

1

2 **Main Manuscript for**

3 **Hedgehogs are the major amplifying hosts of severe fever with**
4 **thrombocytopenia syndrome virus**

5

6 Chaoyue Zhao^{†1,2}, Xing Zhang^{†1,3}, Junfeng Hao^{†4}, Ling Ye⁵, Kevin Lawrence⁶, Yajun Lu⁷,
7 Chunhong Du⁸, Xiaoxi Si⁹, Haidong Xu¹⁰, Qian Yang¹¹, Qianfeng Xia⁷, Guoxiang Yu¹², Fei Yuan¹,
8 Jiafu Jiang^{13*}, Aihua Zheng

9 ¹State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of
10 Zoology, Chinese Academy of Sciences, Beijing, 100101, China.

11 ²CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences,
12 Beijing, 100049, China.

13 ³College of life sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.

14 ⁴Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing,
15 100101, China.

16 ⁵Daishan Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316200, China.

17 ⁶School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand.

18 ⁷Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical
19 Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571199, China.

20 ⁸Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, 671000, China.

21 ⁹College of life sciences, Henan Normal University, Xinxiang, Henan, 453007, China.

22 ¹⁰Shaozhuang central middle school, Qingzhou, Weifang, Shandong, 262507, China.

23 ¹¹Department of Infectious Disease, Yidu Central Hospital of Weifang, Weifang, Shandong,
24 252550, China.

25 ¹²Changdao National Nature Reserve Management Center, Yantai, Shandong, 234000, China.

26 ¹³State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and
27 Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.

28 *Corresponding authors

29 E-mail: zhengaihua@ioz.ac.cn (A.Z.); jiangjf2008@gmail.com (J.J.)

30 † These authors contributed equally to this work.

31 **Classification:** Biological sciences, Microbiology

32

33 **Abstract**

34 Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne bandavirus mainly
35 transmitted by *Haemaphysalis longicornis* in East Asia, mostly in rural areas. To date, the
36 amplifying host involved in the natural transmission of SFTSV remains unidentified. Our
37 epidemiological field survey conducted in endemic areas in China showed that hedgehogs were
38 widely distributed, had heavy tick infestations, and had high SFTSV seroprevalence and RNA
39 prevalence. After experimental infection of *Erinaceus amurensis* and *Atelerix albiventris*
40 hedgehogs with SFTSV, robust but transitory viremias were detected, which lasted for around
41 nine to eleven days. The infected hedgehogs experienced light weight loss and histopathology of
42 the spleen showed hemorrhagic necrosis and lymphopenia, with infected hedgehogs recovering
43 after viral clearance. Remarkably, SFTSV transmission cycle between hedgehogs and
44 nymph/adult *H. longicornis* was easily accomplished under laboratory condition with 100%
45 efficiency. Furthermore, naïve *H. longicornis* ticks could be infected by SFTSV-positive ticks co-
46 feeding on naïve hedgehogs, with transstadial transmission of SFTSV also confirmed. We also
47 found that SFTSV viremia remained high in hedgehogs during hibernation, suggesting that this
48 mechanism might contribute to the persistence of SFTSV from one year to the next. Of concern,
49 we recently found evidence of the natural circulation of SFTSV in the urban area of Beijing City in
50 China involving *H. longicornis* ticks and *E. amurensis* hedgehogs. Our study suggests that the
51 hedgehogs are the major wildlife amplifying hosts of SFTSV and that urban outbreaks of SFTSV
52 might occur in the future.

53

54 **Keywords:** SFTSV, hedgehog, *Haemaphysalis longicornis*, transmission, host

55

56 **Main Text**

57

58 **Introduction**

59

60 Severe fever with thrombocytopenia syndrome virus (SFTSV) is a new tick-borne bandavirus first
61 identified in China in 2009(Yu et al., 2011), followed by Korea in 2011(Denic et al., 2011), Japan
62 in 2014(Takahashi et al., 2014), Vietnam in 2019(Tran et al., 2019) and Pakistan in 2020(Zohaib
63 et al., 2020). The symptoms of SFTS include fever, thrombocytopenia, leukocytopenia, and
64 gastrointestinal disorders, with a case-fatality rate of between 2 and 30%(Liu, He, Huang, Wei, &
65 Zhu, 2014; S. Liu et al., 2014; Yu et al., 2011). The earliest Chinese cases were reported in the
66 Dabie mountain range, which is located at the intersection of Henan, Hubei, and Anhui provinces
67 in central China. Besides the Dabie mountain range, Shandong, Liaoning, and Zhejiang provinces
68 are the other main hot spots for SFTS in China(J. Sun et al., 2018). Within Zhejiang Province,
69 Daishan County, an archipelago of islands located in the East China Sea, is one of the most
70 endemic areas(Fu et al., 2016). The major industry in Daishan County is fishing and tourism,
71 agriculture is relatively unimportant with only 4000 sheep and 150 cattle on the islands in 2019,
72 as reported by the local government. As of 2020, SFTS cases have been reported in most other
73 Chinese provinces(Lin et al., 2020; J. Sun et al., 2018; Zhu et al., 2019).

74 *Haemaphysalis longicornis* (Asian long-horned tick) is the major vector for SFTSV and the
75 dominant human-biting tick in the SFTSV endemic areas(Li et al., 2016; Yun et al., 2015; G.
76 Zhang, Zheng, Tian, & Li, 2019). *H. longicornis* has both bisexual and parthenogenetic
77 populations, with the parthenogenetic populations being widely distributed in China and strongly
78 correlated with the distribution of SFTS cases (X. Zhang et al., 2022). *H. longicornis* ticks go
79 through a three-stage life cycle (larva, nymph, and adult). At each stage, they feed on a wide
80 range of wild and domestic animals including mammals, birds, companion animals and
81 livestock(Zhao et al., 2020).

82 Extensive reports suggest that *H. longicornis* is the reservoir of SFTSV(Luo et al., 2015; S. W.
83 Park et al., 2014; Zhuang et al., 2018). However, the transstadial transmission efficiencies of

84 SFTSV from egg pools to larvae pools, larval pools to nymph pools and nymph pools to adults
85 were 80%, 92%, 40% or 100%, 100%, 50% under laboratory conditions according to two
86 reports(Y. Y. Hu et al., 2020; Zhuang et al., 2018). Correspondingly, the SFTSV prevalence was
87 extremely low in different developmental stages of host-seeking *H. longicornis* ticks collected
88 from vegetation, ranging from 0.2% to 2.2%(Luo et al., 2015; S. W. Park et al., 2014; Wang et al.,
89 2015). These findings suggest that ticks alone are not sufficient to maintain a reservoir of SFTSV
90 in the natural environment, therefore one or more additional amplifying hosts are required.

91 Antibodies to SFTSV and viral RNA have been detected in a wide range of domestic animals,
92 including goats, cattle, dogs, and pigs, and wild animals such as shrews, rodents, weasels, and
93 hedgehogs. The highest seroprevalence was found in sheep (69.5%), cattle (60.4%), dogs
94 (37.9%) and chickens (47.4%)(Chen et al., 2019; Huang et al., 2019; Niu et al., 2013). Given that
95 most of the SFTS patients are farmers, who have frequent contacts with many of the domestic
96 and wild animals listed above, this makes understanding the epidemiology of SFTSV both difficult
97 and complex.

98 Hedgehogs belong to the family *Erinaceinae*, which includes twenty four genera and are widely
99 distributed in the Eurasian continent and Africa(He et al., 2012). Some genera have even been
100 introduced into countries with no indigenous hedgehogs, including Japan and New
101 Zealand(Brockie, 1975; ISAAC, 2005). The Amur hedgehog *Erinaceus amurensis* is closely
102 related to the European hedgehog, *Erinaceus europaeus*, but is slightly bigger and lighter in
103 color. It is native to Amur Oblast and Primorye in Russia, the Korean Peninsula, and is common
104 in northern and central China. The African pygmy hedgehog *Atelerix albiventris*, native to central
105 and eastern Africa, has been introduced into many countries as pets, including China, where they
106 are available in many suburban petshops(Brockie, 1975; ISAAC, 2005). Both the Amur hedgehog
107 and the African pygmy hedgehog can become heavily infested by all kinds of ticks and are known
108 to carry many zoonotic diseases, such as Tickborne encephalitis virus, Bhanja virus, and Tahyna
109 virus(Dziemian, Sikora, Pilacinska, Michalik, & Zwolak, 2015; Jahfari et al., 2017; Riley & Chomel,
110 2005). Hedgehogs are poikilothermal animals and hibernate during winter. During hibernation,
111 their metabolism and immune system are suppressed (Bouma, Carey, & Kroese, 2010) which
112 has led to the suspicion that hibernating hedgehogs contribute to the long-term persistence of
113 these viruses(Simkova, 1966). A few previous studies reported that SFTSV antibodies and RNA
114 were detected in *E. amurensis* in Shandong and Jiangsu Province. However, the prevalence of
115 SFTV infection appeared low as compared to that in other animals such as goats, sheep, and
116 cattle(Li et al., 2016; Y. Sun et al., 2017).

117 In China, the density of large wild animals is extremely low, especially in East China where SFTS
118 is endemic. Instead, the most abundant wildlife in these areas are rodents and insectivores(Jiang,
119 Liu, Wu, Jiang, & Zhou, 2017). However, the potential role of rodents in the transmission of
120 SFTSV was refuted when it was shown that immunocompetent rodents cannot develop SFTSV
121 viremia after artificial inoculation(Matsuno et al., 2017). In contrast, hedgehogs are the only small
122 wild animals which consistently show high SFTSV seroprevalence, high density, as well as high
123 *H. longicornis* infestation in the SFTS endemic areas(Li et al., 2014; Y. Sun et al., 2017). They
124 are widely distributed both in the urban and wild ecosystem(Smith et al., 2010), which has led us
125 to speculate that hedgehogs might play an important role in the natural circulation of SFTSV in
126 China. To test this hypothesis, we first carried out an epidemiological survey to confirm the role of
127 hedgehogs as potential wild amplifying hosts for SFTSV. Then a series of linked laboratory
128 experiments were performed to investigate the susceptibility and tolerance of hedgehogs to
129 SFTSV infection, and to establish the transmission of infection between hedgehogs and *H.*
130 *longicornis* ticks at both the nymph and adult stages.

131

132 **Results**

133

134 **Field survey of hedgehogs in SFTS endemic areas**

135 To confirm the role of hedgehogs as potential wild amplifying hosts for SFTSV, we firstly
136 performed an animal survey in Daishan County, an archipelago of islands in the East China Sea
137 (Figure 1A). Daishan County is the worst affected area for SFTS in Zhejiang Province (Fu et al.,

138 2016) and between 2011 and 2019 one hundred and thirty-three SFTS cases were reported by
139 Daishan CDC. SFTS cases were reported on all the major Daishan County islands including
140 Daishan Island, Qushan Island and Changtu Island, with the exception of Xiushan Island, even
141 though Xiushan Island has a similar landscape, vegetation, and population density as Daishan
142 Island, Qushan Island and Changtu Island (Fig. 1B). Small mammal traps were set, and the
143 following numbers of wildlife caught, 33 on Daishan Island and 75 on Xiushan Island. On Daishan
144 Island, 28% of the captured small mammals were *E. amurensis* (Amur hedgehog), 18% were
145 *Rattus. Norvegicus* (brown rat), 36% were *Sorex araneus* (common shrew), and 18% were
146 *Apodemus agrarius* (striped field mouse). On Xiushan Island no hedgehogs were caught, 48% of
147 the small mammals caught were *R. norvegicus*, 44% were *S. araneus* and 8% were *Rattus losea*
148 (lesser ricefield rat) (Fig. 1C). Antibody testing showed that 3/9 (33%) of *E. amurensis* hedgehogs
149 from Daishan Island were positive for SFTSV (Fig. 1D). Hedgehogs are abundant in the two
150 villages in Daishan Island, with an estimated population density of greater than 80 individuals per
151 square kilometer based on the results of the trapping study (Table 1). In addition, these nine
152 trapped hedgehogs were all heavily infected by ticks with an average of 145 ticks per hedgehog,
153 including *H. longicornis* (Table 2).

