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Abstract

A major limitation in single-cell genomics is a lack of ability to conduct cost-effective population-level
studies. As a result, much of the current research in single-cell genomics focuses on biological processes
that are broadly conserved across individuals, such as cellular organization and tissue development.
This limitation prevents us from studying the etiology of experimental or clinical conditions that may be
inconsistent across individuals owing to molecular variation and a wide range of effects in the population.
In order to address this gap, we developed “kernel of integrated single cells” (Keris), a novel model-based
framework to inform the analysis of single-cell gene expression data with population-level effects of a
condition of interest. By inferring cell-type-specific moments and their variation across conditions using
large tissue-level bulk data representing a population, Keris allows us to generate testable hypotheses at
the single-cell level that would otherwise require collecting single-cell data from a large number of donors.
Within the Keris framework, we show how the combination of low-resolution, large bulk data with small
but high-resolution single-cell data enables the identification of changes in cell-subtype compositions and
the characterization of subpopulations of cells that are affected by a condition of interest. Using Keris
we estimate linear and non-linear age-associated changes in cell-type expression in large bulk peripheral
blood mononuclear cells (PBMC) data. Combining with three independent single-cell PBMC datasets,
we demonstrate that Keris can identify changes in cell-subtype composition with age and capture cell-
type-specific subpopulations of senescent cells. This demonstrates the promise of enhancing single-cell
data with population-level information to study compositional changes and to profile condition-affected

subpopulations of cells, and provides a potential resource of targets for future clinical interventions.
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1 Introduction

Existing single-cell (SC) gene-expression datasets are typically limited in terms of the number of donors (in-
dividuals) owing to high cost of SC technologies. As a result, much of the current research in SC genomics
focuses on variation between cellular compartments. That is, variation between known populations of cells
(primarily cells of different types), which is broadly conserved across individuals. Such studies have been
very successful in profiling, for example, cellular organization and localization, cell lineages, and tissue devel-
opment [1-3]. While studying broadly conserved biological processes from a limited number of individuals
is possible in principle due to the expected high consistency across individuals (e.g., Fig. la,c), advancing
our understanding of heterogeneous conditions that demonstrate molecular variation across individuals re-
quires population-level data. Particularly, probing the within-compartment (e.g., cell-type level) etiology
of conditions that demonstrate a wide range of effects on gene expression in the population, such as the
aging immune system, which is affected by genetic and environmental variation [4], is expected to be very
challenging or perhaps infeasible given the small dataset sizes (e.g., Fig. 1b,c; Supplementaty Fig. S1). In
such cases, realizing the promise of SC expression to characterize populations of condition-affected cells is
therefore expected to require population-level data in order to address inconsistent effects across affected

cells of different individuals.

In contrast to SC data, tissue-level “bulk” gene expression data effectively aggregates signals over many
cells rather than providing a high-resolution cell-specific view of genomics. The relative ease and low cost of
generating such data has led to the collection of vast amounts of bulk data from many organisms, tissues,
and under different conditions (e.g., bulk profiles from over two million individual samples publicly available

on the Gene Expression Omnibus alone [5]).

An understanding that the relative merits of SC and bulk data complement each other has led to the
development of methods that leverage SC data as a reference for decomposing heterogeneous bulk profiles
in the learning of cell-type compositions [6-12]; this approach can be applied to large datasets for detecting
changes in tissue composition that are often demonstrated in disease, such as in cancer [13] and diabetes [14].
Importantly, these methods implicitly rely on the fact that cell-type marker genes are highly consistent
across individuals (Fig. 1la,c), which in principle renders SC data a consistent reference for learning cell-type
compositions, regardless of the number of individuals in the data. Yet, small SC reference datasets are
unlikely to represent well the wide range of effects that different experimental or clinical conditions may
have on gene expression within a cell type (Fig. 1b,c). An important question is therefore whether we
can change the direction taken by existing methods. That is, can we inform the analysis of SC data with
population-level information from large bulk datasets? Such a capability can markedly increase our ability
to profile the expression landscape of heterogenous conditions and to characterize populations of cells that

are affected by consistent variation in conditions of interest.

Contributions We developed “kernel of integrated single cells” (Keris), a novel model-based framework
to inform the analysis of SC expression data with population-level variation. We use Keris to infer cell-type-
specific moments for the expression of genes and their statistical dependence on experimental or clinical
conditions, using tissue-level (bulk) data from large cohorts. This allows us to generate testable hypotheses
at the SC level that would otherwise require collecting SC data from a large number of donors. Particularly,
we facilitate two applications under the Keris framework, both of which require only typical (i.e., small)

SC data given the information extracted by Keris from population-level bulk data. First, the detection of
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Figure 1: Evaluating the consistency of differentially expressed (DE) genes across two independent PBMC
datasets [15, 16]. (a) Test statistics of DE analysis for marker genes between main immune cell types in
healthy samples, and (b) test statistics of DE analysis between healthy individuals and severe COVID-
19 cases, within each of the main immune cell types; results from all cell types were pooled together.
(c) Repeating the analysis using an increasing number of individuals (sample size); boxplots indicate the
performance across 20 randomly sampled subsets of individuals. Consistency was defined as the Jaccard
index — the fraction of consistently DE genes (significant in both datasets) out of the total number of DE
genes (significant at least once) using DESeq2 [17] on the top 1000 most highly expressed genes, while
accounting for age and sex.

changes in the composition of cell subtypes with a condition of interest, and second, the identification and
study of linear and non-linear (gene-gene interactions) statistical effects on expression at the cell level, which,
in turn, allow to profile populations of cells that are affected by the condition of interest. We demonstrate
our approach in the context of aging and show that Keris enables the identification of changes in cell-subtype
composition with age. Further, we use a total of four independent datasets to provide multiple evidence that

Keris can identify and enable downstream analysis of unknown subpopulations of senescent cells.

