bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Syllable-PBW'T for space-efficient haplotype long-match query

Victor Wang!* Ardalan Naseri'* Shaojie Zhang®™
Degui Zhit*

1School of Biomedical Informatics
University of Texas Health Science Center at Houston, Houston, TX 77030, USA

2Department of Computer Science
University of Central Florida, Orlando, FL 32816, USA

Abstract

The positional Burrows-Wheeler transform (PBWT) has led to tremendous strides in hap-
lotype matching on biobank-scale data. For genetic genealogical search, PBWT-based methods
have optimized the asymptotic runtime of finding long matches between a query haplotype and a
predefined panel of haplotypes. However, to enable fast query searches, the full-sized panel and
PBWT data structures must be kept in memory, preventing existing algorithms from scaling up
to modern biobank panels consisting of millions of haplotypes. In this work, we propose a space-
efficient variation of PBWT named Syllable-PBWT, which divides every haplotype into syllables,
builds the PBWT positional prefix arrays on the compressed syllabic panel, and leverages the
polynomial rolling hash function for positional substring comparison. With the Syllable-PBWT
data structures, we then present a long match query algorithm named Syllable-Query. Compared
to Algorithm 3 of Sanaullah et al. (2021), the most time- and space-efficient previously published
solution to the long match query problem, Syllable-Query reduced the memory use by a factor of
over 100 on both the UK Biobank genotype data and the 1000 Genomes Project sequence data.
Surprisingly, the smaller size of our syllabic data structures allows for more efficient iteration
and CPU cache usage, granting Syllable-Query even faster runtime than existing solutions. The
implementation of our algorithm is available at https://github.com/ZhiGroup/Syllable-PBW'T.

*These authors contributed equally to this work. TCorresponding Authors. Email: Degui.Zhi@uth.tmc.edu;
shzhang@cs.ucf.edu

https://github.com/ZhiGroup/Syllable-PBWT
https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1 Introduction

Developments in genotyping technologies have accelerated the growth of genotype databases,
paving the way for systematically comparing the haplotype sequences inherited by individuals
[1, 2]. Shared, long DNA segments, known as Identical by Descent (IBD) segments, between the
haplotypes of two or more individuals are highly indicative of a recent common ancestor [3]. To
efficiently analyze large panels of haplotypes, Durbin proposed the positional Burrows-Wheeler
transform (PBWT) [4], a data structure that reorders haplotypes at every site (i.e. position within
a haplotype) to concisely represent local substring matches within sets of aligned haplotypes, and
has a construction runtime proportional to the size of the panel. Beyond IBD segment detection
B, 6, [7], PBWT has found applications in genotype imputation [8, 9], studying recombination
events [10], and inferring ancestral recombination graphs [11].

PBWT algorithms come in two flavors: finding all within-panel pairwise haplotype matches (all-
vs-all matching), or finding all pairwise haplotype matches between an out-of-panel haplotype and
any in-panel haplotype (one-vs-all query). In this work, we are concerned with the query problem,
of which an important application is genealogical search. Durbin’s Algorithm 5 [4] is able to find
all set-maximal matches from a query haplotype to any panel haplotype, where a set-maximal
match is said to exist from a haplotype s; to a haplotype ss if no other haplotype in the panel has
a longer match with s; that completely contains the range of sites over which s; and sy match.
However, as noted in [12], reporting only set-maximal matches is likely to exclude a lot of valuable
match information, since many considerably long matches would not be reported simply because
they were overshadowed by a longer match. (Note too that the quality of being set-maximal is not
necessarily symmetric; i.e. that a match is set-maximal from s; to so does not imply that it is set-
maximal from sg to s1, which is unintuitive for genealogical search.) Instead, setting a match length
cutoff is more theoretically justifiable and has been the common practice in real-world genealogical
search deployed by direct-to-consumer (DTC) genetics companies. In spite of the errors present in
haplotype data, DTC genetics companies and other researchers have demonstrated the efficacy of
using long matches to determine genealogical relationships [13] 14 [12]. In the PBWT-Query work
[12], Naseri et al. defined an L-long match (abbreviated to “long match”) to be a match spanning
at least L sites (or, for genetic distance, at least L ¢cM) and presented an algorithm to find all
long matches between a query haplotype and a panel in average-case O(N + ¢) time, where there
are N sites and c¢ reported matches. Remarkably, since O(N) time is indispensable to read in the
query haplotype, and O(c) to output matches, O(NN +c) is the fastest time complexity theoretically
achievable.

However, existing PBWT query algorithms are not space-efficient. Although all-vs-all PBWT
matching consumes minimal memory as the scanning algorithms only store data relevant to the
current site, one-vs-all PBW'T query entails retaining data for all sites in memory to enable efficient
pointer lookups when iterating through the sites. To bypass previously visited matches and achieve
efficient runtime, Naseri et al. introduced data structures called LEAP arrays, which increase the
memory burden, on top of what is already required by the original PBWT data structures. To
lighten memory usage, Sanaullah et al. developed Algorithms 3 and 4 of d-PBWT [I5], which
solve the long match query problem without LEAP arrays in worst-case and average-case runtimes,
respectively, of O(NN + ¢). Despite the memory improvement, storing PBWT data structures in
memory for the whole genome remains a bottleneck for potential applications, such as online whole-
genome query services. For example, to query on the 22 autosomal chromosomes from UK Biobank
consisting of 974,818 haplotypes and 658,720 markers, Algorithms 3 and 4 of Sanaullah et al.

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Bit-PBWT Syllable-PBWT

Panel of sequences X /X 3—12 %
Syllable dictionaries r - ﬁ
Positional prefix arrays a 1 %
Prefix hash arrays h - %
Divergence arrays d 1 -
Virtual extension arrays U, U 2 -
Total space 4+ é % + %

Table 1: Space comparison between bit-PBWT and Syllable-PBWT data structures used to query in Algorithm 3 of
Sanaullah et al. and Syllable-Query, respectively. Values are in units of M N 32-bit integers, where there are M haplotypes
with N sites each (assume N is a multiple of B). p > 1 is defined in Section The hashes are stored as 64-bit integers,
hence the % memory from h.

require 10.1 TB of memory. Accommodating memory usage of this magnitude demands dedicating
expensive servers with massive amounts of RAM. Moreover, even the size of UK Biobank’s database
pales in comparison to the tens of millions of genotype samples collected by DTC companies, and
this number is only set to rise [16].

For servers with relatively limited memory, current alternatives include keeping data on the
SSD or HDD, often in tandem with memory-mapped files. However, accessing these sources is
accompanied by a significant runtime overhead, which, when memory-mapped files are used, also
heavily depends on the similarity between previous and subsequent queries, as discussed by the
authors of PBWT-Query [12]. Alternatively, distributing the PBWT panel into multiple servers
may lower the memory footprint for individual servers but at the incurred cost of synchronization.

In this work, we present a space-efficient variation of the PBWT data structure, named Syllable-
PBWT, with which we in turn present Syllable-Query, an algorithm that solves the L-long match
query problem with more optimal memory usage and runtime than existing algorithms. One
theoretical contribution featured in this work is the replacement of the divergence array, which
in past works has gone hand in hand with the PBWT data structure, with polynomial hashing.
While the basic idea of chunking into syllables is core to our approach, the innovation mainly lies
in our adaptation of PBWT algorithms, which traditionally were geared towards bi-allelic (or at
best multi-allelic) sequences, to function on general sequences.