154

155 **Table 1.** The density of hedgehogs in rural and urban areas.

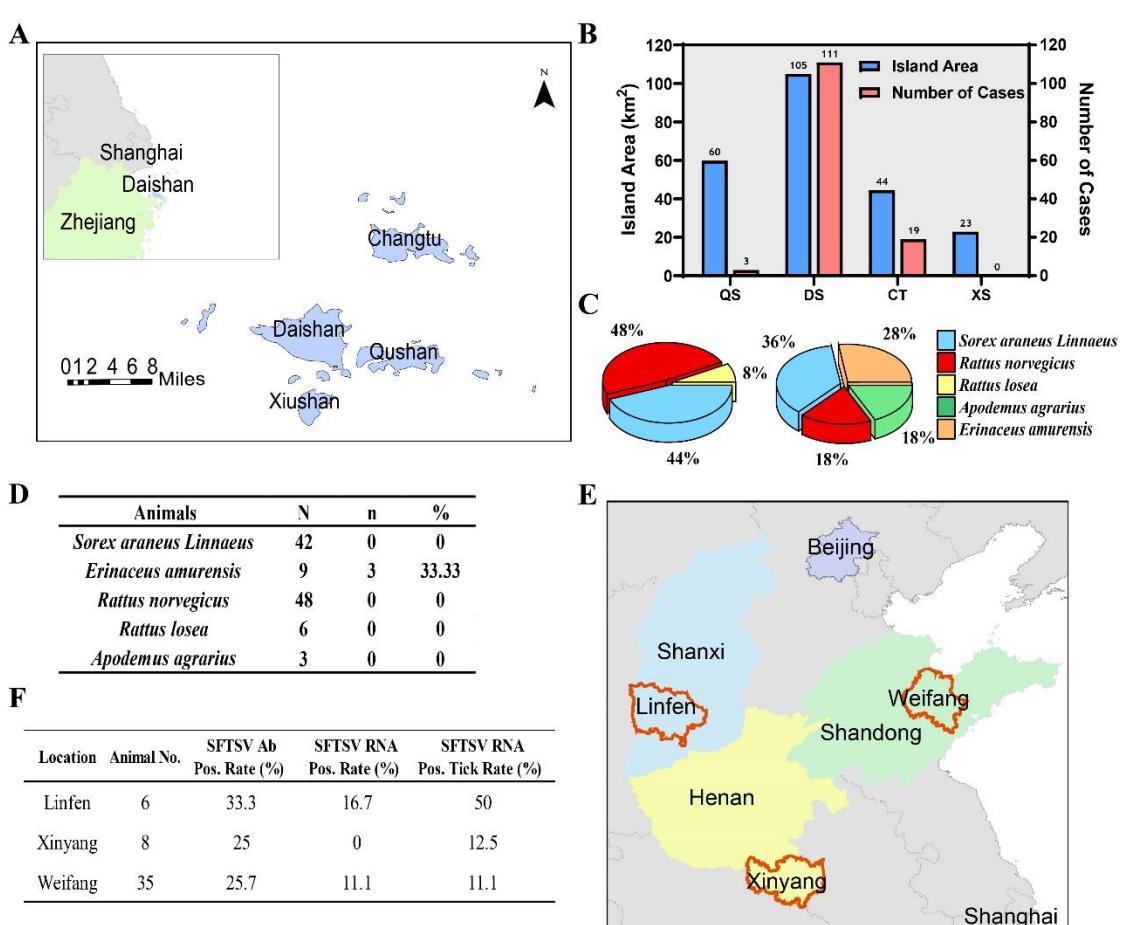
156

Site	Location	Density
Daao village*	Daishan County, Zhejiang Province	>80
Dongsha village*	Daishan County, Zhejiang Province	>90
Olympic Forest Park ^{&}	Chaoyang District, Beijing	>60
Southeast Community ^{&}	Haidian District, Beijing	>75

157

158 The density was calculated by the number of trapped hedgehogs divided by the area (Number of
159 animals per square kilometer). *Rural; [&]urban.

160

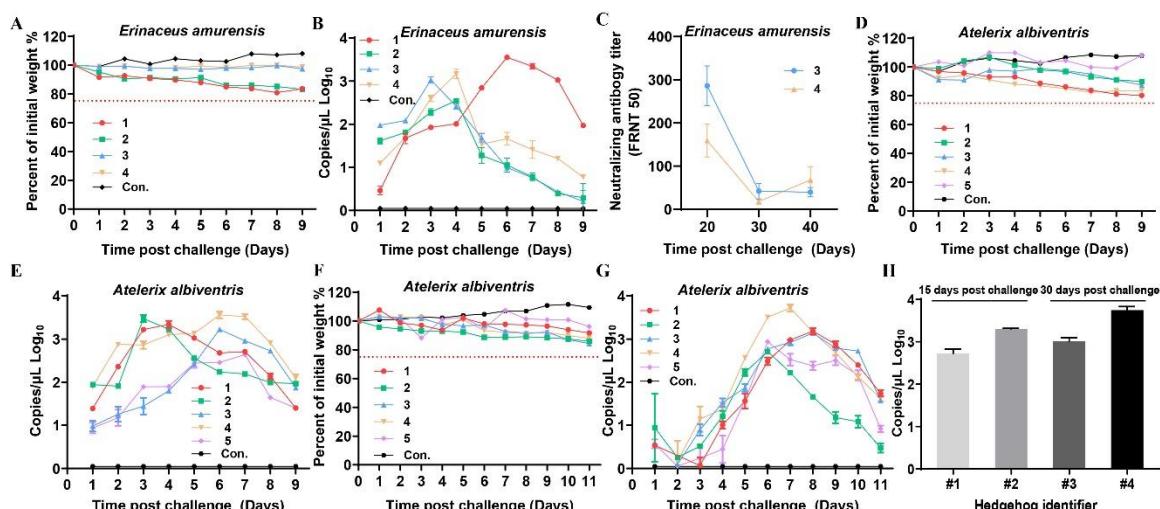

161 **Table 2.** Average number of ticks collected from wild mammals captured in Daishan County.

162

Animal	Number
<i>Sorex araneus Linnaeus</i>	1.5
<i>Rattus norvegicus</i>	1
<i>Rattus losea</i>	0
<i>Apodemus agrarius</i>	0
<i>Erinaceus amurensis</i>	145

163

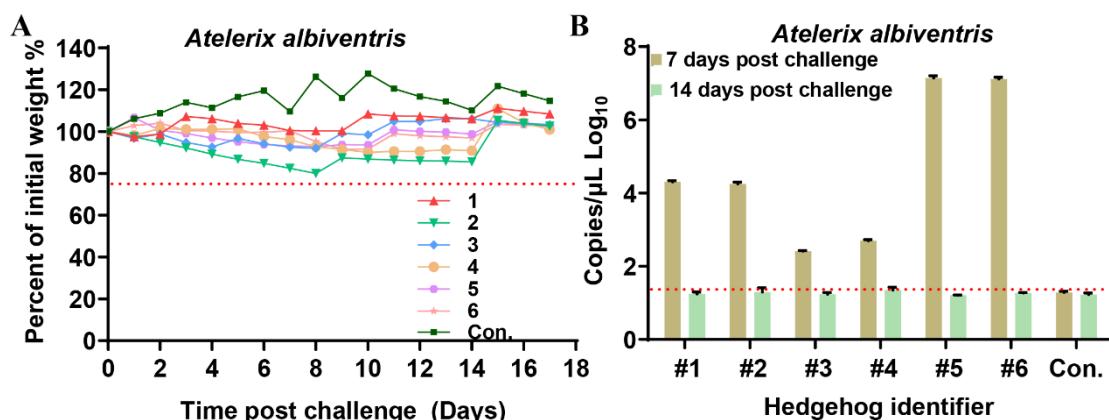
164 Additional *E. amurensis* hedgehog serum samples were collected from trapping studies
 165 conducted in other SFTS endemic areas, including Weifang City of Shandong Province, Linfen
 166 City of Shanxi Province, and Xinyang City of Henan Province. SFTSV antibodies were detected in
 167 9/35 (25.7%), 2/6 (33.3%) and 2/8 (25%) of hedgehogs from Weifang City, Linfen City and
 168 Xinyang City, respectively; 11.1%, 16.7% and 0 of hedgehogs were tested positive for SFTSV
 169 RNA, respectively; and 11.1%, 50% and 12.5% of hedgehog were infected by ticks positive for
 170 SFTSV RNA (Fig. 1E and 1F). We believe these results strongly support our hypothesis that
 171 hedgehogs play an important role in the natural circulation of SFTSV.
 172


173

174
 175 **Figure 1.** The association between hedgehogs and SFTSV endemic. (A) Locations of the major
 176 islands of Daishan County, Zhejiang Province. (B) Land area and SFTS case numbers for major
 177 islands in Daishan County. DS, Daishan Island; QS, Qushan Island; XS, Xiushan Island; CT,
 178 Changtu Island. (C) Species and relative rate of wild animals collected on Xiushan Island (left)
 179 and Daishan Island (right). (D) Seroprevalence of SFTSV in wild animals captured in Xiushan
 180 Island and Daishan Island. N, number of sampled animals; n, number of sampled animals
 181 positive for SFTSV antibody; %, percentage of sampled animals positive for SFTSV antibody. (E)
 182 Locations of Weifang City of Shandong Province, Linfen City of Shanxi Province, Xinyang City of
 183 Henan Province, where hedgehogs were collected. (F) Epidemiological analysis of trapped
 184 animals. Seroprevalence of SFTSV in hedgehogs was measured by ELISA against SFTSV
 185 nucleocapsid protein. Viral RNA was tested by PCR. Pos. is the abbreviation of positive. "SFTSV
 186 RNA Pos. Tick Rate" indicates the ratio of hedgehogs infested with SFTSV RNA positive ticks.
 187

The susceptibility of hedgehogs to experimental infection with SFTSV

188 Four male and female *E. amurensis* hedgehogs (6-12 months old) were inoculated with 4×10^6
 189 FFU of SFTSV by intraperitoneal (i.p.) route. A viremia of around 9 d was observed in all animals,
 190 with peak titers of $3.1 \log_{10}$ RNA copies/ μ l at d 3-6, suggesting viral multiplication. Two *E.*
 191 *amurensis* hedgehogs showed a mild weight loss of less than 25% by 9 d (Fig. 2A-2B).
 192 Neutralizing antibody titer against SFTSV in the sera of two *E. amurensis* hedgehogs were
 193 measured at 20, 30 and 40 d post-infection (dpi). In contrast to the stable humoral immune
 194 response of experimental dogs(Niu et al., 2013), the neutralizing antibody titer decreased quickly
 195 and was almost eliminated by d 40 (Fig. 2C).
 196


197 Groups of five male and female *A. albiventris* hedgehogs (6-12 months) were inoculated with $4 \times$
 198 10^6 FFU of SFTSV by intraperitoneal (i.p.) and subcutaneous (i.s.) route, respectively. A viremia
 199 of around 9 to 11 d was observed in all ten animals, with peak titers of $3.2 \log_{10}$ RNA copies/ μ l at
 200 d 3-7 for i.p. route and titers of $3.1 \log_{10}$ RNA copies/ μ l at d 6-8 for i.s. route, respectively (Fig.
 201 2D-2G). Most animals showed mild weight loss of less than 20%. These results suggest that *E.*
 202 *amurensis* and *A. albiventris* hedgehogs could develop similar viremias independent of
 203 inoculation routes.