Related work In the first part of this work, we propose a model for linear and non-linear effects of
a condition on the variation of expression at the single-cell level, and we show that learning the model
effectively reduces to learning population-level cell-type-specific co-expression networks (including means and
variances) from large tissue-level bulk data. Methods for the construction and detection of co-expression
networks [18] and changes in gene-gene covariances (correlations) [19] from bulk data have been previously
suggested. However, co-expression based on bulk data primarily captures cell-type composition variation
rather than intra-cell-type co-expression signals [20]. The classical decomposition approach with expression
data infers only cell-type level means [21], effectively making an unrealistic assumption that all individuals
share the same transcriptome at the cell-type level. An understanding that learning cell-type level covariances
requires to model the variation of cell-type level expression across individuals has led to another class
of methods that aim at explicitly modeling individual- and cell-type-specific variation. However, existing
methods do not practically allow the construction of reliable population-level co-expression networks at a
cell-type-specific resolution — owing to restrictive assumptions, such as requiring for each individual multiple
independent expression measurements [22], or owing to unrealistic assumptions that expression levels from
a few individuals represent the population-level distribution of expression [23]. Finally, approaches for
estimating individual- and cell-type-specific variation from a single bulk measurement exist [9, 24], however,

these do not model co-expression, and as we show later, perform poorly in estimating co-expression.
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2 Methods

2.1 From a single cell to tissue-level variation

A proposed model for single-cell expression. Let Z;;,s be the single-cell expression of individual
i € {1,...,n} in gene j € {1,...,m}, cell type h € {1,...,k}, and cell s € {1,..., N;;,}, where N;; denotes
the number of cells of type h coming from a specific tissue under study in individual . We model Z;;;, in
the context of a heterogeneous binary condition y (e.g., case/control for a certain disease) and denote the

condition of individual i by y; € {0,1}. We make the following assumptions:

Zijhs = Wijh + €ijhs (1)
I 5 T (1) 9

Mijh Hjh + Yi Kih + YinC; ( )
Eleijns] = 0, Vleijns) = 03, + Yidg2, (3)
Covl€ijns, €iths] = Tjnin + Yido 11 (4)
Vh 7é q: Cov[eijh& €ilqs] =0 (5)

Vs 7& SI : COV[Eijhs, Gijhs’} =0 (6)

Eq. (1) is comprised of two terms as follows. First, a mean effect p;;5, described in Eq. (2), which is assumed
to have a component specific to gene j and cell type h (ujn) and two additional types of possible effects:
gene- and cell-type-specific effect d,,,, if y; = 1 and systematic changes in mean, according to p; (known)

individual-specific factors 02(1) = (cg), . cgll)z

) and their corresponding fixed effect sizes v;n = (Y1jh -, Vprjh)-

Second, a component of variation €;;ps, described in Eq. (3), which is assumed to consist of a systematic

component of variation (502h) if y; = 1 and a gene- and cell-type-specific intrinsic variation (Uf—h; e.g., owing
J

to unmodeled factors, such as the individual’s genetic background and environmental exposures).

Following Eq. (4)-(6), the component of variation €;;5, may further covary with €;s (i.e., different genes
in the same cell). This covariance is assumed to have a gene- and cell-type-specific background covariance
(0jnan) with an additional possible effect on the covariance (0o, ,,) if yi = 1. Lastly, Eq. (4)-(6) also
introduce the assumption of statistical independence between different cell types and between different cells.
Of note, despite the assumption of independence between cells, the assumption of cell-type-specific mean
profiles in Eq. (2), as well as the covariance structure defined in Eq. (4), impose the expected similarity

within populations of cells of the same type by the similarity of their joint distribution across genes.

Relating the single-cell model to tissue-level bulk expression. We wish to learn the magnitude of
{5wm5o§h7501h,m} with respect to {{jn,0jn, 0jn,in}, which would essentially allow us to identify changes in
moments of expression (means, variances, and covariances). As we show next, under our proposed model,
these moments are expected to be reflected in tissue-level bulk expression as well. Establishing this link
will eventually allow us to develop inference that can be applied to bulk data. We define a characteristic
cell-type level expression of individual ¢ in gene j and cell type h, denoted by Z;;p,, as a random variable that

preserves the moments of the expression in gene j across all cells of type h in individual 4, up to a scaling
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factor, which is expected to be dominated by the data sampling process (e.g., library size):

— 1 Nin
E[Z;n) x Zijns = Nor 25:1 Zijhs 2 pijn (7)
1 N _
V[Z;jn] < N ZSZZ(Zijhs — Zijns)® & Vleijns) (8)
1 N; _ _
Cov[Zijn, Zin] x N Zs:}l(zijhs — Zijns) (Zitns — Zins) 2> Covl€ijns, €iths) 9)

Given the definition of a cell-type level expression, we can now summarize them to get a representation of

the tissue-level bulk expression of individual ¢ in gene j:

k
Xij =r; Zth WinLijh (10)

Here, w; = (wj1, .., wik) represent the individual-specific cell-type proportions of the k cell types composing
the tissue under study and r; is an individual-specific scaling factor. Normalization methods aim at elimi-

nating individual-specific effects of library size [25]. Successfully accounting for these biases would remove

the need for including a scaling factor in the model, and we therefore omit it in what follows; we get:

k

E[X;;] = Zth winE[Z;jn] (11)
k
VIXil =) wihVIZijn] (12)
k
COV[Xij,Xil] = Zh:l wthOV[Zijh,Zilh] (13)

Since the number of cells in a sample is typically very large (neglecting low-frequency cell types), the
characteristic cell-type expression levels are expected to reflect the parameters of the model in Eq. (1)-(4)

well, and as a result, the bulk levels {X;;} are also expected to reflect them well.

