

1 **DNA uptake by cell wall-deficient bacteria reveals a putative ancient macromolecule**

2 **uptake mechanism**

3 Renée Kapteijn<sup>1</sup>, Shraddha Shitut<sup>1</sup>, Dennis Aschmann<sup>2</sup>, Le Zhang<sup>1</sup>, Marit de Beer<sup>3</sup>, Deniz

4 Daviran<sup>3</sup>, Rona Roverts<sup>3</sup>, Anat Akiva<sup>3</sup>, Gilles P. van Wezel<sup>1,\*</sup>, Alexander Kros<sup>2</sup>, Dennis

5 Claessen<sup>1,4,\*</sup>

6

7 <sup>1</sup>Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE  
8 Leiden, The Netherlands.

9 <sup>2</sup>Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry,  
10 Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands

11 <sup>3</sup>Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The  
12 Netherlands

13 <sup>4</sup>Lead contact

14 \*Correspondence:

15 [G.Wezel@biology.leidenuniv.nl](mailto:G.Wezel@biology.leidenuniv.nl) (G.P.v.W.), [D.Claessen@biology.leidenuniv.nl](mailto:D.Claessen@biology.leidenuniv.nl) (D.C.)

16

17

18 **Keywords: cell wall-deficiency; natural transformation; L-forms; endocytosis;**

19 **horizontal gene transfer; cryo FIB-SEM**

20 **SUMMARY**

21 Horizontal gene transfer in bacteria is widely believed to occur via three main mechanisms:  
22 conjugation, transduction and transformation. These mechanisms facilitate the passage of DNA  
23 across the protective cell wall using sophisticated machinery. We present here a new  
24 mechanism of DNA uptake that is independent of canonical DNA uptake machineries and is  
25 used by bacteria that live without a cell wall. We show that the cell wall-deficient bacteria  
26 engulf extracellular material, whereby intracellular vesicles are formed, and DNA is  
27 internalized. This mechanism is not specific to DNA, and allows uptake of other  
28 macromolecules and even 125 nm lipid nanoparticles (LNPs). Uptake was prevented by  
29 molecules known to inhibit eukaryotic endocytosis, suggesting this to be an energy-dependent  
30 process. Given that cell wall-deficient bacteria are considered a model for early life forms, our  
31 work provides a possible mechanism for primordial cells to acquire new genetic material or  
32 food before invention of the bacterial cell wall.

### 33 INTRODUCTION

34 Bacteria are constantly exposed to changing environmental conditions and rely on their cell  
35 envelope for protection. The cell envelope consists of a cell membrane and a cell wall to  
36 separate the internal from the external environment. The cell membrane is a phospholipid  
37 bilayer that encloses the cytoplasm and functions as a selective barrier. The cell wall consists  
38 of a thick peptidoglycan (PG) layer for Gram-positive bacteria and a thinner PG layer  
39 surrounded by an outer membrane for Gram-negative bacteria. The peptidoglycan layer is an  
40 important mesh-like structure that not only provides protection against mechanical stress and  
41 turgor pressure, but also defines cell shape and rigidity.

42 To facilitate the selective passage of macromolecules across the cell envelope, bacteria  
43 have evolved specialized and sophisticated transport systems (Costa et al., 2015; Forster and  
44 Marquis, 2012). For instance, naturally transformable bacteria rely on protein complexes for  
45 DNA uptake, with components similar to type IV pili or type II secretion systems. Active  
46 transport of DNA across the cell wall is facilitated by the retraction of pilus structures that bind  
47 DNA (Chen and Dubnau, 2004; Ellison et al., 2018). Alternatively, the assembly and release  
48 of short pilus structures are thought to create transient holes in the PG layer that allow DNA to  
49 diffuse to the cell membrane (Muschiol et al., 2015). DNA binding and pore-forming proteins  
50 are then used to translocate the DNA across the cell membrane.

51 Although the cell wall is a vital structure for most bacteria, some bacteria naturally lack  
52 a cell wall, or can shed their wall under specific conditions. Examples include the members of  
53 the Mollicutes, that are parasitic and live in specific osmotically protective environments such  
54 as human mucosal surfaces or the phloem sieve tubes of plants (Stölke et al., 2009). Prolonged  
55 exposure to environmental stressors such as cell wall-targeting agents generates so-called L-  
56 forms, which are cells that proliferate without their cell wall. Reproduction of L-forms is driven  
57 by the upregulation of membrane synthesis and is characterized by blebbing, tubulation and

58 vesiculation (Mercier et al., 2013; Ramijan et al., 2018). These primitive cell-like  
59 characteristics make L-forms an attractive model system to study the evolution of early life  
60 (Briers et al., 2012b; Errington et al., 2016). How the absence of the cell wall affects uptake of  
61 macromolecules such as DNA from the environment is unknown.

62 In this study we show that L-forms of the filamentous actinomycete *Kitasatospora*  
63 *viridifaciens* can naturally take up DNA independent of the canonical DNA translocation  
64 machinery. Instead, uptake is facilitated by a new mechanism of horizontal gene transfer that  
65 involves the invagination of the cell membrane leading to internal vesicle formation.  
66 Furthermore we show that this mechanism is robust and allows the non-specific uptake of other  
67 macromolecules from the environment as well. Given that L-forms are considered a model for  
68 early cellular life, our work provides insight into how such ancient cells may have acquired  
69 large biomolecules and nanoparticles from the environment without the need for complex  
70 transport machineries.

71 **RESULTS**

72 **Natural and artificial DNA uptake by wall-deficient cells**

73 *K. viridifaciens* is a mycelium-forming bacterium that can extrude temporary wall-deficient  
74 cells, called S-cells, under conditions of osmotic stress (Ramijan et al., 2018). These cells can  
75 only proliferate by rebuilding the cell wall and reverting to a mycelial mode-of-growth, similar  
76 to artificially created cell-wall deficient protoplasts. Prolonged incubation of S-cells in high  
77 osmotic pressure can induce the switch to an L-form state that allows reproduction without  
78 rebuilding the cell wall. It is unknown whether these cell wall-deficient cells can take up DNA  
79 via natural transformation. To analyse this, protoplasts, S-cells and L-forms (*alpha*) were  
80 incubated with plasmid DNA, and subsequently plated on selective and non-selective medium  
81 (Figure 1A). Notably, L-forms were consistently able to take up DNA, unlike protoplasts or S-  
82 cells (Figure 1B). This DNA uptake ability was not restricted to the penicillin-induced L-forms  
83 (lines *alpha* and *delta*), as the osmotically induced L-form (line M1) (Ramijan et al., 2018)  
84 could also take up plasmid DNA. No transformants were obtained with *alpha* when intact or  
85 fragmented genomic DNA was used (Figure S1A). While natural transformation was restricted  
86 to L-forms, all wall-deficient cells could be chemically transformed using polyethylene glycol  
87 (PEG), with protoplasts, S-cells and L-forms having an average transformation efficiency  
88 between 1.7 – 2.5% (Figure S1B). The addition of PEG also enabled transformation of *alpha*  
89 with genomic DNA, even if this was present in a crude cell extract. On the other hand, use of  
90 methylated DNA prevented transformation, indicating that transformation is possible with  
91 different types of DNA, but can be limited by the presence of a different methylation pattern  
92 (Figure S1C). By contrast, walled cells could not be transformed either with or without PEG  
93 (Figure 1B and Figure S1B). These results show that proliferating wall-deficient L-forms can  
94 take up DNA naturally, while walled cells and transient wall-deficient S-cells and protoplasts  
95 cannot.

96 **L-forms take up DNA in the absence of canonical DNA translocation machinery**

97 Naturally transformable bacteria use a specialized DNA translocation machinery with  
98 similarities to type IV pili or type II secretion systems to take up external DNA (Chen and  
99 Dubnau, 2004). Similar components of this canonical system might also be involved in DNA  
100 uptake by L-forms. A BlastP search using the DNA-binding protein ComEA and channel  
101 protein ComEC of the naturally transformable bacterium *Bacillus subtilis* against *K.*  
102 *viridifaciens* yielded two significant hits: BOQ63\_29625 (helix-hairpin-helix domain-  
103 containing protein) and BOQ63\_29630 (ComEC/Rec2 family competence protein),  
104 respectively (Figure 1C and Table S1). The *B. subtilis* helicase/DNA translocase ComFA  
105 resulted in a hit to a putative Mfd-encoding gene (BOQ63\_20315), a widely conserved  
106 bacterial protein that mediates transcription-coupled DNA repair (Roberts and Park, 2004). No  
107 other orthologues were found that correlated to proteins involved in DNA transport across the  
108 cell envelope for *B. subtilis*, the Gram-negative *Neisseria gonorrhoeae* (Kruger and Stingl,  
109 2011) or for the T4SS-related DNA uptake system of *Helicobacter pylori* (Gilbreath et al.,  
110 2011) (Table S1). L-forms lack an intact peptidoglycan-based cell wall and therefore DNA  
111 must only cross the cell membrane for internalization. As ComEA and ComEC function in  
112 DNA transport across the cell membrane (Friedrich et al., 2001; Inamine and Dubnau, 1995;  
113 Kruger and Stingl, 2011) we wondered whether these proteins are involved in DNA uptake in  
114 L-forms. Therefore, we replaced the putative *comEC* and *comEA* genes in the L-form strain  
115 *alpha* by an apramycin resistance cassette (Figure S1D). Strikingly, the simultaneous deletion  
116 of the *comEA* and *comEC* genes did not affect the natural transformation efficiency (two-tailed  
117 independent t-test,  $t(8)=1.572$ ,  $P=0.155$ ), indicating that DNA uptake by L-forms occurs  
118 independent of this canonical DNA translocation machinery (Figure 1D).

119

120

121 **High membrane fluidity is not sufficient for natural DNA uptake in wall-deficient cells**

122 One of the factors controlling the development of competence for DNA uptake in *B. subtilis* is

123 the growth phase (Dubnau, 1991; Hamoen et al., 2003). To study if culture age is also affecting

124 the DNA uptake ability of L-forms, differently aged cultures were subjected to a natural

125 transformation assay. One-day old cultures of *alpha* take up DNA more easily than 3- or 7-day

126 old cultures (one-way ANOVA,  $F(2,9) = 12.16$ , Tukey post-hoc test,  $P = .006$  and .005

127 respectively) (Figure 1E). It is not unlikely that differences in membrane properties that occur

128 during cellular growth may in turn affect the DNA uptake ability. Membrane fluidity is a

129 measure for the average viscosity of the lipid bilayer, which can affect the positioning and

130 movement of proteins and lipids within the membrane (Lenaz, 1987). A higher membrane

131 fluidity is characterized by increased fatty acid disorder, lower lipid packing and higher

132 diffusion rates, which can lead to increased membrane permeabilization (Chapman, 1975;

133 Lande et al., 1995). Analysis of the membrane fluidity of the differently aged cultures indicated

134 that the increased DNA uptake ability may correlate positively with the fluidity of the

135 membrane, as deduced from the generalized polarization (GP) (Scheinpflug et al., 2017)

136 (Figure 1F), although no statistical significant differences were observed (Welch ANOVA,

137  $F(2, 2.798)$ , with Games-Howell post-hoc test: 1-3 day  $P = .068$ ; 1-7 day  $P = 0.134$ ; 3-7 day  $P$

138 = 0.711). A relatively low fluidity might explain why temporary wall-deficient protoplasts and

139 S-cells cannot take up DNA naturally. However, the fluidity of protoplasts was within the range

140 of 1- to 7-day-old cultures as measured using a plate assay (Figure S1E). Subsequent analysis

141 of the GP by fluorescence microscopy imaging showed that although protoplasts and S-cells

142 tend to have less fluid membranes, these values stay within the range of the membrane fluidity

143 of 1- to 7-day old L-forms (Figure S1F). Therefore, although membrane fluidity may contribute

144 to efficient DNA uptake, it is not sufficient to explain this process.

145

146 **L-forms take up DNA via an endocytosis-like mechanism**

147 To further investigate the mechanism facilitating DNA uptake by L-forms, we added Cy5-  
148 labelled plasmid DNA to L-forms expressing cytosolic eGFP. Labelled plasmid DNA was  
149 found either on the outside of the L-form cell membrane, or within apparent internal vesicles  
150 (Figure 2A and control Figure S2A). As these internal vesicles were devoid of eGFP, we  
151 reasoned that they could have originated by an invagination process of the membrane, whereby  
152 extracellular material becomes trapped inside the vesicles. To test this directly, we incubated  
153 eGFP-expressing L-forms with the fluorescent dye SynapseRed C2M (SynapseRed). Given  
154 that SynapseRed cannot diffuse through the cell membrane, any fluorescent signal on the  
155 membranes surrounding internal vesicles would be a strong argument that such vesicles were  
156 derived from the cell membrane. Indeed, SynapseRed was found to not only stain the cell  
157 membrane of the L-forms but also the membranes of internal vesicles after overnight  
158 incubation (Figure 2B). Staining with SYTO-9 further indicated that chromosomal DNA was  
159 present in the cytosol but not inside internal vesicles (Figure S2B). Incubation of protoplasts  
160 producing cytosolic eGFP with Synapse Red showed that areas with less cytosolic fluorescence  
161 emission were caused by internal membrane structures rather than by formation of internal  
162 vesicles (Figure S2C). Similar incubation of S-cells showed the presence of internal vesicle-  
163 like structures. However, unlike for L-forms, subsequent staining of S-cells of a strain  
164 producing cytosolic-mCherry with SYTO-9 indicated that these vesicles were filled with  
165 chromosomal DNA. This indicates that internal structures observed in protoplasts and S-cells  
166 are not the same internal vesicles as those seen in L-forms and may not be involved uptake of  
167 external fluids. Taken together, these results strongly suggest that the observed vesicles inside  
168 L-forms originate from invagination of the cell membrane whereby extracellular material may  
169 become trapped inside such vesicles.