204
 205 **Figure 2.** SFTSV viremia in experimentally infected *E. amurensis* and *A. albiventris* hedgehogs.
 206 Hedgehogs were challenged (i.p. or i.s.) with 4×10^6 FFU of SFTSV Wuhan strain and then
 207 monitored for weight change (A and D and F) and viremia (B and E and G), tested by Real-time
 208 PCR as RNA copies per μ l of serum (B and E) (error bars represent SD). Control (Con.) was
 209 mock infected with PBS. (C) SFTSV neutralizing antibody titer in two *E. amurensis* hedgehogs
 210 were monitored at 20, 30, 40 dpi. (H) Hibernation extended the course of SFTSV viremia in *A.*
 211 *albiventris*. Four hedgehogs were challenged (i.p.) with 4×10^6 FFU of SFTSV and then kept at 4

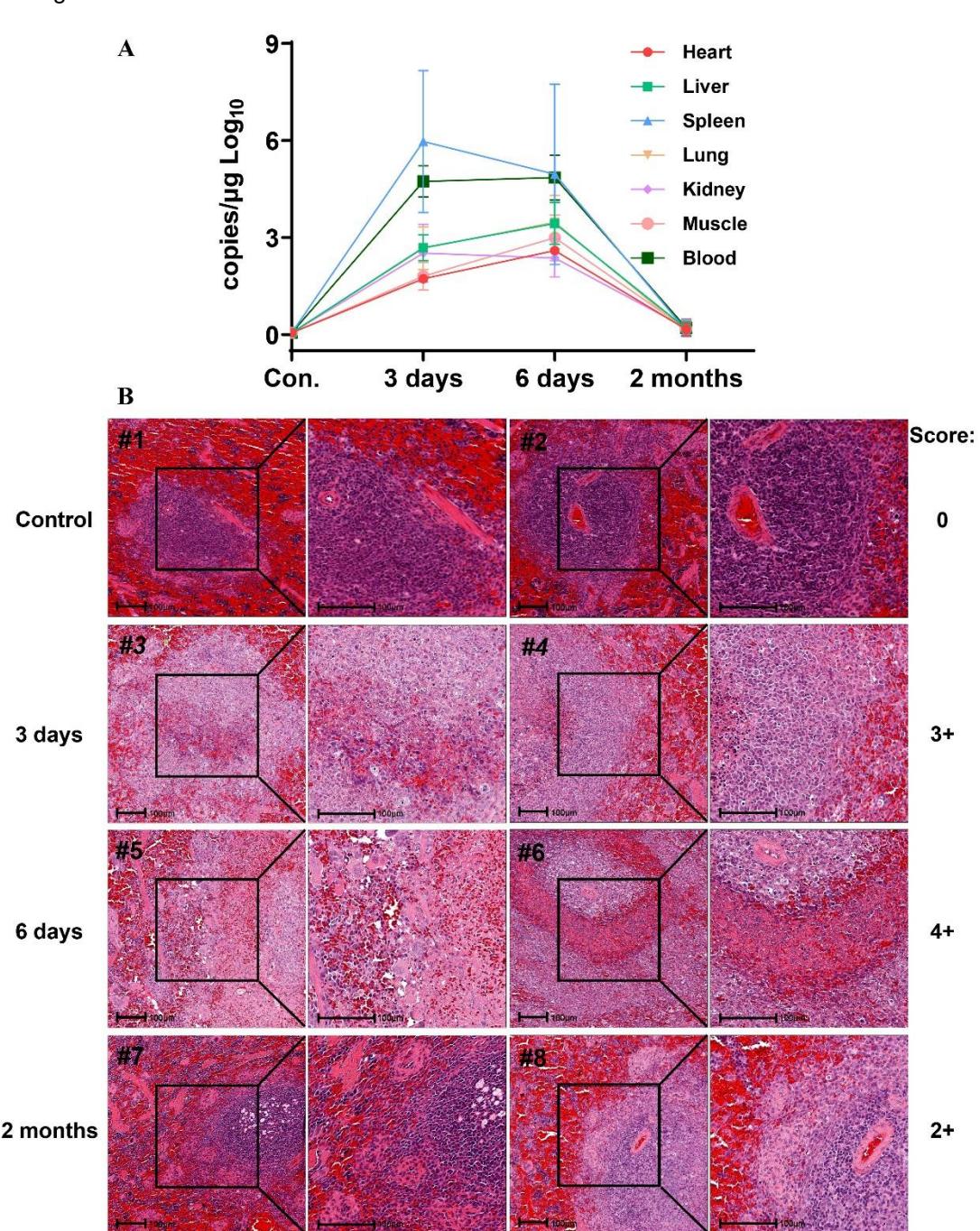
212 °C to trigger hibernation. Viremia in #1 and #2 was monitored 15 dpi, while #3 and #4 at 30 dpi
213 (error bars represent SD).

214
215 There was a possibility that the observed weight loss could have been iatrogenic, since the blood
216 samples were taken directly from the heart. Heart sampling was necessary because rapid blood
217 coagulation makes sampling from superficial veins very difficult in hedgehogs (Lewis, 1976). To
218 test whether heart sampling was the cause of the weight loss, a further six *A. albiventris* were i.p.
219 inoculated with SFTSV as above and bled only twice on d 7 and d 14, instead of daily. We found
220 that only one hedgehog showed a weight loss of 20% and recovered by d 16 (Fig. S1A). In these
221 six hedgehogs, SFTSV viremia was detected at d 7 and disappeared at d 14 (Fig. S1B). Overall,
222 these results demonstrate that both *E. amurensis* and *A. albiventris* can develop a similar SFTSV
223 viremia after experimental infection, without significantly compromising their overall health.
224 However, *E. amurensis* hedgehogs are shy and easy to die during transport because of the
225 stress response. Thus, we performed most of the following experiments with *A. albiventris* due to
226 the stable supply in the local pet store.

227
228 **Figure S1.** SFTSV viremia and weight change in experimentally infected *A. albiventris*
229 hedgehogs bled twice. Hedgehogs were challenged (i.p.) with 4×10^6 FFU of SFTSV Wuhan
230 strain and then monitored for weight loss everyday (A) and viremia on d 7 and 14, measured by
231 Real-time PCR as RNA copies per μL of serum (B) (error bars represent SD). Each line and bar
232 i n d i c a t e o n e h e d g e h o g .

233 234 **SFTSV viremia during the hibernation of hedgehogs**

235 Four *A. albiventris* were inoculated with 4×10^6 FFU of SFTSV and kept at 4 °C to trigger
236 hibernation. Two of the hedgehogs came out of hibernation at d 15 with viremias of 2.7 and 3.3
237 log₁₀ RNA copies/ μL respectively, whilst the other two hedgehogs continued in hibernation until d
238 30 with viremias of 3.0 and 3.7 log₁₀ RNA copies/ μL . All the viremias measured in these
239 hibernating hedgehogs were comparable to the peak virus titers previously measured in the non-
240 hibernating hedgehogs (Fig. 2H). However, the duration of viremia in these 4 hibernating
241 hedgehogs was much longer than that recorded in the non-hibernating hedgehogs, suggesting
242 that hibernation could potentially extend the course of SFTSV viremia in hedgehogs and
243 contribute to the overwintering of SFTSV in the field.

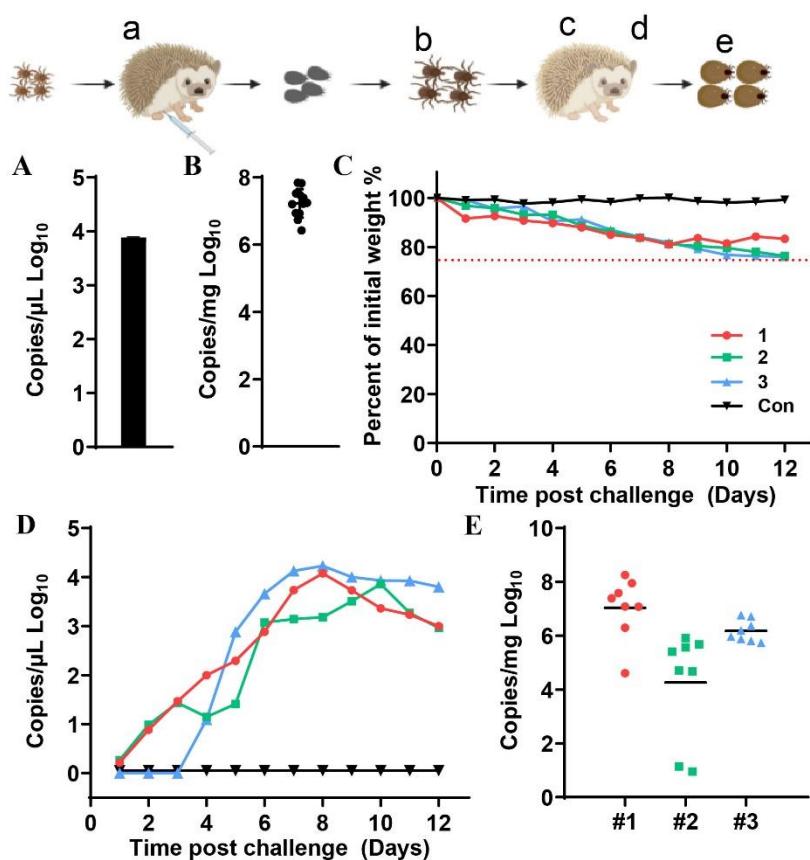

244 **SFTSV induced pathology in hedgehogs**

245 To assess the pathological changes in hedgehogs resulting from SFTSV infection, six *A.
246 albiventris* were i.p. inoculated with 4×10^6 FFU of SFTSV. Two animals were sacrificed at 3
247 days, 6 days and 2 months post-infection and their organs were removed for viral RNA evaluation
248 and hematoxylin and eosin (H&E) staining. A robust viremia was detected on d 3 and d 6 but was
249 negative at 2 months after infection. The highest level of viral RNA was observed in the spleen,
250 followed by the blood, while the lowest was in the heart (Fig. 3A). H&E-stained slides from the

251 spleen showed hemorrhagic necrosis and lymphopenia at d 3 and d 6. The severity of the lesions
252 was assessed as +++ and ++++ on day 3 and 6 respectively but the lesions had largely
253 recovered by 2 months with a severity score of ++ (Fig. 3B). These results further confirmed that
254 hedgehogs show a high tolerance to SFTSV without obvious long-term or permanent pathological
255 changes.

256

spleen showed hemorrhagic necrosis and lymphopenia at d 3 and d 6. The severity of the lesions
was assessed as +++ and ++++ on day 3 and 6 respectively but the lesions had largely
recovered by 2 months with a severity score of ++ (Fig. 3B). These results further confirmed that
hedgehogs show a high tolerance to SFTSV without obvious long-term or permanent pathological
changes.