2.2 The Keris framework

The Keris model for tissue-level bulk expression. We consider the derivation in Eq. (11)-(13) to

define our full, distribution-free model for tissue-level bulk expression:

Xi; = Zi:1 Win Zijn + 222:1 ﬁQJCz('s) + ei; (14)
Elej] =0, V[ey] =77 (15)

Zijh = Wijn + ZZ; YainCsy) + €ijn (16)
Wijh = in + YiOpu,, (17)

Eleijn] = 0, Vleijn] = o3, + 40,2, (18)
Covleijn, €itg) = Tjn,iq + Yilo,p .14 (19)

Vh # q : Covle;jn, €iq] =0 (20)

Here, e;; is an i.i.d. component of variation that reflects measurement noise and cg), e 01(42); and 31, ..., Bpsj
are py (known) individual-specific factors and their corresponding fixed effect sizes. The latter model sys-
tematic changes in means at the mixture level, which can be the result of the experimental design. Most

notably, batch effects and other technical variation may globally affect the mixtures {X;;} regardless of cell-
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type-level expression; such factors can be estimated by methods for removal of unwanted variation [26, 27].
The covariates czq), . cl(!l)z ,on the other hand, represent factors thay may have systematic effects on mean
expression at the cell-type level, such as demographics or clinical status. We work under the assumption
that all covariates and the cell-type proportions {w;;} are known. In practice, cell-type proportions can be

estimated computationally using existing methods (e.g., [6, 8-10]).

The derivation of the model based on the single-cell perspective in Eq. (1)-(6) renders Keris as the result of
an implicit generative model for single-cell expression, and the parameters in Eq. (1)-(4) can be estimated
by fitting the model in Eq. (14)-(20) using tissue-level bulk data. Since we model gene-gene covariances,
learning the model from large bulk data effectively results in population-level cell-type-specific co-expression
networks and their changes with a condition of interest. In the remainder of this Subsection, we discuss the
second part of the Keris framework: how combining single-cell data with such population-level co-expression
networks can identify changes in composition of cell subtypes and profile subpopulations of cells that are
differentially expressed (DE) with a condition of interest. This will be followed by a description of the model
inference and statistical testing for differential moments (DM). An Tlustration of the Keris framework is
given in Fig. 2.

Step 1: Learn population-level co-expression networks Step 2: Evaluate predictions in single-cell data
Input: Tissue-level bulk data, cell-type proportions Input: independent single-cell data (same tissue as the bulk)
(A) Genes (bulk expression) Observed Example: Observed
. . o0 0o
Keris pre(.llcts o0 ®c e ®
Individuals upregulation of gene X 0 0000 00
in cell type Y 0o 094 O
in affected individuals
(B) CD4+ CDS8+ CD19+ CD56+
o oo o o0O0o
00O 000 000 oo0°
Inferred 000 0009 000 0002
%o 00?© 0% 0 00?9
Subtype 1  Subtype 2 Subtype 1 Subtype 2
© ®
(/;
®
Condition 1 Condition 2
Gene expression (nodes) Correlation strength (edges) Increase in composition of Change in expression
low mean highmean -1 1 subtype 2 with affected condition with affected condition
low variance OOOOOO high variance

Figure 2: Illustration of the two main conceptual steps in the Keris framework. Step 1 (left): (A) Given bulk
gene expression and matching estimates of cell-type proportions, (B) the model infers cell-type-specific co-
expression networks, (C) which are then further deconvolved by statistically testing for differential moments
(means, variances, and covariances between genes) with a condition of interest (which results in condition-
specific networks). Step 2 (right): given single-cell data, we can test whether a differentially expressed
gene (or a differentially correlated pair of interacting genes) reported in Step 1 is a marker gene of a cell
subtype. This allows us to classify the gene (or the gene-gene interaction) as either indicating a change in
cell-subtype composition or indicating a change in expression with the condition under test. Genes and gene-
gene interactions that indicate changes in expression can then be used in a single-cell downstream analysis.
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Detecting variation in cell composition. A real DM signal in a particular cell type can reflect either a
change in expression within that cell type or a change in the composition of cell subtypes (or both). As an
example, consider testing a case/control status for association with some cell type C that represents a class
of two cell subtypes C4,Cp. An increase in the composition ratio between C 4 and Cg in cases versus controls
will make genes that are overexpressed in C4 compared with Cg (i.e., regardless of case/condition status) to

appear as overexpressed in the group of cases when looking at the heterogeneous class C.

Naturally, capturing cell-type level signals from tissue-level bulk data is limited to the main cell types in the
tissue under study. As a result, DM detected by the Keris model can be due to changes in composition of
unmodeled cell subtypes. However, we can use SC data to deduce whether an observed DM signal is the
result of changes in cell-subtype composition by evaluating whether a putative DM is marker for a specific
cell subtype (Fig. 2). For example, a Keris-derived DM result indicating upregulation with a condition in
cell type C would imply an increase (decrease) in the composition of cell subtype C4 with the condition if
the DM is an upregulated (downregulated) marker for subtype C 4. Importantly, given that markers of cell
types and subtypes are expected to be highly consistent across individuals (e.g., Fig. la,c), this step does

not require population-level data and can rely on small SC data.

Characterizing condition-affected populations of cells. Eq. (1)-(6) model cell-level changes in ex-
pression under a condition of interest y. In reality, it is likely that only a subset of the cells of an affected
individual (y; = 1) will be affected by the condition. Further, in general, cells from both groups defined by
y may demonstrate affected cells. For example, consider the case where y; = 1 indicates an aged individual,
compared with a younger background population. In this case, only a subset of the cells of a given individual

are excepted to be aged (senescent), with an expected higher fraction of such cells in older individuals.

