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Abstract

Preterm birth disrupts the emerging foundations of the brain's architecture, and the continuum of
early-life stress-provoked alterations reaches from a healthy adaptation with resilience to severe
vulnerability and maladjustment with psychopathology. The current study examined how
structural brain development is affected by a stressful extra-uterine environment and whether
changes in topological architecture at term-equivalent age could explain the increased
vulnerability for behavioral symptoms during early childhood. Longitudinal changes in structural
brain connectivity were quantified using diffusion-weighted imaging (DWI) and tractography in
preterm born infants (gestational age <28 weeks), imaged at 30 and/or 40 weeks of gestation
(N=145, 43.5% female). A global index of postnatal stress was based on invasive procedures
during hospitalization (e.g., heel lance). Infants were classified as vulnerable and resilient based
on having more or less internalizing symptoms at 2-5 years of age (n=71). Findings were
replicated in an independent validation sample (N=123, 39.8% female, n=91 with follow-up).
Higher stress levels impaired structural connectivity growth in the amygdala, insula,
hippocampus, and posterior cingulate cortex. The hippocampus, amygdala, and subthalamic
nucleus showed lower global connectivity in vulnerable relative to resilient individuals. The
distinct characteristics of the resilient brain allowed for a good predictive accuracy of group
membership using local network measures (80%, p<10°, k=0.61). These findings emphasize the
detrimental impact of postnatal stress and, more importantly, the relative plasticity of the preterm
brain. Resilience following postnatal stress appertains to a potential compensatory or innate

ability to propagate global information flow.
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Significance Statement

The underdeveloped preterm brain is exposed to various external stimuli following birth.
Although the importance of early adversity has been widely recognized, the essential
understanding of the effects of early chronic stress on neonatal brain networks as well as the
remarkable degree of resilience is not well understood. We aim to provide an increased
understanding of the impact of postnatal stress on brain development between 30 and 40 weeks of
gestation and describe the topological architecture of a resilient brain. We observed global
alteration in neonatal brain networks following postnatal stress and identified key contributive

regions conferring resilience to the development of future internalizing symptoms.
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Introduction

During critical periods of brain development, the extra-uterine environment impacts the
maturation of the structural brain and behavioral functions. Preterm birth has long-lasting adverse
effects on brain development and increases the risk for psychiatric symptoms later in life
(Eikenes et al., 2011; Fischi-Gomez et al., 2015; Loe et al., 2013; Spittle et al., 2009). The
development of the preterm brain is contingent on several (clinical) factors, and emerging data
suggest that postnatal stressors such as the number of invasive procedures also play a role (Chau
et al., 2019; Doesburg et al., 2013; Ranger et al., 2015; Ranger & Grunau, 2013). A paucity of
longitudinal studies has explored the complex interaction between postnatal stress, brain
development, and behavioral functions following preterm birth. We thus examined the impact of
extra-uterine postnatal stress on brain development and how alterations in brain network

architecture influences vulnerability for behavioral symptoms during early childhood (2-5 years).

Early-life adversities may alter trajectories of brain maturation during a critical period of
development. Cross-sectional studies investigating the effects of preterm birth on brain structure
and function have shown lower white matter integrity in association tracts (forceps minor,
forceps major, inferior frontal-occipital fasciculus/inferior longitudinal fasciculus, superior
longitudinal fasciculus, and uncinate fasciculus); and projection fibers (e.g., thalamic radiation,
corticospinal tract; Duerden et al., 2018; Menegaux et al., 2017; Vollmer et al., 2017; Zwicker et
al., 2013). Preterm birth is further related to an upregulation of functional connectivity between
stress-related and stress-vulnerable regions, such as the temporal cortex, thalamus, anterior
cingulate gyrus, hippocampus, and amygdala (De Asis-Cruz et al., 2020; Johns et al., 2019;
Papini et al., 2016). More recently, advances in graph theory enabled researchers to reveal

meaningful information about the topological architecture of the neonatal brain. Studies showed,

5
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94  for instance, that the fundamental community structural properties (i.e., groups of densely
95  connected regions reflecting subsystems or "building blocks" of a network) of a preterm born
96 infant seem to be similar to typically developing fetuses and neonates (Song et al., 2017; Turk et
97 al., 2019); initial connectomic studies also highlight a more segregated and less integrated
98  network organization in preterm-born infants (Ball, Boardman, et al., 2013; Ball, Srinivasan, et
99 al., 2013; Groppo et al., 2014; Sa de Almeida et al., 2021) and children (de Kieviet et al., 2021,
100  Fischi-Gomez et al., 2016), indicating differences in connectomic composition. These neonatal
101 alterations in brain connectivity architecture may play a significant role in developing future
102  psychopathology (Gilchrist et al., 2021; Kaufmann et al., 2017; VVan Essen & Barch, 2015).
103  Indeed, altered brain connectivity is implicated in a wide range of major psychiatric conditions,
104  from ADHD and anxiety to Major Depressive Disorder (Suo et al., 2017; Tozzi et al., 2021;
105 Wangetal., 2021).
106
107  Inthis study, we examined the influence of stress on the development of premature brain
108  connectivity and, second, whether alterations in macroscale network architecture at term-
109  equivalent age may be predictive of vulnerability for anxiety-related symptoms during early
110  childhood (2-5 years of age). We examined diffusion imaging and tractography from preterm
111  infants, combined with data on postnatal stress related to their hospitalization. We aim to identify
112 specific differences in resilient and vulnerable infants that may enable resilient individuals to

113  maintain relative mental wellbeing during early childhood.
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114  Materials and Methods

115  Subjects

116  Infants were included when they were scanned between 28-32 and/or 39-42 post-menstrual age.
117  Data collection was part of standard clinical care, with permission obtained to use this data for
118  clinical research from the medical ethical review committee of the University Medical Center
119  Utrecht (METC Utrecht). Preterm infants with chromosomal and/or congenital anomalies were
120  excluded. Details and demographics of the main and validation datasets are outlined in Table 1.
121

122 Main dataset

123 Data of N=145 preterm infants born infants clinically diagnosed as 'extremely preterm' with a
124  gestational age <28 weeks were included in our study, admitted to the Neonatal Intensive Care
125  Unit (NICU) between 2013 and 2019 at the Wilhelmina Children's Hospital Utrecht, The

126 Netherlands. Infants were scanned using a 45 directions diffusion protocol.

127

128  Validation dataset

129 A replication sample containing N=123 preterm infants born infants with a gestational age <28
130  weeks was included to assess the robustness of our results. Infants were admitted to the NICU
131  between 2008 and 2013 and were scanned using a 32 directions diffusion protocol.

