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ABSTRACT

Advances in modern artificial intelligence (AI) have inspired a paradigm shift in human neuroscience,
yielding large-scale functional magnetic resonance imaging (fMRI) datasets that provide high-resolution
brain responses to tens of thousands of naturalistic visual stimuli. Because such experiments necessarily
involve brief stimulus durations and few repetitions of each stimulus, achieving sufficient signal-to-noise
ratio can be a major challenge. We address this challenge by introducing GLMsingle, a scalable,
user-friendly toolbox available in MATLAB and Python that enables accurate estimation of single-trial
fMRI responses (glmsingle.org). Requiring only fMRI time-series data and a design matrix as inputs,
GLMsingle integrates three techniques for improving the accuracy of trial-wise general linear model
(GLM) beta estimates. First, for each voxel, a custom hemodynamic response function (HRF) is identified
from a library of candidate functions. Second, cross-validation is used to derive a set of noise regressors
from voxels unrelated to the experimental paradigm. Third, to improve the stability of beta estimates for
closely spaced trials, betas are regularized on a voxel-wise basis using ridge regression. Applying
GLMsingle to the Natural Scenes Dataset and BOLD5000, we find that GLMsingle substantially improves
the reliability of beta estimates across visually-responsive cortex in all subjects. Furthermore, these
improvements translate into tangible benefits for higher-level analyses relevant to systems and cognitive
neuroscience. Specifically, we demonstrate that GLMsingle: (i) improves the decorrelation of response
estimates between trials that are nearby in time; (ii) enhances representational similarity between subjects
both within and across datasets; and (iii) boosts one-versus-many decoding of visual stimuli. GLMsingle is
a publicly available tool that can significantly improve the quality of past, present, and future
neuroimaging datasets that sample brain activity across many experimental conditions.
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INTRODUCTION
Across many scientific disciplines, datasets are rapidly increasing in size and scope. These resources
have kickstarted a new era of data-driven scientific discovery ( , ; s

; , ; , ; ; ; , )-
In visual neuroscience, recent efforts to sample individual brains at unprecedented scale and depth
have yielded high-resolution functional magnetic resonance imaging (fMRI) datasets in which subjects
view thousands of distinct images over several dozen hours of scanning (see , for
a review). These exciting “condition-rich” datasets are large enough to propel the development of
computational models of how humans process complex naturalistic stimuli. For example, resources
such as the Natural Scenes Dataset (NSD, , ), BOLD5000 ( s ), and
THINGS ( , ) may be useful for advancing our ability to characterize the tuning (
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s topography ( , ; , ; ; ; ; ), and
47 computations ( , ; , ; , ; , ;
48 , ) performed in visual cortex.

49 The potential of large-scale datasets to reveal general principles of neural function depends critically on
so signal-to-noise ratio (SNR), which refers to one’s ability to reliably measure distinct neural signatures
51 associated with different stimuli or experimental conditions. Diverse sources of noise affect fMRI data,
s2 and these noise sources limit the robustness and interpretability of data analyses (Liu, ; ,
53 ). For example, subject head motion, scanner instabilities, physiological noise, and thermal noise
s4  all contribute unwanted variability to fMRI data. Noise is especially problematic in studies that sample
55 a large number of conditions, since the number of repetitions of each condition is typically limited,
s6 resulting in noisy responses even after trial-averaging.

57 The approach we have developed to mitigate the effects of noise comes in the context of general
ss linear model (GLM) analysis of fMRI time-series data ( , ; , ). We assume that
s9 the goal of the GLM analysis is to estimate beta weights representing the blood oxygenation level
so dependent (BOLD) response amplitude evoked by different experimental conditions. In this context,
s1 we define noise as variability observed across repeated instances of a given condition. Therefore,
e2 methods that decrease such variability are desirable. Our approach seeks to maximize data quality at
es the level of individual voxels in individual subjects (as opposed to data quality assessed only at the
e+ region or group level), and seeks to obtain response estimates for single trials. These desiderata are
es powerful; if achieved, they can flexibly support a wide range of subsequent analyses including relating
e brain responses to trial-wise behavioral measures and pooling data across trials, brain regions, and/or
67 subjects.

es To realize these goals, we introduce GLMsingle, a user-friendly software toolbox (with both MATLAB
ss and Python implementations) that performs single-trial BOLD response estimation. Given fMRI
70 time-series data and a design matrix indicating the onsets of experimental conditions, GLMsingle
71 implements a set of optimizations that target three aspects of the GLM framework (Figure 1):

72 1. The choice of hemodynamic response function (HRF) to convolve with the design matrix

73 2. The inclusion of nuisance regressors that account for components of the data that are thought to
74 be noise

75 3. The use of regularization to improve the accuracy of the final beta estimates

76 Importantly, to enable fluid application to even the largest fMRI datasets, GLMsingle is fully automated
77 (no manual setting of parameters) and can be executed efficiently even when gigabytes of fMRI data
7 are passed as input.

79 We previously used the GLMsingle algorithm to estimate BOLD responses in the NSD dataset (

80 , ). While the optimizations implemented in GLMsingle had a positive impact on data quality,
81 it was not apparent whether the improvements would generalize to other datasets. The goal of this paper
s2 is to provide a standalone description of GLMsingle and to rigorously assess performance not only
83 on NSD, but also on BOLD5000 ( s ), a distinct fMRI dataset acquired with different
84 subjects, at different field strength, and with a different experimental design (see Methods). In both
85 datasets, we show that the optimizations implemented in GLMsingle dramatically improve the reliability
ss of GLM beta estimates. We also study the effect of these optimizations on downstream analyses that
g7 are of particular relevance to systems and cognitive neuroscience, including representational similarity
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Figure 1: Overview of GLMsingle

GLMsingle takes as input a design matrix (where each column indicates the onset times for a given condition) and fMRI
time-series in either volumetric or surface space, and returns as output an estimate of single-trial BOLD response amplitudes
(beta weights). GLMsingle incorporates three techniques designed to optimize the quality of beta estimates: first, the use of a
library of hemodynamic response functions (HRF's), where the best-fitting HRF from the library is chosen for each voxel;
second, an adaptation of GLMdenoise ( , ) to the single-trial GLM framework, where data-derived nuisance
regressors are identified and used to remove noise from beta estimates, and third, an efficient re-parameterization of ridge
regression ( , ) as a method for dampening the noise inflation caused by correlated single-trial GLM
predictors.

gs analysis (RSA) ( , ) and multivoxel pattern analysis (MVPA) ( ,
89 , , s , ). In all analyses, we observe improvements in key
90 outcome metrics, suggesting that GLMsingle meaningfully improves the ability of researchers to gain
91 insight into neural representation and computation. Our findings demonstrate that GLMsingle affords
92 the neuroimaging community a clear opportunity for improved data quality. Online materials (code,
93 documentation, example scripts) pertaining to GLMsingle are available at glmsingle.org.

« RESULTS

95 To assess the impact of GLMsingle, we evaluate four different types of single-trial response estimates
96 (henceforth, beta versions). The first arises from a baseline procedure that reflects a typical GLM
97 approach for fMRI analysis (beta version b1), and each subsequent beta version (b2-b4) incorporates an
9s additional strategy for optimizing model fits and mitigating the effects of noise. The final beta version
99 (b4) contains the complete set of optimizations provided by the GLMsingle toolbox. The GLMsingle
100 algorithm consists of the following steps:

101 1. A baseline single-trial GLM is used to model each stimulus trial separately using a canonical
102 HREF. This provides a useful baseline for comparison (b1: AssumeHRF).

103 2. An optimal HREF is identified for each voxel ( , ) by iteratively fitting a set
104 of GLMs, each time using a different HRF from a library of 20 HRFs. For each voxel, we
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105 identify the HRF that provides the best fit to the data (highest variance explained), and inherit the
106 single-trial betas associated with that HRF (b2: FitHRF).

