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Abstract

Understanding the phenotypic and genetic architecture of reproductive isolation is a longstanding
goal of speciation research. In many systems, candidate barrier traits and loci have been
identified, but causal connections between them are rarely made. In this study, we combine ‘top-
down’ and ‘bottom-up’ approaches with demographic modeling toward an integrated
understanding of speciation across a monkeyflower hybrid zone. Previous work in this system
suggests that pollinator-mediated reproductive isolation is a primary barrier to gene flow
between two divergent red- and yellow-flowered ecotypes of Mimulus aurantiacus. Several
candidate floral traits contributing to pollinator isolation have been identified, including a
difference in flower color, which is caused primarily by a single large-effect locus (MaMyb2).
Other anonymous SNP loci, potentially contributing to pollinator isolation, also have been
identified, but their causal relationships remain untested. Here, we performed demographic
analyses, which indicate that this hybrid zone formed by secondary contact, but that subsequent
gene flow was restricted in a large fraction of the genome by barrier loci. Using a cline-based
genome scan (our bottom-up approach), we demonstrate that candidate barrier loci are broadly
distributed across the genome, rather than mapping to one or a few ‘islands of speciation.” A
QTL analysis (our top-down approach) revealed most floral traits are highly polygenic, with little
evidence that QTL co-localize, indicating that most traits are largely genetically independent.
Finally, we find little convincing evidence for the overlap of QTL and candidate barrier loci,
suggesting that some loci contribute to other forms of reproductive isolation. Our findings
highlight the challenges of understanding the genetic architecture of reproductive isolation and
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reveal that barriers to gene flow aside from pollinator isolation may play an important role in this
system.

Introduction

Understanding the phenotypic and genetic architecture of reproductive isolation is a
major goal of modern speciation research [1-3]. Early studies took a ‘top-down’ approach by
using quantitative trait locus (QTL) mapping and other association methods to detect genomic
regions controlling barrier phenotypes or genetic incompatibilities [4-6]. More recently, ‘bottom-
up’ approaches, such as genome scans of genomic differentiation (e.g., Fsr) or admixture (e.g.,
fa), have identified candidate barrier loci in numerous systems, including those where isolation is
thought to result from ecologically-based divergent selection or intrinsic incompatibilities [7-10].

Although both approaches have clear strengths, they also present significant challenges
[11]. Top-down methods require that traits involved in reproductive isolation have already been
identified, so our understanding of the genetic architecture of speciation can only ever be as
complete as our knowledge of the traits controlling reproductive isolation in the system. In
contrast, bottom-up approaches can provide a comprehensive view of the genomic landscape of
speciation without complete knowledge of the isolating traits (but see [3, 12]). However, even
though candidate barrier loci can be identified, their causal relationship with previously
identified barrier traits usually remains unclear. This is because speciation usually involves many
different isolating barriers (e.g., pre- and post-zygotic, extrinsic and intrinsic) [13, 14] that can
become coupled together through different aspects of the speciation process [15-17]. Although
the coupling of different barriers eases speciation by generating a stronger overall barrier [16,
17], the resulting linkage disequilibrium (LD) among barrier loci makes it difficult to understand
their individual contributions to barrier traits. For example, a barrier locus identified in a genome
scan might underlie an obvious phenotypic difference, or it may underlie a completely different
barrier that is less conspicuous or that has yet to be discovered.

Therefore, instead of relying on one approach, many researchers have advocated for the
integration of top-down and bottom-up methods [3, 11, 18]. However, this kind of integration is
missing from most studies of speciation, meaning that any links between candidate barrier traits
and barrier loci remain tentative. To date, some of the best efforts to integrate top-down and
bottom-up analyses have made use of natural hybrid zones between divergent populations [19].
Hybrid zones have been described as natural laboratories, because they allow us to understand
how reproductive isolation and barriers to gene flow play out in the real world [20]. In addition,
their presence provides compelling evidence for ongoing gene flow between the taxa being
studied, the relative duration of which can now be estimated using demographic inference
methods. Moreover, cline theory provides a rich, spatially explicit framework for studying
selection and gene flow across porous species boundaries [21-23]. Specifically, the shape and
position of geographic clines are impacted by the relative effects of selection and gene flow
across a hybrid zone [22]. Cline analysis has clear advantages over population genetic summary
statistics used in most selection scans (e.g., Fst), and it can be applied to phenotypic traits [24].
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80  However, it is only beginning to be applied to genome-scale datasets [24-28]. In this study, we
81  combine top-down and bottom-up analyses to investigate the phenotypic and genetic architecture
82  of pollinator isolation between hybridizing ecotypes of the bush monkeyflower (Mimulus

83  aurantiacus).

84 In San Diego County, California, there is a sharp geographic transition between red- and

85  yellow-flowered ecotypes of M. aurantiacus ssp. puniceus [29]. Despite being very closely

86 related (d,=0.005; [30], the ecotypes show extensive divergence across a suite of floral traits,

87  including color, size, shape, and placement of reproductive parts (Fig. 1; [29, 31, 32]). Previous

88  work suggests an important role of pollinators in driving floral trait divergence and reproductive

89  isolation in this system [29, 33-36]. Field experiments have shown that hummingbirds and

90  hawkmoths show strong preferences and constancy for the flowers of the red and yellow

91  ecotypes, respectively [34, 36]. In addition to providing a source of divergent selection,

92  pollinator behavior generates substantial premating isolation, potentially reducing gene flow

93  between the ecotypes by 78% in sympatry [36]. Post-mating isolation is weak between the

94  ecotypes, suggesting that pollinator isolation is the primary barrier to gene flow in this system

95  [36].

96 Although the strength of pollinator-mediated reproductive isolation is strong, it is

97  incomplete, meaning that there is potential for gene flow between the ecotypes in locations

98  where their distributions overlap. This has led to the formation of a narrow hybrid zone,

99  characterized by extensive phenotypic variation and geographic clines in several floral traits. For
100  example, there is a steep cline in flower color that is centered on the hybrid zone and matches a
101  similarly steep cline in the gene MaMyb2, which controls much of the variation in pigmentation
102  [35]. Other floral traits and anonymous single-nucleotide polymorphisms (SNPs) also show
103  clinal variation, implying that multiple traits contribute to reproductive isolation [24, 33].

104  However, evidence for an association between these phenotypic traits and genotypic signatures
105  of selection is currently lacking.

106 In this study, we use demographic modeling, a cline-based genome scan, and QTL

107  mapping to investigate the history of divergence and the connection between phenotypic and
108  genomic signatures of selection in this system. One possible outcome is that QTL for the

109  divergent phenotypes will overlap with regions of the genome under selection, as predicted if
110  pollinator-mediated selection is the main barrier to gene flow between the ecotypes. These

111 regions may be abundant and widespread across the genome, reflecting polygenic divergence, or
112  they may consist of one or a few genomic regions enriched for loci that underlie multiple floral
113 traits. Under an alternate scenario, we may find that floral QTL only partially overlap with

114  genomic signatures of selection, which might reflect the spatial coupling of multiple different
115  kinds of barriers. Our findings highlight the challenges of understanding the genetic architecture
116  of reproductive isolation, and suggest that barriers to gene flow aside from pollinator isolation
117  may also contribute to speciation in this system.
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146  Figure 1. Clinal variation across a bush monkeyflower hybrid zone. (top) Typical flower

147  phenotypes of the red and yellow ecotypes, and a map of the 25 sampling locations in San Diego
148  County. The size of the circles shows variation in the sample sizes, which range from 4 to 18

149  individuals, totaling 292 individuals. The dashed line indicates the center of the hybrid zone,

150  previously inferred from spatial variation in the frequency of alternative alleles at the MaMyb2 locus.
151 (bottom) Clines in allele frequency at the MaMyb2 locus (red circles) and the mean floral trait PC1
152  score (blue squares) across the one-dimensional transect. The solid and dashed lines are the ML
153  sigmoid cline models for MaMyb2 allele frequency and trait PC1 score, respectively. The gray

154  shaded rectangle represents the width of the hybrid zone.

155

156  Methods

157  RAD sequencing, read filtering, and SNP calling

158 We identified SNPs using previously sequenced restriction-site associated DNA

159  sequences (RADseq) from 292 individuals sampled from 25 locations across the hybrid zone
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160  (mean individuals per site = 12; range 4—18) [24]. These included 11 sites in the range of the red
161  ecotype, 8 sites in the range of the yellow ecotype, and 6 sites in the hybrid zone (Table S1).

