

1 Evolution of chlorhexidine susceptibility and of the EfrEF operon
2 among *Enterococcus faecalis* from diverse environments, clones and time spans

3

4 Ana P. Pereira,^{a,b} Patrícia Antunes,^{a,b,c,k} Rob Willems,^d Jukka Corander,^{e,f,g} Teresa M.
5 Coque^{h,i,k}, Luísa Peixe,^{a,b,k} Ana R. Freitas,^{a,b,j,k} Carla Novais^{a,b,k}#

6

7 ^aUCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of
8 Biological Sciences, REQUIMTE Faculty of Pharmacy, University of Porto. Porto, Portugal.

9 ^b Associate Laboratory i4HB - Institute for Health and Bioeconomy. Faculty of Pharmacy.
10 University of Porto. Porto, Portugal.

11 ^c Faculty of Nutrition and Food Sciences. University of Porto. Porto, Portugal.

12 ^d Department of Medical Microbiology, University Medical Center Utrecht. Utrecht,
13 Netherlands.

14 ^e Department of Biostatistics, Faculty of Medicine, University of Oslo. Oslo, Norway.

15 ^f Parasites and Microbes, Wellcome Sanger Institute. Cambridge, UK.

16 ^g Helsinki Institute of Information Technology, Department of Mathematics and Statistics,
17 University of Helsinki. Helsinki, Finland.

18 ^h Servicio de Microbiología, Hospital Universitario Ramón y Cajal. Madrid, Spain.

19 ⁱ Centro de Investigación Biomédica en Enfermedades Infecciosas (CIBER-EII). Madrid,
20 Spain.

21 ^j TOXRUN, Toxicology Research Unit, University Institute of Health Sciences, CESPU,
22 CRL. Gandra, Portugal.

23 ^k These authors are active members of EFWISG.

24

25 Running Title: Chlorhexidine susceptibility evolution in *E. faecalis*

26 **Keywords:** Firmicutes, Biocide, Minimum inhibitory concentration, Minimum bactericidal
27 concentration, One-Health
28 # Address correspondence to Carla Novais, casilva@ff.up.pt.
29

30 **ABSTRACT**

31 Chlorhexidine (CHX) is widely used to control the spread of pathogens (e.g. human/animal
32 clinical settings, ambulatory care, food industry). *E. faecalis*, a major nosocomial pathogen, is
33 broadly distributed in diverse hosts and environments facilitating its exposure to CHX over
34 the years. Nevertheless, CHX activity against *E. faecalis* is understudied. Our goal was to
35 assess CHX activity and the variability of ChlR-EfrEF proteins (associated with CHX
36 tolerance) among 673 field isolates and 1784 *E. faecalis* genomes from PATRIC database
37 from different sources, time spans, clonal lineages and antibiotic resistance profiles. CHX
38 minimum inhibitory concentrations (MIC_{CHX}) and minimum bactericidal concentrations
39 (MBC_{CHX}) against *E. faecalis* presented normal distributions (0.5-64 mg/L). However, more
40 CHX tolerant isolates were detected in the food chain and recent human infections,
41 suggesting an adaptability of *E. faecalis* populations in settings where CHX is heavily used.
42 Heterogeneity in ChlR-EfrEF sequences was identified, with isolates harboring incomplete
43 ChlR-EfrEF proteins, particularly the EfrE identified in the ST40 clonal lineage, showing low
44 MIC_{CHX} (≤ 1 mg/L). Distinct ST40-*E. faecalis* subpopulations carrying truncated and non-
45 truncated EfrE were detected, the former being predominant in human isolates. This study
46 provides a new insight about CHX susceptibility and ChlR-EfrEF variability within diverse
47 *E. faecalis* populations. The MIC_{CHX}/MBC_{CHX} of more tolerant *E. faecalis* ($MIC_{CHX}=8$ mg/L;
48 $MBC_{CHX}=64$ mg/L) remain lower than in-use concentrations of CHX (>500 mg/L). However,
49 CHX increasing use combined with concentration gradients occurring in diverse
50 environments potentially selecting multidrug-resistant strains with different CHX

51 susceptibilities, alert to the importance of monitoring the trends of *E. faecalis* CHX tolerance
52 within a One-Health approach.

53

54

55 **INTRODUCTION**

56

57 Chlorhexidine (CHX) is a disinfectant and antiseptic used since the 1950s and included in the
58 World Health Organization's list of essential medicines (1, 2). It has been widely used for
59 different purposes (e.g. surface disinfectants, antiseptics, mouthwashes, personal care
60 products) in hospitals, the community, food industry, animal husbandry and pets (3).
61 Currently, CHX is recommended in the prevention of skin or oral colonization and
62 consequent health care-associated infections by multidrug-resistant (MDR) bacteria, such as
63 methicillin-resistant *Staphylococcus aureus* (MRSA) and vancomycin-resistant *Enterococcus*
64 (VRE) (4, 5). As a bisbiguanide, CHX interacts with the cell wall and membrane anionic sites
65 affecting the osmotic equilibrium of the cell, resulting in a bacteriostatic or bactericidal action
66 depending on the concentration applied (2, 3, 6). Recommended CHX concentrations in
67 disinfectants and antiseptics are usually high (0,05% and 4%; 500 to 40,000 mg/L) (2).
68 However, CHX's wide use has also negative effects, including ecotoxicity to aquatic life,
69 horizontal transfer promotion of genetic elements carrying antimicrobial resistance genes, or
70 changes in bacterial communities (e.g. in the oral microbiota towards a greater abundance of
71 Firmicutes) (7-9).

72 Within Firmicutes, *Enterococcus* spp. is one of the most frequently found taxa in both
73 humans and animals (10). They are members of the oral and gut microbiota of mammals,
74 birds and reptiles, able to cause infections in animals, and one of the leading causes of human
75 hospital-acquired infections globally (10). Their ability to tolerate different stresses facilitates
76 their survival in the environment, being frequently recovered from plants and vegetables,
77 water bodies and soil (10, 11). Also, this ability to survive and persist in abiotic surfaces is of
78 particular concern in hospitals, increasing the risk of their transmission to patients followed
79 by potential colonization or infection (12).

80 *Enterococcus faecium* populations of clade A1, a cluster overrepresented by clinical isolates,
81 have shown a trend towards CHX tolerance (13). Strains belonging to this clade carry a single
82 amino acid change (P102H) in a conserved DNA-binding response regulator (ChtR) from the
83 2CS-CHX^T operon (13, 14). CHX tolerance in *Enterococcus faecalis* remains, however,
84 scarcely explored. Most available studies are restricted to clinical isolates, especially causing
85 oral infections, and do not analyze the clonal diversity of the studied isolates (15-17).
86 Recently, the *efrEF* operon, coding for the heterodimeric ATP-binding cassette (ABC)
87 transporter EfrEF, was shown to be involved in the tolerance of the *E. faecalis* V583 strain to
88 CHX (18). The EfrEF transporter is composed by the EfrE and EfrF proteins, and their
89 upregulation under CHX exposure is mediated by ChlR, a putative MerR family transcription
90 regulator (18, 19).

91 Our aim was to evaluate CHX susceptibility, the variability of the *chlR-efrEF* genes and to
92 link CHX phenotypes with *chlR-efrEF* genotypes among a large collection of *E. faecalis*
93 isolates from human, animal, food and environmental sources and available genomes from
94 the last century. CHX activity results will be also discussed within the *E. faecalis* population
95 structure context.

96

97 **RESULTS**

98

99 **Chlorhexidine susceptibility of *E. faecalis* from diverse sources and clonal lineages**

100 The minimum inhibitory concentration(s) of CHX digluconate (MIC_{CHX}) of the 151 *E.*
101 *faecalis* ranged from 0.5 to 8 mg/L, with an MIC₅₀ of 4 mg/L and MIC₉₀ of 8 mg/L (Fig. 1A).
102 The highest MIC_{CHX} of 8 mg/L was observed in 21% (n=32/151) of the population studied
103 while 6% (n=9/151) of isolates showed an MIC_{CHX} of 0.5-1 mg/L, corresponding in both
104 cases to *E. faecalis* recovered from different sources and clonal lineages. MIC_{CHX} values

105 presented a normal distribution, with a selected \log_2 standard deviation (SD) of 0.52 and a
106 fitted curve overlapping the raw count distribution (Fig. 1A). The MIC ECOFF_{CHX} proposed
107 for 99% of the population by the ECOFFinder tool was 8 mg/L. However, the MIC_{CHX}
108 distribution analysis using the NORM.DIST Excel function showed a 4% probability of a
109 wild-type isolate having an MIC_{CHX} of >8 and \leq 16 mg/L and 0% >16 mg/L. Therefore, based
110 on the normal distribution data, a tentative MIC ECOFF_{CHX} of \leq 16 mg/L is suggested for *E.*
111 *faecalis*.