2 Methods

2.1 Overview

The existing algorithms for the L-long match query problem, as presented by Naseri et al. [12]
and Sanaullah et al. [I5], use the binary haplotype sequences to construct the PBWT, which we
refer to as bit-PBWT. To query with bit-PBWT, said algorithms maintain three full-panel-sized
(comprising M N integers) data structures: the positional prefix arrays a, the divergence arrays d,
and the virtual extension arrays u and v. We reasoned that the dense encoding by bit-PBWT would
be redundant for identifying L-long matches where L is large, since short matches can simply be
skipped. Thus, we propose Syllable-PBW'T, which treats every B contiguous sites as one syllable
and builds data structures for only every syllable rather than for every site. In doing so, Syllable-
PBWT reduces the size of positional prefix arrays by a factor of B. Further, Syllable-PBWT

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

introduces prefix hash arrays to eliminate and replace the divergence arrays and virtual insertion
arrays. To further reduce the panel size, we perform coordinate compression and build dictionaries
at each syllable, leveraging the linkage disequilibrium of the haplotype sequences. Overall, the
space usage of Syllable-PBWT is about B times smaller than that of bit-PBWT, as outlined in
Table[l] In order to identify all L-long matches, we develop the Syllable-Query algorithm using the
Syllable-PBWT data structure. The following subsections elaborate upon the presented algorithms
and their correctness, and the pseudocode for construction and query is given in Appendix and
respectively.

2.2 Notation

The data we are dealing with is a haplotype panel consisting of aligned binary haplotype se-
quences. In a sequence s, we denote the value at position b as s[b] (the first value is s[0]), and s[b, €)
denotes the sequence of values from position b to position e — 1, inclusive. An L-long match (abbre-
viated to “match”) between sequences s and ss is said to start at b and end at e if s1[b,) = sa[b, €),
s1[b— 1] # sa2[b — 1] (or b = 0), s1[e] # s2[e] (or e is the length of the sequences), and e —b > L for
some specified L. Let X = (Zo,...,Zp—1) be the panel of M haplotype sequences, each with N
sites, with which queries are to be matched. Off of the haplotype panel X, we will construct a raw

syllabic panel X = (g, ...,Z)—1) and, in turn, a (compressed) syllabic panel X = (zg,..., 2 1).
The construction and the length n of every raw/compressed syllabic sequence is later described.
For any collection of sequences C' = (co,...,cyp—1), we let Clk] = (colkl, ..., car—1[k]).

2.3 Syllable-PBWT

The Syllable-PBWT data structure consists of the syllabic panel X with dictionaries r, the
positional prefix arrays a, and the polynomial prefix hash arrays h.

2.3.1 Syllabic panel

To shorten the length of the sequences, we split the panel into syllables of B sites each, padding
the ends of the haplotypes with Os so that the number of sites becomes a multiple of B. For the
kth B-site syllable of the ith haplotype, we parse the binary allele values spanning the B sites, i.e.
the reverse of #;[kB, (k + 1)B), as a binary number, whose value we assign to z;[k], syllable k of
the raw syllabic sequence Z; € X. Constructing X takes O(MN) time since it is computationally
equivalent to reading in the panel.

Although we have reduced the length of the sequences by a factor of B to get n = {%] syllables,
our raw syllabic panel X still contains the same underlying information, merely arranged into B-bit
integers, as X. To reduce the space required to store our syllabic sequences, we observe that the
number of distinct raw syllable values at a given syllable is bounded by the number of haplotypes
M. If M << 2B, we can apply coordinate compression (i.e. mapping sparse values in a large
space to dense values in a small space) to the raw syllable values at a given syllable to obtain the
compressed syllable values (abbreviated to “syllable values”). To enable conversion between raw
and compressed syllable values, we build 7, a sorted dictionary of the distinct raw syllable values
at syllable k. Then, every (compressed) syllabic sequence x; € X can be built as follows: x;[k]
is the index of Z;[k]| in 7k, where said index can be found with binary search. The second step
of Figure [I] illustrates the compression. The raw syllable values can later be recovered using the
dictionary: z;[k] = r[x;[k]].

Since X [k] can be written in terms of 7, and X [k], we can avoid the redundancy of keeping X [k]
in memory after precomputation on syllable k. Instead, we store X with O(Mn) memory and r
with O(B|r|) memory. In the worst case, in which at every syllable, all the sequences have distinct

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Original Raw syllabic Compressed syllabic

site syllable syllable
yk=12 k)_,k=3 k yk=3 k
> Y, 0001111000101001 y, 8749 Yo 1201

o

s Y, 1111111000100000 _ Y, F740 _ Y, 4200
E Y, 1111111000101101 Y, E748B Y, 4202
< Y, 0111111010101001 Y, E759 Y, 3211
Dy, 1001101000010111 y, 958E y, 2023
y, 1100011000011001 y, 3689 y, 0121

Figure 1: The reverse of every B = 4 binary allele values parsed as a binary number to obtain raw syllable values,
written in hexadecimal (A = 10, ..., F = 15), which undergo coordinate compression to produce the compressed
syllable values. Underlines indicate the reverse prefix match before site/syllable k with the preceding sequence in the
positional prefix order ay.

syllable values, then |r| = Mn implies r will require O(MnB) = O(M N) memory. Fortunately,
in genetic data, linkage disequilibrium (i.e. non-random association of alleles across sites [17])
gives rise to repetitive syllable values at any given syllable. Therefore, the ratio p = % will
likely be considerable, and r will use O(@) memory. Due to the sorting and binary search on
the raw syllable values to compute r and X, respectively, they each take O(Mnflog M) time to
compute, for some small factor § € O(B); due to the efficiency of 64-bit architectures, § << B

(see Appendix for details).

2.3.2 Positional prefix array and PBWT array

The positional prefix array aj serves as the backbone of PBWT by storing the ordering of the
sequences’ reverse prefixes before position k. In other words, for the syllabic panel X, the position
of 7 in ay, is the rank of the reverse of z;[0, k) when sorted (in lexicographical order) among, for all j,
the reverse of [0, k). To simplify notation, the PBWT array y¥ is defined such that yf = Tqy[i] 1-€-

the sequence at position i in aj (¢ and y are similarly defined according to X and X, respectively);
the y arrays need not be kept in memory as they can be expressed in terms of X and a. Algorithm
1 of Durbin’s PBWT makes use of the binary nature of allele values in bit-PBW'T so that two
pointers can be used to build a1 in O(M) time, given aj and X [k].

To build ag41 for sequences with up to M possible syllable values in Syllable-PBW'T, we employ
similar reasoning to that in bit-PBWT. Figure [1] visualizes the syllabic PBWT array in relation to
the binary PBWT array. X[k] is the most significant syllable in determining the ordering of aj1.
If two sequences have the same value at syllable k, then the tie is to be broken with their reverse
prefixes over syllables [0, k). In other words, ax1 can be calculated by sorting the sequences by their
X[k] value and, for ties, retaining the ordering from aj. This can be accomplished in O(M) time
and memory with counting sort, a stable sorting algorithm, since the syllable values are bounded
by M. Therefore, the positional prefix arrays over the n syllables require O(Mn) time and memory
to compute and store.

