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Abstract

Aferritin particle consists of 24 ferritin proteins (FTH1 and FTL) and stores
iron ions within it. During iron deficiency, ferritin particles are transported to
lysosomes to release iron ions. Two transport pathways have been reported:
macroautophagy and ESCRT-dependent endosomal microautophagy. Although
the membrane dynamics of these pathways differ, both require NCOA4, which
is thought to be an autophagy receptor for ferritin. However, the exact function
of NCOA4 remains elusive. Here, we found that ferritin particles form liquid-like
condensates in a NCOA4-dependent manner. Homodimerization of NCOA4 and
interaction between FTH1 and NCOA4 (i.e., multivalent interactions between
ferritin particles and NCOA4) were required for the formation of ferritin
condensates. Disruption of these interactions impaired ferritin degradation.
Time-lapse imaging and three-dimensional correlative light and electron
microscopy revealed that these ferritin-NCOA4 condensates were directly
engulfed by autophagosomes and endosomes. In contrast, TAX1BP1 was not
required for the formation of ferritin—-NCOA4 condensates but was required for
their incorporation into autophagosomes and endosomes. These results
suggest that NCOA4 acts not only as a canonical autophagy receptor but also
as a driver to form ferritin condensates to facilitate the degradation of these
condensates by macroautophagy (i.e., macroferritinophagy) and endosomal

microautophagy (i.e., microferritinophagy).
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Introduction

Iron is essential for various biological processes, but in excess it can
cause deleterious effects (Pantopoulos et al., 2012; Bogdan et al., 2016;
Fenton, 1894; Haber and Weiss, 1934; Halliwell and Gutteridge, 1990). Thus,
the intracellular iron level must be tightly regulated. Ferritin is a key player in
the regulation of iron homeostasis and is highly conserved among organisms
except for some fungi (e.g., yeasts) and several bacterial and archaeal
species (Canessa and Larrondo, 2013; Bai et al., 2015). It forms a particle
consisting of 24 subunits of ferritin heavy chain 1 (FTH1) and ferritin light
chain (FTL), which incorporates up to 4,500 Fe?* ions, oxidizes them to Fe3*,
and stores them as mineral cores in its hollow cavity (Mann et al., 1986).
During iron deficiency, ferritin particles are transported to lysosomes in order
to release the stored iron atoms (Kidane et al., 2006; Asano et al., 2011).
Ferritin delivery to lysosomes is mediated by two different pathways:
macroautophagy (Asano et al., 2011; Mancias et al., 2014; Dowdle et al.,
2014; Goodwin et al., 2017) and the endosomal sorting complexes required for
the transport (ESCRT)-mediated pathway (Goodwin et al., 2017). To degrade
ferritin, both pathways require nuclear receptor coactivator 4 (NCOA4),
currently considered to be a ferritin receptor, and the macroautophagy adaptor
Tax1-binding protein 1 (TAX1BP1) (Mancias et al., 2014; Dowdle et al., 2014;
Goodwin et al., 2017). Because NCOA4 and TAX1BP1 are degraded by not
only macroautophagy but also endosomal microautophagy (Mejlvang et al.,
2018), the ESCRT-dependent ferritin degradation reported by Goodwin et al.
(Goodwin et al., 2017) is likely mediated by microautophagy. Although NCOA4
has been shown to interact with TAX1BP1 (Goodwin et al., 2017), little is
known about how it is involved in ferritin degradation through the
morphologically and mechanistically distinct pathways of macroautophagy and
endosomal microautophagy.

Electron microscopy studies in cultured cells and tissues have
demonstrated that ferritin particles can be clustered in the cytosol (Heynen
and Verwilghen, 1982; Takano-Ohmuro et al., 2000) as well as within

membranous structures (Sullivan et al., 1976; Heynen and Verwilghen, 1982;


https://doi.org/10.1101/2022.01.31.478434
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478434; this version posted January 31, 2022. The copyright holder for this

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY 4.0 International license.

lancu et al., 2014). Furthermore, our group previously found that clusters of
ferritin particles are enlarged in autophagy-deficient cells, some of which are
over 500 nm in size, and accumulate at autophagosome formation sites (Kishi-
Itakura et al., 2014). These ferritin clusters are spherical and often associate
with SQSTM1 (also called p62) bodies without mixing their contents. Based on
these findings, we hypothesized that ferritin clusters are liquid-like
condensates caused by liquid—liquid phase separation (LLPS).

In this study, we show that ferritin clusters indeed have liquid-like
properties and that NCOA4 is required for ferritin phase separation. The
ferritin—-NCOA4 condensates are incorporated into autophagosomes and
endosomes in a TAX1BP1-dependent manner. Failure of condensate
formation impairs ferritin degradation. These data suggest that the formation
of liquid-like ferritin—-NCOA4 condensates is a common mechanism to facilitate

degradation by both macroautophagy and endosomal microautophagy.

Results

Ferritin particles assemble to form large condensates that exhibit liquid-
like properties

To observe the distribution of ferritin particles in living cells, we
established Hela cells stably expressing monomeric EGFP (mGFP)-tagged
FTH1 and FTL. Both mGFP-FTH1 and mGFP-FTL formed punctate structures
in the cytoplasm in wild-type (WT) cells under normal (Figure 1A) and iron-
replete conditions that induced ferritin expression (Figure 1B). The expression
levels of mMGFP-FTH1 and mGFP-FTL were comparable to (or even lower
than) those of endogenous FTH1 and FTL (Figure 1C), suggesting that the
formation of puncta was not due to overexpression. The ferritin puncta
became larger in autophagy-deficient FIP200 KO cells (Figures 1A, 1B).
Transmission electron microscopy (TEM) of FIP200 KO cells expressing GFP-
FTH1 showed cytosolic spherical clusters of the electron-dense ferritin
particles (Figure 1D), consistent with our previous report (Kishi-ltakura et al.,

2014). In addition, the clustered ferritin structures were not enclosed by
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membranes (Figure 1D, right panel). These structural characteristics (i.e., the
highly spherical shape and the lack of membranes) raised the possibility that
the ferritin clusters are biomolecular condensates driven by LLPS.
Fluorescence recovery after photobleaching (FRAP) measurements in WT
cells revealed that mGFP-FTH1 condensates exhibited approximately 20%
recovery within 10 min (Figures 1E, 1F). In addition, coalescence of two
discrete GFP-FTH1 condensates was observed (Figure 1G). These features,
together with the abovementioned structural characteristics, are consistent
with the current criteria for liquid-like biomolecular condensates formed via
LLPS (Alberti et al., 2019). Thus, these results suggest that ferritin particles
have the propensity to congregate to form liquid-like biomolecular

condensates.

NCOA4 drives ferritin phase separation

NCOAA4 is involved in ferritin delivery to lysosomes by direct interaction
with FTH1 (Mancias et al., 2014; Dowdle et al., 2014; Mancias et al., 2015).
Thus, we investigated the relationship between ferritin condensates and
NCOA4. In WT and FIP200 KO cells, mGFP-NCOA4 co-localized with the
mRuby3-FTH1 puncta (Figure 2A), indicating that NCOA4 is a component of
ferritin condensates. Then, to investigate the role of NCOA4 in condensate
formation, we generated NCOA4 KO cells by using the CRISPR-Cas9 method
(Figure S1A). The resulting cells showed a defect in the degradation of FTH1
upon iron depletion, achieved via the iron chelator deferoxamine (DFO) (Figure
S1B), which was in line with previous reports (Mancias et al., 2014; Dowdle et
al., 2014). Fluorescence microscopy revealed that mGFP-FTH1, which formed
punctate structures in WT and FIP200 KO cells, became diffuse in the
absence of NCOA4 (Figure 2B), suggesting that NCOA4 is indispensable for
the formation of ferritin condensates.