Let Y;ns be a Bernoulli random variable representing the cell-specific senescence state and let ;s be its
realization, where y;,,=1 indicates a senescent cell, consider the assumption:
iid.
Yinslys ~ Ber(rn +qny;),0 <qn <1—1 <1 (21)
Put in words, a given cell is more likely to be senescent if it is coming from an aged individual. Taking
this assumption renders the model in Eq. (1)-(6) unchanged, with the exception that now the parameters
{04;1+052 05, ,, } contribute their effects only in cells for which y;,s = 1. Consequently, our definition of

O'jh7

the characteristic cell-type level expression from Eq. (7)-(9) now satisfy:

P1 1 - < p1 1
E[Zinlti 2 gn + (rn+ @9i)Sp + D Vel = fign + 9ibuy + Y anely  (22)
V[Zijh]ti ﬁ) 0—}2Lj + (Th + qhyi)égij = &%j + yigo—ﬁj (23)
COV[Zijh’ Zilh}ti £> Ojh,lh + (rh + qhyi)50_7h,,lh = 512'h,lh + yigo'jh,,lh (24)
where t;, t;, t;/ are individual-specific scaling factors.
This perspective shows why non-zero effects {(5wh,5ﬂzh,5gjh .} may indicate cellular-level statistical asso-
z :

ciations with the condition y. Moreover, under this view, {d,,,, 602-;1’5(’1% .+ are effects in senescent cells
2 :

regardless of whether the cells are coming from an aged (y; = 1) or young (y; = 0) individual. This implies

that a DM identified by Keris can reflect an increased (or decreased) expression in senescent cells compared

with non-senescent cells within a given individual - regardless of whether the individual is young or aged.
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Put differently, a hypothesis generated by Keris from population-level data can be casted as a hypothesis
on a population of cells. As a result, in the case of our example with aging, we can in principle evaluate
hypotheses generated by Keris using a population of senescent and non-senescent cells from a single donor

(or a few donors) without the need for data from a large number of donors.

2.3 Inference and statistical testing

Technical background. The Generalized Method of Moments (GMM) allows us to learn parameters of a
model based on moment conditions that match population moments with their data-derived sample counter-
parts [28]. More generally, each moment condition may match a function of multiple parameters of the model
with its sample-based estimate (i.e., rather than a moment condition per a single parameter). Estimating
the model’s parameters then effectively reduces to solving a system of equations with multiple variables.
However, unlike in the Method of Moments, which essentially provides a (unique) solution only in cases
where the number of variables equals to the number of equations (assuming full rank), the GMM framework
addresses estimation in the case where the number of equations is greater than the number of variables
(i.e., an over-determined system of equations). More concretely, let (0, X,,) = f1(©, X,), ..., fa(©, X,,) be
d moment conditions defined over the set of parameters © of a given model, where X,, = (21,...,z,) are
observations coming from the model, if the moment conditions satisfy Vi € {1,...,d} : E[f;(0,X,,)] = 0
and certain minimal regularity conditions are met (errors are stationary and ergodic martingale difference

sequence) then an asymptotically consistent estimator of © for the case d > |O] is given by [28]:

© = argmin f(0, X,,)" U, (6, X,) (25)
(C]

where U, is a positive definite (PD) weighting matrix. In the common case of a linear model, Eq. (25) reduces
to solving a generalized least-squared problem (GLS). The weights U, provide a mechanism to address
differences in magnitude of noise in different samples (heteroskedasticity) or other properties of experimental
design, such as sampling bias. Most commonly, U, assigns the moment conditions with weights so that the
estimation is less sensitive to conditions with high variance. For a comprehensive treatment of GMM see,

for example, the textbook by Hayashi [29].

Optimization setup. Estimation under the original GMM framework relies on large sample properties
that arise in the theoretical regime of a constant number of moment conditions and an infinite number of
observations that are used for the evaluation of each moment condition. Other formulations of GMM further
concern the specific case of multiple equations (i.e., models), which may have common and/or equation-
specific parameters. Here, we consider the case where data points of different observations are coming from
non-identical distributions that are parameterized by a combination of known observation-specific factors
and a set of parameters that are shared across the distributions. In such a scenario, the sampling distribution
of each data point has potentially unique population moments, however, the population moments of all the

sampling distributions are tied together by a set of common parameters.

More concretely, in the Keris model, the means, variances, and covariances of each data point (or pair of data
points) are functions of the parameters of the model and individual-specific factors, including the individual’s
cell-type proportions and covariates. This allows us to develop our model optimization by following the

concept of GMM estimation under a special regime, wherein each moment condition is calculated from a
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single observation that represents a single distribution, however, the number of moment conditions (=the
number of observations) is infinite, and the parameters defined in the moment conditions are common to all
moment conditions. Importantly, while the space of parameters to be estimated is large, as described next,
our optimization scheme avoids overfitting by reducing the problem to solving a large number of independent
weighted least-squares problems (WLS) problems, such that each problem considers all the samples in the

data, yet, only learns a constant number of parameters.

Estimating the means in the model. We first develop an estimator for the parameters encoding mean
effects in Eq. (14) and (17). We denote 0; = ({1, s ks Opuyy s -os Opiyis Y1g1s -os Yprjh By - Bpoj) to be
the gene-specific mean parameters for a gene j € {1,...,m}; following our model, this set of parameters
can be learned for each gene independently. Let ux,, = E[Xy;] be the individual-specific mean of sample

i €{l,...,n}, we represent 6; by a vector of n moment conditions f(6;) = f1(6;), ..., fn(0;) as follow:
Vie{l,...,n}t: fi(0;) = xij — px,, (26)

In words, z;; is used as a single-sample estimate of ux,, based on the observed value z;; coming from Xjj;

clearly, E[f;(6;)] = 0. Note that f;(6;) is a function of 6;, x;;, and the other individual-specific factors;

we make this compact notation for readability. Denoting s; as the vector of individual-specific factors
(1) 1 (2 (2)

Si = (Wi, ooy Wiky Wit Yi oo, Wik Vi, Wit Cjq o WikCip' 5 i ,...,cl-pz) and denoting S to be a matrix with sq, ..., s,

stacked as its rows, we define our estimator of 6; by following Eq. (25) and (26):

0; = argmin(z; — 560;)"U;(x; — S6;) (27)

J

where 2 = (215, ...,¥p;). We can set U; € R™ ™ to be the empirical variance of f(;), which results in a

diagonal matrix due to the assumption of independence between individuals:
(Uy)ii = (w5 — fix,;) "> (28)
We get a WLS problem, for which the solution and its asymptotic distribution are known:

4, = (ST0,9) 5T, (29)
0; % N (05, (ST0,;8) 7 STUVIF(0))0;5(570;8) ™) o

In practice, we can apply a feasible GLS procedure, in which we first set U ;7 = I, and then following a solution
of Eq. (27) we can re-estimate U based on Eq. (28) to be used in a subsequent optimization of Eq. (27). While
this would result in asymptotic efficiency of the estimator, we make a practical adjustment to the weights
in Eq. (28) since each f;(d;) is based on a single data point. Specifically, in the likely case of a substantial
deviation of a given data point from its expected value per the model, following Eq. (28), such a data point
would be assigned with a low weight, which would result in a desired down-weighting of this observation in
the optimization. However, the reverse case is more of concern: if a given data point demonstrates a high
correspondence with the expected value then a subsequent iteration will up-weight it, and for a near-perfect
correspondence between a data point and its expected value (which is likely to happen for some data points

in large data), its extreme weight can dominate the solution and prevent the optimization from obtaining a
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good solution across the data. We therefore use the following weighting scheme:
(U;)ss = min(1, (U;)i) (31)

Following Eq. (30) this results in an asymptotically consistent estimator that follows:

(éj —0;) 4N (O, (STUJ'S)AST@‘S(STU],S)A) .
(U2)s = (0) L 2H Oz "

Estimating the variances and covariances in the model. We develop estimators for the variances
and covariances in the Keris model by following the same concepts we applied for estimating the means. For

every pair of genes j,1 € {1,...,m}, we define a vector of parameters as follows:

(O-lel) '-'7Ujk,lk) 60']’1,117 bR 60’jk7lk) lf.j # l

Y= (34)

2 2 T
(051, ...,ajk,(sgjzl, ""50?k’7j) if j =1

Given éj, él, the parameters in 1;; can be learned separately from the rest of the parameters in the model. Let
¥; € R™*™ denote the variance of sample i € {1,...,n} such that (¥;);; = Cov[X;;, X;], we define:

gi(j0) = (Za)j — (S = (Sa)j — Z::1 Wi, (Onjnt + Yibo, ) — 73 1{5 =1} (35)

(Xt = (@ij — fx,,)(@a — fix,) (36)
Based on these moment conditions, and similarly to the estimation of the means, we set our estimator:

by = argmin(3; — Svi) Vi (S5 — Sibjr) (37)
il

Yji = ((21)]% (in)j1> (38)

(Vio)i = min(L, (Vi)ai), (Via = (gi(ebj0)) ™" (39)
where S is a matrix with its i-th row defining the known factors for the covariance in sample

5, — (W2, ooy w2, WE Yooy WHY;) if 7 #£1 (40)

2 2 2 2 e
(W3 s ey Wi, Wi Yooy WYy 1) i 5 =1

Finally, we construct the estimator and its asymptotic distribution:

bj = (STVH8) L STV 8 (41)
b 4N (%‘17 (gT‘A/le)_lgT‘A/ﬁS(STleg)_l) (42)
(V)i = (V)i 02D (43)

While this estimator is asymptotically consistent, in order to improve estimation in finite data we further

consider natural constraints of the problem with the goal of providing more information to direct the inference
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towards a good solution. Particularly, we constrain the variances to be non-negative, and in the cases where

j # 1, we consider the following necessary conditions resulting from the definition of covariance:

Vh € {1, . ]{3} : ‘O'jh,lh‘ < OhjOhls Vh € {1, ,k} : |Ujh,lh + 5(7jh,lh| < \/szh + 50]2h Ulzh —+ 5012h (44)

These constraints require estimates of the variances {a%j, (50%}. The estimation of the variances does not
J
depend on the covariances in the model (due to the assumption of independence between cell types), and

therefore we can learn {1[1“-} first (i.e., after learning {éj}) and only then estimate {1;; };-.

2.4 Statistical testing for differential moments

Deriving p-values under asymptotics. The Keris model estimates the statistical effects of a binary
condition of interest y on the means, variances, and covariances. Given such estimates, a key question of

interest is to quantify the statistical evidence for whether each of the effects {¢ ) } is non zero.

Hijh ’502 sy Yo.in 1h
jh il jh,lh
Deriving asymptotic t-ratio statistics for the Keris estimators is possible by following Slutsky’s Theorem. The
ratios between (I) the estimators that converge in distribution to normal distributions and (II) the estimators

of their variances that converge in probability allows for a straightforward statistical testing:

(0)e

s N(0,1) (45)

SE(d,)e = \/ ((ST(}]-S)—1ST(A];S(ST(:]J»S)—1)65 (46)
(i) d

SEd 4 N(0,1) (47)

SE (1) = \/((ST‘:G’ZS)ISTWS(ST%S)1)55 (48)

where £ represents the index of the parameter under test in éj or in zﬁjl. Under asymptotic normality, p-values

can easily be calculated using the cumulative distribution function of the standard normal distribution.

Non-parametric statistical testing. We observe that our theoretical p-values based on asymptotics are
well-calibrated under the null (Supp. Fig. S2). However, this may not always be the case. We therefore
consider a second, non-parametric approach for statistical testing. Specifically, for a desired false discovery
rate (FDR) a € [0,1], let ¢1(y),...,t-(y) be a set of statistics derived based on the statistics in Eq. (45)
and (47), and let t1(7(y)), ..., t-(7(y)) be a similar set that was calculated on a permuted y, we call ¢;(y) as

statistically significant if it is greater than a critical value cf;,,, which is the maximal ¢ that satisfies:

21 Hti(m(y) = ¢}
2o Hti(m(y) = e} + 325 L{t;(y) >

E, < (49)

@
2
were the expectation is empirically evaluated based on a relatively small number of permutations (but at
least [1/c]). We similarly find the critical value for negative statistics ¢, thus obtaining a two-sided test
that controls for FDR at level a. The critical values can be found by a linear search on the sorted statistics.
This approach was previously suggested in the context of a different statistic [30], which had been suggested

to suffer from limited power due to possible differences in the null distributions of different genes [31, 32].
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We alleviate this risk by standardizing genes by their root mean squares.

