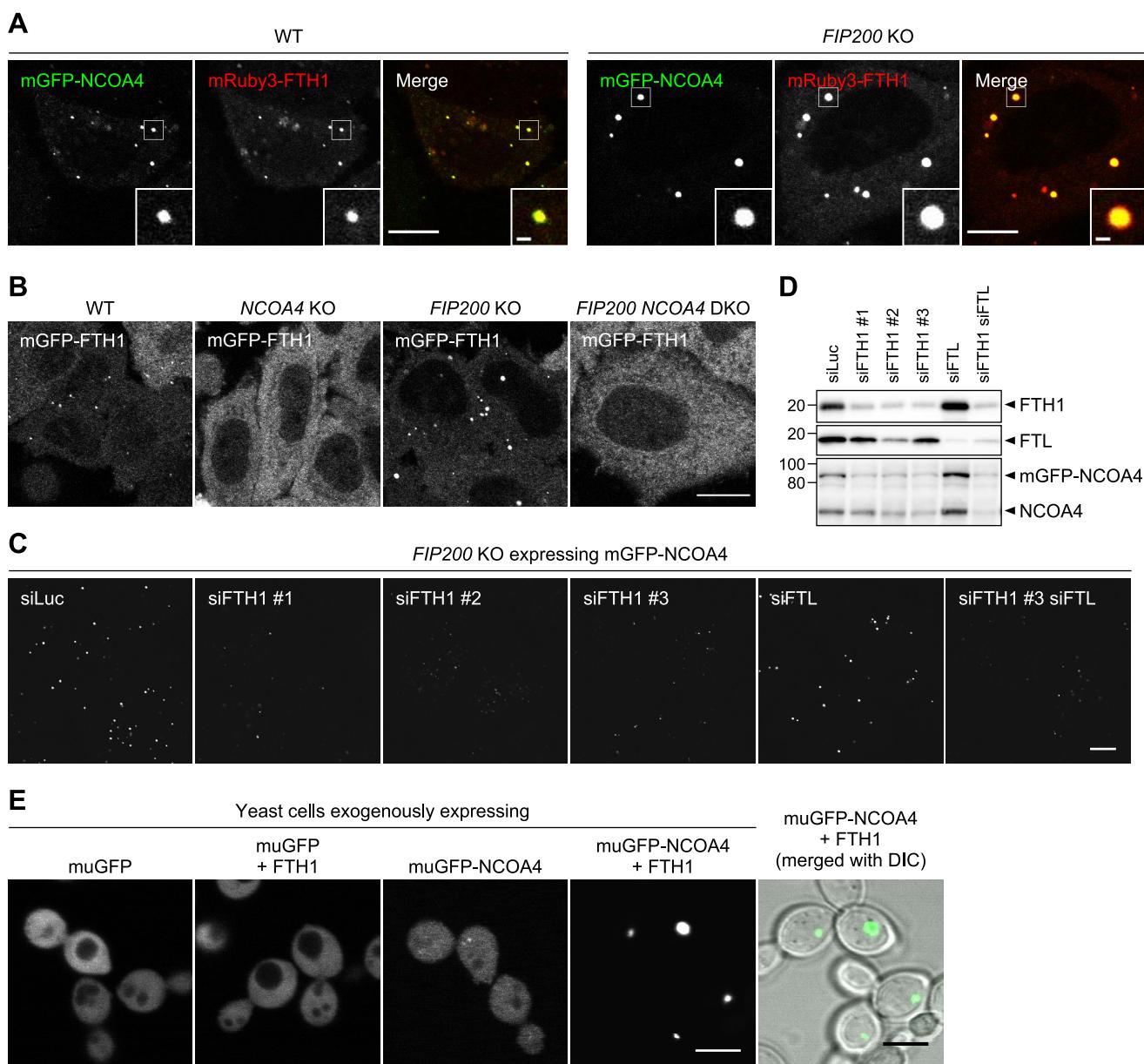
898 Fluorescent images of GFP-FTH1 in WT HeLa cells expressing mRuby3-
899 RAB5^{Q79L} (used in Figure 4C, upper panels) were captured at 4-s intervals and
900 are shown at 10 fps.

