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Abstract

Motivation: Identifying chromatin loops from genome-wide interaction matrices like Hi-C data is notoriously
difficult. Such kinds of patterns can span through the genome from a hundred kilobases to thousands of kilobases.
Most loop patterns are frequently related to biological functions, such as providing contacts between regulatory
regions and promoters. They can also affect the cell-specific biological functions of different regulatory regions
of DNA, thus leading to disease and tumorigenesis. While most statistical methods failed in the generalization to
multiple cell types, recently proposed machine learning-based methods struggled when tested on sparse single-
cell Hi-C (scHi-C) contact maps. We notice that there is an urgent need for an algorithm that can handle sparse
scHi-C maps, and at the same time, can generate confident loop calls on regular cell lines.

Results: Therefore, we propose a novel deep learning-based framework for Hi-C chromatin loop detection
(HiC-LDNet) and provide corresponding downstream analysis. HiC-LDNet can give relatively more accurate
predictions in multiple tissue types and contact technologies. Compared to other loop calling algorithms, such
as HiCCUPS, Peakachu, and Chromosight, HiC-LDNet recovers a higher number of loop calls in multiple ex-
perimental platforms (Hi-C, ChIA-PET, DNA-SPRITE, and HiChIP), and achieves higher confidence scores in
multiple cell types (Human GM 12878, K562, HAP1, and H1-hESC). For example, in genome-wide loop detec-
tion on the human GM 12878 cell line, HiC-LDNet successfully recovered 82.5% of loops within only 5 pixels of
10k bp resolution. Furthermore, in the sparse scHi-C ODC tissue, HiC-LDNet achieves superior performance by
recovering 93.5% of ground truth loops with high confidence scores, compared with that of Peakachu (31.5%),
Chromosight(69.6%), and HICCUPS(9.5%). Therefore, our method is a robust and general pipeline for genome-
wide chromatin loop detection for both bulk Hi-C and scHi-C data.
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1 Introduction

Chromatin loops occur when stretches of genomics sequences that lie on the same chromosome are in close
physical proximity to each other. Multiple experimental approaches have been introduced to determine the gene
loci of the looped structure. Derived from Chromosome Conformation Capture (3C) [1] technology, Hi-C [2]
utilizes high-throughput sequencing technology to study the relationship between the entire chromatin DNA in
the whole genome in space, and obtains high resolution rate information about the three-dimensional structure of
chromatin.

Other experimental methods also provide solid genome-wide chromatin interaction information. For example,
Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) [3] incorporates chromatin immuno-
precipitation (ChIP)-based enrichment to measure different aspects of chromatin organization. Similar to CHIA-
PET, Proximity Ligation-Assisted ChIP-seq (PLAC-seq)[4] reduces the number of input materials and improves
the sensitivity and robustness by conducting proximity ligation prior to chromatin shearing and immunoprecipita-
tion. HiChIP [5] is another approach that enables genome-wide mapping of protein-directed topological features,
which lowers the input requirement over 100-fold compared with ChIA-PET. SPRITE [6] enables genome-wide
mapping of higher-order interactions in the nucleus, and can detect multiple DNA and RNA molecules that inter-
act at the same time, and get richer data than Hi-C. As a new approach to identify higher-order genomic structure,
DNA SPRITE[6] is a special kind of SPRITE experiment that only assays interactions between regions of ge-
nomic DNA. STORM [[7] and HiFISH [§8]] are two methods that utilize super-resolution imaging to reveal distinct
chromatin structures, in which STORM can even differ epigenomic states in single mammalian cells.

According to previous research [9], some of the mammals’ CTCF binding protein is mostly enriched at loop
anchors, while others are closely associated with enhancer-promoter interactions that can be bound by Mediator
and cohesion complex. Since loop extrusion models can be used to explain the formation of topologically asso-
ciating domains (TAD) . Based on previous research [10], TADs are mostly formed by the ring-shaped protein
complex, great proportion of diseases are closely related to TAD-like structural variations[9, [11]. For example,
the duplication of TAD boundary could lead to colorectal cancer, and the fusion TADs are probable causes for
Adult-onset demyelinating and leukodystrophy [9]].