112 CHX digluconate minimum bactericidal concentration(s) (MBC_{CHX}) ranged from 4 to 64
113 mg/L, with an MBC₅₀ of 16 mg/L and MBC₉₀ of 32 mg/L. A normal MBC_{CHX} distribution
114 was also observed, being the selected \log_2 SD of 1.06 (Fig. 1B). The highest MBC_{CHX} of 32-
115 64 mg/L (30%; n=45/151) as well as the lowest MBC_{CHX} of 4-8 mg/L (38%; n=57/151)
116 comprised in both cases isolates from different sources and clonal lineages. The MBC
117 ECOFF_{CHX} proposed for 99% of the population by the ECOFFinder tool was 64 mg/L, and
118 the NORM.DIST Excel function estimated an 12% probability of a wild-type isolate having
119 an MBC_{CHX} =64 mg/L and 0% >64 mg/L. Thus, both analysis point to a tentative MBC
120 ECOFF_{CHX} of \leq 64 mg/L for *E. faecalis*.

121 The analysis of CHX activity regarding isolates' antibiotic resistance profiles showed that
122 MDR *E. faecalis* had higher mean MIC_{CHX} but similar mean MBC_{CHX} comparing to non-
123 MDR ones [5.0 vs 4.2 ($P\leq 0.05$) and 16.1 vs 19.4 mg/L ($P\geq 0.05$), respectively]. The MIC_{CHX}
124 and MBC_{CHX} among VRE was variable and ranged, respectively, between 4-8mg/L and 4-32
125 mg/L (n=14; human infection, hospital sewage, human faecal samples at hospital admission
126 and dog faeces from 1996-2016). MIC_{CHX}/MBC_{CHX} of linezolid-resistant isolates varied
127 between 1-8 mg/L and 16-64 mg/L (n=6; raw frozen pet food in 2019-2020), respectively.

128

129

130

131 ***E. faecalis* isolates from the food chain and recent human samples express higher**
132 **tolerance to chlorhexidine**

133 The MIC_{CHX} and MBC_{CHX} distribution of the 151 *E. faecalis* isolates tested were analyzed
134 separately by source and time span (5-year intervals). The MIC_{CHX} distribution of the 151 *E.*
135 *faecalis* revealed that the mean MIC_{CHX} of isolates from humans (4.8 mg/L; 44 STs among
136 77 isolates) was higher than the associated with isolates from the food chain (4.1 mg/L; 47
137 STs among 59 isolates) ($P \leq 0.05$) but similar to those from the environment (4.8 mg/L; 11
138 STs among 12 isolates) ($P \geq 0.05$). Within the group of *E. faecalis* from humans, the mean
139 MIC_{CHX} was significantly higher among those associated with infection (5.4 mg/L; 27 STs
140 among 41 isolates) than colonization (4.2 mg/L; 29 STs among 36 isolates) ($P \leq 0.05$). In
141 contrast, mean MBC_{CHX} values were significantly higher among isolates from the food chain
142 (22.6 mg/L) than isolates from humans or the environment (15.3 mg/L and 13.0 mg/L,
143 respectively) ($P \leq 0.001$). MBC_{CHX} of *E. faecalis* from human infection or colonization
144 isolates were similar (17.1 mg/L vs 13.2 mg/L, respectively; $P \geq 0.05$).

145 Food chain *E. faecalis* from different time spans showed variable MIC_{CHX} and MBC_{CHX}, with
146 no apparent increasing trend over time (Fig. 2A). However, a significant increasing trend in
147 the mean MIC_{CHX} and MBC_{CHX} over the years was detected in isolates from human sources
148 (Fig. 2B) ($P \leq 0.05$). We also analyzed the MIC_{CHX}/MBC_{CHX} trends separately for strains
149 associated with human infection or colonization (including isolates mostly from faeces or the
150 urinary tract of healthy humans, but also faeces from long-term care facility patients and
151 individuals at hospital admission) (Table S1). The mean MIC_{CHX} and MBC_{CHX} of isolates
152 obtained from human colonization in 2001-2005 (3.8 and 10.8 mg/L, respectively; 15 STs
153 among 16 isolates) was statistically similar to that of more recent ones (2016-2020: 4.2 and
154 16.8 mg/L; 13 STs among 16 isolates) ($P \geq 0.05$), although an increase was observed (Fig.

155 2C). In isolates from human infections the mean MIC_{CHX}/MBC_{CHX} significantly increased,
156 with the mean MBC_{CHX} tripling between 2001-2005 (10.5 mg/L; 12 STs among 13 isolates)
157 and 2016-2020 (32.0 mg/L; 10 STs among 11 isolates) ($P \leq 0.05$) (Fig. 2D).

158

159 **Diversity of ChlR-EfrEF sequences and association of incomplete proteins with *E.***
160 ***faecalis* low MIC_{CHX} values**

161 The *efrEF* operon was identified in all but one of the 666 *E. faecalis* genomes analyzed, with
162 5% (n=33/666) carrying genes coding for incomplete ChlR (n=2), EfrE (n=25) or EfrF (n=6)
163 proteins (Fig. S1 and 3, Table S2). In order to better recognize the impact of the incomplete
164 ChlR, EfrE and EfrF proteins on the susceptibility to CHX, the MIC_{CHX} and MBC_{CHX} were
165 also determined for all isolates with incomplete proteins which were not included in the
166 group of 151 isolates formerly tested in the MIC_{CHX}/MBC_{CHX} assays. Whereas the MIC_{CHX}
167 values of most of these strains were consistently low (0.5-1 mg/L for 91% of the strains,
168 n=30/33), the MBC_{CHX} values ranged from 1 mg/L to 64 mg/L, similarly to that observed for
169 other isolates without frameshift, non-frameshift or nonsense mutations in the ChlR-EfrEF
170 proteins (Table S2, Fig. 3).

171 Among the 33 *E. faecalis* with incomplete ChlR-EfrEF, 25 isolates carrying a truncated EfrE
172 and recovered from different sources belonged to ST40 (Table S2, Fig. 3). All of them
173 showed a missing guanine in the nucleotide position 186 of the *efrE* gene associated with a
174 frameshift mutation resulting in a stop codon at amino acid 79 of EfrE (Fig. S1, Tables S2
175 and S3). The search for common mutations in the PATRIC database available genomes
176 showed that 85% (n=76/89) of the published ST40 *E. faecalis* also carried this *efrE* mutation
177 (Fig. 4, Table S3). Proteins 100% identical to the truncated EfrE of ST40 *E. faecalis* were
178 also found in 5 ST268 *E. faecalis* human faecal isolates (GenBank acc. numbers:

179 NZ_CABGJG0000000000; CABGJA0000000000; BJTJ00000000; BJTS00000000;
180 BJTH00000000).

181 *E. faecalis* with incomplete ChlR or EfrF proteins were less represented in our collection
182 (Table S2) as well as in the *E. faecalis* genomes searched in the PATRIC database.
183 Concerning ChlR mutations, two human isolates from our collection (ST59 and ST319)
184 showed the deletion of an adenine in *chlR* nucleotide 5 associated with frameshift mutations
185 resulting in an early truncated protein at amino acid 7 (Fig. S1, Table S2). One published
186 ST40 *E. faecalis* (food chain), with the previously described truncated EfrE, also showed an
187 incomplete ChlR protein due to the insertion of an adenine in *chlR* nucleotide 530, resulting
188 in an early truncated protein at amino acid 181 (Table S3).

189 Concerning EfrF mutations, an isolate from our collection presented a nonsense mutation in
190 *efrF* (C1567T) resulting in an early stop codon at amino acid 523 in a single ST179 fecal
191 isolate. This mutation was not found in other 30 ST179 human isolates analyzed (15 from our
192 collection and 15 from PATRIC database) (Fig. S1, Tables S2 and S3). In addition, a deletion
193 of 39 nt (696-734 nt) resulting in a shortened EfrF protein without amino acids from positions
194 233 to 245 was found in all ST200 analyzed (5 from our collection and 1 available at
195 PATRIC database; 3 human and 3 food chain isolates) (Fig. S1). Finally, one public ST40 *E.*
196 *faecalis* from human origin with the truncated EfrE protein had an EfrF with a frameshift
197 mutation, caused by the insertion of an adenine in *efrF* nucleotide 1138, associated with an
198 early stop codon at 392 amino acid position (Table S3).

199 Among the 632 isolates with a complete ChlR-EfrEF proteins, a broad range of missense
200 mutations was identified in each of the proteins studied, but no correlation between specific
201 mutations and MIC_{CHX} and/or MBC_{CHX} was noted (Table S2).

