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ABSTRACT  
Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the 
analysis of brain structure, function, and connectivity across multiple scales and in living brains. The 
richness and complexity of multimodal neuroimaging, however, demands processing methods to 
integrate information across modalities and different spatial scales. Here, we present micapipe, an open 
processing pipeline for BIDS-conform multimodal MRI datasets. micapipe can generate i) structural 
connectomes derived from diffusion tractography, ii) functional connectomes derived from resting-state 
signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) 
microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin 
proxies. These matrices are routinely generated across established 18 cortical parcellations (100-1000 
parcels), in addition to subcortical and cerebellar parcellations. Results are represented on three different 
surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be 
quality controlled at the individual and group level. micapipe was tested on several datasets and is 
available at https://github.com/MICA-MNI/micapipe, documented at https://micapipe.readthedocs.io/, 
and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/. We hope that micapipe will 
foster robust and integrative studies of human brain microstructure, morphology, and connectivity.  
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1. INTRODUCTION 
The human brain is a highly complex network organized across multiple spatial and temporal scales 
(Betzel and Bassett 2017). Neuroimaging, and in particular magnetic resonance imaging (MRI), 
provides versatile contrasts sensitive to the brain’s microstructure, connectivity, and function, offering 
a window into its organization in living humans (Turner, 2019; Larivière et al., 2019; van den Heuvel 
et al., 2019; Van Essen et al., 2013).  
 
Recent years have witnessed multiple neuroimaging data acquisition efforts (Gordon et al., 2017; Royer 
et al., 2021; Van Essen et al., 2012) as well as initiatives for open data sharing to promote transparency 
and reproducibility (Milham et al., 2018). These initiatives offer researchers the ability to interrogate 
brain structure and function in thousands of individuals across multiple sites from around the world. In 
addition, a variety of processing pipelines has previously been developed. These include tools for the 
automated analysis of cortical/subcortical morphology based on T1-weighted MRI (Fischl, 2012; Kim 
et al., 2005; Patenaude et al., 2011), approaches for the analysis of myelin-sensitive MRI contrasts to 
assess brain microstructure (Paquola et al., 2019b; Glasser and Van Essen, 2011; Waehnert et al., 2016), 
the study of intrinsic brain function and functional connectivity via resting-state functional MRI, rs-
fMRI (Biswal et al., 2010; Craddock et al., 2013; Esteban et al., 2019), and analysis of structural 
connectivity inferred via diffusion MRI tractography (Cieslak et al., 2021; Daducci et al., 2012; 
Tournier et al., 2019). Individually, ongoing advances in MRI modelling approaches result in increasing 
biological validity (Craddock et al., 2015; Jbabdi et al., 2007; Mars et al., 2021), promising to extend 
findings and theory from classical neuroanatomy in non-human animals to humans. Yet, as most tools 
generally focus on the processing of individual modalities, or the combination of at most two different 
modalities (e.g. T1-weighted MRI and rs-fMRI), researchers interested in additional synergies across 
an even larger catalogue of modalities are forced to develop custom-built image co-registration and 
data-integration procedures. 
 
System neuroscience has increasingly benefitted from paradigms that combine different imaging 
modalities (Paquola et al., 2020; Van den Heuvel et al., 2019; Van den Heuvel and Yeo, 2017). For 
example, multiple studies have begun to study brain function and functional connectivity in surface-
based anatomical reference frames (Huntenburg et al., 2021; Tierney et al., 2013; Vos de Wael et al., 
2018), and combined these assessments with diffusion MRI approaches (Liu et al., 2016; Hong et al., 
2019).  Further work integrating structural and functional neuroimaging modalities has propelled interest 
in examining structure-function relationships in the human brain (Huntenburg et al., 2018; Suárez et al., 
2020; Benkarim et al., 2021; Paquola et al., 2019b; Vázquez-Rodríguez et al., 2019). Furthermore, there  
has been significant development towards the identification of multimodal parcellations (Fan et al., 
2016; Eickhoff et al., 2018; Genon et al., 2021, 2018; Glasser et al., 2016) and large-scale gradients of 
brain organization (Vos de Wael et al., 2020, 2021; Margulies et al., 2016; Paquola et al., 2020, 2019a, 
2019b; Valk et al., 2020; Müller et al., 2020; Tian et al., 2020). 
 
To build upon existing MRI processing pipelines that are primarily geared towards single modalities, 
we developed micapipe (http://micapipe.readthedocs.io). The pipeline integrates advanced processing 
streams for structural MRI, resting-state functional MRI (rs-fMRI), diffusion-weighted MRI, and 
myelin-sensitive MRI to automatically generate models of structural, functional, and microstructural 
human brain organization. Micapipe generates inter-regional matrices across different spatial scales, 
using several cortical as well as subcortical parcellations (Desikan et al., 2006; Destrieux et al., 2010; 
Scholtens et al., 2018; von Economo, 2009; Fischl, 2012; Vos de Wael et al., 2020; Schäfer et al., 2018; 
Glasser et al., 2016; Patenaude et al., 2011; Diedrichsen et al., 2009). In a nutshell, micapipe transforms 
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BIDS-conform MRI data (Gorgolewski et al., 2017) to processed macroscale connectomes in an easy-
to-analyze format. Easy-to-verify outputs and visualizations can be produced for quality control (QC). 
In addition to its codebase being openly available on GitHub (http://github.com/MICA-MNI/micapipe), 
micapipe is also available as a container (Docker, included as BIDS App), and is accompanied by 
detailed tutorials and documentation. 

2. RESULTS 
Micapipe has a modular workflow that can incorporate multiple MRI data modalities (T1-weighted 
MRI, myelin-sensitive MRI, diffusion-weighted MRI, and resting-state functional MRI), converting 
BIDS-conform input into BIDS-conform surface, volume, and matrix data (FIGURE 1A). The following 
sections describe key pipeline features, main outputs, and detail automated quality control (QC) 
visualizations. We also perform several validation experiments across a diverse range of datasets. 

