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Cerebro-cerebellar networks facilitate learning
through feedback decoupling
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Abstract Behavioural feedback is critical for learning in the cerebral cortex. However, such feedback is often not
readily available. How the cerebral cortex learns efficiently despite the sparse nature of feedback remains unclear. In-
spired by recent deep learning algorithms, we introduce a systems-level computational model of cerebro-cerebellar
interactions. In this model a cerebral recurrent network receives feedback predictions from a cerebellar network,
thereby decoupling learning in cerebral networks from future feedback. When trained in a simple sensorimotor
task the model shows faster learning and reduced dysmetria-like behaviours, in line with the widely observed func-
tional impact of the cerebellum. Next, we demonstrate that these results generalise to more complex motor and
cognitive tasks. Finally, the model makes several experimentally testable predictions regarding (1) cerebro-cerebellar
task-specific representations over learning, (2) task-specific benefits of cerebellar predictions and (3) the differential
impact of cerebellar and inferior olive lesions. Overall, our work offers a theoretical framework of cerebro-cerebellar
networks as feedback decoupling machines.

Introduction

Learning ultimately depends on environmental feedback 2. To learn efficiently animals and humans must make good
use of this feedback to update their internal models of the world**. However, external sensory feedback is inherently
delayed and incomplete, thereby reducing the rate and extent of learning in neuronal circuits3. These observations
suggest that the brain may employ a general mechanism to facilitate learning when external feedback is not readily
available.

The cerebellum is a region of the brain specialised in building predictive models*®. In the classical view, the cere-
bellum learns predictive internal models on the motor domain®'°, Consistent with this view are a large body of
experimental observations for which cerebellar dysfunction causes motor learning deficits. However, more recently,
cerebellar dysfunction has also been associated with impaired language processing, cognitive associative learning
and working memory'-'>, Moreover, an increasing body of behavioural '#'#'6-2% anatomical ** and imaging *® stud-
ies alludes to a role of the cerebellum in cognition in animals and humans. Taken together, these studies suggest that
the cerebellum learns internal models for both motor and non-motor functions in line with the proposed universal
functional role of the cerebellum across the brain, including the cerebral cortex®24-%,

Despite growing experimental evidence there are no specific computational models aiming to capture the func-
tional roles of cerebro-cerebellar interactions during learning of motor and non-motor tasks. Building on recent deep
learning developments we theorise that the cerebellum predicts future cerebral feedback signals given current cere-
bellar activity. This feedback predicted by the cerebellum is then sent back to the cerebral network to drive learning.

#These authors contributed equally (order is alphabetical).

*For correspondence: rui.costa@bristol.ac.uk
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Specifically, we model a given cerebral area as a recurrent neural network?’-3° which receives feedback predictions

from a feedforward, cerebellar, network®’. This view of cerebro-cerebellar interactions is in line with the classical for-
ward models of cerebellar function®’, in that in our model the cerebellum makes forward predictions (i.e. generates
cerebral feedback predictions) given current cerebral activity.

We test our model on a range of sensorimotor, pattern recognition and visual-language tasks. Using these tasks
we demonstrate that cerebellar predictions conveyed to the cerebral cortex facilitate learning. Moreover, models
without a cerebellar component exhibit slower learning and dysmetria-like behaviours, consistent with a wide range
of behavioural observations '"'43'32_Our results indicate that the cerebellar-mediated facilitation of cerebral learning
relies on the ability of the cerebellum to provide effective cerebral feedback predictions. Finally, we make several
experimentally testable predictions regarding cerebro-cerebellar representations, task-specific temporal feedback,
cerebro-cerebellar activity coupling and the different contributions of cerebellar output and inferior olive lesions for
task learning.
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Figure 1. Cerebro-cerebellar networks as feedback prediction machines. (a) A recurrent cerebral cortical network A learns
through feedback given by a task-specific prediction error module Et,q« computed at the end of a task fbt (top red arrow). The
cerebellum aims to continuously predict the feedback expected by the cerebral network fb: (blue) given current cerebral activity a;
(black). The cerebellar network (i.e. granule cells; GC and Purkinje cells; PC) learns through prediction errors (bottom red arrow)
computed at the inferior olive (diamond) by comparing predicted feedback fb; with actual feedback fb; (light blue). Shaded boxes
represent multiple cerebral areas and cerebellar modules that may be interacting in parallel (see Fig. S1 for the same framework
applied to decoupling across multiple brain areas). (b) Example of cerebro-cerebellar model unfolded in time in which the cerebral
network learns to associate a cue given at t; (x1, green) with feedback received at the end of the task, tr (cf. Fig. 2). At the end of the
task the cerebral network A receives external sensory feedback fbr (red), which is transmitted to the cerebellar network as cerebral
feedback fbr (light blue). Here we highlight a case of cerebral feedback horizon stopping at the end of the task T, but feedback
may also be available earlier in the task (dashed red arrows). The cerebellum generates cerebral feedback predictions f%T (blue)
given cerebral activity ar (black), and learns using inferior olive (diamond) error signals (red arrow). Before tr cerebral feedback
may not be readily available, thus the cerebellum learns through self-predictions. In this case the inferior olive (diamond) compares
old cerebellar predictions (e.g. fb;) with the new one (e.g. fbr) to generate cerebellar learning signals (red arrow; see main text and
Methods for details).

Results

A systems-level computational model of cerebro-cerebellar interactions

In order to understand how cerebellar computations may shape cerebral processing, we introduce a cerebro-cerebellar
systems-level model based on a recent deep learning algorithm 2. In line with previous work we model a given cere-
bral cortical area A as a recurrent neural network (RNN)2-3° which is coupled with a cerebellar module C - cerebro-
cerebellar RNN (ccRNN). We model the cerebellar module as a simple feedforward network C (Fig. 1a) in line with the
cerebellar architecture®”. The input layer of the cerebellar network receives cerebral cortical activity a and models
the Granule cells (GCs), which project to the output layer, modelling the Purkinje cells (PCs) that provide cerebellar
predictions back to the cerebral cortex (Methods). To capture the dimensionality expansion observed between cere-
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bral and cerebellar networks>** we constrain our model with M > N, where M corresponds to the number of GCs

and N the number of cerebral neurons and use the same ratio found experimentally ¥ ~ 4.

We study the behaviour of our model in a range of tasks. To train the model we use a prediction error function Es
which compares the model output with task-specific external feedback. Using standard gradient descent methods we
generate feedback signals of a specific temporal horizon (see example of a RNN unrolled in time in Fig. 1b), fb,, which
is then used to update the RNN input and recurrent weights (Fig. 1a; see Methods). For computational efficiency and
in line with previous models we use a time-discrete approximation of time-continuous RNN models 22,

Following our theoretical proposal the cerebellar module C continuously learns to predict cerebral feedback fb,
given cerebral cortical activity a;. The cerebellar network is optimised through error signals computed by comparing
the actual cerebral feedback fb, at time t with the cerebellar predicted feedback fb,. We postulate that this compari-
son is done in an inferior olive-like structure, ES = (fb; —th)z, that generates error signals which are used to optimise
the cerebellar network (see Methods). However, similar to the external feedback, actual cerebral feedback is not al-
ways available, which would impact the ability of the cerebellar network to learn online to produce effective feedback
signals. To circumvent this problem we propose that the cerebellum learns using its own feedback predictions when
cerebral feedback is not available (Fig. 1b). This leads to the following target feedback fb; ~ fb: + C(ars1) where
fb, is the true cerebral feedback and C(ar1) = fb.y1 is a self-prediction term which enables the cerebellum to learn
online (see full details in Methods).