Although such clear structural patterns can be visually identified in Hi-C maps, it is still time-consuming and
inefficient. Therefore, researchers have been working on developing different computational tools for automated
chromatin loop detection. As one of the most commonly used statistical methods, HICCUPS [12, 13] is known
for its fully-automated pipeline for the annotation from Hi-C data. Another statistical method, Fit-Hi-C [14]],
computes the confidence estimates (p-value) on contact maps to identify chromatin interactions. HiCExplorer [15]]
provides a comprehensive toolbox for integrative analysis of Hi-C data. Juicer [[13] and HiC-Pro [16] are two other
widely used tools for the downstream analysis of Hi-C data. Mango [17] is another early proposed software that
specifically works on ChIA-PET data analysis. However, statistical approaches show poor robustness to different
sequencing protocols and cell types, therefore leading to a weak generalization ability. Another drawback for
these statistical methods is that they heavily require intensive computational resources, thus are mostly limited to
a local installation, which consumes much disk and memory during operation. Also, they do not have any scoring
function so they cannot show their methods’ confidence towards the predicted loop calls. Therefore, constructing
a more efficient scoring function is still one of the important goals in this research topic.

Recently, researchers have been working on applying more advanced supervised learning methods to give bet-
ter detection results in variant chromosome contact maps. In Peakachu [[18], a machine-learning-based framework
is proposed for genome-wide interaction detection. Such a top-down method utilizes the random forest model to
train a binary classification classifier and detect each sub-window across the whole genome. Being able to detect
chromatin interactions on multiple cell types, such top-down-based methods needs an accurate predictor and a
reliable scoring algorithm. However, it would generate multiple loop calls around the same ground truth loop,
therefore a trustworthy aggregation algorithm is critical for this kind of approach. The lately proposed method,
namely Chromosight [19]], takes advantage of kernel convolution in computer vision to generate relatively accurate
predictions from sparse matrices. It can detect multiple patterns in chromosome contact maps, including loops,
borders, hairpins. To date, Peakachu and Chromosight are two of the most state-of-the-art techniques for genome-
wide chromatin loop detection. Nevertheless, these methods show comparative poor performance on scHi-C data,
which bears high sparsity.

As single-cell analysis has become a trending topic in the field, single-cell sequencing methods target indi-
vidual cells, and may help uncover many longstanding questions such as cell lineage relationship and function
of DNA or histone modification at an individual-cell level [20]]. With the rise of single-cell sequencing technolo-
gies, there has been an increasing demand for tools suitable for analyzing scHi-C data. Higashi [21] first utilizes
a trained neural network to generate embedding for scHi-C data and impute the sparse scHi-C contact maps.
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Figure 1: An overview of HiC-LDNet, which is applicable on multiple cell types and scHi-C. (A): After training
with multiple experimental techniques, including (Hi-C, scHi-C, HiChIP, ChIA-PET and DNA SPRITE), our
framework could accurately identify contact map slices with loop and non-loop classification. (B): The binary
classification model is further applied on the whole genome for genome-wide loop detection with data from
multiple tissue types and platforms.

SNIPER proposed a novel denoising auto-encoder for dense Hi-C reconstruction from sparse Hi-C matrices.
scHiCluster focuses on different patterns such as topologically associating domains (TAD) structures, and
their contribution lies in the accurate clustering of different cell types from single-cell Hi-C data.

However, existing analysis tools such as scHiCExplorer [24]], in most situations, cannot be used for bulk Hi-C
data analysis. Therefore, it urges the need for a method that is able to possess the ability to analyze both bulk Hi-C
data as well as scHi-C ones with the same tool.

Recently, deep learning has demonstrated high prediction accuracy in computer vision tasks as well as in
computational biology [26],27,28]. A simple neural network can obtain very complex underlying features, which
is especially suitable for large-scale data sets and sparse dimension cases. Also, a robust deep neural network can
show good generalization ability when applied to a completely new data set without losing precision and accuracy.

To this end, we propose HiC-LDNet, a novel end-to-end deep learning framework for genome-wide loop
detection, which addresses topical challenges presented above:

i HiC-LDNet can outperform existing computational methods in genome-wide loop detection throughout
samples collected from different tissue types (GM12878, K562, HAP1, and H1-hESC) among multiple
experimental methods (Hi-C, HiChIP, DNA SPRITE, and ChIA-PET).

ii Our framework shows strong robustness when scanning through the extremely sparse single-cell Hi-C (scHi-
C) data, and can recover the majority of the labeled loops. Compared with three state-of-the-art methods,
HiC-LDNet achieves superior performance by recovering 93.5% of ground truth loops within 50kbp shift
compared with that of Peakachu (31.5%), Chromosight (69.6%), and HICCUPS (9.5%).

iii The proposed deep learning framework can be trained in an end-to-end scheme without high memory usage
and time complexity, and gives relative higher confidence scores with fewer false positive detection.
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2 Materials and Methods
2.1 Overview of HiC-LDNet

As described in Fig. [T} we first train HiC-LDNet based on contact maps from different experimental methods,
such as Hi-C, scHi-C, HiChIP, DNA SPRITE, and ChIA-PET. The contact map can either be read in hic format or
mcool format.