 
FIGURE 1. A) Pipeline workflow. B) Outputs can be generated across 18 different cortical parcellations (100-1000 parcels), in 
addition to subcortical and cerebellar parcellations. Most results are mapped to three different surface spaces: native, conte69 
and fsaverage5. C) Outputs are hierarchically ordered with BIDS-conform naming. 
 

2.1 Pipeline workflow 

Processing modules of micapipe can be run individually or bundled using specific flags via a command-
line interface. Multimodal integration relies strongly on characterization of anatomy via the processing 
of T1-weighted MRI data. Using volume and surface-based processing streams, subcortical, cortical 
and cerebellar segmentations are generated in subject- and modality-specific spaces. Using structural 
imaging data, in addition to other input modalities, inter-regional brain matrices can be generated across 
18 combinations of cortical, subcortical, and cerebellar parcellations. Inter-regional matrices are: i) 
structural connectomes (SC) derived from diffusion tractography (Smith et al., 2015a), ii) functional 
connectomes (FC) derived from resting-state signal correlations (Biswal et al., 2010), iii) geodesic 
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distance (GD) matrices that quantify cortico-cortical proximity using cortical surface models (Ecker et 
al., 2013; Hong et al., 2018), and iv) microstructural profile covariance (MPC) matrices that assess 
inter-regional similarity in intracortical intensity profiles from microstructurally-sensitive imaging 
(Paquola et al., 2019b). Surface-mapped features are made available across three surfaces (FIGURE 1B): 
native, conte69 (Van Essen et al., 2012), and fsaverage5 (Fischl et al., 1999). Intermediary files and 
processed derivatives and matrices conform to BIDS naming conventions (FIGURE 1C), facilitating future 
use and harmonization across datasets and software.  

2.2 Quality control (QC) 

The QC module visualizes outputs at the individual and group levels (FIGURE 2A). Reports detail 
completed processing steps, including image registrations, surface parcellations, and region-to-region 
matrices. They are organized by modality and parcellation. These reports help users to identify missing 
data, poor image quality, and faulty registrations (FIGURE 2A). Complementing subject-specific reports, 
group level QC automatically generates a report outlining completed and missing modules for each 
subject facilitating use for large datasets (FIGURE 2B).  
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FIGURE 2. A) Individual level quality control (QC), which can be run at any point during the processing. The QC procedure 
will generate a html report file for each subject containing visualizations of intermediate files for volume visualization, cross-
modal co-registrations, and surface parcellations. Moreover, it allows inspection of inter-regional matrices such as the 
structural connectome (from diffusion MRI tractography), the functional connectome (from resting-state fMRI signal 
correlation), the microstructural profile covariance matrix (from correlations of intracortical microstructural profiles), and 
geodesic distance matrices. B) QC can also be run at a group/dataset-level. The report consists of a color-coded table with 
rows as subjects and columns as the pipeline modules (blue: completed, orange: incomplete/error, dark gray: not processed). 
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2.3 Assessing output consistency within and between datasets  

We evaluated whether micapipe yields consistent results across 50 individuals of an openly available 
multimodal MRI dataset [MICA-MICs; (Royer et al., 2021), and also compared processed outputs to 
those from six additional datasets (TABLE S1).  

 
 
FIGURE 3. Mean consistency value, indicating the Spearman’s rho between subject- and the group-level measurements, for the 
Schäfer-100, Schäfer-400 and Schäfer-1000 parcellations. A) For each modality, five measurements were evaluated: principal 
gradient, edges, node strength, path length, and clustering. Empty rows indicate modalities that were not analyzed. MPC: 
microstructural profile covariance, FC: functional connectivity, SC structural connectivity, GD geodesic distance 
  
We first assessed within-dataset consistency for each modality (GD, SC, FC, MPC) at three different 
granularities (Schäfer 100, 400 and 1000 parcels) using five different metrics. We generated modality- 
and dataset-specific mean group matrices and computed consistency across the following features: the 
first eigenvector/gradient explaining the most data variance (calculated via diffusion map embedding 
(Coifman et al., 2006)), the matrix edges, as well as node strength, characteristic path length, and 
clustering coefficient as three representative graph features (Rubinov and Sporns, 2010), FIGURE 3A]. 
We correlated subject-level and group-level metrics to quantify within-dataset consistency (Spearman’s 
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rho, see SUPPLEMENTARY FIGURE 3A). Correlations were highest for GD and SC, followed by FC and MPC. 
Gradient 1 was the most consistent measure across parcellations and modalities, followed by edges and 
node strength. Overall, characteristic path length and clustering coefficient were similar at lower 
granularity (100 parcels) but increasingly dissimilar at higher granularity (1000 parcels). Findings were 
consistently observed across all datasets (FIGURE 3B-C). 
 

 
FIGURE 4. We assessed consistency of matrix parameters across datasets using Spearman’s rho correlation coefficient for the 
same features as in Figure 3. Each column represents the different modality connectomes: A) geodesic distance, B) structural 
connectome, C) functional connectome, and D) microstructural profile covariance. 
 
We also compared between datasets (FIGURE 4). As for the within-dataset analysis, we found the highest 
consistency between datasets for GD and SC, followed by FC and MPC. GD, SC and FC showed high 
similarity between datasets for the edges, first eigenvector/gradient, and node strength. FC had 
decreased consistency between datasets for characteristic path length and clustering coefficient. MPC 
had the lowest between dataset consistency for all measurements. 
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2.4 Performance 

We tested micapipe on seven different databases acquired using different MRI sequence/parameter 
combinations (TABLE S1). Processing times varied depending on the image resolution, the need to 
additionally process data using FreeSurfer, the number of streamlines selected for the structural 
connectome generation, and the type of acquisitions per dataset (TABLE S2). Processing was performed 
on the Brain Imaging Center (BIC) cluster of the Montreal Neurological Institute and Hospital on 
Ubuntu 18.04.5 LTS version workstations. A maximum virtual memory of 6GB, with 6-10 CPU cores, 
and 20 GB of RAM were required. Output size depended on image resolution and the length of the rs-
fMRI acquisitions (TABLE S3).  