Cerebro-cerebellar model facilitates learning in a simple sensorimotor task

Inspired by classical sensorimotor studies in the cerebellum, we first test a simple visuo-motor task'"31323637 |n this
task the model must draw a straight line in a two-dimensional space towards one of seven target locations given a
target-specific cue at the start of the task (Fig. 2a, top left). We train a cerebro-cerebellar RNN (ccRNN) and a cerebral-
only RNN (cRNN) to perform this task (see full details in Supplementary). To train the models we provide teaching
feedback by comparing the cerebral network output with the optimal trajectory (i.e. a straight line between starting
and end points; Fig. 2a). In addition, this feedback is delayed with respect to the initial cue and incomplete (i.e. only
available every few time steps). This models a more realistic setting in which task feedback is not always readily
available. When this feedback is available at time t we calculate the prediction error as Eqsk = (I — 7t)2, where /; and
T denote the desired and current model two-dimensional trajectory (i.e. set of feedback points; cf. Fig. 2 schematic),
given by a linear readout on the network activity a; (Methods). In particular, here we consider a feedback interval at
every other time step for both cRNN and ccRNN (but see Fig. 4 for more general cases).

During learning the ccRNN model achieves near-zero error after a relatively small number of training sessions,
while the cRNN, which lacks the cerebellar component, also learns but more slowly and with higher variability (Fig. 2b).
These observations are in line with a large body of cerebellar experiments'%'32_ In addition, we also observe differ-
ences at the level of model output trajectories. While the ccRNN produces smooth and straight trajectories, the cRNN
displays a much more variable trajectory towards all targets (Fig. 2b). Due to the sparse task feedback in the absence
of a cerebellar network, the cRNN is not able to learn a correct trajectory in points for which there is no direct feed-
back thus overshooting the target trajectory. In cerebellar patients, this effect is referred to as dysmetria® which in
the motor domain results in ataxia. Ataxia is the lack of coordination and fine control during voluntary movements, a
defining symptom resulting from cerebellar malfunction"*. To evaluate the degree of dysmetria-like output in our
models we measure the error between the model output and the optimal trajectory (i.e. a straight line in this case;
see Methods). When applying this measure, the ccRNN shows a clear reduction in ataxia-like behaviour compared to
cRNN (Fig. 2¢).

To highlight the conditions for which the cerebellum may facilitate learning in cerebral networks we test different
lengths of cerebral feedback horizon (Methods). Our results show that the ccRNN only facilitates learning for short to
medium feedback horizons (<50%, Figs. 2d, S2). These results suggest that the cerebellum is particularly important
for cerebral learning in conditions in which cortical networks do not have internal effective feedback available for
learning. This is consistent with experimental observations showing that the cerebellum becomes more important
in the presence of challenging task conditions for which cerebral feedback might be short®. In contrast, for long
cerebral feedback, having a cerebellar module harms learning. In this case the cerebral network has the level of
feedback required to learn effectively, thus the noise inherent in the cerebellar feedback can impair learning. This
observation suggests that the brain may use intermediate brain structures, such as the thalamus and the pons to
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Figure 2. Cerebro-cerebellar model improves learning in a simple line drawing sensorimotor task. (a) Schematic of a macaque
monkey performing a simple line drawing task (top left). A cerebro-cerebellar RNN (ccRNN) in the macaques brain receives the cue-
specific input and learns to produce the desired trajectory (top right). There are 6 possible targets (coloured dashed circles) and
feedback (dashed black line) is provided at a regular interval (bottom; see Methods). In the example shown the model must draw
a straight line towards the green target. (b) Error between model output and desired target trajectories for cerebellar RNN (gray,
cRNN) and cerebro-cerebellar RNN (orange, ccRNN). Insets: Model trajectory produced for all cues after learning. (c) Dysmetria score
for cRNN and ccRNN. The dysmetria score quantifies how smooth the movement is after learning (Methods). (d) Normalized model
mean squared error (MSE) after learning for different cerebral feedback horizons. Feedback horizon is denoted as percentage of
the total task sequence. Arrow indicates feedback horizon used by the cerebral network in the other panels. (e) Euclidean distance
between the two leading cue principal components for the recurrent neural network in both the cRNN (grey) and ccRNN (orange)
models. Arrows highlight training sessions of cue-specific principal components (PCs) plotted on the right for early (i), early-mid (ii),
mid (iii) and late (iv) learning, for both cRNN (top) and ccRNN (bottom). (f) Explained variance of the RNN for both models cRNN (gray)
and ccRNN (orange). Bar plot shows explained variance for the top five cue-specific PCs. Circular plot shows the total explained for
cue (medium-dark colours), time (light colours) and cue-time interaction (dark colours) task variables. (g) Euclidean distance between
the different cue-specific two-dimensional components for the cerebellar network (orange, ccRNN model). Arrows indicate training
sessions highlighted on the right as in (e). (h) Explained variance of the cerebellar network as in (f). ***: p<0.001, ****: p<0.0001.
Error bars represent mean + SEM across 10 different initial conditions of the model.
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gate cerebro-cerebellar interactions depending on task properties (see Discussion).

Next, to gain insight into how cerebral and cerebellar neuronal representations evolve jointly during learning, we
use a dimensionality reduction method (demixed principal component analysis (PCA); see Methods). Demixed PCA
(dPCA) enables us to extract low-dimensional neuronal representations that capture maximum variance across task
variables. First, we focus on the two most informative cue-specific principal components using the neural activities
of the recurrent neural network for both cRNN and ccRNN (see all components in Figs. S3,S4 and S5). Next, we
calculated the two-dimensional Euclidean distance across the 7 different possible cues (Methods). Our results show
that the ccRNN cerebral network is characterised by a stronger increase in separation of stimulus components over
learning when compared to the cRNN cerebral network (Fig. 2e). To contrast task-specific components with general
temporal information, we compare the level of cue-specific and time-specific explained variance in both models.
ccRNN captures overall more cue-specific explained variance when compared with cRNN (Fig. 2f) which demonstrates
that ccRNN encodes more task-relevant information, which requires the model to associate the cue information with
specific output trajectories. Next, we applied dPCA to the activity of cerebellar neurons. Since the cerebellar module
facilitates cue-to-target learning we expected cerebellar representations to be mostly dominated by task-specific
information. This is indeed what we find, our results show that the distance between cue-related components is
stronger during periods of high learning (Fig. 2g; compare with Fig. 2b), and that most of the variance is explained by
cue-specific PCs (95.4%; Fig. 2h).

Overall, our results suggest that in the context of a simple sensorimotor task, cerebellar-mediated decoupling of
cerebral feedback enables faster learning and smoother motor trajectories. In addition, it makes a number of ex-
perimentally testable predictions about the evolution of task-specific cerebro-cerebellar representations throughout
learning.

Cerebro-cerebellar model improves learning in complex sensorimotor and discrimination tasks
Next, to test whether the results from the simple visuomotor task generalise to more realistic settings we explore
a range of more advanced sensorimotor tasks. We introduce two tasks in which the models are trained to draw
digits given complex spatiotemporal sensory inputs. For these tasks we build on a standard machine learning dataset
consisting of 10 (from 0 to 9) two-dimensional handwritten digits (see example in Fig. 3a; MNIST dataset“°). In contrast
to the previous task in which sensory input was only provided at the start of the task, here the model receives a part
of a handwritten digit at any given point in time (i.e. a row of 28 pixels; see Methods). We refer to this task setting
in which input is provided over time as online. Given this input then we consider two task variants (Fig. 3a) in which
the model has to either (i) draw a straight line (online line drawing (LD) visuomotor task) or (ii) draw a digit (online
digit drawing (DD) visuomotor task. Both tasks provide a more realistic model of drawing tasks (Fig. 2) in which lines
must be drawn given complex continuous sensory input. As in the previous task we consider cases of sparse task
feedback.

As in the simple visuomotor task, here the ccRNN learns faster (Fig. 3b) than cRNN while showing a strong re-
duction in dysmetria-like trajectories (Fig. 3c). The ccRNN also facilitates learning when in the presence of short to
medium feedback horizon in the cerebral network (Fig. 2d), and we find that dysmetria-like trajectories are reduced
in the ccRNN model (Fig. 3c).