202

203

204

205 **EfrE-truncated ST40 *E. faecalis* clustered separately from non-truncated ST40 ones in**
206 **the phylogenetic tree and were mostly recovered from humans**

207 To establish an association between clonal lineages and CHX phenotypes, we performed the
208 core-genome multi-locus sequence typing (cgMLST) based phylogeny of all sequenced *E.*
209 *faecalis* isolates with available phenotypic information (n=174). We identified 77 STs and
210 160 complex types (CTs) with variable MIC_{CHX} and MBC_{CHX} values for isolates of each ST
211 or CT (Fig. 3; Table S2). Nonetheless, it is of note that ST40 *E. faecalis* (18 CTs) and ST200
212 *E. faecalis* (5 CTs) isolates expressing lower MIC_{CHX} (0.5-1 mg/L) clustered separately,
213 while the few ST179, ST308 and ST319 with low MIC_{CHX} were dispersed throughout the
214 phylogenetic tree (Fig. 3).

215 To further analyze the ST40 *E. faecalis*, all 33 ST40 genomes from our collection and the 89
216 available at the PATRIC database (n=122) were separately analyzed in a new cgMLST-based
217 phylogenetic tree (Fig. 4). Isolates with operons encoding a truncated EfrE protein clustered
218 separately from those with operons encoding a complete EfrE protein. Cluster “A” grouped
219 20 of the 21 strains with a non-truncated EfrE (Fig. 4, Table S3), whereas ST40 *E. faecalis*
220 with a truncated EfrE grouped in clusters “B” (n=12 isolates), “C” (n= 39 isolates) or “D”
221 (n=50 isolates), the latter comprising also one isolate with non-truncated EfrE. The oldest *E.*
222 *faecalis* with a truncated EfrE was recovered from the food chain in 1900-1950. Overall,
223 ST40 *E. faecalis* with a truncated EfrE included in clusters C and D were isolated
224 predominantly from humans (81%; n=82/101; P<0.0001) of different geographical regions.
225 ST40 *E. faecalis* isolates from cluster A had an MIC_{CHX} of 8 mg/L while most ST40 isolates
226 of clusters B, C and D (n=24/26) had an MIC_{CHX} of 1 mg/L. The only ST40 *E. faecalis* with
227 non-truncated EfrE included in cluster D presented the same ChlR-EfrEF mutations as a
228 ST308 *E. faecalis* from a healthy human, which also had an MIC_{CHX} of 1 mg/L without

229 possessing an incomplete ChlR-EfrEF (Table S2; Fig. 3). Additionally, most of our isolates
230 of clusters A and B had an $MBC_{CHX} \geq 16$ mg/L (92.3%, n=12/13; $P < 0.0001$), while strains in
231 clusters C and D mostly had an $MBC_{CHX} < 16$ mg/L (75%, n=15/20; $P \leq 0.05$).

232

233

234 **DISCUSSION**

235

236 The increasing challenge to control the growth and transmission of human and animal
237 pathogens in clinical settings, ambulatory care or in the food industry explains the rising use
238 of biocides in different sectors, namely of CHX. However, the scarcity of available data
239 concerning both wild-type bacterial phenotypes and subpopulations' adaptation to biocides
240 over the years limits the perception and the restraint of a potential biocide resistance threat.

241 In this study we showed that the MIC_{CHX} and MBC_{CHX} normal distributions for the *E.*
242 *faecalis* isolates analyzed were in accordance with the ranges previously reported for this
243 species (15, 20). However, the higher mean MBC_{CHX} values found in isolates from the food
244 chain as well as the increasing mean MIC_{CHX}/MBC_{CHX} values of recent isolates from human
245 infections suggest the adaptability of *E. faecalis* populations in settings where CHX is heavily
246 used. A tentative MIC ECOFF_{CHX} and MBC ECOFF_{CHX} of 16 mg/L and 64 mg/L,
247 respectively, proposed by the ECOFFinder tool and the NORM.DIST Excel function analysis
248 based on *E. faecalis* normal distribution, seems, therefore, limited because it comprises
249 isolates with heterogeneous phenotypes and genotypes. Although further molecular analysis
250 are needed to understand the significance of such diversity in bacterial populations classified
251 as "wild-type" for CHX, the MIC/MBC_{CHX} values found are considerably below the in-use
252 concentrations of CHX (500 to 40,000 mg/L) (2, 3). Nevertheless, they are within or higher
253 than the levels that have been detected in the skin of patients subjected to CHX bathing

254 (<4.69-600 mg/L), in cow milk (4-78 mg/L) or in sewage (28-1300 ng/L) (5, 21, 22). As
255 CHX tends to persist in water, sediment and soils (23), diverse *E. faecalis* populations
256 showing different CHX susceptibilities could hypothetically be selected and adapt within
257 gradients of sub-inhibitory concentrations occurring not only in patients' skin but also in
258 diverse environments (5, 21-25).

259 The detection of *E. faecalis* isolates falling into the upper borderline of the MBC_{CHX}
260 distribution (32-64 mg/L), with many of them recently recovered from human infections or
261 the food chain, and some showing resistance to vancomycin or linezolid, alerts for the
262 possibility of MDR strains selection by CHX as well as an adaptation towards CHX tolerance
263 in the following years. Such increase in CHX tolerance over time has been described for
264 other relevant bacterial species, such as *Staphylococcus aureus*, *Klebsiella pneumoniae* or
265 *Acinetobacter baumannii* (26-28), suggesting that the increasing use of CHX since the 2000s
266 in community, veterinary and hospital contexts (22, 27) might have been contributing to this
267 ecological adaptation. Moreover, other bacterial stresses, as those with impact in membrane
268 fluidity (e.g. temperature, acids, other biocides) should also be considered in future studies to
269 assess cross-tolerance with CHX (29, 30), and to help explain the higher MBC_{CHX} found in
270 isolates from the food chain throughout the study, when comparing to isolates from humans
271 sources, more tolerant to CHX in recent years.

272 The few articles addressing the genetic mechanisms involved in CHX tolerance among *E.*
273 *faecalis* described the upregulation of different genes, especially the conserved *chlR-efrEF*
274 genes (18). We showed that *chlR-efrEF* diversity does not seem to have a direct impact in the
275 MBC_{CHX} values, but variants with incomplete proteins encoded by *chlR-efrEF* affect *E.*
276 *faecalis* growth at low CHX concentrations (corresponding to MIC_{CHX}), particularly in ST40
277 *E. faecalis* from humans. ST40 *E. faecalis* are known to be widely distributed in different
278 environments and hosts (31), but a divergent evolution among strains with truncated and non-

279 truncated EfrE was detected, being both selected across different time spans and geographical
280 regions. Most *E. faecalis* with truncated EfrE, presenting the same mutation, were of human
281 origin, being isolated from this source at least since the 1960's. However, whether this
282 truncated EfrE subpopulation reflects multiple evolved genomic regions of ST40 *E. faecalis*
283 with a better human host adaptation, namely to colonization, remains to clarify. More studies
284 are also needed to better understand the role of the EfrEF operon in the metabolism of *E.*
285 *faecalis* and specifically in the tolerance to CHX and other stresses, as this operon was
286 described to be involved in the transport of ethoxylated fatty amines, fluoroquinolones and
287 fluorescent dyes (18, 19, 32). Although changes in the *chlR-efrEF* genes seem to impact
288 strains' growth inhibition by CHX in most cases, a few isolates (ST40, ST59 and ST860)
289 with incomplete/deleted ChlR-EfrEF exhibited MIC_{CHX} levels >1 mg/L suggesting the
290 occurrence of other cellular mechanisms allowing bacteria growth under CHX exposure.
291 In conclusion, our study provides novel and comprehensive insights about CHX susceptibility
292 within the *E. faecalis* population structure context, revealing more CHX tolerant
293 subpopulations recovered from the food chain and recent human infections. Although a
294 functional EfrEF operon was previously described to be important to *E. faecalis* V583
295 response to CHX (18), we further show a detailed analysis of the genetic diversity of the
296 operon and the correlation with CHX phenotypes, namely the impact of incomplete ChlR-
297 EfrE proteins on isolates' growth (MIC_{CHX}). The recent strains with a higher tolerance to
298 CHX and the known multiple sources for CHX diffusion pollution (e.g., down-the-drain of
299 CHX containing products used in diverse society sectors) (23) alert for the potential
300 consequences of the growing CHX use and to the need of continuous monitoring *E. faecalis*
301 adaptation towards CHX tolerance within a One Health approach.
302
303

304

305

306 **METHODS**

307

308 **Epidemiological background of field isolates included in the different assays**

309 A collection of 673 *E. faecalis* isolates (666 sequenced), representative of different
310 geographical regions, sources, time spans, and genomic backgrounds (BioProjects
311 PRJEB28327; PRJEB40976 and PRJNA663240) (31, 33), was selected for this study. They
312 were recovered in previous studies from human infection (n=174), human colonization
313 (n=163), food chain (animal production settings, animal meat and other food products)
314 (n=275), pets (n=9) and aquatic environment (n=45) samples, in diverse regions (Portugal,
315 Tunisia, Angola, Brazil) and time spans (1996-2020) (33-35). Among them, 181 isolates were
316 included in the CHX susceptibility assays (details in Table S1), with 41% (n=75/181)
317 classified as MDR (resistance to 3 or more antibiotics from different families), 8%
318 (n=14/181) as resistant to vancomycin and 3% (n=6/181) to linezolid, in previous studies (33-
319 35). Of these, 151 *E. faecalis* were initially considered to evaluate *E. faecalis*
320 MIC_{CHX}/MBC_{CHX} distributions. Subsequently, 30 additional *E. faecalis* with ChlR-EfrEF
321 incomplete proteins and/or belonging to ST40 were considered for phenotypic-genotypic
322 comparative studies along with the former 151 isolates. These 30 additional strains were not
323 included in the first set of phenotypic assays not to introduce an overrepresentation of *E.*
324 *faecalis* with ChlR-EfrEF incomplete proteins and/or belonging to ST40 in MIC_{CHX}/MBC_{CHX}
325 distributions.