2.5 Software and data availability 

An expandable documentation at https://micapipe.readthedocs.io describes installation, usage, pipeline 
steps, updates, extra features, and provides a series of ready-to-use tutorials.  All code can be found at 
https://github.com/MICA-MNI/micapipe, and is published under the General Public License 3.0. 
Micapipe is delivered as a docker container via BIDS-App [http://bids-apps.neuroimaging.io/apps/ 
(Gorgolewski et al., 2017)], and available on ReproNim [https://github.com/ReproNim/containers 
(Halchenko et al., 2021)]. Detailed steps to use the Docker container and to build a corresponding 
singularity container are available under the readthedocs documentation. Code for figures and tables 
can be found in the micapipe-supplementary GitHub repository (https://github.com/MICA-
MNI/micapipe-supplementary). 
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3. DISCUSSION 
We present micapipe, an open software package to integrate and process raw multimodal MRI data into 
a range of multiple measures of structural and functional human brain network organization. As a 
standalone and BIDS App, micapipe inputs and outputs BIDS-conform MRI data. Its outputs consist of 
derivative features across multiple parcellations, available in both surface- and volume-based reference 
spaces. Notably, micapipe outputs include measures of brain morphology, together with inter-regional 
matrices encoding cortico-cortical spatial proximity (based on geodesic distance analysis along cortical 
surfaces derived from T1-weighted MRI), intrinsic functional connectivity (based on rs-fMRI signal 
correlations), structural connectivity (derived from diffusion MRI tractography), and microstructural 
similarity (derived from intracortical profile covariance analysis of myelin-sensitive MRI) aggregated 
across 18 different cortical as well as subcortical/cerebellar parcellations. Given the complexity of 
multimodal processing and analysis, micapipe furthermore offers advanced functionalities for 
individual and group-level QC at different stages of processing as well as final outputs. As a unified 
tool to fuse and analyze multimodal neuroimaging data, micapipe offers neuroscientists a workflow to 
robustly interrogate human brain organization across multiple scales.  
 
A range of pipelines have previously been developed to process MRI images from specific modalities, 
including tools for the generation of cortical and subcortical segmentations based on T1-weighted MRI 
data (Das et al., 2009; Fischl, 2012; Kim et al., 2005), pipelines to process functional MRI data 
(Craddock et al., 2013; Esteban et al., 2019), as well as tools for diffusion MRI data handling (Cieslak 
et al., 2021; Jenkinson et al., 2012; Tournier et al., 2019). Several workflows have furthermore been 
developed for connectome mapping (Daducci et al., 2012; Whitfield-Gabrieli and Nieto-Castanon, 
2012), which allow users to examine structural and functional network architecture in a systematic 
manner. Building upon these developments, micapipe offers a unified framework for multimodal fusion 
and data processing. As such, it is similar in scope to the proposed Connectome Mapper tool (Daducci 
et al., 2012), although with notable differences. In particular, micapipe incorporates a stream for the 
surface-based mapping of intracortical myelin proxies and for the generation of microstructural profile 
covariance (Paquola et al., 2019b). A growing body of literature emphasizes the utility of myelin-
sensitive MRI analysis for cortical parcellation (Carey et al., 2018; Glasser and Van Essen, 2011; 
Granberg et al., 2017), to assess brain and cognitive development (Deoni et al., 2012; Whitaker et al., 
2016; Lebel and Deoni, 2018; Paquola et al., 2019a), and to interrogate microstructural imbalances in 
common brain disorders (Cooper et al., 2019; Du et al., 2019;  Bernhardt et al., 2018; Larivière et al., 
2019). Recent work has shown that the analysis of covariance patterns of intracortical microstructural 
profiles can generate new descriptions of large-scale network organization (Paquola et al., 2020; Royer 
et al., 2020). These networks appear to be primarily governed by systematic shifts in laminar 
differentiation and neuronal density, showing a principal organizational axes similar to those at the level 
of cytoarchitecture and intrinsic functional connectivity (Margulies et al., 2016; Paquola et al., 2021, 
2019b). A further notable feature is the automated generation of cortico-cortical geodesic distance 
matrices, which indexes proximity between different regions on the folded cortical surface. Cortico-
cortical geodesic distance has been suggested to relate to intrinsic, horizontal connectivity within the 
cortical ribbon as well as to cortical wiring cost (Ecker et al., 2013; Hong et al., 2018; Paquola et al., 
2020). Moreover, several investigations into principles of macroscale brain organization have 
emphasized that the brain is a physically embedded network, and that thus inter-regional distance 
relationships may help in the understanding of the topographic layout of functional systems and the 
connections formed between them (Betzel et al., 2016; Betzel and Bassett, 2018; Margulies et al., 2016; 
Valk et al., 2020; Wang et al., 2021; Smallwood et al., 2021). 
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A series of evaluations assessed consistency of micapipe outputs, studying data from 455 individuals 
across seven datasets. Our evaluations focused on the consistency of inter-regional matrix edges, the 
first eigenvector (gradient), and three widely used graph theoretical measurements (node strength, 
characteristic path length, clustering coefficient) for up to four matrix modalities (i.e., geodesic distance, 
functional connectivity, structural connectivity, microstructural covariance). Altogether, our results 
indicate a generally high consistency of the first gradient across datasets, with some variations across 
modalities. For example, geodesic distance and structural connectivity gradients were markedly 
consistent (r>0.95), followed by functional connectivity and microstructural profile covariance. It is 
likely that functional connectivity measures and associated gradients may, in part, be influenced by 
state-to-state variations compared to the more static measures of structural connectivity and geodesic 
distance, likely in addition to data acquisition related effects. Edges and graph derived measurements 
followed an analogous pattern of consistency. With respect to the relatively low stability of 
microstructural profile covariance, one needs to highlight that the included datasets greatly varied in 
terms of microstructurally sensitive MRI contrasts, featuring T1-weighted/T2w intensity ratio (Glasser 
and Van Essen, 2011), quantitative T1 relaxometry (Royer et al., 2021), as well as magnetization 
transfer imaging (Shafto et al., 2014). While these sequences are all though to be sensitive to 
intracortical myelin content, their individual biophysical specificity remains to be established.  
 