To test whether our observations in the sensorimotor tasks generalise to other task domains we train the model
in a visual discrimination task. In this task the model receives the same handwritten digits presented sequentially
over time but now must discriminate between the 10 classes of digits (online visual discrimination task, Fig. 3a). In
line with the results in the visuomotor tasks, we find that ccRNN also facilitates learning in this task, achieving higher
accuracy after only 10 training sessions (Fig. 3b). Here we use the certainty the model has about the current class
as a measure of dysmetria of thought*' (see Methods). Similarly to the tasks above, we find that dysmetria-like
behaviours are reduced in the ccRNN model, which in this case shows that model produces more accurate decisions
(Fig. 3c). Finally, in line with previous tasks a cerebellar module facilitates learning in the presence of weak cerebral
feedback (Figs. 3d, S6). These results are in line with the growing number of studies implicating the cerebellum in
sensory discrimination and decision making tasks 194243,
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Figure 3. Cerebro-cerebellar model improves learning in online complex sensorimotor and sensory discrimination tasks.
(a) Model behaviour across three tasks using a dataset of handwritten digits, each presented sequentially to the network (Methods
and main text). Online line drawing (LD) visuomotor task: given temporally varying visual input the model is trained to draw a
straight line (top left). Online digit drawing (DD) visuomotor task: given temporally varying visual input the model is trained to draw
a digit following a template (top middle); Target trajectories are in dotted grey and model output is coloured by digit. Online visual
discrimination task: pattern recognition variant in which the model is trained to discriminate between 10 different digits given as
input sequentially (a row at a time; green box; top right). (b) Learning curves for the three tasks for both cerebral RNN (gray, cRNN),
cerebro-cerebellar RNN (orange, ccRNN). The cerebral network in all tasks uses approx. 10% of the cerebral feedback horizon (cf. d).
(€) The dysmetria score quantifies the irregularity in movement during the testing phase of the model (online LD and DD visuomotor
tasks) or the uncertainty in the sensory discrimination (online visual discrimination task). (d) CcCRNN model performance relative to
cRNN across different degrees of cerebral feedback horizon. ns denotes no significance (p=0.921 in the online LD visuomotor and
p=0.567 in the online DD visuomotor). Arrow indicates the feedback horizon used in (b). **: p<0.001 ***: p<0.0001, ****: p<0.0001.
Error bars represent mean + SEM across 10 different initial conditions of the model.

Cerebellar-mediated learning facilitation depends on task feedback interval

In sensorimotor tasks there are physiological constraints inherent to animals and humans which impose limits on
the rate at which external feedback is available*¢. To determine the rate of external feedback for which cerebel-
lar predictions are most valuable we trained the model in two tasks (simple LD and LD visuomotor tasks) with a
range of external feedback intervals. This feedback interval defines the rate at which external feedback is available
for learning, resembling sensorimotor feedback which is typically sporadic rather than continuous'#’# We find
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Figure 4. Cerebellar-mediated facilitation of learning depends on task feedback interval. (a) Learning curves for short (light
red), medium (red) and long (dark red) levels of feedback interval for both the simple and online LD visuomotor tasks and both
models cRNN (gray) and ccRNN (orange). Degrees of redness (b) Difference in task error between ccRNN and cRNN for varying
degrees of task feedback intervals (not significance, p=0.406). Degrees of red in arrows indicate the respective interval in (a) while
the white arrow indicates the feedback interval used in Fig. 2 and Fig. 3, respectively. Task feedback interval given as a percentage
of the total task time. (c) Difference in dysmetria score between for varying degrees of task feedback interval (not significance,
p=0.0577 for simple LD and p=0.444 (40%), p=0.209 (50%) for online LD). **: p<0.01, ***: p<0.001, ****: p<0.0001. Error bars
represent mean + SEM across 10 different initial conditions.

that when external feedback is given at short intervals there is little advantage of the feedback predictions from the
cerebellar component for both the simple LD and online LD visuomotor tasks (Fig. 4a,b). When the interval between
external sensory feedback is increased, the benefits of the cerebellar-to-cerebral feedback predictions for learning in
the ccRNN model become clear. In contrast, for long feedback intervals the feedback is too infrequent for both cRNN
and ccRNN to be able to successfully learn the task. Next we evaluate the degree of dysmetria using the metrics in-
troduced above. We observe qualitatively similar results: a model without a cerebellar network (cRNN) exhibits more
variable trajectories for medium to long task feedback intervals (Fig. 4a). These results imply that whether cerebellar-
to-cerebral feedback is beneficial for learning and leads to dysmetria-like behaviours depends on the rate of task
feedback.

Similarity between cerebellar and cerebral feedback is task and learning dependent
The cerebro-cerebellar facilitation of learning shown above depends on the ability of the cerebellum to provide the
cerebral network with effective feedback predictions. To study the level of similarity between the cerebellar predicted
feedback and the theoretically optimal cerebral feedback as provided by gradient descent methods, we calculated
the cosine similarity between cerebellar predictions and the optimal cerebral feedback in a range of tasks (Methods).
First, we measure the cosine similarity for tasks in which external sensory feedback is only provided at the end of
the task - a variant of the simple LD task with feedback only at the end and the online visual discrimination. This task
setup allows for an easier interpretation of the similarity between cerebellar and cerebral feedback which should
decay gradually from the end to the beginning of the task sequence. Indeed, we observe that the cerebellar-cerebral
feedback similarity is higher closer to the point in which external sensory feedback is available (i.e. end of the task;
Fig. 5a,b top; cf. Figs. 2, 3) and remains high over learning in particular for later points in the task (Fig. 5a,b bottom).
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Figure 5. Similarity between cerebellar and cerebral feedback is task and learning dependent. (a) Cerebro-cerebellar cosine
similarity throughout tasks sequences which do not require intermediate external feedback: simple line drawing with feedback only
at the end of the task (LD end-only) and online visual discrimination (n.s. simple LD visuomotor p=0.212 (0%), p=0.520(25%), n.s.
online LD visuomotor p=0.312 (0%), p=0.06 (25%), p=0.067(50%), p=0.386(60%). Here and in subsequent panels red arrows indicate
points in which external feedback is available. Cosine similarity throughout the tasks is calculated across all training sessions (see
Methods).(b) Cerebro-cerebellar cosine similarity over learning for three time points in the task: early (turquoise), mid (blue) and late
(purple) in the task (cf. (a)). (c) Cerebro-cerebellar cosine similarity throughout the sequence for tasks with intermediate external
feedback: simple line drawing (LD), online LD, online digitdrawing (DD). (d) Cerebro-cerebellar cosine similarity over learning for
three different time points in the task (early, mid and late as in (b)). Dashed black line represents zero similarity. **: p<0.01, ***:
p<0.001, ****: p<0.0001. Error bars represent mean 4+ SEM across 10 different initial conditions.

Next, we analyse the cosine similarity for conditions in which external feedback is available throughout the task.
For this we consider the same visuomotor tasks as above (simple LD visuomotor, online LD visuomotor and online LD
visuomotor). In these tasks we observe more complex dependencies of the cerebro-cerebellar feedback similarity on
task properties (Fig. 5c,d). For the simple LD task we observe that the predictions made during earlier points in the task
are more similar than those at later points (Fig. 5¢). These results suggest that the model is first learning to align later
points in the task and gradually learns to adjust earlier points which are closer to the cue-specific information that
defines the trajectory that the model must take. Interestingly, this behaviour is less prominent in the two other tasks,
online LD and DD visuomotor tasks, that are characterised by relatively more complex task-specific sensory input
occurring throughout the task. For these two more complex tasks and in contrast to the simple LD the similarity
remains high throughout learning for later time points (Fig. 5d), which reflects the more challenging nature of these
tasks and the need to continuously predict feedback as the task is never fully learnt.

These results make non-trivial predictions on when the cerebellum is able to better align with the cerebral feed-
back, which depend on task complexity, the properties of the task feedback, the exact task position and the learning
stage.