901

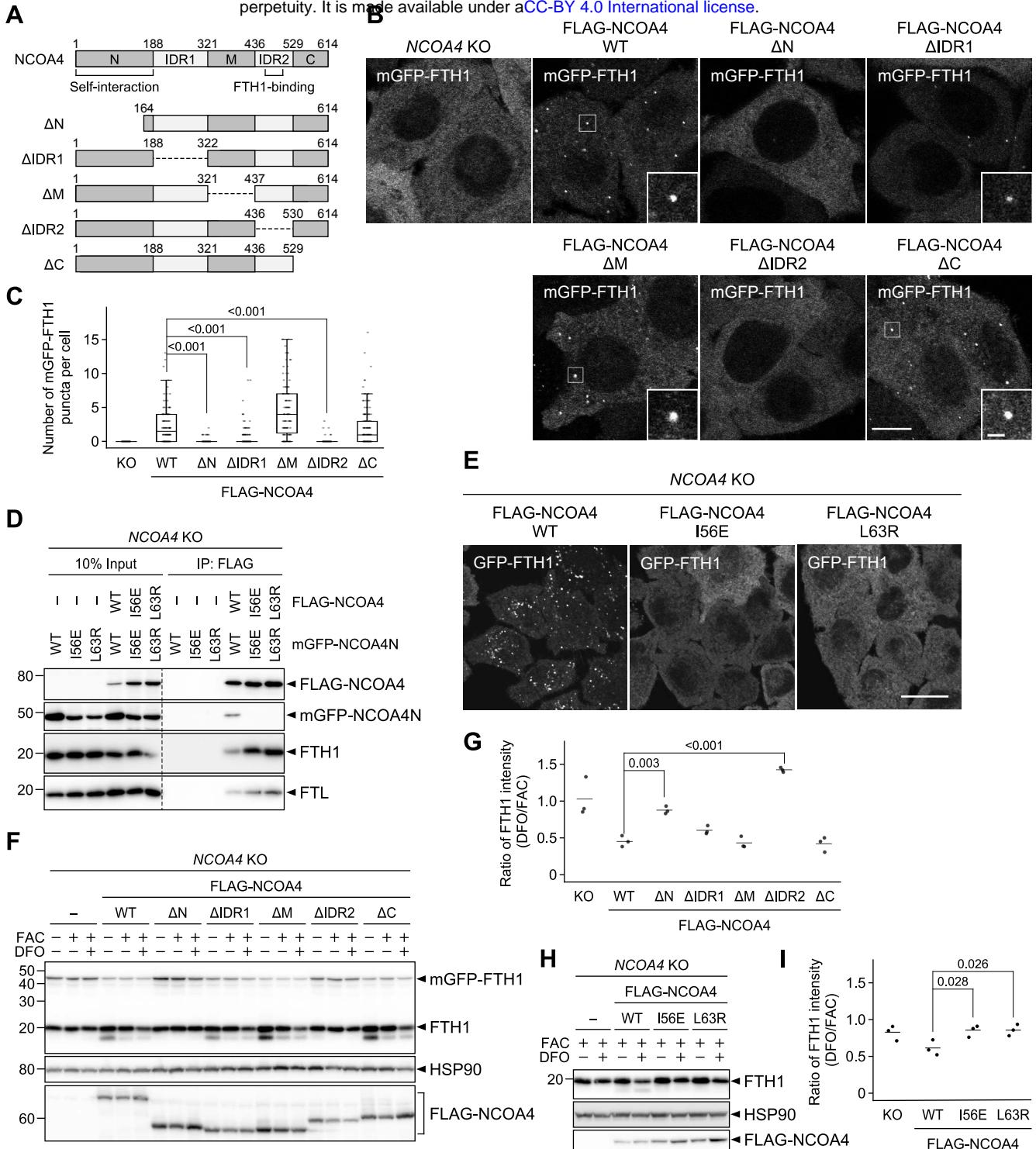

902 **Supplementary Movie S3. Ferritin–NCOA4 condensates labeled with**
903 **mGFP-NCOA4 are incorporated into enlarged endosomes**

904 Fluorescent images of mGFP-NCOA4 in WT HeLa cells expressing mRuby3-
905 RAB5^{Q79L} (used in Figure 4C, middle panels) were captured at 4-s intervals and
906 are shown at 10 fps.