Next, we examined whether FTH1 and FTL were necessary for the
formation of ferritin-NCOA4 condensates. Knockdown of FTH1 but not FTL
impeded mGFP-NCOA4 puncta formation in FIP200 KO cells (Figures 2C,
2D). Although this result suggests that FTH1, but not FTL, is required for the
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formation of NCOA4 condensate, knockdown of FTH1 also reduced the
expression levels of mMGFP-NCOAA4, which made it difficult to evaluate the
specific role of FTH1 (Figures 2C, 2D).

Given that FTH1 interacts with NCOA4 (Mancias et al., 2015), we further
investigated whether FTH1 and NCOA4 were sufficient for the formation of
ferritin condensates. When muGFP-tagged human NCOA4 was exogenously
expressed in yeast cells (ferritin and NCOA4 homologs are not present in
yeast), it mostly dispersed in the cytoplasm and occasionally formed some
small dots. In contrast, when co-expressed with FTH1, muGFP-NCOA4
formed one large punctum per cell (Figure 2E). These results suggest that
FTH1 and NCOA4 are sufficient for the formation of ferritin-NCOA4

condensates.

Ferritin-NCOAA4 condensate formation is driven by NCOA4 self-
interaction and NCOA4-FTH1 interaction

NCOA4 consists of the N-terminal coiled-coil domain (N), middle domain
(M), and C-terminal domain (C), which are interconnected with intrinsically
disordered regions (IDRs) (IDR1 and IDR2) (Figure 3A). To determine which
domain(s) of NCOA4 is required for the formation of ferritin condensates, we
constructed domain truncation mutants (Figure 3A). NCOA4 KO cells
expressing 3xFLAG-tagged NCOA4 (FLAG-NCOAA4) restored the formation of
mGFP-FTH1 puncta (Figures 3B, 3C). The AM and AC mutants of FLAG-
NCOA4 also recovered the formation of puncta, and the AIDR1 mutant
partially recovered it. In contrast, the AN and AIDR2 mutants failed to form
mGFP-FTH1 puncta (Figures 3B, 3C). These results indicate the importance
of the N and IDR2 domains of NCOA4 in the formation of ferritin condensates,
which could be partly explained by the interaction of IDR2 with FTH1 (Mancias
et al., 2015; Gryzik et al., 2017).

The N-terminal coiled-coil domain of NCOA4 is known as a self-
oligomerization domain (Monaco et al., 2001). In fact, full-length FLAG-
NCOA4 interacted with the N-terminal domain of NCOA4 (NCOA4N) fused
with mGFP (Figure 3D). The HHpred search (Soding et al., 2005) identified
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that the N-terminal coiled-coil domain in NCOAA4 is structurally similar to that in
TRIM28. TRIM28 forms a homodimer (Stoll et al., 2019), and lle-299 and Leu-
306 are located at the homodimerization interface (Figure S2). Thus, we
introduced mutations in the corresponding residues in NCOA4 (I156E and
L63R), which were predicted via trRosetta (Yang et al., 2020) (Figure S2).
These mutations blocked self-interaction via the N-terminal domain (Figure
3D). The yeast two-hybrid assay using NCOA4N also showed that the I56E or
L63R mutants were defective in self-interaction (Figure S3). Fluorescence
microscopy revealed that the 156E or L63R mutants did not show GFP-FTH1
puncta in NCOA4 KO cells (Figure 3E), indicating that NCOA4 self-interaction
is required for the formation of ferritin—-NCOA4 condensates. Taken together,
we concluded that the formation of ferritin—-NCOA4 condensates is driven by
NCOA4-mediated multivalent interactions (i.e., NCOA4-FTH1 interaction and
NCOA4 self-interaction).

Ferritin-NCOA4 condensate formation is required for ferritin degradation
We then determined whether condensate formation was required for the
degradation of ferritin. When introduced into NCOA4 KO cells, WT and all the
NCOA4 mutants that restored the formation of mGFP-FTH1 puncta (AM, AC,
and AIDR1) also rescued FTH1 degradation upon iron depletion, whereas the
AN and AIDR2 mutants, which failed to form mGFP-FTH1 puncta, also failed
to degrade FTH1 (Figures 3F, 3G). Furthermore, the dimerization-defective
NCOA4 mutants (I56E and L63R) failed to restore FTH1 degradation (Figures
3H, 3l). It should be noted that these I56E and L63R mutants retained the
binding ability to FTH1 and FTL (likely through FTH1 in ferritin particles)
(Figure 3D). Thus, these results suggest that condensate formation rather than

NCOA4—ferritin binding itself is important for ferritin degradation.

Ferritin-NCOA4 condensates are common substrates for
macroautophagy and endosomal microautophagy
Next, we investigated whether ferritin-NCOA4 condensates were

targeted by autophagosomes. WT cells expressing mGFP-FTH1 and
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195 HaloTag7-tagged LC3B (Halo-LC3), an autophagosomal membrane marker
196  (Kabeya et al., 2000; Mizushima, 2004), were observed under iron-deficient
197  conditions. Time-lapse fluorescence microscopy showed that some mGFP-
198  FTH1 puncta were sequestered by cup-shaped autophagosomal membranes
199 in a piecemeal manner (Figure 4A and Movie S1). To obtain more detailed
200 morphological information, we conducted three-dimensional correlative light
201  and electron microscopy (3D-CLEM). In line with the observations under a
202 fluorescence microscope, we observed an electron-dense ferritin condensate
203  with a diameter of ~500 nm being sequestered partly by a Halo-LC3-positive
204 autophagosomal membrane (Figure 4B). The autophagosomal membrane
205 appeared to be in close contact with the ferritin condensate, similar to the
206 fluidophagy of the SQSTM1 bodies (Agudo-Canalejo et al., 2021). The

207  remaining region not engulfed by the autophagosomal membrane retained a
208 spherical shape, consistent with its liquid-like property. These results suggest
209 that ferritin-NCOA4 condensates are selective substrates for

210  macroautophagy.

211 We also examined the involvement of endosomal microautophagy. To
212 enlarge endosomes so that we could see intraluminal vesicles (ILVs) by

213 fluorescence microscopy, we took advantage of mRuby3-RAB5%7% g

214  constitutively active mutant of RAB5 (Stenmark et al., 1994; Mejlvang et al.,
215  2018). After doxycycline-induced expression of mRuby3-RAB597°, some

216 GFP-FTH1 puncta were seen trapped in enlarged endosomes even under
217  normal growth conditions (Figure 4C, upper panels). Similar results were

218  obtained when mGFP-NCOA4 was used (Figure 4C, middle panels). The

219  magnified images showed that the fluorescence intensity of the GFP-FTH1
220 puncta inside the enlarged endosomes (Figure 4C, lower panels, arrows) was
221  similar to that in the cytosol (Figure 4C, lower panels, arrowhead), suggesting
222  that ferritin condensates were directly incorporated into endosomes. These
223  puncta in enlarged endosomes moved quickly (Movies S2-S4). Some diffuse
224  GFP signals were detected inside endosomes, likely representing the

225  disruption of ILV membranes (Figure 4C). In addition, 3D-CLEM using

226 scanning electron microscopy (SEM) revealed that the enlarged endosomes
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containing mGFP-FTH1 puncta were electron-dense and contained electron-
dense ILVs (Figure 4D). By TEM, ferritin particles were detected in these ILVs
(Figure 4E). In contrast to WT cells, NCOA4 KO cells did not incorporate
mGFP-FTH1 into enlarged endosomes at all (Figure 4F), suggesting that the
formation of NCOA4-mediated condensates is required for the incorporation of
ferritin into endosomes. Collectively, these observations demonstrate that
ferritin—-NCOA4 condensates are targeted not only by macroautophagy but

also by endosomal microautophagy.