257

258 **Figure 3.** Pathology of SFTSV infected *A. albiventris* hedgehogs. Six hedgehogs were
259 challenged (i.p.) with 4×10^6 FFU of SFTSV Wuhan strain and two were mock infected by PBS as
260 control (Con.). Two hedgehogs were killed at indicated time points to test the viral load in the
261 organs (A) and pathology of the spleen (B). (A) SFTSV viral load in organs was measured by
262 Real-time PCR. (B) Spleen samples were H&E stained for the pathological interpretation, with the
263 severity of pathological changes shown beside the image. Size bars indicate 100 μ m.
264

265 **Transmission of SFTSV by *H. longicornis* between ticks and hedgehogs**

266 Lab-adapted *H. longicornis* ticks and *A. albiventris* hedgehogs were used to model the natural
267 transmission of SFTSV hypothesized to occur in the wild. Naïve *H. longicornis* nymphs were fed
268 on hedgehogs infected by i.p. inoculation with 4×10^6 FFU of SFTSV at d 0. Viremia of $3.8 \log_{10}$
269 RNA copies/ μ L was detected in hedgehogs at d 5 (Fig. 4A) and fully engorged nymphs dropped
270 off between d 4 to 8. After molting, the adult ticks tested 100% positive for SFTSV, with a level of
271 $7.2 \log_{10}$ RNA copies/mg tick (Fig. 4B).
272

273 Three naïve hedgehogs were each fed on by eight SFTSV-carrying adult ticks at d 0. Weight and
274 viremia were monitored for 12 d. A slow weight loss of less than 25% was observed by d 12 and
275 the viremia peaked between d 8-10 at $4.1 \log_{10}$ copies/ μ L. After peaking, the viraemia decreased
276 slowly until the 3 hedgehogs were euthanized on d 12 (Fig. 4C and 4D). The fully engorged ticks
277 were collected between d 7 to 10 and then tested. All 24 ticks were still positive for SFTSV RNA
278 (Fig. 4E). We believe that these data strongly suggest that SFTSV can be efficiently transmitted
279 between hedgehogs and *H. longicornis* ticks, and that transstadial transmission occurs within *H. longicornis* ticks.

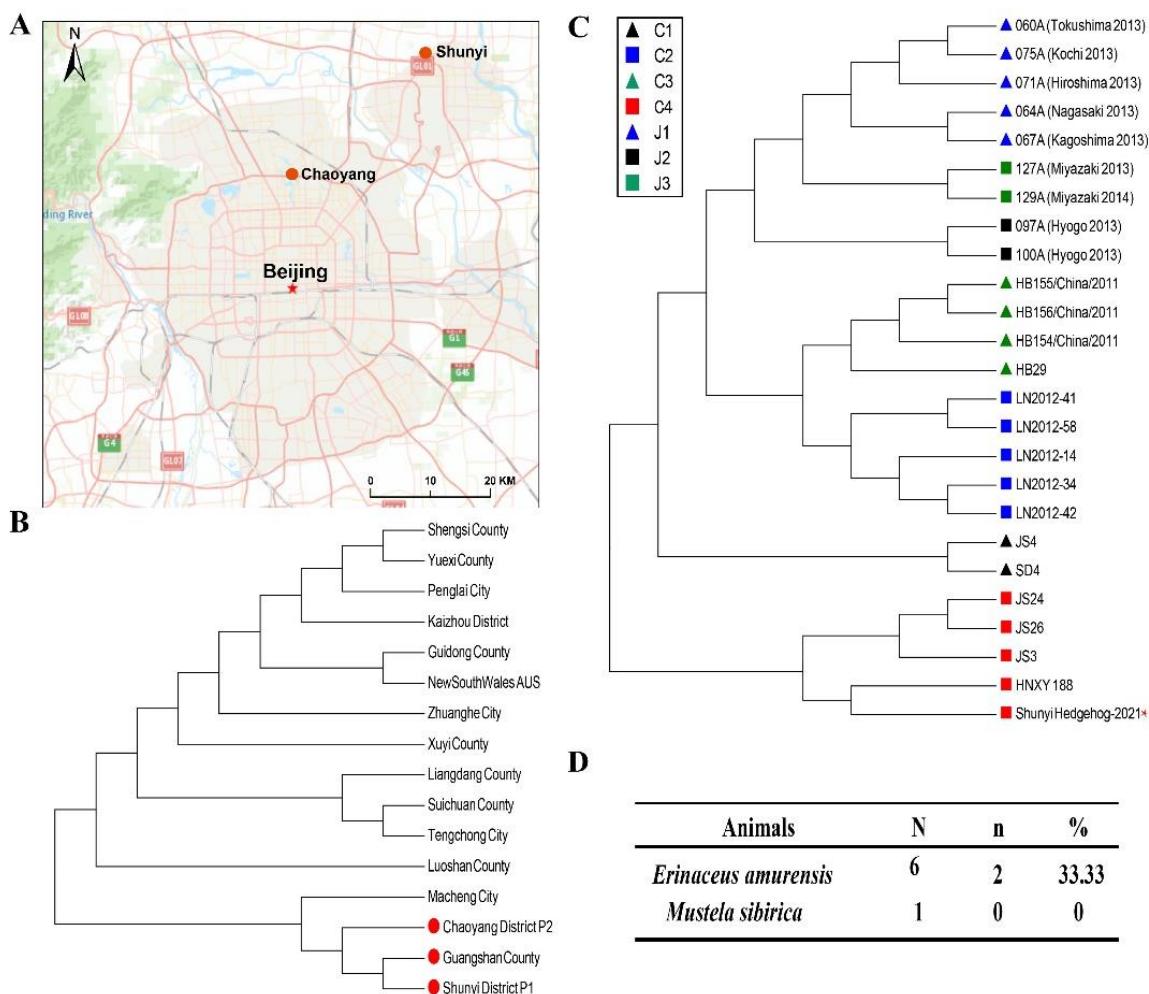
280 **Figure 4.** Transmission of SFTSV between *H. longicornis* ticks and *A. albiventris* hedgehogs.
281 Hedgehogs were i.p. inoculated with 4×10^6 FFU of SFTSV Wuhan strain and naïve nymphs were

283 fed on the hedgehogs at the same time. (A) SFTSV viremia in the hedgehogs at 5 dpi as
284 measured by Real-time PCR. (B) SFTSV RNA copies in the adult ticks after molting as shown by
285 RNA copies per mg of tick. (C) Weight change and (D) SFTSV viremia in naïve hedgehogs bitten
286 by SFTSV-carrying adult ticks were monitored for 12 d. (E) SFTSV RNA level in the engorged
287 adult ticks from three hedgehogs as shown by RNA copies per mg of tick. Each dot indicates one
288 tick (error bars represent SD). # indicates hedgehog identifier. The experimental process is
289 graphically displayed above the plots and read from left to right, with the lower-case letters (a-e)
290 corresponding to the upper-case letters of the main panels (A-E).
291

292 Hedgehogs are the amplifying host for SFTSV

293 SFTSV can be transmitted both transovarially and transstadially in *H. longicornis*, however, a
294 decreased efficiency has been observed during passaging (Zhuang et al., 2018). Thus, an
295 amplifying host will be necessary to improve the transmission efficiency. SFTSV-positive adult *H.*
296 *longicornis* ticks were prepared as described above with 100% efficiency (Fig. 5A and 5B).
297 Next, 5 of the SFTSV-carrying adult *H. longicornis* ticks were fed together with 14 to 16 naïve
298 nymphs and 3 to 4 naïve adult ticks on each of three naïve *A. albiventris* hedgehogs. The fully
299 engorged ticks were collected between 7 to 10 d post biting and tested for the viral RNA levels.
300 The viral load in the engorged nymphs and previously naïve adults were 2.5 and 2.7 log₁₀ RNA
301 copies/mg tick respectively (Fig. 5C and 5D). After the nymphs molted, the adult ticks tested
302 100% positive for SFTSV, with a level of 6.9 log₁₀ RNA copies/mg tick (Fig. 5E). Thus, these
303 results suggest that hedgehogs could be acting as an amplifying host for SFTSV.
304

305


306

307 **Figure 5.** Naïve *H. longicornis* ticks infected by SFTSV through co-feeding with SFTSV positive
308 ticks on naïve *A. albiventris* hedgehogs. Hedgehogs were i.p. inoculated with 4×10^6 FFU of
309 SFTSV Wuhan strain and nymph ticks were fed on the hedgehogs at the same time. (A) SFTSV
310 viremia in hedgehogs at 5 dpi as measured by Real-time PCR. (B) SFTSV RNA copies in adult
311 ticks after molting as shown by RNA copies per mg of tick. After molting, the SFTSV-carrying
312 adult ticks and naïve nymph/adult *H. longicornis* ticks were fed on three naïve *A. albiventris*
313 hedgehogs. The fully engorged ticks were collected 7 to 10 d post biting. (C-E) SFTSV RNA level
314 was monitored in ticks as shown by RNA copies per mg of tick. Each dot indicates one tick. (C)
315 Engorged nymph ticks. (D) Engorged adult ticks. (E) Adults molted from (C). The experimental

316 process is graphically displayed above the plots and read from left to right, with the lower case
317 letters (a-e) corresponding to the upper case letters of the main panels (A-E). (+) indicates
318 SFTSV infected ticks.
319

320 **Natural circulation of SFTSV in the urban area**

321 The density of hedgehogs in two rural villages from Daishan County in Zhejiang Province and in
322 two urban communities from Chaoyang and Haidian District in Beijing City were found to be very
323 similar (Table 1). To investigate the potential natural circulation of SFTSV in the urban setting, we
324 carried out field surveys on small mammals and parasitic ticks at two locations in Beijing City in
325 2021, one small park surrounded by up-market gated communities in Shunyi District and the
326 Olympic Forest Park in Chaoyang District, where parthenogenetic *H. longicornis* ticks were
327 discovered in a previous survey in 2019 (Fig. 6A)(X. Zhang et al., 2022). Six *E. amurensis*
328 hedgehogs were caught in the Shunyi location and showed 2/6 (33%) SFTSV seroprevalence
329 (Fig. 6D). *H. longicornis* ticks collected from vegetation at the same location tested positive for
330 SFTSV RNA, clustering into lineage C4, similar to the strains of SFTSV collected in Xinyang City
331 (Fig.6C). In contrast, no SFSTV RNA or antibody was detected in animal serum samples and
332 parasitic ticks collected at the Chaoyang sample site. Through phylogenetic analysis of the whole
333 mitochondrial sequences, we further found that the parthenogenetic *H. longicornis* ticks collected
334 from the Shunyi and Chaoyang districts were closely related to those from Guangshan County,
335 Xinyang City in Henan Province (Fig. 6B). These results imply that both the tick and SFTSV
336 collected in Shunyi Distict might have originated from Xinyang City, one of the original SFTS hot
337 spots. Although no local SFTS cases have been reported in Beijing yet, our results suggest that a
338 population of hedgehogs and *H. longicornis* ticks could maintain the circulation of SFTSV in the
339 urban ecosystem, which might result in urban SFTSV epidemics in the future.
340

341
342 **Figure 6.** Natural circulation of SFTSV in the urban Beijing. (A) Locations studied in Shunyi
343 District and Chaoyang District. (B) Phylogenetic analysis of the parthenogenetic population of
344 Asian long-horned ticks. Maximum likelihood tree was established with the mitochondrial
345 genomes of *H. longicornis* collected in Chaoyang District and Shunyi District (Chaoyang
346 DistrictP2, accession number, OL335942 and ShunyiDistriceP1 accession number, OL335941)
347 (red) and from SFTS endemic areas(X. Zhang et al., 2022). (C) Maximum likelihood tree was
348 established with the L Segments of SFTSV isolate in Shunyi (Shunyi-hedgehog-2021) and
349 isolates from SFTS endemic areas(Shi et al., 2017; Yoshikawa et al., 2015). HNXY188 was
350 isolated from Xinyang City, Henan Province. SFTSV lineages were illustrated by colors and
351 shapes. (D) Seroprevalence of animals caught in Shunyi district. N, number of sampled animals;
352 n, number of sampled animals positive for SFTSV antibody; %, percentage of sampled animals
353 positive for SFTSV antibody.