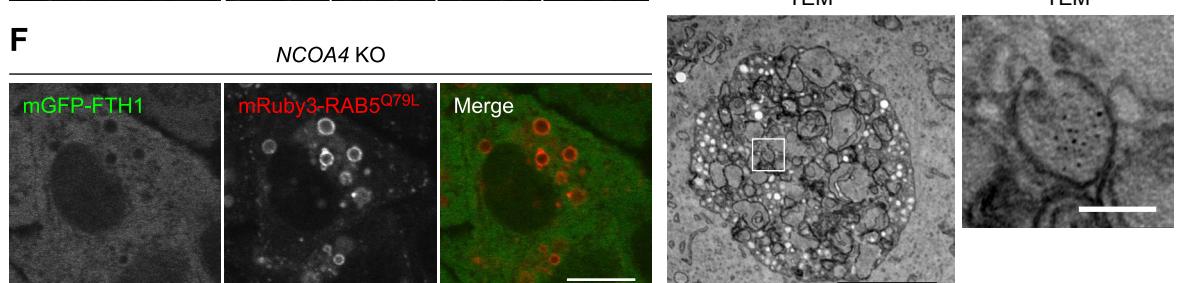
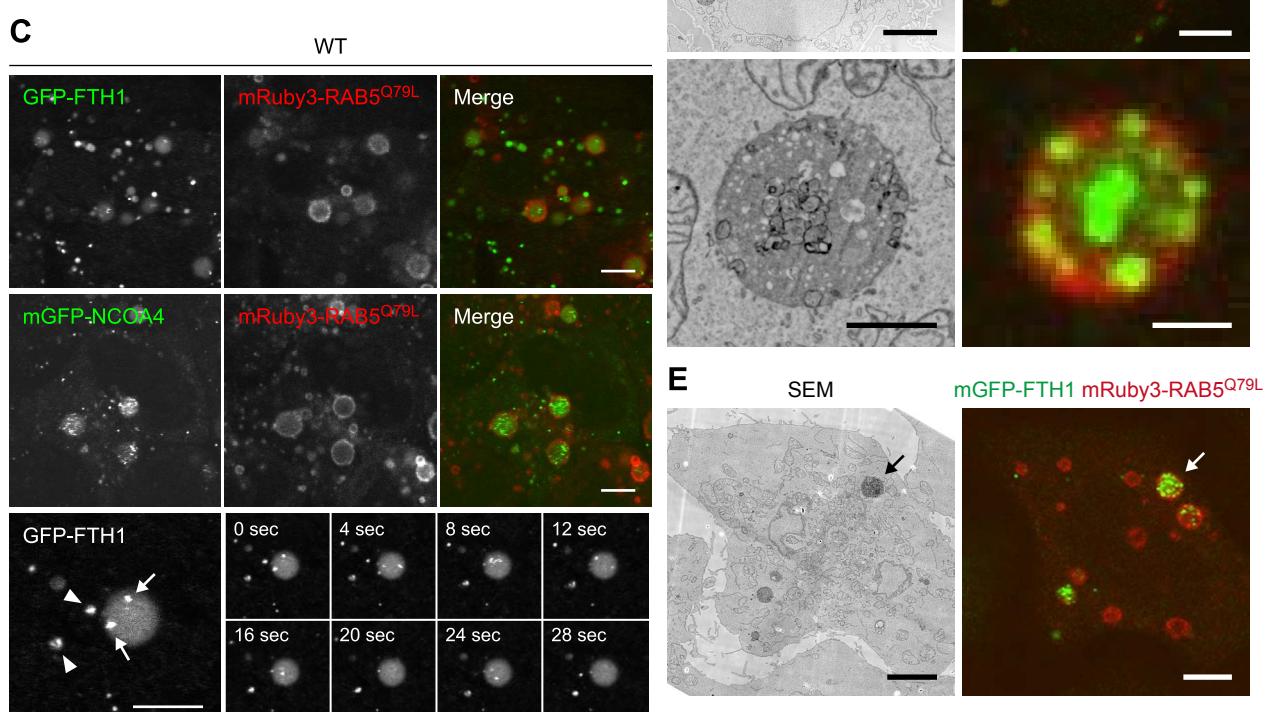
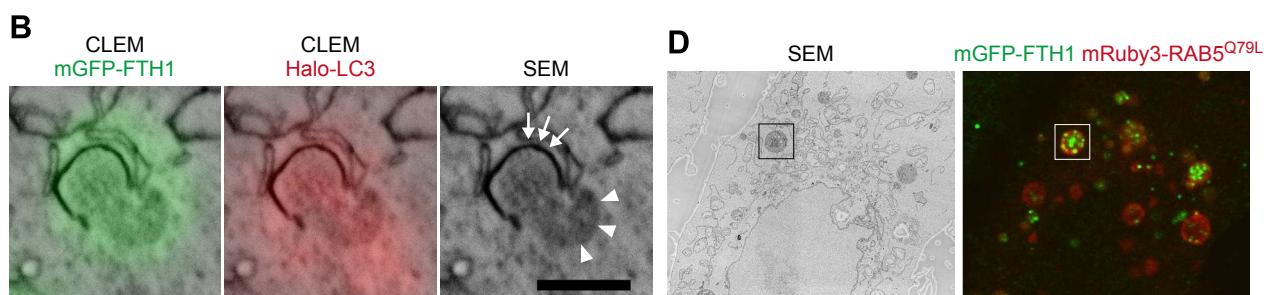
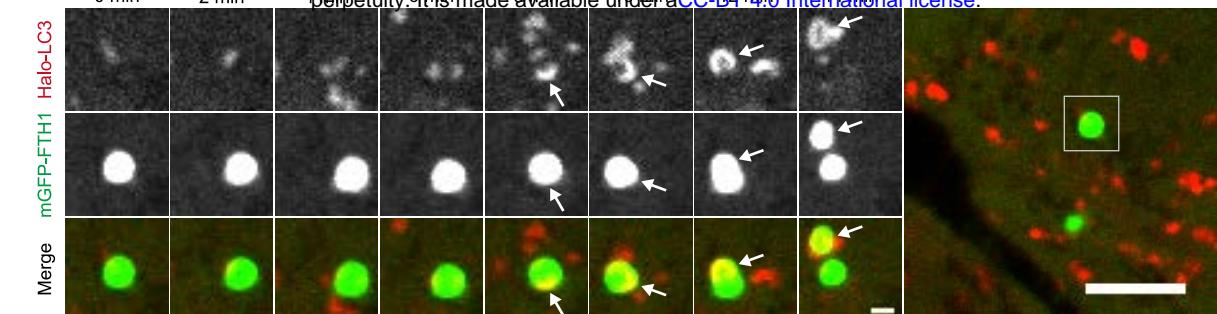
907