Through the successful integration of several processing tools, micapipe provides multiple ready to use 
inter-regional feature matrices, i.e., structural connectomes, functional connectomes, microstructural 
covariance, and geodesic distance, together with QC procedures. Our pipeline is supported by a growing 
ecosystem of open tools for data and code sharing, notably Github, readthedocs, Docker, BIDS Apps 
(Gorgolewski et al., 2017), and repronim/datalad (Robert et al., 2016). By making micapipe openly 
accessible as well, we hope that it will be beneficial for future studies on human brain organization.  
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4. MATERIALS AND METHODS 
Micapipe runs modular processing streams on BIDS-conform raw T1-weighted, microstructure-
sensitive, diffusion-weighted, and resting-state functional MRI data to generate fully processed 
surface/volume features as well as inter-regional feature matrices. A documentation with detailed 
descriptions on the installation, implementation, as well as usage examples and output files are available 
at https://micapipe.readthedocs.io/.  
  
4.1 Workflow and main processing modules 
Micapipe requires the input dataset to be formatted in BIDS (Gorgolewski et al., 2016). 
 
Structural processing 
Structural processing operates on T1-weighted images. The structural processing workflow can perform 
volumetric (with command-line option: -proc_structural) and surface-based (-proc_freesurfer, -
post_structural, -GD, -Morphology) processing. The workflow registers subject data to volumetric and 
surface-templates providing several useful structural metrics for further analyses. These include 
geodesic distance matrices (-GD) mapped to multiple parcellation schemes as well as vertex-wise 
cortical thickness and curvature data (-Morphology). The structural workflow includes tools from AFNI 
(Cox, 1996), FSL (Jenkinson et al., 2012), ANTs (Avants et al., 2011), Mrtrix3 (Tournier et al., 2019) 
and FreeSurfer (Fischl, 2012). Further information about the usage and outputs is found in the structural 
processing section in the online documentation. 
 
Proc_structural 
Initial structural pre-processing (i.e., -proc_structural) keeps all data in volumetric format and generates 
a T1-weighted image in native processing space (nativepro, FIGURE S1A). Each T1-weighted run is 
reoriented to LPI orientation (i.e., left-right, posterior-anterior, inferior-superior), de-obliqued, and 
oriented to standard space (MNI152). If multiple T1-weighted scans are found in the raw data, they are 
linearly aligned to the first run and averaged. Next, the average image is corrected for intensity 
nonuniformity (N4, Tustison et al., 2010) and intensity is normalized between 0 and 100. The resulting 
image is named T1nativepro, which stands for T1-weighted in native processing space. T1nativepro is 
skull-stripped, subcortical structures are segmented using FSL FIRST (Patenaude et al., 2011), and 
tissue types are classified (gray matter, white matter, CSF) using FSL FAST (Zhang et al., 2001). A 
non-linear registration to MNI152 (0.8mm and 2mm resolutions) is calculated (Tustison and Avants, 
2013) and a five-tissue-type (5TT) image segmentation is generated for anatomically constrained 
tractography. 
 
Proc_freesurfer 
Cortical surface segmentations are generated from native T1-weighted scans using FreeSurfer 6.0 
(Fischl, 2012) and ordered under the FreeSurfer directory, following BIDS naming conventions. We 
provide an option for datasets that have already been quality controlled to easily integrate the results 
within the pipeline’s directory structure and an option to process with voxel sizes less than 1mm3 at 
native resolution (-hires). We recommend that users carefully inspect and, if needed, manually correct 
FreeSurfer-generated cortical surface segmentations. As micapipe relies heavily on surface-based 
processing, poor segmentation quality may compromise downstream results. 
 
Post_structural 
The first step of the post structural processing is to calculate an affine registration from native 
FreeSurfer space to T1nativepro space. It then registers a probabilistic cerebellar atlas (Diedrichsen et 
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al., 2009) from MNI152 to the subject's T1nativepro space using affine and non-linear transformations 
previously computed in the -proc_structural module. Next, a surface-based registration of fsaverage5 
annotation labels to native surface is performed, and the surface-based parcellation in native FreeSurfer 
space is transformed into a volume. Finally, the transformation matrices are applied to bring each 
volumetric parcellation from native FreeSurfer space to T1nativepro space. In the last step of this 
module, the pipeline builds a conte69-32k sphere and resamples white, pial and midthickness native 
surfaces to the conte69-32k template. 
 
The -post_structural module registers native FreeSurfer-space cortical surfaces to two different 
standard templates (fsaverage5 and conte69), in addition to mapping all cortical parcellation schemes 
to the subject’s native surface space and volumetric T1nativepro space (FIGURE S1B). Micapipe provides 
a total of 18 cortical, subcortical and cerebellar parcellations at different resolutions according to 
anatomical, cytoarchitectural, intrinsic functional, and multimodal schemes, at different resolutions. 
Anatomical atlases available in micapipe include Desikan-Killiany (aparc, Desikan et al., 2006) and 
Destrieux (aparc.a2009s, Destrieux et al., 2010) parcellations provided by FreeSurfer, as well as an in 
vivo approximation of the cytoarchitectonic parcellation studies of Von Economo and Koskinas 
(Scholtens et al., 2018). Additionally, we include similarly sized sub-parcellations, constrained within 
the boundaries of the Desikan-Killiany atlas, providing matrices with 100, 200, 300, and 400 cortical 
parcels following major sulco-gyral landmarks (Fischl, 2012; Vos de Wael et al., 2020). Parcellations 
based on intrinsic functional activity are also included across several granularities (100, 200, 300, 400, 
500, 600, 700, 800, 900, and 1000 nodes, (Schäfer et al., 2018). Lastly, we also provide a multimodal 
atlas with 360 nodes derived from the Human Connectome Project dataset (Glasser et al., 2016). All 
atlases are provided on Conte69 and fsaverage5 surface templates, and on each participant’s native 
surface to generate modality-specific matrices in subsequent modules. 
 