Learning shapes cerebro-cerebellar activity coupling

The cosine similarity results show that the cerebellar module learns to predict cerebral feedback. Because the cere-
bellum maps cerebral activity onto (predicted) cerebral feedback, this suggests changes in the coupling between
cerebellar and cerebral neuronal representations throughout learning. To study the degree of cerebro-cerebellar
coupling we calculate the pairwise correlations between neurons in the cerebral recurrent neural network and the
neurons of the cerebellar network (Methods). Although we observe a relatively small rise in the average cerebro-
cerebellar coupling during the first few training sessions, as training progresses, there is a consistent decrease of the
correlations (Fig. 6a).
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Figure 6. Cerebro-cerebellar neuronal activity coupling over learning. (a) Box plot showing the mean and distribution of pair-
wise cerebro-cerebellar absolute correlation coefficients over learning for four tasks: simple LD, online LD, online DD and online

visual discrimination. Fully fixed ccRNN (i.e. without any form of plasticity in both networks) is given for reference (dashed line).
(b) Change in first two principal components of cerebro-cerebellar pair-wise correlation coefficients over learning (all components
available in Fig. S7). (c) Cumulative plot of cerebro-cerebellar pairs with positive and negative changes in absolute correlation coef-
ficients in early (session 1), mid (session 25) and late (session 80) learning. Error bars represent mean + SEM across 10 different
initial conditions.

To study more subtle changes in the correlation structure we use standard principal component analysis of the
pairwise correlations (Fig. 6b). The first principal component reflects the changes in the average cerebro-cerebellar
coupling (Fig. 6b). The second principal component shows a delayed increase with respect to the first, followed by a
sustained decrease in the cerebro-cerebellar coupling (see Fig. S7 for remaining components). These results are con-
sistent with the need for the cerebellum to provide more effective feedback and thus be more coupled in the earlier
learning phases. To study learning periods of consistent increases or decreases in coupling as training progresses we
tracked the changes in correlations of cerebro-cerebellar pairs in early, mid and late learning (Figs. 6¢c). We observe
that early in learning - when most learning occurs - a large part of the population shows a consistent increase in cor-
relations, but this rapidly changes as learning progresses with only a very small number of pairs showing increases
in correlations later in learning.

To better assess the contribution of a plastic cerebellum to the cerebro-cerebellar coupling, we analysed a ccRNN
in which the cerebellum does not learn. In this case we can still observe changes in cerebro-cerebellar coupling over
learning for some tasks, which reflect changes in the RNN itself, but these are weaker when compared to the normal
ccRNN (Fig. S8a). In this case cerebro-cerebellar correlations remain high throughout learning compared to a ccRNN
with a plastic cerebellum. This is supported by their low-dimensional representations: whereas a plastic cerebellum
leads to principal components that approach near-zero values after the initial learning phase (Fig. 6b, S7), in the case
of the fixed cerebellum the principal components continue to fluctuate throughout learning (Fig. S8).

Although our model suggests a long-term decrease decrease in the cerebro-cerebellar activity coupling, it high-
lights sub-populations which increase their coupling during specific periods of learning. This observation follows from
our proposal in that the cerebellum is trained to map cerebral neuronal activity on cerebral feedback which depend
on learning.
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Figure 7. Inactivating cerebellar output and inferior olive have a differential impact on learning. (a) Complete cerebellar
lesion at different points during learning. Vertical lines represent at which point during training the cerebellar was inactivated in the
ccRNN model. In gray and orange show the baseline performances of the cerebral RNN and ccRNN, respectively. (b) Normalised
error after cerebellar lesion throughout learning with respect to ccRNN (n.s. simple LD visuomotor p=0.062 (session 150), p=0.162
(session 475)). Gray denotes normalised error for cRNN. (c) Complete inferior-olive lesion at different points during learning. Vertical
lines represent point of lesion of the ccRNN model. In gray and orange are shown the baseline performances of the cerebral RNN
and ccRNN, respectively. (d) Normalised error after inferior-olive lesion throughout learning with respect to ccRNN. Gray denotes
normalised error for cRNN. *: p<0.05, **: p<0.01, ***: p<0.001, ****; p<0.0001. Error bars represent mean + SEM across 10
different initial conditions.

In experimental neuroscience a common paradigm is to inactivate the cerebellum in order to study its role in
learning and behaviour. Here we perform in silico lesion experiments to reveal the impact of the modelled cerebellar
feedback predictions during learning. First, we test cerebellar output lesions at different points in learning. In all
tasks we observe that inactivating the output of the cerebellar module in early learning impairs further learning
and performance (Fig. 7a,b). This is expected as the cerebellar network provides feedback predictions that facilitate
cerebral learning. Interestingly, we observe that when the cerebellum is suddenly removed learning becomes worse
than the baseline model. This is likely due to the additional time taken to adapt to a new learning trajectory which no
longer relies on cerebellar prediction. However, cerebellar lesions performed later in learning do not have an impact
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232 in the simple LD visuomotor task, which is explained by the fact that for this task the model can achieve near-zero
235 error, thus learning signals provided by the cerebellum are no longer needed. However, for all the online tasks we
236 Observe that inactivating the cerebellum even at later stages damages learning. In these more realistic tasks the
237 cortical network still relies on the feedback provided by cerebellum as it does not fully learn the task. Our results
238 indicate that lesion studies should reveal a task-dependent nonlinear role of the cerebellum on cerebral learning.
230 Next, we assess the impact of disrupting cerebellar learning by modelling a complete lesion of our inferior olive-
2a0  like error module (Methods). This manipulation effectively stops cerebellar learning, thereby impacting on the ability
2a1 Of the cerebellum to provide informative feedback learning signals to the cerebral network which may prevent the
2a2  cerebral network from learning. For all of the tasks that we model, inactivating cerebellar learning has a strong impact
243 throughout training, making the model return to naive performance (Fig. 7c,d). Thus, simulated "inferior olive" lesions
2aa  predicts that if the cerebellum cannot learn it would result in a stronger negative impact in task learning than ablating
2as  the cerebellum itself. This further suggests that it is critical for the cerebellum to learn rapidly to be able to provide
246 informative predictions.

.z Cerebro-cerebellar model facilitates learning in a visual-language task
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Figure 8. Cerebro-cerebellar model facilitates learning in a visual-language task. (a) Schematic of the model used in a visual-
language task. The image is first processed by a (pretrained) convolutional neural network modelling the visual cortex. The resulting
feature vector is then provided to the cerebral RNN which is trained to predict the next word given the previous words of a provided
“gold standard” caption to the image. The cerebellum module C is only applied to the cRNN. (b) Learning curves in bits per word
(BPW), lower values indicate better understanding of the language, on validation set for cerebral feedback horizon of four timesteps
(inset shows complete learning curve). (c) Two example images from the validation set with corresponding model captions and
gold standard captions (black). (d) Normalised model performance across different degrees of feedback horizon in the cerebral
network (p=0.891 (40%), p=0.116 (45%). (e) Normalised caption score (Methods) as a function of caption length (p=0.075 (short),
p=0.189(medium)). *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. Error bars represent mean + SEM across 10 different initial
conditions.

248 Our framework does not only apply to sensorimotor tasks, but should generalise to virtually any task within the
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grasp of current neural networks models. To test the generability of our model and inspired by cognitive tasks in
which cerebellar patients have shown deficits*® we test our models in a caption generation task. In this task the
network needs to generate a textual description for a given image. All models have two components: a pretrained
convolutional neural network (CNN) to extract a lower dimensional representation of the image, and a cRNN or ccRNN
on top which is trained to map the low dimensional visual input to captions that describe the image. (Fig. 8a).

We use a standard machine learning dataset®® and the networks are trained to predict the next word (Methods).
In contrast to the previous tasks here we use a form of unsupervised learning, in which the prediction error module
only uses the data itself (i.e. words) to generate teaching signals (Supplementary). We find that ccRNN models can
exhibit faster learning (Fig. 8b) (Fig. 8d) and better generalisation®' (Fig. S9) when in the presence of short cerebral
feedback horizons (< 40%). All models produce reasonable captions for images unseen during training, but ccRNN
models tend to produce captions that better capture the context and semantics of the task (Figs. 8¢, S10), consistent
with cerebellar deficits .

Finally, we use a language metric (SPICE>2) to measure the quality of the generated captions. These results show
thatthe ccRNN generates richer captions (Fig. 8e) and that itis particularly beneficial for longer captions. This suggests
that ccRNN is able to learn richer visuo-language contextual information.

