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ABSTRACT

Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the
analysis of brain structure, function, and connectivity across multiple scales and in living brains. The
richness and complexity of multimodal neuroimaging, however, demands processing methods to
integrate information across modalities and different spatial scales. Here, we present micapipe, an open
processing pipeline for BIDS-conform multimodal MRI datasets. micapipe can generate i) structural
connectomes derived from diffusion tractographys, ii) functional connectomes derived from resting-state
signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv)
microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin
proxies. These matrices are routinely generated across established 18 cortical parcellations (100-1000
parcels), in addition to subcortical and cerebellar parcellations. Results are represented on three different
surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be
quality controlled at the individual and group level. micapipe was tested on several datasets and is
available at https://github.com/MICA-MNI/micapipe, documented at https://micapipe.readthedocs.io/,

and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/. We hope that micapipe will
foster robust and integrative studies of human brain microstructure, morphology, and connectivity.
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1. INTRODUCTION

The human brain is a highly complex network organized across multiple spatial and temporal scales
(Betzel and Bassett 2017). Neuroimaging, and in particular magnetic resonance imaging (MRI),
provides versatile contrasts sensitive to the brain’s microstructure, connectivity, and function, offering
a window into its organization in living humans (Turner, 2019; Larivicre et al., 2019; van den Heuvel
et al., 2019; Van Essen et al., 2013).

Recent years have witnessed multiple neuroimaging data acquisition efforts (Gordon et al., 2017; Royer
etal., 2021; Van Essen et al., 2012) as well as initiatives for open data sharing to promote transparency
and reproducibility (Milham et al., 2018). These initiatives offer researchers the ability to interrogate
brain structure and function in thousands of individuals across multiple sites from around the world. In
addition, a variety of processing pipelines has previously been developed. These include tools for the
automated analysis of cortical/subcortical morphology based on T1-weighted MRI (Fischl, 2012; Kim
et al., 2005; Patenaude et al., 2011), approaches for the analysis of myelin-sensitive MRI contrasts to
assess brain microstructure (Paquola et al., 2019b; Glasser and Van Essen, 2011; Waehnert et al., 2016),
the study of intrinsic brain function and functional connectivity via resting-state functional MRI, rs-
fMRI (Biswal et al., 2010; Craddock et al., 2013; Esteban et al., 2019), and analysis of structural
connectivity inferred via diffusion MRI tractography (Cieslak et al., 2021; Daducci et al., 2012;
Tournier et al., 2019). Individually, ongoing advances in MRI modelling approaches result in increasing
biological validity (Craddock et al., 2015; Jbabdi et al., 2007; Mars et al., 2021), promising to extend
findings and theory from classical neuroanatomy in non-human animals to humans. Yet, as most tools
generally focus on the processing of individual modalities, or the combination of at most two different
modalities (e.g. T1-weighted MRI and rs-fMRI), researchers interested in additional synergies across
an even larger catalogue of modalities are forced to develop custom-built image co-registration and
data-integration procedures.

System neuroscience has increasingly benefitted from paradigms that combine different imaging
modalities (Paquola et al., 2020; Van den Heuvel et al., 2019; Van den Heuvel and Yeo, 2017). For
example, multiple studies have begun to study brain function and functional connectivity in surface-
based anatomical reference frames (Huntenburg et al., 2021; Tierney et al., 2013; Vos de Wael et al.,
2018), and combined these assessments with diffusion MRI approaches (Liu et al., 2016; Hong et al.,
2019). Further work integrating structural and functional neuroimaging modalities has propelled interest
in examining structure-function relationships in the human brain (Huntenburg et al., 2018; Suarez et al.,
2020; Benkarim et al., 2021; Paquola et al., 2019b; Vazquez-Rodriguez et al., 2019). Furthermore, there
has been significant development towards the identification of multimodal parcellations (Fan et al.,
2016; Eickhoff et al., 2018; Genon et al., 2021, 2018; Glasser et al., 2016) and large-scale gradients of
brain organization (Vos de Wael et al., 2020, 2021; Margulies et al., 2016; Paquola et al., 2020, 2019a,
2019b; Valk et al., 2020; Miiller et al., 2020; Tian et al., 2020).

To build upon existing MRI processing pipelines that are primarily geared towards single modalities,
we developed micapipe (http://micapipe.readthedocs.io). The pipeline integrates advanced processing
streams for structural MRI, resting-state functional MRI (rs-fMRI), diffusion-weighted MRI, and
myelin-sensitive MRI to automatically generate models of structural, functional, and microstructural

human brain organization. Micapipe generates inter-regional matrices across different spatial scales,
using several cortical as well as subcortical parcellations (Desikan et al., 2006; Destrieux et al., 2010;
Scholtens et al., 2018; von Economo, 2009; Fischl, 2012; Vos de Wael et al., 2020; Schéfer et al., 2018;
Glasser et al., 2016; Patenaude et al., 2011; Diedrichsen et al., 2009). In a nutshell, micapipe transforms
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BIDS-conform MRI data (Gorgolewski et al., 2017) to processed macroscale connectomes in an easy-
to-analyze format. Easy-to-verify outputs and visualizations can be produced for quality control (QC).
In addition to its codebase being openly available on GitHub (http://github.com/MICA-MNI/micapipe),
micapipe is also available as a container (Docker, included as BIDS App), and is accompanied by
detailed tutorials and documentation.