170

171 In eukaryotes, endocytosis is a process that enables the uptake of external cargo via  
172 internal vesicle formation, which is eventually degraded or recycled (Cossart and Helenius,  
173 2014; Elkin et al., 2016). Fluorescently labelled dextrans are widely used as markers for  
174 endocytosis in eukaryotes (Araki et al., 1996; Li et al., 2015). To identify if such an  
175 endocytosis-like process could be present in L-forms and to visualize the uptake of external  
176 materials, we incubated the cells with Dextran Texas-Red (D-TR) and performed time-lapse  
177 imaging. The L-form strain used also expresses DivIVA-eGFP, which has strong affinity for  
178 negatively curved membrane regions (*alpha* pKR2) (Hammond et al., 2019; Jurasek et al.,  
179 2020). Such regions are expected to be formed upon invagination of the membrane. After 290  
180 minutes of incubation, D-TR was visible inside the L-form and faint spots of DivIVA-eGFP  
181 started to appear adjacent to this region (Figure 2C and Video S1). This progressed to a clear  
182 inward bulging of the cell membrane with two foci of DivIVA-eGFP on either side of the  
183 invaginated membrane and an inflow of D-TR (t=560 min). After 640 min an internal vesicle  
184 was formed that contained D-TR. In other cells, DivIVA-eGFP appeared to form a ring-like  
185 structure, which sometimes enveloped the invaginating membrane (Figure 2D cell 1 and 2  
186 respectively). The presence of DivIVA near the site of invagination implies the presence of  
187 negatively curved regions in the membrane. Notably, DivIVA is not required for vesicle  
188 formation or DNA uptake, as the deletion of *divIVA* in *alpha* (*alpha* $\Delta$ DivIVA) had no effect  
189 on natural transformation (two-tailed independent t-test,  $t(8)=0.489$ ,  $P=0.638$ ) (Figure S2D),  
190 and internal vesicles were still formed by this strain (Figure S2E). Furthermore, internalization  
191 of D-TR was also observed in L-forms that did not express DivIVA-eGFP, indicating that  
192 uptake is not a consequence of the presence of the fusion protein (Figure S2F). Incubation of  
193 protoplasts and S-cells with D-TR up to 72 h did not result in D-TR encapsulation in internal  
194 vesicles (Figure S2G). Altogether, these results show that the invagination of the cell

195 membrane of L-forms can lead to internal vesicle formation and may represent an endocytosis-  
196 like mechanism allowing uptake of molecules, including DNA, from the environment.

197

198 **Lipid nanoparticles are internalized in vesicles in an energy-dependent manner**

199 Lipid nanoparticles (LNPs) are non-viral particles that are used to deliver nucleic acids and  
200 drugs to human cells via endocytosis (Cullis and Hope, 2017). LNPs do not have a lipid bilayer  
201 structure, but consist of an electron-dense, hydrophobic core of lipids that encapsulate nucleic  
202 acids by electrostatic interactions and are surrounded by a layer of PEG-lipids (Cullis and  
203 Hope, 2017; Evers et al., 2018; Hou et al., 2021). Once the endosome acidifies the ionizable  
204 lipids become positively charged, which allows the LNP to destabilize the endosome  
205 membrane and deliver its cargo into the cell. LNPs can also be fluorescently tagged by the  
206 incorporation of fluorophore-conjugated phospholipids (Kulkarni et al., 2019). To further  
207 explore the ability of L-forms to take up external particles, the cells were incubated with  
208 rhodamine-labelled LNPs (LNP-LR, containing 18:1 Liss Rhod PE) with an average size of  
209 125 nm to allow their detection inside L-forms. After addition of LNP-LR to 7-day-old L-  
210 forms, clear foci could be detected inside the cells after overnight incubation, as well as  
211 localization of LNPs to the cell membrane (Figure 3A and Figure S3B and S3C). When L-  
212 forms were used that express eGFP in the cytosol, vesicles only contained LNPs and not eGFP,  
213 strongly suggesting that the LNPs had been internalized in vesicles devoid of the cytoplasm  
214 (Figure 3B, C). Importantly, internalization of LNP-LR by L-forms could be blocked by the  
215 addition of sodium azide (1, 2.5 and 10 mM) or incubation of cells at 4°C, conditions that are  
216 commonly used to inhibit endocytosis (Atkinson et al., 2002; Hoffmann and Mendgen, 1998;  
217 Sato et al., 2009; Subramanya et al., 2009). Under such conditions, the LNPs only localized to  
218 the cell membrane rather than forming foci inside the cell (Figure 3D, E and Figure S3D-E).

219 These results are consistent with an uptake process of LNPs that is energy-dependent, whereby  
220 the particles are internalized by a membrane invagination process.

221

## 222 **High-resolution imaging of L-forms using cryo-FIB-SEM**

223 To better understand their ultrastructure and composition, the intracellular vesicles were  
224 imaged using 3D cryo-correlative light and electron microscopy (cryo-CLEM) (Figure 4A).  
225 Cryo-FIB-SEM (Focused Ion Beam - Scanning Electron Microscopy) allows the 3D high  
226 resolution imaging of L-forms and internal vesicles. The cryogenic sample preparation and  
227 imaging ensures that the L-forms are visualized in a near-to-native state (Shimoni and Muller,  
228 1998; Studer et al., 1989).

229 Following high-pressure freezing, cells with putative intracellular vesicles were  
230 detected based on internal darker regions lacking cytosolic eGFP using *alpha* pIJ82-GFP  
231 (Figure S4). Specific L-forms (example of selection in Figure 4B, C) were imaged in detail  
232 using cryo-FIB-SEM. The reduction in cytosolic eGFP indeed matched the presence of internal  
233 vesicles as detected by FIB-SEM (Figure 4C, D, white arrow), in line with previous results  
234 (Figure 2B). In addition, the composition of the cytoplasm and internal vesicle content was  
235 different, as measured using the InLens energy selective backscattered (EsB) detector which  
236 provides contrast based on the distribution of heavier elements (Figure 4E). Analysis of the  
237 pixel intensity indicated that the contrast level inside the internal vesicle was similar to the  
238 extracellular environment, whereas the cytoplasm had a higher contrast. Moreover, an over-  
239 exposure experiment showed that the vesicle has the same capacity to absorb the electron dose  
240 as the medium outside, different from the rest of the cell (Figure S5A-B). These results support  
241 the finding that internal vesicles contain extracellular medium and are formed via membrane  
242 invagination (Figure 2C).

243           Further high-resolution imaging indicated the presence of multiple internal vesicles  
244    within individual cells (Figure 4F-I, Figure S5C-E). Most detected vesicles were lining the cell  
245    membrane (Figure 4G, Figure S5C-E), varied in size and membrane thickness (Figure 4H) and  
246    could even be present inside larger vesicles (Figure 4H and Figure S6D), like the previously  
247    observed secondary vesicle (Figure S2F). In addition, vesicles could be observed budding out  
248    of the cell membrane (Figure 4I). 3D reconstruction of the budding vesicles based on contour  
249    tracing revealed that these were either an extension of an internal vesicle, or remained  
250    connected to internal vesicles, forming a complex (Figure 4J-K, Figure S6A-D, Video S2 and  
251    S3).

252           In some cases, cells contained intracellular regions with different grey values from the  
253    rest of the cell (Figure 4Li). These regions had a size distribution of 300 to 800 nm, did not line  
254    the cell membrane, and were surrounded by dark particles of around 25-60 nm in diameter  
255    (Figure 4Lii-iv). It could be possible that these dark particles are lipid bodies, compared to  
256    previous cryo-FIB-SEM observations (Spehner et al., 2020; Vidavsky et al., 2016). A potential  
257    interpretation is that the internal regions are vesicles of which the enclosing lipid membrane  
258    has partially degraded. The lipids and lipidic degradation products may have accumulated in  
259    lipid droplets that result in the observed black particles.

260           These results further confirm that the internal vesicles observed in *K. viridisfaciens* L-  
261    forms contain external medium and can be formed by invagination of the cell membrane. L-  
262    forms can contain multiple vesicles of varying sizes, in some cases forming clusters or  
263    complexes of vesicles that can protrude out of the cell membrane. Internal vesicles may release  
264    their contents in the cell after vesicle degradation. These findings support a model for uptake  
265    of macromolecules such as DNA by engulfment, followed by release of the cargo after vesicle  
266    disruption (Figure 5).

267

268 **DISCUSSION**

269 The bacterial cell wall is an important protective barrier towards the environment, providing  
270 stress resistance and enabling the selective passage of molecules. However, in recent years it  
271 has become clear that under some conditions, bacteria may also thrive without this layer.  
272 Prolonged exposure to environmental stresses, such as cell-wall targeting agents or a high  
273 osmotic pressure, can induce the formation of L-forms that efficiently proliferate without their  
274 cell wall (Allan et al., 2009; Ramijan et al., 2018). The consequences of such a wall-deficient  
275 bacterial lifestyle on their ability to take up DNA are largely unknown. Here we provide  
276 evidence that L-forms may take up DNA and other macromolecules via engulfment and the  
277 subsequent formation of internal vesicles (Figure 5).

278

279 **A new mechanism for HGT?**

280 Well-known mechanisms for HGT are natural transformation, transduction, and conjugation  
281 (as reviewed in Arnold et al., 2021; Thomas and Nielsen, 2005). These mechanisms require  
282 sophisticated machinery to enable transport of DNA across the cell envelope. We here show  
283 that wall-deficient cells such as protoplasts, S-cells and L-forms of *K. viridifaciens* take up  
284 DNA using PEG. Importantly, L-forms are the only wall-deficient cells that achieve natural  
285 transformation using plasmid DNA without PEG. Naturally transformable bacteria use a  
286 canonical and complex system for DNA uptake across the cell wall and cell membrane. The  
287 latter step requires the DNA-binding protein ComEA and the pore-forming channel protein  
288 ComEC, with homologs found across naturally transformable Gram-positive and Gram-  
289 negative species (e.g., ComE and ComA in *N. gonorrhoeae*). Disruption of either of these  
290 proteins typically results in a drastic reduction or even absence of transformation (Friedrich et  
291 al., 2001; Hahn et al., 1987; Inamine and Dubnau, 1995; Yeh et al., 2003). However, disruption  
292 of the likely genes for ComEA and ComEC in L-forms of *K. viridifaciens* had no effect on the

293 ability to take up DNA, suggesting a mechanism independent of the canonical DNA  
294 translocation machinery.

295

## 296 **An endocytosis-like process in L-form bacteria**

297 Endocytosis is a fundamental and highly regulated process in eukaryotes that is involved in the  
298 uptake of nutrients, regulation of plasma membrane composition, sensing of the extracellular  
299 environment and signaling (Thottacherry et al., 2019). Invagination of the membrane and  
300 subsequent membrane scission and vesicle formation allows cells to internalize a wide array of  
301 cargo such as fluids, ligands, plasma membrane proteins and sometimes even entire bacteria.  
302 Invagination is often followed by passing the cargo through the endosomal pathway and  
303 lysosomal degradation (Cossart and Helenius, 2014). Specific mammalian cells can take up  
304 DNA, followed by active gene expression (Wolff et al., 1990), which potentially occurs via  
305 endocytosis, although the exact mechanism is unclear (reviewed by Budker et al., 2000;  
306 Trombone et al., 2007; Wolff and Budker, 2005).

307 This work shows that L-forms use an endocytosis-like mechanism for the uptake of  
308 DNA, whereby membrane invagination led to the formation of intracellular vesicles that during  
309 their formation encapsulated extracellular material (Figure 5). Via this process, not only DNA  
310 but also other macromolecules such as 3 kDa dextran and even 125-nm lipid nanoparticles  
311 were taken up, strongly suggesting that the uptake process is non-specific. Interestingly, an  
312 older study also reports the uptake of fluorescent dextrans in internal vesicles of *Bacillus*  
313 *subtilis* L-forms, which was proposed to occur via fluid-phase endocytosis (Oparka et al.,  
314 1993).

315 The mechanism underlying formation of intracellular vesicles in L-forms most likely  
316 depends on increased membrane dynamics due to excess membrane synthesis (Mercier et al.,  
317 2013; Studer et al., 2016). An imbalance in the cell surface to volume ratio due to excess

318 membrane synthesis can lead to internal vesicle formation in spherical *E. coli* and *B. subtilis*  
319 shape mutants (Bendezu and de Boer, 2008; Mercier et al., 2013). Internal vesicles or vacuoles  
320 can also be formed in enlarged protoplasts and spheroplasts (containing an outer membrane)  
321 which are maintained in conditions that allow cell membrane expansion (Nishida, 2020;  
322 Takahashi et al., 2020). Indeed, a lack of excess membrane production may also explain why  
323 we did not observe consistent DNA uptake in protoplasts and S-cells, both of which are unable  
324 to proliferate without their wall.

325 High-resolution electron microscopy imaging revealed multiple internal vesicles inside  
326 L-forms. Interestingly, the L-forms also contained regions not surrounded by a membrane but  
327 were lined with darker spots that may represent lipid bodies (Spehner et al., 2020; Vidavsky et  
328 al., 2016), possibly originating from the degradation products of the membrane of internal  
329 vesicles. This disintegration would lead to release of the cargo into the cytoplasm. In  
330 eukaryotes, escape of therapeutics from endosomal vesicles can be mediated by bacterial, viral,  
331 and chemical agents or by nanoparticles (Patel et al., 2019; Varkouhi et al., 2011). Escape  
332 mechanisms include pore formation, destabilization of the membrane, nanoparticle swelling or  
333 osmotic rupture. High sucrose levels or the proton sponge effect facilitate the influx of protons  
334 followed by chloride ion accumulation and inflow of water, leading to rupture of the vesicle  
335 (Behr, 1997; Cervia et al., 2017; Ciftci and Levy, 2001; Liang and W. Lam, 2012).  
336 Acidification of endosomes occurs via membrane-localized vacuolar ATPases (V-ATPases)  
337 that pump protons into the vesicles (Forgac, 2007). Bacteria have similar proton pumps called  
338 F-ATPases on their plasma membrane and have been found on the membrane of intracellular  
339 vesicles of enlarged protoplasts (Hensel et al., 1996; Mulkidjianian et al., 2007; Takahashi et  
340 al., 2020). Considering the complexity of known escape mechanisms further research is  
341 required to understand if and how internal L-form vesicles can disintegrate to release their  
342 contents in the cytoplasm.

343 **An endocytosis-like mechanism for macromolecule uptake in primordial cells**

344 L-forms have been proposed as a model to study early lifeforms due to their lack of cell wall  
345 and biophysical way of proliferation (Briers et al., 2012b; Errington et al., 2016). Horizontal  
346 gene transfer is thought to have played a pivotal role in the evolution of early life (Woese,  
347 1998; Woese, 2000). This may have occurred in cells that did not yet evolve a cell wall,  
348 allowing genetic recombination after cell fusion or lightning-triggered electroporation  
349 (Errington, 2013; Kotnik, 2013), yet other mechanisms of HGT were unknown. Internal  
350 vesicles have also been observed in L-forms of other species, with varying functions and  
351 mechanisms of vesicle formation described (Han et al., 2015; Yabu, 1991). L-forms of *Listeria*  
352 *monocytogenes* are capable of forming DNA-containing internal vesicles along the inside of  
353 the cell, which upon release become metabolically active (Briers et al., 2012a; Dell'Era et al.,  
354 2009), as well as forming internal vesicles via membrane invagination (Studer et al., 2016).  
355 Additionally, secondary invagination of the vesicle membrane itself can result in vesicles  
356 containing cytoplasm and represent viable offspring.