354

355 Discussion

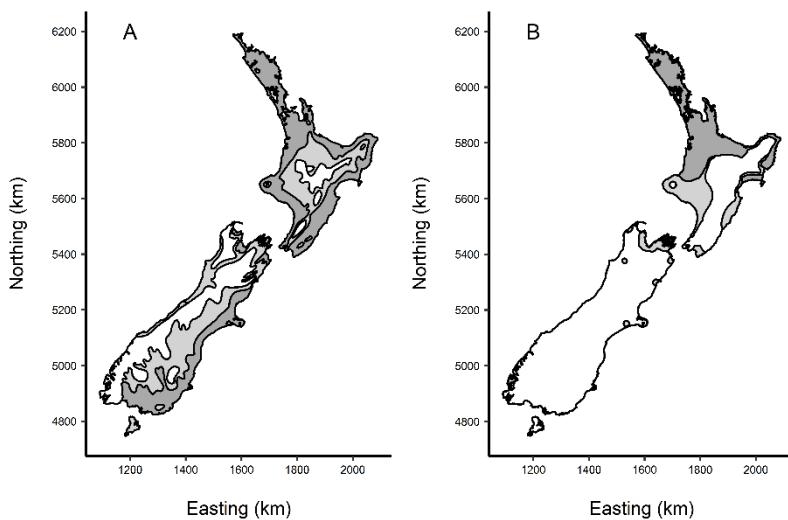
356

357 Viremia in the vertebrate host is important for the arbovirus to transmit from host to vector.
358 Previous epidemiological surveys and experimental infections have revealed that many wild and
359 domesticated animals are susceptible to SFTSV infection(Chen et al., 2019). However, these
360 studies had similar findings that most vertebrate animals were only sub-clinically infected with
361 SFTSV, with a limited viremia(Casel, Park, & Choi, 2021). For example, 80% of goats developed
362 a viremia, after i.s. inoculation with 10^7 PFU of SFTSV, which lasted for only less than 24 h(Jiao

363 et al., 2015). Similarly, beagle dogs intramuscularly inoculated with 2.51×10^7 TCID50 of SFTSV,
364 only had a detectable viremia at d 3(S. C. Park et al., 2021). Furthermore, the efficient
365 transmission of SFTSV between tick vectors and these potential wild animal hosts has not been
366 proven. In this study, robust viremias of about 10^3 RNA copies/ μ l were consistently detected in
367 both native *E. amurensis* and exotic *A. albiventris* hedgehogs after i.p. or i.s. inoculation with $4 \times$
368 10^6 FFU of SFTSV at 100% efficiency and lasted for nine to eleven days, which provides basis for
369 the effective transmission of SFTSV from host to tick.
370

371 Hedgehogs were highly tolerated to SFTSV infection, with slight weight loss and pathology which
372 recovered after the clearance of virus. SFTSV seroconversion was observed. In contrast to the
373 stable humoral immune response of experimental dogs and convalescent patients(L. Hu et al.,
374 2021; Niu et al., 2013), the antibody titers in hedgehogs decreased quickly, suggesting that
375 studies measuring the seroprevalence of wild hedgehogs may have underestimated the true
376 prevalence of infection and that hedgehogs might even be vulnerable to reinfection by SFTSV.
377

378 *H. longicornis* overwinters mostly as nymphs, but with an SFTSV positive rate of only 4% as
379 measured by pool(Kim et al., 2020). Thus, we speculate that their role in overwintering of disease
380 may be quite limited. Hedgehogs are involved in the overwintering of many pathogens during
381 hibernation (Nosek & Grulich, 1967; Simkova, 1966) which could include SFTSV. Our results
382 suggest that the SFTSV viremia can be extended from nine days, when non-hibernating, to at
383 least one month during hibernation, and with a similar peak viremia to that seen in non-
384 hibernating hedgehogs.
385


386 To meet the requirement for hedgehogs to be considered as important maintenance hosts for
387 SFTSV, the transmission cycle between vector and host needs to be established. Using lab-
388 adapted *H. longicornis* ticks and *A. albiventris* hedgehogs, this study conclusively showed
389 efficient infection transmission from nymph or adult ticks to hedgehogs, efficient infection
390 transmission from hedgehogs to nymph or adult ticks and transstadial infection transmission from
391 nymph to adult tick. It is important to emphasize that these results were observed in 100% of
392 tested subjects. Naïve nymph and adult *H. longicornis* ticks co-feeding with SFTSV-infected adult
393 ticks on naïve hedgehogs were also 100% infected. We believe our results clearly show that
394 hedgehogs fulfill the requirements to be considered the competent amplifying hosts for SFTSV.
395 It's still plausible that other animals or birds could also maintain the natural circulation of SFTSV.
396 For example, experimentally inoculated spotted doves (*Streptopelia chinensis*) can develop
397 SFTSV viremia, however, the transmission between *H. longicornis* ticks and spotted doves is not
398 proven(Li et al., 2019).
399

400 To conclude that hedgehogs are the major amplifying hosts of SFTSV in the real world,
401 abundance, tick-association, geographic distribution in areas of transmission, and field exposure
402 need to be investigated. Our initial survey in SFTSV endemic Daishan Island and non-endemic
403 Xiushan Island reveals that the existence of hedgehogs was correlated to SFTSV transmission.
404 The epidemiological surveys we conducted in four SFTSV endemic provinces consistently
405 showed high SFTSV seroprevalence and that the population density of hedgehogs in SFTSV
406 endemic areas can be much higher than 60 animals per km^2 . Also, Hedgehogs are heavily
407 infested by ticks including *H. longicornis* with a density of 145 ticks per animal as observed in
408 Daishan Island. Hedgehogs are widely distributed across farms and rural communities, which
409 contain the people most likely to be bitten by *H. longicornis* carrying SFTSV(Li et al., 2014; Y.
410 Sun et al., 2017). Furthermore, hedgehogs share the same environment as domestic animals
411 such as dogs, goats, and cows, which are also natural hosts for *H. longicornis* ticks and showing
412 high seroprevalence to SFTVS. Thus, it is possible that humans and domestic animals get
413 similarly infected by ticks which had previously fed on SFTSV-positive hedgehogs at an earlier
414 stage in their life cycle. As previously stated, there are few large wild animals in SFTSV endemic
415 areas in China and the most common animals are rodents and insectivores. Tests on rodents
416 have shown that they are not capable of maintaining infection(Matsuno et al., 2017). Our results

417 conclusively show that of the mammals present in rural China, the hedgehogs meet all the
418 requirements of major amplifying hosts for SFTSV.

419
420 Beijing is the capital of China and is abundant in *H. longicornis* ticks and *E. amurensis*
421 hedgehogs, between which local transmission of SFTSV were detected recently in an urban
422 community in Shunyi District. Considering that there are no livestock, poultry, and stray dogs in
423 this area, it is reasonable to infer that SFTSV circulation can be maintained by just hedgehogs
424 and *H. longicornis* ticks in an urban area. So far, no human SFTS cases reported, but further
425 surveillance is warranted.

426
427 SFTSV may also spread to other countries with competent hosts and vectors. *E. europaeus*
428 hedgehogs were introduced to New Zealand by human intervention(Brockie, 1975; ISAAC, 2005).
429 The summer density of hedgehogs in three studies in New Zealand was estimated at between
430 250 hedgehogs/km²(Brockie, 1957; Parkes, 1975) and 800 hedgehogs/km²(Campbell, 1973). In
431 addition *H. longicornis* ticks are common in New Zealand and are all parthenogenetic (Figure
432 S2)(Heath, 2016). New Zealand is also on the East Asian-Australian flyway. Therefore, New
433 Zealand might be considered to have a high risk of SFTSV disease incursion, likely through
434 SFTSV positive *H. longicornis* ticks infested in migratory birds.

435

436 **Figure S2.**(A) The distribution and relative abundance of hedgehogs (*Erinaceus europaeus* L.) in
437 New Zealand modified from (Brockie, 1975). In the dark grey areas hedgehogs are numerous, in
438 the light grey areas they are few and in the white areas they are rare or absent. (B) The
439 distribution of *Haemaphysalis longicornis* in New Zealand modified from (Heath, 2016). The dark
440 grey areas are high risk, the light grey areas are low risk, and the white areas are zero risk of *H.*
441 *longicornis* Infestation. (Reproduced with permission of Elsevier and Copyright Clearance
442 Center).
443

444 In conclusion, our data strongly support our initial hypothesis that hedgehogs can maintain the
445 natural circulation of SFTSV in rural areas. The high density and wide distribution, the high-level
446 susceptibility and tolerance of hedgehogs to SFTSV, the heavy *H. longicornis* infestation rates
447 and the ability to amplify the infection level of feeding ticks are all compelling evidence that
448 hedgehogs are the major wildlife amplifying host of SFTSV. Furthermore, evidence that SFTV is
449 already circulating in ticks and hedgehogs from one urban area of Beijing means that an urban
450 epidemic of SFTS could happen quite soon. More research and surveillance are needed to
451 reduce SFTSV risks in both rural and urban areas.

452

453 Materials and Methods

454 Ethics statement

455 All animal studies were carried out in strict accordance with the recommendations in the Guide for
456 the Care and Use of Laboratory Animals of the Ministry of Science and Technology of the
457 People's Republic of China. The protocols for animal studies were approved by the Committee on
458 the Ethics of Animal Experiments of the Institute of Zoology, Chinese Academy of Sciences
459 (Approval number: IOZ20180058).

460 Animal trapping and sample collection

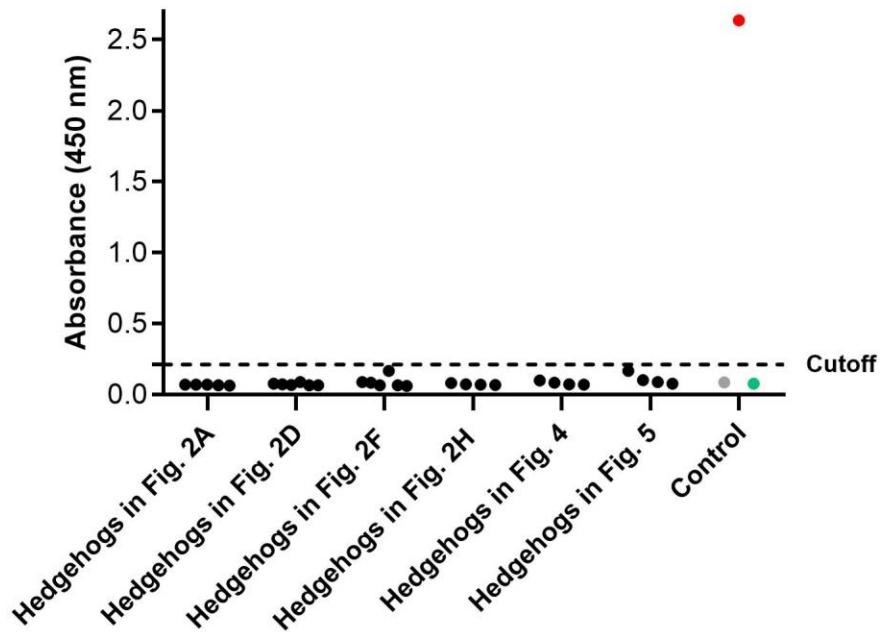
461 Animal sampling took place in Daishan City (121°30'-123°25'E, 29°32'~31°04'N), Zhejiang
462 Province, Weifang City (118°10'-120°01'E, 35°32'-37°26'N), Shandong Province, Xinyang City
463 (113°45'-115°55'E, 30°23'-32°27' N), Henan Province, Linfen City (110°22'-112°34'E, 35°23'-
464 36°57'N) ,Shanxi Province, and Beijing City (39°26'-41°03'E, 115°25'-117°30'N), China. The
465 animals were captured using rodent capture cages (cage size: 14 x 14 x 26 cm) baited with fried
466 bread sticks for three nights at each site (trappings varied between 30 and 50 traps/night
467 depending on the availability of sites in the area). Cages were deposited into fields and collected
468 the next morning (FERNANDO TORRES-PÉREZ, 2004). Animals were anesthetized by
469 inhalation using Isoflurane with a dose of 1 mL per kilogram weight in a closed container. Blood
470 samples were drawn from heart, and animals were released after blood collection. Blood samples
471 were centrifuged at 3000 g for 10 minutes and the serum was transferred to small vials, which
472 were kept at -80°C until analysis.