2. RESULTS

Micapipe has a modular workflow that can incorporate multiple MRI data modalities (T1-weighted
MRI, myelin-sensitive MRI, diffusion-weighted MRI, and resting-state functional MRI), converting
BIDS-conform input into BIDS-conform surface, volume, and matrix data (Ficure 1A). The following
sections describe key pipeline features, main outputs, and detail automated quality control (QC)
visualizations. We also perform several validation experiments across a diverse range of datasets.
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FIGURE 1. A) Pipeline workflow. B) Outputs can be generated across 18 different cortical parcellations (100-1000 parcels), in
addition to subcortical and cerebellar parcellations. Most results are mapped to three different surface spaces: native, conte69
and fsaverage5. C) Outputs are hierarchically ordered with BIDS-conform naming.

2.1 Pipeline workflow

Processing modules of micapipe can be run individually or bundled using specific flags via a command-
line interface. Multimodal integration relies strongly on characterization of anatomy via the processing
of T1-weighted MRI data. Using volume and surface-based processing streams, subcortical, cortical
and cerebellar segmentations are generated in subject- and modality-specific spaces. Using structural
imaging data, in addition to other input modalities, inter-regional brain matrices can be generated across
18 combinations of cortical, subcortical, and cerebellar parcellations. Inter-regional matrices are: 1)
structural connectomes (SC) derived from diffusion tractography (Smith et al., 2015a), ii) functional
connectomes (FC) derived from resting-state signal correlations (Biswal et al., 2010), iii) geodesic
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distance (GD) matrices that quantify cortico-cortical proximity using cortical surface models (Ecker et
al., 2013; Hong et al., 2018), and iv) microstructural profile covariance (MPC) matrices that assess
inter-regional similarity in intracortical intensity profiles from microstructurally-sensitive imaging
(Paquola et al., 2019b). Surface-mapped features are made available across three surfaces (FIGURE 1B):
native, conte69 (Van Essen et al., 2012), and fsaverage5 (Fischl et al., 1999). Intermediary files and
processed derivatives and matrices conform to BIDS naming conventions (Ficure 1C), facilitating future
use and harmonization across datasets and software.

2.2 Quality control (QC)

The QC module visualizes outputs at the individual and group levels (Ficure 2A). Reports detail
completed processing steps, including image registrations, surface parcellations, and region-to-region
matrices. They are organized by modality and parcellation. These reports help users to identify missing
data, poor image quality, and faulty registrations (Ficure 2A). Complementing subject-specific reports,
group level QC automatically generates a report outlining completed and missing modules for each
subject facilitating use for large datasets (FIGURE 2B).
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FIGURE 2. A) Individual level quality control (QC), which can be run at any point during the processing. The QC procedure
will generate a html report file for each subject containing visualizations of intermediate files for volume visualization, cross-
modal co-registrations, and surface parcellations. Moreover, it allows inspection of inter-regional matrices such as the
structural connectome (from diffusion MRI tractography), the functional connectome (from resting-state fMRI signal
correlation), the microstructural profile covariance matrix (from correlations of intracortical microstructural profiles), and
geodesic distance matrices. B) QC can also be run at a group/dataset-level. The report consists of a color-coded table with
rows as subjects and columns as the pipeline modules (blue: completed, orange: incomplete/error, dark gray: not processed).
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2.3 Assessing output consistency within and between datasets

We evaluated whether micapipe yields consistent results across 50 individuals of an openly available
multimodal MRI dataset [MICA-MICs; (Royer et al., 2021), and also compared processed outputs to
those from six additional datasets (TABLE S1).
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FIGURE 3. Mean consistency value, indicating the Spearman’s rho between subject- and the group-level measurements, for the
Schifer-100, Schifer-400 and Schifer-1000 parcellations. A) For each modality, five measurements were evaluated: principal
gradient, edges, node strength, path length, and clustering. Empty rows indicate modalities that were not analyzed. MPC:
microstructural profile covariance, FC: functional connectivity, SC structural connectivity, GD geodesic distance

We first assessed within-dataset consistency for each modality (GD, SC, FC, MPC) at three different
granularities (Schéfer 100, 400 and 1000 parcels) using five different metrics. We generated modality-
and dataset-specific mean group matrices and computed consistency across the following features: the
first eigenvector/gradient explaining the most data variance (calculated via diffusion map embedding
(Coifman et al., 2006)), the matrix edges, as well as node strength, characteristic path length, and
clustering coefficient as three representative graph features (Rubinov and Sporns, 2010), FiGure 3A].
We correlated subject-level and group-level metrics to quantify within-dataset consistency (Spearman’s
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rho, see SupPLEMENTARY FIGURE 3A). Correlations were highest for GD and SC, followed by FC and MPC.
Gradient 1 was the most consistent measure across parcellations and modalities, followed by edges and
node strength. Overall, characteristic path length and clustering coefficient were similar at lower
granularity (100 parcels) but increasingly dissimilar at higher granularity (1000 parcels). Findings were
consistently observed across all datasets (FiGure 3B-C).
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FIGURE 4. We assessed consistency of matrix parameters across datasets using Spearman’s rho correlation coefficient for the
same features as in Figure 3. Each column represents the different modality connectomes: A) geodesic distance, B) structural
connectome, C) functional connectome, and D) microstructural profile covariance.