357 These examples provide additional support for the existence of bacterial endocytosis, and we  
358 therefore propose that this may reflect an ancient mechanism that has been retained in modern  
359 cells to allow shedding their cell wall when the environmental conditions require it.

360 These examples provide additional support for the existence of bacterial endocytosis, and we  
361 therefore propose that this may reflect an ancient mechanism of how primordial cells acquired  
362 new genetic material and nutrients via engulfment.

363 In conclusion, our work shows that the permanent loss of the bacterial cell wall allows  
364 the uptake of DNA, dextran and 125 nm-sized lipid nanoparticles via internal vesicle  
365 formation. The invagination of the cell membrane, likely driven by excess membrane  
366 production, leads to the engulfment of external fluids and subsequent vesicle formation. This  
367 is an energy-dependent process that has similarities to a simple form of endocytosis as seen in

368 eukaryotes. Future studies are required to further understand the molecular mechanisms behind  
369 this process.

370

### 371 **ACKNOWLEDGEMENTS**

372 R.K. and L.Z. are supported by the TARGETBIO program of the Netherlands Organization for  
373 Scientific Research (NWO), grant nr. 15812. S.S. is supported by the NWA startimpulse grant  
374 (Origins Centre). As part of the COFUND project oLife, D.A. acknowledges funding from the  
375 European Union's Horizon 2020 research and innovation program under the Grant Agreement  
376 847675. M.d.B, R.R., D.D. and A.A. are supported by an ERCAdvanced Investigator grant  
377 (H2020-ERC-2017-ADV-788982-COLMIN). A.A. is also supported by the NWO  
378 (VI.Veni.192.094). We thank Nico Sommerdijk (Radboudumc, Electron Microscopy Center)  
379 for his contribution with high pressure freezing of the samples.

380

### 381 **AUTHOR CONTRIBUTIONS**

382 R.K. and S.S. carried out the experiments. L.Z., S.S. and R.K. created the plasmids and D.A  
383 provided the lipid nanoparticles. A.A., M.d.B, R.R. and D.D. performed the FIB-SEM imaging  
384 and analysis. All authors contributed to the design of the experiments and discussion of the  
385 results. R.K, D.C. and A.A. wrote the manuscript with input from all authors.

386

### 387 **DECLARATION OF INTERESTS**

388 The authors declare no competing interests.

389 **FIGURE LEGENDS**

390 **Figure 1. Natural DNA Uptake of Wall-Deficient Cells Is Independent of the Competence**

391 **Proteins ComEA and ComEC and Correlates with Membrane Fluidity**

392 (A) Schematic representation of the different wall-deficient cell types of *K. viridifaciens* that  
393 can be created artificially (protoplasts) or naturally (S-cells and L-forms). PG = peptidoglycan.

394 (B) Mycelium, protoplasts, S-cells and L-form lines *alpha*, M1 and *delta* were incubated with  
395 plasmid DNA (pRed\*) for 24h, plated on selective medium and incubated at 30°C to select for  
396 transformed cells. Note that only L-forms show consistent DNA uptake.

397 (C) Localization of putative ComEA and ComEC genes (BOQ63\_29625 and BOQ63\_29630,  
398 respectively) on the chromosome of *K. viridifaciens* DSM 40239 as compared to *comEC* and  
399 *comEA* of naturally transformable *Bacillus subtilis* str. 168.

400 (D) Natural transformation assay of 7-day of *alpha* and *alpha*ΔcomEA/EC using pFL-ssgB. ns  
401 = not significant (n=5 replicates, two-tailed independent t-test,  $t(8)=1.572$ ,  $P=0.155$ ). Data are  
402 represented as mean ±SD with individual data points.

403 (E) Natural transformation efficiency of 1-, 3- and 7-day old *alpha* after 24 h incubation with  
404 pFL-ssgB. Asterisks indicate statistically significant different transformation efficiency (n=4  
405 replicates, one-way ANOVA,  $F(2,9) = 12.16$ , Tukey post-hoc test,  $P = .006$  (1-3 day) and .005  
406 (1-7 day)). Data are represented as mean ±SD with individual data points.

407 (F) Generalized polarization as measurement of membrane fluidity of 1-, 3- and 7-day old  
408 *alpha* as calculated from the shift in the fluorescence emission spectrum of the membrane dye  
409 Laurdan. Lower GP indicates a higher membrane fluidity. Data are represented as mean ±SD  
410 with individual data points, n=3.

411

412

413

414 **Figure 2. Formation of Internal Vesicles and Uptake of External Fluids in L-forms**

415 (A) Fluorescence micrograph of *alpha* pIJ82-GFP (cytoplasmic eGFP; green) incubated with  
416 Cy-5 labelled plasmid DNA (pFL-ssgB; magenta). BF = Brightfield. Scale bar = 2  $\mu$ m.

417 (B) Incubation of *alpha* pIJ82-GFP with the membrane-impermeable dye SynapseRed C2M  
418 (SynapseRed; magenta), showing two z-slices of one L-form cell. BF = brightfield. Scale bar  
419 = 2  $\mu$ m.

420 (C) Stills of a time-lapse imaging experiment of *alpha* producing DivIVA-eGFP (*alpha* pKR2)  
421 (green) incubated with 3 kDa Dextran-Texas Red (D-TR; magenta). Arrows indicate  
422 localization of DivIVA-eGFP. Scale bar = 2  $\mu$ m. See also Video S1.

423 (D) Formation of foci and ring-structures of DivIVA-eGFP in *alpha* pKR2 (green) incubated  
424 with Dextran-Texas Red (D-TR, magenta). Scale bar = 2  $\mu$ m. Note that L-forms are able to take  
425 up fluorescently stained DNA and Dextran by formation of internal vesicles.

426

427 **Figure 3. Localization of Lipid Nanoparticles in Internal L-form Vesicles**

428 (A-B) Localization of LNP-LR (Lipid Nanoparticle containing 18:1 Liss Rhod PE; magenta)  
429 in internal vesicles of *alpha* (A) and *alpha* pIJ82-GFP (B) after overnight or 3-day incubation  
430 at 30°C respectively. Scale bar = 2  $\mu$ m.

431 (C) Density profile plot and corresponding line selection of *alpha* pIJ82-GFP incubated with  
432 LNP-LR showing a decrease in cytoplasmic eGFP emission correlates with an increase in LNP-  
433 LR emission.

434 (D-E) Localization of LNP-LR during incubation with *alpha* at 4°C (D) or in the presence of  
435 2.5 mM sodium azide at 30°C (E) after 0, 24 and 48 h incubation. Similar results were obtained  
436 with 1 and 10 mM sodium azide (data not shown). Scale bar = 5  $\mu$ m. Note that incubation of  
437 L-forms with lipid nanoparticles (average size of 125 nm) results in their localization inside  
438 internal vesicles, a process that can be inhibited by incubation at 4°C or sodium azide.

439 **Figure 4. 3D Cryo-Fluorescence and Cryo-FIB-SEM of L-forms Reveals its Ultra-**

440 **Structure in High Resolution**

441 (A) Correlated fluorescence and electron micrographs of the frozen sample (Zen Connect

442 image). The bright green dots indicate individual cells of *alpha* pIJ82-GFP. A finderTOP raster

443 visible both in fluorescence and electron microscopy facilitates alignment between the two

444 imaging modules. The small squares indicate different regions of interest, imaged at higher

445 resolution. FL: Fluorescence light

446 (B) Higher resolution image of one region of interest, showing many fluorescent cells.

447 (C) L-form depicted by white box in B, showing intracellular dark sphere (~ 1 micrometer,

448 white arrow).

449 (D) SEM image (SE, Inlens) of cell in C) with white arrow indicating the internal vesicle. The

450 X, Y and Z arrows in B, C and D indicate the 3D orientation of the imaged cell as observed in

451 3D FIB-SEM.

452 (E) Superposition of five consecutive slices (backscattered images) of cell in D). Inset:

453 Intensity plot profile (white) of the region in white box.

454 (F-I) FIB-SEM slices showing different types of internal vesicles. (F-G) Vesicles lining the

455 cell membrane. Asterisks indicate vesicles. (H) Vesicle complex, note the different membrane

456 thickness of vesicles indicated with white arrows. See also Figure S6D and Video S3. (I)

457 Membrane protrusions as indicated with white arrow.

458 (J-K) Analysis of the interconnected vesicles of the cell in I). (Ji-iii) Three consecutive slices

459 showing the interaction of different vesicles. Ki-iii show higher magnification of the regions

460 in white boxes in Ji-iii, respectively). (Jiv, Kiv) 3D segmentation of Ki-iii. While some of the

461 vesicles are intracellular, others protrude out of the cell. A complete connected vesicle structure

462 is shown in green and is indicated by white arrows in I, Jiii and Jiv. See also Figure S6A-C and

463 Video S2.

464 (L) Regions with different contrast are lined with black particles representing putative lipid  
465 bodies. The size distribution of the black particles is between 25 to 60 nm. Scale bars represent  
466 500 nm unless otherwise specified.

467

468 **Figure 5. Proposed Model for DNA Uptake by Internal Vesicle Formation in L-forms**

469 Excess membrane synthesis results in invagination of the cell membrane, leading to the  
470 formation of internal vesicles in L-forms. In this process, extracellular liquid containing DNA  
471 or other macromolecules is engulfed. Finally, DNA is released from internal vesicles by an  
472 unknown process (indicated by dashed arrow), which may involve vesicle disruption. Image  
473 created with BioRender.com.

474

475

476 **SUPPLEMENTAL FIGURE LEGENDS**

477 **Figure S1. Analysis of Natural and Artificial DNA Uptake and Membrane Fluidity of**  
478 **Cell-Wall Deficient Cells and Confirmation of *alphaΔcomEA/EC* Mutant, Related to**  
479 **Figure 1**

480 (A) (Left) Transformation plates showing absence of natural transformation upon incubation  
481 of 1-and 7-day old L-form *alpha* with intact or fragmented gDNA of *alphaΔssgB* containing  
482 an apramycin resistance cassette. (Right) Gel electrograph of 100 ng intact (I) or fragmented  
483 (F) gDNA of *alphaΔssgB* as used in the natural transformation assay.

484 (B) Polyethylene glycol (PEG)-based transformation efficiency of *K. viridifaciens* mycelium,  
485 protoplasts, S-cells and L-forms using plasmid DNA (pRed\*) containing an apramycin  
486 resistance gene, shown as the percentage of transformed colonies per total colony forming  
487 units. Data are represented as mean  $\pm$  SD, n=3.

488 (C) PEG-based transformation of *alpha* using unmethylated or methylated plasmid DNA  
489 (pRed\*), gDNA or filter-sterilized salt-lysed cells from mutant line *alphaΔssgB*.

490 (D) Gel electrograph of PCR products from three different PCR mixes to confirm the  
491 replacement of *comEA* and *comEC* by an apramycin resistance cassette. WT = gDNA *alpha*;  
492  $\Delta$  = gDNA *alphaΔcomEA/EC*. Expected products: PCR 1 WT = 3676 bp, mutant = 1294 bp;  
493 PCR 2 WT = 1197 bp, mutant = no amplification, PCR 3 WT = 745 bp, mutant = no  
494 amplification.

495 (E) Generalized Polarization (GP) as measure of membrane fluidity of *K. viridifaciens*  
496 protoplasts, 1-, 3- and 7- day old L-form *alpha*. Lower GP indicates higher fluidity. \*, \*\* and  
497 \*\*\* indicate  $P \leq 0.05$ , 0.01 and 0.001, respectively (one-way ANOVA, F (3,8) = 19.49, Tukey  
498 post-hoc test, n=3). Data are represented as mean  $\pm$  SD with individual data points, n=3.

499 (F) Membrane fluidity of L-form *alpha* (1- and 7-day old), S-cells and protoplasts of *K.*  
500 *viridifaciens*. Top rows show brightfield images and heatmap of fluorescence emission (red to

501 blue colour indicate GP values of -1.0 to 1.0 respectively) of representative cells stained with  
502 a Laurdan dye for quantifying the membrane fluidity (BF = brightfield, FL = fluorescence  
503 emission). Bottom panel shows frequency distributions of the Generalized Polarization (GP).  
504 Lower GP values correspond to higher membrane fluidity indicating that L-forms have more  
505 fluid membranes compared to S-cells and protoplasts. Control = cells imaged and analysed  
506 without Laurdan staining.

507

508 **Figure S2. Analysis of DNA Content, Internal Vesicles and Uptake of D-TR of Cell-Wall  
509 Deficient Cells, and effect of *divIVA* deletion on DNA Uptake, Related to Figure 2**

510 (A) *alpha* pIJ82-GFP incubated without Cy-5 DNA as fluorescence control.

511 (B) *alpha* and *alpha* pRed\* stained with SYTO-9 (green) to indicate chromosomal DNA. *alpha*  
512 is stained with SynapseRed C2M (SynapseRed; magenta) to visualize cell membranes, whereas  
513 (absence of) cytosolic mCherry for *alpha* pRed\* (magenta) indicates the presence of an internal  
514 vesicle.

515 (C) Protoplasts and S-cells of *K. viridis* pIJ82-GFP producing cytosolic eGFP incubated  
516 with SynapseRed for 72 h (top rows), and S-cells of *K. viridis* pRed\* producing cytosolic  
517 mCherry incubated with SynapseRed (SR) and SYTO-9 for 72 h (bottom row). Chromosomal  
518 DNA is visualized using SYTO-9 staining. Note that presence of internal membrane structures  
519 causes a reduction in cytosolic fluorescence emission.

520 (D) Natural transformation assay of 7-day old *alpha* and *alpha* $\Delta$ *divIVA* using pFL-ssgB. ns =  
521 not significant (two-tailed independent t-test,  $t(8)=0.489$ ,  $P=0.638$ ). Data are represented as  
522 mean  $\pm$  SD with individual data points, n=5.

523 (E) L-forms without DivIVA can produce internal vesicles as shown for 5-day old  
524 *alpha* $\Delta$ *divIVA* pIJ82-GFP producing cytosolic eGFP. Scale bar = 2  $\mu$ m.