Discussion

Inspired by recent deep learning developments, here we have introduced a systems-level computational model in
which cerebellar networks predict cerebral feedback (Fig. 1). In this scheme cerebro-cerebellar loops decouple cere-
bral cortical networks from future feedback signals. We show that the ccRNN model accelerates learning and im-
proves task behaviour in a range of sensorimotor and cognitive tasks (Figs. 2, 3 and 8). Our results are consistent
with observed motor and cognitive deficits in cerebellar patients. Our model makes a number of predictions in terms
of (1) task properties (Figs. 4 and 5), (2) cerebro-cerebellar representations and coupling (Figs. 2 and 6), and (3) the
differential role of the cerebellum and the inferior olive throughout learning (Fig. 7).

Experimental studies have shown that incomplete or delayed external sensory feedback is important for learn-
ing#>>3>*_Our model proposes that the cerebellum plays an important role in facilitating motor learning when in the
presence of incomplete or delayed feedback. Furthermore, our work suggests that cerebro-cerebellar networks are
ideally placed to facilitate learning when task feedback is presented intermittently, at medium frequencies with re-
spect to task sequence. Similarly, our results suggest that cerebellum-dependent dysmetria should be more prevalent
for tasks with intermediate to long inter-feedback intervals. Although there is a wide range of studies investigating
the role of external sensory feedback in learning>**> and the precise timing of feedback is known to be important for
cerebellar function %%, it remains to be tested what are the optimal properties of task feedback for learning. Taken
together, we suggest cerebellar-mediated feedback predictions to be particularly important for temporally challeng-
ing tasks with sparse feedback.

Our representational analyses demonstrate that the cerebellum develops task-specific representations. Recent
fMRI studies have observed that different regions of the cerebellum encodes task-specific representations for dif-
ferent domains?*>’. Similarly, our model predicts the need for different cerebellar modules to provide feedback
estimations to the cerebral cortex for specific task domains. We have also studied the level of coupling between cere-
bellar and cerebral neural activity. Our results demonstrate an initial rise in correlations which coincides with steep
periods of learning followed by a general decay in the coupling during the remaining periods of learning. This general
decay in coupling is also reflected in our simulated cerebellar lesions which echo the existing literature in that after
a task is consolidated in the cerebrum it becomes less cerebellar-dependent®,

In line with previous theoretical accounts®”® we suggest that the cerebellar error function is computed by the
inferior olive, which drives learning in the cerebellum via the climbing fibres. This cerebellar error function is a com-
bination of true sensory feedback and self-predicted (bootstrapped) error signals (Fig. 1b), which is analogous to the
bootstrapping principles commonly used in reinforcement learning®. The use of self-predictions in the cerebellum
suggests the existence of different forms of feedback to the inferior olive from potentially multiple cerebellar mod-
ules, consistent with cerebellar-inferior olive connectivity“. Moreover, when ablating the inferior olive lesions we
show that task performance become severely impaired. This is due to the cerebellum being unable to learn, thereby
providing outdated feedback signals back to the cerebral cortex. These results suggest non-trivial consequences of
lesions for cerebro-cerebellar interactions.
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While our model is consistent with experimental observations, there are several biological features that we have
not considered. In particular, experimental studies suggest that the cerebellum can influence cerebral learning pro-
cesses via its projections to the thalamus®%. This is in line with ccRNN where the cerebellum predicts feedback
signals that contribute directly to cerebral learning. However, we have assumed direct long-range projections with
the cerebral cortex whereas in biology these projections are mediated through the thalamus and pons. It is possi-
ble that both structures may provide bottlenecks that filter out non-relevant information, such as poor estimated
feedback (Figs. 2d, 3d) that would impair cerebral learning. In addition, cerebellar-thalamic-cerebral projections are
known to target distal dendrites of pyramidal cells%¢%7, which have been proposed to encode feedback error signals
by a number of models as used by deep learning models®®. These dendritic-encoded error signals are akin to the
gradient descent errors that we use to model cortical feedback signals. In future work it would be of interest to
combine our work with these biologically plausible gradient descent models.

Throughout this paper we have assumed the existence of cerebral prediction error modules, which compare the
output of a given cerebral area with a desired task output to generate a feedback teaching signal for the cerebral cor-
tex. There is evidence of prediction errors across different brain areas, for example sensorimotor prediction errors
in the neocortex’®”" or reward prediction errors in the VTA"72, For simplicity, here we have focused on supervised
(Figs. 2,3) and unsupervised (Fig. 8) prediction errors, but these can in principle be readily replaced by reward-based
prediction errors'”3. This would predict reward-specific encodings in the cerebellum as observed recently’#7, In-
deed, our model is of particular relevance to reinforcement learning due to prevalence of sparse and delayed rewards
(Fig. 4).

Finally, our model shares common features with classical internal models of the cerebellum (87: Table S1). In
the forward model of sensorimotor control, the cerebellum receives an efferent copy of the motor commands and
the respective external sensory feedback®’’. With these two input streams the forward model learns to predict
the sensory consequences of motor commands. We and others have argued that a similar predictive model can in
principle be applied to higher order brain regions such as the prefrontal cortex and the temporo-parietal cortex which
are involved in planning of cognitive behaviour and decision making'®'7242 (Fig. 1a). In line with forward models the
cerebellar module of ccRNN receives an efferent copy of the cerebral neural activity and cerebral feedback. Given
these signals the cerebellum learns to predict future cerebral feedback.

Overall, our work offers a novel theoretical framework with which to study cerebro-cerebellar interactions, being
consistent with experimental observations while making a large number of testable predictions across multiple levels
of interrogation.
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s=  Methods

s13  In all our experiments we model a cerebral area A as a long short-term memory recurrent neural network (LSTM)7®
s1a With parameters # which has recently been mapped onto cortical microcircuits”®. A (trained) linear readout is attached
515 to the LSTM output states which provides the final model output to which a supervised error module E®*, which
s16 below we refer to as E.

517 In the cerebro-cerebellar RNN model (ccRNN) we attach a feedforward cerebellar module C with independent
s1s parameters W to the RNN with reciprocal connections (Fig. 1). The cerebellar module is equivalent to the “synthesiser”
s10 as used by Jaderberg et al. 3 in the backward case. That is, the cerebellar module receives a copy of the RNN activity
s20  a; (both cell and output LSTM states) and sends back a prediction of the future feedback (or error gradients) with
s21  respect to that activity, C(a:).

522 To generate the desired cerebral temporal feedback (error gradients) we use backpropagation through time
s23  (BPTT). To highlight the link between BPTT-derived feedback and the cerebellar predicted feedback we start out from
s24  first principles closely following Jaderberg et al. 3. BPTT is used as the standard solution for updating parameters 6 in
s2s deep learning. In an ideal world one would have access to all error signals within a task of length T, 3" E,, and derive
s26 the resulting parameter updates as 6 + 6 — aAf where Af = ZtT,:t %, but this is impractical as it would require
s2z  information about all possible future error signals. Instead, in practice BPTT over a time horizon K is commonly used
528 (Fig. 1

T K T
OE. OEy % OE &ﬂ
2 o5 = <Z aat) 20 +< > (')aK) 20
t'=t t'=t t/'=K+1
T
aEt’ ~ (93;( 8315
~ by + b, 22K ) 22 1
gﬁae <t+m63t)89 M
NS e+ Cla) 2ok |9

—— 8at %

cerebral feedback  cerebellar feedback

s20 Where b, denotes the cerebral feedback and C(ax) cerebellar predictions of future feedback and %?: represents the
s30 temporal changes in cerebral activity. These equations help make clear the distinction between cerebral feedback
s31 modelling feedback within current horizon K and cerebellar feedback predicting future horizons. Note that if we set
sz C(apy) = 0 then we simply have standard truncated-BPTT over a time horizon K, as commonly used in deep learning.
533 A key consequence of the cerebellum predicting future feedback is that strong or long feedback signals (i.e. T > 0)
s3a  are no longer necessary, thus decoupling learning in the cerebral network from future feedback signals. For this
s3s  reason we focus on weak forms of BPTT with relatively small temporal horizons, in which we model only K time steps
s3s  Of feedback into the past from an error signal E, this is known as truncated BPTT. In our experiments the size of K
s37 - which we report as a percentage of the task length (cerebral temporal gradient) - varies but is generally small. For
s3s  example, for the simple line drawing task we used a one-step BPTT (i.e. K = 1; Fig. 2). Note in the main text as we
sz focus on describing a simpler case of K = 1 (as used in the simple line drawing task) we use C(a:) to refer to the

sa0  cerebellar feedback prediction from the end of the current horizon, i.e. C(a;) = C(aK)%:‘:.