2.1.1 An End-to-End Trained Classifier

For positive loop classification, we extract feature representations for each loop with multiple convolutional layers
with different kernel sizes. Detailed feature information can be obtained with different strides to capture the grand
and local features of the given contact map (Fig. [1| A).

Since the number of positive loop samples collected in genome-wide contact maps is relatively small compared
with non-loop samples. In order to imitate such imbalanced distributions, we use three times the number of
negative samples compared to the number of positive samples to train our model. Specifically, the dropout layer
and the batch norm layer in the network are to prevent the network from overfitting. After the model is trained
for accurate loop and non-loop classification, we apply HiC-LDNet on the entire genome for genome-wide loop
detection.

——» Filter IOU<0.5
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10U =

Area of Union

=
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Figure 2: The IOU filter with k-Means clustering algorithm for loop aggregation.

2.1.2 Genome-wide Detection with K-means Clustering

In the prediction stage (Fig. [I|B), a sliding window algorithm is conducted to sample candidate loop window with
10 x 10 sizes of 10kb resolution, and then fed into the previous neural network. As described in Fig. [2] there will
be thousands of positive candidates generated across the genome, which will definitely have overlap with each
other. We further aggregate the positive detection and pool them into multiple clusters. After having the centers
for all the positive detection boxes, we conducted K-means algorithm [29] to find the center of each cluster as the
final loop call. The users can either choose a shorter step size for a more confident loop prediction, which may
lead to a slower detection speed, or they can scan through the genome with a bigger step size in order to get a
faster detection speed.

When having n positive boxes with high soft-max probability, we initialize the clustering centers ¢ = ¢y, ca, ...Cy,..
The task of the aggregation algorithm is to reduce the loop centers and thus reduce the false positive detection.
Then, we calculate the area of Intersection over Union (IoU) between positive boxes with overlap.

When having an IoU larger than 0.5, we consider that the two boxes are detecting the same loop. After the
filtering, we would define k loop centers and initialize k clustering centers. Based on the fact that the clusters
are approximately Gaussian, K-means aggregation is a very proper algorithm when dealing with genome-wide
detection regardless of overlap.

2.2 Data Set Construction

In order to prove the generalization ability of our model, we have bench-marked our model intensively across
different data-sets (statistics shown in Table [I)), which can be accessed through public available platforms such as
4DN Portal [30} 31} [12]] and ENCODE Project [32]. In the experiments, HiC-LDNet has demonstrated a stable
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Experimental Protocol Cell Types Training Loops Distance Distribution (kbp)
<200 200-  500- >
500 1000 1000
Hi-C GM12878 9,166 3412 3,402 1,695 657
Hi-C K562 24,475 15,486 6,665 1,774 550
Hi-C HAPI 8,017 2,601 3,135 1,643 638
Hi-C H1-hESC 26,549 17,608 7,206 1,524 211
Hi-C GM12878 9,166 3412 3402 1,695 657
ChIA-PET GM12878 9,166 3412 3,402 1,695 657
DNA-SPRITE GM12878 9,166 3412 3,402 1,695 657
HiChIP GM12878 9,166 3412 3,402 1,695 657
scHi-C | ODC 6,249 2,975 2,396 703 175

Table 1: The statistics of the benchmark contact maps of multiple data sets across different cell types (GM 12878,
K562, HAP1, H1-hESC) and multiple sequencing methods (Hi-C, ChIA-PET, DNA-SPRITE, and HiChIP). A
relatively smaller number of loops are detected in scHi-C ODC cell lines. For different sequencing methods, we
fix the cell line to be GM 12878 and apply the same ground truth file across different sequencing protocols.

performance on data-sets across different tissue types as well as contact technologies. Furthermore, it has shown
a significant advantage over other current detection methods when being applied on scHi-C data, whose inherent
sparsity imposes a great challenge to the versatility of the detection model.