525 (F) *alpha* incubated with (example 1 and 2) or without (control) Dextran Texas-Red (D-TR;  
526 magenta), showing the formation of internal vesicles filled with D-TR. The arrow indicates the  
527 presence of a non-fluorescent secondary internal vesicle inside an existing internal vesicle  
528 (example 2). Scale bar = 5  $\mu$ m.

529 (G) Protoplasts and S-cells of *K. viridisfaciens* pIJ82-GFP incubated with D-TR for 72 h. Note  
530 that no internalization of D-TR was observed.

531

532 **Figure S3. Uptake of LNP-LR by *alpha*, Related to Figure 3**

533 (A) *alpha* pIJ82-GFP incubated without LNP-LR (LNP-Liss Rhod; magenta) as imaging  
534 control.

535 (B-C) *alpha* incubated with (B) or without (C) LNP-LR showing localization of LNP-LR after  
536 0 h, 24 h and 48 h or examples of autofluorescence, respectively.

537 (D-E) *alpha* incubated with PBS at 4 degrees (D) or with PBS at 30°C in the presence of 2.5  
538 mM sodium azide (E) as control for fluorescence emission. Images were obtained after 0, 24  
539 and 48 h incubation.

540

541 **Figure S4. High Resolution Cryo-Fluorescence of L-forms, Related to Figure 4**

542 *alpha* pIJ82-GFP imaged using cryo-fluorescence microscopy. Putative vesicles are indicated  
543 with arrows. Images were captured using the long distance 100x objective.

544

545 **Figure S5. Over-dose experiment of L-form Cell using FIB-SEM, Related to Figure 4**

546 (A-B) FIB-SEM slice of over-dose experiment using *alpha* pIJ82-GFP. The yellow colour in  
547 B) indicates areas with distinguished beam damage. The vesicle (black asterisk in the center of  
548 the cell) seems to be less to none affected by the dose, similar to the medium outside the cell  
549 (black asterisk outside of the cell). The image in Figure 4D is taken before this experiment,

550 and Figure 4E is obtained by summing several slices deeper in the cell after acquiring this  
551 image.

552 (C-E) FIB-SEM slices of two cells (C-D correspond to the cell in Figure 4F and E corresponds  
553 to the cell in Figure 4 H-K), white arrows indicate vesicles that line the cell membrane. Scale  
554 bar in C-E is 0.5  $\mu$ m.

555

556 **Figure S6. 3D Segmentation of L-form Vesicles, Related to Figure 4**

557 (A-C) FIB-SEM slices corresponding to Figure 4I, Jiv and Ki-iii, respectively. Colours  
558 correspond to the segmented colours in Figure 4Kiv. Vesicles that are budding out the cells are  
559 connected to other vesicles or are elongated inside the cell. Scale bar = 200 nm. See also Video  
560 S2.

561 (D) FIB-SEM slices corresponding to the cell in Figure 4H. Z-number indicates the slice.  
562 Colours indicate individual vesicles. See also Video S3.

563 **MATERIALS AND METHODS**

564 **Bacterial strains and culture conditions**

565 The bacterial strains and plasmids used in this study are listed in Table S2 and S3 respectively.

566 *Kitasatospora viridifaciens* DSM40239 (Ramijan et al., 2017) was grown confluently on

567 maltose-yeast extract medium (MYM) to obtain spores, which were harvested after 3-4 days

568 of growth (Stuttard, 1982). For mycelial growth in liquid, strains were grown at a density of 1

569 x 10<sup>6</sup> spores ml<sup>-1</sup> for two days in LPB medium without sucrose at 100 rpm, while LPB with

570 sucrose was used to induce the formation of S-cells (Ramijan et al., 2018). L-forms were grown

571 on solid L-phase medium agar (LPMA) or liquid LPB medium (Ramijan et al., 2018). Liquid

572 cultures were inoculated with spores for *K. viridifaciens* strains or with a frozen aliquot of a 1-

573 2-day old L-form culture in case of L-form strains. L-forms were grown in liquid culture for

574 3-4 days for chemical transformation and 7 days for all other experiments unless stated

575 specifically. L-forms were adjusted to 5-7.5 x 10<sup>7</sup> CFU ml<sup>-1</sup> for transformation assays (based

576 on OD<sub>600</sub> of 3 for 3- and 7-day old cells and 0.2 for 1-day old cells), and 2.5-5 x 10<sup>7</sup> CFU ml<sup>-1</sup>

577 (OD<sub>600</sub> of 2) for all other experiments with 7-day old cells. All *Kitasatospora* cultures were

578 grown at 30°C.

579 *Escherichia coli* strains were grown on solid or liquid LB medium (while shaking at

580 250 rpm) at 37°C. Where necessary, antibiotics (100 µg ml<sup>-1</sup> ampicillin, 25 µg ml<sup>-1</sup>

581 chloramphenicol, 5 µg ml<sup>-1</sup> thiostrepton, 50 µg ml<sup>-1</sup> apramycin, 100 µg ml<sup>-1</sup> hygromycin B

582 with the exception of 200 µg ml<sup>-1</sup> hygromycin B for LB medium) were added to the culture

583 medium. *E. coli* JM109 (Yanisch-Perron et al., 1985) was used for cloning purposes, while *E.*

584 *coli* ET12567/pUZ8002 (MacNeil et al., 1992) was used to obtain methylation-deficient DNA.

585

586

587 **Construction of plasmids**

588 All PCRs were performed using PFU or Q5® High-Fidelity DNA polymerase (NEB). The  
589 primers used in this study are listed in Table S4. To create pFL-*ssgB* (Table S3), a hygromycin  
590 resistance cassette was amplified using primer pair Hyg\_F-231\_EEV and Hyg\_R+1237\_HEV  
591 with pMS82 (Gregory et al., 2003) as the template. The PCR products were digested with  
592 EcoRV and cloned into pWHM3-oriT (Wu et al., 2019) to generate pWHM3-oriT-hyg (Table  
593 S3). The 3' flank of *ssgB* was digested from pRK1 (Ramijan et al., 2018) and cloned into  
594 pWHM3-oriT-hyg using XbaI and HindIII to generate the final plasmid.

595 pRK1 (Table S3) was created by amplifying the upstream flanking region of *comEA* by  
596 PCR with primers FL1-comEA/comEC-FW and FL1-comEA/comEC-REV, thereby  
597 introducing unique EcoRI and XbaI restriction sites, while the downstream flanking region of  
598 *comEC*, made by gene synthesis (Baseclear, Leiden, the Netherlands) was flanked by XbaI and  
599 HindIII sites. The flanking regions and apramycin cassette were cloned in pWHM3-oriT using  
600 the EcoRI, HindIII restriction sites interspersed with an apramycin resistance cassette  
601 containing flanking XbaI sites, thereby creating the final plasmid. The *comEA/comEC* deletion  
602 mutant was created in L-form strain *alpha* (Ramijan et al., 2018) using pRK1, which replaced  
603 the nucleotides +58 relative to the startcodon of *comEA* (BOQ63\_29625) until + 2489 relative  
604 to the startcodon of *comEC* (BOQ63\_29630) with an apramycin resistance cassette. Note that  
605 the gene annotation of *Streptomyces viridifaciens* ATTC11989 (accession CP023698) was  
606 used to determine the putative correct start and stop codons for *comEC*.

607 To create pIJ82-GFP, the region containing the *eGFP* gene with a *gap1* promoter was  
608 amplified from plasmid pGreen (Zacchetti et al., 2016) using primer pair gap1\_FW\_BglII and  
609 egfp\_RV\_EcoRI. The resulting PCR product was cloned into pIJ82 using BglII and EcoRI to  
610 generate the final plasmid.

611

612 **Construction of bacterial strains**

613 To create new strains, transformation of L-form *alpha* with plasmid DNA was achieved using  
614 chemical transformation based on polyethylene glycol (PEG) (Kieser et al., 2000). Plasmid  
615 DNA was isolated from *Escherichia coli* ET12567/pUZ8002 to obtain methylation-deficient  
616 DNA. L-form strains *alpha* pIJ82-GFP and *alphaΔdivIVA* pIJ82-GFP were created using  
617 chemical transformation of *alpha* and *alphaΔdivIVA* with pIJ82-GFP respectively, followed  
618 by selection with hygromycin B (Table S2). The strains were verified using the detection of  
619 fluorescent eGFP production using fluorescence microscopy. Strain *alphaΔcomEA/EC* was  
620 obtained by chemical transformation of *alpha* with pRK1 followed by selection for apramycin  
621 (Table S2). Subsequent growth on non-selective medium allowed for double homologous  
622 recombination leading to replacement of the *comEA/EC* region by an apramycin resistance  
623 cassette, leading to thiostrepton-sensitive, apramycin-resistant cells. The strain was verified by  
624 PCR using primer pair ComEA\_Apra\_check\_FW and ComEC\_Apra\_check\_RV to confirm  
625 replacement of the region by the apramycin cassette. To further confirm deletion of this region,  
626 PCR was performed using primer pairs ComEC\_Presence\_Check\_1\_FW/RV and  
627 ComEC\_Presence\_Check\_2\_FW/RV, which amplify parts of *comEC* only if this genomic  
628 region is still present.

629

630 **Genomic DNA preparation**

631 Genomic DNA was isolated from a 5-day old culture of *alphaΔssgB* (Ramijan et al., 2018)  
632 using phenol:chloroform extraction (Kieser et al., 2000). Briefly, the cell pellet was  
633 resuspended in 10.3% sucrose containing 0.01M ethylenediamine tetraacetic acid (EDTA)  
634 pH8 following lysis with 10% sodium dodecyl sulfate (SDS). Extraction with  
635 phenol:chloroform was performed and the nucleic acids were precipitated using isopropanol.  
636 The pellet was dissolved in Tris-EDTA buffer followed by RNase A (Thermo Fisher) and

637 Proteinase K treatment (Qiagen). The gDNA was isolated using phenol:chloroform extraction  
638 and precipitated using absolute ethanol, before resuspension in nuclease-free water.  
639 Fragmented gDNA was obtained by beat-beating the intact gDNA for 12 minutes using 2 mm  
640 diameter glass beads in a Mikro-Dismembrator U (Sartorius) at 2000 rpm. Chromosomal DNA  
641 concentrations were verified using the Quant-IT™ Broad-Range dsDNA Assay Kit  
642 (Invitrogen).

643

644 **Preparation of protoplasts from *Kitasatospora***

645 *K. viridifaciens* strain DSM40239 was inoculated at a density of  $5 \times 10^6$  spores ml<sup>-1</sup> in  
646 TSBS:YEME (1:1) liquid medium with 0.5% (w/v) glycine and 5 mM MgCl<sub>2</sub>. The culture was  
647 grown for 48 h while shaking at 200 rpm, after which protoplasts were prepared as described  
648 (Kieser et al., 2000). Cultures of 72 h were used for *K. viridifaciens* pIJ82-GFP and pRed\*.  
649 Lysozyme treatment was performed by the addition of 10 mg ml<sup>-1</sup> of chicken egg-white  
650 lysozyme (Sigma 70 000 U mg<sup>-1</sup>) to the mycelial suspension. The cells were incubated for 2-3  
651 h at 100 rpm and 30°C, after which mycelial fragments were separated from the protoplasts by  
652 filtration through a cotton wool filter (Kieser et al., 2000).

653

654 **Isolation of S-cells from *Kitasatospora***

655 S-cells were isolated from LPB cultures by filtration (Ramijan et al., 2018). In short, the culture  
656 was filtered through a sterile EcoCloth™ filter (Contec) and subsequently passed through a 5  
657 µm Isopore™ membrane filter. The cells were concentrated by gentle centrifugation at 1000  
658 xg for 20 minutes, after which 90% of the supernatant was removed. The cell pellet was  
659 suspended carefully in the remaining liquid.

660

661

662 **Chemical transformation**

663 Polyethylene-glycol (PEG) was used for transformation as described (Kieser et al., 2000),  
664 using freshly prepared protoplasts, S-cells or L-forms that were kept on ice prior to  
665 transformation. For chemical transformation, 50  $\mu$ l of cells were mixed with 1  $\mu$ g pRed\*  
666 (Zacchetti et al., 2018), 150 ng gDNA of strain *alpha* $\Delta$ *ssgB*, filter-sterilized salt-lysed cells (35  
667 ng DNA from *alpha* $\Delta$ *ssgB*) or MilliQ. Then, 200  $\mu$ l of 25% (w/v) PEG1000 in P-buffer (Kieser  
668 et al., 2000) was added to the cells, followed by gently mixing and diluting the suspension in  
669 P-buffer. Serial dilutions were plated on LPMA medium and after 16-18 h incubation an  
670 overlay was performed with 1 ml of P-buffer containing antibiotics. Colony forming units  
671 (CFU) were counted after 7 and 14 days for L-forms and S-cells/protoplasts, respectively.  
672 Transformants were verified by streaking on selective medium and microscopy.

673

674 **Natural transformation assay**

675 Freshly prepared cells were incubated with 30 ng  $\mu$ l $^{-1}$  DNA or MilliQ for 18-24 h at 100 rpm.  
676 A final concentration of 100 and 10 ng  $\mu$ l $^{-1}$  intact gDNA and 10 ng  $\mu$ l $^{-1}$  for fragmented gDNA  
677 isolated from *alpha* $\Delta$ *ssgB* was used in combination with both 1- and 7-day old *alpha*. Dilutions  
678 were plated on selective and nonselective LPMA after careful resuspension. Colony forming  
679 units were determined after 7-day incubation at 30°C for L-forms and mycelium and up to 14  
680 days for protoplasts and S-cells. Transformants were verified by growth on selective medium  
681 and by PCR (using primers Tsr\_Hyg\_FW1 and Tsr\_Hyg\_RV1) or microscopy. Cells were  
682 prepared from at least five replica cultures to compare transformation efficiencies between  
683 strains.