162 We processed the raw sequences, identified SNPs, and called genotypes using Stacks v.
163  1.41 [37]. Reads were filtered based on quality, and errors in the barcode sequence or RAD site
164  were corrected using the process_radtags script in Stacks. Individual reads were aligned to the
165 M. aurantiacus genome [30] using Bowtie 2 [38], with the very sensitive settings. We identified
166 ~ SNPs using the ref map.pl function of Stacks, with two identical reads required to create a stack
167  and two mismatches allowed when processing the catalog. SNP identification and genotype calls
168  were conducted using the maximum-likelihood model (alpha = 0.01) [39]. To include a SNP in
169 the final dataset, we required it to be present in at least 70% of all individuals; this resulted in a
170  final dataset of 219,152 SNPs.

171

172  Demographic inference

173 To gain a deeper understanding of the history of gene flow and selection in this system,
174  we performed demographic inference in daci [40]. We calculated the unfolded joint site

175  frequency spectrum (JSFS) based on 19,902 SNPs, using subspecies grandiflorus as an outgroup
176  to polarize alleles as ancestral or derived [41]. SNPs were included if they were genotyped in
177  grandiflorus and in at least 70% of the red and yellow individuals. We included 124 individuals
178  from 10 sites of the red-flowered ecotype and 65 individuals from 7 sites of the yellow-flowered
179  ecotype, excluding sample sites that showed evidence of recent admixture (all hybrid sample
180  sites and populations DLR and BC). The JSFS was projected to a sample size of 85 to maximize
181  the number of segregating sites.

182  We fit nine two-population demographic models to the JSFS (Fig. S1): (i) strict isolation (SI),
183  (ii) ancient migration (AM), (iii) isolation with migration (IM), (iv) secondary contact (SC), and
184  (v) periods of secondary contact (PSC). The remaining four models—(vi) AM2m, (vii) IM2m,
185  (viii) SC2m, and (ix) PSC2m—are the same as models ii-v, except that migration rates are

186  inferred for two groups of loci to simulate the effect of a porous barrier to gene flow. For each
187  model, we performed 20 independent runs using randomly generated starting parameters, and we
188  reported the results for the run with the lowest log-likelihood. The goodness of fit of the models
189  was determined using the AIC. Parameter estimates were converted into biologically meaningful
190  values as described in [42], assuming a mutation rate of 7 x 10 [43].

191
192  Admixture analysis
193 We used the model-based clustering program Admixture [44] to characterize patterns of

194  genetic structure across the hybrid zone. We assigned the 292 individuals sampled from across
195  San Diego County into two clusters (K=2) based on the full dataset of 219,152 SNPs that met our
196 filtering requirements (note that K=2 was determined as the optimum number of clusters in [24].
197  In addition to using the full dataset, we also pruned SNPs using the --indep-pairwise function in
198  Plink [45] to reduce linkage disequilibrium (LD) between neighboring SNPs (# threshold of 0.1,
199  window size = 50 SNPs, step size = 10 SNPs).
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200 We also ran Admixture separately for each chromosome, and for 2,173 non-overlapping
201  windows, each containing 100 SNPs (mean window size of 89.1 kb with 8 - 38 RAD tags per
202  window Fig. S2) The window-based analysis was automated using custom python scripts to

203  produce plink.map and .ped files for each consecutive window, which were then passed to

204  Admixture.

205

206  Cline fitting

207  To quantify the geographic variation in ancestry (Q), we fit a sigmoid cline model to the mean
208  ancestry scores from each site along a one dimensional transect, which was described in [24]
209  (Fig. 1). Clines were fitted using HZAR [46] using the quantitative trait model, with the variance
210 in the trait modeled separately on the left side, center, and right side of the cline. We estimated
211 the following parameters: the cline center (c), defined as the inflection point of the sigmoid

212 function; Qe and Oright, the mean ancestry scores on the left and right sides of the cline,

213  respectively; and the cline width (w), defined as the ratio between the total change in ancestry
214 across the cline (AQ) and the slope at the cline center (note that AQ = Qefi - Oright because we
215  ensured that the mean ancestry score was higher on the left side before fitting). We conducted 3
216  independent fits with random starting values and retained the one with the highest log-likelihood.
217  All of the best fits were visually inspected to ensure a sensible fit.

218
219  Summarizing clinal variation in windows
220 After cline fitting, we calculated an ad-hoc statistic to identify genomic windows that had

221  clines with a similar shape and position to the genome-wide cline. We refer to this statistic as the
222  cline similarity score (cs score). Unlike individual parameters (e.g. the width or center), which
223  describe a single feature of a cline, the cs score describes the shape and relative position of a
224  cline with a single number. We calculate the cline similarity score as: cs = [AQ/(w + [)]eUe/1D)*,
225  Briefly (but see Supplement S1 for more details), the total change in ancestry, AQ, is divided by
226  the sum of w and a scaling variable (w + /) to give an estimate of cline shape. The scaling

227  variable controls the spread of shape scores across the joint distribution of AQ and w. In our case,
228 /= half the length of the transect (0.5¢), which results in high shape scores when clines have high
229  AQ and low w, but low shape scores when clines have low AQ and high w. The shape score is
230 then scaled according to the position of the cline center, ¢, relative to a position of interest. This
231 could be a feature of the environment or a cline in a focal marker or trait. In our case, the

232  position of interest is the center of the genome-wide ancestry cline. If the cline center coincides
233  exactly with this point, then the shape score is equal to the cs score. However, the farther that the
234  cline center is shifted away from the point of interest, the more the shape score is downgraded,
235  resulting in a lower estimate of c¢s. Therefore, to have a high value of cs, a cline from a genomic
236  window must have its shape and position closely match the cline in genome-wide ancestry (as in
237  Fig. 3A). Finally, we scaled the cs score relative to the genome-wide ancestry cline, where 1 is
238  the cs score calculated for the genome-wide ancestry cline, and 0 is the minimum value of cs
239  observed for a window.
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240  Estimates of genetic differentiation in genomic windows

241 To characterize levels of genetic differentiation in a more traditional way, we calculated
242  the population genetic statistic F'cr between the ecotypes in each 100 SNP window using the
243  program Arlequin [47]. This was done in an analysis of molecular variance framework that

244  partitioned genetic variation between the ecotypes, among populations within ecotypes, and

245  within populations. Populations were classified as coming either from the red or yellow ecotypes
246  based on the Admixture results. Samples from hybrid populations were excluded from this

247  analysis.

248
249 QTL analysis
250 We used QTL analysis to identify genomic regions underlying divergent floral traits. We

251  generated an outcrossed F» population that contained 292 offspring produced by crossing two Fi
252  individuals; each of these Fi parents was produced by crossing different greenhouse-raised red
253  and yellow ecotype plants (from populations UCSD and LO; Table S1). To allow direct

254  phenotypic comparison among plants grown in a common environment, we raised 25 red ecotype
255  individuals (location UCSD), 31 yellow ecotype individuals (location LO) and 20 F; individuals
256  (LO x USCD) alongside the F»s. For each plant, we measured 13 floral traits (Fig. S3). Plants
257  were raised as described in [33].

258 QTL mapping was conducted using R/g¢/ [48] and a previously published genetic map
259  [30] generated from the same mapping population using Lep-MAP2 [49]. We used phase

260 information from Lep-MAP?2 to infer the grandparental origin of alleles in the Fas at 7574

261  mapped markers, which allowed us to recode them as coming either from a red or yellow

262  grandparent. This set of markers was then reduced down to 2631—one per map position—by
263  retaining the marker at each map position with the least missing data. Missing data for these

264  markers was inferred by imputation using phase information from the mapping software. For
265  each trait, we then used automated stepwise scanning for additive QTL and pairwise interactions.
266  QTL identified using this procedure were then incorporated into a multi-QTL model to refine
267 their positions, calculate 95% Bayes credible intervals, and estimate the percent phenotypic

268  variation explained (i.e., the effect size) of each QTL.

269
270  Test for an excess of QTL overlap
271 To test for co-localization among QTL, we used a permutation test to determine if there

272 was significantly more overlap among QTL than expected by chance. We first estimated the
273  observed number of overlaps based on the Bayes credible intervals among the 26 identified QTL
274  using the findOverlaps function of the GenomicRanges package [50] in R and determined the
275  average number of overlaps per QTL (n overlaps/n QTL). To determine if this statistic was

276  significantly larger than expected by chance, we randomly generated new QTL positions while
277  maintaining the observed number and size of observed QTL. We made the probability of QTL
278  ‘landing’ on a given chromosome (Chr) a function of that chromosome’s length (L;) relative to
279  the total genome length (Lt), P(Chr;) = L;/ Lz, so that larger chromosomes were more likely to
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280 have QTL i assigned to them. We calculated the mean number of overlaps per QTL for 9,999
281  random datasets and estimated a p-value for the observed value as the number of permuted

282  datasets where n overlaps/n QTL was equal to or greater than the observed estimate + 1/number
283  of permutations +1.