326

327 **Chlorhexidine susceptibility**

328 The MIC_{CHX} (CAS: 18472-51-0, Sigma Aldrich) of the 181 *E. faecalis* was established by
329 broth microdilution, using the methodological approach proposed by the Clinical and
330 Laboratory Standards Institute (CLSI) for antimicrobial susceptibility testing (Muller-Hinton
331 broth; pH 7.4; 37°C/20h) (36). Using a 96-well microtiter plate containing serial two-fold
332 dilutions of CHX (concentration range of 0.125 to 128 mg/L), bacterial suspensions in log-
333 phase growth, adjusted to reach a final inoculum of 5×10^5 CFU/ml in each well, were
334 incubated for 20h at 37°C. Microdilution panels were prepared before each assay. The first
335 concentration of CHX without visible growth was considered the MIC_{CHX}. Pinpoint growth
336 was often observed and disregarded as recommended (36).

337 To determine the MBC_{CHX}, 10µl of each well without visible growth from the 96-well
338 MIC_{CHX} plate were incubated onto brain heart infusion (BHI) agar plates at 37°C for 24h, as
339 defined by the CLSI (37). The MBC_{CHX} was defined as the lowest CHX concentration for
340 which the number of colonies was equal or less than the rejection value defined by CLSI
341 guidelines, based on the final inoculum of each well confirmed by actual count (37). Each
342 experiment was repeated 3-6 times and the MIC_{CHX}/MBC_{CHX} values corresponded to the
343 mean of the determinations. *E. faecalis* ATCC 29212 and *E. faecalis* V583 strains were used
344 as controls.

345 The assessment of MIC_{CHX} and MBC_{CHX} wild-type distribution was performed using the
346 ECOFFinder tool (ECOFFinder_XL_2010_V2.1; available at
347 http://www.eucast.org/mic_distributions_and_ecoffs/), which attempts to fit a log-normal
348 distribution to the presumptive wild-type counts by the so-called iterative statistical method
349 (38). In order to increase specificity to identify wild-type strains, the percentage selected to
350 set the ECOFF was 99%, as suggested by the guidelines of the ECOFFinder tool. The
351 NORM.DIST Excel v.16.44 function was used to calculate the probability of occurrence of
352 isolates at higher concentrations and, consequently, evaluate the potential presence of an

353 acquired tolerance mechanism if such probability was too low, using the mean, the standard
354 deviation and with the cumulative normal distribution function option set to TRUE (38).
355 Finally, the statistical significance of the differences between MIC_{CHX} and MBC_{CHX} of
356 isolates from the diverse sources, time spans and with disparate antibiotic resistance profiles
357 was assessed using the two-tailed unpaired Student's *t*-test (Excel v.16.44), and the
358 differences associated with the source and MBC_{CHX} distribution among *E. faecalis* ST40
359 populations were analyzed by the Fisher exact test using GraphPad Prism software, version
360 9.0., with *P* values ≤ 0.05 considered significant.

361

362 **Whole-genome sequence analysis**

363 The genomic search of *chlR*, *efrE* and *efrF* genes (reference strain: *E. faecalis* V583;
364 GenBank accession no. AE016830.1; locus-tag EF_2225 to EF_2227) was performed in the
365 666 *E. faecalis* sequenced genomes by using the MyDBfinder tool available at the Center for
366 Genomic Epidemiology (www.genomicepidemiology.org). The *chlR-efrEF* genes identified
367 in each genome were translated into the corresponding amino acid sequences by the DNA
368 translate tool of ExPASy SIB Bioinformatics Resource Portal
369 (<https://web.expasy.org/translate/>) and the occurrence of incomplete ChlR-EfrEF proteins
370 was evaluated.

371 For the sequenced *E. faecalis* included in the phenotypic assays, a comparison of the amino
372 acid sequences with the reference strain *E. faecalis* V583 was performed using the Clustal
373 Omega software (<https://www.ebi.ac.uk/Tools/msa/clustalo/>) to identify specific mutations.
374 Their clonal relationship was also established by MLST and cgMLST ((39);
375 <http://pubmlst.org>; (40); Ridom SeqSphere+, version 7.2). A phylogenetic tree based on their
376 cgMLST allelic profiles was constructed using Ridom SeqSphere+ software and isolates'
377 information was added to the tree using the iTol software (<https://itol.embl.de>).

378

379 **Comparative genomics**

380 In order to evaluate the frequency of strains with genes coding for incomplete ChlR, EfrE or
381 EfrF proteins in other collections, ChlR, EfrE and EfrF sequences with 100% identity until
382 the stop codon with those found in our isolates with incomplete ChlR-EfrEF were searched in
383 1784 *E. faecalis* genomes of the PATRIC database, representing a timespan between 1900-
384 2020 (last update on the 18th of December 2020). In addition, to assess if *E. faecalis* isolates
385 containing genes encoding incomplete ChlR, EfrE or EfrF proteins had a similar genomic
386 evolution, a cgMLST-based phylogenetic tree was constructed with all *E. faecalis* genomes
387 identified as ST40 (n=122), both from our collection and available at the PATRIC database
388 (last update on the 18th of December 2020), using the Ridom SeqSphere+ software. Isolates'
389 information was added to the tree using the iTol software (<https://itol.embl.de>).

390

391

392 **Acknowledgments**

393 This work is financed by national funds from FCT - Fundação para a Ciência e a Tecnologia,
394 I.P., in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research
395 Unit on Applied Molecular Biosciences - UCIBIO and the project LA/P/0140/2020 of
396 the Associate Laboratory Institute for Health and Bioeconomy - i4HB, by the AgriFood XXI
397 I&D&I project (NORTE-01-0145-FEDER-000041) cofinanced by European Regional
398 Development Fund (ERDF) and through the NORTE 2020 (Programa Operacional Regional
399 do Norte 2014/2020). Ana Paula Pereira was supported by a PhD fellowship from FCT
400 (SFRH/BD/144401/2019), co-financed by European Social Fund through Norte Portugal
401 Regional Operational Programme (NORTE 2020); and Ana R. Freitas by the Junior Research
402 Position (CEECIND/02268/2017 - Individual Call to Scientific Employment Stimulus 2017)

403 granted by FCT/MCTES through national funds. The funders had no role in study design,
404 data collection and interpretation, or the decision to submit the work for publication.

405 CRediT authorship contribution statement: Ana Paula Pereira: Methodology, Software,
406 Formal analysis, Investigation, Writing – original draft, Writing – review & editing. Patrícia
407 Antunes: Formal analysis, Investigation, Writing – review & editing, Funding acquisition.
408 Rob Willems: Formal analysis, Writing – review & editing; Jukka Corander: Formal analysis,
409 Writing – review & editing; Teresa M. Coque: Formal analysis, Writing – review & editing.
410 Luísa Peixe: Supervision, Funding acquisition, Formal analysis, Writing – review & editing.
411 Ana R. Freitas: Conceptualization, Methodology, Formal analysis, Supervision, Writing –
412 review & editing, Funding acquisition. Carla Novais: Conceptualization, Methodology,
413 Software, Formal analysis, Investigation, Supervision, Writing – original draft, Writing –
414 review & editing, Funding acquisition, Project administration.
415 Authors have no conflicting interests relevant to the study.
416

417 **REFERENCES**

418

419 1. World Health Organization Model List of Essential Medicines – 22nd List, 2021.
420 Geneva: World Health Organization; 2021 (WHO/MHP/HPS/EML/2021.02).
421 Licence: CC BY-NC-SA 3.0 IGO.

422 2. Williamson DA, Carter GP, Howden BP. 2017. Current and Emerging Topical
423 Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clin
424 Microbiol Rev 30:827-860.