2.3.3 Polynomial prefix hash function and array for substring matching

The polynomial rolling hash function [18] is a simple and efficient hash function for substring
matching. However, its applications in bioinformatics seem limited [19) 20]. One of our main obser-
vations is that the divergence arrays are not the only efficient bookkeeping method for positional
substring matching in PBWT. The polynomial rolling hash function too can efficiently check if a

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

pair of aligned sequences match over an interval. Specifically, the polynomial rolling hash function
of the first k& elements of xz; is defined as

h(zik) = | > (wilj]+1)- BASE’ | mod MOD
0<j<k

where BASE and MOD are distinct large primes [21), [I8]. In other words, the expression within
parentheses is obtained by adding 1 to every syllable value and parsing the reverse of the resulting
x;[0,k) as a number in base BASE. The benefit of this hash function is that the hash value for
any positional substring z;[j, k) can be calculated by h(z;, [j,k)) = h(x;, k) —h(z;,7) mod MOD.
Thus, the polynomial rolling hash enables efficient substring matching given the prefix hashes. For
justification on the dependability of our hash function despite possible collisions (less than 1079
probability of collision over 10'° lookups), see Appendix For notation, we define the polynomial
prefix hash array h; such that h;[k] = h(x;, k) and h;[j, k) = h(zs, [4, k)).

Every syllable value is added to exactly one prefix hash exactly once, since every hash can
simply build off of the previous syllable’s hash. Therefore, the arrays h require O(Mn) time and
memory to compute and store.

2.4 Syllable-Query

Using the Syllable-PBWT data structures described above (X, r, a, h), we present the Syllable-
Query algorithm to find long matches between a query haplotype and the panel. Crucial to Syllable-
Query will be the hash arrays h, designed to replace the data structures d,u,v used for virtual
insertion and finding matches. For the binary query haplotype sequence Z, we let z be its raw
syllabic sequence and z be its (compressed) syllabic sequence. In the case that z[k] & ry, we let z[k]
be a value distinct from the other X[k] values, such as the size of ;. We define hys by the same
hash function as above according to z. Similarly to before, after reading in the query haplotype in
O(N) time, these sequences require O(nflog M) time to compute.

2.4.1 Virtual insertion of query haplotype into panel without v and v

To enable out-of-panel query, past solutions have introduced the idea of virtually inserting the
query haplotype into the panel [12]. The virtual locations of the query sequence are stored in an
array t such that ¢; is the position in a; in which the query sequence would be, had it been included
in the original panel. To calculate t;, past solutions utilize the precomputed auxiliary arrays v and
v at every site k to facilitate computing ¢;41 based on Z[k] and ti, where ug[i] is the number of
0 < j < i for which yé‘:[k‘] = 0, and wvg[i] is ux[M] plus the number of 0 < j < ¢ for which yf[k:] =1.
Specifically, t11 is ug[tr] if 2[k] = 0 and wvg[ty] otherwise. However, past solutions require binary
sequences, and the notions of 4 and v do not efficiently generalize to M possible syllable values.

To find the value of ¢x1, we binary search among the in-panel sequences for where z belongs.
To compare z with another sequence x; in one step of the sequence-wise binary search, we first
compare their values at syllable k, and if they are equal, we binary search for the maximum b < k
for which z[b] # x;[b] to compare z and z;. Once again, these fast comparisons are enabled by
our hash arrays h. Our worst-case time complexity for virtual insertion over the n syllables is
O (nlog M logn), since we binary search over M sequences and n syllables. In the average case,
the O(logn) time binary search would only occur in the small proportion of comparisons for which
z[k] = x;[k] (the expected number of such comparisons is p), and the range of the syllable-wise
binary search can be minimized by setting its lower bound to the greatest value of b when 5 was

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

being computed, since it is impossible for the start of the longest reverse prefix match with z at
syllable k£ + 1 to be earlier than that at syllable k.

2.4.2 Identifying long matches virtually near z

We define [as the minimum number of full syllables within any L-site match. To derive the
expression for [, we must consider the case in which a match extends far into a syllable without
completely covering it, i.e. B — 1 out of the B sites. If the remaining L — (B — 1) sites are to
minimize the number of full syllables covered, they would not complete the nearly filled syllable
but rather extend in the opposite direction. The number of full syllables covered would then be
= L%J. We consider matches spanning [syllables to be potential long matches, which we
will abbreviate to “long matches” or “matches” with the implication that only matches spanning
L sites after refinement will be reported; using bitwise operations on the raw syllable values, we
can refine the single-site resolution boundaries for the ¢ potential long matches in O(5¢) time (see
Appendix for details).

In Syllable-Query, we search for ongoing long matches, as opposed to past solutions’ focus on
terminated matches, for reasons explained in Appendix [6.6] The definition of the positional prefix
array guarantees that the sequences with the longest ongoing matches with a sequence yf at syllable
k occur in a contiguous block around position ¢ in ag. Thus, at syllable k, we can iterate upwards
and downwards within a; starting from ¢; until no more long matches are available. Since the
process for finding matches above z is analogous to that below z, we will only describe the process
for finding matches above z with the implication that a similar process is performed for matches
below z (“above” and “below” refer to relative positions in the positional prefix array, with position
0 at the top and position M at the bottom).

To search for matches above z, we maintain a pointer p in ap. When there are no ongoing
matches above z, we set p = t; — 1, and every time a match above z is found, p is decremented. We
check for a match between z and yg by checking whether hps[k — I, k) = hy, [k — [, k). Once this
is false, there are no more matches above z to be found as of the current syllable k. Alternatively,
we can cut back on the number of hash comparisons by binary searching for the final value of p
(i.e. the block of new matches) before linearly iterating through the matches.

2.4.3 Avoiding redundant counting of matches

From the process for identifying matches described above, it is evident that a match spanning
s > [syllables will be counted s — [4+ 1 times, since that is the number of syllables k& for which
the matching sequence and z will match over syllables [k — I, k). If a query yields matches with
an average length significantly greater than the minimum length [, then the runtime would suffer.
Thus, we seek to count every match exactly once.

Lemma 1. Once a match with sequence x; is identified immediately above z, sequence x; must
remain immediately above z until the match ends.

Using Lemma 1| (see Appendix for the proof), we can avoid redundantly visiting a match
immediately above z at every syllable k < m < k — [+ s, after identifying it for the first time at
syllable k, by preemptively setting our pointer p to t,, — 2 rather than reconsidering the match.
We further observe that Lemma (1] and its accompanying optimization can be generalized to any
number of ongoing matches above z. That is, we maintain a running counter up,,, and at every
syllable k, we set p = tx — 1 —up,, and every time another match is identified above z, we decrement
p and increment up,y,, thereby bypassing previously identified matches.

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

yk=4 k yk=5 k yk=6 k

X, 301611000 X, 002001010 x, 211010000 match L=4

X, 211@11012 X, 200101001 X, 002001010 .

] 1 i required extended end

@XZ 211010000 X, 301011000 X, 200101001 =

z 211611010 x, 211011012 x, 301011080 5 <

X, 002001010 X, 211010000 Cxe 211011912 2k

X, 200101001 z 211011010 z 211011910

Figure 2: The process of finding long matches. The states of the algorithm at k = 4,5,6 are shown. The arrows
indicate setting the pointer p to skip over the previously found matches. At k = 4, no matches have been previously
found, so p is set to the sequence immediately above z, and the block of two matches above z are found. At k = 5,
the two previously found matches are skipped, but no new matches are found. At £ = 6, one of the previously found
matches has terminated, so we skip over the remaining ongoing match to find the new match.

The remaining task is to decrement up,, every time we reach the end of a previously ongoing
match. Let us maintain an array upe,q such that upe,q[k] stores the number of ongoing matches
that end at syllable k, so that we can reduce up,, by upenq[k] before looking for matches at syllable
k. To keep upenqg updated, we must find the total match length s of every match we identify and
increment upenqk — 1+ s]. To do so efficiently, we binary search for the end of the match, checking
whether hpy[k,m) = hq, [k, m) to test if a syllable m is a valid match end. Figure [2| depicts the
process for finding long matches. Since there are n syllables over which we potentially must binary
search, the runtime of extending the ¢ potential matches is O(¢logn).