284
285  Test for overlap of QTL and outlier windows
286 We also used a permutation test to determine if QTL regions were enriched for outliers

287  identified in our cline and Fcr based genome scans. We first counted the observed number of
288  outlier windows within the empirical QTL intervals. This was performed for both c¢s and Fcr
289  outliers, defined using two different cutoffs (top 1% and 5% of the empirical distributions). To
290  determine if these counts were significantly different from chance, we produced 9,999 datasets
291  where the genomic position of outlier windows was randomized, and we counted the number of
292  outliers falling inside the empirical QTL intervals. A p-value for the estimate was calculated as
293  described above.

294

295  Results

296  Evidence for a history of heterogeneous gene flow

297 The results of our demographic modeling support a history of gene flow across the range
298  of the ecotypes. First, demographic models that included contemporary gene flow were far better
299  atrecreating the observed JSFS than a model of divergence without gene flow (i.e., strict

300 isolation; -AAIC = 3938), or the best model of ancient migration, which included historical but
301  not contemporary gene flow (-AAIC = 1157) (Fig. 2; Fig. S4). Second, models that included
302  heterogeneous migration across the genome (2m) were always strongly favored over the

303  equivalent models, where gene flow was modeled with a single rate (Fig. 2). Third, the SC and
304  PSC models, which included periods of allopatry and secondary contact, were strongly favored
305  over the IM model, where divergence occurred without a period of geographic isolation. The
306  best-fitting model was the SC2m model, indicating that divergence of the red and yellow

307  ecotypes included a period of allopatry followed by gene flow upon secondary contact (Fig. 2).
308  Assuming a mutation rate of 7x10 [43], the ML parameters indicate that the ecotypes have been
309 exchanging an average of 37 migrants per generation (myr = 34.5 per gen.; mgy = 40.3 per gen.)
310 for the last 1,800 generations, which equates to roughly 3,600 years, assuming a two-year

311  generation time for these perennial plants. Despite evidence that gene flow between the ecotypes
312  has been extensive, the ML model suggests that 37.4% of loci have experienced a substantial
313  reduction in effective migration (15-20 fold; meyr = 1.7 per gen.; mery = 2.7 per gen.) due to the
314  effects of selection against gene flow (Fig. 2).

315

316

317

318
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335  Figure 2. Demographic modeling reveals a history of gene flow following isolation. (a) -AAIC

336  scores for the 9 demographic models fitted to the observed JSFS using dadi. The base models (left of the
337  dashed line) include a single migration parameter (m) for all loci, whereas the 2m models include

338  separate migration parameters for neutral loci (m) and loci affected by a barrier to gene flow (me). The
339  best model (SC2m) has a -AAIC of 0, with more negative values indicating that models were a poorer fit.
340 (b) A graphical depiction of the SC2m model. The width of the columns is proportional to the population
341 size estimates for the ancestral (Na), red (Nr), and yellow (Ny) populations. the height of the red and
342  yellow bars is proportional to the total time in generations (Ts) that has passed since the split. The blue
343  bar shows the period during which secondary gene flow (Tsc) occurred. The difference in arrow size is
344 proportional to the difference in the bi-directional migration rate, m. The rates of effective migration (me)
345  are too small to show graphically.

346

347

348  Sharp clines in genome- and chromosome-wide ancestry

349 The presence of sharp clines in multiple floral traits suggests that some fraction of the

350 genome is impacted by selection against gene flow [33]. The results from Admixture support

351  these findings, revealing genome-wide patterns of ancestry that closely match the ecotypic

352  designations assigned based on floral phenotypes (Fig. S5). Specifically, red- and yellow-

353  flowered individuals sampled from either side of the hybrid zone were strongly assigned to

354  alternate clusters, while individuals from hybrid populations tended to show some assignment to
355  both clusters, indicating their genomes are a mix of red and yellow ancestry. The results are

356  nearly identical between independent runs of Admixture that include the full dataset or subsets of
357 the data pruned to minimize LD between neighboring SNPs (72 > 0.999).

358 To compare these changes in ancestry to the observed geographic variation in floral traits,
359  we used cline analysis to fit a sigmoid cline to the mean ancestry scores from each site. The best-
360 fitting cline model provides an excellent summary of the change in ancestry across the transect
361  (Fig. 3a) and has an extremely similar shape to cline models from the divergent floral traits and
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molecular markers (Fig. 1). In addition, consistent with the increased variance we observed in
multiple phenotypic traits in hybrid populations [33], the standard deviation of ancestry scores is
higher in sample sites close to the cline center, thus providing genomic evidence for
hybridization (Fig. 3a).
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Figure 3. Clines in ancestry scores at
different scales of genomic organization. (a)
Genome-wide cline, inferred from the mean
ancestry (Q) scores in each population along
the 1-D transect. Position 0 on the horizontal
axis corresponds to the cline center estimated
from MaMyb2 allele frequencies (see Fig. 1).
The vertical bars show the standard deviation
in ancestry scores for each population. The
dashed line is the ML cline model, and the gray
band is the two-unit support envelope. Three
parameters of interest, including the cline
center (c), width (w), and total change in
ancestry across the cline (AQ), are indicated
on the plot. (b) Ancestry clines estimated
separately for each chromosome. Only the ML
curves are shown for clarity (but see Fig. S6).
The dashed line is the mean cline, estimated
by taking the average of the ML parameters for
all chromosomes. (c) Ancestry clines estimated
for 2,173, 100-SNP windows. The dashed cyan
line shows the cline shape for the genome-
wide cline (as shown in panel a), while the
dashed orange line is the mean cline shape,
estimated by taking the average of the ML
parameters obtained for all windows. Each
solid line is the ML sigmoid curve for one of the
genomic windows. The curves are colored
according to the value of the cline similarity
score (cs), which indicates how similar the
shape and position of each cline is to the
genome-wide cline. Redder clines are more
similar to the genome-wide cline and bluer
clines are less similar (See main text for more
details).

The Admixture scores provide additional genetic evidence for restricted gene flow across
the hybrid zone, but they give us no indication as to the number of loci involved or their genomic
distribution. For example, the differences in ancestry could be driven by a small number of loci

that reside on a single chromosome, or they could reflect more widespread genomic divergence,

involving loci scattered across multiple chromosomes. By repeating the cline analysis of ancestry
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407  scores separately for each chromosome, we find highly consistent clines in ancestry for all 10
408 chromosomes (Fig. 3b, Fig. S6).

409
410  Heterogeneous clinal variation across the genome
411 To understand how cline shape varies at a finer genomic scale, we fit clines to 2173 non-

412  overlapping 100-SNP windows. This analysis revealed broad variation in geographic patterns of
413  ancestry (Fig. 3c). Unlike each chromosome, the majority of windows show little or no spatial
414  change in ancestry between the red and yellow ecotypes, translating into very low cs scores

415  (mean cs =0.15;s.d. = 0.15, Fig. 4).

416 However, some genomic regions show clines in ancestry that strongly resemble the

417  genome wide cline, suggesting that they contain barrier loci. This includes the window with the
418  highest cs score (¢s = 0.91), which contains the known barrier locus, MaMyb2. The shape and
419  position of this window-based ancestry cline (AQ = 0.95, w = 10.4 km, ¢ = -0.3 km) is highly
420  similar to the genome-wide cline in ancestry (AQ = 0.95, w = 7.6 km, ¢ = 0.37 km) and to the
421  cline in allele frequency for a SNP in MaMyb2 (MaMyb2-M3 marker: AP =0.99, w=8.1 km, ¢
422  =-0.07 km [24]. However, rather than a clear set of outliers, we observe a continuous

423  distribution of cs scores. Therefore, we use two arbitrary cutoffs (top 1% and 5% of the

424  distribution of c¢s scores) to define a set of candidate windows potentially containing barrier loci.
425 Regardless of which cutoff we use, these candidate barrier regions are broadly distributed
426  across the genome. For the 5% cutoff, they occurred on all 10 chromosomes (5 - 20 windows per
427  chromosome; for the 1% cutoff, they occur on 9 of the 10 chromosomes with 1 - 4 windows per
428  chromosome). There were only 12 cases where candidate windows were directly adjacent,

429 indicating that they also were broadly distributed within each chromosome. We also find that
430  genetic differentiation is higher for candidate regions than for the genomic background (1%

431 mean Fcr=0.31, 5% mean Fcr= 0.23, overall mean Fcr = 0.07). However, Fcr explains only
432  38% of the variation in cs scores (Fig. S7).