so Cerebellar learning

sz The cerebellar parameters W are themselves learnt but to optimise a distinct, specialised error E'© which we posit
sa3  to be computed at the inferior olive, the classical teacher of the cerebellar cortex®’. This is defined by the difference
sas between cerebellar output and a target feedback signal fb;, i.e. EI° = ||C(a;) — fb:||. Similar to the cerebral network
sas  We update cerebellar parameters using gradient descent: W < ¥ — o/° AW, where AW = %

546 Ideally we would simply set the target feedback as the true (desired) cerebral feedback. However, this would
saz require an arbitrary long number of steps of true cerebellar feedback, exactly what we propose that is not required
sas  With a cerebellar network. How should the cerebellum itself learn about the future feedback? One elegant solution,
sa0  Which we take from Jaderberg et al. 3, is to combine the currently available error with bootstrapped future cerebellar
sso  predictions (i.e. self-predictions). Formally, using the same notation as equation 1, the trained target for C(ar) is

_ OEcor
8aT

Oarr

fb
T 837

+ C(az21)

2

10f13


https://doi.org/10.1101/2022.01.28.477827
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.477827; this version posted January 28, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

569

570

571

572

573

574

available under aCC-BY-NC 4.0 International license. Preprint

Note the resemblance of equation 2 to equation 1: in each case we consider a mixture of nearby “cerebral” error
signals beyond which we rely on cerebellar prediction. It is also useful to compare equation 2 with standard reinforce-
ment learning rules (e.g. temporal difference learning algorithm) which rely on similar bootstrapping principles .

Other biological mappings of our framework
Here we describe other possible mappings between the proposed framework (cerebellum as a decoupling machine)
and forward and feedback processing in the cerebral cortex.

Cerebellum as a spatial feedback decoupler

Our paper focuses on temporal problems being solved by a cerebral area modelled as a recurrent neural network
(RNN) to which a cerebellar network provides predictions of the future errors/feedback with respect to that area. An
analogous biologically relevant system also arises, however, when one considers cerebral processing in space using
feedforward computations involving several distinct regions (Fig. S1).

This setup - where the “main” (cerebral) network is a feedforward composition of multiple brain regions - was also
considered in Jaderberg et al.. Now, as opposed to predicting errors which occur strictly at later points in time, the role
of the cerebellar network is to predict errors which occur in later brain regions. The result is that an earlier region has
access to its feedback (predicted by the cerebellum) without the need to wait for the later forward/back propagation
of spatial activity. Formally, if we assume cerebral processing as a sequence {a;}"; of feedforward computations:
A(x) = (aw o an—1 0 - - - 0 a1)(x) which defines a final error function E(A(x)), then the cerebellar network can provide
predicted feedback at a given brain area as soon as its activities are computed: C(a;) := fb; = %— = 25.

This perspective would effectly feedback processing across the brain. This interpretation of the model is consistent
with cerebellar-thalamo-cerebral projections targeting distal dendrites, which have been proposed as the site of error
or feedback encoding which underlie efficient learning®°.

Cerebellum as a forward decoupler

In classical cerebellar theory, the complement to the forward model hypothesis is the inverse model, in which the
cerebellum predicts motor commands?®, or even implicit mental predictions to solve a problem?*, directly . Again we
can consider this under the proposed framework, but now using its forward prediction version.

In this case the role of the cerebellum is not to predict future feedback activity, but the feedforward activity itself,
i.e., C(a;) = & for some later region j > i. §; is fed as a replacement to region j, making it forward decoupled from a
potentially slower intermediate processing aj o aj_1 0 - 0 aj41.

Functionally this would provide the organism with fast inputs (e.g. motor commands or potential mental solutions)
without the need for potentially slower cerebral processing (Fig. S1b). We also point out the relevance of direct predic-
tions of later activity in the temporal case, where the cerebellum strictly predicts motor activity at later timesteps, as
suggested in®. A broad comparison between this framework and the cerebellar internal model hypothesis is shown
in Table S1.

Experimental details

To reduce learning instability we scale the cerebellar predicted feedback (Eq. 1) by 0.133. Both cerebral and cerebellar
parameters are optimised using the feedback described above together with ADAM for overall learning efficiency®'.
Training the model involves iterating over training sessions for a given dataset, which is split into batches. For better
learning stability model parameters were updated at the end of each batch.

In each experiment all initial RNN parameters are drawn from an uniform distribution /(- \/nim \/nim)' where
nrnn IS the number of RNN units. The weights of the readout network and the feedforward weights of the cerebellar
network (other than the final layer) are initialised according to U/(—bx, bx) where b, denotes the “kaiming bound” as
described by He et al.?? (slope a = v/5), and the biases are draw from u(—ﬁ, #ﬁ) where n;, denotes the input size
of the layer. The last layer (both weights and bias) of the cerebellar network is zero-initialised, so that the estimated
feedback at the start are zero®.

During learning, we employ truncated BPTT as follows. Given an input sequence of N timesteps x1, x2, ..., xy and

an temporal horizon K, we divide the sequence into K sized truncations. In other words, the sequence is now made
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up truncations of (xi, ..., xk), ..., (Xm—1)k41 - » Xmk ), (Xn—r, ..., xn), Where N = mT + r for positive integers m, r with
0 < r < K. Note that, along with the value K, how well the sequence is divided into truncations (i.e. values m, r) can
itself influence learning (e.g. Fig. 3d).

In the all visuomotor tasks, to test the effect of predicted feedback against the availability of task feedback signals
which occur at any timestep where an external teaching signal is provided, we vary the external feedback interval.
Given feedback interval n, the target is only available every n timesteps. This is analogous to the rate at which one
receives sensory information whilst performing a task (e.g. drawing freehand).

In general, (standard) hyperparameters were selected by hand after a few trial runs. We used the PyTorch library
for all neural network models. Our implementation is based on that of github.com/koz4k/dni-pytorch. The code used
for our experiments is available at https://github.com/neuralml/ccDNI.

Delta and normalised error
To calculate the delta and normalised error with respect to a given model we take the difference or ratio of total
errors during learning (all training sessions). For example, the normalised error of ccRNN with respect to cRNN is

%. Note that in the ablation case we compare against an "healthy" ccRNN and only consider the respective

errors post-ablation. e.g. the normalised error for a model with cerebellar ablation at session 50 is

error(ablated) S 5o
error(ccRNN) < 5 *

Cerebro-cerebellar coupling

To analyse how the coupling between the cerebral and cerebellar networks changes over learning we consider the
(absolute) Pearson correlation between a given cerebral (LSTM) unit and a given unit in the cerebellar hidden (gran-
ular) layer over different bins during training. Values given are the average correlation over all RNN/cerebellar unit
pairs.

Computing details

All experiments were conducted on the BluePebble super computer at the university of Bristol; mostly on GPUs
(GeForce RTX 2080 Ti) and some on CPUs. We estimate the total compute time (including unreported results) to be
in the order of ~ 2000 hours.

Simple line drawing visuomotor task

In the line drawing task, an LSTM network receives a discrete input cue which signals the network to either (1.) stay at
zero or (2.) draw a line in 2D space over a period of 10 timesteps. Here we set 6 distinct non-zero input-target pairs
{(xi, yi)Yo_1, where each input x; is a (one dimensional) integer € {+1, 42, +3}, y1 = 0 throughout, and the remaining
targets {y:}5_, are lines whose end points lie equidistantly on a circle centred on the origin with radius 10. To make
the task more realistic we also consider a 7th target in which the network must remain quiet at the centre of the
drawing screen, which models periods in which the animal is not actively performing the task. Once an input cue
is received at timestep t,, the model receives no new information (i.e. all future input is set to zero). The model is
trained to minimise the mean squared error (MSE) between its output and the cue-based target.