684

685

686 **Membrane fluidity**

687 Three replicate cultures of 1, 3 and 7-day old L-forms or freshly prepared protoplasts were  
688 subjected to a Laurdan dye assay as a measure for membrane fluidity (Scheinpflug et al., 2017).  
689 1 ml of each culture was first centrifuged at 1000 xg for 10 minutes to remove any traces of  
690 the culture media. Cells were resuspended in 1 ml P-buffer and adjusted to an OD<sub>600</sub> of 0.6. 10  
691 mM Laurdan (6-Dodecanoyl-2-Dimethylaminonaphthalene) stock solution (Invitrogen) was  
692 prepared in 100% dimethylformamide (DMF) and stored at -20°C in an amber tube. To each 1  
693 ml OD-adjusted culture, 1 µl of Laurdan dye was added to a final concentration of 10 µM. The  
694 cultures were then incubated in the dark at 30°C for 10 min, while shaking at 100 rpm. The  
695 cells were washed three times with P-buffer containing 1% dimethyl sulfoxide to remove  
696 unbound dye molecules before the cells were resuspended in P-buffer. 200 µl of this  
697 resuspended culture was aliquoted into a 96-well black/clear glass bottom sensoplate (Greiner  
698 Bio-one VWR). Four technical replicas were measured per culture, as well as one replica per  
699 culture condition without dye to measure background fluorescence.

700 Sample excitation was performed at 350 nm followed by fluorescence emission capture at 435  
701 and 490 nm, determined using a Spark® multimode microplate reader (Tecan). After  
702 subtracting the background fluorescence, the generalized polarization (GP) value was  
703 calculated using -

$$GP = \frac{I_{435} - I_{490}}{I_{435} + I_{490}}$$

704

705 Values obtained after calculation lie in the range of -1 to +1 with those closer to -1 indicating  
706 greater fluidity.

707 Preparation of cells for quantification of membrane fluidity by microscopy was  
708 performed as following. Cells were washed and OD-adjusted as mentioned above. Laurdan dye  
709 (stock concentration 10 mM) was added to 100 µl of culture to get a final concentration of 100

710  $\mu$ M. The culture was placed in 30°C for 5 min, while shaking at 100 rpm in the dark. 900  $\mu$ l of  
711 prewarmed P-buffer containing 1% dimethyl sulfoxide was added and the culture was  
712 centrifuged (1000 xg, 10 min) to remove any unbound dye molecules. The cells were finally  
713 resuspended in 100  $\mu$ l of P-buffer for microscopy analysis. Cells treated similarly but without  
714 Laurdan dye were used a control for microscopy measurements.

715

#### 716 **Preparation of fluorescently labelled DNA**

717 Fluorescently labelled plasmid DNA was prepared using The Mirus Label IT® Cy<sup>TM</sup>5 Labelling  
718 Kit according to the manufacturer's specifications. Aliquots of labelled DNA (100 ng  $\mu$ l<sup>-1</sup>)  
719 were stored at -20°C until further use.

720

#### 721 **Self-assembly of lipid nanoparticles**

722 All lipids (DLin-MC3-DMA/Cholesterol/DSPC/DMG-PEG2k/18:1 Liss Rhod PE) were  
723 combined in a molar ratio of 50/38.3/10/1.5/0.2 using stock solutions (100  $\mu$ M – 10 mM) in  
724 chloroform:methanol (1:1). Organic solvents were evaporated under a nitrogen stream and  
725 remaining solvent was removed *in vacuo* for at least 1 h. Subsequently, the lipid film was  
726 dissolved in EtOH<sub>abs</sub> and a 50 mM citrate buffer (pH = 4, MilliQ) was prepared. Each solution  
727 was loaded into separate syringes and connected to a T-junction microfluidic mixer. The  
728 solutions were mixed in a 3:1 flow ratio of citrate buffer against lipids (1.5 mL min<sup>-1</sup> for citrate  
729 buffer, 0.5 mL min<sup>-1</sup> for lipid solutions) giving a total lipid concentration of 1 mM. After  
730 mixing, the solution was directly loaded in a 10k MWCO dialysis cassette (Slide-A-Lyzer<sup>TM</sup>,  
731 Thermo Scientific) and dialyzed against 1x Phosphate Buffered Saline (PBS, 137 mM NaCl,  
732 2.7 mM KCl, 8 mM Na<sub>2</sub>HPO<sub>4</sub> and 2 mM KH<sub>2</sub>PO<sub>4</sub>) overnight. All incubations with LNPs were  
733 performed with cells resuspended in LPB of which the final volume of LNP solution was 25%.

734

735 **Hydrodynamic diameter and zeta-potential measurement**

736 Dynamic light scattering (DLS) measurements were performed on a Zetasizer Nano Series  
737 (Malvern Instruments, Malvern, UK). The incorporated HeNe laser works at a wavelength of  
738 633 nm and uses a detector at an angle of 173° (noninvasive back scatter technology).  
739 Measurements were recorded with 1 min equilibration time in UV cuvettes at 25 °C. For the  
740 estimation of z-average diameter (intensity weight mean diameter) and polydispersity index  
741 (PDI)(relative width of particle size distribution) samples were prepared by tenfold dilution  
742 with 1x PBS. For the estimation of the zeta potential the sample was diluted with 0.1x  
743 Phosphate Buffered Saline (13.7 mM NaCl, 0.27 mM KCl, 0.8 mM Na<sub>2</sub>HPO<sub>4</sub>, and 0.2 mM  
744 KH<sub>2</sub>PO<sub>4</sub>). All the data were in triplicates to obtain the mean value.

745

746 **Fluorescence and light microscopy**

747 Detection of fluorescence emission of transformants was performed using a Zeiss Axioscope  
748 A.1 equipped with a Zeiss Axiocam 305 color digital camera, using filter set 63 HE (Carl Zeiss,  
749 consisting of a 572/25 nm bandpass excitation filter, 590 nm beamsplitter and 629/62 nm  
750 bandpass emission filter) to capture mCherry fluorescence. All other microscopy was  
751 performed using a Zeiss LSM 900 confocal microscope with Airyscan 2 module, temperature  
752 control chamber and Zen 3.1 software (blue edition, Carl Zeiss Microscopy GmbH). All  
753 excitation and emission settings for this microscope are listed in Table S5. Multichannel (DIC  
754 and fluorescence) and multistack images were obtained unless specified otherwise. 10 µl of  
755 cells were imaged on an 8-chamber slide (ibidi®) coated with 0.1% poly-L-lysine (excess poly-  
756 L-lysine was removed and the slide was allowed to dry prior to applying the sample). For  
757 timelapse imaging or overnight incubation in the temperature control chamber, 400 µl of cell  
758 culture added to a 35 mm imaging µ-Dish (ibidi®) and allowed to settle at 30°C for an hour

759 before overnight imaging. Image analysis was performed using Fiji (ImageJ) software  
760 (Schindelin et al., 2012).

761 Chromosomal DNA was visualized after incubation for 30 min with SYTO-9 at a final  
762 concentration of 2  $\mu$ M. Cell membranes were visualized by incubation with SynapseRed C2M  
763 (SynapseRed) (PromoKine, PromoCell GmbH) at a final concentration of 0.2  $\mu$ g ml<sup>-1</sup>. After  
764 overnight incubation in a  $\mu$ -Dish (ibidi®) using the Zeiss LSM 900 confocal temperature  
765 control chamber, cells were imaged using the Airyscan mode with super resolution post-image  
766 processing via the Zen software. Protoplasts and S-cells were incubated with SynapseRed up  
767 to 72 h before imaging on a glass slide.

768 Uptake of fluorescently labelled DNA was assessed by incubating cells with Cy-5  
769 labelled plasmid DNA (pFL-ssgB) at a final concentration of 1.25  $\mu$ g ml<sup>-1</sup> and was imaged after  
770 48 h.

771 To capture internal vesicle formation and uptake of Dextran-Texas Red (D-TR), cells  
772 of *alpha* pKR2 were incubated with a final concentration of 1 mg ml<sup>-1</sup> Dextran-Texas Red  
773 (3000 MW, neutral, Molecular Probes) in PBS and were imaged overnight. Multistack imaging  
774 across 6  $\mu$ m total distance with 1.5  $\mu$ m steps was done with an image captured every 10  
775 minutes. Uptake of D-TR in *alpha*, protoplasts or S-cells was assessed after incubation up to  
776 72 h.

777 Uptake of red fluorescent LNPs (LNP-LR) by *alpha* was visualized by imaging after  
778 overnight incubation in a  $\mu$ -Dish (ibidi®) or after incubation for up to three days prior to  
779 imaging as indicated. Inhibition of LNP uptake was performed by incubation in the presence  
780 of 1-, 2.5- or 10-mM sodium azide (Sigma) or incubation at 4°C, and images were obtained  
781 using via the Zen software after 0, 24 and 48 h. To determine the subcellular localization of  
782 LNP-LR in *alpha* pIJ82-GFP, imaging was performed using the Airyscan mode with super

783 resolution post-image processing and analyzed using the pixel intensity of the red (LNP-LR)  
784 and green (eGFP) channels using the Plot Profile tool in Fiji (ImageJ).

785 To measure the membrane fluidity, samples were excited using a 405 nm laser and  
786 images were captured at emissions of 430 nm and 500 nm. GP value was calculated using the  
787 ‘Calculate GP’ plug-in in Fiji (Vischer, 2016) to obtain a histogram of pixel counts over the  
788 range of -1 to +1. Briefly, the image is split into individual channels followed by background  
789 subtraction and setting the non-significant pixels to zero. The images are then assigned letters  
790 “A” and “B” to calculate A-B and A+B using the image calculator. Finally, a ratio of (A-  
791 B)/(A+B) is shown as an image where minimum pixel values are set to -1 (red) and maximum  
792 pixel values set to +1 (blue). Using the analyze histogram function a list of values is obtained  
793 and used for plotting the distributions of different samples.

794

## 795 **Cryo-correlative fluorescence and electron microscopy**

### 796 *High pressure freezing*

797 7-day old L-form stain *alpha* pIJ82-GFP expressing cytoplasmic eGFP was adjusted to OD<sub>600</sub>  
798 of 2 in fresh medium containing 25% (v/v) PBS and a final concentration of 17% sucrose. Cells  
799 were incubated for four days, during which cells settled to the bottom. A few microliters of the  
800 resuspended L-form pellet was sandwiched between HPF (High-Pressure-Freezing) carriers  
801 with 2 mm internal diameter (either 0.1 mm or 0.05 mm cavity, Art. 241 and Art. 390  
802 respectively, Wohlwend) and tailor-made grid labeled, flat-sided finderTOP (Alu-platelet  
803 labelled, 0.3 mm, Art.1644 Wohlwend) to allow an imprint of a finder matrix on the amorphous  
804 ice (de Beer et al., 2021). The finderTOP was treated with 1% L- $\alpha$ -phosphatidylcholine (61755,  
805 Sigma) in ethanol (1.00983.1000, Supelco) before freezing. The samples were then high  
806 pressure frozen (Live  $\mu$ , CryoCapCell) and stored in liquid nitrogen until imaging.

807 To improve correlation between cryo-light and cryo electron microscopy, the frozen samples  
808 were loaded into a universal cryo-holder (Art. 349559-8100-020, Zeiss cryo accessory kit)  
809 using the ZEISS Correlative Cryo Workflow solution, fit into the PrepDek® (PP3010Z,  
810 Quorum technologies, Laughton, UK). Here, the HPF carriers fits into a universal cryo-holder,  
811 which subsequently can be placed into an adaptor specific for cryo-light or cryo-electron  
812 microscopy.

813

814 *Cryo-fluorescence imaging to detect regions of interests (ROI)*

815 The frozen samples were imaged with a cryo-stage adaptor (CMS-196, Linkam scientific inc.)  
816 applied to an upright confocal microscope (LSM900, Zeiss microscopy GmbH) equipped with  
817 an Airyscan 2 detector. Overview images (Zeiss C Epiplan-Apochromat 5x/0.2 DIC) were  
818 made with reflection microscopy to visualize the gridded pattern on the ice surface. Next,  
819 medium-resolution Z-stack images (Zeiss C Epiplan-Apochromat 10x/0.4 DIC) were taken  
820 with a 488 nm laser (0.4%) with a voxel size of 0.15  $\mu\text{m}$  x 0.15  $\mu\text{m}$  x 1.18  $\mu\text{m}$ . Using this  
821 resolution, cells of interest could be selected and Z-stack images were created (Zeiss C Epiplan-  
822 Neofluar 100x/0.75 DIC) using a 488 nm laser (4%), with a voxel size of 0.08  $\mu\text{m}$  x 0.08  $\mu\text{m}$   
823 x 0.44  $\mu\text{m}$ . In addition, the ice surface was imaged in all ROIs with reflection microscopy for  
824 correlation purposes in the FIB-SEM.

825 Prior to cryo-light imaging, a Zeiss ZEN Connect project (Zeiss software for correlative  
826 microscopy, version 3.1) was created to make a working sheet (canvas) to align and overlay all  
827 the images and to facilitate further correlation with cryo-FIB-SEM.

828

829 *3D Cryo-FIB-SEM*

830 The sample was sputter-coated with platinum, 5mA current for 30 seconds, using the prep stage  
831 sputter coater (PP3010, Quorum technologies, Laughton, England) and was transferred into the

832 Zeiss Crossbeam 550 FIB-SEM (Carl Zeiss Microscopy GmbH, Oberkochen, Germany) using  
833 the PP3010T preparation chamber (Quorum, Laughton, England). Throughout imaging, the  
834 samples were kept at -140 °C and the system vacuum pressure was  $1 \times 10^{-6}$  mbar.

835 After inserting the sample into the FIB-SEM chamber, overview images were taken using the  
836 SEM to align the data with the LSM reflection image of the surface of the same ZEN Connect  
837 project. This alignment enables the stage registration which allows using the fluorescence  
838 signal to navigate to different regions of interest. After initial alignment using the SEM, a FIB  
839 image of the surface was collected with the 30kV@10pA probe in 54° tilt.

840

841 A coarse trench was milled for SEM observation using the 30 kV@30 nA FIB probe. Cold  
842 deposition was done with platinum for 30 sec. Fine FIB milling on the cross section was done  
843 using the 30kV@700pA probe. For serial FIB milling and SEM imaging the slice (trench)  
844 width was 40  $\mu$ m and for FIB milling the 30 kV@300pA probe was used, with a slice thickness  
845 of 20 nm. When a new slice surface was exposed by FIB milling, an InLens secondary and EsB  
846 images were simultaneously collected at 2.33 kV acceleration potential with 250pA probe  
847 current. The EsB grid was set to -928 V. The image size was set to 2048  $\times$  1536 pixels. For  
848 noise reduction line average with a line average count N = 46 at scan speed 1 was used. The  
849 voxel size of all stacks was 5 $\times$ 5 $\times$ 20 nm<sup>3</sup>.