In genetic sequence data, recombination events result in match lengths of non-uniform distri-
bution. To take advantage of the disproportionately large number of relatively short matches, we
formulate the following heuristic: We begin by linear searching for the match end using the syllabic
panel for several iterations (e.g. 10, covering 10B sites). If our match is among the few exception-
ally long ones, we then switch to binary search with hashes for the remaining syllables. This way,
we are able to find the match end in a small constant time without hashing in the average case,
while bounding the runtime by O(logn) in the worst case.

2.4.4 Allowing for queries in panels with unevenly distributed sites

When querying with genetic distance (cM) or physical distance (bps), site locations are non-
decreasing but not necessarily uniformly distributed. With proper bookkeeping and traversal,
we can query with unevenly distributed sites without affecting the time or space complexity (see
Appendix . Appendix contains the pseudocode for query search with variably distributed
sites, of which site-length query search is a subproblem.

3 Results

We benchmarked Syllable-Query using B = 64 and B = 128 for reasons discussed in Ap-
pendix[6.3] We refer to Algorithm 3 of Sanaullah et al., the most time- and space-efficient previously
published solution to the L-long match query problem, as the full memory algorithm. Between the
static and dynamic versions of the algorithms presented with d-PBW'T, we chose to implement the
static version of the full memory algorithm for consistency with the static nature of Syllable-Query
and because the static version is more competitive in terms of memory.

We observed the full memory usage on chromosome 21 from UK Biobank (974,818 haplotypes
and 9,793 sites) to be 150.4 GB. Given that the asymptotic memory usage of the full memory
algorithm is proportional to the panel size M N, we extrapolated the full memory requirement for

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) AB=64 (b) * B =128
65
c - 114 *
O 64 ° * * * F
= A g 112 i g
3 3
g 63 Lahaas s A 8110 * a* *
o MA 2 108 XX
62 4
z A 2 106 * *
g 61 £
5 As 5 104 **
= 60 = 102
10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
N N

Figure 3: Memory reduction factors of Syllable-Query compared to the full memory algorithm versus the number
of sites N over the UK Biobank autosomal chromosome genotype data (M = 974,818). Each dot is a chromosome.

querying on the 22 autosomal chromosomes from UK Biobank consisting of 974,818 haplotypes and
658,720 markers to be 10.1 TB. In comparison, Syllable-Query used only 162 GB and 91.4 GB with
B =64 and B = 128, respectively, for the same task, yielding respective memory reduction factors
of 62 and 110. Figure [3] provides the memory usage reductions for every chromosome based on its
size. The positive trend between memory reduction and the number of sites is due to the positive
trend between the number of sites and marker density per genetic distance, allowing the syllable
dictionaries r to use less space per syllable. Over the 22 autosomal chromosomes collectively, we
observed p ~ 28.3 for B = 64 and p = 7.2 for B = 128, demonstrating that p, which is inversely
proportional to the space taken by our dictionaries r, is likely to be of considerable magnitude for
genetic sequence data due to linkage disequilibrium.

We benchmarked the runtime of Syllable-Query with respect to the number of matches, sites,
and haplotypes on data from UK Biobank and the 1000 Genomes Project. In every panel, we
removed the first 100 haplotypes to use as query haplotypes and recorded the average CPU runtime
(on a single core of a 2.10 GHz Intel Xeon Silver 4116 Processor) and the average number of matches
over the 100 queries. Our intention behind running many queries in succession was to stabilize the
degree of runtime volatility due to factors such as the CPU cache, as well as to simulate the practical
setting of matching a query panel against a predefined panel.

Figure @b shows the runtime of Syllable-Query to scale about linearly with the number of
matches c and puts it into perspective with the full memory algorithm runtime. The most observable
increases in the Syllable-Query runtime trend occur when L drops below kB — 1 for some small
integer k (see Appendix for why). Figure motivates our match extension heuristic by
confirming the relative shortness of the average match length. Moreover, the comparable slopes of
the trendlines in Figure [dh demonstrate that our virtual insertion and match extension heuristics
are satisfactorily fast for real data (recall that the full memory algorithm is known to scale very
well with the number of matches as it only processes matches upon termination). The y-intercepts
of the trendlines further reveal that Syllable-Query is significantly faster than the full memory
algorithm, even in the computationally unfavorable situations with small . mentioned above. We
attribute the speedup in performance primarily to two reasons: (1) With B times fewer syllables
than sites, the syllabic panel is much faster to iterate through. Although the reduced number of
syllables is accompanied by a slight runtime factor 8 mentioned in Appendix [6.3] 3 only appears
in the match refinement stage and therefore minimally affects runtime, evident in the only slightly
higher slope of the B = 128 trendline than that of B = 64 in Figure . (2) The CPU cache grants
the CPU fast access to frequently used memory locations. Therefore, with less memory required

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) < Fullmemory *B=64 «B=128 (b)zooooo

250
a 75000
9]

200
E
(]

150
£ . « 50000
= * % ¥ Ta
5 100 r_— -
> * ok 25000
g 50 =
3 » *
(o4 e

0 0
0 20000 40000 60000 80000 200 300 400 500 600 700
[¢ L (sites)

(c) sB=64 *B=128 (d) sB=64 *B =128

600 > 0.125
m m *
3 . * £ o.100 4
© 400 » (] A X o *
= * £ 0075
= * — A
g A g X
=] s * > 0.050| * *
- 200 * = A
> : > N
g S 0.025
3 3
AR O 0.000

0 2000000 4000000 6000000 0 200000 400000 600000 800000
N M

Figure 4: Benchmarking on UK Biobank and 1000 Genomes data. (a) The average query runtime versus the
average number of matches ¢ for each algorithm on chromosome 16 of UK Biobank (M = 974,718; N = 23,774). (b)
The average number of matches ¢ versus the minimum match length L, where the z-axis of part (a) corresponds to
the y-axis of part (b). (c) Average query runtime versus N on chromosome 1 sequence data from the 1000 Genomes
Project (M = 4,908). The average number of matches ¢ was kept at a relatively constant high (94,000 < ¢ < 102, 000)
to examine the impact of the logn components in the time complexity. N was varied by choosing roughly uniformly
distributed subsets of sites. (d) Average query runtime versus M on chromosome 1 of UK Biobank (N = 53, 260).
The average number of matches ¢ was kept at a relatively constant low (0 < ¢ < 37) to limit variation within the
time complexity term independent of M and to measure performance on queries with high length requirements.

by Syllable-Query, the CPU cache loads in data pertaining to more sites at a time, thereby saving
time on data retrieval.

For the runtime benchmarks versus N and M, we exclude comparison with the full memory
algorithm due to the sheer memory consumption that would be required. Regardless, the difference
in y-intercepts in Figure dh suggests that Syllable-Query scales better with IV than the full memory
algorithm. Figure [k confirms the roughly linear runtime of Syllable-Query with respect to N.
The memory usage for the benchmark on sequence data depicted in Figure (M =4,908; N =
6,468,094) using B = 64 and B = 128 was, respectively, 7.9 GB (p =~ 61) and 4.1 GB (p =~ 28), as
opposed to an extrapolated 500 GB required by the full memory algorithm. The significantly higher
p values compared to those for the UK Biobank autosomal genotype data are to be expected, since
genotype data, unlike sequence data, are limited to genetic variants, giving rise to more distinct
syllable values. Figure shows a diminishingly positive correlation between query runtime and
M, as to be expected by the log M factor involved in virtual insertion; note too that another
cause of the positive correlation is the more effective CPU cache usage for smaller M. Due to the
term log M, as M approaches infinity, our time complexity (but not the full memory algorithm’s)
approaches infinity, but our benchmarking reveals this growth rate to be negligible in practice.