Each of the data set in this project is comprised of two parts, one file containing the Hi-C contact matrix,
which incorporates the interaction frequency between any pairs of genome loci on any chromosome, and one
file containing the coordinates of long-range chromatin interactions acquired by quality thresholding with the
HICCUPS processing pipeline [12} [13]], which is used to sample the positive training data for the deep learning
model and as the ground truth label in later experiments.

2.2.1 Data set across different tissue types

As the genes are selectively expressed among different cell types to produce cells of various functions, the chro-
matin exhibits cell-type-dependent three-dimensional structures, such as chromatin loops and topologically asso-
ciating domains (TAD). Therefore, in order to test the versatility of our model, we have performed comprehensive
experiments on our model across different cell types.

In this project, we have mainly adopted Hi-C data from four different cell lines, namely GM 12878, K562,
HAPI1, and H1-hESC. These cell lines are chosen for their representation of the variety of human cell types.
GM12878 [12] is a lymphoblastoid cell line, which has been widely used as the baseline for studying the chromatin
spatial structures, DNA modification as well as genetic traits analysis. Five million cells from the GM12878 cell
line are used as the input with up to nine isogenic replicates and eighteen technical replicates. K562 is the first
leukemia cell line established based on human bone marrow, whose growth is regulated by cell differentiation
and apoptosis. As a result, the careful investigation into the role of chromatin loop in the mechanism of gene
regulation in K562 cell lines may provide us with valuable insights into the development of cancer drugs [33].
HAPI is a nearly haploid cell line derived from cancerous cells. Since it is nearly haploid, mutations can be
more easily screened and identified than common diploid cell lines. Thus, studying the loop regions in HAP1 can
demonstrate more information on the relationship between chromatin structure and gene function. We have also
acquired a Hi-C contact map for HI-hESC (H1 human embryonic stem) cells derived from the inner cell mass of
a blastocyst, an early-stage pre-implantation embryo.

2.2.2 Data set across different sequencing technologies

The Hi-C data used in this project, which measures the interaction frequencies, can be obtained via different se-
quencing approaches including Hi-C and its variants. In this project, we have selected Hi-C data on the GM 12878
cell line acquired by Hi-C, ChIA-PET, DNA-SPRITE, and HiChIP. As each of those sequencing approaches
demonstrates distinct distributions of interaction frequency and the result of each of them varies in terms of spar-
sity and ground truth loop counts, a generalized model should be able to exhibit equally satisfying performance
across different sequencing methods.
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We obtained the contact matrices sequenced with Hi-C from the ENCODE [32] project, with ChIA-PET and
DNA-SPRITE from 4DN Portal [30, |31, 12]] and with HiChIP from the GEO Database (GSE80820). ChIA-PET
generates the contact matrix with two biological replicates and one technical replicate targeting at CTCF proteins.
DNA-SPRITE generates the contact matrix with one biological replicate and seven technical replicates and is
able to capture long-range chromatin interactions across a larger genome region, including inter-chromosomal
interactions [6]. HiChIP uses 25 million cells from the GM 12878 cell line as input with two biological replicates
and two technical replicates to generate the contact matrix, and it presents a protein-centric way of sequencing
interaction frequencies and shows a higher number of informative reads compared with Hi-C by 10-fold [5]].

2.2.3 Single Cell Hi-C Data

Besides the traditional bulk Hi-C data, single-cell technology has also led to an thriving field. The bulk Hi-C se-
quencing approaches may only reveal chromatin conformation at a cell population level. Thus, it is impossible to
identify whether a loop or TAD appears in a specific individual cell. In comparison, single-cell Hi-C experiments
can demonstrate the epigenomic state of individual cells, such as spatial interaction and orientation of chromo-
somes [20]. However, since the single-cell data are acquired by sampling from a cell population whose size is
much more limited compared with bulk Hi-C, it imposes a great challenge to the robustness of the model used for
analysis.

To address the aforementioned problem of data sparsity, we applied the SnapHiC [34] pipeline as a pre-
processing tool to impute the raw single-cell Hi-C data. In specific, it imputes the contact frequencies in the
original contact matrix with a random walk with start (RWW) algorithm, followed by a normalization based on
linear genomic distances. In order to validate the robustness of our model on scHi-C data, we have also constructed
a data set containing only scHi-C data. We obtained the single-cell sequencing data on oligodendrocytes from the
dbGaP website, under phs001373.v2.p2.