107 3. GLMdenoise ( , ; , ) is used to determine nuisance regressors to
108 include in the model. Principal components analysis is applied to time-series data from a pool of
109 noise voxels (see Methods for details), and the top principal components are added one at a time
110 to the GLM until cross-validated variance explained is maximized on-average across voxels (b3:
111 FitHRF + GLMdenoise).

112 4. With the nuisance regressors determined, fractional ridge regression ( , ) is
13 used to regularize the single-trial betas, using a custom amount of regularization for each voxel,
114 determined via cross-validation (b4: FitHRF + GLMdenoise + RR).

115 GLMsingle improves the reliability of beta estimates

116 We first examine the effect of GLMsingle on the test-retest reliability of voxels across relevant regions
117 of visual cortex in NSD and BOLDS5000 (Figure 2). Our reliability procedure measures the consistency
118 of a voxel’s response profile (using Pearson r) over repeated presentations of the same stimuli, revealing
119 areas of the brain containing stable BOLD responses. This straightforward approach enables direct
120 comparison of data quality between different beta versions.
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Figure 2: Impact of GLMsingle on voxel test-retest reliability

To compute reliability for a given voxel, we measure the test-retest Pearson correlation of GLM beta profiles over repeated
presentations of the same stimuli (see Methods). (A) Differences in reliability between bl (derived from a baseline GLM)
and b4 (the final output of GLMsingle) are plotted within a liberal mask of visual cortex (nsdgeneral ROI). Scatter plots
show reliability values for individual voxels. (B) Relative differences in mean reliability within the nsdgeneral ROI. For each
voxel, we computed the mean reliability value over all beta versions being considered (b1-b4), and then used this as the
basis for thresholding voxels (from Pearson r = —0.2 to 0.6). At each threshold level, for each beta version, we compute the
voxel-wise difference between the reliability of that specific beta version and the mean reliability value, and then average
these difference values across voxels within the nsdgeneral ROI. The traces in the first column indicate the mean (+/- SEM)
across subjects within each dataset. The bars in the second column indicate subject-averaged differences in reliability at
threshold r = 0.2. The relative improvement in reliability due to GLMsingle (b1 vs. b4) tends to increase when examining
voxels with higher reliability, and each optimization stage within GLMsingle (HRF fitting, GLMdenoise, ridge regression)
confers added benefit to voxel reliability.

121 We directly compared the b1 and b4 beta versions for each subject within a liberal mask of visual cortex
122 (nsdgeneral ROI), finding widespread increases in reliability when comparing GLMsingle to baseline

4
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123 (Figure 2a). The positive effect is nearly uniform across voxels in NSD. In BOLD5000, as in NSD,
124 Wwe see aggregate benefits when comparing b1 and b4, though results for individual voxels are more
125 variable. A likely explanation for this is that reliability metrics are inherently noisier due to the smaller
126 number of repeated stimuli in BOLDS5000.

127z To summarize the impact of GLMsingle in NSD and BOLDS5000, we compared the performance
128 of b1-b4 for individual subjects, across different voxel reliability thresholds (Figure 2b). We find
129 that all subjects show clear improvement from b1 to b4 and the improvement in reliability due to
130 GLMsingle tends to increase when examining voxels that respond more reliably to experimental stimuli.
131 Furthermore, examining reliability in intermediate beta versions (b2 and b3) — which implement HRF
132 optimization and GLMdenoise, respectively — reveals that each successive stage of processing in
133 GLMsingle tends to confer added benefit to voxel reliability compared to baseline (b1).

134 We next compared GLMsingle to Least-Squares Separate (LSS), a popular technique for robust signal
135 estimation in rapid event-related designs ( , , ; , ).
136 The LSS procedure fits a separate GLM for each stimulus, where the trial of interest is modeled as one
137 regressor, and all other (non-target) trials are collapsed into a second regressor. LSS provides a useful
138 point of comparison for ridge regression, as both strategies seek to mitigate the instabilities in GLM
139 estimation that can arise from having correlated single-trial predictors. To directly compare GLMsingle
140 to LSS, we computed auxiliary GLMsingle beta versions that do not incorporate GLMdenoise. This
141 allows us to isolate the effect of the GLM estimation procedure (i.e., LSS vs. fractional ridge regression).

142 For both the case of an assumed HRF and the case of voxel-wise tailored HRFs, we find that fractional
143 ridge regression yields more reliable signal estimates than LSS (Figure 3). These improvements
144 are most pronounced in the most reliable voxels (Figure 3c). LSS can be viewed as applying heavy
145 regularization uniformly across voxels, while our ridge regression approach is more flexible, tailoring
146 the degree of regularization to the SNR of each voxel. Heavy regularization may actually degrade the
147 quality of signal estimates in reliable voxels, and our approach avoids this possibility.

14s We then performed a complete assessment of all auxiliary beta versions and the primary versions
129 (b1-b4), in order to determine whether any other analysis strategy could achieve parity with b4 in the
150 quality of GLM outputs. Reassuringly, when summarizing the relative quality of all 8 beta versions
151 over a range of reliability thresholds, we observe superior performance from b4, the default output of
152 GLMsingle (Figure 3a).

153 GLMsingle relies on an internal cross-validation procedure through which key hyperparameters (the
154 number of noise regressors and the voxel-wise levels of ridge regression regularization) are optimized to
155 maximize the consistency of responses across condition repetitions. This raises a possible concern that
156 our reliability estimates (e.g. Figure 2) are somewhat optimistic. As a strict assessment of reliability,
157 we repeated the reliability quantification for each of the 8§ beta versions, this time computing test-retest
158 correlation values using only beta responses obtained from completely separate data partitions. We find
159 that results are broadly unchanged using this more stringent evaluation procedure (Figure 3b).

1e0  GLMsingle helps disentangle neural responses to neighboring trials

161 Thus far, we have established that GLMsingle provides BOLD response estimates that have substantially
162 improved reliability compared to a baseline GLM. In the remainder of this paper, we explore whether
163 these improvements have tangible consequences for downstream analyses relevant for cognitive and
164 systems neuroscience. We first examine whether GLMsingle is able to more effectively disentangle
165 neural responses to proximal stimuli, as inaccurate single-trial GLM estimation may manifest as high
166 similarity (temporal autocorrelation) between beta maps from nearby trials. We computed dataset-
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Relative quality of GLMsingle and LSS beta versions
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Figure 3: Comparison between GLMsingle and LSS

(A) Left panel: relative differences in mean reliability between beta versions. 8 beta versions are compared: bl1-b4, and the
4 auxiliary beta versions used to compare GLMsingle and Least-Squares Separate (LSS). LSS betas (dashed traces) are
compared to those estimated using fractional ridge regression (RR, solid traces), when using a canonical HRF (LSS, light gray
vs. RR, dark gray) and when performing HRF optimization (LSS, light purple vs. RR, dark purple). Right panel: Summary
of performance at threshold level r = 0.2. Error bars reflect the standard error of the mean, computed over the 8 subjects
analyzed from NSD and BOLD5000. Fractional ridge regression yields more reliable signal estimates than LSS across voxel
reliability levels. (B) Same as Panel (A), except that reliability computations occur only between image repetitions processed
in independent partitions of fMRI data. Qualitative patterns are unchanged. (C) Scatter plots comparing voxel reliability
between corresponding LSS and GLMsingle beta versions (top: AssumeHRF; bottom: FitHRF). We show results for an
example subject (NSD subjO1, nsdgeneral ROI). The advantage of ridge regression over LSS is most apparent in the most
reliable voxels.

167 averaged temporal similarity matrices, revealing the degree of temporal autocorrelation in each beta
168 version (Figure 4). Temporal autocorrelation manifests as non-zero correlation values off the diagonal
169 of the temporal similarity matrices, and is presumably undesirable.