We also compared between datasets (Ficure 4). As for the within-dataset analysis, we found the highest
consistency between datasets for GD and SC, followed by FC and MPC. GD, SC and FC showed high
similarity between datasets for the edges, first eigenvector/gradient, and node strength. FC had
decreased consistency between datasets for characteristic path length and clustering coefficient. MPC
had the lowest between dataset consistency for all measurements.
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2.4 Performance

We tested micapipe on seven different databases acquired using different MRI sequence/parameter
combinations (TaBLE S1). Processing times varied depending on the image resolution, the need to
additionally process data using FreeSurfer, the number of streamlines selected for the structural
connectome generation, and the type of acquisitions per dataset (TaBLE S2). Processing was performed
on the Brain Imaging Center (BIC) cluster of the Montreal Neurological Institute and Hospital on
Ubuntu 18.04.5 LTS version workstations. A maximum virtual memory of 6GB, with 6-10 CPU cores,
and 20 GB of RAM were required. Output size depended on image resolution and the length of the rs-
fMRI acquisitions (TABLE S3).

2.5 Software and data availability

An expandable documentation at https://micapipe.readthedocs.io describes installation, usage, pipeline
steps, updates, extra features, and provides a series of ready-to-use tutorials. All code can be found at
https://github.com/MICA-MNI/micapipe, and is published under the General Public License 3.0.
Micapipe is delivered as a docker container via BIDS-App [http://bids-apps.neuroimaging.io/apps/
(Gorgolewski et al., 2017)], and available on ReproNim [https://github.com/ReproNim/containers
(Halchenko et al., 2021)]. Detailed steps to use the Docker container and to build a corresponding
singularity container are available under the readthedocs documentation. Code for figures and tables
can be found in the micapipe-supplementary GitHub repository (https://github.com/MICA-
MNI/micapipe-supplementary).
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3. DISCUSSION

We present micapipe, an open software package to integrate and process raw multimodal MRI data into
a range of multiple measures of structural and functional human brain network organization. As a
standalone and BIDS App, micapipe inputs and outputs BIDS-conform MRI data. Its outputs consist of
derivative features across multiple parcellations, available in both surface- and volume-based reference
spaces. Notably, micapipe outputs include measures of brain morphology, together with inter-regional
matrices encoding cortico-cortical spatial proximity (based on geodesic distance analysis along cortical
surfaces derived from T1-weighted MRI), intrinsic functional connectivity (based on rs-fMRI signal
correlations), structural connectivity (derived from diffusion MRI tractography), and microstructural
similarity (derived from intracortical profile covariance analysis of myelin-sensitive MRI) aggregated
across 18 different cortical as well as subcortical/cerebellar parcellations. Given the complexity of
multimodal processing and analysis, micapipe furthermore offers advanced functionalities for
individual and group-level QC at different stages of processing as well as final outputs. As a unified
tool to fuse and analyze multimodal neuroimaging data, micapipe offers neuroscientists a workflow to
robustly interrogate human brain organization across multiple scales.

A range of pipelines have previously been developed to process MRI images from specific modalities,
including tools for the generation of cortical and subcortical segmentations based on T1-weighted MRI
data (Das et al., 2009; Fischl, 2012; Kim et al., 2005), pipelines to process functional MRI data
(Craddock et al., 2013; Esteban et al., 2019), as well as tools for diffusion MRI data handling (Cieslak
et al., 2021; Jenkinson et al., 2012; Tournier et al., 2019). Several workflows have furthermore been
developed for connectome mapping (Daducci et al., 2012; Whitfield-Gabrieli and Nieto-Castanon,
2012), which allow users to examine structural and functional network architecture in a systematic
manner. Building upon these developments, micapipe offers a unified framework for multimodal fusion
and data processing. As such, it is similar in scope to the proposed Connectome Mapper tool (Daducci
et al., 2012), although with notable differences. In particular, micapipe incorporates a stream for the
surface-based mapping of intracortical myelin proxies and for the generation of microstructural profile
covariance (Paquola et al., 2019b). A growing body of literature emphasizes the utility of myelin-
sensitive MRI analysis for cortical parcellation (Carey et al., 2018; Glasser and Van Essen, 2011;
Granberg et al., 2017), to assess brain and cognitive development (Deoni et al., 2012; Whitaker et al.,
2016; Lebel and Deoni, 2018; Paquola et al., 2019a), and to interrogate microstructural imbalances in
common brain disorders (Cooper et al., 2019; Du et al., 2019; Bernhardt et al., 2018; Lariviére et al.,
2019). Recent work has shown that the analysis of covariance patterns of intracortical microstructural
profiles can generate new descriptions of large-scale network organization (Paquola et al., 2020; Royer
et al.,, 2020). These networks appear to be primarily governed by systematic shifts in laminar
differentiation and neuronal density, showing a principal organizational axes similar to those at the level
of cytoarchitecture and intrinsic functional connectivity (Margulies et al., 2016; Paquola et al., 2021,
2019b). A further notable feature is the automated generation of cortico-cortical geodesic distance
matrices, which indexes proximity between different regions on the folded cortical surface. Cortico-
cortical geodesic distance has been suggested to relate to intrinsic, horizontal connectivity within the
cortical ribbon as well as to cortical wiring cost (Ecker et al., 2013; Hong et al., 2018; Paquola et al.,
2020). Moreover, several investigations into principles of macroscale brain organization have
emphasized that the brain is a physically embedded network, and that thus inter-regional distance
relationships may help in the understanding of the topographic layout of functional systems and the
connections formed between them (Betzel et al., 2016; Betzel and Bassett, 2018; Margulies et al., 2016;
Valk et al., 2020; Wang et al., 2021; Smallwood et al., 2021).
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A series of evaluations assessed consistency of micapipe outputs, studying data from 455 individuals
across seven datasets. Our evaluations focused on the consistency of inter-regional matrix edges, the
first eigenvector (gradient), and three widely used graph theoretical measurements (node strength,
characteristic path length, clustering coefficient) for up to four matrix modalities (i.e., geodesic distance,
functional connectivity, structural connectivity, microstructural covariance). Altogether, our results
indicate a generally high consistency of the first gradient across datasets, with some variations across
modalities. For example, geodesic distance and structural connectivity gradients were markedly
consistent (r>0.95), followed by functional connectivity and microstructural profile covariance. It is
likely that functional connectivity measures and associated gradients may, in part, be influenced by
state-to-state variations compared to the more static measures of structural connectivity and geodesic
distance, likely in addition to data acquisition related effects. Edges and graph derived measurements
followed an analogous pattern of consistency. With respect to the relatively low stability of
microstructural profile covariance, one needs to highlight that the included datasets greatly varied in
terms of microstructurally sensitive MRI contrasts, featuring T1-weighted/T2w intensity ratio (Glasser
and Van Essen, 2011), quantitative T1 relaxometry (Royer et al., 2021), as well as magnetization
transfer imaging (Shafto et al., 2014). While these sequences are all though to be sensitive to
intracortical myelin content, their individual biophysical specificity remains to be established.