425 3. Kampf, G. Chlorhexidine Digiulonate. In: Antiseptic Stewardship, Cham: Springer
426 International Publishing; 2018, p.429-534.

427 4. Climo MW, Sepkowitz KA, Zuccotti G, Fraser VJ, Warren DK, Perl TM, Speck K,
428 Jernigan JA, Robles JR, Wong ES. 2009. The effect of daily bathing with
429 chlorhexidine on the acquisition of methicillin-resistant *Staphylococcus aureus*,
430 vancomycin-resistant *Enterococcus*, and healthcare-associated bloodstream infections:
431 results of a quasi-experimental multicenter trial. Crit Care Med 37:1858-1865.

432 5. Popovich KJ, Lyles R, Hayes R, Hota B, Trick W, Weinstein RA, Hayden MK. 2012.
433 Relationship between chlorhexidine gluconate skin concentration and microbial
434 density on the skin of critically ill patients bathed daily with chlorhexidine gluconate.
435 Infect Control Hosp Epidemiol 33:889-896.

436 6. Gilbert P, Moore LE. 2005. Cationic antiseptics: diversity of action under a common
437 epithet. J Appl Microbiol 99:703-715.

438 7. ECHA. Substance Infocard: Chlorhexidine. Helsinki, Finland: European Chemicals
439 Agency. <https://echa.europa.eu/pt/substance-information/-/substanceinfo/100.000.217>
440 [accessed 26 April 2021].

441 8. Jutkina J, Marathe NP, Flach CF, Larsson DGJ. 2018. Antibiotics and common
442 antibacterial biocides stimulate horizontal transfer of resistance at low concentrations.
443 *Sci Total Environ* 616-617:172-178.

444 9. Bescos R, Ashworth A, Cutler C, Brookes ZL, Belfield L, Rodiles A, Casas-
445 Agustench P, Farnham G, Liddle L, Burleigh M, White D, Easton C, Hickson M.
446 2020. Effects of Chlorhexidine mouthwash on the oral microbiome. *Sci Rep* 10:5254.

447 10. Garcia-Solache M, Rice LB. 2019. The Enterococcus: a Model of Adaptability to Its
448 Environment. *Clin Microbiol Rev* 32:e00058-18.

449 11. Gaca AO, Lemos JA. 2019. Adaptation to Adversity: the Intermingling of Stress
450 Tolerance and Pathogenesis in Enterococci. *Microbiol Mol Biol Rev* 83:e00008-19.

451 12. Correa-Martinez CL, Tonnies H, Frobose NJ, Mellmann A, Kampmeier S. 2020.
452 Transmission of Vancomycin-Resistant Enterococci in the Hospital Setting:
453 Uncovering the Patient-Environment Interplay. *Microorganisms* 8:203.

454 13. Duarte B, Pereira AP, Freitas AR, Coque TM, Hammerum AM, Hasman H, Antunes
455 P, Peixe L, Novais C. 2019. 2CS-CHX(T) Operon Signature of Chlorhexidine
456 Tolerance among Enterococcus faecium Isolates. *Appl Environ Microbiol* 85:e01589-
457 19.

458 14. Guzman Prieto AM, Wijngaarden J, Braat JC, Rogers MRC, Majoor E, Brouwer EC,
459 Zhang X, Bayjanov JR, Bonten MJM, Willems RJL, van Schaik W. 2017. The Two-
460 Component System ChtRS Contributes to Chlorhexidine Tolerance in Enterococcus
461 faecium. *Antimicrob Agents Chemother* 61:e02122-16.

462 15. Suwantarat N, Carroll KC, Tekle T, Ross T, Maragakis LL, Cosgrove SE, Milstone
463 AM. 2014. High Prevalence of Reduced Chlorhexidine Susceptibility in Organisms

464 Causing Central Line- Associated Bloodstream Infections. Infect Control Hosp
465 Epidemiol 35:1183-1186.

466 16. Ekizoglu M, Sagiroglu M, Kilic E, Hascelik AG. 2016. An investigation of the
467 bactericidal activity of chlorhexidine digluconateagainst multidrug-resistant hospital
468 isolates. Turk J Med Sci 46:903-909.

469 17. Komiyama EY, Lepesqueur LS, Yassuda CG, Samaranayake LP, Parahitiyawa NB,
470 Balducci I, Koga-Ito CY. 2016. Enterococcus Species in the Oral Cavity: Prevalence,
471 Virulence Factors and Antimicrobial Susceptibility. PLoS One 11:e0163001.

472 18. Li FJ, Palmer KL. 2018. EfrEF and the Transcription Regulator ChlR Are Required
473 for Chlorhexidine Stress Response in Enterococcus faecalis V583. Antimicrob Agents
474 Chemother 62:e00267-18.

475 19. Hurlimann LM, Corradi V, Hohl M, Bloemberg GV, Tielemans DP, Seeger MA. 2016.
476 The Heterodimeric ABC Transporter EfrCD Mediates Multidrug Efflux in
477 Enterococcus faecalis. Antimicrob Agents Chemother 60:5400-5411.

478 20. Bhardwaj P, Ziegler E, Palmer KL. 2016. Chlorhexidine Induces VanA-Type
479 Vancomycin Resistance Genes in Enterococci. Antimicrob Agents Chemother 60:2209-2221.

480 21. Ostman M, Lindberg RH, Fick J, Bjorn E, Tysklind M. 2017. Screening of biocides,
481 metals and antibiotics in Swedish sewage sludge and wastewater. Water Res 115:318-
482 328.

483 22. EMEA. Chlorhexidine. Summary Report. Committee for Veterinary Medicinal
484 Products. London, UK: The European Agency for the Evaluation of Medicinal
485 Products - Veterinary Medicines Evaluation Unit; 1996 (EMEA/MRL/107/96).

487 23. ECCC. Screening Assessment: Chlorhexidine and its Salts. Environment and Climate
488 Change Canada. Health Canada. Canada Gazette, Part I: Vol, 153, No. 26 – June 29,
489 2019.

490 24. Forbes S, Dobson CB, Humphreys GJ, McBain AJ. 2014. Transient and sustained
491 bacterial adaptation following repeated sublethal exposure to microbicides and a
492 novel human antimicrobial peptide. *Antimicrob Agents Chemother* 58:5809-5817.

493 25. Baquero F, Coque TM. 2014. Widening the spaces of selection: evolution along
494 sublethal antimicrobial gradients. *mBio* 5:e02270.

495 26. Bock LJ, Wand ME, Sutton JM. 2016. Varying activity of chlorhexidine-based
496 disinfectants against *Klebsiella pneumoniae* clinical isolates and adapted strains. *J*
497 *Hosp Infect* 93:42-48.

498 27. Hardy K, Sunnucks K, Gil H, Shabir S, Trampari E, Hawkey P, Webber M. 2018.
499 Increased Usage of Antiseptics Is Associated with Reduced Susceptibility in Clinical
500 Isolates of *Staphylococcus aureus*. *mBio* 9:e00894-18.

501 28. Buxser S. 2021. Has resistance to chlorhexidine increased among clinically-relevant
502 bacteria? A systematic review of time course and subpopulation data. *PLoS One*
503 16:e0256336.

504 29. Gadea R, Glibota N, Perez Pulido R, Galvez A, Ortega E. 2017. Adaptation to
505 Biocides Cetrimide and Chlorhexidine in Bacteria from Organic Foods: Association
506 with Tolerance to Other Antimicrobials and Physical Stresses. *J Agric Food Chem*
507 65:1758-1770.

508 30. Kaspar JR, Godwin MJ, Velsko IM, Richards VP, Burne RA. 2019. Spontaneously
509 Arising *Streptococcus mutans* Variants with Reduced Susceptibility to Chlorhexidine

510 Display Genetic Defects and Diminished Fitness. *Antimicrob Agents Chemother*
511 63:e00161-19.

512 31. Pontinen AK, Top J, Arredondo-Alonso S, Tonkin-Hill G, Freitas AR, Novais C,
513 Gladstone RA, Pesonen M, Meneses R, Pesonen H, Lees JA, Jamrozy D, Bentley SD,
514 Lanza VF, Torres C, Peixe L, Coque TM, Parkhill J, Schurch AC, Willems RJL,
515 Corander J. 2021. Apparent nosocomial adaptation of *Enterococcus faecalis* predates
516 the modern hospital era. *Nat Commun* 12:1523.

517 32. Bhardwaj P, Hans A, Ruikar K, Guan Z, Palmer KL. 2017. Reduced Chlorhexidine
518 and Daptomycin Susceptibility in Vancomycin-Resistant *Enterococcus faecium* after
519 Serial Chlorhexidine Exposure. *Antimicrob Agents Chemother* 62:e01235-17.