170 In a baseline GLM that uses a canonical HRF and ordinary least squares (OLS) fitting (b1), we observe
171 striking patterns of temporal autocorrelation extending several dozen trials forward in time. This
172 is true in both NSD, which has a rapid event-related design (a new stimulus presented every 4 s),
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Temporal autocorrelation by beta version
NSD: 4 subjects, 40 sessions total
BOLD5000: 4 subjects, 54 sessions total
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Figure 4: Impact of GLMsingle on temporal autocorrelation

For each dataset, we compute the degree of temporal autocorrelation in each beta version by averaging session-wise
representational similarity matrices over subjects. We plot results arising from analysis of voxels at two different reliability
thresholds (r = 0 and r = 0.3) for NSD (A) and BOLD5000 (B). Assuming that ground-truth neural responses to consecutive
trials should be uncorrelated on average, positive (or negative) Pearson r values off the diagonal imply sub-optimal estimation
of BOLD responses. In the right-most column, we plot mean autocorrelation between all pairs of timepoints. Applying
GLMsingle (b4) results in a substantial decrease in temporal autocorrelation compared to a baseline GLM approach (b1).

173 as well as in BOLDS5000, where stimuli are spaced 10 s apart to alleviate issues relating to signal
174 overlap. To quantify these effects, we compute mean temporal autocorrelation as a function of time
175 post-stimulus for each beta version. In NSD, for the baseline GLM (b1), positive correlations are as
176 high as » = 0.5 for consecutive trials, and gradually reduce to around r = 0 after around 100 s (Figure
177 4a). In BOLD5000, b1 autocorrelation peaks as high as around = 0.4 for consecutive trials, requiring
178 nearly 160 s to reduce to r = 0 (Figure 4b). We speculate that the relatively long timescale of the
17 correlations reflects the long timescale of hemodynamic responses (the post-undershoot can extend
180 for 30 s or longer) and/or the slow nature of (low-frequency) physiological noise related to cardiac
181 and respiratory variation. Notably, mean beta maps from successive trials in NSD are anticorrelated
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182 for b1, a known artifact of OLS fitting in the case of high multicollinearity between GLM predictors
183 ( R ; ) ).

184 When applying GLMsingle, these patterns of temporal autocorrelation change dramatically. In NSD
185 b4, autocorrelation drops to » = 0 much more rapidly than in b1, and in BOLD5000, beta maps from
186 successive trials in b4 are now nearly uncorrelated on average. This is an expected outcome, since
187 the stimuli in NSD and BOLDS5000 are ordered pseudorandomly. In both datasets, an intermediate
188 beta version (b2) containing only HRF optimization confers marginal benefit over b1, but the most
189 dramatic improvements come from the addition of both GLMdenoise and fractional ridge regression
190 (b4). Overall, these results demonstrate the utility of GLMsingle for disentangling neural responses
191 to nearby stimuli in event-related designs, even when events are presented relatively slowly (as in
192 BOLDS5000).

193 GLMsingle improves between-subject representational similarity across datasets

194 Large-scale datasets such as NSD and BOLDS5000 are well-suited for representational analyses (e.g.,
195 RSA) that compare evoked neural response patterns between individual subjects, across different exper-
196 imental modalities, and against computational models (e.g., deep neural networks, see ,
197 , , for review.) In almost all such studies, representational analyses presume that the
198 same set of stimuli will evoke reasonably similar responses across subjects. As such, given the ubiquity
199 of noise in fMRYI, it is reasonable to expect that improving the accuracy of single-trial response estimates
200 should yield representations that are more similar across individuals.

201 'To compare representations between subjects, we used the approach of RSA (

202 ). First, we isolated stimuli that overlap between BOLDS5000 and the subset of NSD analyzed
203 for this manuscript (the first 10 sessions from each subject). Using these 241 stimuli, we constructed
204 representational dissimilarity matrices (RDMs) using repetition-averaged betas from each individual,
205 and then correlated all pairs of subject RDMs within and between datasets. Note that GLMsingle is not
206 designed to enhance or optimize cross-subject representational similarity; as such, it is informative to
207 examine RSA correlations between subjects as a way of assessing methods for denoising ( ,
208 ). Strikingly, in comparing beta versions b1 and b4, we observe a consistent strengthening of RDM
200 correspondence (Figure Sb). This trend held within NSD, within BOLD5000, and when comparing the
210 RDMs of subject pairs between the two datasets. The latter result is especially striking given the many
211 methodological differences between NSD and BOLD5000: fMRI data were collected at different sites
212 on different scanners, at different field strengths (7T vs. 3T), with different behavioral tasks, and with
213 different inter-stimulus intervals (4 s vs. 10 s).

214 These results indicate that GLMsingle, through its multifaceted approach to mitigating the effects of
215 noise, helps reveal meaningful shared variance in neural responses across individuals who viewed the
216 same stimuli. The GLMsingle toolbox may therefore be a key resource for future fMRI studies seeking
217 to stitch together data across subjects from different sites or cohorts.

21s  GLMsingle enables fine-grained image-level MVPA decoding

219 As a final analysis, we assessed the effect of GLMsingle on the results of multivoxel pattern analysis
220 (MVPA). In a “one-vs.-many” classification paradigm, we trained linear SVM models for each subject
221 to predict image identity from neural response patterns. The baseline GLM (b1) classification accuracy
222 was slightly above chance on average for the subjects in NSD and BOLD5000 when including all visual
223 cortex voxels (Figure 6a, blue traces). Performing the same MVPA procedure using GLMsingle betas
224 (b4), we observe that mean accuracy approximately triples in NSD and doubles in BOLD5000 (Figure
225 6a, red traces). Moreover, in both datasets we observe a substantial increase in classification accuracies
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Inter-subject RSA correlations by beta version
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Figure 5: Impact of GLMsingle on inter-subject RSA correlations

(A) Correlations of RDMs across all pairs of subjects and beta versions, at 3 different voxel reliability thresholds. We
compute RDMs for each subject and beta version using Pearson dissimilarity (1 - r) over repetition-averaged betas within the
nsdgeneral ROI. Grid lines separate beta versions from one another, an individual cell reflects the RDM correlation between
one pair of subjects, and cross-dataset comparisons occupy the top-right and bottom-left quadrants of the matrices. (B)
Mean inter-subject RDMs correlations within NSD (left), within BOLD5000 (center), and between the two datasets (right).
GLMsingle (b4) yields a considerable strengthening of RDM correspondence for each subject pair being considered, within
and between datasets.

226 with increasing voxel reliability threshold, with the most dramatic improvements achieved using b4 in
227 NSD (Figure 6a, left panel, right-most bins).

228 The level of performance that GLMsingle facilitates on this challenging multi-way decoding task
229 highlights the ability of the technique to accurately identify and model the stable structure contained
230 in noisy fMRI time-series. To illustrate this point, we performed 2D multidimensional scaling (MDS,
231 Borg and Groenen, 2005) using NSD betas that were included in MVPA. Comparing results between
232 beta versions b1 and b4, we observe improved clarity of an animacy division in the representational
233 space of an example subject (Figure 6b).
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Single-image decoding accuracy by beta version

A Subject averages +/- SEM
NSD: 4 subjects; 82 classes per subject BOLD5000: 3 subjects; 20 classes per subject
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Figure 6: Impact of GLMsingle on MVPA decoding accuracy

(A) Image-level linear SVM decoding accuracy by beta version. At each reliability threshold, we compute the mean decoding
accuracy over subjects within each dataset, as well as the standard error of the mean. Classifiers are trained on n — 1
available image repetitions, and tested on the held-out repetition, with accuracy averaged over cross-validation folds.
Applying GLMsingle (b4) yields dramatic increases in image decodability compared to a baseline GLM (bl). (B) The effect
of GLMsingle on animacy representation is shown in an example NSD subject (subjOl1) using multi-dimensional scaling.
GLMsingle clarifies the division in representational space between stimuli containing animate and inanimate objects. COCO
stimuli containing identifiable human faces are masked with a rectangle for the sake of privacy.