132

133  Magnetic Resonance Imaging

134  MRI data included the examination of 3T structural anatomical T2-weighted imaging and

135  diffusion-tensor imaging (main dataset: dMRI, n=45 directions; validation dataset, n=32

136  directions) (3T Achieva MR scanner). Images were obtained as part of a 35-minute scanning
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137  session.

138

139 T2 data were acquired using a Turbo Spin Echo (TSE) sequence, using parameters: TR=6112ms,
140  TE=120ms, voxel resolution in millimeters 0.53x0.64x2 for 30 weeks and TR=4851ms,

141  TE=150ms, voxel resolution in millimeters 0.78x0.89%1.2 for 40 weeks. dMRI data were

142  acquired at 2 mm isotropic resolution and SENSE factor of 2 in 2 shells; 45 non-collinear

143  directions for the main dataset, with a b-value of 800 s/mm2 and one non-diffusion weighted

144  image (b=0) with TR 6500 ms and TE 80 ms; and 32 non-collinear directions for the validation
145  dataset, with a b-value of 800 s/mm? and one non-diffusion weighted image (b=0) with TR 5685
146 msand TE 70 ms.

147

148  Infants were immobilized by wrapping them into a vacuum cushion. MiniMuffs (Natus Europe,
149  Minich, Germany) and earmuffs (EM's kids Everton Park, Australia) were used to reduce noise
150 and the infant's propensity to move during image acquisition. Before scanning, preterm born

151 infants scanned at 30 weeks were either sedated with 30 mg/kg oral chloral hydrate or not sedated
152  atall, whereas infants scanned at 40 weeks were all sedated with 50 to 60 mg/kg oral chloral

153  hydrate. Scanning was halted if the infant woke up, and attempts were made to re-settle the infant
154  without taking them out of the patient immobilization system. A neonatologist or physician

155  assistant was present at all times during the examination.

156

157  Data processing

158  Structural images

159  Volumetric tissue segmentation of grey and white matter, and labeling of subcortical and cortical

160 areas, was performed on the T2 image (voxel resolution in millimeters 0.53 x 0.64 x 2 for 30
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161  weeks and 0.78 x 0.89 x 1.2 for 40 weeks) using the structural pipeline from the developmental

162  human connectome project (dHCP; http://www.developingconnectome.org/). The dHCP pipeline

163  utilizes an "Expectation-Maximization™ scheme that combines structure priors and an intensity
164  model of the images (Makropoulos et al., 2018). A total of 47 (sub-)cortical grey matter labels
165  were automatically generated during segmentation (see Figure 1).

166

167  DWI tractography

168  Diffusion-weighted images were corrected for eddy current distortions, motion-induced signal
169  drop-out, and head motion using a non-parametric approach using FSL (FSL EDDY) (Andersson
170 & Stamatios, 2016). The b0 image (voxel-size 2x2x2 for the main dataset, voxel-size

171  1.41x1.41x2.00 for validation dataset, b = 0 s/mm?) was registered to the T2-weighted image for
172 anatomical alignment of the DWI images using FLIRT with a boundary-based-registration (BBR)
173 cost function (Greve & Fischl, 2009). The linear transformation matrix was combined with a non-
174  linear warp registration using FSL FNIRT (Andersson et al., 2007) to map the diffusion space to
175 an age-matched template. A single tensor model was used to estimate the main diffusion direction
176  in each voxel (Basser et al., 1994) based on the 45 diffusion-weighted images (b = 800 s/mm?; 32
177  directions for the validation dataset). An FA and MD whole-brain map was created based on the
178  fitted tensors. White matter pathways were reconstructed using FACT (fiber assignment by

179  continuous tracking [Mori & Van Zijl, 2002]). Tractography involved starting eight streamline
180  seeds in each white matter voxel, with fiber tracking, continued along the main diffusion

181  direction of each voxel until a streamline showed high curvature (>65°), exited the brain mask,
182  and/or when a streamline entered a voxel with low FA (<0.05). The mean FA value of a

183  streamline was computed as the weighted average FA value, including all voxels that a streamline

184  passed. Individual brain networks consisting of 47 grey matter regions and their interconnecting
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185  pathways were created by combining the subcortical and cortical segmentation map with all

186  reconstructed white matter tractography streamlines, mapping for all combinations of regions
187  their interconnecting streamlines, with the weight of each region-to-region connection taken as
188  the non-zero mean FA of the selected streamlines. Connections with a low connectivity strength
189  (lowest 5%) were taken as potential false-positive reconstructions and set to 0. A group-based
190 threshold was applied, retaining connections present in at least 50% of the participants, balancing
191  the number of false-positive and false-negative structural connections (de Reus & van den

192  Heuvel, 2013). Results were validated using different levels of group-based consensus thresholds
193 (50-90%, steps of 5%).

194

195  Three summary measures were used to detect outliers among connectivity matrices, namely the
196  presence of odd connections, the absence of common connections, and the average fractional
197 anisotropy. We calculated the interquartile range (IQR) for each group separately by subtracting
198  the 25th percentile from the 75th percentile (i.e., IQR = Q3-Q1). Participants with a score below
199  Q1-2xIQR or above Q2+2xIQR for any of the three measures were considered outliers. This
200  quantification led to the removal of 7 outliers at 30 weeks of gestation and 19 outliers at 40

201  weeks of gestation.