850

### 851 *3D FIB-SEM Image post processing*

852 The cryo-FIB-SEM images were processed using MATLAB (R2018b, Natick, Massachusetts:  
853 The MathWorks Inc.) to correct for defects such as curtaining, misalignment and local  
854 charging. The same software was used for subsequent noise reduction and contrast  
855 enhancement. A summary of each processing step is as follows:

856 ***Curtaining:*** Removing the vertical stripes in the stacks was done following a wavelet-FFT  
857 filtering approach described by (Munch et al., 2009). In brief, the high frequency information  
858 corresponding to the vertical stripes was successively condensed into a single coefficient map  
859 using decomposition by “coif” wavelet family. Subsequently, a 2D-fourier transform was  
860 performed to further tighten the stripe information into narrow bands. Finally, the condensed  
861 stipe information was eliminated by multiplication with a gaussian damping function and the  
862 destriped image was reconstructed by inverse wavelet transform.

863 ***Alignment:*** The consecutive slices were aligned using normalized cross correlation. Briefly,  
864 the first image in the stack was chosen as reference and the second image was translated pixel  
865 by pixel across the reference and a normalized cross correlation matrix was obtained using the  
866 “normxcorr2” function. The location of the highest peak in the cross-correlation matrix  
867 (representing the best correlation) was then used to calculate the translation required to align  
868 the two images. Once the moving image was aligned with the reference image, it served as the  
869 reference for alignment of the subsequent slice.

870 ***Charging:*** Elimination of the local charge imbalance was achieved using anisotropic gaussian  
871 background subtraction. Briefly, the “imgaussfilt” function was used to perform 2D-gaussian  
872 smoothing with a two-element standard deviation vector. The elements in the vector were  
873 chosen in a manner to apply a broad and sharp gaussian in the horizontal and vertical directions,  
874 respectively. Subsequently, the corrected image was obtained by subtracting the filtered image  
875 from the original image.

876 ***Noise Reduction:*** In order to improve the signal-to-noise ratio, noise reduction was performed  
877 using anisotropic diffusion filtering (Perona and Malik, 1990). Briefly, using the “imdifuseest”  
878 function, the optimal gradient threshold and number of iterations required to filter each image  
879 was estimated. Subsequently, the “imdifusefilt” function was applied with the estimated  
880 optimal parameter values to denoise each image.

881 Contrast enhancement: As the final processing step, the contrast was enhanced using “Contrast-  
882 limited adaptive histogram equalization” (Zuiderveld, 1994). Using the “adaphisteq” function,  
883 the contrast was enhanced in two steps, using a uniform distribution and a low clipping limit  
884 in order to avoid over-amplification of homogeneous regions.

885 **3D segmentation:** DragonflyTM image analysis and deep-learning software (version 2021.1,  
886 Objects Research Systems, Montreal, QC, Canada) was used to segment all image data.

887

### 888 **Bioinformatic search for putative competence genes**

889 Protein sequences from *Bacillus subtilis* str. 168, *Neisseria gonorrhoeae* and *Helicobacter*  
890 *pylori* strain P12 were obtained from the UniProt database or literature (Wolfgang et al., 1999).  
891 These sequences were used for a BlastP search against the non-redundant protein sequence  
892 database of *Streptomyces viridifaciens* (taxid 48665). Hits belonging to *Streptomyces*  
893 *viridifaciens* strain DSM40239, sequence accession numbers CP090840 to CP090842 with an  
894 E-value of  $1 \times 10^{-6}$  or lower were collected (Table S1).

895

### 896 **Statistics**

897 All statistics were performed using SPSS statistics software (IBM, version 27.0). P-values less  
898 than 0.05 were considered statistically significant.

899

900

901 **SUPPLEMENTAL VIDEO LEGENDS**

902 **Video S1. Uptake of Dextran-Texas Red by L-forms, Related to Figure 2**

903 Timelapse video of *alpha*-DivIVA-eGFP (green) incubated with 3 kDa Dextran-Texas Red (D-  
904 TR; magenta). Left: Brightfield. Right: Composite of green and magenta channels. Scale bar  
905 indicates 1  $\mu$ m.

906

907 **Video S2. 3D Reconstruction of Vesicles in L-form Cell, Related to Figure 4**

908 3D segmentation of *alpha* pIJ82-GFP corresponding to Figure 4 Jiv and Kiv. Colours indicate  
909 individual vesicles or vesicle complexes. The cell is depicted in grey.

910

911 **Video S3. 3D Reconstruction of Vesicles in L-form Cell, Related to Figure 4**

912 3D segmentation of *alpha* pIJ82-GFP corresponding to Figure 4H and Figure S6D. Colours  
913 indicate individual vesicles or vesicle complexes. The cell is depicted in grey.

914 **REFERENCES**

915

916 Allan, E.J., Hoischen, C., and Gumpert, J. (2009). Bacterial L-forms. *Adv Appl Microbiol* *68*,  
917 1-39.

918 Araki, N., Johnson, M.T., and Swanson, J.A. (1996). A role for phosphoinositide 3-kinase in  
919 the completion of macropinocytosis and phagocytosis by macrophages. *Journal of Cell Biology*  
920 *135*, 1249-1260.

921 Arnold, B.J., Huang, I.T., and Hanage, W.P. (2021). Horizontal gene transfer and adaptive  
922 evolution in bacteria. *Nat Rev Microbiol*.

923 Atkinson, H.A., Daniels, A., and Read, N.D. (2002). Live-cell imaging of endocytosis during  
924 conidial germination in the rice blast fungus, *Magnaporthe grisea*. *Fungal Genetics and Biology*  
925 *37*, 233-244.

926 Behr, J.-P. (1997). The proton sponge: a trick to enter cells the viruses did not exploit. *CHIMIA*  
927 *International Journal for Chemistry* *51*, 34-36.

928 Bendezu, F.O., and de Boer, P.A. (2008). Conditional lethality, division defects, membrane  
929 involution, and endocytosis in mre and mrd shape mutants of *Escherichia coli*. *J Bacteriol* *190*,  
930 1792-1811.

931 Bierman, M., Logan, R., O'Brien, K., Seno, E.T., Rao, R.N., and Schoner, B.E. (1992). Plasmid  
932 cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp.  
933 *Gene* *116*, 43-49.

934 Briers, Y., Staubli, T., Schmid, M.C., Wagner, M., Schuppler, M., and Loessner, M.J. (2012a).  
935 Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. *PLoS One*  
936 *7*, e38514.

937 Briers, Y., Walde, P., Schuppler, M., and Loessner, M.J. (2012b). How did bacterial ancestors  
938 reproduce? Lessons from L-form cells and giant lipid vesicles: multiplication similarities  
939 between lipid vesicles and L-form bacteria. *Bioessays* *34*, 1078-1084.

940 Budker, V., Budker, T., Zhang, G., Subbotin, V., Loomis, A., and Wolff, J.A. (2000).  
941 Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process.  
942 *The journal of gene medicine* *2*, 76-88.

943 Cervia, L.D., Chang, C.C., Wang, L., and Yuan, F. (2017). Distinct effects of endosomal escape  
944 and inhibition of endosomal trafficking on gene delivery via electrotransfection. *PLoS One* *12*,  
945 e0171699.

946 Chapman, D. (1975). Phase transitions and fluidity characteristics of lipids and cell  
947 membranes. *Quarterly reviews of biophysics* *8*, 185-235.

948 Chen, I., and Dubnau, D. (2004). DNA uptake during bacterial transformation. *Nat Rev*  
949 *Microbiol* *2*, 241-249.

950 Ciftci, K., and Levy, R.J. (2001). Enhanced plasmid DNA transfection with lysosomotropic  
951 agents in cultured fibroblasts. *International journal of pharmaceutics* *218*, 81-92.

952 Cossart, P., and Helenius, A. (2014). Endocytosis of viruses and bacteria. *Cold Spring Harb*  
953 *Perspect Biol* *6*.

954 Costa, T.R., Felisberto-Rodrigues, C., Meir, A., Prevost, M.S., Redzej, A., Trokter, M., and  
955 Waksman, G. (2015). Secretion systems in Gram-negative bacteria: structural and mechanistic  
956 insights. *Nat Rev Microbiol* *13*, 343-359.

957 Cullis, P.R., and Hope, M.J. (2017). Lipid Nanoparticle Systems for Enabling Gene Therapies.  
958 *Mol Ther* *25*, 1467-1475.

959 de Beer, M., Roverts, R., Heiligenstein, X., Lamers, E., Sommerdijk, N., and Akiva, A. (2021).  
960 Visualizing Biological Tissues: A Multiscale Workflow from Live Imaging to 3D Cryo-  
961 CLEM. *Microscopy and Microanalysis* *27*, 11-12.

962 Dell'Era, S., Buchrieser, C., Couve, E., Schnell, B., Briers, Y., Schuppler, M., and Loessner,  
963 M.J. (2009). *Listeria monocytogenes* L-forms respond to cell wall deficiency by modifying  
964 gene expression and the mode of division. *Mol Microbiol* 73, 306-322.

965 Dubnau, D. (1991). Genetic competence in *Bacillus subtilis*. *Microbiological reviews* 55, 395-  
966 424.

967 Elkin, S.R., Lakoduk, A.M., and Schmid, S.L. (2016). Endocytic pathways and endosomal  
968 trafficking: a primer. *Wien Med Wochenschr* 166, 196-204.

969 Ellison, C.K., Dalia, T.N., Vidal Ceballos, A., Wang, J.C., Biais, N., Brun, Y.V., and Dalia,  
970 A.B. (2018). Retraction of DNA-bound type IV competence pili initiates DNA uptake during  
971 natural transformation in *Vibrio cholerae*. *Nat Microbiol* 3, 773-780.

972 Errington, J. (2013). L-form bacteria, cell walls and the origins of life. *Open Biol* 3, 120143.

973 Errington, J., Mickiewicz, K., Kawai, Y., and Wu, L.J. (2016). L-form bacteria, chronic  
974 diseases and the origins of life. *Phil Trans R Soc B* 371, 20150494.

975 Evers, M.J.W., Kulkarni, J.A., van der Meel, R., Cullis, P.R., Vader, P., and Schiffelers, R.M.  
976 (2018). State-of-the-Art Design and Rapid-Mixing Production Techniques of Lipid  
977 Nanoparticles for Nucleic Acid Delivery. *Small Methods* 2.

978 Forgac, M. (2007). Vacuolar ATPases: rotary proton pumps in physiology and  
979 pathophysiology. *Nat Rev Mol Cell Biol* 8, 917-929.

980 Forster, B.M., and Marquis, H. (2012). Protein transport across the cell wall of monoderm  
981 Gram-positive bacteria. *Mol Microbiol* 84, 405-413.

982 Friedrich, A., Hartsch, T., and Averhoff, B. (2001). Natural transformation in mesophilic and  
983 thermophilic bacteria: identification and characterization of novel, closely related competence  
984 genes in *Acinetobacter* sp. strain BD413 and *Thermus thermophilus* HB27. *Applied and  
985 Environmental Microbiology* 67, 3140-3148.

986 Gilbreath, J.J., Cody, W.L., Merrell, D.S., and Hendrixson, D.R. (2011). Change is good:  
987 variations in common biological mechanisms in the epsilonproteobacterial genera  
988 *Campylobacter* and *Helicobacter*. *Microbiol Mol Biol Rev* 75, 84-132.

989 Gregory, M.A., Till, R., and Smith, M.C.M. (2003). Integration site for *Streptomyces* phage  
990 phiBT1 and development of site-specific integrating vectors. *J Bacteriol* 185, 5320-5323.

991 Hahn, J., Albano, M., and Dubnau, D. (1987). Isolation and characterization of Tn917lac-  
992 generated competence mutants of *Bacillus subtilis*. *J Bacteriol* 169, 3104-3109.

993 Hammond, L.R., White, M.L., and Eswara, P.J. (2019). ¡vIVA la DivIVA! *J Bacteriol* 201.

994 Hamoen, L.W., Venema, G., and Kuipers, O.P. (2003). Controlling competence in *Bacillus  
995 subtilis*: shared use of regulators. *Microbiology (Reading)* 149, 9-17.

996 Han, J., Shi, W., Xu, X., Wang, S., Zhang, S., He, L., Sun, X., and Zhang, Y. (2015). Conditions  
997 and mutations affecting *Staphylococcus aureus* L-form formation. *Microbiology* 161, 57-66.

998 Hensel, M., Achmus, H., DeckersHebestreit, G., and Altendorf, K. (1996). The ATP synthase  
999 of *Streptomyces lividans*: Characterization and purification of the F1Fo complex. *Bba-  
1000 Bioenergetics* 1274, 101-108.

1001 Hoffmann, J., and Mendgen, K. (1998). Endocytosis and membrane turnover in the germ tube  
1002 of *Uromyces fabae*. *Fungal Genet Biol* 24, 77-85.

1003 Hou, X.C., Zaks, T., Langer, R., and Dong, Y.Z. (2021). Lipid nanoparticles for mRNA  
1004 delivery. *Nat Rev Mater* 6, 1078-1094.

1005 Inamine, G.S., and Dubnau, D. (1995). ComEA, a *Bacillus subtilis* integral membrane protein  
1006 required for genetic transformation, is needed for both DNA binding and transport. *J Bacteriol*  
1007 177, 3045-3051.

1008 Jurasek, M., Flardh, K., and Vacha, R. (2020). Effect of membrane composition on DivIVA-  
1009 membrane interaction. *Biochim Biophys Acta Biomembr* 1862, 183144.

1010 Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000). Practical  
1011 *Streptomyces* genetics (Norwich: The John Innes Foundation).

1012 Kotnik, T. (2013). Lightning-triggered electroporation and electrofusion as possible  
1013 contributors to natural horizontal gene transfer. *Phys Life Rev* 10, 351-370.

1014 Kruger, N.J., and Stingl, K. (2011). Two steps away from novelty--principles of bacterial DNA  
1015 uptake. *Mol Microbiol* 80, 860-867.

1016 Kulkarni, J.A., Witzigmann, D., Chen, S., Cullis, P.R., and van der Meel, R. (2019). Lipid  
1017 Nanoparticle Technology for Clinical Translation of siRNA Therapeutics. *Accounts Chem Res*  
1018 52, 2435-2444.

1019 Lande, M.B., Donovan, J.M., and Zeidel, M.L. (1995). The relationship between membrane  
1020 fluidity and permeabilities to water, solutes, ammonia, and protons. *J Gen Physiol* 106, 67-84.

1021 Lenaz, G. (1987). Lipid fluidity and membrane protein dynamics. *Biosci Rep* 7, 823-837.

1022 Li, L., Wan, T., Wan, M., Liu, B., Cheng, R., and Zhang, R. (2015). The effect of the size of  
1023 fluorescent dextran on its endocytic pathway. *Cell Biol Int* 39, 531-539.