TAX1BP1 is dispensable for the formation of ferritin-NCOA4
condensates but required for their recognition by macroautophagy and
microautophagy

We further examined whether TAX1BP1, an adaptor protein required for
ferritin turnover (Goodwin et al., 2017), was involved in ferritin-NCOA4
condensate formation. Fluorescence microscopy showed that mGFP-
TAX1BP1 co-localized with mRuby3-FTH1 puncta in WT and FIP200 KO cells
(Figure 5A), suggesting that TAX1BP1 is also a component of ferritin-NCOA4
condensates. These FTH1*"TAX1BP1* condensates often associated with
FTH1-TAX1BP1* condensates, which were likely SQSTM1 bodies as we
previously observed (Kishi-ltakura et al., 2014). However, knockout of
TAX1BP1 (Figure S1A) did not impede condensate formation (Figure 5B).
These results denote that TAX1BP1 interacts with component(s) of ferritin-
NCOA4 condensates, probably with NCOA4 (Goodwin et al., 2017), but is
dispensable for the formation of ferritin condensates. Given that ferritin
turnover was blocked in the absence of TAX1BP1, as reported previously
(Goodwin et al., 2017) (Figure S1B), we assumed that TAX1BP1 functions
after the formation of condensates, more specifically, at the recognition step of
ferritin—-NCOA4 condensates by macroautophagy and/or microautophagy. In
WT cells under iron-depleted conditions, Halo-LC3 frequently co-localized with
mGFP-FTH1 puncta (Figures 5C, 5D). By contrast, TAX1BP1 KO cells did not
show co-localization of Halo-LC3 with mGFP-FTH1 puncta (Figures 5C, 5D),
suggesting that TAX1BP1 is required for the recognition of ferritin-NCOA4
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259 condensates by macroautophagy. Likewise, mGFP-FTH1 puncta were

260 frequently trapped in endosomes in WT cells, but not in TAX71BP1 KO cells
261  (Figures 5E, 5F). Taken together, we concluded that TAX1BP1 is dispensable
262 for ferritin-NCOA4 condensate formation, but is required for the recognition of
263 ferritin condensates as a common adaptor for macroautophagy and

264  endosomal microautophagy.

265

266 Discussion

267 In this study, we revealed that ferritin particles undergo phase separation
268 in the cytosol (Figure 5G) and that NCOA4 functions as a driver of ferritin

269 phase separation by providing multivalent interactions (i.e., homodimerization
270 and the direct binding to FTH1) (Figure 3). We also showed that resultant

271 ferritin-NCOA4 condensates were eventually sorted into two different

272  pathways, macroautophagy and endosomal microautophagy (Figure 5G), in a
273  TAX1BP1-dependent manner (Figure 5). Increasing reports have pointed out
274  the relationship between macroautophagy and phase separation of autophagic
275 cargos in various species and contexts, including SQSTM1 bodies in

276  mammalian cells (Sun et al., 2018), Ape1 condensates in the cytoplasm-to-
277  vacuole targeting (Cvt) pathway in yeast (Yamasaki et al., 2020), and PGL

278 granules during embryogenesis of C. elegans (Zhang et al., 2018). Recently, it
279  was demonstrated that the autophagosomal sequestration of liquid droplets is
280 promoted by the wetting effect resulting from contact between liquid droplets
281 and membranes (Agudo-Canalejo et al., 2021). This process was termed

282  “fluidophagy,” highlighting the importance of the liquidity of droplets in the

283  deformation of the autophagosomal membranes. During ferritin

284 macroautophagy, we observed that the autophagosomal membranes adhered
285 to the surface of liquid-like ferritin-NCOA4 condensates (Figure 3B), which
286 appears to be comparable to that observed during SQSTM1 fluidophagy

287  (Agudo-Canalejo et al., 2021). Thus, we propose that ferritin macroautophagy
288 (macroferritinophagy) is a type of “macrofluidophagy.” It is possible that ferritin
289 condensates with a liquid-like property promote the elongation of

290 autophagosomal membranes along the surface of ferritin condensates to

10
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achieve highly selective degradation.

In addition to ferritin macrofluidophagy, we found that ferritin-NCOA4
condensates were also incorporated into endosomes, suggesting that LLPS
promotes cargo sorting into endosomes for lysosomal degradation. We assume
that the endosomal microautophagy of ferritin condensates can be regarded as
“‘microfluidophagy,” which may also be promoted by the abovementioned
wetting effect. If this is the case, LLPS might be a common mechanism for the
two distinct lysosomal ferritin transport pathways. Although selective sorting of
microRNAs into exosomes by LLPS of RNA-binding protein has been reported
(Liu et al., 2021), little is known about the relationship between LLPS and the
endosomal sorting and microautophagy pathways. It is well known that ferritin is
secreted and this secretion is enhanced in some diseases, including
hemophagocytic lymphohistiocytosis and adult-onset Still's disease (Rosario et
al., 2013). Moreover, autophagy-related proteins such as NCOA4 were found to
be secreted via extracellular vesicles (Solvik et al., 2021). Furthermore, a
recent paper reported that ferritin secretion via extracellular vesicles depends
on NCOA4 (Yanatori et al., 2021). Thus, ferritin—-NCOA4 condensates may be
directed to both lysosomal degradation and secretion after incorporation into
endosomes; this needs to be investigated in further studies.

We also distinguished the roles of NCOA4 and TAX1BP1 in ferritin
turnover (Figure 5G). NCOA4 has been thought to be an autophagy receptor
for ferritin (Mancias et al., 2014; Dowdle et al., 2014), but we discovered its
important additional role in acting as a scaffold of ferritin phase separation by
providing multivalent interactions (Figure 3). It is possible that the degradation
efficiency of the ferritin—-NCOA4 condensates are regulated by the expression
levels and ratio of NCOA4, FTH1, and FTL. In fact, the expression levels of
FTH1 and FTL respond to iron concentration (Theil, 1987; Munro, 1990), and
the FTH1:FTL ratio differs among organs (Arosio et al., 1976). On the other
hand, TAX1BP1 is required for the recognition of ferritin condensates rather
than condensate formation. TAX1BP1 has a noncanonical LC3-interacting
region at residues 141-143 (Newman et al., 2012; Tumbarello et al., 2015)

and binds to LC3 family proteins, which play a central role in selective

11
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autophagy (Birgisdottir et al., 2013; Johansen and Lamark, 2020). Thus, the
association of ferritin—-NCOA4 condensates with autophagosomes can be
explained by the direct binding of TAX1BP1 to LC3 family proteins. However,
the mechanism by which TAX1BP1 links ferritin-NCOA4 condensates to
endosomal microautophagy has yet to be elucidated. This pathway may not
require LC3 binding given that lysosomal degradation of NCOA4 is partially
independent of the LC3 lipidation machinery (Goodwin et al., 2017; Mejlvang et
al., 2018). An as yet unidentified factor might be involved in the endosomal
microautophagy of ferritin-NCOA4 condensates.