2« DISCUSSION

235 As scientific datasets grow in scale and scope, new techniques for data processing will help to unlock
236 their potential. This is especially true in human neuroscience where data remain both expensive and
237 time-consuming to collect (Naselaris et al., 2021). This paper has introduced GLMsingle, a publicly
238 available toolbox for analyzing fMRI time-series data that leverages data-driven techniques to improve
239 the accuracy of single-trial fMRI response estimates. We have tested GLMsingle extensively using NSD
240 and BOLDS5000, two of the largest fMRI datasets that densely sample responses within individuals.
241 For both datasets, analyses of the response estimates provided by GLMsingle indicate substantial
242 improvements in several key metrics of interest to neuroscientists: (i) enhanced test-retest reliability of
243 voxel response profiles, a straightforward metric of data quality; (ii) reduced temporal autocorrelation,
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244 a common fMRI effect that is presumably undesirable and especially prominent in rapid event-related
245 designs; (iii) increased representational similarity across subjects both within and across datasets; and
246 (iv) improved multivariate pattern classification performance when discriminating responses evoked by
247 individual images.

25 Principles underlying GLMsingle
249 GLMsingle incorporates three optimization procedures to improve the estimation of fMRI responses:

250 1. HRF fitting. GLMsingle uses a “library of HRFs” technique to select the most appropriate HRF

251 to use for each voxel in a given dataset ( , ). This library consists of a set of
252 20 HRFs that were derived from experimental data (specifically, the first NSD scan session
253 acquired in each of the 8 NSD subjects). It is well known that variations in HRFs exist across
254 voxels, brain areas, and subjects, and that mismodeling the timecourse of a voxel may lead to
255 suboptimal analysis outcomes ( , , ). Imposing constraints on HRF
256 selection by choosing from a fixed set of HRFs avoids the instability (high variance) associated
257 with more flexible timecourse modeling approaches, such as finite impulse response modeling
258 ( , ; , ). Variations in timecourse shapes in the HRF library
259 reflect a continuum between short-delay, narrow-width timecourses to long-delay, broad-width
260 timecourses, and are likely caused by variations in the contribution of large vessels to the BOLD
261 response observed in a voxel ( s ).

262 2. Data-driven denoising. Incorporating an adaptation of the GLMdenoise technique ( ,
263 ), GLMsingle uses principal components analysis to calculate potential nuisance regressors
264 from fMRI time-series data observed in voxels that are deemed unrelated to the experimental
265 paradigm. These regressors are incorporated into the GLM using a cross-validation procedure to
266 determine the optimal number of nuisance regressors to add. A key aspect of our approach is
267 the acknowledgement that including increasing numbers of nuisance regressors will, at some
268 point, cause overfitting and degradation of results ( , ); this motivates the use of
269 cross-validation to determine the optimal level of model complexity.

270 3. Regularization of GLM weights. To improve the accuracy of single-trial GLM response estimates,
271 GLMsingle uses fractional ridge regression ( , ), with an optimal degree of
272 regularization identified for each voxel, again using cross-validation. The improvements afforded
273 by this procedure are due to the substantial amount of overlap of the fMRI response across
274 successive trials, unless very long (> 30 s) inter-stimulus intervals are used. It is well known
275 that, in the context of ordinary least squares estimation, two predictors that are correlated (or
276 anti-correlated) will have reduced estimation precision compared to the scenario in which the
277 predictors are uncorrelated ( , ; s ). For rapid event-related
278 designs, predictors for consecutive trials are typically correlated, and ordinary least-squares
279 estimates will suffer from high levels of instability. Ridge regression imposes a shrinkage prior
280 (penalizing the sum of the squares of the beta estimates), which can, in principle, dampen the
281 effects of noise and improve out-of-sample generalizability of the beta estimates.

252 Ideal use-cases for GLMsingle

283 GLMsingle is designed to be general in its application. It uses data-driven procedures that automatically
284 adapt to the signal-to-noise characteristics of a given dataset. For example, in datasets where structured
285 noise is prevalent, appropriate nuisance regressors will automatically be included, whereas in datasets
286 with very little structured noise (e.g., low head motion), fewer (or no) nuisance regressors will be
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287 included. As another example, for experimental designs with high temporal overlap between consecutive
288 trials or high levels of noise, relatively strong levels of shrinkage regularization will likely be selected.

289 GLMsingle is a general technique that can be fruitfully applied to nearly any fMRI experiment involving
200 discrete events (including block designs). However, we recognize that integrating a new tool into
201 an analysis workflow requires effort. Therefore, we anticipate that the most consequential impact of
202 GLMsingle will be observed for study designs with low sensitivity (such as condition-rich designs).

203 Potential limitations to consider when applying GLMsingle

204  GLMsingle relies on cross-validation to determine two key hyperparameters: (i) the number of nuisance
295 regressors to use in the GLM as derived by applying PCA to data from the noise pool voxels; and (ii)
206 the amount of ridge-regression shrinkage to apply for each voxel. Although the data-driven nature of
297 the technique is one of its strengths (since it adapts to the characteristics of each dataset), it is also a
208 potential limitation. First, a prerequisite for application of GLMsingle is the existence of at least some
209 repeated trials in a given dataset. A dataset consisting only of experimental conditions with a single
s00 occurrence each cannot be used in conjunction with the cross-validated procedures for determining
so1 the optimal number of nuisance regressors and the voxel shrinkage fractions. Second, since data are
s2 invariably noisy, the determination of hyperparameters is subject to noise, and it is not guaranteed that
303 hyperparameter estimates will be accurate in all possible data situations. It remains an open question for
so+ further investigation what the minimum data requirements are for reasonably accurate hyperparameter
305 estimation.

so6 Given the requirement of repeated discrete events, GLMsingle is not applicable to resting-state data,
307 since they contain no explicit task structure. Similarly, GLMsingle is not suitable for experiments that
38 involve continuous event structures — for example, movie watching, storytelling, dynamic exploration,
s00 game-playing — unless certain events within the task are coded as discrete, repeated instances. For
s10 example, the appearance on-screen of a particular character could be treated as a repeated “event” in
311 constructing a design matrix. Or, as another example, certain words or parts of speech could be treated
312 as “events” within a continuous auditory or linguistic experiment.

s13 It is important to consider whether denoising comes at the potential cost of introducing bias (Kay,
314 ). Considering each component of GLMsingle, we believe that the risk of bias is minimal for most
a5 use cases. First, considering the library-of-HRFs approach, we note that the conventional approach
a6 of using a fixed canonical HRF actually incurs more risk of biasing response estimates than does an
317 approach that attempts to flexibly capture variations in HRFs. Nonetheless, we acknowledge that the
s1s  library may not necessarily capture all HRF shapes, and this represents one possible source of bias
s19  (though likely minor). Second, considering the GLMdenoise procedure, we note that data-derived
s20 nuisance regressors are not blindly removed from the time-series data prior to modeling, as this would
321 pose a clear risk of removing experimentally-driven signals, thereby leading to bias ( , ).
s22 Rather, by including both task-related regressors and nuisance regressors in the GLM, the model can
323 appropriately partition variance between signal and noise sources. Third, considering ridge regression,
324 we note that shrinkage can be viewed as a form of temporal smoothing, in the sense that beta weights
s2s  from temporally adjacent trials are biased to be more similar in magnitude. While this is indeed a
a6 source of bias, this should be concerning only for investigations where relative responses for nearby
s27 trials are of specific interest (e.g., studies of repetition suppression). For other investigations, and
s2s  especially for experiments where condition ordering is pseudorandom, it is unlikely that this form of
320 temporal regularization and its associated bias would lead to incorrect scientific inferences.
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s  Online example scripts and tutorials

st To enable easy adoption of GLMsingle, we provide extensive documentation and example scripts for
32 common neuroimaging use-cases (glmsingle.org). Publicly available online resources include code
sss  implementation of GLMsingle in both MATLAB and Python, example scripts and notebooks, technical
34 documentation, and answers to frequently asked questions. The GLMsingle pipeline is designed to
335 be easy to implement in different neuroimaging pipelines. The example scripts we provide illustrate
sss typical GLMsingle usage for both event-related and block designs. These scripts guide the user through
ss7  basic calls to GLMsingle, using representative, small-scale example datasets. We hope these practical
sss  resources facilitate the application of GLMsingle to existing and future neuroimaging datasets.