2.5 Implementation

An R implementation of Keris is available at https://github.com/YosefLab/Keris

3 Results

3.1 Learning population-level moments from bulk: a simulation study

We first evaluated the capacity of Keris to learn cell-type level moments (means, variances, and gene-gene
covariances) from population-level bulk data by mixing gene expression profiles and then evaluating the
accuracy of Keris in learning the true moments of the different profiles from the mixtures. To this end,
we pooled together expression profiles of different tissues from GTEx [33, 34] and mixed them according to
weights that were drawn from an empirical distribution of cell-type proportions that we obtained by applying
a reference-based decomposition [35] on a large PBMC data [36]. This resulted in RNA profiles composed

of a mixture of several tissues (between 3 and 8), simulating the case of mixtures of cell types.

None of the existing methods in the space of decomposition/deconvolution of genomic data provides estimates
for all three moments we considered. In order to establish performance baseline, we therefore considered
CIBERSORTx [9] and TCA [24], two deconvolution methods for the estimation of individual-specific cell-
type levels (i.e. 3D tensor of samples by genes by cell types) from bulk data. While CIBERSORTx and
TCA do not explicitly model or estimate cell-type level gene-gene covariances, we estimated those using the

tensors provided by these methods.

We found that CIBERSORTx performs substantially worse than Keris and TCA in estimating all of the
three moments even in the simple case of bulk with three cell types (Supp. Fig. S3, S4, and S5); we therefore
excluded it from our full benchmarking. TCA performed comparably to Keris in learning the means of the
mixed tissues, however, Keris yielded superior performance in estimating variances and covariances (Fig. 3).
Importantly, these results were consistent under different sample sizes (n=100 up to n=1000) and using

different numbers of tissues for composing the bulk mixtures (Supp Fig. S6, S7)

3.2 Identifying changes in cell-subtype composition with age

We next applied Keris to large bulk PBMC data by Kirsten et al. (n=745) [36] with the goal of identifying
genes that are DE with age (below 50 y/o vs. above 70 y/o) in the five immune cell types that contain
most of the cells in such samples (monocytes, B, NK, CD8 T, and CD4 T cells). Keris yielded a total of 110
statistically significant DE genes across all cell types (FDR level 0.05). These age-associated changes in a
given cell type can result either from change in the composition of cellular sub-types (e.g., naive vs. effector
T cells) or from gene expression changes in one or more subsets. To explore this, we inspected the DE
genes called by Keris using independent PBMC SC data of four healthy donors (<50 y/o or >70 y/o) from
the Arunachalam et al. study [37]. Indeed, using the Arunachalam data, we found that 48 out of the 110
associations returned by Keris are marker genes for subtypes of the five cell types we modeled. Concretely,
the gene SNX22, which Keris estimated as upregulated with age in B cells in the Kirsten bulk data, turned

out to be upregulated in intermediate B cells compared with other B cell subtypes in the Arunachalam data
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Figure 3: Learning cell-type-specific means, variances, and gene-gene covariances from simulated bulk ex-
pression using Keris and TCA. Each of the two methods was applied to mixtures generated from the top
k = 4 most abundant GTEx tissues: muscle-skeletal (n=801), whole-blood (n=755), skin (n=700), and
adipose (n=662). Presented are the results of learning the moments of the tissues composing the mixtures
(n = 500, m = 1000). Results are evaluated using robust correlation (r;) between the true moments of the
tissues (estimated directly from the tissues) and the estimated moments, as a function of the data points that
were included in the evaluation (g; outlier points were excluded based on the joint density of the estimated
and true levels). Violin plots represent the performance across 20 different simulations, and the result of a
given simulation is the average performance across all four cell types.

(p-value=3.1e-05; Wilcoxon test). This therefore suggests an increase in composition of intermediate B cells
with age. Importantly, we were able to further confirm this result using data from 70 individuals across
two independent PBMC SC studies by Stephenson et al. [15] and Ren et al. [16] (p-value=0.034; linear
regression of intermediate B cell composition on age, while accounting for disease condition, sex, and batch).
Similarly, the gene LRRNS, which Keris called as downregulated with age in CD4 T cells, turned out to be
upregulated in naive CD 4 T cells compared with other subtypes of CD4 T cells (p-value=2.7e-20; Wilcoxon
test). This suggests a decrease in CD4 naive T cells with age, a well-known result [38] that we were able to
further validate in the Stephenson and Ren datasets (p-value=0.031, linear regression of CD4 naive T cell

composition on age, while accounting for disease condition, sex, and batch).

In the monocytes class, Keris reported LGALS3 as downregulated with age, which, in conjunction with
the gene’s downregulation in CD16 monocytes compared with CD14 monocytes in the Arunachalam data
(p-value=7.2e-19; Wilcoxon test), suggests an increase in CD16 monocyte composition with age. We could
not detect evidence for this result in the Stephenson and Ren datasets (p-value=0.33; linear regression),
however, we note that an age-associated increase in CD16 monocyte composition was previously reported in
a large study with PBMC [39]. Lastly, the rest of the genes that were reported by Keris as DE and found to
be marker genes for cell subtypes in the SC data are strong markers for more than one cell subtype. Hence,

we were not able to conclusively attribute them to changes in composition of particular cell subtypes.

3.3 Capturing senescent cells via Keris-integrated senescence score

We expected the 62 Keris-derived DE genes that were not identified as cell-subtype markers in the Arunacha-
lam data to reflect changes in expression rather than changes in composition with age. Following our model,
we expected these DE genes to capture effects in populations of aging (senescent) cells. Clearly, single genes
may demonstrate small effects with age. Therefore, given multiple DE genes in a particular cell type, we
created a Keris-integrated senescence score (KISS) for integrating over the effects coming from all the Keris-

derived DE genes in that cell type. Specifically, we defined the KISS value of a single cell to be the total
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expression across all age-upregulated DE genes minus the expression across all age-downregulated DE genes.
Since most of the 62 Keris-derived genes that were expected to reflect changes in expression were called as

DE in either NK or CD8 T cells (39 and 19 genes, respectively), we focused only on these cell types.