To verify the empirical correctness of Syllable-Query beyond the prior theoretical discussion,

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

especially concerning the reliability of our hash function, we ran 1,000 distinct queries each for L
in terms of sites and ¢cM on UK Biobank data, totaling over one million matches. For every query,
Syllable-Query reported the same matches as the full memory baseline algorithm.

For genealogical search, query lengths of at least 5 or 7 ¢cM and 700 SNPs are typically chosen,
as established by simulations conducted by the DTC company 23andMe [13| [14]. Despite the
minimum query length required by Syllable-Query (see Appendix , we found that our site and
¢M requirements using deCODE genetic maps were well below these cutoffs (see Appendix [6.10)),
so our requirements would not limit the application of Syllable-Query to genealogical search.

4 Discussion and conclusions

We have presented the Syllable-PBWT framework as a space-efficient alternative to the con-
ventional binary PBWT. The main methodological contribution of this work is the redesign of the
PBWT long match query algorithm by stripping away the most memory-intensive PBWT data
structures. Transforming the binary panel into a syllabic panel can be viewed as abstracting away
fine detail to lighten the memory load while retaining the information required for finding long
matches. Most importantly, we introduce hash arrays to underpin Syllable-Query’s ability to query
without the full-panel-sized arrays d, u,v. Although using d, u, v in a transient fashion for all-vs-all
matching is appropriate, making them persistent for one-vs-all query is overly memory-costly. With
the hash arrays h, we maintain the constant runtime exhibited by d for checking whether a match
is long enough. Moreover, h can substitute u and v for virtual insertion but with the incurrence of
a small worst-case O(log M logn) runtime factor for binary search.

While in this paper we aimed to present the most space-efficient solution by putting all the
above design elements together, it is worth reviewing their individual contributions. The biggest
memory reduction comes from creating the syllabic panel and replacing the full-panel-sized a, d, u, v
with syllabic versions of a and h. To reduce the size of the panel itself, we use coordinate compres-
sion to bring the overall memory reduction factor to about B. In addition, when memory efficiency
is not the sole priority, one may mix-and-match the design elements to create simpler alterna-
tive algorithms with lower degrees of space efficiency. Appendix further discusses alternative
Syllable-PBWT data structures.

Although the primary goal of this work is to reduce the memory footprint of the long match
query algorithms, some elements of our algorithms can be used for other purposes. For example,
the coordinate compression in Syllable-PBWT can be a solution for lossless compression of the
PBWT panel. Unlike run-length compression of the divergence array mentioned by Durbin [4]
which is not friendly for real-time querying, our Syllable-PBWT data structures support regular
PBWT algorithms within the compressed format without decompression. Therefore, our algorithm
can also be applied to all-vs-all matching; a naive method is to query each haplotype against the
rest, although there may be a more efficient method.

Conceptually, Syllable-PBWT is reminiscent of multiallelic-PBWT (mPBWT) [22] in that the
sequence values are elements of a variably-sized alphabet. However, Naseri et al. [22] only presented
algorithms for panel construction and all-vs-all matching in multiallelic data but none for one-vs-all
query. A contribution of this work is the long match query algorithm absent from mPBWT.

Despite the utility of L-long matches, one drawback is their requirement for match exactness,
whereas real data often contain genotyping and phasing errors. Encouragingly, the contributions
in this work could be adapted to a mismatch-tolerant variation of the L-long match query problem.
Since past efficient solutions only consider matches upon termination, little potential remains for
looking past match interruptions. In Syllable-Query, on the other hand, matches are considered as

10

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

soon as they reach the threshold length and are then manually extended. Therefore, the extension
process can be modified to continue as long as the number of mismatches remains below a specified
parameter. The various starts and ends of the fragmented match could then be recorded in an
event schedule, a more intricate development of the match end tracker in our current algorithm, to
swiftly bypass the fragments composing previously found matches.

Beyond methodological contributions, we showed that Syllable-PBW'T and Syllable-Query de-
livered a memory reduction factor of over 100 in real sequences from the 1000 Genomes Project
and the UK Biobank. For UK Biobank, while the state-of-the-art query algorithm [I5] requires 10
TB of memory, Syllable-Query only requires 91 GB. This innovation will allow online genealogical
search to be conducted with much more modest hardware and on even larger data sets in the future.

11

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

5 Acknowledgements

This work was supported by the National Institutes of Health grants RO1 HG010086 and R56
HGO011509. This research has been conducted using the UK Biobank Resource under Application
Number 24247.

References

[1] Campbell, N. R., Harmon, S. A. & Narum, S. R. Genotyping-in-Thousands by sequencing
(GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing.
Molecular Ecology Resources 15, 855-867 (2015). URL https://onlinelibrary.wiley.
com/doi/abs/10.1111/1755-0998.12357. https://onlinelibrary.wiley.com/doi/pdf/
10.1111/1755-0998. 12357.

[2] Nielsen, R., Paul, J. S., Albrechtsen, A. & Song, Y. S. Genotype and SNP calling from
next-generation sequencing data. Nature Reviews Genetics 12, 443-451 (2011). URL https:
//doi.org/10.1038/nrg2986.

[3] Thompson, E. A. Identity by Descent: Variation in Meiosis, Across Genomes, and in
Populations. Genetics 194, 301-326 (2013). URL https://doi.org/10.1534/genetics.
112.148825. https://academic.oup.com/genetics/article-pdf/194/2/301/37808955/
genetics0301.pdf.

[4] Durbin, R. Efficient haplotype matching and storage using the positional Burrows—Wheeler
transform (PBWT). Bioinformatics 30, 1266-1272 (2014). URL https://doi.org/10.1093/
bioinformatics/btu014. https://academic.oup.com/bioinformatics/article-pdf/30/
9/1266/647197/btu014.pdfl

[5] Naseri, A., Liu, X., Tang, K., Zhang, S. & Zhi, D. RaPID: ultra-fast, powerful, and accurate
detection of segments identical by descent (IBD) in biobank-scale cohorts. Genome Biology
20, 143 (2019). URL https://doi.org/10.1186/s13059-019-1754-8.

[6] Zhou, Y., Browning, S. R. & Browning, B. L. A Fast and Simple Method for Detecting
Identity-by-Descent Segments in Large-Scale Data. The American Journal of Human Genet-
ics 106, 426-437 (2020). URL https://www.sciencedirect.com/science/article/pii/
S50002929720300525.

[7] Freyman, W. A. et al. Fast and Robust Identity-by-Descent Inference with the Templated
Positional Burrows—Wheeler Transform. Molecular Biology and FEvolution 38, 2131-2151
(2020). URL https://doi.org/10.1093/molbev/msaa328. https://academic.oup.com/
mbe/article-pdf/38/5/2131/37799064/msaal328. pdf.

[8] Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium panel.
Nature Genetics 48, 1443-1448 (2016). URL https://doi.org/10.1038/ng.3679.

[9] Rubinacci, S., Delaneau, O. & Marchini, J. Genotype imputation using the Positional Burrows
Wheeler Transform. PLOS Genetics 16, €1009049 (2020).