520 33. Freitas A, Finisterra L, Tedim A, Duarte B, Novais C, Peixe L. 2021. Linezolid- and
521 Multidrug-Resistant Enterococci in Raw Commercial Dog Food, Europe, 2019–2020.
522 *Emerg Infect Dis* 27:2221-2224.

523 34. Freitas AR, Elghaieb H, Leon-Sampedro R, Abbassi MS, Novais C, Coque TM,
524 Hassen A, Peixe L. 2017. Detection of optrA in the African continent (Tunisia) within
525 a mosaic *Enterococcus faecalis* plasmid from urban wastewaters. *J Antimicrob
526 Chemother* 72:3245-3251.

527 35. Silveira E, Freitas AR, Antunes P, Barros M, Campos J, Coque TM, Peixe L, Novais
528 C. 2014. Co-transfer of resistance to high concentrations of copper and first-line
529 antibiotics among *Enterococcus* from different origins (humans, animals, the
530 environment and foods) and clonal lineages. *J Antimicrob Chemother* 69:899-906.

531 36. *CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow
532 Aerobically.* 11th ed. CLSI standard M07. Wayne, PA: Clinical and Laboratory
533 Standards Institute; 2018.

534 37. CLSI. *Methods for Determining Bactericidal Activity of Antimicrobial Agents*;
535 Approved Guideline. CLSI document M26-A. Wayne, PA: Clinical and Laboratory
536 Standards Institute; 1999.

537 38. Turnidge J, Kahlmeter G, Kronvall G. 2006. Statistical characterisation of bacterial
538 wild-type MIC value distributions and the determination of epidemiological cut-off
539 values. *Clin Microbiol Infect* 12:418-425.

540 39. Ruiz-Garbajosa P, Bonten MJ, Robinson DA, Top J, Nallapareddy SR, Torres C,
541 Coque TM, Canton R, Baquero F, Murray BE, del Campo R, Willems RJ. 2006.
542 Multilocus sequence typing scheme for *Enterococcus faecalis* reveals hospital-adapted
543 genetic complexes in a background of high rates of recombination. *J Clin Microbiol*
544 44:2220-2228.

545 40. Neumann B, Prior K, Bender JK, Harmsen D, Klare I, Fuchs S, Bethe A, Zuhlke D,
546 Gohler A, Schwarz S, Schaffer K, Riedel K, Wieler LH, Werner G. 2019. A Core
547 Genome Multilocus Sequence Typing Scheme for *Enterococcus faecalis*. *J Clin*
548 *Microbiol* 57:e01686-18.

549

550

551

552

553

554

555

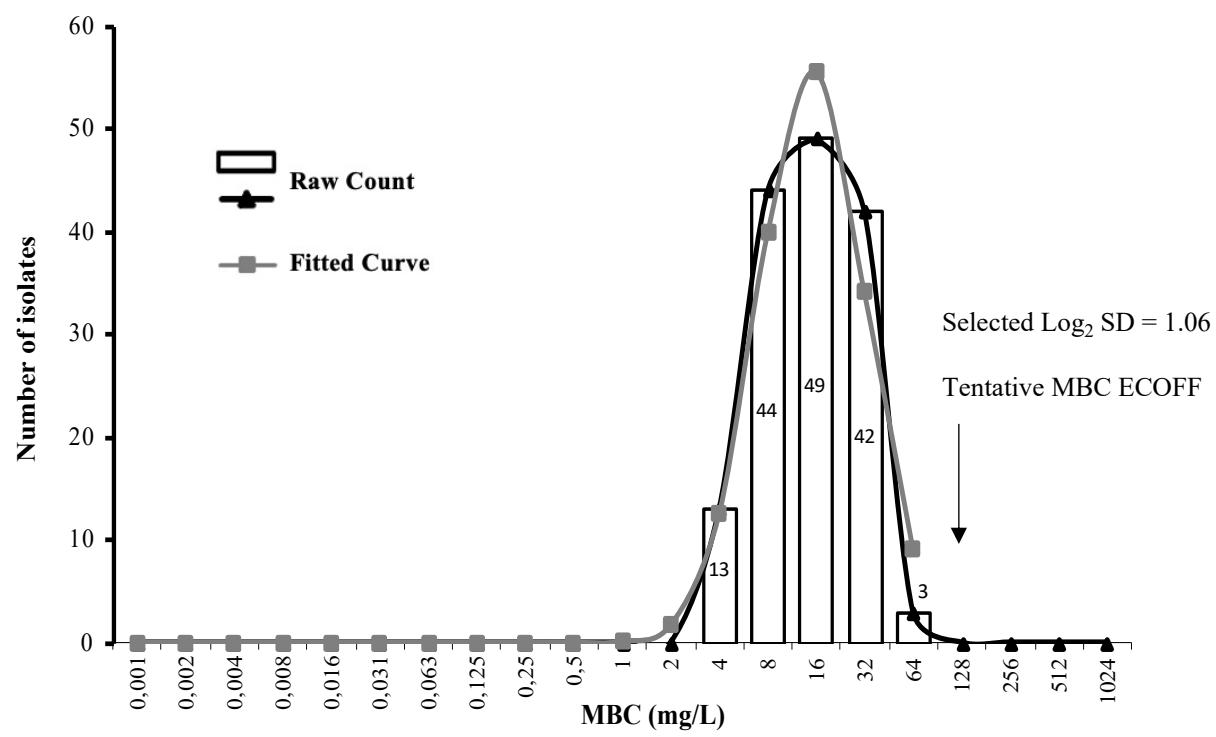
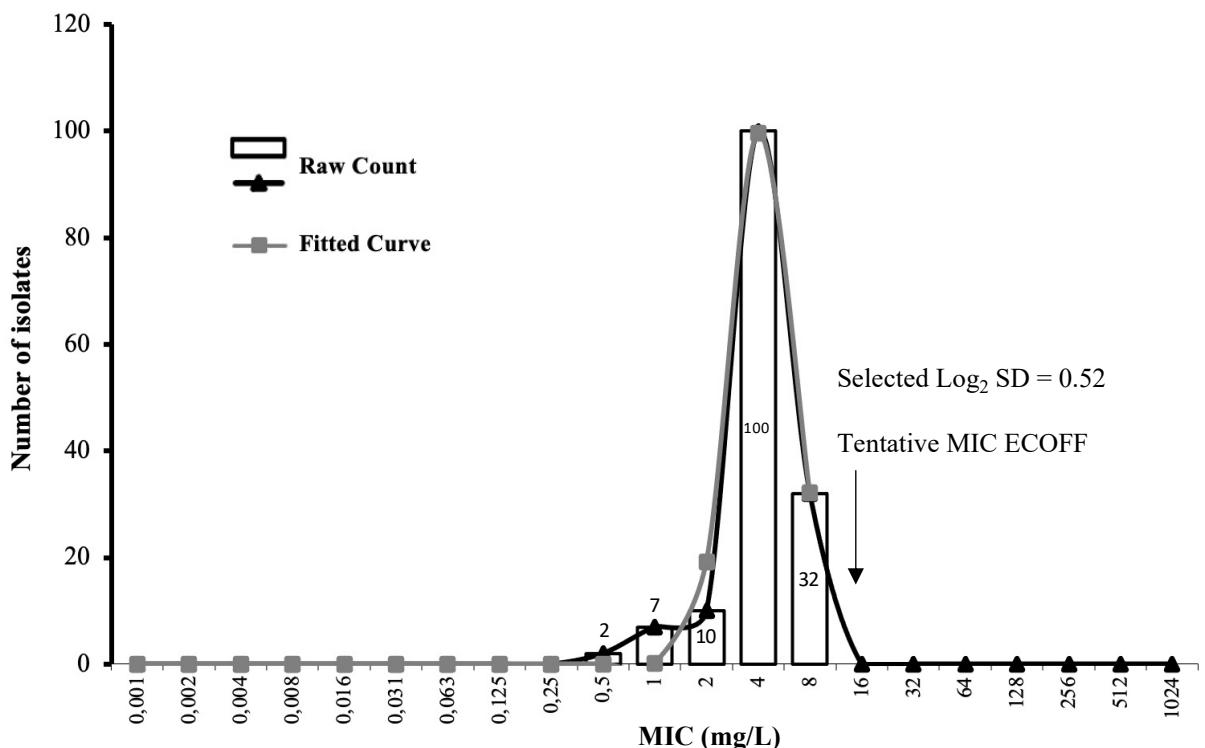
556