433
434  Most candidate barrier traits are polygenic
435 We used quantitative trait locus (QTL) mapping to identify regions of the genome

436  associated with candidate barrier traits. The 13 floral traits showed significant differences

437  between pure red and yellow ecotype plants when grown in a common environment, with mean
438  trait values differing by 0.9 to 7.1 standard deviations (Fig. S8). A total of 26 QTL were

439  identified. For nine traits, we identified more than one QTL (range 2 — 4), and QTL were located
440  on all 10 linkage groups, with LG 7 containing QTL for seven different traits (Fig. 4, Figs. S9
441 and S10). On average, each QTL explained 9.9% of the variation in the F> population (range

442  1.82% - 62.6%) (Fig. S11), with an average total variation explained for each trait of 19.8%. The
443  exception was a large-effect QTL for anthocyanin content on LG 4 that explained 62.6% of the
444  variation and mapped to a region near the previously identified causal locus MaMyb?2 [35]. Thus,
445  despite clear heritable differences in these traits, QTL analysis was able to explain only a modest
446  amount of the segregating variation, indicating that most traits have a polygenic architecture.
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448  Figure 4. Cline-based genome scan and locations of QTL for floral traits. (top) The scaled cline

449  similarity (cs score) score in each 100 SNP window plotted against the physical position of the window in
450 the bush monkeyflower genome. The points are colored as in Fig. 3c, with redder points containing

451 windows with ¢s scores that are more similar to the genome-wide pattern and bluer points are less similar
452 (See main text for more details). The orange asterisk denotes the average barrier score among all

453  windows. The position of the MaMyb2 gene that controls differences in flower color is shown. (bottom)
454  The positions of the QTL for the 13 measured floral traits plotted along the physical position of the

455  genome. The red vertical line corresponds to the best estimate of the QTL peak, and the width of the

456  rectangles denotes the 95% Bayes credible intervals of the estimated QTL position.

457

458 The presence of multiple QTL occurring on the same chromosome indicates that some
459  regions may contribute to multiple traits, which would help maintain trait associations in hybrid
460  offspring [17]. Overall, we find that QTL do tend to co-localize more often than would be

461  expected by chance (mean observed overlap of 3.23 QTL; mean permuted overlap =2.51 QTL; p
462  =0.042, Fig. S12). However, the effects of this co-localization are seen most strongly only for
463  size-related traits (e.g. corolla length and height of the tallest anther), which remain highly

464  correlated in the F> generation (r = 0.88) (Fig. S13). By contrast, the average correlation

465  coefficient among all other pairs of traits was much lower (mean absolute value of » = 0.26). For
466  example, the three overlapping QTL on LG 4 that control anthocyanin and carotenoid

467  pigmentation, as well as corolla height, span a total physical distance of only 76 kb. However,
468 these traits show weak correlations in the F2 population (anthocyanin vs carotenoid: » = 0.18;
469  anthocyanin vs corolla height: » =-0.20; carotenoid vs corolla height: » = 0.19). This shows that
470  the QTL overlap would have little effect on maintaining the phenotypic correlations where

471  hybridization occurs.
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472  Low concordance between QTL and outlier regions

473  Finally, we tested for overlap between the floral trait QTL and the candidate barrier regions from
474  the cline-based and Fcr genome scans. Using a permutation test, we tested whether genomic
475  windows with higher cs scores tended to overlap with QTL more often than expected by chance.
476  Regardless of which cutoff we used (e.g. top 1% or top 5% of cs scores), we found that floral
477  trait QTL were not significantly enriched for candidate barrier regions (p > 0.3, Fig. S14). This
478  suggests a complex connection between the genetic and phenotypic architecture of reproductive
479  isolation. The results were the same when we defined candidate barrier regions based on Fcr
480  (e.g. top 1% or top 5% of the Fcr distribution; Fig. S14).

481 Given that wide QTL intervals reduce the power of the enrichment test, we also asked
482  how often the estimate of the QTL peak fell within a candidate barrier window. However, even
483  when using the 5% cutoff, we found that none of the QTL peaks occurred within candidate

484  barrier regions. This included the QTL for floral anthocyanin, where the QTL peak occurs 589
485 kb from the window containing the causal locus, MaMyb2.

486
487  Discussion
488 In this study, we used a combination of QTL mapping and population genomic analyses

489  to obtain a deeper understanding of the phenotypic and genetic architecture of reproductive

490 isolation in a hybrid zone. Past studies in this system have separately identified candidate floral
491 traits contributing to pollinator-mediated reproductive isolation [33, 34], and anonymous,

492  candidate barrier loci [24]. Here, we use top-down and bottom-up approaches in an effort to
493  connect phenotypic and genetic candidates. These results are discussed in the context of new
494  insights about the history of divergence revealed by demographic analysis and are aided by a
495  known, large-effect barrier locus (MaMyb2) with a clear phenotypic effect.

496

497  The history of divergence: new insights from demographic analysis

498 A firm understanding of the historical demography of speciation is essential when

499 interpreting divergence across hybrid zones [51, 52]. In zones that are at demographic

500 equilibrium, it is possible to interpret clines in terms of migration, selection, and drift and

501  sampling effects [22]. However, if hybrid zones formed recently, clines in neutral loci or traits
502  will be steep initially, but they will decay over time [22]. Previous work in this system revealed
503  patterns of isolation-by-distance across (and orthogonal) to the hybrid zone that were consistent
504  with a long-term ‘stepping-stone’ pattern of gene flow across the entire range of the study area
505  [33]. In fact, there was no evidence for substantial genome-wide differentiation between the
506  ecotypes after correcting for the effect of geography. Based on this result, Stankowski et al. [33]
507  concluded that the hybrid zone formed due to one of three possible scenarios: (i) a primary origin
508  with continuous gene flow during divergence, (ii) a secondary origin, where divergence occurred
509 in allopatry, followed by extensive gene flow after contact resumed, or (iii) a secondary origin
510  where the period of allopatry was short.
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511 Our demographic analyses provide new evidence that this hybrid zone formed from

512  secondary contact after a long period of isolation. Indeed, both models that included periods of
513  geographic isolation (SC and PSC) were a better fit to the data than models of continuous gene
514  flow (IM). The parameter estimates for the preferred model (SC2m) indicate a relatively long
515  period of isolation, followed by a period of secondary contact that began roughly 1,800

516  generations ago. It is important to note that we fit relatively simple models to the data that

517  excluded changes in population size in the ancestral and daughter populations and variation in N,
518  along the genome. Recent work has shown that failure to model key parameters can result in
519  incorrect inference under some circumstances [53]. Although more sophisticated modelling may
520 arrive at different conclusions in the future, these results point to a secondary origin of this

521  hybrid zone.

522 In terms of the main goal of our paper, the key result of the demographic analysis was
523  that all models with two rates of migration (2m models) fit the data better than those where

524  migration was modelled at a single rate, indicating a heterogeneous pattern of gene flow across
525  the genome. Moreover, the estimated parameters for the preferred model suggest that roughly
526  one third of loci (37%) have experienced migration at substantially reduced rate compared with
527  non-barrier loci. This result supports previous conclusions that candidate barrier traits and loci
528 are indeed impacted by natural selection [24], further motivating the need to connect the

529  phenotypic and genetic architecture of RI in more detail.

530
531  From the ‘bottom up’: insights from the cline-based genome scan
532 Starting with the bottom-up approach, we used a cline-based genome scan to identify

533  candidate loci underlying barriers to gene flow. Unlike traditional summary statistics calculated
534  between pre-defined groups (e.g., Fsr), geographic cline analysis is a more natural framework for
535  studying genetic divergence across hybrid zones, as it provides clearer insights into the strength
536  and nature of selection [24, 26]. Rather than fitting clines to allele frequencies for individuals
537  SNPs, we fit clines to model-based ancestry scores, treating them as a quantitative trait [21].