Morphology 
This module registers cortical thickness and curvature measurements to two distinct templates. Both 
surface-based morphological features are registered to fsaverage5 and conte69 and smoothed with a 
gaussian filter with full width half maximum of 10mm. 
 
GD: geodesic distance 
Individual GD matrices are computed along each participant’s native cortical midsurface using 
workbench tools (Marcus et al., 2011). First, a centroid vertex is defined for each cortical parcel by 
identifying the vertex with the shortest summed Euclidean distance from all other vertices within its 
assigned parcel. Then, the geodesic distance is calculated from the centroid vertex to all other vertices 
on the midthickness mesh using Dijkstra’s algorithm (Dijkstra, 1959). Notably, this implementation 
computes distances not only across vertices sharing a direct connection, but also across pairs of triangles 
which share an edge in order, thus mitigating the impact of mesh configuration on calculated distances. 
Vertex-wise GD values were averaged within parcels to improve computation performance. 

Diffusion-weighted imaging processing 

This section describes all DWI-related processing steps implemented in micapipe, which heavily rely 
on tools from MRtrix3 (Tournier et al., 2019). This includes image processing preparation for the 
construction of tractography-based structural connectivity matrices, as well as associated edge length 
matrices, all in native DWI space (FIGURE S1C). Micapipe DWI processing has been optimized for multi-
shell DWI but can also handle single-shell data. Geometric and inhomogeneity corrections are 
performed in datasets that contain one or more reverse phase encoding DWI. It is a mandatory 
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requirement that all DWIs have associated bvec, bval and json files, with encoded phase direction and 
total readout time. 
 
Proc_dwi 
This module processes DWI scans, and derives several potentially useful metrics (e.g., fractional 
anisotropy, mean diffusivity, FIGURE S1C). First, if there is more than one set of DWI scans in the BIDS 
directory, they are aligned to each other using a rigid-body registration, and concatenated. All DWI 
images are then converted to Mrtrix Imaging format (mif), which encodes the bvec, bval, phase 
encoding direction and total readout time. Concatenated DWI images undergo denoising by estimating 
data redundancy in the PCA domain via a Marchenko-Pasteur approach [MP-PCA, (Veraart et al., 2016; 
Cordero-Grande et al., 2019)]. Then, Gibbs ringing artifact correction is applied (Kellner et al., 2016), 
and residuals are calculated from denoised images for QC purposes. Provided a reverse phase encoding, 
susceptibility distortion, head motion, and eddy currents are corrected (Andersson et al., 2003; Smith et 
al., 2004; Andersson and Sotiropoulos, 2016). If none is provided, only motion correction is performed. 
Additionally, outlier detection and replacement are applied (Andersson et al., 2016). After this step, the 
quality of the motion and inhomogeneity corrected diffusion images is assessed using eddy_quad 
(Bastiani et al., 2019), and a non-uniformity bias field correction (Tustison et al., 2010) is applied to 
finalize DWI preprocessing. Next, the b0 image is extracted from the corrected DWI and linearly 
registered to the main structural image (i.e., T1nativepro). A DWI brain mask is generated by registering 
the MNI152 brain mask to DWI space using previously generated transformations. A diffusion tensor 
model (Basser et al., 1994) is then applied to the corrected DWI and the fractional anisotropy and mean 
diffusivity images are computed (Veraart et al., 2013). An estimation of the response function is 
calculated over different tissues: cerebrospinal fluid, white matter, and gray matter (Dhollander, et al., 
2016). These are later used to estimate the fiber orientation distribution (FOD) by spherical 
deconvolution (Jeurissen et al., 2014; Tournier et al., 2004). Next, intensity normalization is applied to 
each tissue FOD (Raffelt, et al., 2017). A second registration, in this case non-linear, is calculated 
between the normalized white matter FOD and the T1-weighted image previously registered linearly to 
DWI space. The resulting warp field allows for an improved registration between the T1-weighted and 
the native DWI space in most datasets. Finally, the 5TT segmentation image is registered to native DWI 
space and a gray matter white matter interface mask is calculated. For QC purposes, a track density 
image (Calamante et al., 2010) is computed with 1 million streamlines using the iFOD1 algorithm 
(Tournier et al., 2012) and anatomically constrained tractography (Smith et al., 2012). 
 
SC: structural connectome generation 
Structural connectomes are generated with Mrtrix3 from pre-processed DWI data from the previous 
module and subcortical and cerebellar parcellations are non-linearly registered to native DWI space. 
First, a tractography with 40 million streamlines (default but modifiable, maximum tract length=400, 
minimum length=10, cutoff=0.06, step=0.5) is generated using the iFOD2 algorithm and 3-tissue 
anatomically constrained tractography (Smith et al., 2012; Tournier et al., 2010). A second tract density 
image (TDI) of the resulting tractography is computed for QC. By default, the full brain tractography 
is erased at the end of this module but can be kept using the option “-keep_tck”. Next, spherical 
deconvolution informed filtering of tractograms [SIFT2 (Smith et al., 2015a)] is applied to reconstruct 
whole brain streamlines weighted by cross-sectional multipliers. The reconstructed cross-section 
weighted streamlines are then mapped to each parcellation scheme, with (i) cortical, (ii) cortical and 
subcortical, and (iii) cortical, subcortical, and cerebellar regions (Smith et al., 2015b. These are also 
warped to DWI native space. The connection weights between nodes are defined as the weighted 
streamline count, and edge length matrices are also generated.  
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Resting-state fMRI processing 

This module processes the rs-fMRI scans, in preparation for the construction of functional connectomes. 
This pipeline is optimized for spin-echo images with reverse phase encoding used for distortion 
correction. The pipeline is mainly based on tools from FSL and AFNI for volumetric processing, as 
well as FreeSurfer and Workbench for surface-based mapping (FIGURE S1D). 
 