202

203  Behavioral measures

204  Postnatal stress

205 Data on invasive and stressful procedures were automatically extracted from the digital medical
206  system. A global index of NICU-related stress was computed using a Principal Component

207  Analysis on six parameters: skin-breaking procedures (i.e., heel lance, arterial and venous

10
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208  punctures, peripheral venous line insertion), total days of invasive mechanical ventilation, and
209  suctioning of the nose and mouth. Each row (i.e., subject) was weighted on the total days of

210  NICU admission. The extracted component explained 72.5% of the variance, with factor loading
211  ranging from 0.74 to 0.91. This approach avoids the confounding effects of multicollinearity and
212  continuously measures global NICU-related stress in further analyses.

213

214  Residualized approach to postnatal stress

215  All participants were invited for standard clinical follow-up at 2.5 and/or 5.75 years of age. Both
216  the main and validation dataset had follow-up data, resulting in a total of 162 infants with both an
217  MRI a term-equivalent age and data on behavioral symptoms (see Table 2 for an overview).

218  During the clinical follow-up, parents reported on the level of internalizing symptoms of their
219  child, such as depression and anxiety, using the Child Behaviour Checklist (CBCL; Achenbach &
220  Rescorla, 2001). The CBCL is a parent-report questionnaire used to assess the frequency of

221  dysfunctional behavior exhibited by the child in the past six months. Caregivers rate their

222  children's behavior by answering questions about their child on a 3-point scale (0-2), zero being
223  "not true" one being "somewhat or sometimes true"”, and two being "very true or often true". If
224 children did not have a behavioral symptom assessment at 5.75 years of age, we used the 2.5
225  years assessment (moderate correlation between the two-time points; r= 0.45, p < 0.001, see

226  Figure 2-A). The follow-up also included other assessments not part of the current study, such as
227  motor development and intelligence.

228

229  Resilience was quantified as a metric of mental health by indexing the internalizing symptoms
230  subscale of the CBCL, taking into account the degree of NICU-related stressor exposure using

231  simple linear regression. We observed a significant positive association between postnatal stress

11
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232  and early childhood internalizing symptoms (t(11,151) = 4.08, p < 0.001). The fitted regression
233  line (see Figure 2-B) reflected the normative level, with participants positioned above the linear
234 line (i.e., positive residual) expressing an over-reactivity of behavioral symptoms to stressor
235  exposure in the neonatal period and data points below the linear line (i.e., negative residual)
236  representing individuals with under-reactivity to stressor exposure (Amstadter et al., 2014; Van
237  Harmelen et al., 2017).

238

239  Preterm-born individuals were classified accordingly: the resilient group showed fewer

240  behavioral symptoms than expected, and a vulnerable group showed more behavioral symptoms
241  problems than expected.

242

243  Statistical analysis

244 Analyses (connectome development and group-differences, see below) were corrected for

245  confounding factors, including gender, birthweight (z-scores), mean FA, gestational age, age at
246  scan, degree of brain injury (i.e., intraventricular hemorrhage), neonatal surgeries, administration
247  of pre-and postnatal corticosteroids (i.e., accelerates lung maturation), and days of morphine.
248

249  Stress and connectome development

250  Longitudinal changes in whole-brain structural connectivity between 30 and 40 weeks of

251  gestation were examined using a timexpostnatal stress interaction model using network-based
252  statistic (NBS), a permutation-based method specifically designed to statistically assess network
253  differences (Zalesky et al., 2010). We created a NBS linear-mixed model adjusting for gender,

254  gestational age, age at scan, degree of brain injury (i.e., intraventricular hemorrhage), surgeries,

12
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255  administration of pre-and postnatal corticosteroids (i.e., accelerates lung maturation), and

256  administration of morphine in days, which was applied to all non-zero NixN; connections of the
257 individual networks (lower triangle; consensus-based threshold). The NxN matrix of F-statistics
258 and matching p-values associated with the interaction effect was thresholded at a p-value of p <
259  0.05. NBS defines the largest connected component, and the size of the largest component is
260 tested against a null-model of permuting subject labels 10000 times. The subsequent null

261  distribution was used to calculate a p-value for the largest identified component. We used the
262  main sample and validated the findings in a separate, independent population (see Table 1).

263

264  Group-differences between resilient and vulnerable individuals

265  Differences in network organization between resilient and vulnerable individuals were assessed
266 by examining global and local network metrics from the individual structural matrices at term-
267  equivalent age (R packages igraph, braingraph; R Core Team, 2021). A GLM was specified to
268 test for significant group-difference in network metrics and is compared to permuted data (on
269  graph- or vertex-level), building a null-distribution. Graph-level analyses were permuted 10000
270  times and vertex-level measures were permuted 5000 times. To correct for multiple comparison

271  the contrast was thresholded on p < 0.001.

272  Local graph parameters, including clustering coefficient, nodal efficiency, eigenvector centrality,
273  and communicability, were calculated to capture the influence of a region on the network. Global
274 measures included clustering coefficient, modularity, strength, and global efficiency. Clustering
275  coefficient describes the tendency of regions to cluster together in triangles and is computed by
276  the ratio between the number of connections between region i and its neighbor regions and the

277  total number of possible connections with neighbors. A higher clustering coefficient is considered

13
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278  to be a measure of local network segregation (Rubinov & Sporns, 2010). The global measure is
279  computed by taking the mean clustering coefficient of all individual regions in the network.