538 By conducting this analysis at different scales of genomic organization, we are able to
539  conclude that candidate barrier regions are widespread throughout the genome. At the genome-
540  wide scale, the cline in ancestry is centered on the hybrid zone and has a very similar shape to
541  the clines in floral traits. At the chromosome scale, all 10 chromosomes show clear sigmoid

542  clines in ancestry, with their shapes and positions being highly similar to the genome-wide cline.
543  The same conclusion can be drawn from the window-based analysis, as candidate barrier regions
544  are present on all 10 of the chromosomes. The window with the highest cs score is located on
545  chromosome 4 and contains the gene MaMyb2. Alternate alleles at this locus control the

546  difference in flower color, and other population genetic analyses indicate that it has been subject
547  to strong divergent selection in this system [35, 54]. Prior knowledge of this barrier locus

548  provides confidence that other windows with high cs scores also likely harbor barrier loci with
549  similarly large phenotypic effects.
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550 However, rather than identifying a clear set of c¢s outliers, we observed a continuous

551  distribution of cs scores, indicating that clines show varying degrees of resemblance to the

552  genome-wide cline. Although it is tempting to interpret variation in the cline similarity score
553  exclusively in terms of the sieving effect of a porous species boundary (i.e., assuming that the cs
554  score is proportional to a local reduction in gene flow caused by associated barrier loci), the

555  observed variation in c¢s scores requires more conservative interpretation. First, neutral processes,
556  such as isolation-by-distance, can generate clines that are highly similar to clines generated by
557  selection [26]. Similarly, neutral clines generated by secondary contact can take a long time to
558  decay, making them hard to distinguish from selected ones [22, 51]. Localized drift (and

559  sampling effects) tends to distort cline shapes in a way that may lead to the discovery of false
560  positives [55, 56]. In addition, even though a genomic region may contain a large-effect barrier
561  locus, it might not show a cline if the genomic window is too broad to capture the relevant

562  signatures. Future efforts to help identify non-neutral clines may be accomplished using whole-
563  genome rather than reduced-representation sequencing, and by comparing results obtained from
564  multiple hybrid zones [27]. Simulations of cline formation could also help distinguish candidate
565  outliers (as in [26]). Even with these measures in place, the noise generated by background

566  processes and sampling effects may mean that we only have power to confidently detect large-
567  effect loci, which remains a general problem with all genome scan approaches [3].

568

569  From the ‘top down’: insights from QTL analysis of candidate isolating traits

570 We mapped QTL to identify genomic regions underlying floral trait divergence in this
571  system. Although we identified a small number of QTL for each trait (between 1 and 4), the

572  identified QTL explained only about 20% of the variation in each trait. Given that these traits are
573  under strong genetic control, the ‘missing’ variance implies that most of the floral traits are

574  polygenic, caused by many loci with effect sizes below our limit of detection. However, some
575  fraction of the unexplained variation also may be due to subtle environmental differences

576  experienced by each plant in the greenhouse.

577 Although finding many small-effect loci may be expected in studies of phenotypic

578  evolution [57], many analyses of adaptation and speciation have recovered distributions of effect
579  sizes skewed toward larger effects [58, 59]. Moreover, the identified regions often control more
580 than one trait, and in some cases, more than one type of isolating barrier (e.g., pre- and post-

581  mating barriers). For example, in another pair of Mimulus species, M. cardinalis and M. lewisii,
582  large-effect QTL for multiple traits associated with pollinator isolation and hybrid sterility occur
583  in a few genomic regions thought to harbor chromosomal inversions [4, 60]. In sunflowers

584  (Helianthus), multiple traits are associated with local adaptation to dune and non-dune habitats
585  and map to a small number of large, non-recombining haplotypes containing structural variants
586  [61] (see [62-64] for other examples).

587 Large, multiple effect loci are an expected outcome of local adaptation and speciation
588 [17, 65], because more ‘concentrated’ genetic architectures are favored in scenarios where gene
589  flow opposes adaptive divergence [65]. Not only do large effect loci make individual traits more
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590 visible to selection, but tight linkage and pleiotropy enhance the coupling of different sets of

591  adaptive traits, meaning that they can remain associated despite gene flow [17]. This begs the
592  question: why do we see so few large effect loci and such little overlap among floral trait QTL in
593  the red and yellow ecotypes? One potential explanation is that divergence was initiated during a
594  period of geographic isolation—a hypothesis that is supported by our demographic analysis. If
595 trait divergence did occur during a phase of allopatry, the selection favoring certain combinations
596  of traits could build-up LD among many small-effect loci without opposition by gene flow.

597  Although the associations would decay rapidly upon secondary contact (as we see in the hybrid
598  zone; [24, 33], this decay would be expected to occur over a spatial scale determined by the

599  strength of selection and the migration rate. If two adjacent habitats occur over a scale that is
600 many times larger than the dispersal distance of the organism (as is the case between the red and
601  yellow ecotypes; [33]), then hybridization has almost no bearing on adaptation occurring in

602  distant parts of the range [66]. This makes divergence in parapatry almost as easy as in allopatry
603  [67], meaning that local adaptation will persist far from the hybrid zone, and strong associations
604  among small effect loci can remain in all regions except for those closest to the hybrid zone.

605 Another factor that may have influenced the outcome of our QTL analysis is that the

606 parents we used for mapping came from populations located very far from hybrid zone. Because
607  concentrated genetic architectures evolve as a response to gene flow, theory predicts that the

608  genetic architecture of local adaptation may vary spatially in a way that reflects the local

609  hybridization risk. This was highlighted in a hybrid zone between two ecologically differentiated
610  subspecies of Boechera stricta [68]. In the vicinity of the hybrid zone, several phenological traits
611  map to a single locus containing a chromosomal inversion, where the ecotypes are differentially
612 fixed for the standard and inverted arrangements. However, in areas that are more distant to the
613  hybrid zone, both ecotypes harbor the standard arrangement, and QTL mapping with these

614  populations revealed distinct QTL. Although it is possible that the genetic architecture of

615  divergence also varies across the range of the red and yellow ecotypes in a way that might favor
616  divergence, our observations suggest that this is unlikely. Specifically, there is no evidence for
617  the phenotypic maintenance of two distinct ecotypic forms within the hybrid zone. Instead, we
618  see a continuum of phenotypic variation that resembles what we observe in the F> mapping

619  population [33], suggesting a similarly complex genetic architecture across the range.

620

621  Inferences from integrating top-down and bottom up approaches

622 Having identified a set of candidate barrier loci and QTL regions for putative barrier

623 traits, we next sought to understand how they were connected in relation to previous hypotheses
624  about reproductive isolation in this system [24]. Taken at face value, the two analyses seem

625  consistent, as they both suggest that divergence in this system is polygenic, involving regions
626  spread across the genome. However, when we intersect the regions identified by these

627  approaches, we find very little concordance. What does this tell us about divergence in this

628  system?
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629 First, there are some technical and biological explanations that could account for these
630 findings. The first is that QTL analysis often has low resolution. Specifically, the QTL intervals
631  are very wide, substantially reducing our power to test if QTL regions are enriched for candidate
632  barrier loci. We see the same result if we focus on the estimated location of the QTL peaks,

633  which never fall inside a candidate barrier region. This is even true for the peak of the large-

634  effect QTL for floral anthocyanin pigmentation that is located 589 kb from the window with the
635  highest cs score and contains the MaMyb?2 gene, which we know is responsible for the major
636 difference in flower color [35]. Therefore, had we not had a priori knowledge about the position
637  of the gene from previous work, it is likely we would have failed to connect this strong signal of
638  selection with the underlying gene involved. In addition, our genome scan is based on RADseq
639  data, so the SNP density may have been too sparse to obtain sequences in LD with the loci under
640 selection. Moreover, from a biological perspective, the QTL analysis implies that most of the
641 traits studied are polygenic, meaning that selection on each locus is weak, making it difficult to
642  detect them using any genome scan. All of these factors probably contribute to the highly

643  complex pattern that we see.

644 Similarly, although many of the candidate barrier loci have clines that resemble the

645  window that contains the large effect locus MaMyb2, these windows are not associated with

646 large-effect QTL for floral traits. One possible explanation for this is that we may have failed to
647  measure the relevant floral traits contributing to pollinator isolation. This seems unlikely, given
648 how well floral morphology has been studied in this system [29, 31-33]. We therefore

649  hypothesize that other barriers to gene flow, besides pollinator isolation, play an important role
650 in the maintenance of this hybrid zone. For example, local adaptation of non-floral traits could be
651  an important source of pre- and post-mating isolation [13, 69]. We previously identified clines in
652  several eco-physiological traits that may be associated with habitat-based isolation [70], but

653  these show very shallow linear gradients rather than sharp sigmoid clines, and they are well

654  explained by variation in local climate variables, making them unlikely candidates [70].