Ferritin clusters have been observed in several types of cells under
physiological conditions, including reticulocytes (Sullivan et al., 1976; Heynen
and Verwilghen, 1982), Caco-2 cells (Meyron-Holtz et al., 2014), and human
kidney proximal tubule brush border cells (Cohen et al.) as well as in some
disease conditions such as in erythroblasts in sideroblastic anemia (Ghadially,
1975) and in hepatocytes in hemochromatosis (lancu, 1992). Further studies
are needed to confirm that these structures are indeed ferritin—-NCOA4
condensates and are degraded by macroautophagy and/or endosomal
microautophagy. We also observed the engulfment of ferritin-NCOA4
condensates by autophagosomes under iron-deficient conditions (Figures 4, 5)
and incorporation into endosomes under normal growth conditions (Figures 4,
5), both of which require TAX1BP1 as an adaptor protein. However, the
mechanism by which the sorting of ferritin-NCOA4 condensates into the two
different pathways (or three if the exosome pathway is included) is regulated
remains unclear and needs to be elucidated in the future. Cellular iron
metabolism is a network of many reactions and pathways that require various
kinds of molecules, including proteins, inorganic iron, and RNAs (Pantopoulos
et al., 2012; Bogdan et al., 2016). Biomolecular condensates can function as
an organization hub that couples different reactions (Shin and Brangwynne,
2017). Further studies will be required to reveal which molecules exist and what
kind of reactions occur in ferritin-NCOA4 condensates so that we can gain an

understanding of their exact role in iron metabolism.
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Materials and Methods

Cell lines and culture conditions

HelLa and HEK293T cells (authenticated by RIKEN) were cultured in Dulbecco’s
modified Eagle medium (DMEM) (D6546; Sigma-Aldrich) supplemented with
10% fetal bovine serum (FBS) (173012; Sigma-Aldrich) and 2 mM L-glutamine
(25030-081; GIBCO) in a 5% CO:2 incubator at 37°C. For the iron-replete
conditions, HeLa cells were treated with 10, 50, or 100 pg/mL ferric ammonium
citrate (FAC) (F5879; Sigma-Aldrich). For iron-deficient conditions, cells were
treated with FAC for 24 h followed by 50 yM deferoxamine (DFO) (D9533;
Sigma-Aldrich).

FIP200 KO HelLa cells have been described previously (Tsuboyama et al.,
2016). NCOA4 KO, FIP200 NCOA4 DKO, TAX1BP1 KO, and FIP200 TAX1BP1
DKO Hela cells were generated as follows: DNA fragments encoding the
neomycin-resistant cassette flanked by 500-bp sequences homologous to exon
4 and exon 6 of the NCOA4 gene or homologous to exon 4 of the TAX1BP1
gene were prepared. WT and FIP200 KO Hela cells were cotransfected with
the DNA fragment and the PX459 (Addgene #48139)-based plasmid expressing
Cas9 and gRNA (GTCTTAGAAGCCGTGAGGTA for the NCOA4 gene) or gRNA
(GTTCTGTTACGTTACCCATA for the TAX1BP1 gene) using FUGENE HD
(E2311; Promega) for 4 h. The cells were cultured for 5 days in DMEM, treated
with 1.5 mg/mL G418 (09380-86; Nacalai Tesque) for 1 week, and the clones
were selected. Hela cells inducibly expressing mRuby3-RAB5%7°- were
generated as follows: a DNA fragment encoding mRuby3-RAB5%7°- under the
Tet-on promoter with the hygromycin-resistant cassette was flanked by 500-bp
sequences homologous to the AAVS1 locus. WT, NCOA4 KO, and TAX1BP1
KO Hela cells were cotransfected with the DNA fragment and the PX459
(Addgene #48139)-based plasmid expressing Cas9 and gRNA
(GGGGCCACTAGGGACAGGAT). The cells were cultured for 5 days, treated
with 50 pg/mL hygromycin (10687010; Thermo Fisher Scientific) for 1 week, and

the clones were selected.
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Plasmids

Plasmids for stable expression in HelLa cells were generated as follows: DNA
fragments encoding enhanced GFP, monomeric enhanced GFP (mGFP)
harboring A206K mutation, mRuby3 (codon-optimized from Addgene #74252),
HaloTag7 (Halo) (G1891; Promega), or 3xFLAG were inserted into the retroviral
plasmid pMRX-IP (Kitamura et al., 2003; Saitoh et al., 2003) or pMRX-IB
(Morita et al., 2018) by the seamless ligation cloning extract (SLiCE) method
(Motohashi, 2017). Then, DNA fragments encoding human FTH1
(NP_002023.2), FTL (NP_000137.2), NCOA4 (NP_001138734.1, isoform 3), or
TAX1BP1 (NP_001073333.1, isoform 2) were inserted into the pMRX-IP-based
or pMRX-IB-based plasmids by the SLICE method.

For expression in yeast cells, pPRS316-based plasmids expressing
monomeric ultra-stable GFP (muGFP) (Scott et al., 2018) or muGFP-NCOA4
were generated as follows: a DNA fragment encoding muGFP or muGFP-
NCOA4 was inserted downstream of the GPD promoter of pRS316-GPDpro by
the SLICE method. pRS314-based plasmids expressing FTH1 were generated
as follows: a DNA fragment encoding FTH1 was inserted downstream of the
GPD promoter of pPRS314-GPDpro by the SLICE method.

For the yeast two-hybrid assay, DNA fragments encoding the N-terminal
domain (residues 1-182) of NCOA4 (WT, I56E, or L63R) were inserted into the
pGADT7 or pGBKT7 vector by the SLICE method.

Stable expression in HelLa cells by retrovirus infection

For preparation of the retrovirus solution, HEK293T cells were transfected with
the pMRX-IP-based or pMRX-IB-based retroviral plasmid (Kitamura et al., 2003;
Saitoh et al., 2003) together with pCG-gag-pol and pCG-VSV-G using
Lipofectamine 2000 (11668019; Thermo Fisher Scientific) for 4—6 h. After the
cells were cultured for 2—3 days in DMEM, the retrovirus-containing medium
was harvested and filtered through a 0.45-pm filter unit (Ultrafree-MC; Millipore)
and added to Hela cells with 8 ug/mL polybrene (H9268; Sigma-Aldrich). After

the cells were cultured for 1 day, selection was performed with 1-2 pg/mL
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437  puromycin (P8833; Sigma-Aldrich) or 2—3 ug/mL blasticidin (022-18713; Fujifilm
438  Wako Pure Chemical Corporation).

439

440 RNA interference

441  Stealth RNAi siRNAs (Thermo Fisher Scientific) were used for RNA

442  interference. Hela cells were transfected with siLuc

443 (CGCGGUCGGUAAAGTTGUUCCAUUU), siFTH1 #1

444 (CCAGAACUACCACCAGGACUCAGAG), siFTH1 #2

445 (CAUGUCUUACUACUUUGACCGCGAU), siFTH1 #3

446 (AGUCACUACUGGAACUGCACAAACU), and/or siFTL

447 (GCAAAGUAAUAGGGCUUCUGCCUAA) using lipofectamine RNAIMAX

448  (13778150; Thermo Fisher Scientific) for 4 h. Then, the cells were cultured for
449 46 h (siFTH1 and siFTH1 siFTL) or 66 h (siLuc and siFTL) in DMEM.