The cerebral network is modelled by one hidden layer of 50 LSTM units and the cerebellar network by one hidden
layer of 400 neurons. The learning rate is set to 0.001. Each epoch comprises of 20 batches with 50 randomised
examples. Unless explicitly stated we use a truncation size of K = 1 which covers 10% of the total task duration.
Model results are averaged over 10 random seeds (with error bars), where each seed determines the initial weights
of the network.

Online visuomotor tasks
For each online visuomotor task (Fig. 3) we use a standard dataset of handwritten digits (MNIST dataset). The model
receives the same temporal input input, and the tasks are only differentiated by the desired model output. Given a
28 x 28 handwritten digit as input, at timestep / the model receives the pixels from row i of the image, so that the
input is of dimension 28 and is presented over 28 timesteps.

In each case we have one hidden layer of 30 LSTM units in the main model and one hidden layer of 300 hidden
units in the feedforward cerebellar network. Data was presented in batches of 50 with a learning rate of 0.0001.
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Training and validation data was assigned a 4 : 1 split, containing 48000 and 12000 distinct image/number pairs
respectively. Unless explicitly stated, the truncation value was K = 3 which is ~ 10% of the task duration. Model
results are presented over 10 random seeds.

Online line drawing visuomotor task

In this variant each number 0-9 MNIST image is allocated an associated xy position on the edge of a circle centred at
0 with radius 10, and must follow a line of equally spaced points towards that position (Fig. 3a, left). With the model
output being a vector of size 2, the training loss is defined at the end by the mean squared error (MSE) between the
output of the model and the points forming the target line.

Online digit drawing visuomotor task
Like the online line drawing task, in this variant the model outputs a sequence of 2D coordinates corresponding to
the input image. The target sequence however is now of a highly non-linear form, and in this case is a template of
the number given as input (Fig. 3a, middle). The model is then trained at to minimise the MSE between the model
output and that target shape.

For each digit, the corresponding target drawing lies in [0, 1] x [0, 1], such that the gap between each successive
point is equivalent. All model drawings begin in the top left corner (except for digit 1 which begins below-right). MSE
scores are reported as 100 times their raw values to ease comparison with the line drawing case.

Online visual discrimination

This case differs to the others as it is a classification (or decision making) task, where at the end of the presentation
of the MNIST image the model must decide which number the digit belongs to (between 0 and 9). Since the decision
is only made at the end of the sequence and targets are unavailable at intermediate points, this is a task with hard
temporal credit assignment. The output of the model is a vector with probabilities of size 10 (one entry for each
number), and the model was trained to maximise the likelihood of the target number using a standard cross-entropy
error function.

Visual-language task

The architecture for the caption generation task consists of a pretrained convolutional neural network (CNN) coupled
with an RNN (LSTM). The cerebellar network only communicates with the LSTM. The LSTM network has one layer of
256 LSTM units and the cerebellar network has two hidden layers (i.e. here we explicitely model a layer of Granule
Cells and one of Purkinje Cells) of 1024 neurons.

The process from image to model-generated caption follows previous work®® and is described next. As part of im-
age preprocessing and data augmentation, which helps prevent model overfitting, a given image is randomly cropped
to size 224 x 224, flipped horizontally with even chance, and appropriately normalised to be given to a pretrained
Resnet model®*. A feature vector X of size 256 is thus obtained and passed to the LSTM at timestep 0. The LSTM
is subsequently presented the “gold standard” caption {w;}/_; one word per timestep, each time learning to predict
the next word (unsupervised task); i.e., at timestep t the model learns P(w:| X, {w;}!Z}). The network simultaneously
learns a word embedding so that each word w; is first transformed to a feature vector of size 256 before being given
as input to the LSTM (as illustrated in (Fig. 8a). With a preset vocabulary of 9956 distinct words, the final output of the
model (P(w;)) is a probability vector of size 9956.

We found the models to be generally prone to overfitting the training data. For this reason, we apply dropout
(during training as described by Srivastava et al.®) on the input to the LSTM, where a given input element is set to
zero with p = 0.5 probability. Once training is complete the models can generate their own captions to previously
unseen images (Figs. 8, S10). Given an image at timestep 0, the model output at timestep i is the word with the
highest probability, and the same word is then provided as input to the model at timestep i + 1. In this way the model
can autonomously output an entire sequence of words which forms a predicted caption. In the (highly) rare case
where the model generates a sequence of > 20 words, we consider only the first 20 words as its caption.

We used the COCO training data set ILSVRC-2012-CLS "*° which holds 414113 image-caption pairs with 82783

"This is a commonly used dataset available for our purposes under a Creative Commons license.
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unique images while the held-out validation set (used for Fig. 8b, c) holds 202654 with 40504 unique images; note
that each image therefore has ~ 5 distinct gold standard captions. Training takes place in batches of 100 image-
caption pairs, with a learning rate of 0.001. Model performance is averaged over 10 random seeds. The performance
is quantified in bits per word, which measures how good the model is at predicting the validation set. More specifically
if a model assigns high probability to the test set (low BPW) it means it is not surprised by it hence indicating a good
understanding of the language.

In order to judge the models beyond their learning curves in BPW, we quantify their ability to generate captions
using variety of language modelling metrics popular in the field of language evaluation. In particular, we compare
model-generated captions against the gold standard captions using standard metrics in language modelling. We use
the Semantic Propositional Image Caption Evaluation or SPICE metric, referred to as caption score. This metric has
been shown to be more accurate as it better captures the semantic structure of the generated captions 2.

Our code implementation is based on https://github.com/yunjey/pytorch-tutorial /tree/master /tutorials/03-advanced/
image captioning.

Demixed principal component analysis

To study the response dynamics specific to task variables we perform demixed principal component analysis (dPCA
Demixed PCA extracts low-dimensional components that explain maximum population variance constrained by task-
specific variables, such as the input stimulus. As a result we obtain principal components that are specific to task
variables. The simulated neural data we provide as input to dPCA is a three-dimensional array (n, s, t) with neuronal
activity (concatenated across seeds), stimulus identity and time, respectively.

)86.

Statistical analysis

Because the initial conditions of these type of models influence its learning trajectory we run our models across 10
different randomly chosen seeds. Significance was then tested using a paired t-test across the different seeds on the
relative changes (e.g. ccRNN relative to cRNN). Significance levels are represented as * (p < 0.05), ** (p < 0.01), ***
(p < 0.001) and **** (p < 0.0001).

Measuring cerebro-cerebellar feedback similarity

The learning curves of ccRNN plotted against cRNN with a limited feedback horizon highlights the benefit of the
feedback predicted by the cerebellar network. This indicates that the predicted feedback can indeed approximating
the desired cerebral feedback. To verify this, we quantified the cerebro-cerebellar feedback similarity using cosine
similarity - “cossimilarity” - between the predicted feedback and the optimal temporal cerebral feedback (as derived
by gradient descent). Specifically given two arbitrary vectors x and y

oo X
cossimilarity(x,y) = m (3)

where x is the predicted feedback and y the true optimal feedback, - denotes the dot product and [|||. the Euclidean
norm.

It is important to emphasise that the true feedback is never actually provided to the model (as it goes beyond
the feedback horizon K considered). Instead the cerebellum only learns through a combination of cerebral feedback
within horizon K and a bootstrapped term (see details above). This measure allow us to evaluate how much informa-
tion about this ideal feedback can the cerebellum approximate. The final result is shown in Fig. 5a. To provide the
reader with intuition about how having external feedback available just at the end, which would lead to a gradual loss
of the ability of the cerebellum to make good predictions for earlier points in the task, we highlight two task variants
in which the task error is only defined at the end visual discrimination and a simple line drawing variant where the
external task feedback is only provided at the end of the task.
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Supplementary Figure S1. Cerebellum as decoupling machine in feedforward multi-area networks. (a) lllustration of decoupling
feedback processing. The cerebellum makes predictions of the feedback expected by brain area 2, decoupling the main network
from downstream brain areas (dashed red arrow). (b) Case of decoupling feedforward processing. The cerebellum predicts the
forward activity expected by brain area 3, thereby approximating (and decoupling) the forward computations between brain area 1
and 3 (dashed black arrow). Note that the cerebellum could, in principle, approximate feedback and feedforward processing across
many more brain areas (i.e. brain area 2 could be expanded in multiple brain areas).