655  However, other ecologically-based barriers may exist that remain to be characterized. Finally, it
656  is possible that some of the candidate barrier regions contain intrinsic incompatibilities that cause
657  reduced fitness in hybrids [71]. Although our previous work found little evidence for intrinsic
658  postzygotic isolation in the F; generation, we did detect partial male sterility in some inter-

659  ecotype crosses [36]. In addition, we have only surveyed plants under benign greenhouse

660 conditions and only through the F; generation. Genetic incompatibilities in later generations [72]
661  or under natural conditions [73] might play a larger role in the maintenance of the ecotypes than
662  anticipated—a prediction that has been made in relation to ‘ecological speciation’ more broadly

663  [15].

664

665  Conclusions and implications for studying the architecture of speciation

666 By combining top-down and bottom-up approaches with demographic modelling, our

667  study provides new insight into the history and genetic architecture of speciation between these
668 monkeyflower ecotypes. Our demographic analysis suggests that the hybrid zone formed by
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669  secondary contact, but gene flow following contact is now heterogeneous across the genome due
670 to the effect of multiple barrier loci. A cline-based genome scan indicates that candidate barrier
671 loci are widespread across the genome, rather than being associated with one or a few ‘islands’
672  of speciation. A QTL analysis of floral traits identified many QTL of small effect, with limited
673  co-localization among QTL for different traits. We found limited evidence that QTL and

674  candidate barrier loci overlap, suggesting that other barriers to gene flow aside from pollinator
675  isolation may contribute to speciation.

676 In addition to providing knowledge about this system, our study has important

677  implications for efforts to understand the phenotypic and genetic architecture of isolating

678  barriers. For many study systems, candidate barrier traits and loci are identified in separate
679  studies, meaning that the link between them is not tested explicitly. However, any barrier locus
680  associated with an ecological gradient may underlie a completely different type of barrier. This
681  was highlighted by [15], who showed how intrinsic barriers can become spatially coupled with
682  ecologically-based barriers—a phenomenon that may cause researchers to erroneously identify
683  incompatibility loci as those underlying local adaptation. The same issue also arises if multiple
684  ecological gradients change in concert. We therefore advocate for additional studies that

685 integrate top-down and bottom-up approaches before drawing conclusions about causal

686  associations between candidate barrier traits and loci. Finally, our study shows that, even with a
687  concerted effort, understanding the phenotypic and genetic basis of speciation is extremely
688  difficult. Although emerging methods and data may help, this will likely remain a major

689  challenge for the field.
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936  Supplementary tables and figure captions

937  Table S1. Location information and samples sizes for the sample sites used in the study.
938  Population codes correspond with those in Figure 1.

939

940 Table S2. Estimated parameters from each demographic model. N,, size of the ancestral

941  population; N, size of the red population, N,, size of the yellow population; T, duration of the
942  split; myy, migration from yellow into red; my:, migration from red into yellow; T,n, duration of
943  ancient migration; Tsc, duration of secondary contact.

944

945  Figure S1. Cartoons of each model tested in the demographic analysis. (i) SI, strict isolation;
946 (i) AM, ancient migration; (iii) IM, isolation with migration; (iv) SC, Secondary contact; (v)
947  PSC, Periods of secondary contact. The remaining four models—AM2m, IM2m, SC2m,

948  PSC2m—are the same as models ii-v, except that migration rates are inferred for two groups of
949  loci to simulate the effect of a porous barrier to gene flow. The model parameters are as follows:
950 N, size of the ancestral population; ., size of the red population, N,, size of the yellow

951  population; 7, duration of the split; m:y, migration from yellow into red; my:, migration from red
952  into yellow; mery, effective migration from yellow into red; m.y:, effective migration from red into
953  yellow; Tum, duration of ancient migration; Tsc, duration of secondary contact.

954

955  Figure S2. Information on the size and content of the 100 SNP windows. Distributions of
956  window size (kb) and the number of RAD tags sequenced (post filtering) within each window.
957

958  Figure S3. Floral traits measured for the QTL analysis. In addition to the size-related traits,
959  we also measured anthocyanin and carotenoid pigment levels. Anthocyanins were extracted in
960 1% acidic methanol from a single disc collected from one of the top petals the first day each

961  flower opened. Absorbance of extracts was measured with a spectrophotometer at 520 nm, as
962  described previously [74]. Carotenoids were extracted in hexane following a similar protocol,
963  and absorbance was measured at 450 nm.

964

965  Figure S4. Fits of the different demographic models to the observed data. The observed
966  unfolded joint site-frequency spectrum (JSFS) calculated from the RADseq data set is shown on
P67 the left. The first column shows the modeled JSFS for the best fit of each model (See Fig. S1 for
968 a cartoon of each model). The second column shows the residuals of the best model fit to the
969  observed JSFS. The third column shows the residuals plotted as a histogram.

970

971  Figure S5. The results of an Admixture analysis conducted on the full SNP dataset. Each bar
972  represents an individual and shows its probability of membership (Q score) to the two different
973  clusters. Individuals are grouped by whether they come from the distribution of the red ecotype,
974  yellow ecotype, or from within the hybrid zone.

975
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976  Figure S6. Cline fits for each chromosome. Black points are the mean ancestry scores plotted
977  along the one dimensional transect. The dashed line is the ML sigmoid model.
978
979  Figure S7. Relationship between the cline similarity score (cs) and Fcr. The line through the
980  plot is the least squares regression (2 = 0.38).
981
982  Figure S8. Trait variation in greenhouse-raised red ecotype, yellow ecotype, F1, and F2
983 individuals. The histogram in each plot shows the distribution for each trait in the F> population.
984  The top, middle and lower box plots show the distributions for the yellow ecotype, red ecotype
985 and Fi, respectively. ASD indicates the number of standard deviation that the red and yellow
986  ecotypes differ by.
987
988  Figure S9. LOD scores plotted across the genome for each trait in the QTL analysis. The
989  horizontal red line shows the LOD score cutoff for the detection of a significant QTL. Note the
990 different y-axis scales among traits.
991
992  Figure S10. QTL effect plots for each of the 26 QTL discovered in the analysis. Each plot
993  shows the mean (circle) and standard deviation (crosses) for each trait plotted against the three
994  genotypes. RR, both alleles inherited from a red grandparent; Y'Y, both alleles inherited form a
995 yellow grandparent; RY, Heterozygous. Red lines indicate that the effect occurs in the opposite
996  direction of that inferred by the trait differences measured in the red and yellow grandparents
997  (see Fig. S8).
998
999  Figure 11. Distribution of effect sizes (percent variation explained among F: plants) for the
1000 26 QTL detected in the study.
1001
1002  Figure S12. Results from the permutation test for the significant colocalization of QTL. The
1003  dashed red line shows the average number of observed overlaps per QTL, while the histogram
1004  shows the observed null distribution, generated from 9,999 random permutations. The p-value
1005  for the test is shown at the top of the plot.
1006
1007  Figure S13. Correlation matrix showing the Pearson correlation between each pair of traits
1008 in the F2 population. The color and shape of each ellipse indicates the strength and direction of
1009  each correlation.
1010
1011  Figure S14. Results from the permutation tests for significant enrichment of candidate
1012  barrier loci within the QTL Bayes credible intervals. The test is performed with two different
1013  arbitrary cutoffs for defining candidate barrier loci (top 1% and top 5% of the distribution) for
1014  two different statistics (the cline similarity score and Fct). The red line shows the observed
1015  number of candidate barrier loci falling within the QTL intervals, while the histogram shows the
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1016  observed null distribution, generated from 9,999 random permutations. The p-value for the test is
1017  shown at the top of the plot.

1018

1019  Figure 1. Clinal variation across a bush monkeyflower hybrid zone. (top) Typical flower
1020  phenotypes of the red and yellow ecotypes, and a map of the 25 sampling locations in San Diego
1021  County. The size of the circles shows variation in the sample sizes, which range from 4 to 18
1022  individuals, totaling 292 individuals. The dashed line indicates the center of the hybrid zone,
1023  previously inferred from spatial variation in the frequency of alternative alleles at the MaMyb?2
1024  locus. (bottom) Clines in allele frequency at the MaMyb?2 locus (red circles) and the mean floral
1025 trait PC1 score (blue squares) across the one-dimensional transect. The solid and dashed lines are
1026  the ML sigmoid cline models for MaMyb?2 allele frequency and trait PC1 score, respectively. The
1027  gray shaded rectangle represents the width of the hybrid zone.