473 Virus and cells

474 SFTSV Wuhan strain (GenBank accession numbers: S, KU361341.1; M, KU361342.1; L,
475 KU361343.1) and rabbit anti-SFTSV-NP polyclonal antibody were provided by Wuhan Institute of
476 Virology, Chinese Academy of Sciences. Vero cells (African green monkey kidney epithelial cells)
477 were obtained from American Type Culture Collection (ATCC) and maintained in Dulbecco's
478 modified Eagle's medium (DMEM, Hyclone, US) supplemented with 8% FBS and penicillin (100 U
479 mL⁻¹), streptomycin (100 µg mL⁻¹; Gibco) and L-glutamine in a 37°C incubator supplemented with
480 5% CO₂. SFTSV was propagated at 37°C in Vero cells at a multiplicity of infection of 0.1 and
481 cultivated for 4 d. Cell culture supernatant was collected at 4 dpi and stored at -80°C as the
482 working virus stock for animal studies.

483 Virus titration

484 Focus-forming assay was performed in Vero cells to titrate the viral titers. Cells were seeded in
485 96-well plates at 10⁴ cells/well in triplicates 24 h before infection. The virus samples were diluted
486 10-fold in DMEM with 2% FBS. After the removal of culture media, a diluted viral solution was
487 added to the cells. Three hours later, the cells were washed once and incubated with DMEM plus
488 2% FBS and 20mM NH₄Cl at 37°C. 2 d post-infection, the cells were fixed with cold methanol and
489 stained using a rabbit anti-SFTSV-NP polyclonal antibody at 1:700 dilution and Alexa 488-labeled
490 goat anti-rabbit IgG at 1:700 dilution. Viral titers were examined under a fluorescent microscope
491 and calculated by Reed–Muensch method.


492 ELISA for SFTSV antibody detection.

493 Serum samples from animals were tested for SFTSV antibodies including IgG and IgM with a
494 commercial double antigen sandwich ELISA kit from Nanjing Immune-detect Bio-tech Co., Ltd.
495 (Jiangsu, China).

496

496 Experimental Infection

497 All experimental infection study was conducted in a Bio-safety Level-II Animal Laboratory in the
498 Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences. Six to
499 twelve months old male and female (1:1) African pygmy hedgehogs were purchased from
500 Longchong Pet in Beijing. Six to twelve months old male and female (1:1) Amur hedgehogs were
501 purchased from Heze animal store in Shandong Province. All animals were tested for SFTSV
502 seroprevalence by ELISA before experiments (Figure S3). Following acclimation, hedgehogs
503 were challenged with 4×10^6 FFU of SFTSV Wuhan strain via i.p. injection or i.s. injection, with
504 the 200 μ l volume divided between two injection sites. Bodyweight and clinical symptoms were
505 monitored. Hedgehogs were assigned a clinical score of increasing severity: 1, unfeeding; 2,
506 hunched posture; 3. green faeces; 4, moribund. Hedgehogs with a score of 3 or a weight loss of
507 more than 25% were humanely euthanized.

508

509 **Fig. S3** Seroprevalence of SFTSV in all hedgehogs prior to experimental infection. The serum
510 samples were tested for SFTSV IgG and IgM antibodies prior to experimental infection with a
511 commercial double antigen sandwich ELISA kit. Cutoff = $0.748 \times \text{Negative OD} + 0.146$. Red dot
512 indicates positive sample, green dot indicates negative sample and gray dot indicates blank
513 control.

514

515 For the virus transmission studies between host and vector, naïve ticks were fed on African
516 pygmy hedgehogs which were i.p. inoculated with 4×10^6 FFU of SFTSV Wuhan strain at d 0,
517 and the ticks collected when they naturally detached. And for the transmission studies between
518 vector and host naïve African pygmy hedgehogs were bitten by infected ticks. Bodyweight and
519 clinical symptoms in bitten hedgehogs were monitored.

520 For the hibernation experiment, Hedgehogs were challenged with 4×10^6 FFU of SFTSV Wuhan
521 strain and then spent half month or one month in 4°C refrigerator. Two of the hedgehogs were
522 waken up at d 15 and another two were waken up at d 30. The blood samples were taken from
523 the heart for viral RNA detection.

524 **SFTSV-RNA extraction and real-time RT-PCR**

525 Total RNA prepared from the homogenates of the ticks and the blood samples collected from
526 hedgehogs' heart were extracted using TRIzol reagent (Thermo Fisher Scientific, USA) or the

527 RNeasy kit (Qiagen, Germany) according to the manufacturer's instructions. Samples were
528 analyzed using a One-Step SYBR PrimerScript reverse transcription (RT)-PCR kit (TaKaRa,
529 Japan) on Applied Biosystems QuantStudio. Each sample was measured by triplicate. The
530 primers were designed as previously described(Dong et al., 2019). Conditions for the reaction
531 were as follows: 42°C for 5 min, 95°C for 10 sec, 40 cycles at 95°C for 5 sec, and 60°C for 20
532 sec.

533 **Pathological lesions in SFTSV-Infected hedgehogs**

534 Six African pygmy hedgehogs were inoculated with 4×10^6 FFU of the Wuhan strain of SFTSV by
535 i.p. route and two were killed at each time point of d 3, 6 and months 2 post infection for analysis
536 of viremia and pathology. Two mock-infected control hedgehogs were killed at d 0. For
537 histopathological evaluation, spleens were rapidly removed, fixed in 4% PFA at room temperature
538 for 7 d, and routinely processed for paraffin embedding. Coronal, 4–5 μ m thick serial sections
539 were performed and selected sections were stained with H&E for light microscopy examination.
540 Images were obtained using a Nikon Eclipse 50i Light Microscope (Nikon, Tokyo, Japan) or
541 Olympus BX60 microscope (Shinjuku, Tokyo, Japan)

542 **Identification of tick species and phylogenetic analysis**

543 Ticks were identified based on morphological characteristics, visualized through a light
544 microscope, with further molecular confirmation in the laboratory by sequencing the mitochondrial
545 16S ribosomal RNA (16S rRNA) gene. The primers were as follows: (16S-1)
546 CTGCTCAATGATTTTTAAATTGCTGTGG (Forward primer) and (16S-2)
547 CGCTGTTATCCCTAGAGTATT (Reverse primer). A single leg was removed from each tick for
548 the molecular analysis to confirm identification. Phylogenetic analysis was performed using the
549 whole mitochondrial genomes. Tick DNA was extracted using the MightyPrep reagent for DNA Kit
550 (Takara, Japan) according to the manufacturer's instructions. The mitochondrial DNA were
551 sequenced by next generation sequencing (Tsingke Biotech, Beijing, China) and deposited in
552 GenBank (Parthenogenetic *H. longicornis* in Shunyi District: OL335941; Chaoyang District:
553 OL335942). The phylogenetic tree was constructed using the maximum likelihood method,
554 MEGA-X with the bootstrap value set at 1000.

555 **SFTSV sequencing and phylogenetics analysis**

556 The SFTSV sequences from Shunyi *H. longicornis* ticks were amplified using (L4010-
557 F:GGAACCTCTAGCCACTCTGTT; L4963-R:GTAGAGAAGGCCTATGATC) and sequenced
558 by Tsingke Biotech, Beijing, China, and then deposited in the GenBank (Accession number:
559 OL518989). SFTSV sequences in the phylogenetics analysis were downloaded from
560 GenBank(Shi et al., 2017; Yoshikawa et al., 2015). The phylogenetic trees were constructed
561 using the maximum likelihood method, MEGA program. The confidence of the tree was tested
562 using 1000 bootstrap replications.

563

564 **Acknowledgments**

565 We gratefully thank the following funders: the State Key Research Development Program of
566 China (2019YFC12005004, 2019YFC12005001), the Strategic Priority Research Program of
567 Chinese Academy of Sciences (Grant No. XDPB16), the key program of Chinese Academy of
568 Sciences (CAS) (KJZD-SW-L11), Natural Science Foundation of Zhejiang Province (NO.
569 LY21H100002), and the Open Research Fund Program of State Key Laboratory of Integrated
570 Pest Management (IPM2109). We also thank Rachel Summers, Massey University for
571 constructing the New Zealand hedgehog distribution map.

572

573 **Competing interests**

574 The authors declare no competing interests.

575

576 **References**

577

578 Bouma, H. R., Carey, H. V., & Kroese, F. G. (2010). Hibernation: the immune system at rest? *J*
579 *Leukoc Biol*, 88(4), 619-624. doi: 10.1189/jlb.0310174

580 Brockie, R. E. (1957). <The hedgehog population and invertebrate fauna of the west coast sand
581 dunes..pdf>.

582 Brockie, R. E. (1975). Distribution and abundance of the hedgehog (*Erinaceus europaeus*) L. in
583 New Zealand, 1869–1973. *New Zealand Journal of Zoology*, 2(4), 445-462. doi:
584 10.1080/03014223.1975.9517886

585 Campbell, P. A. (1973). <The feeding behaviour of the hedgehog (*Erinaceus europaeus* L.) in
586 pasture land in New Zealand..pdf>.