a9 Conclusion

a0  Our results suggest that GLMsingle represents a methodological advancement that will help improve
aa1  data quality across different fMRI designs. While improvements in MR hardware (e.g. magnetic field
as2  strength, RF coil, pulse sequences) and experimental design (e.g. optimized study design and trial
as3  distributions) may contribute to improved data quality, the benefits of GLMsingle demonstrated in
s4+ this paper make clear that data processing techniques are another critical factor that can profoundly
a5 impact SNR and overall experimental power. As an analogy, we observe that the rapid (and annual)
a6 improvement in cell phone cameras has been driven in large part by advances in image analysis
s47 algorithms. As summarized by an Apple executive, “[while sensor quality has improved], increasingly,
a8 what makes incredible photos possible aren’t just the sensor and the lens but the chip and the software
a49 that runs on it” ( , ). We suggest that GLMsingle represents a similar advance in signal
sso  processing for fMRI.

i MATERIALS AND METHODS

352 Description of GLMsingle

353

s« Inputs to GLMsingle

355 GLMsingle expects that input fMRI data have been preprocessed with motion correction at minimum,
36 and ideally slice time correction as well. Additional common preprocessing steps such as compensation
ss7  for spatial distortion, spatial smoothing, or registration to an anatomical space (or atlas space) are
sss  all compatible with GLMsingle without any complications. Detrending or high-pass filtering the
359 time-series data is not necessary, as low-frequency fluctuations are modeled as part of the GLM fitting
ss0 procedure. The input fMRI data can be supplied in either volumetric or surface format. Besides fMRI
ss1  data, the other user-provided input to GLMsingle is an array of design matrices corresponding to each
se2 run of the time-series data, indicating the sequence of events that occurred during the runs. GLMsingle
33 expects that these are matrices with dimensions (time x conditions), where each column corresponds to
s+ a single condition and consists of Os except for 1s indicating the onset times for that condition. Further
ses details about data formats are provided in the online code repository.

s GLMsingle overview

ss7  GLMsingle consists of three main analysis components. The first component is the use of a library of
sss hemodynamic response functions (HRFs) to identify the best-fitting HRF for each voxel. This simple
seo approach for compensating for differences in hemodynamic timecourses across voxels (

370 , ) has several appealing features: it invariably provides well-regularized HRF estimates, and
a7t it is efficient and can be executed with reasonable computational cost. The second component is an
sz adaptation of GLMdenoise to a single-trial GLM framework. GLMdenoise is a previously introduced
a7s technique ( , ) in which data-derived nuisance regressors are identified and used to remove
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a7+ noise from—and therefore improve the accuracy of—beta estimates. The third analysis component is an
a7s  application of ridge regression ( , ) as a method for dampening the noise inflation
aze caused by correlated single-trial GLM predictors. To determine the optimal level of regularization for
a7 each voxel, we make use of a recently developed efficient re-parameterization of ridge regression called
a7s “fractional ridge regression” ( , ).

s7e  Derivation of the library of HRFs

sso The HRF library incorporated into GLMsingle was previously used for signal estimation in analyzing
sst the Natural Scenes Dataset. Complete details on the derivation procedure for the HRF library can be
ss2  found in the NSD dataset paper ( , ). In brief, empirically-observed BOLD timecourses
sss  were subject to principal components analysis, projected onto the unit sphere, and parameterized using a
ss« path consisting of 20 regularly-spaced points through the area of greatest data density. The timecourses
sss corresponding to the resulting set of 20 points were fit using a double-gamma function as implemented
sss  in SPM’s spm_hrf.m, yielding a fixed library of 20 HRFs. This library is the default in GLMsingle,
ss7 and was used for all analyses of the NSD and BOLD5000 datasets described here. In future work, it is
sss  possible to refine or expand the HRF library (e.g., by deriving it from a larger pool of subjects, or by
sse restricting estimation to individual subjects).

sso  Cross-validation framework for single-trial GLM

sst  The GLMdenoise and ridge regression analysis components of GLMsingle both require tuning of
se2 hyperparameters (specifically, the number of nuisance regressors to include in GLM fitting and the
ses  regularization level to use for each voxel). To determine the optimal setting of hyperparameters, we
s« use a cross-validation approach in which out-of-sample predictions are generated for single-trial beta
35 estimates. Performing cross-validation on single-trial betas, as opposed to time-series data, simplifies
se6 and reduces the computational requirements of the cross-validation procedure. Note that because of
sg7 cross-validation, although GLMsingle produces estimates of responses to single trials, it does require
ses the existence of and information regarding repeated trials (that is, trials for which the experimental
se9 manipulation is the same and expected to produce similar brain responses). This requirement is fairly
s00 minimal, as most fMRI experiments are designed in this manner.

401 The first step of the cross-validation procedure is to analyze all of the available data using a generic
402 GLM. In the case of GLMdenoise, this amounts to the inclusion of zero nuisance regressors; in the case
a0s  of ridge regression, this amounts to the use of a shrinkage fraction of 1, which corresponds to ordinary
404 least-squares regression. In both cases, the generic analysis produces a full set of unregularized single-
405 trial betas (e.g., in one NSD session, there are 750 single-trial betas distributed across 12 runs, and in
406 one BOLDS5000 session, there are either 370 or 333 single-trial betas distributed across either 10 or 9
407 runs). The second step of the procedure is to perform a grid search over values of the hyperparameter
408 (e.g., number of GLMdenoise nuisance regressors; ridge regression shrinkage fraction). For each
409 value, we assess how well the resulting beta estimates generalize to left-out runs. By default, for all
410 cross-validation procedures, GLMsingle implements the following leave-one-run-out routine: (1) one
411 run is held out as the validation run, and experimental conditions that occur in both the training runs
412 and the validation run are identified; (2) squared errors between the regularized beta estimates from
413 the training runs and the unregularized beta estimates from the validation run are computed; (3) this
412 procedure is repeated iteratively, with each run serving as the validation run, and errors are summed
415 across iterations.

416 GLMsingle algorithm
417 Having described the essential aspects of the estimation framework above, we now turn to the steps in
413 the GLMsingle algorithm. GLMsingle involves fitting several different GLM variants. Each variant
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o includes polynomial regressors to characterize the baseline signal level: for each run, we include
220 polynomials of degrees 0 through round(L/2) where L is the duration in minutes of the run.

4

421 1. Fit a simple ON-OFF GLM. In this model, all trials are treated as instances of a single experi-
422 mental condition, and a canonical HRF is used. Thus, there is a single “ON-OFF” predictor that
423 attempts to capture signals driven by the experiment. The utility of this simple model is to pro-
424 vide variance explained (R?) values that help indicate which voxels carry experimentally-driven
425 signals.