450

451  Preparation of whole cell lysates

452  Hela cells were harvested by centrifugation at 3,000 x g for 1 min at 4°C and
453  lysed with 0.2% n-dodecyl-B-D-maltoside (DDM) (14239-54; Nacalai Tesque) in
454 25 mM HEPES-KOH pH 7.2, 150 mM NaCl, 2 mM MgSOs, and 1% protease
455 inhibitor cocktail (P8340; Sigma-Aldrich) for 20 min on ice and then treated with
456  0.1% benzonase (70664; Millipore). The protein concentrations were

457  determined by a microvolume spectrophotometer (NanoDrop One; Thermo

458  Fisher Scientific). Whole cell lysates were mixed with 2xSDS-PAGE sample
459  buffer and boiled at 98°C for 5 min and the protein concentrations were

460 adjusted with 1xSDS-PAGE sample buffer.

461

462 Co-immunoprecipitation

463  Hela cells were solubilized with 0.1% DDM in HNE buffer (25 mM HEPES-KOH
464 pH 7.2, 150 mM NaCl, 2 mM EDTA) containing 1% protease inhibitor cocktail
465 (P8340; Sigma-Aldrich) for 20 min on ice and then centrifuged at 17,700 x g for
466 15 min. The supernatants were incubated with anti-DYKDDDDK/FLAG

467  magnetic beads (017-25151; Fuijifilm Wako Pure Chemical Corporation) for 3 h
468 at 4°C. The beads were washed three times with HNE buffer containing 0.05%
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DDM, and bound proteins were eluted with SDS-PAGE sample buffer at 98°C

for 5 min.

Immunoblotting

Immunoblotting was performed using anti-FTH1 (MA5-32244; Thermo Fisher
Scientific), anti-FTL (MAS5-32755; Thermo Fisher Scientific), anti-NCOA4
(SAB1409837; Sigma-Aldrich), anti-TAX1BP1 (HPA024432; Sigma-Aldrich),
anti-FIP200 (17250-1-AP; Proteintech), anti-HSP90 (610419; BD Transduction
Laboratories), anti-GFP (A-6455; Thermo Fisher Scientific), and HRP-
conjugated anti-DYKDDDDK/FLAG (015-22391; Fujifilm Wako Pure Chemical
Corporation) as primary antibodies, and HRP-conjugated anti-rabbit IgG (111-
035-144; Jackson ImmunoResearch) and HRP-conjugated anti-mouse 1gG
(315-035-003; Jackson ImmunoResearch) as secondary antibodies.
SuperSignal West Pico Chemiluminescent Substrate (1856135; Thermo Fisher
Scientific) and Immobilon Western Chemiluminescent HRP Substrate (P90715;
Millipore) were used to visualize the signals, which were detected by an image
analyzer (FUSION SOLO.7S.EDGE; Vilber-Lourmat). Contrast and brightness
adjustments were performed using the ImagedJ (National Institutes of Health) or
Photoshop CC 2019/2020 (Adobe) software.

Yeast transformation

For exogenous expression of muGFP-NCOA4 and FTH1 in yeast cells, BJ2168
atg11A atg17A cells were transformed with pRS316-muGFP or pRS316-
muGFP-NCOA4 by the high-efficiency yeast transformation method (Gietz and
Schiestl, 2007) and grown on SD (-Ura) plates at 30°C. The cells were further
transformed with pRS314 or pRS314-FTH1 and grown on SD (-Ura, -Trp)
plates. For the yeast two-hybrid assay, AH109 cells were transformed with the
pGBKT7-based plasmid and grown on SD (-Trp) plates. The cells were further
transformed with the pGADT7-based plasmid and grown on SD (-Trp, -Leu)

plates.

Fluorescence microscopy
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Live-imaging fluorescence microscopy was performed using the FV3000
confocal laser microscope (Olympus) equipped with a 60x oil-immersion
objective lens (NA 1.4, PLAPON60XOSC2; Olympus) and a stage top CO-
incubator (STXG-IX3WX; Tokai Hit) at 37°C with 5% CO:z. HelLa cells were
grown in a glass-bottom dish (3910-035; Iwaki) and fluorescent images were
captured using the FluoView software (Olympus). For observation of Halo-LC3,
Hela cells were incubated with 20 nM HaloTag SaraFluor 650T ligand
(GCKA308; Promega) for 15 min before observation. The numbers of punctate
structures were counted using Fiji software (National Institutes of Health)
(Schindelin et al., 2012).

Fluorescence recovery after photobleaching (FRAP)

FRAP experiments were performed using the FV3000 confocal laser
microscope system (Olympus) at 37°C with 5% CO.. Photobleaching of mGFP-
FTH1 was achieved using a 488-nm laser with a bleaching time of 55.461 ms.

Images were captured at 10-s intervals for 20 min (120 time points).

Transmission electron microscopy (TEM)

HelLa cells were grown on a Celltight C-1 Celldesk LF coverslip (MS-0113K;
Sumitomo Bakelite) in DMEM and fixed with 2.5% glutaraldehyde (G018/1;
TAAB) in 0.1 M cacodylate buffer pH 7.4 (37237-35; Nacalai Tesque) for 2 h on
ice. Postfixation, embedding, and observation under a transmission electron
microscope (H-7100; Hitachi) have been described previously (Tamura et al.,
2017).

3D-CLEM

For observation of the ferritin condensates engulfed by the autophagosomes,
HelLa cells expressing mGFP-FTH1 and Halo-LC3 were grown on a glass-
bottom dish with 150-um grids (TCI-3922-035R-1CS; Iwaki, a custom-made
product with cover glass attached in the opposite direction) coated with carbon
and 0.1% gelatin as described previously (Maeda et al., 2020) and treated with
20 nM HaloTag SaraFluor 650T ligand (GCKA308; Promega) for 15 min before
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533 fixation. For observation of the ferritin condensates incorporated into the

534 endosomes or autophagosomes, HelLa cells expressing mGFP-FTH1 were

535 grown as described above and treated with 2 ug/mL doxycycline for 48 h before
536 fixation. The cells were fixed and observed by the FV3000 confocal laser

537  microscope system (Olympus), and then postfixed, embedded in EPON812 as
538 described previously (Maeda et al., 2020). Serial sections (25 nm thick) were
539  cut by an ultramicrotome (UC7; Leica) and observed by a scanning electron
540  microscope (SEM) (JSM7900F; JEOL) and TEM (JEM-1010; JEOL). CLEM

541 images were constructed using Fiji (National Institutes of Health) (Schindelin et
542  al., 2012) and Photoshop CC 2019/2020 (Adobe) software.
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Figure Legends

Figure 1. Ferritin particles assemble to form liquid-like condensates

(A, B) Fluorescent images of the ferritin subunits FTH1 and FTL. Wild-type
(WT) and autophagy-deficient FIP200 KO HelLa cells stably expressing mGFP-
FTH1 or mGFP-FTL were grown in DMEM (A) or treated with 10 ug/mL ferric
ammonium citrate (FAC) for 24 h (B) and observed by fluorescence microscopy.
Scale bars, 10 ym (main) and 1 pm (inset). (C) Immunoblots showing the
expression levels of mGFP-FTH1 and mGFP-FTL in cells used in (A). (D) TEM
images of the ferritin condensates in FIP200 KO Hela cells expressing GFP-
FTH1. Scale bars, 500 nm (main) and 100 nm (magnified). (E) FRAP analyses
of the ferritin condensates. WT Hela cells expressing mGFP-FTH1 were
treated with 100 ug/mL FAC for 24 h followed by 50 uM deferoxamine (DFO) for
5 h, and subjected to FRAP analyses. Scale bars, 10 ym (main) and 1 ym
(magnified). (F) Quantification of (E). Fluorescence intensities before
photobleaching were set to 1. Representative results from two independent
experiments are presented as means £ SEM (n = 5). (G) Coalescence of the
ferritin condensates. WT HelLa cells expressing GFP-FTH1 were grown in
DMEM and observed by time-lapse fluorescence microscopy at ~11-s intervals.
Scale bars, 10 ym (main) and 1.5 pm (magnified).