908 **Supplementary Movie S4. Ferritin–NCOA4 condensates labeled with GFP-**
909 **FTH1 are observed in the cytosol and an enlarged endosome**

910 Fluorescent images of GFP-FTH1 in WT HeLa cells expressing mRuby3-
911 RAB5^{Q79L} (used in Figure 4C, lower panels) were captured at 4-s intervals and
912 are shown at 5 fps.


Figure 1. Ferritin particles assembled to form liquid-like condensates

(A, B) Fluorescent images of the ferritin subunits FTH1 and FTL. Wild-type (WT) and autophagy-deficient *FIP200* KO HeLa cells stably expressing mGFP-FTH1 or mGFP-FTL were grown in DMEM (A) or treated with 10 µg/mL ferric ammonium citrate (FAC) for 24 h (B) and observed by fluorescence microscopy. Scale bars, 10 µm (main) and 1 µm (inset). **(C)** Immunoblots showing the expression levels of mGFP-FTH1 and mGFP-FTL in cells used in (A). **(D)** TEM images of the ferritin condensates in *FIP200* KO HeLa cells expressing GFP-FTH1. Scale bars, 500 nm (main) and 100 nm (magnified). **(E)** FRAP analyses of the ferritin condensates. WT HeLa cells expressing mGFP-FTH1 were treated with 100 µg/mL FAC for 24 h followed by 50 µM deferoxamine (DFO) for 5 h, and subjected to FRAP analyses. Scale bars, 10 µm (main) and 1 µm (magnified). **(F)** Quantification of (E). Fluorescence intensities before photobleaching were set to 1. Representative results from two independent experiments are presented as means ± SEM ($n = 5$). **(G)** Coalescence of the ferritin condensates. WT HeLa cells expressing GFP-FTH1 were grown in DMEM and observed by time-lapse fluorescence microscopy at ~11-s intervals. Scale bars, 10 µm (main) and 1.5 µm (magnified).





Figure 2. NCOA4 drives ferritin condensate formation

(A) Localization of NCOA4 in ferritin condensates. WT and *FIP200* KO cells expressing both mGFP-NCOA4 and mRuby3-FTH1 were grown in DMEM and observed by fluorescence microscopy. Scale bars, 10 μ m (main) and 1 μ m (inset). **(B)** NCOA4 is essential for condensate formation. WT, *NCOA4* KO, *FIP200* KO, and *FIP200* NCOA4 double KO (DKO) cells expressing mGFP-FTH1 were observed as in (A). Scale bar, 15 μ m. **(C)** Knockdown of ferritin subunits. *FIP200* KO cells expressing mGFP-NCOA4 were transfected with the indicated siRNAs (siLuc, siFTH1, and siFTL) and observed by fluorescence microscopy. Scale bar, 10 μ m. **(D)** Immunoblots showing the expression levels of FTH1, FTL, and NCOA4 in cells used in (C). **(E)** NCOA4 and FTH1 are sufficient for condensate formation. Yeast cells exogenously expressing muGFP-NCOA4 with or without FTH1 were observed by fluorescence microscopy. Scale bar, 5 μ m.