557 **Figure legends**

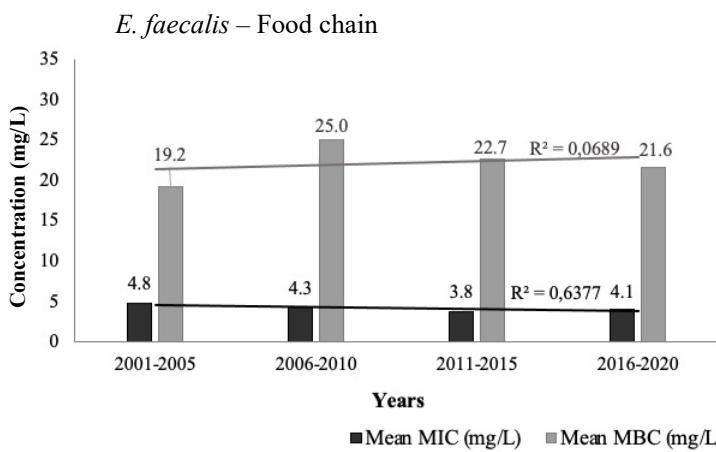
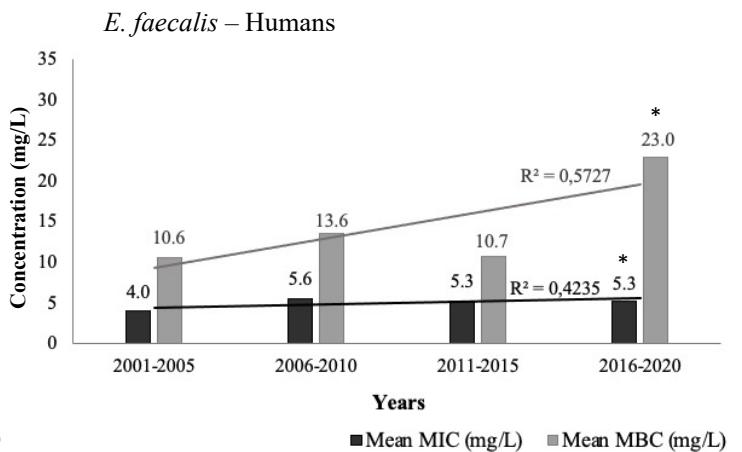
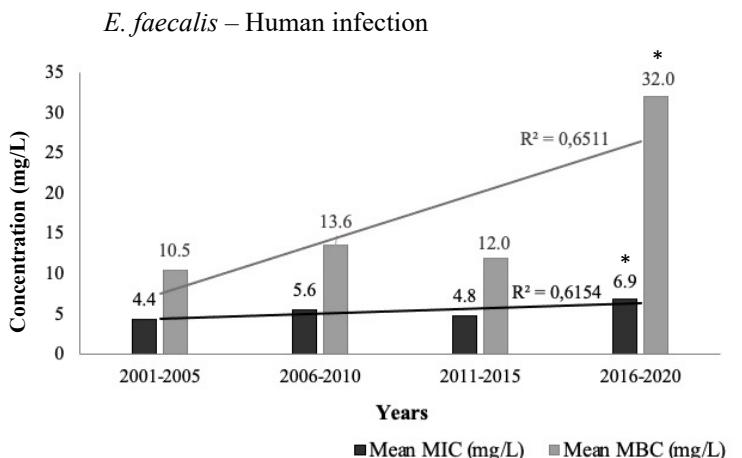
558 **Fig 1.** Distribution of the *Enterococcus faecalis* studied by different chlorhexidine minimum
559 inhibitory concentrations-MIC (A) and minimum bactericidal concentrations-MBC (B). The
560 graph fitted curves were estimated using the ECOFFinder tool which proposed 8 and 64 mg/L
561 for MIC and MBC, respectively, as limits of 99% of wild-type population. The NORM.DIST
562 Excel 16.44 function indicates that the probability of occurrence of an isolate with an MIC>8
563 and \leq 16mg/L is 4% and 0% $>$ 16mg/L and with an MBC \leq 64mg/L is 100% and 0% $>$ 64mg/L.
564 The tentative ECOFFs for MIC and MBC suggested are, therefore, 16 and 64 mg/L,
565 respectively.

566

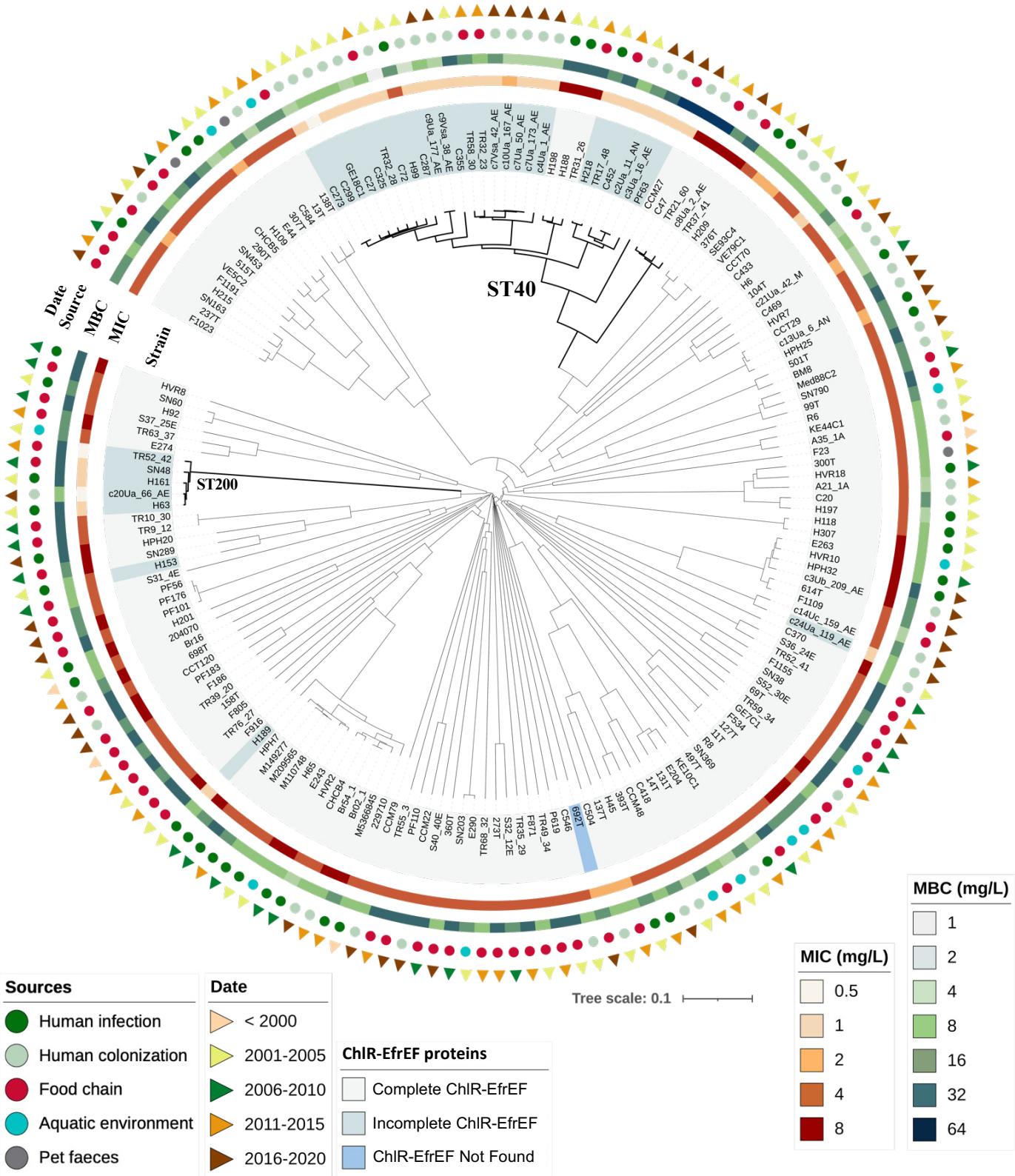
567 **Fig 2.** Chlorhexidine mean minimum inhibitory concentrations (MIC) and minimum
568 bactericidal concentrations (MBC) distribution over the years (five-year intervals, from 2001
569 to 2020) of *E. faecalis* from independently analysed sources. (A) Distribution of food chain
570 *E. faecalis* isolates (n=57). (B) Distribution of *E. faecalis* isolates recovered from all human
571 sources (n=75). (C) Distribution of *E. faecalis* isolated from human colonization (including
572 isolates from healthy-humans, long-term care patients and human faecal samples at hospital
573 admission) between 2001-2005 and 2016-2020 (n=32). (D) Distribution of *E. faecalis* from
574 human infection (n=39). *, $P\leq 0.05$; two-tailed unpaired Student's *t*-test. *E. faecalis* from
575 earlier years, between 1996 and 2000 (n=4), human colonization isolates from 2006-2015
576 (n=4) and those with other origins (n=15) were not included in the analysis due to the low
577 number of isolates. A linear trendline and the R-squared (R^2) value were added to each
578 distribution using Excel 16.44.