Supplementary Table S1. Relationship between the internal models of the cerebellum with decoupling machines33. The properties
of the forward model of the cerebellum can be set against those of feedback decoupling (blue); similarly, the properties of the inverse
model of the cerebellum can be set against those of forward decoupling (red). The internal models here focus on the classical
motor control setting but can be extended to cognition, where for example a “mental model” replaces the “controlled object”24.
Abbreviations: MM, main model; temp., temporal; spat. spatial.

‘ Forward Model Feedback Decoupling ] Inverse Model Forward Decoupling
cerebral . .
controller main model (MM) cerebellum synthesiser
(motor) cortex
. motor sensory/desired (temp.) area state*
input area state*
state/command state (spat.) upstream state*
mp.) future gradien mp.) futur
outpt{t future state (temp.) future gradie .t motor command (temp.) future state
prediction (spat.) downstream gradient (spat.) downstream state
output cerebral controlled (temp.) MM: same area
e MM: same area )
destination | (motor) cortex object (spat.) MM: downstream area

6 of 13


https://doi.org/10.1101/2022.01.28.477827
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.477827; this version posted January 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license. Preprint

cerebral feedback horizon=10%

—— cRNN
20 ccRNN
m —— full horizon
%)
=3
S 10
@
O -
I I I I I I
0 100 200 300 400 500
training session
20% 30% 40% 50%
30 30 30
‘ |
- 20
5 20 20 20
3
2 10 10 10 10
(0]
0 0 0 0
I I I I I I I I
0 500 0 500 0 500 0 500

training session
Supplementary Figure S2. Learning for different cerebral feedback horizons for the line drawing task (cf. Fig. 2d). Feedback
horizon is given as percentage of task duration (10 time steps). Results presented in main text (Fig. 2b) shown on top row along with
RNN trained with full horizon (i.e. cerebral feedback horizon = 100%).

7 0of 13


https://doi.org/10.1101/2022.01.28.477827
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.477827; this version posted January 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license. P ;
reprint
a b
£ 100 g—0—
§ ;,; Component #3 [0.4%] Component #6 [0.0%] Component #8 [0.0%]
5
ks L,
S 50 g
g ER
K} —e—PCA £
° —e—dPCA hes ==
w 81
1 5 10 3
c _ Component g-"’
< 100
s ct1% , cue 0% z 0.2 04 06 08 1
8 Time (s)
g = Component #4 [0.3%] s CUE 7
g = Cue 6
Z 50 2
g 2 = Cue 5
5 time 99% o' = Cue 4
g o = Cue 3
8 o = ——— Cue?2
d 8 -1 Cue 1
1 E-2
o
z
= Component #1 [95.8%] Component #2 [3.5%] Component #5 [0.1%)]
- sy
g 32
§_ 5 o s,
£ £ g
E o0
o <
S
©
E-2
o
z
10
1 5 10
Component
ponenty os0 051
e f
100
Component #2 [30.2%] Component #4 [14.3%] Component #6 [4.4%]

—@&—PCA
—&—dPCA

g 1 5 10

Component

clt 42%
cue 44%
I I time 14%
0

1 5 10

Explained variance (%)
o
g

- =

\

o

N

Normalized firing rate (Hz)
)

=)
S

0.2 04 0.6 0.8

Time (s
Component #1 [37.5%] Component #3 [14.9%] Component #8 [3.7%]

A%

Component variance (%)
o
g

\

Normalized firing rate (Hz)
IR Y
S 5 o 5 3

Component #5 [12.2%] Component #10 [1.7%)] Cue7

Cue 6
Cue 5
Cue 4
Cue 3
Cue 2
Cue 1

o

time
Normalized firing rate (Hz)
S o
/

_/&7-

Component

Component

—
1 -050 051

Supplementary Figure S3. Demixed PCA of cRNN network at the beginning and end of learning (cf. Fig. 2e/(f). Early and late
learning corresponds to training session 1 (top a-d) and 200 (bottom e-h), respectively. (a, e) Cumulative variance explained by PCA
(black) and dPCA (red) components. (b, f) Demixed principal components for cue, time and cue/time interaction task variables. In
each subplot there are 7 lines corresponding to the 7 cues (cf. Fig. 2a). (c, g) Explained variance for individual demixed principal
components. Pie chart shows how the total variance is split between different task variables. (d, h) Dot product between all pairs of
the first 15 demixed principal components (upper-right triangle) and correlations between all pairs of the first 10 demixed principal
components (bottom-left triangle). Stars denote statistical significance (p < 0.05).
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Supplementary Figure S4. Demixed PCA of ccRNN cerebral network at the beginning and end of learning (cf. Fig. 2e,f). Early and
late learning corresponds to training session 1 (top a-d) and 200 (bottom e-h), respectively. (a, €) Cumulative variance explained by
PCA (black) and dPCA (red) components. (b, f) Demixed principal components for cue, time and cue/time interaction task variables.
In each subplot there are 7 lines corresponding to the 7 cues (cf. Fig. 2a). (c, g) Explained variance for individual demixed principal
components. Pie chart shows how the total variance is split between different task variables. (d, h) Dot product between all pairs of
the first 15 demixed principal components (upper-right triangle) and correlations between all pairs of the first 10 demixed principal
components (bottom-left triangle). Stars denote statistical significance (p < 0.05).
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Supplementary Figure S5. Demixed PCA of ccRNN cerebellar network at the beginning and end of learning (cf. Fig. 2g,h). Early and
late learning corresponds to training session 1 (top a-d) and 200 (bottom e-h), respectively. (a, €) Cumulative variance explained by
PCA (black) and dPCA (red) components. (b, f) Demixed principal components for cue, time and cue/time interaction task variables.
In each subplot there are 7 lines corresponding to the 7 cues (cf. Fig. 2a). (c, g) Explained variance for individual demixed principal
components. Pie chart shows how the total variance is split between different task variables. (d, h) Dot product between all pairs of
the first 15 demixed principal components (upper-right triangle) and correlations between all pairs of the first 10 demixed principal
components (bottom-left triangle). Stars denote statistical significance (p < 0.05).
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Supplementary Figure S6. Learning for different cerebral feedback horizons for the online visuomotor and discrimination tasks
(cf Fig. 3d). Feedback horizon is given as percentage of task duration (28 timesteps). Results presented in main text (Fig. 3b) shown

on top row along with RNN trained with full horizon (i.e. cerebral feedback horizon = 100%).
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Supplementary Figure S7. Pair-wise correlations over learning. (a) extension of Fig. 6b for top 5 principal components. (b) Variance
explained by each component (accumulation in orange).
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Supplementary Figure S8. Pair-wise correlations over learning with a fixed cerebellar module. (a) Box plot showing the mean and
distribution of pair-wise cerebro-cerebellar correlations over learning. Mean correlation coefficient for the fully plastic ccRNN model
(solid black line) and fully fixed ccRNN (i.e. without any form of plasticity in both cerebral and cerebellar networks; dashed black
line) are given for reference. (b) Top 5 principal components. (c) Variance explained by each component (accumulation in orange).
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Supplementary Figure S9. Generalisation of ccRNN (orange scatter) for feedback horizons K from 3 to 7. The change in loss is
computed with reference to the cRNN (i.e. ccRNN - cRNN). Training loss is calculated after training for a fair comparison with final
validation performance.
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Supplementary Figure $S10. Example images and captions from the validation set with corresponding model captions (cRNN in grey
and ccRNN in orange) and gold standard captions (black). Here we show a combination of examples of how the models describe
the presented image. In some case all or some models fail to give an accurate description of the image. In other cases all models
are able to provide an accurate caption for the image, with each model displaying subtle differences in the generated captions.
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