1024 Liang, W., and W. Lam, J.K. (2012). Endosomal Escape Pathways for Non-Viral Nucleic Acid  
1025 Delivery Systems. In *Molecular Regulation of Endocytosis*.

1026 MacNeil, D.J., Gewain, K.M., Ruby, C.L., Dezeny, G., Gibbons, P.H., and MacNeil, T. (1992).  
1027 Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a  
1028 novel integration vector. *Gene* 111, 61-68.

1029 Mercier, R., Kawai, Y., and Errington, J. (2013). Excess membrane synthesis drives a primitive  
1030 mode of cell proliferation. *Cell* 152, 997-1007.

1031 Mulkidjanian, A.Y., Makarova, K.S., Galperin, M.Y., and Koonin, E.V. (2007). Inventing the  
1032 dynamo machine: the evolution of the F-type and V-type ATPases. *Nat Rev Microbiol* 5, 892-  
1033 899.

1034 Munch, B., Trtik, P., Marone, F., and Stampanoni, M. (2009). Stripe and ring artifact removal  
1035 with combined wavelet - Fourier filtering. *Opt Express* 17, 8567-8591.

1036 Muschiol, S., Balaban, M., Normark, S., and Henriques-Normark, B. (2015). Uptake of  
1037 extracellular DNA: competence induced pili in natural transformation of *Streptococcus*  
1038 *pneumoniae*. *Bioessays* 37, 426-435.

1039 Nishida, H. (2020). Factors That Affect the Enlargement of Bacterial Protoplasts and  
1040 Spheroplasts. *Int J Mol Sci* 21.

1041 Oparka, K.J., Wright, K.M., Murant, E.A., and Allan, E.J. (1993). Fluid-Phase Endocytosis -  
1042 Do Plants Need It. *J Exp Bot* 44, 247-255.

1043 Patel, S., Kim, J., Herrera, M., Mukherjee, A., Kabanov, A.V., and Sahay, G. (2019). Brief  
1044 update on endocytosis of nanomedicines. *Adv Drug Deliv Rev* 144, 90-111.

1045 Perona, P., and Malik, J. (1990). Scale-Space and Edge-Detection Using Anisotropic Diffusion.  
1046 *Ieee T Pattern Anal* 12, 629-639.

1047 Ramijan, K., Ultee, E., Willemse, J., Zhang, Z., Wondergem, J.A.J., van der Meij, A., Heinrich,  
1048 D., Briegel, A., van Wezel, G.P., and Claessen, D. (2018). Stress-induced formation of cell  
1049 wall-deficient cells in filamentous actinomycetes. *Nat Commun* 9, 5164.

1050 Ramijan, K., van Wezel, G.P., and Claessen, D. (2017). Genome sequence of the filamentous  
1051 actinomycete *Kitasatospora viridifaciens*. *Genome Announc* 5, e01560-01516.

1052 Roberts, J., and Park, J.S. (2004). Mfd, the bacterial transcription repair coupling factor:  
1053 translocation, repair and termination. *Current Opinion in Microbiology* 7, 120-125.

1054 Sato, K., Nagai, J., Mitsui, N., Ryoko, Y., and Takano, M. (2009). Effects of endocytosis  
1055 inhibitors on internalization of human IgG by Caco-2 human intestinal epithelial cells. *Life Sci*  
1056 85, 800-807.

1057 Scheinpflug, K., Krylova, O., and Strahl, H. (2017). Measurement of Cell Membrane Fluidity  
1058 by Laurdan GP: Fluorescence Spectroscopy and Microscopy. *Methods Mol Biol* 1520, 159-  
1059 174.

1060 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., *et al.* (2012). Fiji: an open-source platform for biological-image analysis. *Nat Methods* 9, 676-682.

1063 Shimoni, E., and Muller, M. (1998). On optimizing high-pressure freezing: from heat transfer theory to a new microbiopsy device. *J Microsc* 192, 236-247.

1065 Shitut, S., Shen, M.-J., Claushuis, B., Derkx, R.J.E., Giera, M., Rozen, D., Claessen, D., and Kros, A. (2021). Generating heterokaryotic cells via bacterial cell-cell fusion. *BioRxiv*.

1067 Spehner, D., Steyer, A.M., Bertinetti, L., Orlov, I., Benoit, L., Pernet-Gallay, K., Schertel, A., and Schultz, P. (2020). Cryo-FIB-SEM as a promising tool for localizing proteins in 3D. *J Struct Biol* 211, 107528.

1070 Studer, D., Michel, M., and Muller, M. (1989). High pressure freezing comes of age. *Scanning Microscopy* 3, 253-268; discussion 268.

1072 Studer, P., Staubli, T., Wieser, N., Wolf, P., Schuppler, M., and Loessner, M.J. (2016). Proliferation of *Listeria monocytogenes* L-form cells by formation of internal and external vesicles. *Nat Commun* 7, 13631.

1075 Stülke, J., Eilers, H., and Schmidl, S.R. (2009). Mycoplasma and spiroplasma. In *Encyclopedia of microbiology*, M. Schaechter, ed. (Oxford: Elsevier), pp. 208-219.

1077 Stuttard, C. (1982). Temperate phages of *Streptomyces venezuelae*: lysogeny and host specificity shown by phages SV1 and SV2. *J Gen Microbiol* 128, 115-121.

1079 Subramanya, S., Hardin, C.F., Steverding, D., and Mensa-Wilmot, K. (2009). Glycosylphosphatidylinositol-specific phospholipase C regulates transferrin endocytosis in the African trypanosome. *Biochem J* 417, 685-694.

1082 Takahashi, S., Mizuma, M., Kami, S., and Nishida, H. (2020). Species-dependent protoplast enlargement involves different types of vacuole generation in bacteria. *Sci Rep* 10, 8832.

1084 Thomas, C.M., and Nielsen, K.M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. *Nat Rev Microbiol* 3, 711-721.

1086 Thottacherry, J.J., Sathe, M., Prabhakara, C., and Mayor, S. (2019). Spoiled for Choice: Diverse Endocytic Pathways Function at the Cell Surface. *Annu Rev Cell Dev Bi* 35, 55-84.

1088 Trombone, A.P., Silva, C.L., Lima, K.M., Oliver, C., Jamur, M.C., Prescott, A.R., and Coelho-Castelo, A.A. (2007). Endocytosis of DNA-Hsp65 alters the pH of the late endosome/lysosome and interferes with antigen presentation. *PLoS One* 2, e923.

1091 Varkouhi, A.K., Scholte, M., Storm, G., and Haisma, H.J. (2011). Endosomal escape pathways for delivery of biologicals. *J Control Release* 151, 220-228.

1093 Vidavsky, N., Akiva, A., Kaplan-Ashiri, I., Rechav, K., Addadi, L., Weiner, S., and Schertel, A. (2016). Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state. *J Struct Biol* 196, 487-495.

1096 Vischer, N. (2016). Using ImageJ to show "Generalized Polarization" (GP).

1097 Woese, C. (1998). The universal ancestor. *P Natl Acad Sci USA* 95, 6854-6859.

1098 Woese, C.R. (2000). Interpreting the universal phylogenetic tree. *P Natl Acad Sci USA* 97, 8392-8396.

1100 Wolff, J.A., and Budker, V. (2005). The Mechanism of Naked DNA Uptake and Expression. *Adv Genet* 54, 3-20.

1102 Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A., and Felgner, P.L. (1990). Direct Gene-Transfer into Mouse Muscle Invivo. *Science* 247, 1465-1468.

1104 Wolfgang, M., van Putten, J.P.M., Hayes, S.F., and Koomey, M. (1999). The *comP* locus of *Neisseria gonorrhoeae* encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. *Molecular Microbiology* 31, 1345-1357.

1107 Wu, C., van der Heul, H.U., Melnik, A.V., Lubben, J., Dorrestein, P.C., Minnaard, A.J., Choi, Y.H., and van Wezel, G.P. (2019). Lugdunomycin, an Angucycline-Derived Molecule with Unprecedented Chemical Architecture. *Angew Chem Int Ed Engl* 58, 2809-2814.

1110 Yabu, K. (1991). Formation of Vesiculated Large Bodies of *Staphylococcus-Aureus* L-Form  
1111 in a Liquid-Medium. *Microbiology and Immunology* 35, 395-404.

1112 Yanisch-Perron, C., Vieira, J., and Messing, J. (1985). Improved M13 phage cloning vectors  
1113 and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. *Gene* 33, 103-119.

1114 Yeh, Y.C., Lin, T.L., Chang, K.C., and Wang, J.T. (2003). Characterization of a ComE3  
1115 homologue essential for DNA transformation in *Helicobacter pylori*. *Infect Immun* 71, 5427-  
1116 5431.

1117 Zucchetti, B., Smits, P., and Claessen, D. (2018). Dynamics of pellet fragmentation and  
1118 aggregation in liquid-grown cultures of *Streptomyces lividans*. *Front Microbiol* 9, 943.

1119 Zucchetti, B., Willemse, J., Recter, B., van Dissel, D., van Wezel, G.P., Wosten, H.A.B., and  
1120 Claessen, D. (2016). Aggregation of germlings is a major contributing factor towards mycelial  
1121 heterogeneity of *Streptomyces*. *Sci Rep* 6, 27045.

1122 Zhang, L., Ramijan, K., Carrion, V.J., van der Aart, L.T., Willemse, J., van Wezel, G.P., and  
1123 Claessen, D. (2021). An alternative and conserved cell wall enzyme that can substitute for the  
1124 lipid II synthase MurG. *mBio* 12.

1125 Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization. *Graphics gems*, 474-  
1126 485.

1127

1128

1129 **SUPPLEMENTAL TABLES**

1130 **Table S1.** BlastP results showing significant hits (E-value < 1e-06), E-value and percent  
1131 identity against *K. viridifaciens* DSM40239.

| <b>Organism</b>                       | <b>Protein name</b>                                                        | <b>Hits</b> | <b>E-value</b> | <b>Percent identity</b> |
|---------------------------------------|----------------------------------------------------------------------------|-------------|----------------|-------------------------|
| <i>Bacillus subtilis</i> strain 168   | ComEA, ComEC, ComFA, ComGA, ComGB, ComGC, ComGD, ComGE, ComGF, ComGG, ComC | BOQ63_29625 | 5.28e-24       | 34.90%                  |
| <i>Neisseria gonorrhoeae</i>          | ComE, ComA, ComP*, PilC, PilD, PilE, PilV, PilQ, PilF, PilG, PilT          | BOQ63_29625 | 4.05e-10       | 46.43%                  |
| <i>Helicobacter pylori</i> strain P12 | ComE3 (ComEC), ComB2-4, Com6-10                                            | -           | -              | -                       |

1132 \*Protein sequence obtained from Wolfgang et al. (1999)

1133 **Table S2.** Strains used in this study.

| Strain                                            | Description                                                                                                                                                                                                                                                    | Notes/references             |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| <i>Escherichia coli</i> JM109                     | <i>recA1, endA1, gyrA96, thi, hsdR17, supE44, relA1, λ, Δ (lac-proAB), [F', traD36 proAB, lacI<sup>q</sup>ZΔM15]</i>                                                                                                                                           | Yanisch-Perron et al. (1985) |
| <i>Escherichia coli</i> ET12567/pUZ8002           | Methylation-deficient strain (F <sup>-</sup> , <i>dam-13::Tn9, dcm-6, hsdM, hsdR, recF143, zjj-202::Tn10, galK2, galT22, ara14, lacY1, xyl-5, leuB6, thi-1, tonA31, rpsL136, hisG4, tsx-78, mtl-1, glnV44</i> ) carrying the non-transmissible pUZ8002 plasmid | MacNeil et al. (1992)        |
| <i>Kitasatospora viridifaciens</i> DSM40239       | Wild-type strain                                                                                                                                                                                                                                               | DSMZ, Ramijan et al. (2017)  |
| <i>alpha</i>                                      | L-form derivative of DSM40239 obtained after exposure to Penicillin G and lysozyme                                                                                                                                                                             | Ramijan et al. (2018)        |
| M1                                                | L-form derivative of DSM40239 obtained after exposure to hyperosmotic stress                                                                                                                                                                                   | Ramijan et al. (2018)        |
| <i>delta</i>                                      | L-form derivative of DSM40239 obtained after exposure to Penicillin G and lysozyme                                                                                                                                                                             | Shitut et al. (2021)         |
| <i>alpha</i> pIJ82-GFP                            | <i>alpha</i> containing pIJ82-GFP                                                                                                                                                                                                                              | This work                    |
| <i>alpha</i> pKR2                                 | <i>alpha</i> containing pKR2, which contains a C-terminal eGFP gene fusion to <i>divIVA</i> under the control of the <i>S. coelicolor gap1</i> promoter                                                                                                        | Zhang et al. (2021)          |
| <i>alpha</i> Δ <div><i>divIVA</i></div>           | <i>divIVA::aac(3)IV</i>                                                                                                                                                                                                                                        | Zhang et al. (2021)          |
| <i>alpha</i> Δ <div><i>divIVA</i></div> pIJ82-GFP | <i>alpha</i> Δ <div><i>divIVA</i></div> containing pIJ82-GFP                                                                                                                                                                                                   | This work                    |
| <i>alpha</i> ΔssgB                                | <i>ssgB::aac(3)IV</i>                                                                                                                                                                                                                                          | Ramijan et al. (2018)        |
| <i>alpha</i> Δ <div><i>comEA/EC</i></div>         | <i>(comEA-comEC)::aac(3)IV</i>                                                                                                                                                                                                                                 | This work                    |

1134 **Table S3.** Plasmids used in this study.