We first calculated an NK-specific KISS for every NK cell in healthy PBMC samples (<50 y/o or >70 y/o)
from the Stephenson (n=23) [15] and Ren (n=20) [16] datasets. In order to confirm that high KISS levels
indeed tag senescent cells, we considered CDKN2A, a known marker gene of cellular senescence [40]. While
CDKNZ2A is not considered as a very accurate marker for cellular senescence, we hypothesized that cells ex-
pressing CDKN2A (denote CDKN2A+, as opposed to CDKN2A-) will be enriched with higher KISS levels.
Indeed, we found that CDKN2A+ NK cells demonstrate heavier tail of high NK-specific KISS values com-
pared with CDKN2A- NK cells in both the Stephenson (p-value=1.9e-4) and Ren (p-value=6e-4) datasets;
p-values were calculated by comparing the top quartile of KISS in CDKN2A+ cells with 10° equally-sized
random subsets of CDKN2A- cells. While we do not expect all cells coming from aged individuals to necessar-
ily be senescent, a reasonable cellular senescence score is expected to distribute somewhat differently in cells
from aged individuals compared with cells from young individuals. As expected, cells from aged individuals
(>70 y/o) demonstrated higher NK-specific KISS values compared with cells from younger individuals (<50
y/0; Stephenson p-value=5.2e-3, Ren p-value=1.5e-12; t-test).

Repeating the above analysis for CD8 T cells, we found that CDKN2A+ CD8 T cells are not enriched for
high CD8-specific KISS values in both the Stephenson and Ren datasets (p-value=1). However, we suggest
that CDKN2A may not be a very informative marker of senescence in CD8 T cells for two reasons. First,
CD8 T cells from aged individuals do demonstrate higher CD8-specific KISS values compared with cells
from younger individuals (Stephenson p-value=0.017, Ren p-value <2.2e-16; t-test; and Fig. 4). Second,
we observe that aged individuals have more extreme CD8-specific KISS values in their CD8 T cells when
compared to young individuals. Specifically, for every individual sample in the Stephenson and Ren datasets,
we considered its top decile of the KISS values (i.e., across all CD8 T cells of the individual), and we found
that all young individuals except for one had a top decile value of zero, while the aged individuals in the
data (n=2) had a positive top decile. Interestingly, we did not observe a similar trend in the population of
NK cells using the NK-specific KISS, suggesting either a limited accuracy of our score for NK cells or the

need for larger sample sizes for evaluation. Henceforth, we focused on our CD8-specific KISS.

Age-related effects on expression are expected to be heterogeneous, as reflected by the inconsistent calling
of genes that are with DE age across small studies (Supp. Fig. S1). Since our definition of KISS is based
on DE genes detected in population-level data, we expected that comparing CD8 T cells with high KISS
levels to CD8 T cells with low KISS levels will demonstrate differences that are consistent across studies.
Indeed, performing a DE analysis (Wilcoxon test) with low-KISS cells (first quartile of KISS values) versus
high-KISS cells (fourth quartile) revealed high consistency between the Stephenson and Ren data (J=0.61;
Jaccard index). This result is particularly remarkable due to the fact that it relies on a single aged individual
(>70 y/o) in each of the two datasets. In contrast, taking a standard approach of performing DE analysis
based on cells from young individuals versus cells from aged individuals yielded poor consistency (J=0.14).
Finally, this gap in consistency was further manifested in a gene enrichment analysis based on the DE results.
Considering the top 10 most positively enriched GO term and the top 10 most negatively enriched terms
revealed a much higher overlap between the Stephenson and Ren datasets when usign the Keris-derived KISS

values (17 GO terms out of 20) compared with the standard approach for DE analysis (10 GO terms).
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Figure 4: (a) CD8-specific KISS levels in CD8 T cells from young (top) and aged (bottom) individuals in
the Ren data; cells were randomly subsampled to match in numbers and plotted using UMAPs [41]. (b)
The expression pattern of the interaction AKT2 X ELMQO1 in monocyte cells is not clearly reflected in the
separate expression of the genes AKT2 and ELMO1; presented are UMAPs based on the Stephenson data.

3.4 Applying Keris to detect cell-type level gene-gene interactions

Lastly, we applied Keris again to the Kirsten bulk PBMC data, this time with the goal to demonstrate the
ability of Keris to detect cell-type level differential correlations (DC). Specifically, we aimed at detecting age-
associated DC in monocyte cells, while considering only the group of genes that are tagged by KEGG [42] as
involved in either chemokine signaling or phagocytosis, two cellular pathways that are known to demonstrate
altered function with age in monocytes [43] (a total of 417 genes). Keris reported two pairs of genes as
significantly DC with age in monocytes (based on permutation test with 10° permutations). Concretely, Keris
estimated the correlation between DOCK2 and CX3CR1 and the correlation between AKT2 and ELMO1
to be upregulated in monocytes. Using the Arunachalam SC data, we found the interaction DOCK2 X
CX3CR1 to be upregulated in CD16 monocytes compared with CD14 monocytes (p-value<2.2e-16; t-test),
thus reinforcing the previous indication by Keris of an increase in CD16 monocyte composition with age
(based on LGALS3). Since we did not observe the interaction AKT2 X ELMO1 to be a notable marker for
monocyte subtypes (p-value=0.04; t-test), we evaluated whether this interaction captures senescent cells. We
could not find evidence that CDKN2A+ monocyte cells are enriched for high AKT2 X ELMO1 levels (p-value
>0.14 in both Stephenson and Ren datasaets; based on 10° equally-sized random subsets of CDKN2A- cells).
However, similarly to our analysis with the DE results, we found evidence that monocyte cells from aged
individuals demonstrate AKT2 X ELMQO1 more frequently than monocyte cells from young individuals
(Stephenson p-value=0.001, Ren p-value=0.066; t-test). Importantly, the cells tagged by the interaction
AKT2 X ELMO1 could not be revealed by looking at either AKT2 or ELMO1 separately (Fig. 4), thus

showing the promise of considering gene-gene interactions for profiling populations of senescent cells.