Through the successful integration of several processing tools, micapipe provides multiple ready to use
inter-regional feature matrices, i.e., structural connectomes, functional connectomes, microstructural
covariance, and geodesic distance, together with QC procedures. Our pipeline is supported by a growing
ecosystem of open tools for data and code sharing, notably Github, readthedocs, Docker, BIDS Apps
(Gorgolewski et al., 2017), and repronim/datalad (Robert et al., 2016). By making micapipe openly
accessible as well, we hope that it will be beneficial for future studies on human brain organization.

11
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4. MATERIALS AND METHODS

Micapipe runs modular processing streams on BIDS-conform raw TI-weighted, microstructure-
sensitive, diffusion-weighted, and resting-state functional MRI data to generate fully processed
surface/volume features as well as inter-regional feature matrices. A documentation with detailed
descriptions on the installation, implementation, as well as usage examples and output files are available
at https://micapipe.readthedocs.io/.

4.1 Workflow and main processing modules
Micapipe requires the input dataset to be formatted in BIDS (Gorgolewski et al., 2016).

Structural processing

Structural processing operates on T1-weighted images. The structural processing workflow can perform
volumetric (with command-line option: -proc structural) and surface-based (-proc_freesurfer, -
post_structural, -GD, -Morphology) processing. The workflow registers subject data to volumetric and
surface-templates providing several useful structural metrics for further analyses. These include
geodesic distance matrices (-GD) mapped to multiple parcellation schemes as well as vertex-wise
cortical thickness and curvature data (-Morphology). The structural workflow includes tools from AFNI
(Cox, 1996), FSL (Jenkinson et al., 2012), ANTs (Avants et al., 2011), Mrtrix3 (Tournier et al., 2019)
and FreeSurfer (Fischl, 2012). Further information about the usage and outputs is found in the structural
processing section in the online documentation.

Proc_structural

Initial structural pre-processing (i.e., -proc_structural) keeps all data in volumetric format and generates
a T1-weighted image in native processing space (nativepro, Ficure S1A). Each T1-weighted run is
reoriented to LPI orientation (i.e., left-right, posterior-anterior, inferior-superior), de-obliqued, and
oriented to standard space (MNI152). If multiple T1-weighted scans are found in the raw data, they are
linearly aligned to the first run and averaged. Next, the average image is corrected for intensity
nonuniformity (N4, Tustison et al., 2010) and intensity is normalized between 0 and 100. The resulting
image is named T 1nativepro, which stands for T1-weighted in native processing space. T1nativepro is
skull-stripped, subcortical structures are segmented using FSL FIRST (Patenaude et al., 2011), and
tissue types are classified (gray matter, white matter, CSF) using FSL FAST (Zhang et al., 2001). A
non-linear registration to MNI152 (0.8mm and 2mm resolutions) is calculated (Tustison and Avants,
2013) and a five-tissue-type (5TT) image segmentation is generated for anatomically constrained
tractography.

Proc_freesurfer

Cortical surface segmentations are generated from native T1-weighted scans using FreeSurfer 6.0
(Fischl, 2012) and ordered under the FreeSurfer directory, following BIDS naming conventions. We
provide an option for datasets that have already been quality controlled to easily integrate the results
within the pipeline’s directory structure and an option to process with voxel sizes less than 1mm® at
native resolution (-hires). We recommend that users carefully inspect and, if needed, manually correct
FreeSurfer-generated cortical surface segmentations. As micapipe relies heavily on surface-based
processing, poor segmentation quality may compromise downstream results.

Post_structural
The first step of the post structural processing is to calculate an affine registration from native
FreeSurfer space to T1nativepro space. It then registers a probabilistic cerebellar atlas (Diedrichsen et
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al., 2009) from MNI152 to the subject's T1nativepro space using affine and non-linear transformations
previously computed in the -proc_structural module. Next, a surface-based registration of fsaverage5
annotation labels to native surface is performed, and the surface-based parcellation in native FreeSurfer
space is transformed into a volume. Finally, the transformation matrices are applied to bring each
volumetric parcellation from native FreeSurfer space to TInativepro space. In the last step of this
module, the pipeline builds a conte69-32k sphere and resamples white, pial and midthickness native
surfaces to the conte69-32k template.