280  Nodal efficiency describes for every region in the network the length of the shortest paths

281  between a given region i and all other regions j, and measures the average lengths of all shortest
282  paths identified for region i (Achard & Bullmore, 2007). Higher nodal efficiency is indicative of
283  ahigher capability of information integration, and these regions can also be categorized as a hub.
284  The global measure is computed by taking the mean of nodal efficiency of all individual regions
285 in the network. Betweenness centrality describes the influence of a region in the communication
286  between pairs of regions and is measured by the frequency with which a region falls between
287  pairs of other regions on their shortest interconnecting path (Rubinov & Sporns, 2010). This

288  measure reflects the potential influence of a region to control information flow between non-
289  directly connected regions. Communicability describes how well a region communicates with
290  every other region in the network and is computed by the weighted sum of all paths and walks
291  between region i and j (Estrada & Hatano, 2008). High communicability indicates that there are
292  multiple and strong alternative paths connecting the region with other regions. Modularity

293  describes the degree to which a network can be organized into modules of densely interconnected
294  regions but sparsely connected between modules and is computed by the difference between the
295  number of edges that lie within a community and a random network of the same degree sequence
296  (Rubinov & Sporns, 2010). High modularity reflects a highly segregated network. Strength

297  describes the total sum of the weights of all individual nodal connections in the network.

298  Together, these provide a good understanding of the connectivity and influence of a particular
299  region on the network.

300

301  Multiclass prediction classification

14
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302  Random-forest regression with conditional inference trees (RFR-CIF) was used to assess how
303  well node-wise centrality measures could predict the correct classification of the resilient (stress-
304  underreactive) and vulnerable (stress- overreactive) individuals. The predictive multiclass model
305 consisted of a centrality measure (i.e., betweenness centrality) of 47 grey-matter nodes. Analyses
306  were repeated using the other node-wise centrality measures (see Table 4). The predictors were
307  used to build and validate a predictive multiclass model that best fit the combined (main and

308 validation) dataset using 10-fold cross-validation and was tested using a hold-out dataset (65%
309  build and validation [n = 105], 35% testing [n = 57]). The model was fitted on the combined main
310 and validation dataset to increase reliability in estimating probabilities. Slight differences in

311  features due to technical variability in acquisition protocol were removed while preserving

312  biological variability using ComBat prior to model fitting (Fortin et al., 2017, 2018; Johnson et

313 al., 2007).
314
315 Results

316  The sample consisted of a main (N=145, Mage=26.53, Ms¢=0.97, 43.5% female) and validation
317  (N=123, Mage=26.54, Ms¢=1.00, 39.8% female) dataset of preterm born individuals. Both the main
318 (n=71) and validation (n=91) dataset have follow-up data on parent-reported internalizing

319  symptoms. Key demographics of the two samples are presented in Table 1.

320

321  The effects of postnatal stress on the development of whole-brain structural connectivity
322  We performed network-based statistics (NBS; see Methods for details) to identify sub-networks
323  of edge-wise effects that showed significant alterations in growth depending on the degree of

324 postnatal stress exposure. NBS analysis revealed one significant cluster of connections, involving

325 48 connections, with slower growth in connectivity strength from 30 to 40 weeks of gestation for
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326 individuals exposed to higher stress (p = 0.003, consensus-based threshold, see Figure 1A and
327  2A). The cluster spanned both hemispheres, involving 20 brain regions such as the amygdala,
328 thalamus, caudate nucleus, and cortical regions such as the insula, fusiform, parahippocampal
329  gyrus, anterior/posterior cingulate cortex, parietal lobe, and frontal lobe. Figure 3 provides a
330  matrix of the vertices and edges involved. The sub-network reduced in size but remained

331 significant across prevalence thresholds (Figure 4E). Also, postnatal stress significantly affected
332  white-matter connectivity at term-equivalent age, with higher stress resulting in lower structural

333  connectivity in a sub-network of 49 connections (Figure 4C, p = 0.014).

334

335  The NBS findings were replicated in an independent sample, providing robust evidence for the
336 effects of postnatal stress on the growth of white-matter connectivity. We masked the

337  connectivity matrix such that only connections were retained if they were part of the sub-network
338 identified in the main sample. Then, we calculated a non-zero mean of connectivity strength and
339 tested the effects of postnatal stress on changes in connectivity strength between 30 and 40 weeks
340  of gestation. We observed a significant stressxtime interaction such that higher levels of postnatal
341  stress were associated with slower growth in connectivity strength (Estimate=-0.007(0.003), F(1,
342  37)=4.79, p=0.035, 95% CI [-0.014, -0.001], see Figure 4B). Also, higher stress was associated
343  with significantly lower levels of white-matter connectivity at term-equivalent age (t(13,96) = -
344  2.44,p =0.016, see Figure 4D).

345

346  Network architecture at term-equivalent age reveal differences between resilient and
347  vulnerable individuals

348  Based on the normative levels of stress-reactivity (based on the relationship between postnatal
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349  NICU-related stress and long-term behavioral symptoms, see "Resilience to postnatal stress"
350 Methods), 41 and 42 neonates were classified as stress under-reactive (now being referred to as
351 resilient), and 30 and 49 infants were classified as stress over-reactive (now being referred to as
352  vulnerable). There were no group differences in birth weight, age at birth, age at scan,

353  corticosteroids, days of morphine administration, and mean FA (see Table 2). There was,

354  however, a slight difference in gender in the main dataset (included as a covariate). The reported
355  findings below were thresholded on 75% prevalence, i.e., connections were included if they were
356  reported in at least 75% of the participants. The results reported below are based on structural
357  connectivity at term-equivalent age.

358

359  Global measures

360  Analyses revealed no significant group effects in measures of global network architecture.

361

362  Local measures

363  We observed significant group effects on local network measures. Group differences were

364  region-specific such that both reduced and increased centrality were observed in vulnerable

365 relative to resilient individuals (see Table 3).