587 Casel, M. A., Park, S. J., & Choi, Y. K. (2021). Severe fever with thrombocytopenia syndrome
588 virus: emerging novel phleboviruses and their control strategy. *Exp Mol Med*, 53(5), 713-
589 722. doi: 10.1038/s12276-021-00610-1

590 Chen, C., Li, P., Li, K. F., Wang, H. L., Dai, Y. X., Cheng, X., & Yan, J. B. (2019). Animals as
591 amplification hosts in the spread of severe fever with thrombocytopenia syndrome
592 virus: A systematic review and meta-analysis. *Int J Infect Dis*, 79, 77-84. doi:
593 10.1016/j.ijid.2018.11.017

594 Denic, S., Janbeih, J., Nair, S., Conca, W., Tariq, W. U., & Al-Salam, S. (2011). Acute
595 Thrombocytopenia, Leucopenia, and Multiorgan Dysfunction: The First Case of SFTS
596 Bunyavirus outside China? *Case Rep Infect Dis*, 2011, 204056. doi: 10.1155/2011/204056

597 Dong, F., Li, D., Wen, D., Li, S., Zhao, C., Qi, Y., . . . Zheng, A. (2019). Single dose of a rVSV-based
598 vaccine elicits complete protection against severe fever with thrombocytopenia
599 syndrome virus. *NPJ Vaccines*, 4, 5. doi: 10.1038/s41541-018-0096-y

600 Dziedzian, S., Sikora, B., Pilacinska, B., Michalik, J., & Zwolak, R. (2015). Ectoparasite loads in
601 sympatric urban populations of the northern white-breasted and the European
602 hedgehog. *Parasitol Res*, 114(6), 2317-2323. doi: 10.1007/s00436-015-4427-x

603 FERNANDO TORRES-PÉREZ, J. N.-D., REBECA ALDUNATE, TERRY L. YATES, GREGORY J. MERTZ,
604 PABLO A. VIAL, MARCELA FERRÉS, PABLO A. MARQUET, and R. EDUARDO PALMA.
605 (2004). PERIDOMESTIC SMALL MAMMALS ASSOCIATED WITH CONFIRMED CASES OF
606 HUMAN HANTAVIRUS DISEASE IN SOUTHCENTRAL CHILE. *The American Journal of
607 Tropical Medicine and Hygiene*, 70(3), 305–309. doi:
608 <https://doi.org/10.4269/ajtmh.2004.70.305>

609 Fu, Y., Li, S., Zhang, Z., Man, S., Li, X., Zhang, W., . . . Cheng, X. (2016). Phylogeographic analysis
610 of severe fever with thrombocytopenia syndrome virus from Zhoushan Islands, China:
611 implication for transmission across the ocean. *Sci Rep*, 6, 19563. doi: 10.1038/srep19563

612 He, K., Chen, J. H., Gould, G. C., Yamaguchi, N., Ai, H. S., Wang, Y. X., . . . Jiang, X. L. (2012). An
613 estimation of *Erinaceidae* phylogeny: a combined analysis approach. *PLoS One*, 7(6),
614 e39304. doi: 10.1371/journal.pone.0039304

615 Heath, A. (2016). Biology, ecology and distribution of the tick, *Haemaphysalis longicornis*
616 Neumann (Acari: Ixodidae) in New Zealand. *New Zealand veterinary journal*, 64. doi:
617 10.1080/00480169.2015.1035769

618 Hu, L., Kong, Q., Liu, Y., Li, J., Bian, T., Ma, X., . . . Li, J. (2021). Time Course of Severe Fever With
619 Thrombocytopenia Syndrome Virus and Antibodies in Patients by Long-Term Follow-Up
620 Study, China. *Front Microbiol*, 12, 744037. doi: 10.3389/fmicb.2021.744037

621 Hu, Y. Y., Zhuang, L., Liu, K., Sun, Y., Dai, K., Zhang, X. A., . . . Liu, W. (2020). Role of three tick
622 species in the maintenance and transmission of Severe Fever with Thrombocytopenia
623 Syndrome Virus. *PLoS Negl Trop Dis*, 14(6), e0008368. doi:
624 10.1371/journal.pntd.0008368

625 Huang, X. Y., Du, Y. H., Wang, H. F., You, A. G., Li, Y., Su, J., . . . Xu, B. L. (2019). Prevalence of
626 severe fever with thrombocytopenia syndrome virus in animals in Henan Province,
627 China. *Infect Dis Poverty*, 8(1), 56. doi: 10.1186/s40249-019-0569-x

628 ISAAC, J. L. (2005). Introduced Mammals of the World: Their History, Distribution and Influence.
629 *Austral Ecology*, 30(2).

630 Jahfari, S., Ruyts, S. C., Frazer-Mendelewska, E., Jaarsma, R., Verheyen, K., & Sprong, H. (2017).
631 Melting pot of tick-borne zoonoses: the European hedgehog contributes to the
632 maintenance of various tick-borne diseases in natural cycles urban and suburban areas.
633 *Parasit Vectors*, 10(1), 134. doi: 10.1186/s13071-017-2065-0

634 Jiang, Z., Liu, S., Wu, Y., Jiang, X., & Zhou, K. (2017). China's mammal diversity (2nd edition) .
635 25(8), 886-895.

636 Jiao, Y., Qi, X., Liu, D., Zeng, X., Han, Y., Guo, X., . . . Zhou, M. (2015). Experimental and Natural
637 Infections of Goats with Severe Fever with Thrombocytopenia Syndrome Virus: Evidence
638 for Ticks as Viral Vector. *PLoS Negl Trop Dis*, 9(10), e0004092. doi:
639 10.1371/journal.pntd.0004092

640 Kim, J. Y., Jung, M., Kho, J. W., Song, H., Moon, K., Kim, Y. H., & Lee, D. H. (2020).
641 Characterization of overwintering sites of *Haemaphysalis longicornis* (Acari: Ixodidae)
642 and tick infection rate with severe fever with thrombocytopenia syndrome virus from
643 eight provinces in South Korea. *Ticks Tick Borne Dis*, 11(5), 101490. doi:
644 10.1016/j.ttbdis.2020.101490

645 Lewis, J. H. (1976). Comparative hematology-studies on hedgehogs (*Erinaceus europaeus*). *Comp
646 Biochem Physiol A Comp Physiol*, 53(3), 237-240. doi: 10.1016/s0300-9629(76)80027-8

647 Li, Z., Bao, C., Hu, J., Gao, C., Zhang, N., Xiang, H., . . . Xing, Z. (2019). Susceptibility of spotted
648 doves (*Streptopelia chinensis*) to experimental infection with the severe fever with
649 thrombocytopenia syndrome phlebovirus. *PLoS Negl Trop Dis*, 13(7), e0006982. doi:
650 10.1371/journal.pntd.0006982

651 Li, Z., Bao, C., Hu, J., Liu, W., Wang, X., Zhang, L., . . . Xing, Z. (2016). Ecology of the Tick-Borne
652 Phlebovirus Causing Severe Fever with Thrombocytopenia Syndrome in an Endemic
653 Area of China. *PLoS Negl Trop Dis*, 10(4), e0004574. doi: 10.1371/journal.pntd.0004574

654 Li, Z., Hu, J., Bao, C., Li, P., Qi, X., Qin, Y., . . . Zhou, M. (2014). Seroprevalence of antibodies
655 against SFTS virus infection in farmers and animals, Jiangsu, China. *J Clin Virol*, 60(3),
656 185-189. doi: 10.1016/j.jcv.2014.03.020

657 Lin, T. L., Ou, S. C., Maeda, K., Shimoda, H., Chan, J. P., Tu, W. C., . . . Chou, C. C. (2020). The first
658 discovery of severe fever with thrombocytopenia syndrome virus in Taiwan. *Emerg
659 Microbes Infect*, 9(1), 148-151. doi: 10.1080/22221751.2019.1710436

660 Liu, Q., He, B., Huang, S. Y., Wei, F., & Zhu, X. Q. (2014). Severe fever with thrombocytopenia
661 syndrome, an emerging tick-borne zoonosis. *Lancet Infect Dis*, 14(8), 763-772. doi:
662 10.1016/S1473-3099(14)70718-2

663 Liu, S., Chai, C., Wang, C., Amer, S., Lv, H., He, H., . . . Lin, J. (2014). Systematic review of severe
664 fever with thrombocytopenia syndrome: virology, epidemiology, and clinical
665 characteristics. *Rev Med Virol*, 24(2), 90-102. doi: 10.1002/rmv.1776

666 Luo, L. M., Zhao, L., Wen, H. L., Zhang, Z. T., Liu, J. W., Fang, L. Z., . . . Yu, X. J. (2015).
667 *Haemaphysalis longicornis* Ticks as Reservoir and Vector of Severe Fever with
668 Thrombocytopenia Syndrome Virus in China. *Emerg Infect Dis*, 21(10), 1770-1776. doi:
669 10.3201/eid2110.150126

670 Matsuno, K., Orba, Y., Maede-White, K., Scott, D., Feldmann, F., Liang, M., & Ebihara, H. (2017).
671 Animal Models of Emerging Tick-Borne Phleboviruses: Determining Target Cells in a
672 Lethal Model of SFTSV Infection. *Front Microbiol*, 8, 104. doi: 10.3389/fmicb.2017.00104

673 Niu, G., Li, J., Liang, M., Jiang, X., Jiang, M., Yin, H., . . . Li, D. (2013). Severe fever with
674 thrombocytopenia syndrome virus among domesticated animals, China. *Emerg Infect
675 Dis*, 19(5), 756-763. doi: 10.3201/eid1905.120245

676 Nosek, J., & Grulich, I. (1967). The relationship between the tick-borne encephalitis virus and the
677 ticks and mammals of the Tribec mountain range. *Bull World Health Organ*, 36 Suppl,
678 31-47.

679 Park, S. C., Park, J. Y., Choi, J. Y., Oh, B., Yang, M. S., Lee, S. Y., . . . Kim, B. (2021). Experimental
680 infection of dogs with severe fever with thrombocytopenia syndrome virus:
681 pathogenicity and potential for intraspecies transmission. *Transbound Emerg Dis*. doi:
682 10.1111/tbed.14372

683 Park, S. W., Song, B. G., Shin, E. H., Yun, S. M., Han, M. G., Park, M. Y., . . . Ryou, J. (2014).
684 Prevalence of severe fever with thrombocytopenia syndrome virus in Haemaphysalis
685 longicornis ticks in South Korea. *Ticks Tick Borne Dis*, 5(6), 975-977. doi:
686 10.1016/j.ttbdis.2014.07.020

687 Parkes, J. (1975). Some aspects of the biology of the hedgehog(*Erinaceus europaeus*L.) in the
688 Manawatu, New Zealand. *New Zealand Journal of Zoology*, 2(4), 463-472. doi:
689 10.1080/03014223.1975.9517887

690 Riley, P. Y., & Chomel, B. B. (2005). Hedgehog zoonoses. *Emerg Infect Dis*, 11(1), 1-5. doi:
691 10.3201/eid1101.040752

692 Shi, J., Hu, S., Liu, X., Yang, J., Liu, D., Wu, L., . . . Shen, S. (2017). Migration, recombination, and
693 reassortment are involved in the evolution of severe fever with thrombocytopenia
694 syndrome bunyavirus. *Infect Genet Evol*, 47, 109-117. doi:
695 10.1016/j.meegid.2016.11.015

696 Simkova, A. (1966). Quantitative study of experimental Tahyna virus infection in hibernating
697 hedgehogs. *J Hyg Epidemiol Microbiol Immunol*, 10(4), 499-509.

698 Smith, A. T., Xie, Y., Hoffmann, R. S., Lunde, D., MacKinnon, J., Wilson, D. E., & Wozencraft, W. C.
699 (2010). A Guide to the Mammals of China. Princeton University Press. *Princeton
700 University Press*.