426 2. Fit a baseline single-trial GLM. In this model, each stimulus trial is modeled separately using a
427 canonical HRF. This model provides a useful baseline that can be used for comparison against
428 models that incorporate more advanced features (as described below).

429 3. Identify an HRF for each voxel. We fit the data multiple times with a single-trial GLM, each

430 time using a different HRF from the library of HRFs. For each voxel, we identify which HRF
431 provides the best fit to the data (highest variance explained), and inherit the single-trial betas
432 associated with that HRF. Note that the final model for each voxel involves a single chosen HRF
433 from the library.

434 4. Use GLMdenoise to determine nuisance regressors to include in the model. We define a pool of
435 noise voxels (brain voxels that have low ON-OFF R?, according to an automatically determined
436 threshold) and then perform principal components analysis on the time-series data associated
437 with these voxels (separately for each run). The top principal components (each of which is a
438 timecourse) are added one at a time to the GLM until cross-validation performance is maximized
439 on-average across voxels. The inclusion of these nuisance regressors is intended to capture
440 diverse sources of noise that may be contributing to the time-series data in each voxel.

441 5. Use fractional ridge regression to regularize single-trial betas. With the nuisance regressors
442 determined, we use fractional ridge regression to determine the final estimated single-trial betas.
443 This is done by systematically evaluating different shrinkage fractions. The shrinkage fraction
444 for a given voxel is simply the ratio between the vector length of the set of betas estimated
445 by ridge regression and the vector length of the set of betas returned by ordinary least-squares
446 estimation, and ranges from 0 (maximal regularization) to 1 (no regularization). For each voxel,
447 in the context of a GLM that incorporates the specific HRF chosen for that voxel as well as the
448 identified nuisance regressors, cross-validation is used to select the optimal shrinkage fraction.

449 The default behavior of GLMsingle is to return beta weights in units of percent signal change by
450  dividing by the mean signal intensity observed at each voxel and multiplying by 100. To preserve
451 the interpretability of GLM betas as percent signal change even after applying shrinkage via ridge
452 regression, we apply a post-hoc scaling and offset on the betas obtained for each given voxel in order to
43 match, in a least-squares sense, the unregularized betas (shrinkage fraction equal to 1) obtained for that
454 voxel.

455 To give a sense of the computational requirements of GLMsingle, we report here results for an example
4s6  scenario. We ran the MATLAB version of GLMsingle with default parameters on the first NSD scan
457 session for subjO1 (1.8-mm standard-resolution version of the data). The scan session involved 750
4ss trials and a data dimensionality of (81 voxels x 104 voxels x 83 voxels) = 699,192 voxels and (12
459 runs X 226 volumes) = 2,712 time points. The code was run on an 32-core Intel Xeon E5-2670 2.60
40 GHz Linux workstation with 128 GB of RAM and MATLAB 9.7 (R2019b). The data were loaded in
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461 single-precision format, resulting in a base memory usage of 8.4 GB of RAM (the data alone occupied
a2 7.6 GB). Code execution (including figure generation and saving results to disk) took 4.8 hours (average
463 of 2 trials). The maximum and mean memory usage over the course of code execution was 38.0 GB
464 and 18.5 GB of RAM, respectively.

465 GLMsingle outputs

a6 The default output from GLMsingle includes the different GLM beta estimates that are progressively
467 obtained in the course of the algorithm (e.g. the single-trial betas with voxel-wise tailored HRFs; the
468 single-trial betas incorporating GLMdenoise, etc.). The pipeline also outputs several metrics of interest,
469 such as a map of the HRF indices chosen for different voxels, the R? values from the ON-OFF GLM, a
470 map of the voxels identified as “noise”, a summary plot of the cross-validation procedure used to select
471 the number of noise regressors, and a map of the amount of ridge regression shrinkage applied at each
472 voxel. These outputs are displayed in a set of convenient figures.

473 Flexibility of GLMsingle

474 Although GLMsingle provides default settings for the parameters that control its operation, the toolbox
475 1is flexible and allows the user to adjust the parameters if desired. Modifying the parameters allows the
476 user to achieve a range of different behaviors, such as expanding the HRF library to include additional
477 candidate HRFs; changing the maximum number of nuisance regressors tested during GLMdenoise
478 (default is 10); modifying the range of shrinkage fractions evaluated for ridge regression (default is
479 0.05 to 1 in increments of 0.05); and running different flavors of GLM models that omit HRF fitting,
ss0 GLMdenoise, and/or ridge regression. For complete documentation, please refer to the GLMsingle
4s1 function descriptions and example scripts available at glmsingle.org.

a2 Application of GLMsingle to NSD and BOLDS5000

483
48« In order to assess the efficacy of GLMsingle for large-scale fMRI datasets, we tested GLMsingle on

485 the NSD ( , ) and BOLD5000 ( , ) datasets. Both datasets involve
486 presentation of many thousands of natural images. NSD and BOLD5000 share an overlapping subset of
g7 stimuli from the Microsoft Common Objects in Context (COCO) database ( , ), enabling

488 direct comparison between the brain responses observed in the two datasets. However, there are a
49 number of differences between the datasets: the two datasets were collected at different field strengths,
40 with different event timings, and at different spatial and temporal resolution. In addition, while NSD
491 contains many repeated stimuli within each scan session, BOLDS5000 contains very few. As such,
422 processing BOLD5000 requires grouping of input data across scan sessions to facilitate the cross-
493 validation procedures used in GLMsingle. This challenging processing scheme with respect to image
94 repetitions provides a strong test of the robustness of the GLMsingle technique.

a5 NSD Dataset

496 For complete details of the NSD study, including scanning parameters, stimulus presentation, and
497 experimental setup, refer to the Methods section of the corresponding dataset paper ( , ).
498 In brief, a total of 8 subjects participated in the NSD experiment, each completing between 30-40
499 functional scanning sessions. For the full experiment, 10,000 distinct images from the Microsoft COCO
so0 dataset were designed to be presented 3 times each over the course of 40 sessions. For computational
so1 convenience and to make comparisons across subjects easier, only the first 10 NSD sessions from
so2  subjects 1-4 are used for the analyses contained in this manuscript. Functional data were collected at
so3 7T, with 1.8-mm isotropic resolution, and with a TR of 1.6 s. Each trial lasted 4 s, and consisted of the
so4 presentation of an image for 3 s, followed by a 1-s gap. A total of 12 NSD runs were collected in one
505 session, containing either 62 or 63 stimulus trials each, for a total of 750 trials per session.
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so6 The fMRI data from NSD were pre-processed by performing one temporal resampling to correct
so7  for slice time differences and one spatial resampling to correct for head motion within and across
sos  scan sessions, EPI distortion, and gradient nonlinearities. This procedure yielded volumetric fMRI
s09 time-series data in subject-native space for each NSD subject. In this paper, we analyze the standard-
s10  resolution pre-processed data from NSD which has 1.8-mm spatial resolution and 1.333-s temporal
s11 resolution (the time-series data are upsampled during preprocessing).

si2. BOLDS000 Dataset

s13 For complete details of the BOLD5000 study and methodology, refer to the corresponding dataset paper
514 ( , ). A total of 4 subjects participated in the BOLD5000 dataset (CSI1-4). A full dataset
515 contained 15 functional scanning sessions; subject CSI4 completed only 9 sessions before withdrawing
s16  from the study. BOLDS5000 involved presentation of scene images from the Scene UNderstanding
517 (SUN) ( , ), COCO ( , ), and ImageNet ( , ) datasets. A total
s18  of 5,254 images, of which 4,916 images were unique, were used as the experimental stimuli. 112 of the
s19 4,916 distinct images were shown four times and one image was shown three times to each subject.
s20 Functional data were collected at 3T, with 2-mm isotropic resolution, and with a TR of 2 s. Each trial
s21  lasted 10 s, and consisted of the presentation of an image for 1 s, followed by a 9-s gap. A total of
s22  either 9 or 10 runs were collected in one session, containing 37 stimulus trials each, for a total of either
523 333 or 370 trials per session.