366

367  We first examined the contribution of regions in local network organization as measured by

368  'nodal clustering'. Vulnerable infants, relative to resilient, showed a lower clustering of several
369 cortical brain regions overall, including the posterior cingulate cortex (t(69) = -5.48, p < 0.001),
370  parahippocampal gyrus (t(69) = -5.25, p < 0.001), frontal lobe (t(69) = -6.29, p =p < 0.001), and
371  parietal lobe (t(69) = -6.61, p = p <0.001). In contrast, higher clustering was observed in the

372 hippocampus (t(69) = 7.19, p = p < 0.001), amygdala (t(69) = 4.8, p = p < 0.001), and medial
17
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373  anterior temporal lobe (t(69) = 6.3, p = p <0.001). It is important to note that only differences in
374  the posterior cingulate cortex and parietal lobe were successfully replicated in the validation

375  sample. Statistical details of group differences found in the main and validation dataset can be
376  found in Table 3.

377

378  We assessed the contribution of regions in global communication across the brain through

379  'betweenness centrality'. On average, vulnerable infants showed a lower centrality of the

380  hippocampus (t(69) = -9.5, p = p < 0.001) and the anterior fusiform (t(69) = -7.45, p = p < 0.001),
381  whereas a higher centrality was observed in the brain stem (t(69) = 3.76, p = p < 0.001), posterior
382  cingulate cortex (t(69) = 5.72, p = p < 0.001), and parietal lobe (t(69) =6.11, p = p < 0.001, see
383  Table 3). These results suggest differential susceptibility in connections central to global brain

384 communication.

385

386  We further examined global network integration through ‘communicability’, a metric that

387  considers all possible communication paths between regions in the network. Vulnerable

388 individuals showed, on average, lower communicability of the hippocampus (t(69) = -16.03, p <
389 0.001), amygdala (t(69) = -3.74, p < 0.001), and subthalamic nucleus (t(69) = -11.44, p < 0.001,
390 see Figure 5 and Table 3). A higher global integration was observed in the posterior

391  parahippocampal gyrus (t(69) = 9.65, p < 0.001), posterior fusiform (t(69) = 9.65, p < 0.001), and
392  parietal lobe (1(69) = 3.73, p < 0.001).

393

394  Resilient and vulnerable infants did not differ on measures of nodal efficiency.

395
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Multiclass predictive classification

Random Forest regression with conditional inference trees was used to investigate potential
predictive power from local network metrics. Local network measures (i.e., communicability) of
the 47 (sub-)cortical grey matter regions were able to correctly classify vulnerable and resilient
individuals with an accuracy of 80.4% (p < 10, « = 0.606, AUC = 0.914). The combined sample
(i.e., main and validation) correctly identified the groups with better than 80% balanced accuracy
(see Table 4). Importantly, similar results were obtained with the other centrality measures. For

model classification and calibration, see Figure 6.
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404  Discussion

405  Preterm-born infants have a life-long increased risk for stress-related psychopathology

406 characterized by anxiety and socio-emotional problems (Arpi & Ferrari, 2013; Upadhyaya et al.,
407  2021). The current study showed that higher stress exposure during NICU admission is

408  associated with slower growth in regions such as the amygdala, hippocampus, insula, and

409  posterior cingulate cortex. Despite these global alterations in development, resilient infants at
410 term-equivalent age can propagate information through regions central for bottom-up emotion
411  regulation. We observed an excellent predictive accuracy of group membership using local

412  network measures at term-equivalent age shortly following exposure. The extra-uterine,

413  postnatal, stressful environment contributes to significant alterations in brain development, but
414  only a proportion of infants show a higher susceptibility for future behavioral problems. A

415  developmental approach is needed to understand longitudinal brain growth following postnatal
416  stress and the neurobiological mechanisms that might confer resilience or vulnerability later in
417  life.

418

419  Our findings underscore the impact of postnatal stress on the growth of structural brain

420  connections in corticolimbic pathways across both hemispheres, including critical regions

421  involved in (bottom-up) emotion regulation and processing such as the amygdala, insula,

422  hippocampus, parahippocampal gyrus, and posterior cingulate cortex. These findings align with
423  evidence from other neuroimaging studies showing a delayed development in white matter

424 pathways following preterm birth relative to term-controls (Bouyssi-Kobar et al., 2018; Dodson
425 etal., 2017; Duerden et al., 2018). We now show evidence that in addition to the effects of

426  prematurity, stressful early exposure significantly contributed to a more pronounced impact on

427  delayed development in a sub-network of connections. Interestingly, our findings indicate that
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428  resilient individuals can compensate for global alterations in white-matter pathways or

429  reconfigure the brain's large-scale architecture by selecting resources facilitating information

430  flow throughout the network.

431

432  Measures of integration estimate the efficiency of communication among all nodes in a network,
433  enabling the integration and distribution of neural information between spatially distant brain
434 regions (Rubinov & Sporns, 2010). Vulnerable individuals showed lower global integration of
435  the hippocampus, a region that is a crucial regulator of the hypothalamic-pituitary-adrenal axis
436  activation and plays a critical role in the storage and retrieval of emotional memories (Chan et al.,
437  2014; Duval et al., 2015). Prior studies on (early-life) trauma indicated that the hippocampus is
438  particularly vulnerable to chronic pain and stress, with lower volumes and a hypoconnectivity
439  following early-life trauma (Andersen et al., 2008; Shin & Liberzon, 2009). We observed a

440  similar pattern for the amygdala and subthalamic nucleus. The amygdala is part of the (medial)
441  temporal lobe and densely connected with the prefrontal cortex, and has extensive anatomical
442  connections with the paraventricular thalamus and hippocampus. This region plays a critical role
443  in perception, regulation, and plasticity of emotion (Davis & Whalen, 2000; Yang et al., 2017). A
444 less interconnected amygdala in vulnerable infants might seem contradictory, as it does not agree
445  with studies showing evidence of lower amygdala connectivity in resilient trauma-exposed adults
446  (Roeckner et al., 2021). However, a less interconnected amygdala might also be evidence of a
447  decreased inhibitory control of more segregated, cortical, regions including the ventromedial

448  prefrontal cortex (vmPFC) (Andrewes & Jenkins, 2019; Johnstone et al., 2007; Rogers et al.,

449  2017). The lower centrality of the frontal lobe in vulnerable infants substantiates this

450 interpretation. Hence, the increased integration of the hippocampus and amygdala might be a key

451  system in a healthy adaptation with resilience following early disturbances of preterm birth.
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452

453  Previous studies in children and adults with depression and anhedonia consistently reported a
454 lower capacity for integration (Cullen et al., 2014; Yang et al., 2017). The subthalamic nucleus
455  interconnects with the amygdala and hippocampus and receives convergent cortical and pallidal
456  projections (Accolla et al., 2016) and plays a role in threat appraisal (Serranova et al., 2011).