Figure 3. Ferritin–NCOA4 condensate formation is driven by NCOA4 self-interaction and responsible for ferritin degradation

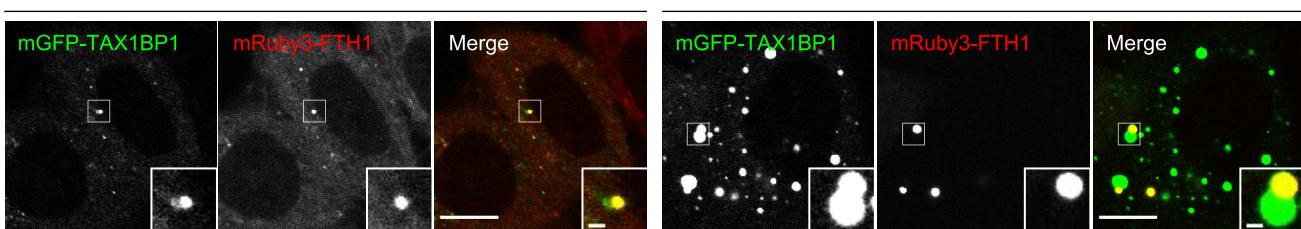
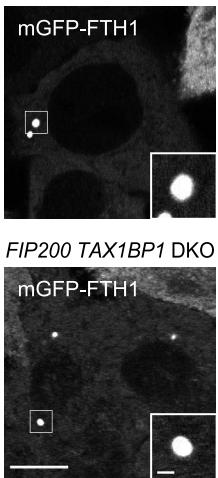
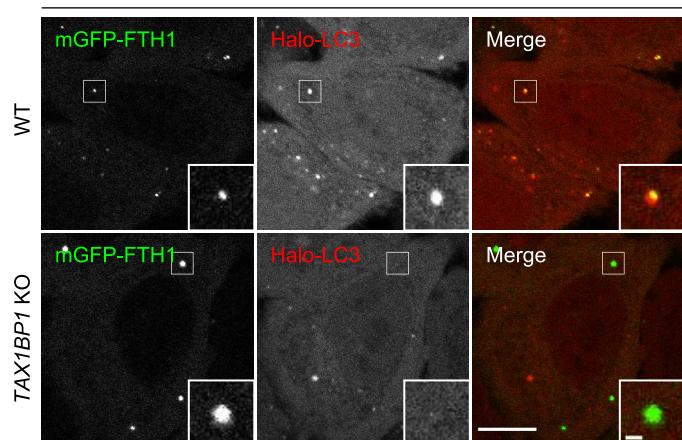

(A) Truncated constructs of NCOA4. IDR, intrinsically disordered region. **(B)** WT or the truncated mutants of FLAG-NCOA4 were stably expressed in NCOA4 KO cells harboring mGFP-FTH1. Scale bars, 10 μ m (main) and 1.5 μ m (inset). **(C)** Numbers of mGFP-FTH1 puncta per cell in (B) were counted ($n = 269$ –344 cells from three biological replicates). Solid bars indicate the medians, boxes the interquartile ranges, and whiskers the 10th to 90th percentiles. Differences among the cells expressing FLAG-NCOA4 were statistically analyzed by Dunnett multiple comparison test. **(D)** Defective self-interaction of the N-terminal domain mutants of NCOA4. NCOA4 KO cells expressing both FLAG-NCOA4 (full-length) and mGFP-NCOA4N (the N-terminal domain of NCOA4) with or without I56E or L63R mutation were subjected to co-immunoprecipitation using anti-FLAG antibody. The samples were analyzed by immunoblotting with the antibodies against FLAG, GFP, FTH1, and FTL. **(E)** The I56E or L63R mutant of FLAG-NCOA4 were stably expressed in NCOA4 KO cells harboring GFP-FTH1. The cells were observed as in (A). **(F)** Cells used in (B) were grown in DMEM and treated with 10 μ g/mL FAC for 24 h followed by 50 μ M DFO for 12 h. Whole-cell lysates were analyzed by immunoblotting with the antibodies against FTH1, HSP90, and FLAG. **(G)** FTH1 degradation upon DFO treatment in (F). The ratio of the FTH1 band intensities under DFO-treated conditions to those under FAC-treated conditions is shown. Solid bars indicate the medians, and dots the data from three independent experiments. Differences were statistically analyzed by Dunnett multiple comparison test. **(H)** The cells used in (E) were examined as in (F). **(I)** Quantification of (H) as in (G).