4 Discussion

We suggest that results returned by Keris for a particular cell type can be attributed to changes in cell-subtype

composition if they are markers for known sub-populations of that cell type. However, it is possible that
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in some cases marker genes for cell subtypes will also demonstrate changes in expression with the condition
under test. Since it is not clear how such signals can be disentangled, in this a scenario we are bound to
ignore such genes in our downstream analysis of changes in expression. However, given the high consistency

between cell-type markers across individuals (e.g., Fig. 1), we expect these cases to be infrequent.

Finally, our work focuses on SC and bulk expression data, however, all of our assumptions are distribution-

free. Hence, in theory, Keris is expected to be applicable to other genomic modalities as well.
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Figure S1: Evaluating the consistency of differentially expressed (DE) genes with age across two independent
PBMC SC datasets [1, 2]. Presented are the test statistics of DE analysis between young (n=14; <50 y/o)
and aged (n=14; >70 y/o) healthy individuals, within each of the main immune cell types (results from all
cell types were pooled together). Consistency was defined as the Jaccard index — the fraction of consistently
DE genes (significant in both datasets) out of the total number of DE genes (significant at least once) using
DESeq2 [3] on the top 1000 most highly expressed genes, while accounting for sex.
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Figure S2: Distribution of p-values under the asymptotic distribution of the Keris statistic in the Kirsten
et al. data [4] after permuting the condition label (<50 y/o or >70 y/o). Presented at the distribution of
p-values under the null for differential means, variances, and correlations (10,000 randomly selected pairs of
genes); distributions were pooled across cell types.
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Figure S3: Learning cell-type-specific means, variances, and gene-gene covariances from simulated bulk
expression using CIBERSORTx. Mixtures were generated from the top k& = 3 most abundant GTEx tissues:
muscle-skeletal (n1=801), whole-blood (n=755), and skin (n=700). Presented are the results of learning the
moments of the tissues composing the mixtures (n = 500, m = 1000). Results were evaluated for each tissue
(in a separate row) using robust correlation (r*) between the true moments of the tissues (estimated directly
from the tissues) and the CIBERSORTx estimates of the moments. Two-dimensional density plots colored
in red show the majority of points (75%), based on which a robust correlation was calculated in each plot.
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Figure S4: Learning cell-type-specific means, variances, and gene-gene covariances from simulated bulk
expression using TCA. Mixtures were generated from the top &k = 3 most abundant GTEx tissues: muscle-

skeletal (n=801), whole-blood (n=755), and skin (n=700). Presented are the results of learning the moments
Results were evaluated for each tissue (in a

of the tissues composing the mixtures (n = 500, m = 1000)
) between the true moments of the tissues (estimated directly from

separate row) using robust correlation (r*
the tissues) and the TCA estimates of the moments. Two-dimensional density plots colored in red show the

majority of points (75%), based on which a robust correlation was calculated in each plot
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Figure S5: Learning cell-type-specific means, variances, and gene-gene covariances from simulated bulk
expression using Keris. Mixtures were generated from the top k£ = 3 most abundant GTEx tissues: muscle-
skeletal (n=801), whole-blood (n=755), and skin (n=700). Presented are the results of learning the moments
of the tissues composing the mixtures (n = 500, m = 1000). Results were evaluated for each tissue (in a
separate row) using robust correlation (r*) between the true moments of the tissues (estimated directly from
the tissues) and the Keris estimates of the moments. Two-dimensional density plots colored in red show the

majority of points (75%), based on which a robust correlation was calculated in each plot.
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Figure S6: Learning cell-type-specific means, variances, and gene-gene covariances from simulated bulk
expression using Keris and TCA. Each of the two methods was applied to mixtures generated from 3 to 8
most abundant GTEx tissues (first row corresponds to k = 3 tissues, the second row corresponds to k = 4
tissues and so on). Presented are the results of learning the moments of the tissues composing the mixtures
(n = 500, m = 1000). Results are evaluated using robust correlation (r;) between the true moments of the
tissues (estimated directly from the tissues) and the estimated moments, as a function of the data points that
were included in the evaluation (g; outlier points were excluded based on the joint density of the estimated
and true levels). Violin plots represent the performance across 20 different simulations, and the result of a
given simulation is the average performance across all cell types.
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Figure S7: Learning cell-type-specific means, variances, and gene-gene covariances from different dataset
sizes of simulated bulk expression using Keris and TCA. Each of the two methods was applied to mixtures
generated from 3 to 8 most abundant GTEx tissues (first row corresponds to k = 3 tissues, the second
row corresponds to k = 4 tissues and so on). Presented are the results of learning the moments of the
tissues composing the mixtures (n = 500, m = 1000). Results are evaluated using robust correlation ()
between the true moments of the tissues (estimated directly from the tissues) and the estimated moments,
as a function of the number of simulated samples. Violin plots represent the performance across 20 different
simulations, the result of a given simulation is the average performance across all cell types, as solid and
dashed lines represent the median of the best and worse performing cell type across all 20 simulations.

26


https://doi.org/10.1101/2022.01.27.478115
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.27.478115; this version posted January 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

References

[1] Emily Stephenson et al. “Single-cell multi-omics analysis of the immune response in COVID-19”. In:
Nature medicine 27.5 (2021), pp. 904-916.

[2] Xianwen Ren et al. “COVID-19 immune features revealed by a large-scale single-cell transcriptome
atlas”. In: Cell 184.7 (2021), pp. 1895-1913.

[3] Michael I Love, Wolfgang Huber, and Simon Anders. “Moderated estimation of fold change and dis-
persion for RNA-seq data with DESeq2”. In: Genome biology 15.12 (2014), pp. 1-21.

[4] Holger Kirsten et al. “Dissecting the genetics of the human transcriptome identifies novel trait-related

trans-eQTLs and corroborates the regulatory relevance of non-protein coding loci”. In: Human molec-
ular genetics 24.16 (2015), pp. 4746-4763.

27


https://doi.org/10.1101/2022.01.27.478115
http://creativecommons.org/licenses/by/4.0/