The -post structural module registers native FreeSurfer-space cortical surfaces to two different
standard templates (fsaverage5 and conte69), in addition to mapping all cortical parcellation schemes
to the subject’s native surface space and volumetric 7/nativepro space (Ficure S1B). Micapipe provides
a total of 18 cortical, subcortical and cerebellar parcellations at different resolutions according to
anatomical, cytoarchitectural, intrinsic functional, and multimodal schemes, at different resolutions.
Anatomical atlases available in micapipe include Desikan-Killiany (aparc, Desikan et al., 2006) and
Destrieux (aparc.a2009s, Destrieux et al., 2010) parcellations provided by FreeSurfer, as well as an in
vivo approximation of the cytoarchitectonic parcellation studies of Von Economo and Koskinas
(Scholtens et al., 2018). Additionally, we include similarly sized sub-parcellations, constrained within
the boundaries of the Desikan-Killiany atlas, providing matrices with 100, 200, 300, and 400 cortical
parcels following major sulco-gyral landmarks (Fischl, 2012; Vos de Wael et al., 2020). Parcellations
based on intrinsic functional activity are also included across several granularities (100, 200, 300, 400,
500, 600, 700, 800, 900, and 1000 nodes, (Schifer et al., 2018). Lastly, we also provide a multimodal
atlas with 360 nodes derived from the Human Connectome Project dataset (Glasser et al., 2016). All
atlases are provided on Conte69 and fsaverage5 surface templates, and on each participant’s native
surface to generate modality-specific matrices in subsequent modules.

Morphology
This module registers cortical thickness and curvature measurements to two distinct templates. Both

surface-based morphological features are registered to fsaverage5 and conte69 and smoothed with a
gaussian filter with full width half maximum of 10mm.

GD: geodesic distance
Individual GD matrices are computed along each participant’s native cortical midsurface using
workbench tools (Marcus et al., 2011). First, a centroid vertex is defined for each cortical parcel by

identifying the vertex with the shortest summed Euclidean distance from all other vertices within its
assigned parcel. Then, the geodesic distance is calculated from the centroid vertex to all other vertices
on the midthickness mesh using Dijkstra’s algorithm (Dijkstra, 1959). Notably, this implementation
computes distances not only across vertices sharing a direct connection, but also across pairs of triangles
which share an edge in order, thus mitigating the impact of mesh configuration on calculated distances.
Vertex-wise GD values were averaged within parcels to improve computation performance.

Diffusion-weighted imaging processing

This section describes all DWI-related processing steps implemented in micapipe, which heavily rely
on tools from MRtrix3 (Tournier et al., 2019). This includes image processing preparation for the
construction of tractography-based structural connectivity matrices, as well as associated edge length
matrices, all in native DWI space (Ficure S1C). Micapipe DWI processing has been optimized for multi-
shell DWI but can also handle single-shell data. Geometric and inhomogeneity corrections are
performed in datasets that contain one or more reverse phase encoding DWI. It is a mandatory
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requirement that all DWIs have associated bvec, bval and json files, with encoded phase direction and
total readout time.

Proc_dwi

This module processes DWI scans, and derives several potentially useful metrics (e.g., fractional
anisotropy, mean diffusivity, Ficure S1C). First, if there is more than one set of DWI scans in the BIDS
directory, they are aligned to each other using a rigid-body registration, and concatenated. All DWI
images are then converted to Mrtrix Imaging format (mif), which encodes the bvec, bval, phase
encoding direction and total readout time. Concatenated DWI images undergo denoising by estimating
data redundancy in the PCA domain via a Marchenko-Pasteur approach [MP-PCA, (Veraart et al., 2016;
Cordero-Grande et al., 2019)]. Then, Gibbs ringing artifact correction is applied (Kellner et al., 2016),
and residuals are calculated from denoised images for QC purposes. Provided a reverse phase encoding,
susceptibility distortion, head motion, and eddy currents are corrected (Andersson et al., 2003; Smith et
al., 2004; Andersson and Sotiropoulos, 2016). If none is provided, only motion correction is performed.
Additionally, outlier detection and replacement are applied (Andersson et al., 2016). After this step, the
quality of the motion and inhomogeneity corrected diffusion images is assessed using eddy quad
(Bastiani et al., 2019), and a non-uniformity bias field correction (Tustison et al., 2010) is applied to
finalize DWI preprocessing. Next, the b0 image is extracted from the corrected DWI and linearly
registered to the main structural image (i.e., T/nativepro). A DWI brain mask is generated by registering
the MNI152 brain mask to DWI space using previously generated transformations. A diffusion tensor
model (Basser et al., 1994) is then applied to the corrected DWI and the fractional anisotropy and mean
diffusivity images are computed (Veraart et al., 2013). An estimation of the response function is
calculated over different tissues: cerebrospinal fluid, white matter, and gray matter (Dhollander, et al.,
2016). These are later used to estimate the fiber orientation distribution (FOD) by spherical
deconvolution (Jeurissen et al., 2014; Tournier et al., 2004). Next, intensity normalization is applied to
each tissue FOD (Raffelt, et al., 2017). A second registration, in this case non-linear, is calculated
between the normalized white matter FOD and the T1-weighted image previously registered linearly to
DWI space. The resulting warp field allows for an improved registration between the T1-weighted and
the native DWI space in most datasets. Finally, the STT segmentation image is registered to native DWI
space and a gray matter white matter interface mask is calculated. For QC purposes, a track density
image (Calamante et al., 2010) is computed with 1 million streamlines using the iFOD1 algorithm
(Tournier et al., 2012) and anatomically constrained tractography (Smith et al., 2012).