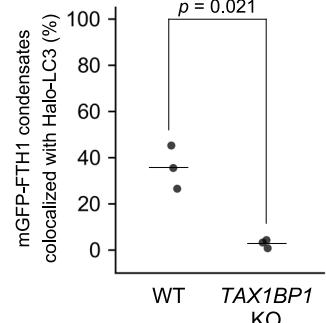
Figure 4. The ferritin–NCOA4 condensates are targeted by both macroautophagy and endosomal microautophagy


(A) Ferritin–NCOA4 condensates are engulfed by autophagosomes. WT cells expressing mGFP-FTH1 (green) and Halo-LC3 (red) were treated with 50 μ g/mL FAC for 24 h followed by 50 μ M DFO for 5 h and then observed by time-lapse fluorescence microscopy at 2-min intervals (see also Movie S1). Arrows indicate part of ferritin condensates engulfed by an autophagosome. Scale bars, 5 μ m (main) and 1 μ m (magnified). **(B)** 3D-CLEM of cells treated as in (A). Arrowheads indicate the surface of a ferritin–NCOA4 condensate exposed to the cytosol, and arrows an elongating autophagosomal membrane. Scale bar, 500 nm. **(C)** The ferritin–NCOA4 condensates are incorporated into endosomes. WT cells expressing GFP-FTH1 or mGFP-NCOA4 were treated with 2 μ g/mL doxycycline for 48 h to induce mRuby3-RAB5^{Q79L} expression and then observed by time-lapse fluorescence microscopy at 4-s intervals under normal growing conditions (see also Movies S2–S4). Arrowheads indicate ferritin–NCOA4 condensates in the cytosol, and arrows the ferritin–NCOA4 condensates in enlarged endosomes. Scale bars, 5 μ m. **(D, E)** 3D-CLEM of cells expressing mGFP-FTH1 treated as in (C). Correlative scanning electron microscopy (SEM) and fluorescent images are shown. An enlarged endosome containing mGFP-FTH1 puncta is magnified. Scale bars, 5 μ m (main) and 1 μ m (magnified) (D). TEM images of the enlarged endosome indicated by arrows in SEM and fluorescent images are shown. Scale bars, 5 μ m (SEM and fluorescent images), 1 μ m (TEM), and 100 nm (magnified TEM) (E). **(F)** NCOA4 KO cells expressing mGFP-FTH1 were examined as in (C). Scale bar, 10 μ m.