Figure 2. NCOA4 drives ferritin condensate formation

(A) Localization of NCOA4 in ferritin condensates. WT and FIP200 KO cells
expressing both mGFP-NCOA4 and mRuby3-FTH1 were grown in DMEM and
observed by fluorescence microscopy. Scale bars, 10 yum (main) and 1 ym
(inset). (B) NCOA4 is essential for condensate formation. WT, NCOA4 KO,
FIP200 KO, and FIP200 NCOA4 double KO (DKO) cells expressing mGFP-
FTH1 were observed as in (A). Scale bar, 15 ym. (C) Knockdown of ferritin
subunits. FIP200 KO cells expressing mGFP-NCOA4 were transfected with the
indicated siRNAs (siLuc, siFTH1 [three independent oligos were used], and
siFTL) and observed by fluorescence microscopy. Scale bar, 10 ym. (D)
Immunoblots showing the expression levels of FTH1, FTL, and NCOA4 in cells
used in (C). (E) NCOA4 and FTH1 are sufficient for condensate formation.
Yeast cells exogenously expressing muGFP-NCOA4 with or without FTH1 were
observed by fluorescence microscopy. Scale bar, 5 um.
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Figure 3. Ferritin-NCOA4 condensate formation is driven by NCOA4 self-
interaction and responsible for ferritin degradation

(A) Truncated constructs of NCOA4. IDR, intrinsically disordered region. (B) WT
or the truncated mutants of FLAG-NCOA4 were stably expressed in NCOA4 KO
cells harboring mGFP-FTH1. Scale bars, 10 um (main) and 1.5 ym (inset). (C)
Numbers of mGFP-FTH1 puncta per cell in (B) were counted (n = 269-344 cells
from three biological replicates). Solid bars indicate the medians, boxes the
interquartile ranges, and whiskers the 10th to 90th percentiles. Differences
among the cells expressing FLAG-NCOA4 were statistically analyzed by
Dunnett’'s multiple comparison test. (D) Defective self-interaction of the N-
terminal domain mutants of NCOA4. NCOA4 KO cells expressing both FLAG-
NCOAA4 (full-length) and mGFP-NCOA4N (the N-terminal domain of NCOA4)
with or without I56E or L63R mutation were subjected to co-immunoprecipitation
using anti-FLAG antibody. The samples were analyzed by immunoblotting with
the antibodies against FLAG, GFP, FTH1, and FTL. (E) The I56E or L63R
mutant of FLAG-NCOA4 were stably expressed in NCOA4 KO cells harboring
GFP-FTH1. The cells were observed as in (A). (F) Cells used in (B) were grown
in DMEM and treated with 10 ug/mL FAC for 24 h followed by 50 yM DFO for 12
h. Whole-cell lysates were analyzed by immunoblotting with the antibodies
against FTH1, HSP90, and FLAG. (G) FTH1 degradation upon DFO treatment
in (F). The ratio of the FTH1 band intensities under DFO-treated conditions to
those under FAC-treated conditions is shown. Solid bars indicate the medians,
and dots the data from three independent experiments. Differences were
statistically analyzed by Dunnett’'s multiple comparison test. (H) The cells used
in (E) were examined as in (F). (I) Quantification of (H) as in (G).

Figure 4. The ferritin-NCOA4 condensates are targeted by both
macroautophagy and endosomal microautophagy

(A) Ferritin-NCOA4 condensates are engulfed by autophagosomes. WT cells
expressing mGFP-FTH1 (green) and Halo-LC3 (red) were treated with 50
pMg/mL FAC for 24 h followed by 50 yM DFO for 5 h and then observed by time-
lapse fluorescence microscopy at 2-min intervals (see also Movie S1). Arrows
indicate part of ferritin condensates engulfed by an autophagosome. Scale bars,
5 ym (main) and 1 ym (magnified). (B) 3D-CLEM of cells treated as in (A).
Arrowheads indicate the surface of a ferritin-NCOA4 condensate exposed to
the cytosol, and arrows an elongating autophagosomal membrane. Scale bar,
500 nm. (C) The ferritin—-NCOA4 condensates are incorporated into
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endosomes. WT cells expressing GFP-FTH1 or mGFP-NCOA4 were treated
with 2 pg/mL doxycycline for 48 h to induce mRuby3-RAB5%° expression and
then observed by time-lapse fluorescence microscopy at 4-s intervals under
normal growing conditions (see also Movies S2-S4). Arrowheads indicate
ferritin—-NCOA4 condensates in the cytosol, and arrows the ferritin—-NCOA4
condensates in enlarged endosomes. Scale bars, 5 uym. (D, E) 3D-CLEM of
cells expressing mGFP-FTH1 treated as in (C). Correlative scanning electron
microscopy (SEM) and fluorescent images are shown. An enlarged endosome
containing mGFP-FTH1 puncta is magnified. Scale bars, 5 ym (main) and 1 ym
(magnified) (D). TEM images of the enlarged endosome indicated by arrows in
SEM and fluorescent images are shown. Scale bars, 5 ym (SEM and
fluorescent images), 1 ym (TEM), and 100 nm (magnified TEM) (E). (F) NCOA4
KO cells expressing mGFP-FTH1 were examined as in (C). Scale bar, 10 ym.

Figure 5. TAX1BP1 is dispensable for ferritin-NCOA4 condensate
formation but required for their recognition for macroautophagy and
endosomal microautophagy

(A) Co-localization of TAX1BP1 with ferritin condensates. WT and FIP200 KO
cells expressing mGFP-TAX1BP1 and mRuby3-FTH1 were grown in DMEM
and observed by fluorescence microscopy. Scale bars, 10 ym (main) and 1 ym
(inset). (B) TAX1BP1 is dispensable for condensate formation. TAX1BP1 KO
and FIP200 TAX1BP1 DKO cells expressing mGFP-FTH1 were observed as in
(A). Scale bar, 10 um. (C) Ferritin—NCOA4 condensates are recognized by
autophagosomes in a TAX1BP1-dependent manner. WT and TAX71BP1 KO
cells expressing mGFP-FTH1 (green) and Halo-LC3 (red) were treated with 100
pg/mL FAC for 24 h followed by 50 yM DFO for 5.5 h and then observed by
fluorescence microscopy. Scale bars, 5 ym (main) and 1 ym (inset). (D) The co-
localization rate of mGFP-FTH1 puncta with Halo-LC3 in (C) was quantified (n =
265-1455). Solid bars indicate the medians, dots indicate the data from three
independent experiments. Differences were statistically analyzed by Welch’s t-
test. (E) Ferritin—-NCOA4 condensates are incorporated into endosomes in a
TAX1BP1-dependent manner. mRuby3-RAB5%°- was expressed by treatment
with 2 pg/mL doxycycline for 48 h in WT and TAX71BP1 KO cells expressing
mGFP-FTH1. Scale bars, 10 ym. (F) The rate of the endosomes containing
mGFP-FTH1 puncta in (E) was quantified (n = 100—198). Solid bars indicate the
medians, and dots indicate the data from three independent experiments.
Differences were statistically analyzed by Welch'’s t-test. (G) A model of
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NCOAA4-dependent formation of ferritin condensates and TAX1BP1-dependent
recognition of condensates by macroautophagy and endosomal
microautophagy.