1028

1029  Figure 2. Demographic modeling reveals a history of gene flow following isolation. (a) -
1030  AAIC scores for the 9 demographic models fitted to the observed JSFS using dadi. The base
1031  models (left of the dashed line) include a single migration parameter (m) for all loci, whereas the
1032  2m models include separate migration parameters for neutral loci () and loci affected by a

1033  barrier to gene flow (me). The best model (SC2m) has a -AAIC of 0, with more negative values
1034  indicating that models were a poorer fit. (b) A graphical depiction of the SC2m model. The width
1035  of the columns is proportional to the population size estimates for the ancestral (V,), red (Ng),
1036  and yellow (Ny) populations. the height of the red and yellow bars is proportional to the total
1037  time in generations (7s) that has passed since the split. The blue bar shows the period during
1038  which secondary gene flow (7sc) occurred. The difference in arrow size is proportional to the
1039  difference in the bi-directional migration rate, m. The rates of effective migration (me) are too
1040  small to show graphically.

1041

1042  Figure 3. Clines in ancestry scores at different scales of genomic organization. (a) Genome-
1043  wide cline, inferred from the mean ancestry scores in each population along the 1-D transect.
1044  Position 0 on the horizontal axis corresponds to the cline center estimated from MaMyb2 allele
1045  frequencies (see Fig 1b). The vertical bars show the standard deviation in ancestry scores for
1046  each population. The dashed line is the ML cline model, and the gray band is the two-unit

1047  support envelope. Three parameters of interest, including the cline center (c), width (w), and total
1048 change in ancestry across the cline (AQ), are indicated on the plot. (b) Ancestry clines estimated
1049  separately for each chromosome. Only the ML curves are shown for clarity (but see Fig S6). The
1050  dashed line is the mean cline, estimated by taking the average of the ML parameters for all

1051  chromosomes. (¢) Ancestry clines estimated for 2,173, 100-SNP windows. The dashed cyan line
1052  shows the cline shape for the genome-wide cline (as shown in panel a), while the dashed orange
1053 line is the mean cline shape, estimated by taking the average of the ML parameters obtained for
1054  all windows. Each solid line is the ML sigmoid curve for one of the genomic windows. The
1055  curves are colored according to the value of the cline similarity score (cs), which indicates how
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1056  similar the shape and position of each cline is to the genome-wide cline. Redder clines are more
1057  similar to the genome-wide cline and bluer clines are less similar (See main text for more

1058  detalils).

1059

1060  Figure 4. Cline-based genome scan and locations of QTL for floral traits. (top) The scaled
1061  cline similarity (cs score) score in each 100 SNP window plotted against the physical position of
1062  the window in the bush monkeyflower genome. The points are colored as in Figure 3c, with
1063  redder points containing windows with cs scores that are more similar to the genome-wide
1064  pattern and bluer points are less similar (See main text for more details). The orange asterisk
1065  denotes the average barrier score among all windows. The position of the MaMyb2 gene that
1066  controls differences in flower color is shown. (bottom) The positions of the QTL for the 13
1067  measured floral traits plotted along the physical position of the genome. The red vertical line
1068  corresponds to the best estimate of the QTL peak, and the width of the rectangles denotes the
1069  95% Bayes credible intervals of the estimated QTL position.

1070
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Table S1. Location information and samples sizes for the sample sites used in the study.
Population codes correspond with those in Figure 1.

Pop Latitude Longitude 1_.D distance N
name (in meters)

CRS 33.13037 -117.30717 -26461 11
UCSD 32.8894 -117.23618 -25369 12
SDP 32.9981 -117.23538 -23857 12
MT 32.82095 -117.06175 -19135 12
IMC 32.73732 -116.9541 -13303 18
ELF 33.08595 -117.1453 -12893 11
LH 32.80582 -116.9867 -12730 12
FLP 32.89422 -117.08982 -12557 12
ELT 33.06088 -117.11877 -12168 12
PMD 32.93787 -117.05913 -8097 12
WM 32.82133 -116.90228 -4298 17
BS 33.0148 -117.01643 -3710 18
DLR 33.16818 -117.05237 -2153 9
MW 33.00718 -116.95978 -827 17
OAK 32.91407 -116.88932 -363 12
LKW 33.16372 -117.0161 1177 15
DLZ 32.6525 -116.78597 2891 4
WCR 32.9805 -116.826517 8277 12
AND 32.868233 -116.7461 9643 4
BC 33.12262 -116.80468 10311 13
POTR 32.6038 -116.63392 18064 11
INJ 33.09785 -116.66432 22509 11
BCRD 32.94958 -116.63795 22615 6
PCT 32.73258 -116.46983 32097 7

LO 32.6767 -116.33123 45224 12
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with heterogenous migration (AM2m)
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Figure S1. Cartoons of each model
tested in the demographic analysis.
(7) Sl, strict isolation; (i/) AM, ancient
migration; (iii) IM, isolation with
migration; (iv) SC, Secondary contact;
(v) PSC, Periods of secondary contact.
The remaining four models—AM2m,
IM2m, SC2m, PSC2m—are the same
as models ii-v, except that migration
rates are inferred for two groups of loci
to simulate the effect of a porous
barrier to gene flow. The model
parameters are as follows: Na, size of
the ancestral population; N, size of the
red population, Ny, size of the yellow
population; Ts, duration of the split; my,
migration from yellow into red; myr,
migration from red into yellow; mery,
effective migration from yellow into red;
Mmeyr, effective migration from red into
yellow; Tam, duration of ancient
migration; Tsc, duration of secondary
contact.
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Figure S2. Information on the size and content of the 100 SNP windows. Distributions of window
size (kb) and the number of RAD tags sequenced (post filtering) within each window.
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Figure S3. Floral traits measured for the QTL analysis. In addition to the size-related traits, we
also measured anthocyanin and carotenoid pigment levels. Anthocyanins were extracted in 1% acidic
methanol from a single disc collected from one of the top petals the first day each flower opened.
Absorbance of extracts was measured with a spectrophotometer at 520 nm, as described previously
(Streisfeld and Rausher 2009). Carotenoids were extracted in hexane following a similar protocol, and
absorbance was measured at 450 nm.
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Figure S4. Fits of the different demographic models to the observed data. The observed
unfolded joint site-frequency spectrum (JSFS) calculated from the RADseq data set is shown on the
left. The first column shows the modeled JSFS for the best fit of each model (See Fig. S1 for a
cartoon of each model). The second column shows the residuals of the best model fit to the observed
JSFS. The third column shows the residuals plotted as a histogram.
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Figure S5. The results of an Admixture analysis conducted on the full SNP dataset. Each bar
represents an individual and shows its probability of membership (Q score) to the two different

clusters. Individuals are grouped by whether they come from the distribution of the red ecotype,
yellow ecotype, or from within the hybrid zone.
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Figure S6. Cline fits for each chromosome. Black points are the mean ancestry scores plotted
along the one dimensional transect. The dashed line is the ML sigmoid model.
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Figure S7. Relationship between the cline similarity score (cs) and Fct. The line through the plot
is the least squares regression (r2 = 0.38).
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Figure S8. Trait variation in greenhouse-raised red ecotype, yellow ecotype, F1, and F2
individuals. The histogram in each plot shows the distribution for each trait in the F2 population. The
top, middle and lower box plots show the distributions for the yellow ecotype, red ecotype and Fi,
respectively. ASD indicates the number of standard deviation that the red and yellow ecotypes differ
by.


https://doi.org/10.1101/2022.01.28.478139
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.478139; this version posted January 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Tube Width

i S Y
"’.‘\-m"‘\“u__.g Yk?