s24  The fMRI data from BOLD5000 were preprocessed using fMRIPrep ( , ). Data
525 preprocessing included motion correction, distortion correction, and co-registration to anatomy (or
s26  further details, please refer to the BOLD5000 dataset paper ( , ). This yielded volumetric

sz fMRI time-series data in subject-native space for each BOLDS5000 subject.

s2s  Because GLMsingle requires condition repetitions in order to perform internal cross-validation proce-
s29  dures, and because BOLD5000 contains a limited number of within-session repetitions, we concatenated
ss0  data from groups of 5 sessions together before processing using GLMsingle. To account for differences
sst in BOLD signal intensity across different sessions, we performed a global rescaling operation to the
ss2 data within each session to roughly equate the time-series mean and variance across the 5 sessions
ss3  comprising one batch of data. Specifically, we first computed the global mean fMRI volume across all
s34 5 sessions, and then, for each session, computed a linear fit between the mean volume from a single
s35  session and the global mean volume. This yielded a multiplicative scaling factor applied to each session
ss6  in order to roughly equate signal intensities across sessions.

s37 - Applying GLMsingle to NSD and BOLD5000

sss We used GLMsingle to estimate single-trial BOLD responses in the NSD and BOLDS5000 datasets.
sss  For NSD, GLMsingle was applied independently to each scan session. For BOLDS5000, groups of
s40 5 sessions were processed together, following the rescaling procedure described above. The default
sa1  GLMsingle parameters were used for processing both NSD and BOLD5000, except that we evaluated
ss2  up to 12 nuisance regressors in GLMdenoise (default: 10).

s43  Four different versions of single-trial GLM betas were computed and saved. The first beta version (b1,
s44  AssumeHREF) is the result of Step 2 of the GLMsingle algorithm, and reflects the use of a canonical
sss  HRF with no extra optimizations. We treat these generic GLM outputs as a baseline against which
s46  beta versions are compared; estimating BOLD responses using a canonical HRF and ordinary least
s4a7  squares (OLS) regression reflects an approach that has been commonly applied in the field of human
s4s  neuroimaging. The second beta version (b2, FitHRF) is the result of Step 3, and reflects the result of
sa9  voxel-wise HRF estimation. The third beta version (b3, FitHRF + GLMdenoise) is the result of Step 4,
sso  incorporating GLMdenoise, and the final beta version (b4, FitHRF + GLMdenoise + RR) arises from
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sst - Step 5, and reflects the additional use of ridge regression. For comparisons between GLMsingle and
sz Least-Squares Separate (LSS) signal estimation (Figure 3), 4 auxiliary beta versions were computed.
ss3 LSS betas were compared to those estimated using fractional ridge regression in the scenario of using
ss4 the canonical HRF (AssumeHRF + LSS vs. AssumeHRF + RR) and in the scenario of performing
ss5  HRF optimization using the GLMsingle library (FitHRF + LSS vs. FitHRF + RR). Our validation
ss6  analyses involve comparing optimized GLMsingle betas (b2, b3, b4) against those estimated using the
557 baseline GLM approach (b1), and performing an 8-way comparison incorporating both b1-b4 and the
sss 4 auxiliary beta versions used for comparisons with LSS. Prior to all analyses, the responses of each
ss9  voxel were z-scored within each experimental session in order to eliminate potential nonstationarities
se0  arising over time, and to equalize units across voxels.

st Assessing the impact of GLMsingle
562
ses  Analysis of voxel reliability

se«  Computing test-retest reliability — To compute reliability, we repeated the following procedure for
ses each beta version. We first extracted the betas from trials that correspond to repetitions of the same
se6  stimuli (NSD: 3 instances per stimulus; BOLD5000: 4 instances for subjects CSI1-3, and 3 for CSI4).
se7 For each voxel, this yielded a matrix of dimensions (repetitions x images). To compute reliability,
ses Pearson correlation was computed between the average voxel response profiles for each possible unique
seo  split-half of the data. Therefore, in the case of 4 available repetitions, the reliability for a voxel was
s70  the average of 3 correlation values, with image repetitions grouped as follows: corr(mean(1,2) vs.
st mean(3,4)); corr(mean(1,3) vs. mean(2,4)); corr(mean(1,4) vs. mean(2,3)). In the case of 3
572 repetitions, the reliability was the average of: corr(mean(1,2) vs. (3)); corr(mean(1,3) vs. (2));
53 corr(mean(2,3) vs. (1)).

574 ROI analysis within visual cortex — To summarize reliability outcomes for each beta version, we used a
575 liberal mask containing voxels in visual cortex. Specifically, we used the ‘nsdgeneral’ ROI from the
576 NSD study, which was manually drawn on fsaverage to cover voxels responsive to the NSD experiment
577 in the posterior aspect of cortex ( , ). To achieve a common reference ROI in volumetric
578 space for each subject, we first transformed the nsdgeneral ROI to MNI space, and then mapped this
579 ROI from MNI space to the space of each subject in NSD and each subject in BOLDS5000.

sso Composite voxel reliability scores — In comparing different beta versions output by GLMsingle, we
sst  sought to understand whether the optimizations tended to affect all voxels equally, or whether the impact
ss2 ' was mediated by voxel reliability. We therefore measured how different beta versions differed in our
sss key outcome metrics (e.g. mean voxel reliability) as a function of the reliability of included voxels. To
ss« achieve fair comparisons, we ensured that the same groups of voxels were compared at each reliability
sss  threshold across beta versions. We achieved this by computing composite voxel reliability scores: the
sss mean reliability value in each voxel over beta versions b1-b4. We then subselected groups of voxels
ss7 by applying varying threshold levels to the composite reliability scores. For analyses incorporating
sss  the 4 auxiliary beta versions, composite reliability scores were computed as the mean across all 8 beta
589 versions.

seo  Effect of reliability on beta quality — To quantify the performance of different beta versions as a function
so1  of voxel reliability, composite scores were thresholded at increasing values (from Pearson » = —0.2 to
se2 0.6, in steps of 0.05) to determine the included voxels at each reliability level. At each threshold, we
ses  computed the difference between the reliability achieved by a given beta version and the composite
se4 reliability (i.e. the average across beta versions). This difference was averaged across voxels, producing
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se5 traces that reflect the relative quality of data from each beta version compared to the group average,
se6  across different levels of voxel reliability (Figure 2b).

ss7  Out-of-sample reliability analysis — GLMsingle makes use of all of the data that it is presented with, via a
se8  series of internal cross-validation operations. As such, there is some degree of dependence between runs.
se9  Note that this does not pose a significant “circularity” problem with respect to downstream analyses,
soo as GLMsingle has no access to any scientific hypotheses and it is unlikely that GLMsingle could bias
eot the single-trial beta estimates in favor of one hypothesis over another. However, when the primary
so2 analysis outcome is to establish that responses to the same condition are reliable across trials (e.g.
sos Figures 2, 3), then that outcome is exactly what the GLMsingle algorithm is trying to achieve during
s04 hyperparameter selection. For a stringent quantification of reliability, we performed additional analyses
sos in which quantification of reliability is restricted to responses estimated in completely independent
sos calls to GLMsingle (Figure 3b). Specifically, we identify all instances where a condition is repeated
so7 within the same partition of data processed by GLMsingle (partition size: 1 session for NSD, 5 sessions
sos for BOLDS5000), and remove these instances from the calculation of reliability. The results show that
so9 even with strict separation, the patterns of results are essentially the same.

s10 Comparison to LSS - Least-Squares Separate (LSS) is a popular technique for robust signal estimation
611 in rapid event-related designs ( s , ; , ). The LSS
s12 procedure fits a separate GLM for each stimulus, where the trial of interest is modeled as one regressor,
s13 and all other (non-target) trials are collapsed into a second regressor. An implementation of LSS is
614 included in the GLMsingle toolbox.

s15  Analysis of temporal autocorrelation

s16 A commonly used strategy to increase fMRI statistical power is to increase the number of experimental
e17 trials by allowing them to be presented close together in time. However, given the sluggish nature
s1s of BOLD responses and the existence of temporal noise correlations, this strategy tends to yield
e19 correlations in GLM beta estimates for nearby trials ( s ; s ;
620 , ; , ). In general, we expect that such correlations are largely
e21 artifactual and unwanted. Given that GLMsingle attempts to reduce noise levels, we sought to explore
s22 whether GLMsingle has a noticeable impact on temporal autocorrelation.