Supplementary Figure S1. NCOA4 and TAX1BP1 are involved in ferritin
degradation

(A) WT, NCOA4 KO, TAX1BP1 KO, FIP200 KO, FIP200 NCOA4 DKO, and
FIP200 TAX1BP1 DKO Hela cells were grown in DMEM. Whole-cell lysates
were analyzed by immunoblotting with antibodies against NCOA4, TAX1BP1,
FIP200, and HSP90. (B) WT, NCOA4 KO, and TAX1BP1 KO cells were grown
in DMEM and treated with 10 ug/mL FAC for 24 h followed by 50 yuM DFO for
the indicated hours. Whole-cell lysates were analyzed by immunoblotting with
antibodies against FTH1 and HSP90.

Supplementary Figure S2. The N-terminal domain of NCOA4 is predicted
to form a homodimer

(A) An HHpred search showed that the N-terminal domain of NCOAA4 is similar
to the coiled-coil domain (residues 244—405) of TRIM28, which forms a
homodimer. The coiled-coil domains of TRIM28 (green and gray) are shown
(PDB ID: 6QAJ). (B) The structure of the N-terminal domain (residues 1-182) of
NCOA4 is predicted by trRosetta. The putative self-interaction sites lle-56
(magenta) and Leu-63 (red) are shown.

Supplementary Figure S3. The I56E or L63R mutants of NCOA4 are
defective in self-interaction

Yeast AH109 cells were transformed with plasmids expressing the N-terminal
domain (residues 1-182) of NCOA4 with or without IS6E or L63R mutation
fused with a transcription activation domain (AD) or a DNA-binding domain
(BD). The cells were grown on SD (-Leu, -Trp) or SD (-Leu, -Trp, -Ade) plates.

Supplementary Movie S1. A ferritin~-NCOA4 condensate is engulfed by an
autophagosome

Fluorescent images of mGFP-FTH1 (green) and Halo-LC3 (red) in WT HelLa
cells (used in Figure 4A) were captured at 2-min intervals and are shown at 7
fps.

Supplementary Movie S2. Ferritin-NCOA4 condensates labeled with GFP-
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FTH1 are incorporated into enlarged endosomes

Fluorescent images of GFP-FTH1 in WT HelLa cells expressing mRuby3-
RAB597°L (used in Figure 4C, upper panels) were captured at 4-s intervals and
are shown at 10 fps.

Supplementary Movie S3. Ferritin-NCOA4 condensates labeled with
mGFP-NCOA4 are incorporated into enlarged endosomes

Fluorescent images of mGFP-NCOA4 in WT Hela cells expressing mRuby3-
RAB597° (used in Figure 4C, middle panels) were captured at 4-s intervals and
are shown at 10 fps.

Supplementary Movie S4. Ferritin-NCOA4 condensates labeled with GFP-
FTH1 are observed in the cytosol and an enlarged endosome

Fluorescent images of GFP-FTH1 in WT HelLa cells expressing mRuby3-
RAB59°L (used in Figure 4C, lower panels) were captured at 4-s intervals and
are shown at 5 fps.
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Figure 1. Ferritin particles assembled to form liquid-like condensates

(A, B) Fluorescent images of the ferritin subunits FTH1 and FTL. Wild-type (WT) and autophagy-deficient
FIP200 KO Hel.a cells stably expressing mGFP-FTH1 or mGFP-FTL were grown in DMEM (A) or treated with
10 pg/mL ferric ammonium citrate (FAC) for 24 h (B) and observed by fluorescence microscopy. Scale bars,

10 ym (main) and 1 pm (inset). (C) Immunoblots showing the expression levels of MGFP-FTH1 and mGFP-FTL
in cells used in (A). (D) TEM images of the ferritin condensates in FIP200 KO Hela cells expressing GFP-FTH1.
Scale bars, 500 nm (main) and 100 nm (magnified). (E) FRAP analyses of the ferritin condensates. WT HelLa
cells expressing mGFP-FTH1 were treated with 100 ug/mL FAC for 24 h followed by 50 uM deferoxamine (DFO)
for 5 h, and subjected to FRAP analyses. Scale bars, 10 ym (main) and 1 um (magnified). (F) Quantification of
(E). Fluorescence intensities before photobleaching were set to 1. Representative results from two independent
experiments are presented as means + SEM (n = 5). (G) Coalescence of the ferritin condensates. WT HelLa cells
expressing GFP-FTH1 were grown in DMEM and observed by time-lapse fluorescence microscopy at ~11-s
intervals. Scale bars, 10 ym (main) and 1.5 ym (magnified).


https://doi.org/10.1101/2022.01.31.478434
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478434; this version posted January 31, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

FIP200 KO

mGFP-NCOA4 mG%D—NCOAél

B o
WT NCOA4 KO FIP200 KO FIP200 NCOA4 DKO ca g &
" MGFP-FTH1 mGFP-FIH ' FPFTHA . 0 I T T T
= JEEEEE

20— w-— - <FTH1

20 —— — <FTL

0] ==  |<mGFP-NCOA4
—_ w= |<NCOA4

FIP200 KO expressing mGFP-NCOA4

siFTH1 #1 siFTH1 #2 siFTH1 #3 I siFTH1 #3 siFTL

E Yeast cells exogenously expressing muGFP-NCOA4
MUGFP MUGFP-NCOA4 + FTH1

muGFP + FTH1 mUGFP-NCOA4 + FTH1 (merged with DIC)

Figure 2. NCOA4 drives ferritin condensate formation

(A) Localization of NCOAA4 in ferritin condensates. WT and FIP200 KO cells expressing both mGFP-NCOA4 and
mRuby3-FTH1 were grown in DMEM and observed by fluorescence microscopy. Scale bars, 10 ym (main) and
1 um (inset). (B) NCOA4 is essential for condensate formation. WT, NCOA4 KO, FIP200 KO, and FIP200
NCOA4 double KO (DKO) cells expressing mGFP-FTH1 were observed as in (A). Scale bar, 15 ym. (C)
Knockdown of ferritin subunits. FIP200 KO cells expressing mGFP-NCOA4 were transfected with the indicated
siRNAs (siLuc, siFTH1, and siFTL) and observed by fluorescence microscopy. Scale bar, 10 um. (D)
Immunoblots showing the expression levels of FTH1, FTL, and NCOA4 in cells used in (C). (E) NCOA4 and
FTH1 are sufficient for condensate formation. Yeast cells exogenously expressing muGFP-NCOA4 with or
without FTH1 were observed by fluorescence microscopy. Scale bar, 5 um.
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Figure 3. Ferritin-NCOA4 condensate formation is driven by NCOAA4 self-interaction and responsible for
ferritin degradation