A

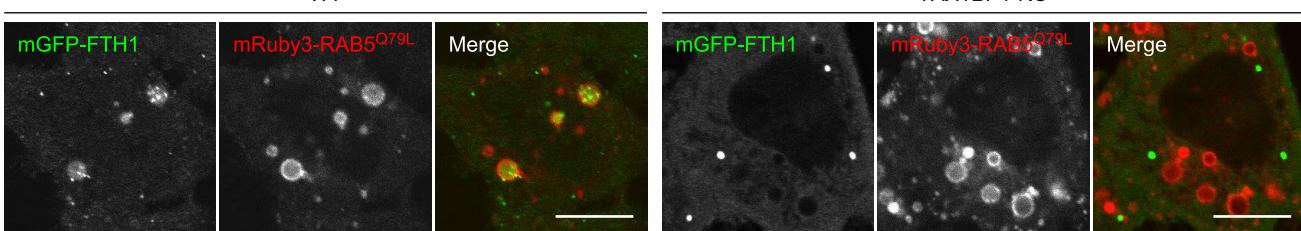

B

TAX1BP1 KO

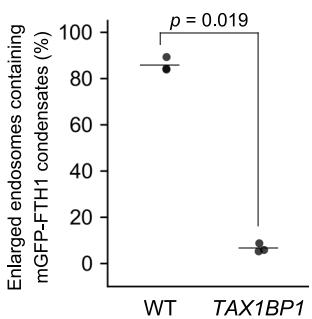


C

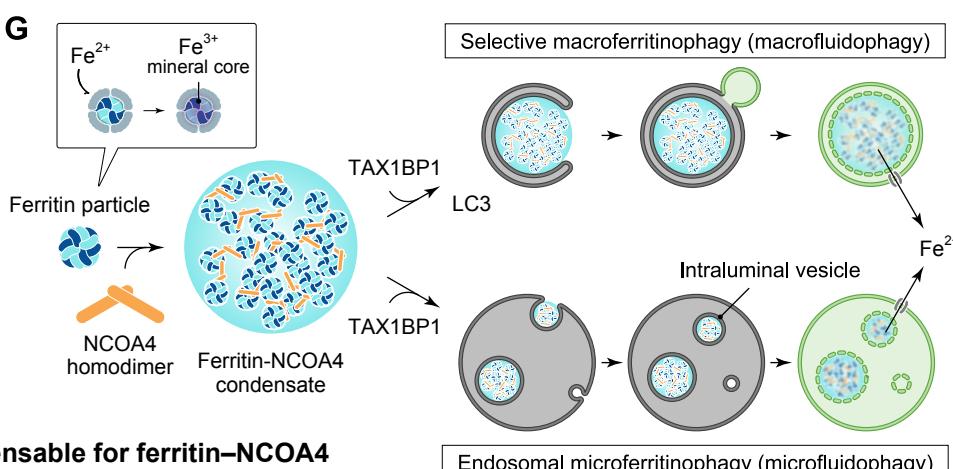
+FAC → +DFO



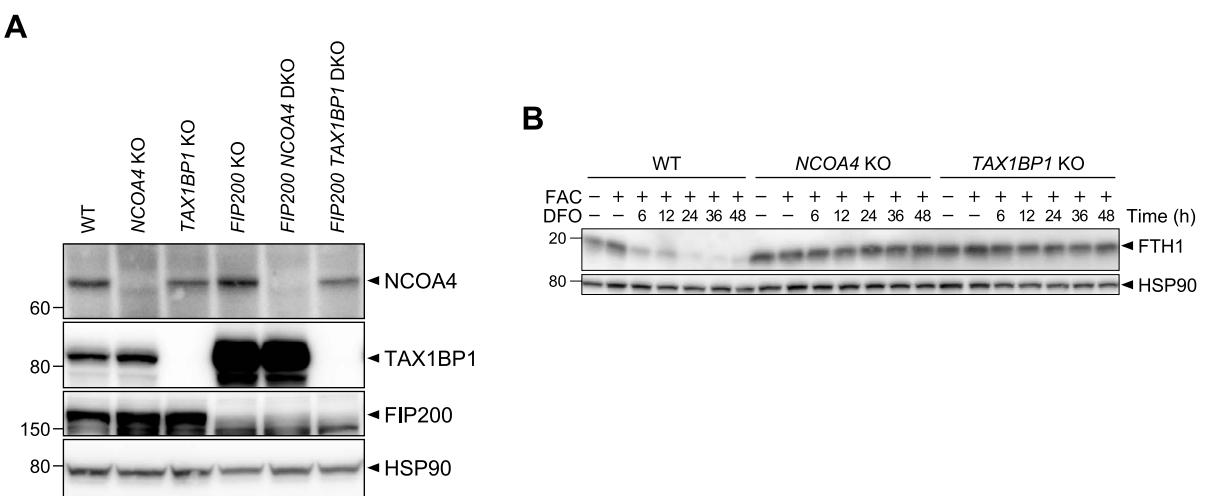
D



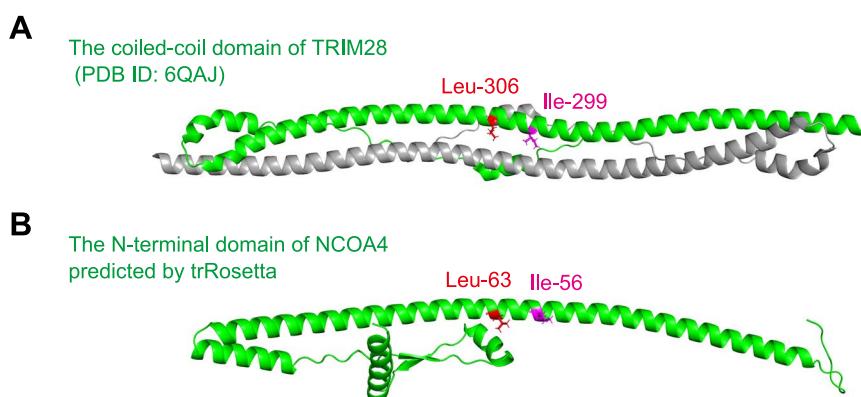
E


WT

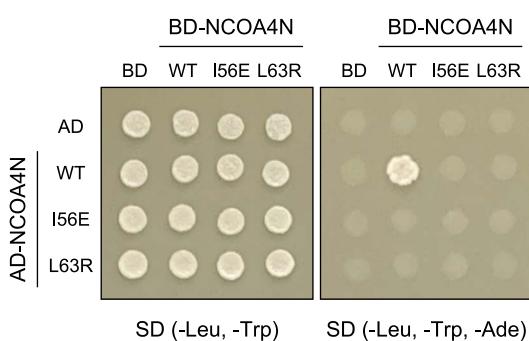
F



G


Figure 5. TAX1BP1 is dispensable for ferritin–NCOA4 condensate formation but required for their recognition for macroautophagy and endosomal microautophagy

(A) Co-localization of TAX1BP1 with ferritin condensates. WT and *FIP200* KO cells expressing mGFP-TAX1BP1 and mRuby3-FTH1 were grown in DMEM and observed by fluorescence microscopy. Scale bars, 10 μ m (main) and 1 μ m (inset). **(B)** TAX1BP1 is dispensable for condensate formation. *TAX1BP1* KO and *FIP200 TAX1BP1* DKO cells expressing mGFP-FTH1 were observed as in (A). Scale bar, 10 μ m. **(C)** Ferritin–NCOA4 condensates are recognized by autophagosomes in a TAX1BP1-dependent manner. WT and TAX1BP1 KO cells expressing mGFP-FTH1 (green) and Halo-LC3 (red) were treated with 100 μ g/mL FAC for 24 h followed by 50 μ M DFO for 5.5 h and then observed by fluorescence microscopy. Scale bars, 5 μ m (main) and 1 μ m (inset). **(D)** The co-localization rate of mGFP-FTH1 puncta with Halo-LC3 in (C) was quantified ($n = 265–1455$). Solid bars indicate the medians, dots indicate the data from three independent experiments. Differences were statistically analyzed by Welch t-test. **(E)** Ferritin–NCOA4 condensates are incorporated into endosomes in a TAX1BP1-dependent manner. mRuby3-RAB5^{Q79L} was expressed by treatment with 2 μ g/mL doxycycline for 48 h in WT and *TAX1BP1* KO cells expressing mGFP-FTH1. Scale bars, 10 μ m. **(F)** The rate of the endosomes containing mGFP-FTH1 puncta in (E) was quantified ($n = 100–198$). Solid bars indicate the medians, and dots indicate the data from three independent experiments. Differences were statistically analyzed by Welch t-test. **(G)** A model of NCOA4-dependent formation of ferritin condensates and TAX1BP1-dependent recognition of condensates by macroautophagy and endosomal microautophagy.


Supplementary Figure S1. NCOA4 and TAX1BP1 are involved in ferritin degradation

(A) WT, NCOA4 KO, TAX1BP1 KO, FIP200 KO, FIP200 NCOA4 DKO, and FIP200 TAX1BP1 DKO HeLa cells were grown in DMEM. Whole-cell lysates were analyzed by immunoblotting with antibodies against NCOA4, TAX1BP1, FIP200, and HSP90. **(B)** WT, NCOA4 KO, and TAX1BP1 KO cells were grown in DMEM and treated with 10 μ g/mL FAC for 24 h followed by 50 μ M DFO for the indicated hours. Whole-cell lysates were analyzed by immunoblotting with antibodies against FTH1 and HSP90.

Supplementary Figure S2. The N-terminal domain of NCOA4 is predicted to form a homodimer

(A) An HHpred search showed that the N-terminal domain of NCOA4 is similar to the coiled-coil domain (residues 244–405) of TRIM28, which forms a homodimer. The coiled-coil domains of TRIM28 (green and gray) are shown (PDB ID: 6QAJ). **(B)** The structure of the N-terminal domain (residues 1–182) of NCOA4 is predicted by trRosetta. The putative self-interaction sites Ile-56 (magenta) and Leu-63 (red) are shown.

Supplementary Figure S3. The I56E or L63R mutants of NCOA4 are defective in self-interaction

Yeast AH109 cells were transformed with plasmids expressing the N-terminal domain (residues 1–182) of NCOA4 with or without I56E or L63R mutation fused with a transcription activation domain (AD) or a DNA-binding domain (BD). The cells were grown on SD (-Leu, -Trp) or SD (-Leu, -Trp, -Ade) plates.