[10] Naseri, A., Yue, W., Zhang, S. & Zhi, D. Efficient Haplotype Block Matching in Bi-Directional
PBWT. In Carbone, A. & El-Kebir, M. (eds.) 21st International Workshop on Algorithms

https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-0998.12357
https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-0998.12357
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1755-0998.12357
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1755-0998.12357
https://doi.org/10.1038/nrg2986
https://doi.org/10.1038/nrg2986
https://doi.org/10.1534/genetics.112.148825
https://doi.org/10.1534/genetics.112.148825
https://academic.oup.com/genetics/article-pdf/194/2/301/37808955/genetics0301.pdf
https://academic.oup.com/genetics/article-pdf/194/2/301/37808955/genetics0301.pdf
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1093/bioinformatics/btu014
https://academic.oup.com/bioinformatics/article-pdf/30/9/1266/647197/btu014.pdf
https://academic.oup.com/bioinformatics/article-pdf/30/9/1266/647197/btu014.pdf
https://doi.org/10.1186/s13059-019-1754-8
https://www.sciencedirect.com/science/article/pii/S0002929720300525
https://www.sciencedirect.com/science/article/pii/S0002929720300525
https://doi.org/10.1093/molbev/msaa328
https://academic.oup.com/mbe/article-pdf/38/5/2131/37799064/msaa328.pdf
https://academic.oup.com/mbe/article-pdf/38/5/2131/37799064/msaa328.pdf
https://doi.org/10.1038/ng.3679
https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

in Bioinformatics (WABI 2021), vol. 201 of Leibniz International Proceedings in Informatics
(LIPIcs), 19:1-19:13 (Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany,
2021). URL https://drops.dagstuhl.de/opus/volltexte/2021/14372.

[11] Shchur, V., Ziganurova, L. & Durbin, R. Fast and scalable genome-wide inference of local
tree topologies from large number of haplotypes based on tree consistent PBWT data struc-
ture. bioRziv (2019). URL https://www.biorxiv.org/content/early/2019/02/06/542035.
https://www.biorxiv.org/content/early/2019/02/06/542035.full.pdf.

[12] Naseri, A., Holzhauser, E., Zhi, D. & Zhang, S. Efficient haplotype matching be-
tween a query and a panel for genealogical search. Bioinformatics 35, i233-i241 (2019).
URL https://doi.org/10.1093/bioinformatics/btz347. https://academic.oup.com/
bioinformatics/article-pdf/35/14/1233/28913757/btz347_supplementary_data.pdfl

[13] DNA Relatives: Detecting Relatives and Predicting Relation-
ships. URL https://customercare.23andme.com/hc/en-us/articles/
212170958-DNA-Relatives-Detecting-Relatives-and-Predicting-Relationships.

[14] Roberts, M. E., Riegert-Johnson, D. L. & Thomas, B. C. Self Diagnosis of Lynch Syndrome
Using Direct to Consumer Genetic Testing: A Case Study. Journal of Genetic Counseling 20,
327-329 (2011). URL https://doi.org/10.1007/s10897-011-9356-y.

[15] Sanaullah, A., Zhi, D. & Zhang, S. d-PBWT: dynamic positional Burrows—Wheeler
transform. Bioinformatics (2021). URL https://doi.org/10.1093/bioinformatics/
btab117. Btabll7, https://academic.oup.com/bioinformatics/advance-article-pdf/
doi/10.1093/bioinformatics/btab117/37853718/btab117.pdf.

[16] Khan, R. & Mittelman, D. Consumer genomics will change your life, whether you get tested or
not. Genome Biology 19, 120 (2018). URL https://doi.org/10.1186/s13059-018-1506-1.

[17] Slatkin, M. Linkage disequilibrium — understanding the evolutionary past and mapping the
medical future. Nature Reviews Genetics 9, 477-485 (2008). URL https://doi.org/10.
1038/nrg2361.

[18] Karp, R. M. & Rabin, M. O. Efficient randomized pattern-matching algorithms. IBM Journal
of Research and Development 31, 249-260 (1987).

[19] Mohamadi, H., Chu, J., Vandervalk, B. P. & Birol, L ntHash: recursive nu-
cleotide hashing. Bioinformatics 32, 3492-3494 (2016). URL https://doi.org/10.1093/
bioinformatics/btw397. https://academic.oup.com/bioinformatics/article-pdf/32/
22/3492/19397492/btw397 . pdfl

[20] Girotto, S., Comin, M. & Pizzi, C. FSH: fast spaced seed hashing exploiting adjacent
hashes. Algorithms for Molecular Biology 13, 8 (2018). URL https://doi.org/10.1186/
s13015-018-0125-4.

[21] Alomair, B., Clark, A. & Poovendran, R. The power of primes: security of authentication
based on a universal hash-function family. Journal of Mathematical Cryptology 4, 121-148
(2010). URL https://doi.org/10.1515/jmc.2010.005.

ii

https://drops.dagstuhl.de/opus/volltexte/2021/14372
https://www.biorxiv.org/content/early/2019/02/06/542035
https://www.biorxiv.org/content/early/2019/02/06/542035.full.pdf
https://doi.org/10.1093/bioinformatics/btz347
https://academic.oup.com/bioinformatics/article-pdf/35/14/i233/28913757/btz347_supplementary_data.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/14/i233/28913757/btz347_supplementary_data.pdf
https://customercare.23andme.com/hc/en-us/articles/212170958-DNA-Relatives-Detecting-Relatives-and-Predicting-Relationships
https://customercare.23andme.com/hc/en-us/articles/212170958-DNA-Relatives-Detecting-Relatives-and-Predicting-Relationships
https://doi.org/10.1007/s10897-011-9356-y
https://doi.org/10.1093/bioinformatics/btab117
https://doi.org/10.1093/bioinformatics/btab117
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btab117/37853718/btab117.pdf
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btab117/37853718/btab117.pdf
https://doi.org/10.1186/s13059-018-1506-1
https://doi.org/10.1038/nrg2361
https://doi.org/10.1038/nrg2361
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397
https://academic.oup.com/bioinformatics/article-pdf/32/22/3492/19397492/btw397.pdf
https://academic.oup.com/bioinformatics/article-pdf/32/22/3492/19397492/btw397.pdf
https://doi.org/10.1186/s13015-018-0125-4
https://doi.org/10.1186/s13015-018-0125-4
https://doi.org/10.1515/jmc.2010.005
https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[22] Naseri, A., Zhi, D. & Zhang, S. Multi-allelic positional Burrows-Wheeler transform. BMC
Bioinformatics 20, 279 (2019). URL https://doi.org/10.1186/s12859-019-2821-6.

[23] Hunt, D. Advanced performance features of the 64-bit pa-8000. In Digest of Papers. COMUP-
CON’95. Technologies for the Information Superhighway, 123-128 (1995).

[24] Kohn, L. & Margulis, N. Introducing the intel i860 64-bit microprocessor. IEEE Micro 9,
15-30 (1989).