(A) Truncated constructs of NCOA4. IDR, intrinsically disordered region. (B) WT or the truncated mutants of
FLAG-NCOA4 were stably expressed in NCOA4 KO cells harboring mGFP-FTH1. Scale bars, 10 um (main) and
1.5 um (inset). (C) Numbers of mGFP-FTH1 puncta per cell in (B) were counted (n = 269-344 cells from three
biological replicates). Solid bars indicate the medians, boxes the interquartile ranges, and whiskers the 10th to
90th percentiles. Differences among the cells expressing FLAG-NCOA4 were statistically analyzed by Dunnett
multiple comparison test. (D) Defective self-interaction of the N-terminal domain mutants of NCOA4. NCOA4 KO
cells expressing both FLAG-NCOAA4 (full-length) and mGFP-NCOAA4N (the N-terminal domain of NCOA4) with or
without I56E or L63R mutation were subjected to co-immunoprecipitation using anti-FLAG antibody. The
samples were analyzed by immunoblotting with the antibodies against FLAG, GFP, FTH1, and FTL. (E) The
I56E or L63R mutant of FLAG-NCOA4 were stably expressed in NCOA4 KO cells harboring GFP-FTH1. The
cells were observed as in (A). (F) Cells used in (B) were grown in DMEM and treated with 10 yg/mL FAC for

24 h followed by 50 uM DFO for 12 h. Whole-cell lysates were analyzed by immunoblotting with the antibodies
against FTH1, HSP90, and FLAG. (G) FTH1 degradation upon DFO treatment in (F). The ratio of the FTH1 band
intensities under DFO-treated conditions to those under FAC-treated conditions is shown. Solid bars indicate the
medians, and dots the data from three independent experiments. Differences were statistically analyzed by
Dunnett multiple comparison test. (H) The cells used in (E) were examined as in (F). (I) Quantification of (H) as
in (G).
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Figure 4. The ferritin~-NCOA4 condensates are targeted by both macroautophagy and endosomal
microautophagy

(A) Ferritin-NCOA4 condensates are engulfed by autophagosomes. WT cells expressing mGFP-FTH1 (green)
and Halo-LC3 (red) were treated with 50 ug/mL FAC for 24 h followed by 50 uM DFO for 5 h and then observed
by time-lapse fluorescence microscopy at 2-min intervals (see also Movie S1). Arrows indicate part of ferritin
condensates engulfed by an autophagosome. Scale bars, 5 um (main) and 1 ym (magnified). (B) 3D-CLEM of
cells treated as in (A). Arrowheads indicate the surface of a ferritin-NCOA4 condensate exposed to the cytosol,
and arrows an elongating autophagosomal membrane. Scale bar, 500 nm. (C) The ferritin-NCOA4 condensates
are incorporated into endosomes. WT cells e (g)ressmg GFP-FTH1 or mGFP-NCOA4 were treated with 2 ug/mL
doxycycline for 48 h to induce mRuby3-RAB5Y7° expression and then observed by time-lapse fluorescence
microscopy at 4-s intervals under normal growing conditions (see also Movies S2—S4). Arrowheads indicate
ferritin-NCOA4 condensates in the cytosol, and arrows the ferritin-NCOA4 condensates in enlarged
endosomes. Scale bars, 5 um. (D, E) 3D-CLEM of cells expressing mGFP-FTH1 treated as in (C). Correlative
scanning electron microscopy (SEM) and fluorescent images are shown. An enlarged endosome containing
mGFP-FTH1 puncta is magnified. Scale bars, 5 ym (main) and 1 ym (magnified) (D). TEM images of the
enlarged endosome indicated by arrows in SEM and fluorescent images are shown. Scale bars, 5 um (SEM and
fluorescent images), 1 ym (TEM), and 100 nm (magnified TEM) (E). (F) NCOA4 KO cells expressing
mGFP-FTH1 were examined as in (C). Scale bar, 10 um.
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Figure 5. TAX1BP1 is dispensable for ferritin~-NCOA4
condensate formation but required for their recognition
for macroautophagy and endosomal microautophagy
(A) Co-localization of TAX1BP1 with ferritin condensates. WT and FIP200 KO cells expressing mGFP-TAX1BP1
and mRuby3-FTH1 were grown in DMEM and observed by fluorescence microscopy. Scale bars, 10 ym (main)
and 1 ym (inset). (B) TAX1BP1 is dispensable for condensate formation. TAX71BP1 KO and FIP200 TAX1BP1
DKO cells expressing mGFP-FTH1 were observed as in (A). Scale bar, 10 ym. (C) Ferritin-NCOA4 condensates
are recognized by autophagosomes in a TAX1BP1-dependent manner. WT and TAX1BP1 KO cells expressing
MGFP-FTH1 (green) and Halo-LC3 (red) were treated with 100 pg/mL FAC for 24 h followed by 50 uM DFO for
5.5 h and then observed by fluorescence microscopy. Scale bars, 5 ym (main) and 1 ym (inset). (D) The
co-localization rate of mMGFP-FTH1 puncta with Halo-LC3 in (C) was quantified (n = 265-1455). Solid bars
indicate the medians, dots indicate the data from three independent experiments. Differences were statistically
analyzed by Welch t-test. (E) Ferritin—NCOA4 condensates are incorporated into endosomes in a TAX1BP1-
dependent manner. mRuby3-RAB5%7°L was expressed by treatment with 2 ug/mL doxycycline for 48 h in WT
and TAX1BP1 KO cells expressing mGFP-FTH1. Scale bars, 10 ym. (F) The rate of the endosomes containing
mGFP-FTH1 puncta in (E) was quantified (n = 100—-198). Solid bars indicate the medians, and dots indicate the
data from three independent experiments. Differences were statistically analyzed by Welch t-test. (G) A model of
NCOA4-dependent formation of ferritin condensates and TAX1BP1-dependent recognition of condensates by
macroautophagy and endosomal microautophagy.

‘ Endosomal microferritinophagy (microfluidophagy) ‘
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Supplementary Figure S1. NCOA4 and TAX1BP1 are involved in ferritin degradation

(A) WT, NCOA4 KO, TAX1BP1 KO, FIP200 KO, FIP200 NCOA4 DKO, and FIP200 TAX1BP1 DKO HelLa cells
were grown in DMEM. Whole-cell lysates were analyzed by immunoblotting with antibodies against NCOA4,
TAX1BP1, FIP200, and HSP90. (B) WT, NCOA4 KO, and TAX1BP1 KO cells were grown in DMEM and treated
with 10 ug/mL FAC for 24 h followed by 50 uM DFO for the indicated hours. Whole-cell lysates were analyzed by
immunoblotting with antibodies against FTH1 and HSP90.
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Supplementary Figure S2. The N-terminal domain of NCOA4 is predicted to form a homodimer

(A) An HHpred search showed that the N-terminal domain of NCOA4 is similar to the coiled-coil domain
(residues 244-405) of TRIM28, which forms a homodimer. The coiled-coil domains of TRIM28 (green and gray)
are shown (PDB ID: 6QAJ). (B) The structure of the N-terminal domain (residues 1-182) of NCOA4 is predicted
by trRosetta. The putative self-interaction sites lle-56 (magenta) and Leu-63 (red) are shown.
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Supplementary Figure S3. The I56E or L63R mutants of NCOA4 are defective in self-interaction
Yeast AH109 cells were transformed with plasmids expressing the N-terminal domain (residues 1-182) of
NCOA4 with or without I56E or L63R mutation fused with a transcription activation domain (AD) or a
DNA-binding domain (BD). The cells were grown on SD (-Leu, -Trp) or SD (-Leu, -Trp, -Ade) plates.
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