3 4 5 6

Corolla Length

Corolla Width

Corolla Height

Figure S9. LOD scores plotted across the genome for each trait in the QTL analysis. The
horizontal red line shows the LOD score cutoff for the detection of a significant QTL. Note the different

y-axis scales among traits.
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Figure $10. QTL effect plots for each of the 26 QTL discovered in the analysis. Each plot shows
the mean (circle) and standard deviation (crosses) for each trait plotted against the three genotypes.
RR, both alleles inherited from a red grandparent; YY, both alleles inherited form a yellow
grandparent; RY, Heterozygous. Red lines indicate that the effect occurs in the opposite direction of
that inferred by the trait differences measured in the red and yellow grandparents (see Fig. S8).
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Figure S10 continued.
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Figure 11. Distribution of effect sizes (percent variation explained among F: plants) for the 26
QTL detected in the study.
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Figure S12. Results from the permutation test for the significant colocalization of QTL. The
dashed red line shows the average number of observed overlaps per QTL, while the histogram shows
the observed null distribution, generated from 9,999 random permutations. The p-value for the test is
shown at the top of the plot.
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Figure S14. Results from the permutation tests for significant enrichment of candidate barrier
loci within the QTL Bayes credible intervals. The test is performed with two different arbitrary
cutoffs for defining candidate barrier loci (top 1% and top 5% of the distribution) for two different
statistics (the cline similarity score and Fct). The red line shows the observed number of candidate
barrier loci falling within the QTL intervals, while the histogram shows the observed null distribution,
generated from 9,999 random permutations. The p-value for the test is shown at the top of the plot.
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Supplement 1:

Calculation of ‘cline similarity’ score

Rationale

This supplement outlines the rationale behind the calculation of the cline similarity score,
which describes the relative shape and position of a cline, relative to some other cline of
interest. In our case, we wanted to be able to view the variation in multiple parameters that
describe different features of a geographic cline in an integrated way, so we could do things,
like plot clinal variation along a genome.

Consider a simple, sigmoid cline, like the one shown in Figure A. This cline model, which is
the most commonly used in empirical studies, is described by 4 fitted parameters: the cline
centre (c), cline width (w), the mean trait value on the ‘high’ side of the cline (Qmax), and the
mean trait value on the ‘low’ side of the cline (Omin). The last 2 parameters can be reduced to
a single parameter, AQ = Omax - Omin, Which quantifies the total change in a trait across the
transect. It is worth noting that we use the notation AQ to denote change in ancestry scores
across the cline, rather than Az, which is typically used for a quantitative trait (or Ap for allele
frequency).

w =100, c =500, delta_Q =1
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Fig. A. Simple sigmoid cline model described by 3 parameters, AQ, w, and c.

Each parameter tells us something about the feature of the cline and is relevant to inferences
that we might make about selection in a hybrid zone (provided that we are happy to make
some assumptions). For example, the width of the cline is inversely proportional to the
strength of selection acting on the trait; the centre tells us about the spatial pattern of
selection across the hybrid zone; and the change in the trait value across the cline tells us
about the strength of the difference in the trait across the cline. In a situation where selected
and neutral loci are at equilibrium, the above cline would indicate that variation in the trait is
maintained by selection.
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The problem is that inferences cannot easily be made from a single cline parameter. This is
highlighted in Figure B, where several clines are shown, with certain parameters fixed and
others varying. The left plot shows three clines with the same values of w and ¢, but

substantially different values of Az; The middle plot shows multiple clines with the same

values of Az and c, but with different values of w; the third shows clines with identical shapes
(i.e., same Az and w), but different values of c.
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Fig. B. Examples of clines where a single parameter varies but the other two parameters are fixed.

In the above plots, we can easily evaluate each cline in terms of its fit to some hypothesis by
visually inspecting them. However, when we have many clines, this is impractical and highly
subjective. But these plots clearly show that we cannot infer much by looking at the
distribution of a single parameter, especially in real data where all parameters will vary
simultaneously.

The ‘cline similarity’ score

To help simplify the process of identifying clines of interest, we created an ad-hoc statistic
that we call the ‘cline similarity’ or ‘cs’ score. The c¢s score summarises cline shape and
relative position with a single number that can be calculated from the ML cline parameters.
cs is calculated as:

Cline similarity, cs =(%) e (=(Ic/1D)? (eq. 1).

Where AQ w and c, are defined as above and / is a scaling factor that will be explained
further below. Eq. 1 can be broken down into two terms that determine the cs score in
different ways. The first term is a shape score, that describes the shape of a cline, independent
of the location of the cline centre:

Shape score = (A—Q) (eq. 2).

w+l
The second term is a centre penalisation score, which downgrades the shape score based on

the value of the fitted cline centre relative to some point of reference (explained further
below).
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Centre penalisation score = e (=Ulc/)? (eq. 3).]

These formulae and the decisions made to arrive at them will next be explained by walking
through its calculation for the Mimulus dataset.

Application to the Mimulus dataset

For the Mimulus dataset, we fit clines to ancestry scores in 2,173 non-overlapping windows,
each containing 100 SNPs. The details of how the fits were done are described in the main
text, but the clines can be fitted in any way. We only need the parameters for the fitted model
to calculate cs.

Starting with the shape score, we wanted a quantity that described variation in the shape of
the cline. Ultimately, we wanted clines with a small w and large AQ to have high shape
scores, and clines with very low AQ and high w to have a low shape scores. Figure C shows
the joint distribution of AQ and w for all of the windows. The numbers in the plot correspond
to the cline fits for 10 selected windows, which are shown on the right side of the plot. The
orange star (cline 2), is not for a specific window, but rather is the fit to mean Q score for
each location, averaging across all windows (i.e., it is a cline fitted to the mean of means for
each location). The green star shows the location of the genome-wide cline in this space (i.e.,
the one shown in figure 3a of the main text, and figure D (i7)).
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Fig. C. Joint distribution of w and Az for the Mimulus dataset. The clines on the right show fits that
correspond to the numbers in the bivariate plot.

The bottom right corner of Figure C contains the clines that are most interesting in terms of
our hypothesis regarding barrier loci. The ones in the top left and bottom left are of little
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interest, because AQ is always VAR SHIEH 2THE oh HHE I F15t are more interesting,
because they show high AQ but are very wide; these clines could be generated by processes
like isolation by distance, or the collapse of secondary clines when barriers to gene flow are
porous.

Figure D(i) shows the same plot, but with the points coloured by the shape score (10 coloured
bins, but the values are continuous), as given in Eq. 2. Here we define /, the scaling
parameter, as 0.5¢, where ¢ is the length of the transect. / determines precisely how variation
in the shape scores is spread out across the joint distribution of AQ and w. In our case, 0.5¢,
gives a distribution shape scores that suits our purposes, but other values might be more
suitable for other study systems.

’ Cline shape = AQ/(w+0.51) .e
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Fig. D. Shape scores for the 2,173 windows. (i) Joint distribution of w and AQ), coloured by the shape score. (ii)
Cline models coloured by the shape score. (iii) The shape scores plotted across the genome. See text for more
details.

By colouring the cline models for each window by their shape scores, as shown in Figure
D(ii), we can see that clines with ‘hotter’ colours do have shapes more similar to the genome
wide cline (the dashed cyan line) than ‘cooler’ colours. However, it is also clear that some
clines with high shape scores have centres that are displaced a very long way from the
genome wide cline. Some of these have been coloured solid yellow to help highlight them.
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Although these clines are interesting for a variety of reasons, they are not spatially associated
with the centre of the hybrid zone that also coincides with the transition in floral trait
differences. Ideally, we would like our summary statistic to also reflect where the cline is
positioned in relation to this location. To do this, we penalise the shape score based on the
position of the cline centre, relative to a position of interest, which needs to be given position
0. This could be a feature of the environment or a cline in a focal marker or trait. In our case,
the position of interest is the centre of the genome-wide ancestry cline.

Figure E(7) shows how the value of the inferred centre informs the centre penalisation
function outlined in Eq. 3. If the fitted cline centre coincides exactly with the point of interest
(c = 0), the cs score for that cline is simply the shape score (i.e., cs = shape score). However,
as the difference between fitted centre and point of interests increases (i.e., |0 - c|), then the
shape score is downgraded according to the centre penalization function, resulting in a cs
score lower than the shape score.
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Figure E. Penalisation of the shape score to give the final cs score. (/) The effect of the cline centre
penalisation function on the shape score. Here, an arbitrary shape score of 1 is used for illustrative purposes. (ii)
The cline models for all windows after the cline penalisation score, coloured by the overall cs score.

The results of this final transformation step can be seen in figure 3c of the main text, which is
reproduced in Figure E(ii) for convenience. In that figure, the cs scores are scaled between 0
and 1, where 0 is the cline with the lowest cs score, and 1 is the cs score for the genome-wide
cline.

Some afterthoughts (if others attempt something similar)

This was done 5 years ago and if I was doing this again from scratch, I would probably think
about it a bit differently. First, I think it might be useful to try and incorporate the variance
explained by the cline model into the cs score. i.e., if the data around the cline are extremely
noisy (common for clines with a small AQ, e.g., cline 1 in Figure C ), we might conclude that
these are less likely to be of interest. The variance explained was used primarily in Westram
et al. 2017 and seemed to be good at identifying non-neutral clines in simulations.
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