[25] Halldorsson, B. V. et al. Characterizing mutagenic effects of recombination through a sequence-
level genetic map. Science 363 (2019). URL https://science.sciencemag.org/content/
363/6425/eaaul043. https://science.sciencemag.org/content/363/6425/eaaul043.
full.pdf.

iii

https://doi.org/10.1186/s12859-019-2821-6
https://science.sciencemag.org/content/363/6425/eaau1043
https://science.sciencemag.org/content/363/6425/eaau1043
https://science.sciencemag.org/content/363/6425/eaau1043.full.pdf
https://science.sciencemag.org/content/363/6425/eaau1043.full.pdf
https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

6 Appendix

6.1 Syllable-PBWT pseudocode
Algorithm [I] describes the construction of the Syllable-PBWT data structures.

Algorithm 1: Construction of Syllable-PBWT data structures

X = (Toy .-y Trr—1) > given haplotype sequences
n [%1 > length of syllabic sequences
Create collections of empty arrays X (M), r(n), a(n+1), h(M)

ap <+ (0,...,M —1) > set initial reverse prefix order

for k<~ 0,...,n—1do

for i<+ 0,...,M —1do
z;|k] + reverse of #;[kB, (k+ 1)B) > &; right-padded with Os
add z;[k] to ry

Sort and remove duplicates from 7y

fori <+ 0,...,M —1do
x;|k] + index of Z;[k| in ry, > x; is the ith sequence in X
hilk + 1] « h;[k] + (zi[k] + 1) - BASE* mod MOD

Build ag41 with counting sort based on X[k] and a

6.2 Syllable-Query pseudocode

Algorithm [2] describes the Syllable-Query procedure for query search with variably distributed
sites. To query in units of sites, we would use a simplified version of Algorithm [2] in which the ¢
pointer is always k — [, where | = L%j.

6.3 Choice of B

Several considerations must be made for choosing an appropriate value for B.

e The value of B restricts the smallest allowable query length because if a small query length
L causes | = 0, then the runtime would skyrocket. If we were to override [to be 1, then
matches that do not extend over at least one full syllable would pass unseen by our algorithm.
Specifically, in the worst case scenario, a match may nearly entirely span two adjacent syllables
(2B — 2 sites), but we would be unable to detect it. If, however, the match is any longer, it
must span at least one full syllable, meaning that 2B —1 sites is the smallest query length that
a given B can handle. Letting B be 64 or 128 leads the smallest query length to be 127 or
255 sites, respectively, which are well below the query lengths used to detect IBD segments in
practice. Similarly, for variably distributed sites (i.e. when querying with genetic or physical
distance), the query length must be greater than the longest distance spanning exactly two
adjacent syllables. See Appendix for evidence of these B values yielding genetic query
length requirements that comfortably allow for IBD segment detection. Further increasing B
would be accompanied by the risk of limiting practical use.

e In order to store and operate on the raw syllable values, the programming language we use
for implementation must provide data types to support a B-bit integer. The GNU C++
compiler provides the unsigned long long data type which supports B = 64, and on 64-bit
processors, it also provides the unsigned __int128 data type which supports B = 128. These

v

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Algorithm 2: Syllable-Query to report L-long matches between query haplotype and panel

UPend < array of n + 1 0s, dnengq < array of n 4+ 1 Os > match end trackers
UPon < 0,dne, <0 > ongoing match counters
qg<+0
for k< 0,...,n—1do

lo<—0,hi < M

while lo < hi do

g || i aylg]

Find maximum b < k for which z[b] # z;[b]
if 3b and z[b] < z;[b] then hi < g
elselo+—g+1

t<«lo > virtual position in ay,
while loclk].e — loc[q].b > L do q < ¢+ 1 > match over [g, k) is required
9k —4q

// find new matches above z
UPon < UPon — upend[k]
p2 <t — 1- UPon
Find smallest p; < po for which haslg, k) = hayp,1[a; k)
if ﬂpl then p; «+ p2 +1
UPon — T — D1
b+ q
for ¢ < pq,...,p2 do
while b > ;1 and 2[b] = y¥[b] do b+ b— 1
Find minimum e > k for which z[e] # y*[e]
UPend [6] < UPend [6] +1
Refine site-level match of syllable-level match (b, e), report if > L length

// analogous process to find new matches below z

built-in data types motivated our use of these B values, although in theory, the Boost C++
libraries could support even higher values of B.

e The predominance of 64-bit processors in recent decades has allowed for typical instructions
involving 64-bit data to be executed within a single CPU clock cycle [23,24]. Choosing B = 64
would allow us to make most efficient use of this architecture, while choosing B = 128 would
introduce a small constant runtime factor to bitwise operations between raw syllable values.
In general, the runtime factor of basic operations on raw syllable values for a chosen B is
RS (%1, because while instructions involving B-bit data (B > 64) do not necessarily require
multiple clock cycles, such is the worst case scenario.

e The final motivation for not further increasing B, even though doing so would lead to more
memory reduction, is the diminishing rate at which increasing B increases the memory re-
duction factor. The rate is diminishing because as B increases, raw syllable values are more

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

likely to be distinct, so the ratio p will decrease, causing the memory usage of r to decrease
evermore slowly as B increases.

With the factors discussed above in mind, we implement Syllable-Query with B € {64, 128}.
6.4 Reliability of the polynomial hash function

To create a strong hash function with minimal chance of collisions, several conditions must be
satisfied: the modulus should be a large prime, the polynomial variable should be greater than the
largest value in the input sequence, and the modulus and polynomial variable should be relatively
prime [21], 18]. In our implementation, we set BASE = 2% — 59 and MOD = 26* — 59, satisfying
these criteria (as well as bounding every hash to fit within a 64-bit integer), so our polynomial
hash function can be considered a pseudorandom function through which two identical inputs are
guaranteed to yield the same hash and two distinct inputs have a p = M}) 1 chance to yield the same
hash. To illustrate the theoretical robustness of the hash function, suppose that we were to perform
q = 10 independent comparisons of distinct sequences. The chance P(p,q) = 1 — (1 — p)? of a
positive number of collisions occurring and the expected number E(p, q) = pq of collisions would
both be less than 107?, demonstrating that even with a number of distinct-sequence comparisons
that dwarfs what would be required in a practical setting, the expected chance of a false positive
remains negligible.

6.5 Refining match boundaries

To obtain the single-site resolution of the match boundaries in O(f) time, we perform bitwise
operations on the raw syllable values where a match (non-inclusively) starts and ends. The GNU
C++ compiler provides the bitwise XOR operator ~ (which gives an integer in which every bit
is 0 for which the two operands have the same value) and the functions __builtin_clzll and
__builtin_ctzll which count the number of leading and trailing Os, respectively, in a variable of
the 64-bit data type unsigned long long. These functions can be used to count the number of
leading or trailing Os in the bitwise XOR between two integers, giving the length of the suffix or
prefix match, respectively, of the reverse binary representations of the integers (recall that the raw
syllable values are reversed binary haplotype substrings parsed as binary numbers). For B = 128,
we see [come into play because the left and right 64-bit halves of the 128-bit integer have to be
operated on separately, so the runtime of refining the ¢ potential long matches is O(5¢).

6.6 Motivation behind searching for ongoing long matches

A convenient characteristic of the long match query problem for binary sequences is that long
matches that terminate at a given site k all occur in a single contiguous block in a1, because for
any allele value Z[k], there is exactly one allele value not equal to Z[k|. Past solutions have made
use of this convenience by maintaining pointers for the block in ai of long matches to efficiently
obtain the block in agy; of newly terminated matches, thereby counting every long match once
and only once. In long match query with Syllable-PBWT, on the other hand, there could be up
to M — 1 blocks in which terminated matches lie, implying the need to consider matches before
termination.