2.3 Data Augmentation

Before feeding the data to the deep neural network, we first apply various data augmentation techniques to the
training data sets [35 36], including flipping, centered cropping, and adding random noise. During every epoch
in the training process, the samples are flipped along their main diagonals with a probability of 0.5, while the
original data set remains unmodified. Furthermore, the samples are cropped at the center. While detecting loop
regions with a sliding window, a chromatin loop might not always occur at the center of the window. Therefore,
centered cropping can help boost the model’s detection performance. Moreover, random Gaussian noise is applied
to all the training samples to maintain the generalization ability of the model. Experiments demonstrate that data
augmentation addresses the problem of positive data scarcity as well as the class imbalance issue. In addition, it
helps our model avoid overfitting and obtain better generalization power.

2.4 Imbalanced Training and Data Quality control

To prepare our framework for the genome-wide detection, we train the neural net based on imbalanced samples,
with 9,119 loop samples and 27,351 non-loop samples for Hi-C GM 12878 cell line, 23,928 loops and 71,784
non-loop samples for Hi-C K562 cell line, 26,521 loops and 79,563 non-loops for H1-hESC cell line, and 7,963
loops and 23,389 non-loops for HAP1 cell. For each cell type, we have randomly generated negative samples
across the genome with low IOU across the loop regions.

Since the majority region in Hi-C matrix is incomplete (missing some attribute values of interest), the matrix
values from different experimental protocols are also variant in range. We conduct quality control over different
cell types as well as Hi-C matrices across multiple experimental protocols. We first log-transform the matrix
slices, and then each window is normalized to the range (0,1) to unit variance and zero means. Such implemen-
tation enables us to improve the data quality and prevent gradient explosion during training and accelerate the
convergence of our model.

2.5 LDAM Loss for Imbalanced Training

The training set sample sizes for each category are not balanced. Meanwhile, the genome-wide testing standard
requires good generalization ability for each category and is even more concerned about the performance of the
minority category [37) 38]], which in our case is the rare chromatin loops. When we train the model on such an
imbalanced dataset, standard Cross-Entropy Loss (CE) fails to optimize our network with high precision.
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Figure 3: Application of HiC-LDNet on GM 12878 Hi-C, as well as ChIA-PET, HiChIP, and DNA SPRITE. (A):
The binary classification accuracy of HiC-LDNet’s performance over 5 different experimental protocols. (B): The
aggregated loop anchor patterns for all the positive window slices with 10 x 10 pixels in 10kb resolution. (C): On
the GM12878-Hi-C, the prediction density comparison of HiC-LDNet, Peakachu, Chromosight, and HICCUPS.
Hic-LDNet extracted comparatively more loop calls in close regions around the loop anchor. (D): On GM12878-
Hi-C, the distance distribution of loops uniquely detected by HiC-LDNet and other baseline methods. (E): The
example genome-wide loop detection result on a fraction of chromosome 1 base on our proposed HiC-LDNet on
different experimental protocols, including Hi-C, ChIA-PET, HiChIP, and DNA SPRITE.

By giving a larger margin to the minority loop class, we need to shift the actual classification boundary so as
to reduce the difficulty of classifying the minority class. Label-Distribution-Aware Margin (LDAM) loss
proposed a class-dependent margin for the multiple-class classification. The margin A for the j-th class is defined
by the number of class samples to give them an appropriate shift:

Aj = forj €1,...k). (D

C
! “1/a (

J
Here, k is 2 in our binary classification setting, and C'is a hyper-parameter to be tuned. In our training, to minimize
marginal generalization boundary. The loss is defined by calculating the probability that the logit of the actual
label y is less than the other label.

Lossialf) = Prey rlf(@)y < maz f))]. @

Therefore, the final loss after Softmax activation for imbalanced training can be written in the following
equation.
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where A is a hyperparameter defined by the number of sample sizes in Equation [I]

After systematical experiments, we find that LDAM loss shows significant improvement compared with Cross-
Entropy Loss (CE) and Focal loss. Therefore, when optimizing our prediction model, we use the LDAM loss to
ensure a better decision boundary and a more robust performance accuracy on genome-wide detection.