623 Average temporal autocorrelation by dataset — For each beta version, the following procedure was
s24 used to assess the degree of temporal autocorrelation in the data. For visual cortex data from each
625 experimental session (nsdgeneral ROI, , ), we computed the Pearson correlation
626 between the spatial response patterns from each pair of trials in the session, yielding a representational
e27 similarity matrix (RSM) where the temporal ordering of trials is preserved. This process was repeated
e2s for all sessions, yielding a total of 10 RSMs for each NSD subject and 15 RSMs for each BOLD5000
629 subject (9 for subject CSI4, who did not complete the full study). To assess autocorrelation in the data —
ss0 relationships arising due to temporal proximity of different trials — we then took the average of all RSMs
e3t  within each dataset. Note that in both NSD and BOLDS5000, the order of stimulus presentation was
es2 essentially unstructured (pseudorandom). Thus, in terms of signal content (stimulus-driven responses
ss3 in the absence of noise), we expect that trials should be uncorrelated, on average, and that any non-zero
s34+ correlations are indicative of the effects of noise that persist following GLM fitting. The extent to which
ss5 non-zero r values extend forward in time from the RSM diagonal indicates the timescale of the noise
es6 effects in a given beta version.

e37  Computing the autocorrelation function — For quantitative summary, we computed a temporal autocor-
ess relation function from the dataset-averaged RSM for each beta version (Figure 4). For a given RSM,
s39 we computed the average similarity value between all trials k£ and k& + =, where x varies from 1 to
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ss0 1, where n is the dimensionality of the RSM. Intuitively, at © = 1, autocorr(x) equals the average
e41 of all values falling 1 index below the diagonal of the RSM; at = 5, it equals the average of all
ss2 values falling 5 indices below the diagonal, etc. This procedure outputs a succinct summary of the
s43 average correlation in neural response between all pairs of time-points within a session, allowing
s4+ for easy comparison between the beta versions in a single plot (Figure 4, right-most column). The
ess theoretical desired outcome is autocorr(z) = 0; thus, beta versions whose autocorrelation functions
sss  are “flatter” (e.g. less area under the curve) presumably contain more accurate GLM estimates. Because
e47 the temporal interval between trials differed between NSD (4 s) and BOLDS5000 (10 s), we express the
e4s autocorrelation functions in terms of seconds post-stimulus for plotting, to allow for straightforward
s49 comparison between the datasets.

eso  Effect of reliability on temporal autocorrelation — The effect of temporal autocorrelation in GLM betas
est  may vary depending on the relative responsiveness of different voxels to the experimental stimuli.
es2 As such, we repeated the autocorrelation analyses several times, varying the expanse of voxels that
ess  were included. We again relied on the aggregate reliability scores (computed previously) as a measure
e« of voxel quality, which are the average voxel reliabilities taken across all the beta versions under
es5s consideration. This avoids biasing the voxel selection procedure. In Figure 4, we compare temporal
es6 autocorrelation trends arising from analysis of voxels at two different reliability thresholds (r = 0 and
657 1 = 0.3).

ess  Analysis of between-subject representational similarity

eso  Another way to assess the quality of beta estimates is to examine the similarity of BOLD response
se0 estimates across subjects. The underlying logic is that noise is expected to be stochastic in the
es1 data acquisition for each subject, and thus, should on average increase the dissimilarities of BOLD
se2 response estimates across subjects. A method that accurately removes noise would then be expected
e63  to increase the similarity of BOLD responses across subjects. To quantify response similarity, we
ee4 Use representational similarity analysis (RSA), a commonly used approach in systems and cognitive
665 neuroscience ( , ; , ; , ;

666 , ).

e67 Between-subject RSA correlations — For comparisons between subjects across NSD and BOLD5000,
ses  we identified a subset of 241 images that overlapped between BOLD5000 and the portion of NSD being
eso analyzed for this manuscript. Once overlapping images were identified, the corresponding GLM betas
670 for each version were isolated, and averaged over all available repetitions within subject (3 for NSD, 4
671 for BOLD5000). Then, we used Pearson dissimilarity (1 — ) to compute RDMs over the averaged
672 betas for each subject, in each dataset. To assess the impact of voxel reliability on cross-subject
673 RDM correlations, this procedure was repeated across a range of voxel reliability inclusion levels
e+ r = [—1,0,0.05,0.1,0.15,0.2,0.25], using the beta version-averaged aggregate reliability scores
e7s computed previously. Voxels inside the nsdgeneral ROI were used in this analysis. Once RDMs
676 were computed for each subject, using responses from the sets of stimuli detailed above, within- and
677 across-dataset RSA correlations were computed using the vectorized lower-triangular portions of each
e7s RDM (Figure Sb).

679 Analysis of MVPA decoding accuracy

ss0 Multivoxel pattern analysis (MVPA) investigates the information contained in distributed patterns of
est neural activity to infer the functional role of brain areas and networks. Pattern decoding tools like
ss2  MVPA have been deployed extenswely in systems and cogmtlve neuroscience to study the function of
683 neural ROIs ( , ; , ). To
es+ further assess the practical 1mpact of GLMsmgle we tested the efﬁcacy of MVPA decoding using the
ess different beta versions output by the toolbox.

20


https://doi.org/10.1101/2022.01.31.478431
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478431,; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ess Image-level decoding paradigm — We implemented a challenging “one-vs-many” decoding task to
es7 assess whether data quality was sufficiently high to characterize the distinct neural patterns associated
ess with individual naturalistic images in the NSD and BOLD5000 datasets. Within each dataset, we
eso identified the set of images that all subjects viewed at least 3 times, and then performed multiclass
se0 linear support vector machine (SVM) decoding via leave-one-repetition-out cross-validation. In NSD,
eo1  a total of 82 classes were used, representing the images that overlapped across the 10 available sessions
sz from subj01-04. In BOLDS5000, the subset of these 82 stimuli overlapping between all subjects of both
ees  datasets were used (a total of 20 classes). We then assessed the degree to which relative differences in
sea decoding accuracy between b1 and b4 changed depending on the reliability of the included voxels. We
sos conducted the above decoding procedure iteratively, each time increasing the voxel reliability inclusion
ee6 threshold for data within the nsdgeneral ROI (range » = 0 to 0.35). BOLD5000 subject CSI4, having
se7 completed only 9 of 15 experimental sessions, was excluded from MVPA procedures due to insufficient
ees  stimulus repetitions.

s90 Multidimensional scaling — To gain insight into the representational changes due to GLMsingle that
700 may support improvements in MVPA decoding, we performed multidimensional scaling (MDS) over
701 repetition-averaged NSD betas from a baseline GLM (b1) and the final betas from GLMsingle (b4),
702 within the nsdgeneral ROI of an example subject (NSD subjO1). In Figure 6b, we compare the 2-
703 dimensional MDS embeddings between these beta versions, coloring COCO stimuli based on whether
704 they contain animate or inanimate objects according to the image annotations.
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