SC: structural connectome generation
Structural connectomes are generated with Mrtrix3 from pre-processed DWI data from the previous

module and subcortical and cerebellar parcellations are non-linearly registered to native DWI space.
First, a tractography with 40 million streamlines (default but modifiable, maximum tract length=400,
minimum length=10, cutoff=0.06, step=0.5) is generated using the iIFOD2 algorithm and 3-tissue
anatomically constrained tractography (Smith et al., 2012; Tournier et al., 2010). A second tract density
image (TDI) of the resulting tractography is computed for QC. By default, the full brain tractography
is erased at the end of this module but can be kept using the option “-keep_tck”. Next, spherical
deconvolution informed filtering of tractograms [SIFT2 (Smith et al., 2015a)] is applied to reconstruct
whole brain streamlines weighted by cross-sectional multipliers. The reconstructed cross-section
weighted streamlines are then mapped to each parcellation scheme, with (i) cortical, (ii) cortical and
subcortical, and (iii) cortical, subcortical, and cerebellar regions (Smith et al., 2015b. These are also
warped to DWI native space. The connection weights between nodes are defined as the weighted
streamline count, and edge length matrices are also generated.
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Resting-state fMRI processing

This module processes the rs-fMRI scans, in preparation for the construction of functional connectomes.
This pipeline is optimized for spin-echo images with reverse phase encoding used for distortion
correction. The pipeline is mainly based on tools from FSL and AFNI for volumetric processing, as
well as FreeSurfer and Workbench for surface-based mapping (FiGure S1D).

Initial fMRI processing steps involve the removal of the first five volumes to ensure magnetic field
saturation, image re-orientation (LPI), as well as motion and distortion correction. Motion correction is
performed by registering all time-point volumes to the mean volume, while distortion correction
leverages main phase and reverse phase field maps acquired alongside rs-fMRI scans. Nuisance variable
signal is removed either using an ICA-FIX classifier with a default training set or custom training set
input by the user (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) or by selecting white matter,
CSF, and global signal regression [for Discussion, see (Murphy et al, 2009, Murphy & Fox 2017, Vos
de Wael et al. 2017)]. Additionally, a regression of time points with motion spikes is performed using
motion outlier outputs provided by FSL. Volumetric timeseries are averaged for registration to native
FreeSurfer space using boundary-based registration (Greve and Fischl, 2009), and mapped to individual
surface models using trilinear interpolation. Native-surface and template-mapped cortical time series
undergo spatial smoothing (Gaussian kernel, FWHM = 10mm), and are subsequently averaged within
nodes defined by several parcellation schemes. Parcellated subcortical and cerebellar time series are
also provided and are appended before cortical time series.

FC: functional connectome generation
Individual rs-fMRI time series are mapped to individual surface models. Native surface-mapped time

series are registered to standard surface templates (fsaverage5, conte69). Native surface and conte69-
mapped time series are averaged within cortical parcels. The subcortical and cerebellar parcellations
are warped to each subject’s native rs-fMRI volume space and used to extract the time series within
each node. Individual functional connectomes are generated by cross correlating all nodal time series.

Microstructural processing and microstructural profile covariance (MPC) matrix generation

This module samples intracortical intensities from a quantitative MRI contrast, generating a depth-
dependent intracortical intensity profile at each vertex of the native surface mesh. By parcellating and
cross-correlating nodal intensities, this module generates MPC matrices. This approach has been
previously applied over the whole cortex (Paquola et al., 2019b), as well as in targeted structures such
as the insula (Royer et al., 2020). The first processing step is a boundary-based registration from the
quantitative imaging volume (default) or input microstructurally sensitive image contrast to FreeSurfer
native space. Then, 16 equivolumetric surfaces (Waehnert et al., 2014) are generated between the pial,
and white matter boundary previously defined from FreeSurfer. Intracortical equivolumetric surfaces
are generated using https://github.com/kwagstyl/surface tools. Surfaces closest to pial and white matter

boundaries are discarded to minimize partial volume effects, resulting in 14 surfaces. A surface-based
registration is performed to fsaverageS and conte69-32k templates, and the vertex-wise intensity
profiles are averaged within parcels for each parcellation. Nodal profiles are cross-correlated across the
cortical mantle using partial correlations controlling for the average cortex-wide intensity profile.
Several regions are excluded when averaging cortex-wide intensity profiles, including left/right medial
walls, as well as non-cortical areas such as the corpus callosum and pericallosal regions.
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4.2 Quality Control

Micapipe includes an integrated QC module, which can be run at any point during processing. This step
generates group-level and individual-specific QC reports allowing the user to identify missing files,
verify registration performance, and check outputs requiring further inspection. Individual QC
generates an html report with detailed information of each processing step (Ficure 2A). The report
contains different tabs, one per module: main inputs and outputs of each module, main parameters of
the processing steps (obtained from the metadata json sidecar files generated by micapipe), volume
visualization of the main outputs, visualization of the main registrations, different surfaces generated
by the pipeline, parcellations plotted on native surface, structural connectome matrices, functional
connectome matrices, geodesic distance matrices, microstructural intensity profiles and connectomes
and microstructural profiles (image intensities at each cortical depth) plotted on the native surface.
Group level QC generates a color-coded table (with rows for subjects and columns for modules (Ficure

2B)).

4.3 Additional features

Automatic bundle segmentation

The micapipe repository also includes an optional automatic virtual dissection of major fiber tracts
(Ficure S2A). This tool is an adaptation of XTRACT (Warrington et al., 2020) implemented using
Mrtrix3 and ANTs, and its main purpose is to split a tractography (tck file) into the main white matter

tracts. The automatic bundle segmentation uses already established automatic dissection protocols
manually tuned for optimal performance. Derived from a full brain tractography, 35 bundles are
virtually dissected using the LANIREM protocols. The quality of the full brain tractography will

determine the quality of bundle separation. It is highly recommended to provide a tractography with
more than one million streamlines, and QC for any errors. Strategies such as anatomically constrained
tractography (ACT) and spherical deconvolution informed filtering of tractographies (SIFT), which are
available in Mrtrix3, should aid in obtaining such high-quality tractographies. For processing a Non-
linear (SyN) registration of the native FA map to the FA atlas (FMRIB58 FA 1mm) is calculated.
Resulting transformations are then applied to each bundle protocol to register them to the native FA
space (DWI). Finally, each white matter bundle is filtered according to the dissection protocols.