Lipam((z,y); f) = —log (3

2.6 Evaluation Metrics for Training

Essentially, the deep neural network is trained as a binary classifier and then applied on large-scale Hi-C contact
matrices to detect chromatin loop regions. As a result, we use the Fl-score, which is the harmonic mean of the
model’s precision and recall, as the key performance metric to measure the model’s training results. In specific,
the Fl-score is defined as

Precision x Recall
Fl— —9 4
seore ~ Precision + Recall’ @)

where TP
Precision = TP L FD’ (®))
TP
Recall = m (6)

Notice that here, the accuracy of the prediction is not as informative in our experiments as F1-score since the
training data set is highly imbalanced, and loops are rarely found in a genome-wide contact matrix.

2.7 Genome-wide Detection Evaluation

In order to validate each algorithm’s prediction performance across the genome, we calculate the distance between
the nearest predicted loop and the ground truth loop caller and calculate their Euclidean distance (shift). That is,
the smaller the euclidean distance (shift) from the prediction to ground truth, the better the model performs.

Therefore, the overall distance list from the loop anchor A and the prediction P for method across the entire
genome can be calculated in the following formula:

22
d(Anchor, Prediction) = Z

chr=1

)

We then calculate the number of positives that falls in close range of distance from the ground truth anchor
under a certain score threshold. For most loop calling algorithms, a detection is considered positive if the distance
between the predicted loop call and the ground truth loop position is less than 10 times of pixel size, which in our
case is 10kb resolution, thus making an accurate detection falls in 100kbp distance from the loop anchor.

2.8 Experimental Details

The neural network is composed of two convolutional layers, both of them are of kernel size 3 and stride 1. To
overcome the vanishing gradient problem and make our models learn faster, the Rectified Linear Unit (ReLU)
activation function is connected after each convolutional layer. Furthermore, to prevent gradient dispersion, we
also apply batch normalization during our training. In practice, on each data set, we have trained our network with
a learning rate equal to 0.001 for 25 epochs with Adam optimizer, betas=(0.5, 0.999). The dropout ratio is set to
0.1 after the first and second convolution layer to prevent over-fitting.

As for HiC-LDNet’s time complexity, it requires about 20 minutes to train on each data set. During genome-
wide detection, an average speed of 25 s/Mbps can be achieved for the whole process. The final output of our
program consists of a bedpe file and the detection figure. The bedpe file labels all the coordinates for the detected
loops with the first and fourth column indicating the chromosome, and the seventh column giving the model’s
confidence score.
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3 Results
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Figure 4: Example of HiC-LDNet’s genome-wide prediction result on chromosome 6 (150,130,000-151,830,000)
of K562 cell line and on chromosome 5 (130,000,000-132,000,000) of HAP1 cell line. On the right panel, we see
that HiC-LDNet’s detected loop distance distribution is highly correlated to the ground truth distribution.

3.1 HiC-LDNet accurately recover majority known interactions from Hi-C GM12878

To test our model’s viability on known Hi-C data, we first trained and tested HiC-LDNet on 9,119 known loops
on the homo sapiens GM 12878 cell line. As shown in Fig[3A, we can see a higher binary classification accuracy
on the test set with Hi-C contact maps (95.2%) than that of ChIA-PET(74.8%), DNA SPRITE (74.1% ), HiChIP
(89.2%), and scHi-C (91.2%).

As can be seen in the aggregated peak analysis in Fig[3| B, a strong Hi-C enrichment signal emerged in the
center of most ground truth loop regions. From a two-sided t-test for all the loop calls and the sub-sampled non-
loop calls, a p-value of 2.864 e-08 is achieved to show the unique pattern of loop calls among the GM12878
cell line. Such a pattern is still significant when we conduct analysis on GM 12878 HiChIP (p = 5.87 e-2) and
on oligodendrocytes (ODC) for scHi-C data (p = 1.06 e-21). However, the pattern is not as much significant in
GM12878 DNA SPRITE (p = 0.21), as well as GM 12878 ChIA-PET (p = 0.54) in loop and non-loop regions.

It is worth noticing that the average logl0 value of the GM 12878 Hi-C (1.88) loop is relatively higher than
that from HiChIP (0.89), DNA SPRITE (0.29), and CHIA-PET (0.96). Therefore, it demonstrated a clearer loop
pattern in Hi-C matrix other than other experimental protocols.