457  Although the subthalamic nucleus received attention concerning Parkinson's disease, the

458 increased social and affective alterations following deep-brain stimulation have been implicated
459 in the emergence of enhanced affective processing and decreased depressive symptoms

460  (Schneider et al., 2003; Smeding et al., 2006). Higher integration of these regions might be

461  beneficial in retaining mental wellbeing following preterm birth.

462

463  Preterm-born infants (Bouyssi-Kobar et al., 2019; Sa de Almeida et al., 2021) and children (de
464  Kieviet et al., 2021; Young et al., 2018) show alterations in information flow. A balance between
465 integration and segregation is essential for efficient communication through local processing and
466  global communication. A lower integration between regions important for fear memory and

467  emotion-processing in vulnerable infants renders their networks more susceptible. It puts them at
468 increased risk for behavioral problems by making it harder to effectively compensate for second-
469  hit abnormalities that might occur within a network or region.

470

471  The dysconnectivity of neuroanatomical networks has been implicated in the emergence of

472  several neurological and psychiatric disorders, including anxiety and depression (Akiki et al.,
473  2018; Sang et al., 2018; Yu et al., 2013). The relative preservation of global integration of regions
474 implicated in emotion processing and regulation may support impaired white matter pathways

475  more effectively after preterm birth. These results might indicate that resilient individuals can
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476  increase and diminish information flow of specific regions, enabling them to compensate for

477  global alterations following preterm birth. Interestingly, however, it remains elusive whether a
478  higher centrality of the hippocampus could be interpreted as a compensatory adaptation following
479  preterm birth, enabling preterm-born individuals to "bounce back" or if it could be considered a
480  preexisting protective factor. Resilience studies following childhood trauma indicated that an

481  increased hippocampal connectivity aids emotion regulation and enables one to successfully cope
482  with trauma (Richter et al., 2019; van Rooij et al., 2021). Similarly, resilient individuals exhibit
483  lower insula activity, facilitating an appropriate adjustment of emotional resources (Haase et al.,
484  2016; Waugh et al., 2008). Although the current study contributes to the literature of resilience
485  following preterm birth, future studies investigating the (neuroprotective) mechanisms by which
486  global integration is increased in resilient infants are warranted.

487

488  While a direct inverse relationship between resilience and vulnerability does not exist,

489  vulnerability studies seem to present the best available approximation for the concept of

490 resilience in preterm-born individuals. In line with studies on trauma exposure, preterm-born

491 individuals with more problem behavior seem to show reduced hippocampal connectivity and
492  lower volumes (Aanes et al., 2015; Rogers et al., 2018) and a lower interconnected amygdala
493  (Rogers et al., 2017). Further, preliminary interventional studies focusing on neuroprotection,
494  reducing the impact of postnatal stress following preterm birth (e.g., music and massage therapy)
495  showed significantly improved white matter maturation of the uncinate fasciculus (Sa de Almeida
496 etal., 2020). Hence, these results implicate that increasing information flow of the amygdala and
497  hippocampus may lead to symptom attenuation and is consistent with our observation that

498  vulnerable and resilient individuals differ in a small number of regions or pathways that may

499 facilitate compensation.
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500

501 The differences in neural representations between resilience and vulnerable infants enable the
502 accurate classification of group membership. The current study shows that at term-equivalent
503 age, the connectome shows distinguishable features in topological architecture. Demonstrating
504  these patterns highlights that resilience and vulnerability occur in the context of unique

505 neurobiological differentiability and may be considered a valuable biomarker for predicting

506  behavioral symptoms in early childhood.

507

508  Several methodological issues should be taken into consideration when interpreting our findings.
509  Although our unique dataset enables us to investigate individual differences in longitudinal

510  white-matter development, we could only model linear change. Studies involving three or more
511 time points (Remer et al., 2017) can fit several slopes, including quadratic, logarithmic, and

512  cubic, facilitating a more nuanced understanding of how postnatal stress affects brain

513  development. For instance, a quadratic growth pattern would mean that the effects of postnatal
514  stress emerge during a specific developmental period and then declines or disappear during a
515  particular period and then reappears later. Despite this methodological limitation, our results
516  nevertheless provide convincing evidence that between 30 and 40 weeks of gestation, postnatal
517  stress significantly reduces linear growth in a sub-network of connections. Another limitation is
518 that the resilient infants might have been healthier than the vulnerable infants. Although the

519  residualisation approach controls for the degree of postnatal stress exposure, resilient infants
520  could still have experienced fewer complications and clinical procedures compared to vulnerable
521 infants. Notably, infants did not differ on a large set of clinical parameters (see Table 2). In other
522  words, resilient preterm-born infants did not endure fewer clinical procedures, and it is unlikely