701 Sun, J., Lu, L., Wu, H., Yang, J., Liu, K., & Liu, Q. (2018). Spatiotemporal patterns of severe fever
702 with thrombocytopenia syndrome in China, 2011-2016. *Ticks Tick Borne Dis*, 9(4), 927-
703 933. doi: 10.1016/j.ttbdis.2018.03.026

704 Sun, Y., Liu, M. M., Luo, L. M., Zhao, L., Wen, H. L., Zhang, Z. T., . . . Yu, X. J. (2017).
705 Seroprevalence of Severe Fever with Thrombocytopenia Syndrome Virus in Hedgehog
706 from China. *Vector Borne Zoonotic Dis*, 17(5), 347-350. doi: 10.1089/vbz.2016.2019

707 Takahashi, T., Maeda, K., Suzuki, T., Ishido, A., Shigeoka, T., Tominaga, T., . . . Saijo, M. (2014).
708 The first identification and retrospective study of Severe Fever with Thrombocytopenia
709 Syndrome in Japan. *J Infect Dis*, 209(6), 816-827. doi: 10.1093/infdis/jit603

710 Tran, X. C., Yun, Y., Van An, L., Kim, S. H., Thao, N. T. P., Man, P. K. C., . . . Lee, K. H. (2019).
711 Endemic Severe Fever with Thrombocytopenia Syndrome, Vietnam. *Emerg Infect Dis*,
712 25(5), 1029-1031. doi: 10.3201/eid2505.181463

713 Wang, S., Li, J., Niu, G., Wang, X., Ding, S., Jiang, X., . . . Li, D. (2015). SFTS virus in ticks in an
714 endemic area of China. *Am J Trop Med Hyg*, 92(4), 684-689. doi: 10.4269/ajtmh.14-0008

715 Yoshikawa, T., Shimojima, M., Fukushi, S., Tani, H., Fukuma, A., Taniguchi, S., . . . Saito, M.
716 (2015). Phylogenetic and Geographic Relationships of Severe Fever With
717 Thrombocytopenia Syndrome Virus in China, South Korea, and Japan. *J Infect Dis*,
718 212(6), 889-898. doi: 10.1093/infdis/jiv144

719 Yu, X. J., Liang, M. F., Zhang, S. Y., Liu, Y., Li, J. D., Sun, Y. L., . . . Li, D. X. (2011). Fever with
720 thrombocytopenia associated with a novel bunyavirus in China. *New England Journal of
721 Medicine*, 364(16), 1523-1532. doi: 10.1056/NEJMoa1010095

722 Yun, Y., Heo, S. T., Kim, G., Hewson, R., Kim, H., Park, D., . . . Lee, K. H. (2015). Phylogenetic
723 Analysis of Severe Fever with Thrombocytopenia Syndrome Virus in South Korea and
724 Migratory Bird Routes Between China, South Korea, and Japan. *Am J Trop Med Hyg*,
725 93(3), 468-474. doi: 10.4269/ajtmh.15-0047

726 Zhang, G., Zheng, D., Tian, Y., & Li, S. (2019). A dataset of distribution and diversity of ticks in
727 China. *Sci Data*, 6(1), 105. doi: 10.1038/s41597-019-0115-5

728 Zhang, X., Zhao, C., Cheng, C., Zhang, G., Yu, T., Lawrence, K., . . . Zheng, A. (2022). Rapid Spread
729 of Severe Fever with Thrombocytopenia Syndrome Virus by Parthenogenetic Asian
730 Longhorned Ticks. *Emerg Infect Dis*, 28(2), 363-372. doi: 10.3201/eid2802.211532

731 Zhao, L., Li, J., Cui, X., Jia, N., Wei, J., Xia, L., . . . Cao, W. (2020). Distribution of *Haemaphysalis*
732 *longicornis* and associated pathogens: analysis of pooled data from a China field survey
733 and global published data. *Lancet Planet Health*, 4(8), e320-e329. doi: 10.1016/S2542-
734 5196(20)30145-5

735 Zhu, L., Yin, F., Momming, A., Zhang, J., Wang, B., Gao, L., . . . Shen, S. (2019). First case of
736 laboratory-confirmed severe fever with thrombocytopenia syndrome disease revealed
737 the risk of SFTSV infection in Xinjiang, China. *Emerg Microbes Infect*, 8(1), 1122-1125.
738 doi: 10.1080/22221751.2019.1645573

739 Zhuang, L., Sun, Y., Cui, X. M., Tang, F., Hu, J. G., Wang, L. Y., . . . Cao, W. C. (2018). Transmission
740 of Severe Fever with Thrombocytopenia Syndrome Virus by *Haemaphysalis longicornis*
741 Ticks, China. *Emerg Infect Dis*, 24(5). doi: 10.3201/eid2405.151435

742 Zohaib, A., Zhang, J., Saqib, M., Athar, M. A., Hussain, M. H., Chen, J., . . . Shen, S. (2020).
743 Serologic Evidence of Severe Fever with Thrombocytopenia Syndrome Virus and Related
744 Viruses in Pakistan. *Emerg Infect Dis*, 26(7), 1513-1516. doi: 10.3201/eid2607.190611

745

Supplementary Information for

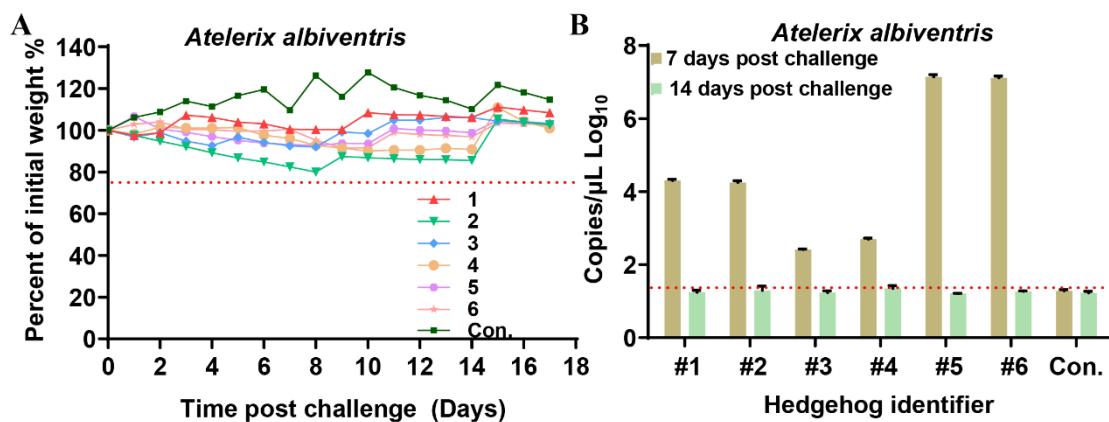
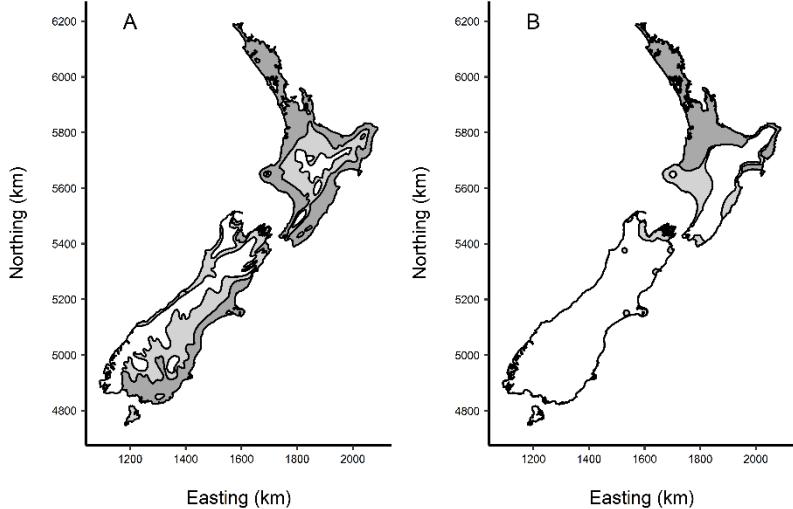
Hedgehogs are the major amplifying hosts of severe fever with thrombocytopenia syndrome virus

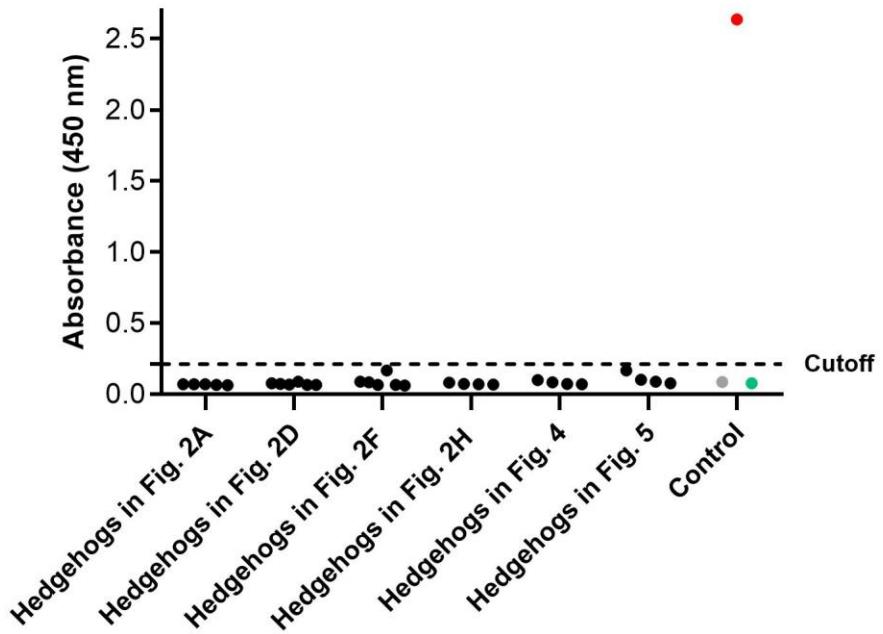
Chaoyue Zhao^{† 1,2}, Xing Zhang^{†1,3}, Junfeng Hao^{†4}, Ling Ye⁵, Kevin Lawrence⁶, Yajun Lu⁷, Chunhong Du⁸, Xiaoxi Si⁹, Haidong Xu¹⁰, Qian Yang¹¹, Qianfeng Xia⁷, Guoxiang Yu¹², Fei Yuan¹, Jiafu Jiang^{13*}, Aihua Zheng^{1,2*}

† The authors contributed equally to this work.

* Aihua Zheng; Jiafu Jiang

Email: zhengaihua@ioz.ac.cn (A.Z.); jiangjf2008@gmail.com (J.J.)


Figure S1.

SFTSV viremia and weight change in experimentally infected *A. albiventris* hedgehogs bled twice. Hedgehogs were challenged (i.p.) with 4×10^6 FFU of SFTSV Wuhan strain and then monitored for weight loss everyday (A) and viremia on d 7 and 14, measured by Real-time PCR as RNA copies per μL of serum (B) (error bars represent SD). Each line and bar indicate one hedgehog.

Figure S2.

(A) The distribution and relative abundance of hedgehogs (*Erinaceus europaeus* L.) in New Zealand modified from (Brockie, 1975). In the dark grey areas hedgehogs are numerous, in the light grey areas they are few and in the white areas they are rare or absent. (B) The distribution of *Haemaphysalis longicornis* in New Zealand modified from (Heath, 2016). The dark grey areas are high risk, the light grey areas are low risk, and the white areas are zero risk of *H. longicornis* Infestation. (Reproduced with permission of Elsevier and Copyright Clearance Center).

Fig. S3

Seroprevalence of SFTSV in all hedgehogs prior to experimental infection. The serum samples were tested for SFTSV IgG and IgM antibodies prior to experimental infection with a commercial double antigen sandwich ELISA kit. Cutoff = $0.748 \times \text{Negative OD} + 0.146$. Red dot indicates positive sample, green dot indicates negative sample and gray dot indicates blank control.

References

Brockie, R. E. (1975). Distribution and abundance of the hedgehog (*Erinaceus europaeus*) L. in New Zealand, 1869–1973. *New Zealand Journal of Zoology*, 2(4), 445-462. doi:10.1080/03014223.1975.9517886

Heath, A. (2016). Biology, ecology and distribution of the tick, *Haemaphysalis longicornis* Neumann (Acar: Ixodidae) in New Zealand. *New Zealand veterinary journal*, 64. doi:10.1080/00480169.2015.1035769