In Fig 3| D, we see a majority (37%) of ground-truth interactions clustered in a short range (j200kb), and
another big portion (37%) in medium range (200-500kb). Our proposed HiC-LDNet gives a prediction that reveals
such percentages, with (43%) loop calls in (;200kb) range and (42%) within 200-500kb range. The distribution of
loop patterns in the prediction is consistent with the training set patterns for our method.
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Figure 5: Comparison of HiC-LDNet with other genome-wide loop calling algorithms performance on the scHi-C
ODC cell line. (A): A box plot showing the distance distribution from the detected loop to the loop anchor with
a p-value calculated from a 2-sided t-test between each distribution. (B): The kernel density estimation (KDE) of
the genomics span shows where the predicted points are clustered. Most of HiC-LDNet’s predictions are clustered
around the loop anchor. (C): The distribution of the highly scored loop calls with respect to their position among
the 4 algorithms. HiC-LDNet shows a strong confidence score compared with the state-of-the-art algorithms. (D):
Example of the predicted results of 4 loop calling algorithms on the chromosome 1 chromatin interaction for the
scHi-C ODC cell line. (E): The distribution of loop distances of the ground truth and each algorithm’s prediction.

3.2 Comparison of HiC-LDNet with Peakachu, Chromosight, and HiCCUPS on GM 12878
Hi-C

To benchmark the performance of HiC-LDNet, we compare it with 3 lately released methods. One is the Random-
Forest based loop detection methods Peakachu[18]. Another is the loop caller from Chromosight [[19]], which
is a kernel-convolution-based method inspired by computer vision. The last one is HICCUPS [12], which is a
statistical method that utilizes the Poisson test with modified Benjamini-Hochberg adjustment to determine loop
interactions.

Statistically, loop calls generated by HiC-LDNet are much closer to the loop anchor compared with the other
loop calling algorithms. As can be seen from the kernel density estimate (KDE) plot in Fig[3|C, the density of loops
clustering around the loop anchor is much higher in our proposed method. We have also observed the LDNet’s
prediction patterns to be highly correlated with the ground truth loop size distribution.

We systematically compare the loop uniquely detected by each method on the entire 22 regular chromosomes
from the human GM12878 cell line. Under the same loop call threshold, 91.6% of the loops are accurately
detected within only a 100kbp shift from the ground truth label, of which 82.5% of them are detected within only
50kbp shift, compared with that of 80.0% of Peakachu and 82.0% of HiCCUPS. Chromosight shows a very good
performance of recovering 90.2% of the ground truth loops within a small shift, while it gives a number of missed
detection with low confidence scores. For example, only 1.1% of HiC-LDNet’s predictions are far away from the
ground truth (; 1000kb), compared with 1.3% of Peakachu, 1.2% of Chromosight, and 1.4% of HiCCUPs.
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3.3 Generalization ability of HiC-LDNet on different cell types and experimental meth-
ods

Besides Hi-C, our framework can be further applied to contact data of multiple experimental protocols. We have
acquired publicly available cell line data sets from multiple platforms, including human GM 12878 cell lines of
Hi-C, ChIA-PET, HiChIP, and DNA SPRITE. We have also conducted experiments on multiple human cell lines
(GM12878, K562, HAPI1, and H1-hESC ).

In the GM 12878 cell line, multiple contact maps are tested for genome-wide detection results. In Fig. 3| E,
we demonstrate HiC-LDNet’s prediction performance under different experimental protocols. Rare loop calls are
detected in CHIA-PET (1,239 out of 9,126) and DNA SPRITE (584 out of 9,126) contact maps due to a high
signal-to-noise ratio, while our method achieved a promising prediction performance on HiChIP contact maps.
Also, in Fig. 4] HiC-LDNet shows its liability of accurately calling most of the loops on genome-wide detection.

Apart from that, it is worth noticing in the loop distance pie chart Fig. ] HiC-LDNet demonstrates its strong
ability to uniquely label loop calls with low distance. In K562 cell lines, a total number of 24,475 chromatin loops
are labeled according to the ground truth, HiC-LDNet is able to provide 28,195 predictions, with the majority
detection loops (36%) clustered within 200kb, and a few larger than 100kb. Similarly, in HAP1 cell line, a total
number of 8,017 loops were labeled and HiC-LDNet managed to give 5,611 confident predictions with scores
higher than 0.9, and 12,969 predictions with scores higher than 0.8.