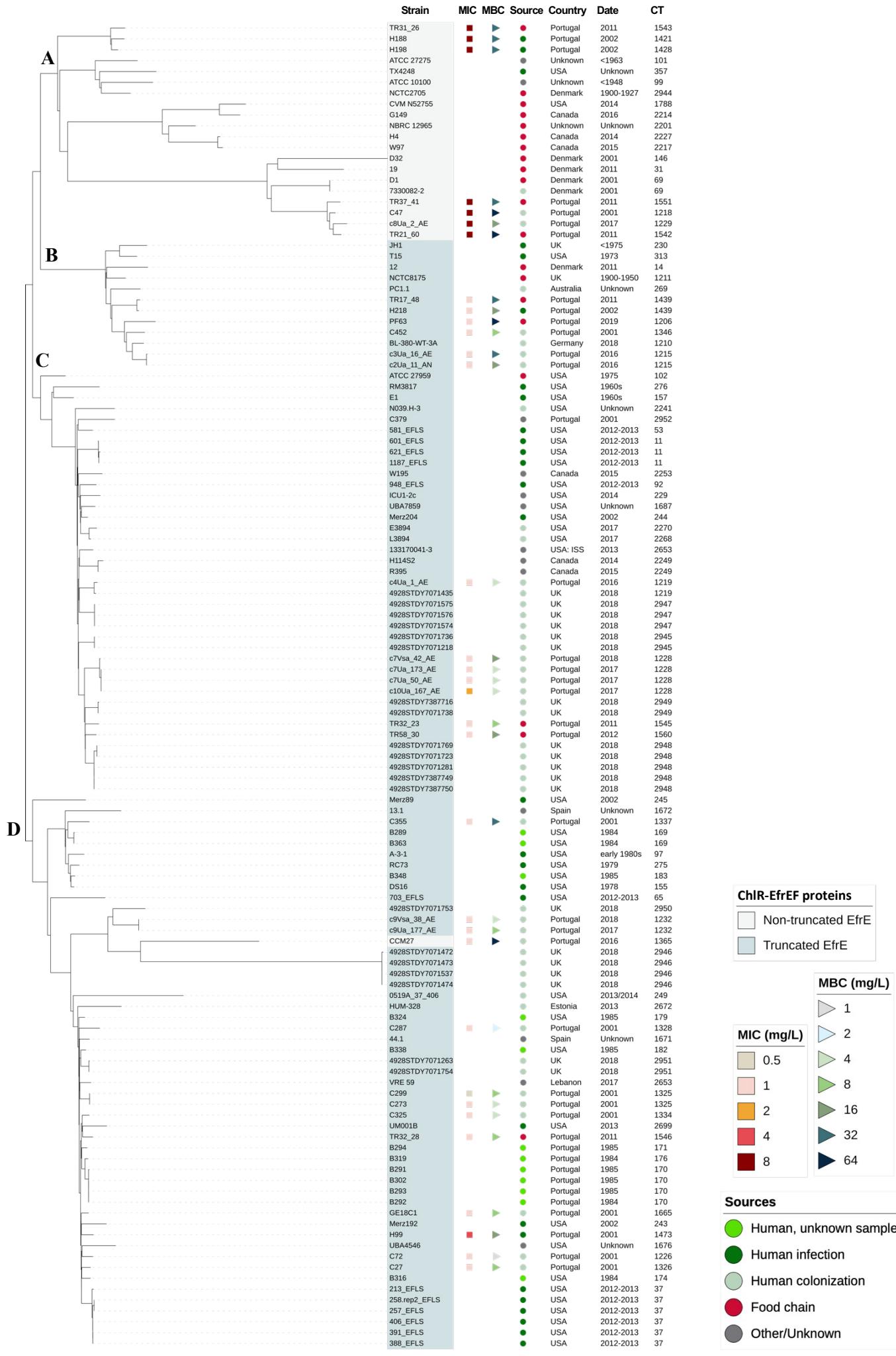


579

580 **Fig 3.** Phylogenetic tree based on the core genome MLST (cgMLST) allelic profiles of all
581 sequenced *Enterococcus faecalis* studied with phenotypic assays (n=174). The clonal
582 relationship of the strains was established from the sequence analysis of 1,972 gene targets
583 accordingly to the *E. faecalis* cgMLST scheme (40), using Ridom SeqSphere+ software
584 version 7.2. *E. faecalis* isolates' features, marked with different colours and shapes using the
585 iTol software (<https://itol.embl.de>), from the inner to the external part of the phylogenetic tree
586 are: complete, incomplete or not found ChlR-EfrEF proteins marked in the "Strain" line,
587 chlorhexidine minimum inhibitory concentrations (MIC), chlorhexidine minimum
588 bactericidal concentrations (MBC), the source and date of isolation. For more isolates' details
589 see Table S2.




590

591 **Fig 4.** Phylogenetic tree based on the core genome MLST (cgMLST) allelic profiles of
592 *Enterococcus faecalis* identified as ST40 from our collection and available at the PATRIC
593 database (until the 18th of December 2020) (n=122). The clonal relationship of the strains was
594 established from the sequence analysis of 1,972 gene targets accordingly to the *E. faecalis*
595 cgMLST scheme (40), using Ridom SeqSphere+ software version 7.2. Four clusters (A, B, C
596 and D) were identified. Strains with a truncated EfrE (marked in the "Strain" column),
597 chlorhexidine minimum inhibitory concentrations (MIC) and minimum bactericidal
598 concentrations (MBC), the source and date of isolation as well as the CT (Complex Type) of
599 each isolate were marked with different colours, shapes or by text, using the iTol software
600 (<https://itol.embl.de>). For more isolates' details see Table S3.


601


Fig 1. Distribution of the *Enterococcus faecalis* studied by different chlorhexidine minimum inhibitory concentrations-MIC (A) and minimum bactericidal concentrations-MBC (B). The graph fitted curves were estimated using the ECOFFinder tool which proposed 8 and 64 mg/L for MIC and MBC, respectively, as limits of 99% of wild-type population. The NORM.DIST Excel 16.44 function indicates that the probability of occurrence of an isolate with an MIC>8 and \leq 16mg/L is 4% and 0% $>$ 16mg/L and with an MBC \leq 64mg/L is 100% and 0% $>$ 64mg/L. The tentative ECOFFs for MIC and MBC suggested are, therefore, 16 and 64 mg/L, respectively.

A**B****C****D**

Fig 2. Chlorhexidine mean minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) distribution over the years (five-year intervals, from 2001 to 2020) of *E. faecalis* from independently analysed sources. (A) Distribution of food chain *E. faecalis* isolates (n=57). (B) Distribution of *E. faecalis* isolates recovered from all human sources (n=75). (C) Distribution of *E. faecalis* isolated from human colonization (including isolates from healthy-humans, long-term care patients and human faecal samples at hospital admission) between 2001-2005 and 2016-2020 (n=32). (D) Distribution of *E. faecalis* from human infection (n=39). *, P≤0.05; two-tailed unpaired Student's *t*-test. *E. faecalis* from earlier years, between 1996 and 2000 (n=4), human colonization isolates from 2006-2015 (n=4) and those with other origins (n=15) were not included in the analysis due to the low number of isolates. A linear trendline and the R-squared (R²) value were added to each distribution using Excel 16.44.

Fig 3. Phylogenetic tree based on the core genome MLST (cgMLST) allelic profiles of all sequenced *Enterococcus faecalis* studied with phenotypic assays (n=174). The clonal relationship of the strains was established from the sequence analysis of 1,972 gene targets accordingly to the *E. faecalis* cgMLST scheme (40), using Ridom SeqSphere+ software version 7.2. *E. faecalis* isolates' features, marked with different colours and shapes using the iTol software (<https://itol.embl.de>), from the inner to the external part of the phylogenetic tree are: complete, incomplete or not found ChlR-EfrEF proteins marked in the "Strain" line, chlorhexidine minimum inhibitory concentrations (MIC), chlorhexidine minimum bactericidal concentrations (MBC), the source and date of isolation. For more isolates' details see Table S2.

Fig 4. Phylogenetic tree based on the core genome MLST (cgMLST) allelic profiles of *Enterococcus faecalis* identified as ST40 from our collection and available at the PATRIC database (until the 18th of December 2020) (n=122). The clonal relationship of the strains was established from the sequence analysis of 1,972 gene targets accordingly to the *E. faecalis* cgMLST scheme (40), using Ridom SeqSphere+ software version 7.2. Four clusters (A, B, C and D) were identified. Strains with a truncated EfrE (marked in the “Strain” column), chlorhexidine minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC), the source and date of isolation as well as the CT (Complex Type) of each isolate were marked with different colours, shapes or by text, using the iTol software (<https://itol.embl.de>). For more isolates’ details see Table S3.