Initial fMRI processing steps involve the removal of the first five volumes to ensure magnetic field 
saturation, image re-orientation (LPI), as well as motion and distortion correction. Motion correction is 
performed by registering all time-point volumes to the mean volume, while distortion correction 
leverages main phase and reverse phase field maps acquired alongside rs-fMRI scans. Nuisance variable 
signal is removed either using an ICA-FIX classifier with a default training set or custom training set 
input by the user (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) or by selecting white matter, 
CSF, and global signal regression [for Discussion, see (Murphy et al, 2009,  Murphy & Fox 2017, Vos 
de Wael et al. 2017)]. Additionally, a regression of time points with motion spikes is performed using 
motion outlier outputs provided by FSL. Volumetric timeseries are averaged for registration to native 
FreeSurfer space using boundary-based registration (Greve and Fischl, 2009), and mapped to individual 
surface models using trilinear interpolation. Native-surface and template-mapped cortical time series 
undergo spatial smoothing (Gaussian kernel, FWHM = 10mm), and are subsequently averaged within 
nodes defined by several parcellation schemes. Parcellated subcortical and cerebellar time series are 
also provided and are appended before cortical time series.  
 
FC: functional connectome generation 
Individual rs-fMRI time series are mapped to individual surface models. Native surface-mapped time 
series are registered to standard surface templates (fsaverage5, conte69). Native surface and conte69-
mapped time series are averaged within cortical parcels. The subcortical and cerebellar parcellations 
are warped to each subject’s native rs-fMRI volume space and used to extract the time series within 
each node. Individual functional connectomes are generated by cross correlating all nodal time series. 

Microstructural processing and microstructural profile covariance (MPC) matrix generation 

This module samples intracortical intensities from a quantitative MRI contrast, generating a depth-
dependent intracortical intensity profile at each vertex of the native surface mesh. By parcellating and 
cross-correlating nodal intensities, this module generates MPC matrices. This approach has been 
previously applied over the whole cortex (Paquola et al., 2019b), as well as in targeted structures such 
as the insula (Royer et al., 2020). The first processing step is a boundary-based registration from the 
quantitative imaging volume (default) or input microstructurally sensitive image contrast to FreeSurfer 
native space. Then, 16 equivolumetric surfaces (Waehnert et al., 2014) are generated between the pial, 
and white matter boundary previously defined from FreeSurfer. Intracortical equivolumetric surfaces 
are generated using https://github.com/kwagstyl/surface_tools. Surfaces closest to pial and white matter 
boundaries are discarded to minimize partial volume effects, resulting in 14 surfaces. A surface-based 
registration is performed to fsaverage5 and conte69-32k templates, and the vertex-wise intensity 
profiles are averaged within parcels for each parcellation. Nodal profiles are cross-correlated across the 
cortical mantle using partial correlations controlling for the average cortex-wide intensity profile. 
Several regions are excluded when averaging cortex-wide intensity profiles, including left/right medial 
walls, as well as non-cortical areas such as the corpus callosum and pericallosal regions.  
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4.2 Quality Control 

Micapipe includes an integrated QC module, which can be run at any point during processing. This step 
generates group-level and individual-specific QC reports allowing the user to identify missing files, 
verify registration performance, and check outputs requiring further inspection. Individual QC 
generates an html report with detailed information of each processing step (FIGURE 2A). The report 
contains different tabs, one per module: main inputs and outputs of each module, main parameters of 
the processing steps (obtained from the metadata json sidecar files generated by micapipe), volume 
visualization of the main outputs, visualization of the main registrations, different surfaces generated 
by the pipeline, parcellations plotted on native surface, structural connectome matrices, functional 
connectome matrices, geodesic distance matrices, microstructural intensity profiles and connectomes 
and microstructural profiles (image intensities at each cortical depth) plotted on the native surface. 
Group level QC generates a color-coded table (with rows for subjects and columns for modules (FIGURE 

2B)).  

4.3 Additional features 
Automatic bundle segmentation 
The micapipe repository also includes an optional automatic virtual dissection of major fiber tracts 
(FIGURE S2A). This tool is an adaptation of XTRACT (Warrington et al., 2020) implemented using 
Mrtrix3 and ANTs, and its main purpose is to split a tractography (tck file) into the main white matter 
tracts. The automatic bundle segmentation uses already established automatic dissection protocols 
manually tuned for optimal performance. Derived from a full brain tractography, 35 bundles are 
virtually dissected using the LANIREM protocols. The quality of the full brain tractography will 
determine the quality of bundle separation. It is highly recommended to provide a tractography with 
more than one million streamlines, and QC for any errors. Strategies such as anatomically constrained 
tractography (ACT) and spherical deconvolution informed filtering of tractographies (SIFT), which are 
available in Mrtrix3, should aid in obtaining such high-quality tractographies. For processing a Non-
linear (SyN) registration of the native FA map to the FA atlas (FMRIB58_FA_1mm) is calculated. 
Resulting transformations are then applied to each bundle protocol to register them to the native FA 
space (DWI). Finally, each white matter bundle is filtered according to the dissection protocols. 

Anonymize function 

A function to anonymize the anatomical images from the BIDS directory for data sharing is provided 
within the micapipe repository as an extra feature. Native structural images are anonymized and de-
identified with one of three different methods: de-facing, linear refacing or refacing with a non-linear 
warp field (FIGURE S2B). This tool uses a custom template and a set of ROIs specifically developed to 
identify the face and skull. The full head template was created using the T1-weighted images (resolution 
of 0.8x0.8x0.8mm) of 60 randomly selected healthy individuals from the MICA-MICs dataset (Royer 
et al., 2021). An inter-subject non-linear registration was performed without any mask, then the template 
was built using the mean of the normalized images. Three masks were generated: an ROI that covers 
the face, a brain mask, and a brain and neck mask. Unlike other algorithms, micapipe_anonymize 
supports different anatomical modalities (e.g., quantitative T1 maps).  