523 that they were healthier than vulnerable infants.
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Our longitudinal findings suggest that postnatal stress leads to sparser brain connectivity after
preterm birth. Importantly, alterations in specific brain areas impacting bottom-up emotion
regulation render preterm infants resilient to internalizing symptoms later in life. These findings
emphasize the detrimental impact of postnatal stress and the relative plasticity of the preterm
brain. The current results suggest that resilience appertains to a potential compensatory or innate
ability to propagate global information flow, informing future intervention studies on fostering

specific nodal changes.
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776

Figure 1. A total of 47 grey matter regions are segmented by the structural pipeline of the developmental Human Connectome Project
(dHCP). HPL; hippocampus left, HPR; hippocampus right, AML; amygdala left, AMR; amygdala right, ATLML; anterior temporal lobe
medial part left, ATLMR; anterior temporal lobe medial part right, ATLLL; anterior temporal lobe lateral part left; ATLLR; anterior
temporal lobe lateral part right, GPAL; gyri parahippocampalis et ambiens anterior part left, GPAR; gyri parahippocampalis et ambiens
anterior part right, STGL; superior temporal gyrus middle part left, STGR; superior temporal gyrus middle part right, MITGAL; medial and
inferior temporal gyri anterior part left, MITGAR; medial and inferior temporal gyri anterior part right, LOGAL; lateral occipitotemporal
gyrus/anterior fusiform left, LOGAR; lateral occipitotemporal gyrus/anterior fusiform right, CBL; cerebellum left, CBR; cerebellum right,
BRS; brainstem, OLL; occipital lobe left, OLR; occipital lobe right, GPPL; gyri parahippocampalis et ambiens posterior part left; GPPR,;
gyri parahippocampalis et ambiens posterior right, LOGPL,; lateral occipitotermporal gyrus/posterior fusiform part left, LOGPR; lateral
occipitotermporal gyrus/posterior fusiform part right, MITGPL; medial and inferior temporal gyri posterior part left, MITGPR; medial and
inferior temporal gyri posterior part right, STGPL; superior temporal gyrus posterior part left, STGPR; superior temporal gyrus posterior
part right, CGAL,; cingulate gyrus anterior part left, CGAR; cingulate gyrus anterior part right, FLL; frontal lobe left, FLR; frontal lobe
right, PLL; parietal lobe left, PLR; parietal lobe right, CNL; caudate nucleus left, CNR; caudate nucleus right, THL; thalamus left, THR;
thalamus right, SNL; subthalamic nucleus left, SNR; subthalamic nucleus right, LNL; lentiform nucleus left, LNR; lentiform nucleus right.
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Figure 2. A. Significant and positive association
between internalizing symptoms assessed at 2 and
5 years of age. B. Residualisation approach;
orange observations are categorized as stress-
overreactve (vulnerable), and green observations
are characterized as stress-underreactive
(resilient).
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dataset. Edges with a cross are part of the subnetwork showing a significant timexstress effect
(matrix shows the delta in mean connectivity between 30 and 40 weeks of gestation) (A) or a
significant main effect of stress (B) at term-equivalent age. An overview of abbreviations can be

found in Figure 1. FA = fractional anisotropy.
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Figure 4. A. Schematic representation of the longitudinal timexstress effects, orange
representing high stress (highest 25%) and green representing low stress (lowest 25%). B.
Replication of timexstress effects in an independent sample (32 directions diffusion protocol).
C. Negative effect of postnatal stress on structural connectivity at term-equivalent age (included
49 connections; 45 directions diffusion protocol). D. Replication of stress effects in an
independent sample (32 directions diffusion protocol). E. Robustness of NBS findings across a
range of prevalence thresholds (50%: p < 0.05; prevalence threshold of 60%: p < 0.05,
prevalence threshold of 70%: p < 0.05, two-sided permutation testing, 10,000 permutations).
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Figure 5. Distribution of group differences in communicability values between vulnerable and
resilient infants (left) and regions colored according to T-value (right; vulnerable < resilient
[green], Scholtens, L. H, de Lange, S. C., & van den Heuvel, 2021).
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Figure 6. A. Shows the difference between the mean of
predicted probabilities of the vulnerable an resileitn
group. B. Shows the true frequency of the positive label
against its predicted probability, the x-axis represents
the average predicted probability in each bin and the y-
axis is the proportion of sample whose class is the
vulnerable class (fraction of positives).
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Table 1. Sample demographic and neonatal clinical details of participants (N = 268)

_ Main Validation
Demographics Protocol A Protocol B
(N = 145) (N =123)
Age at birth, mean + SD, weeks 26.53+£1.01 26.54+1.00
Age at scan, mean £ SD, weeks 31.00+0.84 30.71+0.84
41.27+0.68 41.33+£1.01
30 week MR, n 76 55
40 weeks MRI, n 128 110
serial MRI, n 59 42
Gender, female/male, n 63/82 49/74
Birthweight z-score?, mean + SD, grams -0.61+1.41 -0.52+1.44

Postnatal stress®, median [range]

Days of morphine, mean = SD
Prenatal corticosteroids [yes/no]
Postnatal corticosteroids [yes/no]
Intraventricular hemorrhaging [yes/no]
Necrotizing enterocolitis, n

Retinopathy of prematurity, n

-0.69 (-3.26-5.14)

3.72+7.11
128/17
39/106
44/101
21
53

-1.26(-1.59-4.80)

3.17+5.18
115/8
40/83
37/85
10
40

nb. Protocol A refers to 45 diffusion directions, Protocol B refers to 32 diffusion directions.
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Table 2. Sample demographic and neonatal clinical details of resilient and vulnerable infants

Main dataset

Validation dataset

Resilient Vulnerable p-value Resilient Vulnerable p-value

Demographics (N =41) (N =30)
(N =42) (N = 49)