3.4 HiC-LDNet shows strong robustness applying on sparse scHi-C Data compared with
Peakachu, Chromosight, and HiCCUPS

Single-cell Hi-C (scHi-C) can identify cell-to-cell variability of three-dimensional (3D) chromatin organization,
but the sparseness of measured interactions poses an analysis challenge. HiC-LDNet can perfectly deal with
such challenges and show strong robustness in sparse scHi-C contact matrices. From the comparison with our
proposed method’s loop detection in the visualized scHi-C map in Fig. [5D, HiC-LDNet can accurately identify
multiple loops with few false-positive predictions compared with Chromosight and Peakachu. Statistically, 93.5%
(5,675 out of 6,073) of HiC-LDNet’s predictions falls into 50kbp or less shift from the ground truth loop anchor,
compared with 31.5% (1,911 out of 6,073) of Peakachu, 69.6% (4,225 out of 6,073) of Chromosight, and 9.5%
(575 out of 6,073) of HICCUPS. It is worth noticing that, like other cell types, we have also acquired scHi-C matrix
with 10kb resolution. Therefore, it indicates that most predictions from our framework have within 5 pixels shift
from the ground truth label.

To further validate our framework’s robustness on the scHi-C oligodendrocytes (ODC) data, we first draw the
box plot of the distance from the loop anchor for 4 model’s prediction loop calls. As can be seen in Fig[5]A, HiC-
LDNet has the majority number of prediction loops clustered within a short distance from the ground truth peaks.
From a two-sided test that shows the significant difference in the shift distance, HiC-LDNet showes significant
improvement from Peakachu (p=2.6e-21), Chromosight (p=0.0214), and HICCUPS (p=2.5e-63).

Another experiment is to see how confident each model is based on its prediction scores. When each loop
calling algorithm gives a score for a detected loop (score is usually a value between O to 1), it demonstrates
the confidence level of the model’s prediction towards that loop call. For example, Peakachu [18] applies a
greedy pooling algorithm and gives the best-scored contacts from high-probability pixels. In our method, we have
averaged the loop scores within overlapped positive detections from the Softmax activation function. As can be
seen in Figh| C, the majority of the loop scores are centered above 0.9, compared with that of Chromosight and
Peakachu. Since HICCUPS [12] is a statistical method with no confidence score, we have simply labeled all its
prediction loops according to the threshold.

We have further analyzed the overlap between each methods’ peak calls. As can be seen in Fig[5|E, HiC-LDNet
identified a unique set of chromatin interactions from Peakachu (52,859) and Chromosight (21,588). While most
of the ground truth loops for scHi-C ODC are basically clustered within 200kb regions. Rarely has Peakachu or
Chromosight managed to detect those regions and give a high confidence score. However, our proposed method
shows an average split between the loop distance from (0-200kb) and (200-500kb) in high confidence scores.

4 Discussion and Conclusion

Facilitating genome-wide loop detection is a crucial part of understanding how these structures regulate numerous
cellular processes, including but not restricted to replication, termination, and chromosome segregation. There-
fore, an accurate and robust loop calling algorithm is important for revealing such processes and studying gene
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regulation. In this work, we propose a novel deep-learning-based framework to accurately detect chromatin inter-
action loops in variant genome-wide contact maps. We use the top-down scheme to train our neural networks, and
our framework is able to eliminate the effect brought by the sparsity of scHi-C data. We analyzed different loop
regions of variant human cell lines, including GM12878, K562, HAP1, and H1-hESC.

Compared with the existing state-of-the-art methods, the evaluation of our program demonstrated that HiC-
LDNet significantly outperforms those algorithms and is more robust to scHi-C data with huge sparsity. Consid-
ering the time complexity of our method, HiC-LDNet could finish its prediction at an average 25 s/Mbp speed
across the entire genome at 10kb resolution. Though not the fastest method, HiC-LDNet still achieves competitive
speed compared with the state-of-the-art methods.

To further improve HiC-LDNet, future works remain to be challenging and promising. For instance, with the
advantage of HiC-LDNet, it can be further applied on scHi-C matrices for feature extraction, hypergraph embed-
ding, genome structure characterization, and cell-type classification. Furthermore, with both TADs and sub-TADs
are populated by focal points of interaction (loops), HiC-LDNet can be further applied for TAD identification with
a decrease of interactions at the boundary regions. This work is a step toward this goal while we understand that
this topic is open for further investigations from regular Hi-C and sparse scHi-C contact maps.
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