4.4 Feature matrices 

Besides surfaces and parcellations, micapipe outputs up to four inter-regional matrices across several 
parcellation: structural connectome (SC), functional connectome (FC), geodesic distance (GD) and 
microstructural profile covariance (MPC). Rows and columns of GD and MPC matrices follow the 
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order defined by annotation labels associated with their parcellation (see parcellations in the micapipe 
repository), including unique entries for the left and right medial walls. For example, row and column 
entries of the Schäfer-100 matrices are ordered according to: Left hemisphere cortical parcels (1 medial 
wall followed by 50 cortical regions), and right hemisphere cortical parcels (1 medial wall followed by 
50 cortical regions). FC and SC matrices follow the same ordering, although entries for subcortical and 
cerebellar structures are appended before cortical parcels. As such, row and column entries of the 
Schäfer-100 FC and SC matrices are ordered according to: Subcortical structures and hippocampus (7 
left, 7 right), cerebellar nodes (34 regions), left hemisphere cortical parcels (1 medial wall followed by 
50 cortical regions), and right hemisphere cortical parcels (1 medial wall followed by 50 cortical 
regions). The ordering of all parcels and their corresponding label in each volumetric parcellation are 
documented in lookup tables provided in the micapipe repository (parcellations/lut).  Further 
information about the organization and visualization of the output connectomes can be found in the 
respective section of the documentation. 

4.5 Validation experiments 

The pipeline was tested in 455 human participants from seven datasets (TABLE S1, S4): MICA-MICs, 
(Royer et al., 2021), EpiC-UNAM (Rodríguez-Cruces et al., 2020), Cam-CAN (Shafto et al., 2014), 
SUDMEX (Angeles-Valdez et al., 2021), MSC (Gordon et al., 2017), and 7T-Audiopath (Sitek et al., 
2019). EpiC-UNAM consists of two separate acquisitions: one cross-sectional and one longitudinal. 
Acquisition and processing details for each dataset can be found in the section “Processing databases” 
of the online documentation. 

Inter-subject consistency  

We assessed inter-subject consistency at the level of the first eigenvector/gradient of each matrix, matrix 
edges, and three widely graph theoretical measures (node strength, characteristic path length, clustering 
coefficient). Evaluations were carried out across three selected parcellations(Schäfer-100, 400 and 
1000). Inter-subject consistency  was quantified as the Spearman correlation between each participant 
measure and the group average measure for each available modality. This procedure was applied for 
the gradient 1, edges, and the three graph features (Figure 3).  
 
To generate gradients, we used BrainSpace (http://brainspace.readthedocs.io, Vos de Wael et al., 2020), 
with the following options: normalized angle kernel, diffusion embedding with alpha=0.5 and automatic 
estimation of the diffusion time (See micapipe-supplementary for details). Group-level gradients were 
constructed from the average of subject-level cortical matrices. For MPC, FC, and GD, matrices were 
thresholded row-wise to retain the top 20% edges (see ‘Building gradients’ in the documentation, FIGURE 

S3 for an example at the MICs dataset). SC matrices were log-transformed to reduce connectivity 
strength variance, but not thresholded. Moreover, left and right hemispheres were analyzed separately 
for SC, given limitations of diffusion tractography in mapping inter-hemispheric fibers. Hemispheres 
were also analyzed separately for GD gradients, as the surface-based measure of geodesic distance used 
here is computed on distinct hemisphere surface spheres. . The For each subject, we aligned the first 
gradient using Procrustes rotations to the group-level gradient for each modality, and computed 
correlations as a measure of inter-subject consistency.  
 
Graph features: Graph measurements were computed using the igraph R package (igraph.org/r). We 
focused on three widely used graph-theoretical parameters, node strength, characteristic path length, 
and clustering coefficient (Rubinov and Sporns, 2010). We computed the clustering-coefficient as a 
measure of segregation, which provides information about the level of local connections in a network. 
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The characteristic path length quantified network integration with short path lengths indicating globally 
efficient networks. Dijkstra’s algorithm was used to calculate the inverse distance matrix (Dijkstra, 
1959) and infinite path lengths were replaced with the maximum finite length (Van den Heuvel et al., 
2008). Finally, we calculated strength to characterize the relevance of the individual nodes. FC strength 
was calculated only with positive values. Using the same thresholding as for the diffusion map 
embedding, GD, MPC and FC matrices were thresholded to retain the top 20% of the edges, and SC 
was analyzed using the un-thresholded, weighted networks.   
 

Inter-datasets similarity 

To assess stability across datasets, we computed Spearman’s correlation coefficients between the group-
level measures of each pair of datasets for each MRI modality (FIGURE 4).  

4.6 Version control and containers  

micapipe is executable via a Docker container, and we provide information on how to convert it to a 
singularity image either via directly pulling from dockerhub or converting a local image (Kurtzer et al., 
2017). Each new version of micapipe is uploaded and tagged, and changes are documented. The current 
release version is v.0.1.2. Our goal is to maintain continuous integration. Additionally, our pipeline has 
adopted the standards of BIDS-Apps (Gorgolewski et al., 2017) and of the center for reproducible 
neuroimaging computation (Robert et al., 2016). 
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7. SUPPLEMENTARY FIGURES AND TABLES 
 

 
FIGURE S1. CORE PROCESSING MODULES. A) The -proc_structural module inputs a T1-weighted image, and generates a native 
space processed image (nativepro). This image will be used for registration purposes in all following steps. B) After FreeSurfer 
is run and T1nativepro is generated, the -post_structural module registers native FreeSurfer surfaces to a standard template, in 
addition to mapping all cortical parcellation schemes to the subject’s native surface space and nativepro space. C) The -
proc_dwi processes the native DWI data, and estimates a structural connectome (via -SC). We apply iFOD2 for this purpose, 
a probabilistic tractography algorithm. D) The  -proc_rsfmri module performs all pre-processing of the rs-fMRI scans, in 
preparation for the construction of functional connectomes. 
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FIGURE S2. ADDITIONAL FEATURES. A. Automatic bundle segmentation generating 35 virtually dissected white matter 
bundles. Segmented tracts obtained from whole-brain tractography generated in the -SC module. B. Anonymizing function for 
the anatomical images from the BIDS directory. Three different methods are available for defacing/refacing.  
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FIGURE S3. WITHIN-DATASET CONSISTENCY. A) Subject-group consistency for each modality and measurement in the MICs 
dataset. Each point in the boxplots corresponds to a Spearman’s rho between each subject and the group average measurement, 
derived from the Schäfer-100,-400 and 1000 parcellations. B) Group average  feature maps from the MICs dataset.   
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Database Field Subjects
/sessions T1w DWI 