Age at birth, mean = SD, weeks 26.63+£1.00 26.54+0.92 ns 26.47+1.00 25.57+0.92 ns
Age at scan, mean £ SD, weeks 41.17+0.78 41.22+0.46 ns 41.14+0.48 41.46+1.36 ns
Gender, female/male, n 12/29 16/14 <0.05 16/26 14/35 ns
Birthweight z-score?, mean + SD, -0.44+1.35 -0.82+1.47 ns -0.61+1.31 -0.68+1.66 ns
grams
Fractional anisotropy, mean = SD 0.22+0.04 0.22+0.04 ns 0.27+0.04 0.27+0.03 ns
Postnatal stress, median [range] -0.43 [-2.84,2.62] -0.73 [-2.56, 3.24] ns -1.29 [-3.53,1.42] -1.48[-2.93, 1.53] ns
Days of morphine, mean = SD 2.68+4.36 2.29+2.25 ns 2.95+£3.99 3.20£5.79 ns
Prenatal corticosteroids [yes/no] 36/5 26/4 ns 39/3 4712 ns
Postnatal corticosteroids [yes/no] 12/29 9/21 ns 15/27 17/32 ns
Intraventricular hemorrhaging 15/26 9/21 ns 12/30 11/38 ns
(yes/no)
Necrotizing enterocolitis [yes/no] 5/36 5/25 ns 1/41 4/45 ns
Retinopathy of prematurity 15/26 13/17 ns 17/25 13/36 ns

[yes/no]
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Internalizing symptoms T-score, 43 [33-55] 58 [49-73] <0.001 41 [29-51] 58 [47-74] <0.001
median [range]

& Dutch Perinatal registry reference data (Perined)
Statistical significance was assessed with either a T-test (for continuous data) or a Kruskal-Wallis test (for ordinal data).
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Table 3. Group-difference on nodal centrality measures for contrast vulnerable > resilient.

Main Validation

T-value 95% CI T-value 95% CI
Communicabili
HPL -16.03 [-0.102, -0.066] -9.6 [-0.035, -0.017]
HPR -5.56 [-0.047, -0.011]
AML -9.25 [-0.038, -0017]
AMR -3.74 [-0.016, -0.001] -7.01 [-0.024, -0.008]
ATLML -5.73 [-0.039, -0.01] -3.31 [-0.028, -0.0001]
MITGAR 5.13 [0.005, 0.027]
LOGAR 9,1 [0.011, 0.025]
CBL 4.84 [0.003, 0.021]
BRS -9.49 [-0.027, -0.012]
GPPR 7.35 [0.018, 0.051]
LOGPR 9.65 [0.009, 0.02] 7.96 [0.003, 0.007]
CGAR -8.96 [-0.066, -0.029]
CGAL -11.33 [-0.08, -0.043]
CGPR -5,7 [-0.028, -0.007]
FLL -9.63 [-0.029, -0.014]
PLR 3.73 [0.001, 0.025] 5.52 [0.005, 0.022]
THR -4.18 [-0.023, -0.002]
SNR -11.44 [-0.041, -0.022] -5.17 [-0.032, -0.006]
LNL -4.06 [-0.023, -0.002]
Betweenness
HPL -9.5 [-5.781, -2.689] -8.06 [-2.153, -0.87]
AML -6.79 [-0.747, -0.242]
AMR -5.04 [-0.512, -0.094]
ATLML -4.68 [-1.118, -0.166]
ATLMR -7.18 [-2.358, -0.821]
GPAL 5.22 [0.594, 2.953]
LOGAL -7.45 [-0.555, -0.202] -8.72 [-0.591, -0.258]
CBL 458 [0.751, 5.444]
BRS 3.76 [0.161, 3.963] 6.32 [2.499, 8.388]
GPPR 7.3 [0.982, 2.764]
CGAL -7.19 [-0.232, -0.081]
CGPR 4.65 [0.076, 0.523]
CGPL 5.72 [0.191, 0.78] 4.99 [0.135,0.725]
PLR 6.11 [3.175, 11.527]  8.97 [4.038,9.021]
PLL 4.84 [1.868, 11.306]
CNR 6.25 [1.05, 3.673]
CNL 5.96 [1.056, 3.998]
SNL 9.42 [0.145, 0.314]
Clustering
HPL 7.19 [0.014, 0.04]
AML 4.8 [0.007, 0.044]
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ATLMR 6.3 [0.009, 0.032]

GPAL -4.29 [-0.027, -0.003]

STGL -4.94 [-0.035, -0.006]

LOGAL 5.21 [0.006, 0.028]

CBL -3.68 [-0.021, -0.001]

GPPR -5.25 [-0.047, -0.01]

CGPR -8.03 [-0.049, -0.019]

CGPL -5.48 [-0.045, -0.01] -5.12 [-0.033-0.007]
FLR -6.29 [-0.026, -0.007]

FLL -5.2 [-0.021, -0.004]

PLR -7.45 [-0.019, -0.007] -6.61 [-0.019-0.006]
PLL -8.49 [-0.023, -0.01]

CNR -5.14 [-0.035, -0.007]

CNL -8.46 [-0.034, -0.014]

SNL -7.34 [-0.026, -0.009]

Nodal efficiency

ATLLL 3,9 [0.001, 0.001]

HPL -7,04 [-0.02, 0.02]

ATLML -4.27 [-0.009, 0.009]

CGAL -5,92 [-0.021, 0.021]
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Table 4. Multiclass classification using 10-fold cross-validation

Vulnerable Overall
versus Resilient

Communicability

Sensitivity 0.778 Accuracy: 0.804
Specificity 0.828 95% CI: [0.676, 0.898]
Balanced accuracy 0.803 K=0.606
Betweenness centrality
Sensitivity 0.704 Accuracy: 0.768
Specificity 0.828 95% CI: [0.636, 0.87]
Balanced accuracy 0.766 K =0.533
Nodal efficiency
Sensitivity 0.630 Accuracy: 0.746
Specificity 0.862 95% CI: [0.616-0.856]
Balanced accuracy 0.75 K =0.495
Clustering coefficient
Sensitivity 0.741 Accuracy: 0.77
Specificity 0.793 95% ClI: [0.636-0.87]
Balanced accuracy 0.767 K =0.534
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