Anonymize function

A function to anonymize the anatomical images from the BIDS directory for data sharing is provided
within the micapipe repository as an extra feature. Native structural images are anonymized and de-
identified with one of three different methods: de-facing, linear refacing or refacing with a non-linear
warp field (Ficure $2B). This tool uses a custom template and a set of ROIs specifically developed to
identify the face and skull. The full head template was created using the T1-weighted images (resolution
of 0.8x0.8x0.8mm) of 60 randomly selected healthy individuals from the MICA-MICs dataset (Royer
etal., 2021). An inter-subject non-linear registration was performed without any mask, then the template
was built using the mean of the normalized images. Three masks were generated: an ROI that covers
the face, a brain mask, and a brain and neck mask. Unlike other algorithms, micapipe anonymize
supports different anatomical modalities (e.g., quantitative T1 maps).

4.4 Feature matrices

Besides surfaces and parcellations, micapipe outputs up to four inter-regional matrices across several
parcellation: structural connectome (SC), functional connectome (FC), geodesic distance (GD) and
microstructural profile covariance (MPC). Rows and columns of GD and MPC matrices follow the
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order defined by annotation labels associated with their parcellation (see parcellations in the micapipe
repository), including unique entries for the left and right medial walls. For example, row and column
entries of the Schifer-100 matrices are ordered according to: Left hemisphere cortical parcels (1 medial
wall followed by 50 cortical regions), and right hemisphere cortical parcels (1 medial wall followed by
50 cortical regions). FC and SC matrices follow the same ordering, although entries for subcortical and
cerebellar structures are appended before cortical parcels. As such, row and column entries of the
Schéfer-100 FC and SC matrices are ordered according to: Subcortical structures and hippocampus (7
left, 7 right), cerebellar nodes (34 regions), left hemisphere cortical parcels (1 medial wall followed by
50 cortical regions), and right hemisphere cortical parcels (1 medial wall followed by 50 cortical
regions). The ordering of all parcels and their corresponding label in each volumetric parcellation are
documented in lookup tables provided in the micapipe repository (parcellations/lut). Further

information about the organization and visualization of the output connectomes can be found in the
respective section of the documentation.

4.5 Validation experiments

The pipeline was tested in 455 human participants from seven datasets (TasLE S1, S4): MICA-MICs,
(Royer et al., 2021), EpiC-UNAM (Rodriguez-Cruces et al., 2020), Cam-CAN (Shafto et al., 2014),
SUDMEX (Angeles-Valdez et al., 2021), MSC (Gordon et al., 2017), and 7T-Audiopath (Sitek et al.,
2019). EpiC-UNAM consists of two separate acquisitions: one cross-sectional and one longitudinal.
Acquisition and processing details for each dataset can be found in the section “Processing databases”

of the online documentation.

Inter-subject consistency

We assessed inter-subject consistency at the level of the first eigenvector/gradient of each matrix, matrix
edges, and three widely graph theoretical measures (node strength, characteristic path length, clustering
coefficient). Evaluations were carried out across three selected parcellations(Schéfer-100, 400 and
1000). Inter-subject consistency was quantified as the Spearman correlation between each participant
measure and the group average measure for each available modality. This procedure was applied for
the gradient 1, edges, and the three graph features (Figure 3).

To generate gradients, we used BrainSpace (http://brainspace.readthedocs.io, Vos de Wael et al., 2020),

with the following options: normalized angle kernel, diffusion embedding with alpha=0.5 and automatic
estimation of the diffusion time (See micapipe-supplementary for details). Group-level gradients were
constructed from the average of subject-level cortical matrices. For MPC, FC, and GD, matrices were

thresholded row-wise to retain the top 20% edges (see ‘Building gradients’ in the documentation, FIGURE
83 for an example at the MICs dataset). SC matrices were log-transformed to reduce connectivity
strength variance, but not thresholded. Moreover, left and right hemispheres were analyzed separately

for SC, given limitations of diffusion tractography in mapping inter-hemispheric fibers. Hemispheres
were also analyzed separately for GD gradients, as the surface-based measure of geodesic distance used
here is computed on distinct hemisphere surface spheres. . The For each subject, we aligned the first
gradient using Procrustes rotations to the group-level gradient for each modality, and computed
correlations as a measure of inter-subject consistency.

Graph features: Graph measurements were computed using the igraph R package (igraph.org/r). We
focused on three widely used graph-theoretical parameters, node strength, characteristic path length,
and clustering coefficient (Rubinov and Sporns, 2010). We computed the clustering-coefficient as a
measure of segregation, which provides information about the level of local connections in a network.
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The characteristic path length quantified network integration with short path lengths indicating globally
efficient networks. Dijkstra’s algorithm was used to calculate the inverse distance matrix (Dijkstra,
1959) and infinite path lengths were replaced with the maximum finite length (Van den Heuvel et al.,
2008). Finally, we calculated strength to characterize the relevance of the individual nodes. FC strength
was calculated only with positive values. Using the same thresholding as for the diffusion map
embedding, GD, MPC and FC matrices were thresholded to retain the top 20% of the edges, and SC
was analyzed using the un-thresholded, weighted networks.