6.7 Proof of Lemma 1

Proof. In Algorithm 2 of PBW'T, Durbin observes that the start b of the longest ongoing match at
site k between yf and y}“>i is max;<m<; di[m], where the divergence array dj, is defined such that

di[0] = k, and for i > 0, d[i] is the smallest b for which y* ,[b, k) = y¥[b, k). With this observation,

vi

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

yf"kfl must be the sequence with which (1) z has the longest ongoing match, (2) among sequences
with a reverse prefix over syllables [0, k) that is lexicographically less than that of z. Condition (1)
must be satisfied because no other match above z can spontaneously obtain an earlier start, which
by definition is not earlier than that of the match with sequence x;. Condition (2) must be satisfied
because the match persisting as k increases implies that the same values are being prepended to the
reverse prefixes of z and x;, thereby not affecting their lexicographical ordering. Even if sequence x;
has an equally long match with z as another sequence x; above z, the construction of the positional
prefix array based off that of the previous syllable guarantees the retention of the relative positions
of sequences between which a match persists. Therefore, until the match ends, both conditions will
remain satisfied, implying that a,[t, — 1] = ¢ at every syllable k <m < k — [+ s. O

6.8 Allowing for queries in panels with unevenly distributed sites

While for the site-length query, potential matches had to match over syllables [k —1, k), we must
now maintain an index ¢ that is incremented at every syllable k& until any potential match must
match over syllables [gx, k), where ¢; denotes the value of ¢ at syllable k. Let loc[k].b and loc[k].e
be the locations of the first and last sites, respectively, of syllable k, and generalize L to be the
query length in the same units as in loc. At every syllable k, we update ¢ by incrementing it until
loc[k].e — loc[g].b < L so that no partial match at syllable k£ will make up for ¢ being an invalid
match start; a full match at syllable k£ implies that the match will be reconsidered at syllable k + 1.
Note that it is guaranteed that ¢; < k (and therefore potential matches must span at least one full
syllable) if the query length is greater than the maximum distance spanning exactly two adjacent
syllables (see Appendix for details).

If we were dealing with single-site resolution data, we would be done, but instead our B-
site resolution ¢ index does not suffice for finding the match start. For example, suppose that
loclk].e — loc[k — 1].e is significantly greater than the corresponding distance between any two
preceding adjacent syllables. This would lead the gap ¢qx — qx_1 to be large, leaving the match
starts between syllables g1 and ¢ untracked. To backtrack efficiently, first assume that using the
same approach as for the site-length query, we have determined the block of new matches above
z, e.g. from ylgl to y’1§2 where p; < po, spanning syllables [gx, k). As we now iterate ¢ from p; to
P2, we can decrement a running pointer b starting from g to find every match start. According to
Lemma [2] maintaining b would not affect the query time complexity.

Lemma 2. The total number of times the pointer b must be decremented for a given query is
bounded by n.

Proof. According to Durbin’s observation stated in Appendix the reverse prefix match with
z over syllables [0, k) must be at least as long for y;? as for yf if i < j < tx. Therefore, at a
given syllable k, the non-inclusive match start pointer b can be updated for a given yf by simply
decrementing b until z[b] # yF[b]. Furthermore, the fact that these new matches are found at
syllable k rather than earlier means that their match starts must be greater than reqy_1, so b may be
decremented at most from reqg to reqp_1 at syllable k. Thus, the total number of decrementations
necessary to backtrack to the match starts for a given query is bounded by the telescoping sum
Y 0<k<n €k — T€qr—1, which is at most n.]

6.9 Syllable-Query runtime on small L

To see why the most observable increases in the Syllable-Query runtime occur when L drops
below kB —1 for some small integer k, recall that for Syllable-Query to identify all matches spanning

vii

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

L sites, it must consider all ¢ potential long matches spanning [= L%J syllables, which means

that, for example, when L < 3B — 1, matches spanning a mere syllable must be considered, whereas
when L = 3B — 1, only matches spanning at least 2 syllables are potential matches. These runtime
spikes are only expected to be considerable for relatively small L, since genetic recombination leads
the absolute rate of change of ¢ with respect to L to start large before drastically dropping off, as
shown in Figure [db.

6.10 Syllable-Query length requirements

To confirm the practicality of Syllable-Query despite the restriction on query length (see Ap-
pendix for details), we measured the smallest queryable genetic length (SQGL) in ¢cM for each
autosomal chromosome with the deCODE genetic map [25] in UK Biobank data. For B = 64 and
B = 128, the smallest queryable site lengths are 127 and 255, respectively. The highest SQGL
for 127 and 255 sites was 2.7 and 4.2 cM, respectively. The average SQGL for 127 and 255 sites
was 2.2 and 3.3 c¢M, respectively. These requirements are well below the query lengths of 5 or 7
cM and 700 SNPs utilized by 23andMe for genealogical search [13] 14]. Since UK Biobank has a
relatively low marker density, our SQGLs will likely also support genealogical search on biobanks
in general. Unless especially small L values are to be used, we recommend choosing B = 128 for
greater memory reduction, given the similar runtimes between B = 64 and B = 128 shown in

Figure [4]
6.11 Alternative Syllable-PBWT data structures

6.11.1 Inverse positional prefix array

In the presented version of Syllable-Query, two nested binary searches with hashes were neces-
sary to find the virtual position t; of z. By storing the inverse a,;l of every positional prefix array
aj, a single binary search over the pairs (z;[k], a; '[i]) can find t;, where aj '[i] can be thought of
as the position of haplotype z; in ag.

6.11.2 Divergence array

Although the most efficient version of Syllable-Query replaces d with h, other applications of
Syllable-PBWT may wish to utilize the divergence arrays d. As such, we present the construction
for the divergence arrays in a syllabic panel. The divergence array dj is built alongside a; and
stores, for every pair of adjacent sequences in ag, the starting index of their longest reverse prefix
match. Formally, di[0] = k, and for i > 0, d[i] is the smallest b such that y* ,[b,k) = y¥[b, k).
In Algorithm 2 of PBWT, Durbin observes that the start b of the longest ongoing match at site
k between yf and yfm- is max;«m<; di[m]. Using this observation and the binary nature of allele
values, Durbin is able to compute di; in O(M) time, given ay, d, and X[k], by maintaining two
running maximums of d; values.

We seek to compute dj,1 for sequences with up to M possible syllable values. When ¢ = 0 or
yi k] # ¢ k], we simply have dj11[i] = k + 1. Otherwise, let us define f = ay Mag1li — 1]]
and g = ak_;l[ak_l'_l[i“. In other words, given that ¢ — 1 and ¢ are positions in agy1, f and g
are their respective positions in aj. Considering Durbin’s observation, we then have dji1[i] =
max fom<g di[m]. To efficiently perform the range maximum query, we utilize the sparse table data
structure. At every syllable k, we build the sparse table off of dj so that di,1 can be built off of
the sparse table. By splitting dj into blocks of size [log M |, the sparse table can be built on the
maximums within the blocks in O(M) time and space. After construction, the M potential queries
each take O(1) time if M < 2%* and O(log M) time otherwise. Since the sparse table is replaced

viil

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478234; this version posted February 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

at every syllable and discarded after precomputation, it does not contribute to the overall memory
usage. Therefore, for M < 264 d requires O(Mn) time to compute and O(Mn) memory to store.

X

https://doi.org/10.1101/2022.01.31.478234
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Overview
	Notation
	Syllable-PBWT
	Syllabic panel
	Positional prefix array and PBWT array
	Polynomial prefix hash function and array for substring matching

	Syllable-Query
	Virtual insertion of query haplotype into panel without u and v
	Identifying long matches virtually near z
	Avoiding redundant counting of matches
	Allowing for queries in panels with unevenly distributed sites

	Results
	Discussion and conclusions
	Acknowledgements
	Appendix
	Syllable-PBWT pseudocode
	Syllable-Query pseudocode
	Choice of B
	Reliability of the polynomial hash function
	Refining match boundaries
	Motivation behind searching for ongoing long matches
	Proof of Lemma 1
	Allowing for queries in panels with unevenly distributed sites
	Syllable-Query runtime on small L
	Syllable-Query length requirements
	Alternative Syllable-PBWT data structures
	Inverse positional prefix array
	Divergence array