main 
DWI 
rpe rs-fMRI rs-fMRI 

rpe 
Quantitative 

Image 

CamCan 
3T 

Siemens 
TIM Trio 

130/1 1mm3 isotropic, 
FOV=192x256x256  

2mm3 isotropic, 
FOV=96x69x66, 30-
b1000, and 30-b2000, 

3-b0 

No 
3x3x4.44mm3, 

FOV=64x64x32x246 
TE=0.03, TR=1.97 

No 

MTR: 1.6mm3 
isotropic, 

FOV=104x128x12
8 

SUDMEX 3T Philips 
Ingenia 145/1 1mm3 isotropic, 

FOV=180x240x240 

2mm3 isotropic, 
FOV=112x112x50, 
32-b1000, and 96-

b3000, 8-b0 

Yes 
3mm3 isotropic, 

FOV=80x80x36x300 
TE=0.03, TR=2 

Yes No 

EpiC 
3T Philips 
Achieva 

TX 
78/1 1mm3 isotropic, 

FOV=176x256x265 

2mm3 isotropic, 
FOV=128x128x50, 
60-b2000 and 1-b0 

Yes 
1.8x1.8x3mm3, 

FOV=128x128x33x200 
TE=0.03, TR=2 

No T1w/Flair 

EpiC 
longitudinal 

3T Philips 
Achieva 

TX 
33/1 1mm3 isotropic, 

FOV=176x256x265 

2mm3 isotropic, 
FOV=128x128x66, 
60-b1000, 60-b2000 

and 2-b0 

Yes 
1.8x1.8x3mm3, 

FOV=128x128x33x200 
TE=0.03, TR=2 

No T1w/Flair 

MSC 
3T 

Siemens 
TRIO 

9/12 0.8mm3 isotropic, 
FOV=224x256x256 

No No 
4mm3 isotropic, 

FOV=64x64x36x818 
TE=0.027, TR=2.2 

No T1w/T2w 

MICs 

3T 
Siemens 

Magnetom 
prisma fit 

50/1 0.8mm3 isotropic, 
FOV=224x320x320 

1.6mm3 isotropic, 
FOV=140x140x93, 
10-b300, 40-b1000, 

90-b200 3-b0 

Yes 
3mm3 isotropic, 

FOV=80x80x48x700 
TE=0.03, TR=0.6 

Yes 

qT1w: 0.8mm3 
isotropic, 

FOV=240x320x32
0, TE=0.0029, 

TR=5 
 

Audiopath 
7T 

Siemens 
Magnetom 

10/1 0.6mm3 isotropic, 
FOV=256x384x384 

1mm3 isotropic, 
FOV=200x200x132, 
66-b1000, 66-b2000, 

66-b3000, 33-b0 

All 
data not processed 

(cropped) 
Yes T1w/T2w?? 

TABLE S1. Evaluation datasets. For further details about the code used to run these datasets see 
micapipe.readthedocs/databases. The T1w/T2w or Flair, the weighted image was calculated based on these structural 
acquisitions. FOV: field of view, TE: repetition time, TE: echo time, T1w: T1-weighted.  
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Module/Dataset MICs EpiC EpiC 
longitudinal 

Cam-Can MSC SUDMEX Audiopath 

proc_structural 88±17 76±9 73±10 70±6 76±2 66±4 92±3 

post_structural 125±14 44±10 46±14 51±7 135±20 44±4 227±22 

proc_freesurfer 961±205 pp pp pp 815±88 pp 1154±104 

GD 159±21 119±40 96±12 105±12 162±15 100±8 242±36 

proc_dwi 246±37 63±15 114±15 41±5 -- 99±12 1104±274 

SC 906±427 1364±498 1471±538 1086±387 -- 1652±776 910±399 

proc_rsfmri 101±8 22±3 22±2 15±4 79±54 28±7 np 

MPC 7±1 5±1 5±1 6±1 8±1 -- 9±2 

Mean total time 
by subject 
(minutes) 

2593±730 1693±576 1827±592 1374±422 1275±180 1989±811 3738±840 

TABLE S2. Processing times (shown as the mean ± SD across subjects in minutes). pp: preprocessed, np: not processed, --: 
No data available. The Morphology module took about 1 minute to process in all the databases. Multi-threaded processing is 
available only for ANTs and workbench functions. 
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Dataset MICs EpiC EpiC 
longitudinal 

Cam-Can MSC SUDMEX Audiopath 

anat 401 ± 16 779 ± 424 326 ± 72 293 ± 39 89 ± 181 219 ± 13 591 ± 68 

dwi 3447 ± 10 2731 ± 856 1660 ± 188 726 ± 105 0 1126 ± 374 18480 ± 1754 

func 8647 ± 498 2221 ± 633 2034 ± 945 1949 ± 297 4867 ± 3816 3370 ± 854 0 

xfm 1474 ± 69 1123 ± 52 1114 ± 135 1014 ± 30 273 ± 485 901 ± 25 3840 ± 374 

QC 103 ± 6 37 ± 20 57 ± 37 46 ± 13 0 43 ± 16 106 ± 41 

Total 14072 ± 599 6891 ± 1985 5191 ± 1377 4028 ± 484 5229 ± 4482 5659 ± 1282 23017 ± 2237 

 
TABLE S3. Mean total size of the main directories by subject and database. The size of the directories is shown as mean and 
SD in Megabytes. The databases with modules that were not processed are shown as 0. 
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Database Topup Melodic FIX CSF/WM 
regression 

Non-linear 
registration 

GS 
regression 

CamCan No No No Yes Yes No 

SUDMEX Yes No No Yes Yes No 

EpiC No No No Yes Yes No 

EpiC 
longitudinal No No No Yes Yes No 

MSC No No No Yes Yes No 

MICs Yes Yes Yes No Yes No 

 
TABLE S4. rs- fMRI processing. Parameters used to process the rs-fMRI data. For details see 
micapipe.readthedocs/databases. 
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