Inter-datasets similarity

To assess stability across datasets, we computed Spearman’s correlation coefficients between the group-
level measures of each pair of datasets for each MRI modality (FiGure 4).

4.6 Version control and containers

micapipe is executable via a Docker container, and we provide information on how to convert it to a
singularity image either via directly pulling from dockerhub or converting a local image (Kurtzer et al.,
2017). Each new version of micapipe is uploaded and tagged, and changes are documented. The current
release version is v.0.1.2. Our goal is to maintain continuous integration. Additionally, our pipeline has
adopted the standards of BIDS-Apps (Gorgolewski et al., 2017) and of the center for reproducible
neuroimaging computation (Robert et al., 2016).
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7. SUPPLEMENTARY FIGURES AND TABLES
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FIGURE S1. CORE PROCESSING MODULES. A) The -proc_structural module inputs a T1-weighted image, and generates a native
space processed image (nativepro). This image will be used for registration purposes in all following steps. B) After FreeSurfer
is run and T1nativepro is generated, the -post_structural module registers native FreeSurfer surfaces to a standard template, in
addition to mapping all cortical parcellation schemes to the subject’s native surface space and nativepro space. C) The -
proc_dwi processes the native DWI data, and estimates a structural connectome (via -SC). We apply iFOD2 for this purpose,
a probabilistic tractography algorithm. D) The -proc_rsfmri module performs all pre-processing of the rs-fMRI scans, in
preparation for the construction of functional connectomes.
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FIGURE S2. ADDITIONAL FEATURES. A. Automatic bundle segmentation generating 35 virtually dissected white matter
bundles. Segmented tracts obtained from whole-brain tractography generated in the -SC module. B. Anonymizing function for
the anatomical images from the BIDS directory. Three different methods are available for defacing/refacing.
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FIGURE S3. WITHIN-DATASET CONSISTENCY. A) Subject-group consistency for each modality and measurement in the MICs
dataset. Each point in the boxplots corresponds to a Spearman’s rho between each subject and the group average measurement,
derived from the Schéfer-100,-400 and 1000 parcellations. B) Group average feature maps from the MICs dataset.
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Evaluation datasets. For further details
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3x3x4.44mm°,
FOV=64x64x32x246
TE=0.03, TR=1.97

3mm? isotropic,
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TE=0.03, TR=2

1.8x1.8x3mm’,
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TE=0.03, TR=2

1.8x1.8x3mm?>,
FOV=128x128x33x200
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4mm?® isotropic,
FOV=64x64x36x818
TE=0.027, TR=2.2

3mm? isotropic,
FOV=80x80x48x700
TE=0.03, TR=0.6

data not processed
(cropped)

used to run these

MTR: 1.6mm?
isotropic,
FOV=104x128x12
8

T1w/Flair

T1w/Flair

TIw/T2w

qT1w: 0.8mm’
isotropic,
FOV=240x320x32
0, TE=0.0029,
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Yes T1w/T2w??

datasets see

micapipe.readthedocs/databases. The T1w/T2w or Flair, the weighted image was calculated based on these structural

acquisitions. FOV: field of view, TE: repetition time, TE: echo time, T1w: T1-weighted.
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proc_structural
post_structural
proc_freesurfer
GD

proc_dwi

SC

proc_rsfmri
MPC

Mean total time
by subject
(minutes)

88+17

12514

961£205

159+21

246+37

906427

101+8

T+1

2593+730

76+9 73+10 70+6 76+2 66+4 9243
44+£10 46+14 5147 135+£20 44+4 227422
pp pp pp 815+88 pp 1154£104

119440 96+12 105+12  162+15 100+8 242436

63=£15 114+15 41£5 - 99+12  1104+274

1364+498  1471+£538 1086+387 = 1652+776  910+399
2243 2242 1544 79+54 28+7 np
5+1 5+1 6+1 RES| -- 9+2

1693+£576 18274592 13744422 1275+180 1989+811 3738+840

TABLE S2. Processing times (shown as the mean + SD across subjects in minutes). pp: preprocessed, np: not processed, --:
No data available. The Morphology module took about 1 minute to process in all the databases. Multi-threaded processing is
available only for ANTs and workbench functions.
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anat 401+ 16 779 £ 424 32672 293 +39 89+ 181 219+ 13 591 £ 68
dwi 3447+ 10 2731 + 856 1660 + 188 726 £ 105 0 1126 £374 18480 + 1754
func 8647 +498 2221 +633 2034 + 945 1949 £297 4867 +3816 3370+ 854 0

xfm 1474 + 69 1123 £52 1114 £ 135 1014 + 30 273 £ 485 901 +£25 3840+ 374
QC 103+£6 37+£20 57+37 46 £ 13 0 43+ 16 106 + 41

Total 14072 £599 6891+1985 5191+1377 4028 +484  5229+4482 5659+ 1282 23017 +2237

TABLE S3. Mean total size of the main directories by subject and database. The size of the directories is shown as mean and
SD in Megabytes. The databases with modules that were not processed are shown as 0.
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CSF/'WM Non-linear
regression registration

Database Topup Melodic

CamCan  No No No Yes Yes
SUDMEX  Yes No No Yes Yes
EpiC No No No Yes Yes
longimggl ’Z No No  No Yes Yes
MSC  No No No Yes Yes

MICs  Yes Yes Yes No Yes

TABLE S4. rs- fMRI processing. Parameters used to process the rs-fMRI data. For details see
micapipe.readthedocs/databases.

GS

regression

No

No

No

No

No

No
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