| Plasmid          | Features                                                                                                                                                                               | Notes/References                     |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| pRed*            | pIJ8630-derivative expressing <i>mCherry</i> under control of the <i>S. coelicolor A3(2) gap1</i> promoter                                                                             | Zacchetti et al. (2018)              |
| pGreen           | pIJ8630-derivative expressing <i>eGFP</i> under control of the <i>S. coelicolor A3(2) gap1</i> promoter                                                                                | Zacchetti et al. (2016)              |
| pSET152          | <i>E. coli-Streptomyces</i> shuttle vector; high copy number in <i>E. coli</i> and integrating in the $\phi$ C31 <i>attB</i> site in <i>Streptomyces</i>                               | Bierman et al. (1992)                |
| pIJ82            | pSET152-derivative carrying a hygromycin resistance cassette                                                                                                                           | Kindly provided by Dr. B. Gust (JIC) |
| pIJ82-GFP        | pSET152-derivative expressing <i>eGFP</i> under control of the <i>S. coelicolor gap1</i> promoter                                                                                      | This work                            |
| pMS82            | <i>E. coli-Streptomyces</i> shuttle vector integrative in the $\phi$ BT1 <i>attB</i> site for genomic integration in <i>Streptomyces</i>                                               | Gregory et al. (2003)                |
| pWHD3-oriT       | Self-replicating, multi-copy, unstable plasmid harboring <i>oriT</i> , used as <i>E. coli/Streptomyces</i> shuttle vector                                                              | Wu et al. (2019)                     |
| pWHD3-oriT-hyg   | pWHD3-oriT-derivative carrying a hygromycin resistance cassette inserted in to the <i>tsr</i> gene in the EcoRV site                                                                   | This work                            |
| pFL- <i>ssgB</i> | pWHD3-oriT-hyg-derivative containing a hygromycin resistance gene and a downstream flanking sequence of <i>ssgB</i> downstream derived from pKR1 to enable integration into the genome | This work                            |

|      |                                                                                                                                                                                                                                     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pRK1 | pWHM3-oriT containing both flanks of the <i>This work</i><br><i>comEA-comEC</i> region interspersed with the <i>apr-</i><br><i>loxP</i> cassette conferring resistance to apramycin                                                 |
| pKR1 | pWHM3-based construct used to replace <i>ssgB</i> by <i>Ramijan et al. (2018)</i><br><i>aac(3)IV</i>                                                                                                                                |
| pKR2 | pIJ8630 derivative carrying a viomycin resistance <i>Zhang et al. (2021)</i><br>cassette and expressing a C-terminal <i>eGFP</i> fusion<br>to <i>divIVA</i> under control of the <i>S. coelicolor</i> A3(2)<br><i>gap1</i> promoter |

---

1135

1136

1137 **Table S4.** Primers used in this study.

| Primer                     | Sequence (5' - 3')                        | Notes                                                                                            | Reference |
|----------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------|-----------|
| Hyg_F-231_EEV              | ctgaGAATTGATATCGATCG<br>GCGGGGCCTGGCGGCG  | Amplification of the hygromycin resistance cassette from pMS82                                   | This work |
| Hyg_R+1237_HEV             | ctgaAAGCTTGATATCGGATC<br>CTTGCCGAGCTGGGAT | Amplification of the hygromycin resistance cassette from pMS82                                   | This work |
| FL1-comEA/comEC-FW         | GACGAATTCAAGGACCGGAT<br>GCACCGGTTTC       | Amplification of flank 1 of <i>comEA-comEC</i> locus                                             | This work |
| FL1-comEA/comEC-REV        | GAATCTAGACCGCACCGTCT<br>CGTTGATCG         | Amplification of flank 1 of <i>comEA-comEC</i> locus                                             | This work |
| ComEA_Apra_check_FW        | CACTCGTGTGAGTGACCGTT                      | Amplification of <i>comEA</i> region in PCR1 mix                                                 | This work |
| ComEC_Apra_check_RV        | AACGGCAAGGGTGGACG                         | Amplification of <i>comEA</i> region in PCR1 mix                                                 | This work |
| ComEC_Presence_Ch_eck_1_FW | TACGACACCGAGTCCGCAG                       | Amplification of <i>comEC</i> region 1 in PCR2 mix                                               | This work |
| ComEC_Presence_Ch_eck_1_RV | CGCAAGGGCCAACATGTCTC                      | Amplification of <i>comEC</i> region 1 in PCR2 mix                                               | This work |
| ComEC_Presence_Ch_eck_2_FW | AGACCCTCCTCACCGTCAAG                      | Amplification of <i>comEC</i> region 2 in PCR2 mix                                               | This work |
| ComEC_Presence_Ch_eck_2_RV | GACAGCAGGAAACCGAAGG<br>A                  | Amplification of <i>comEC</i> region 2 in PCR2 mix                                               | This work |
| gap1_FW_BglII              | GATTACAGATCTCCGAGGGC<br>TTCGAGACC         | Amplification of the region containing the <i>gap1</i> promoter and <i>eGFP</i> gene from pGreen | This work |

|                  |                                      |                                                                                                  |           |
|------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|-----------|
| egfp_RV_EcoRI    | TAAGCAGAATTCTTACTTGT<br>ACAGCTCGTCCA | Amplification of the region containing the <i>gap1</i> promoter and <i>eGFP</i> gene from pGreen | This work |
| SsgB_Presence_FW | GGCGGGTACTCCGTGATGAT<br>TC           | Confirmation of <i>ssgB</i> replacement by <i>apra-loxP</i> cassette                             | This work |
| SsgB_Presence_RV | AGCTTCGGCGAGGATGTGG                  | Confirmation of <i>ssgB</i> replacement by <i>apra-loxP</i> cassette                             | This work |
| Tsr_Hyg_FW1      | AAGGCCAAGACATTGGCAT                  | Confirmation of presence of pFL- <i>ssgB</i> in natural transformants                            | This work |
| Tsr_Hyg_RV1      | CGAGCGACGTGCGTACTATC                 | Confirmation of presence of pFL- <i>ssgB</i> in natural transformants                            | This work |

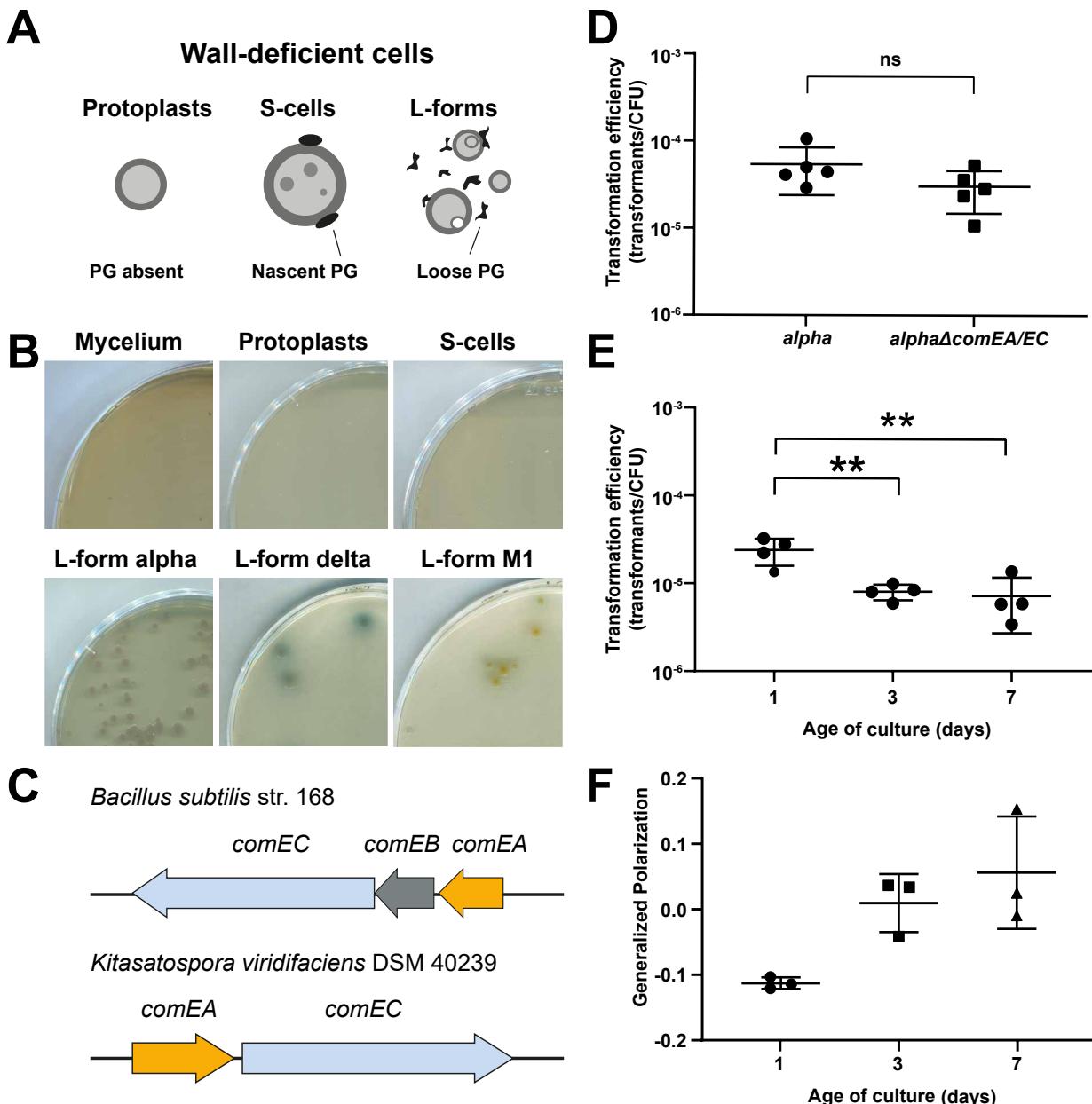
1138

1139

1140 **Table S5.** Imaging settings used with the Zeiss LSM 900 confocal microscope.

| Fluorescent dye or particle | Excitation (nm) | Emission filter (nm) |
|-----------------------------|-----------------|----------------------|
| eGFP                        | 488             | 490-575              |
| mCherry                     | 561             | 565-700              |
| SYTO-9                      | 488             | 490-575              |
| SynapseRed C2M              | 506             | 571-700              |
| Dextran-Texas Red           | 584             | 560-700              |
| Cy5                         | 650             | 450-700              |
| LNP-LR                      | 587             | 565-700              |

1141


1142

1143 **Table S6.** Dynamic Light Scattering (DLS) and  $\zeta$ -potential of lipid nanoparticles. PDI =

1144 polydispersity index.

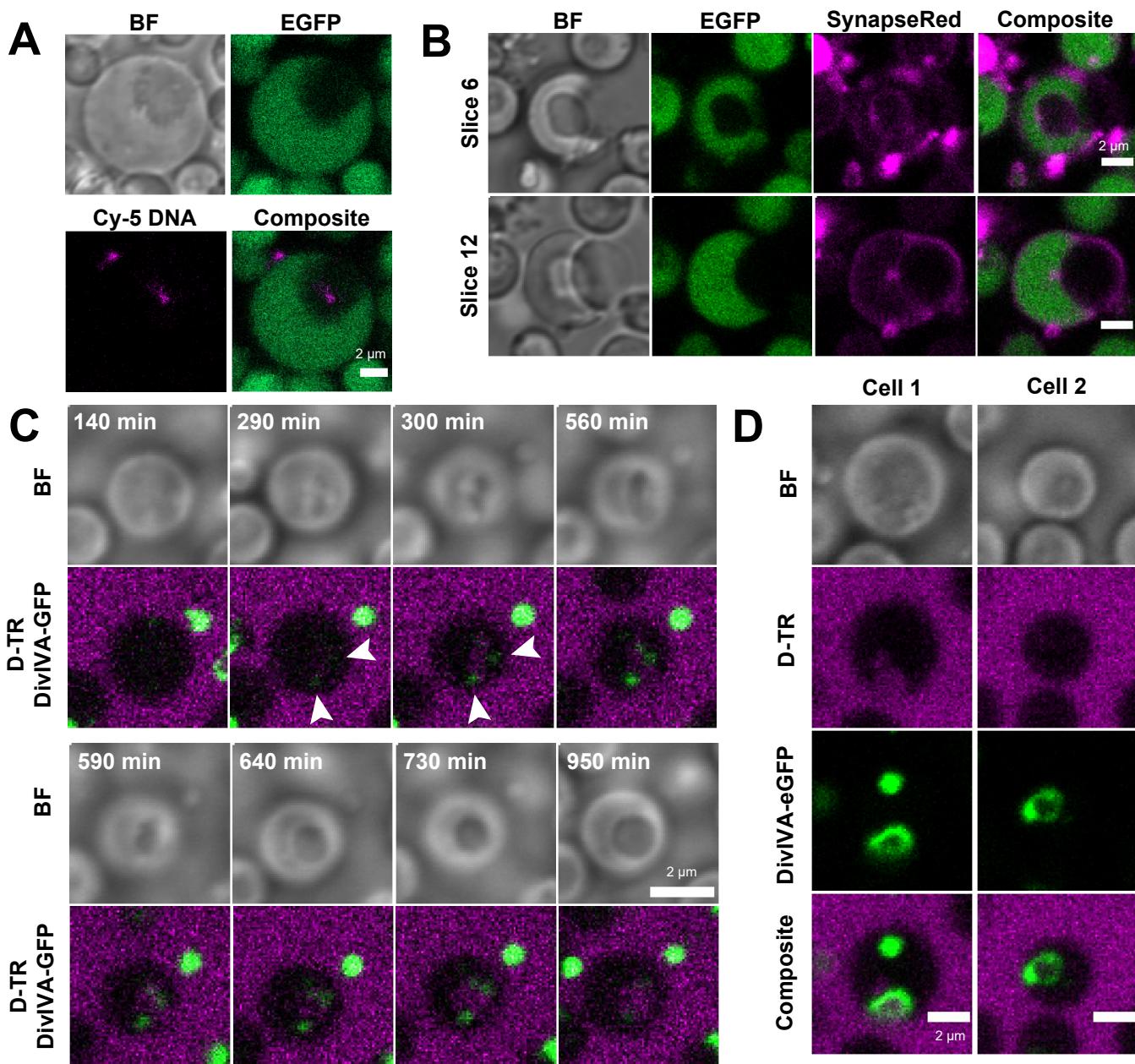
| LNP    | Avg. size (nm) at<br>25 °C | PDI   | $\zeta$ -potential at 25<br>°C |
|--------|----------------------------|-------|--------------------------------|
| LNP-LR | 125.8                      | 0.126 | -8.5                           |

1145



**Figure 1. Natural DNA Uptake of Wall-Deficient Cells Is Independent of the Competence Proteins ComEA and ComEC and Correlates with Membrane Fluidity**

(A) Schematic representation of the different wall-deficient cell types of *K. viridifaciens* that can be created artificially (protoplasts) or naturally (S-cells and L-forms). PG = peptidoglycan.


(B) Mycelium, protoplasts, S-cells and L-form lines *alpha*, M1 and *delta* were incubated with plasmid DNA (pRed\*) for 24h, plated on selective medium and incubated at 30°C to select for transformed cells. Note that only L-forms show consistent DNA uptake.

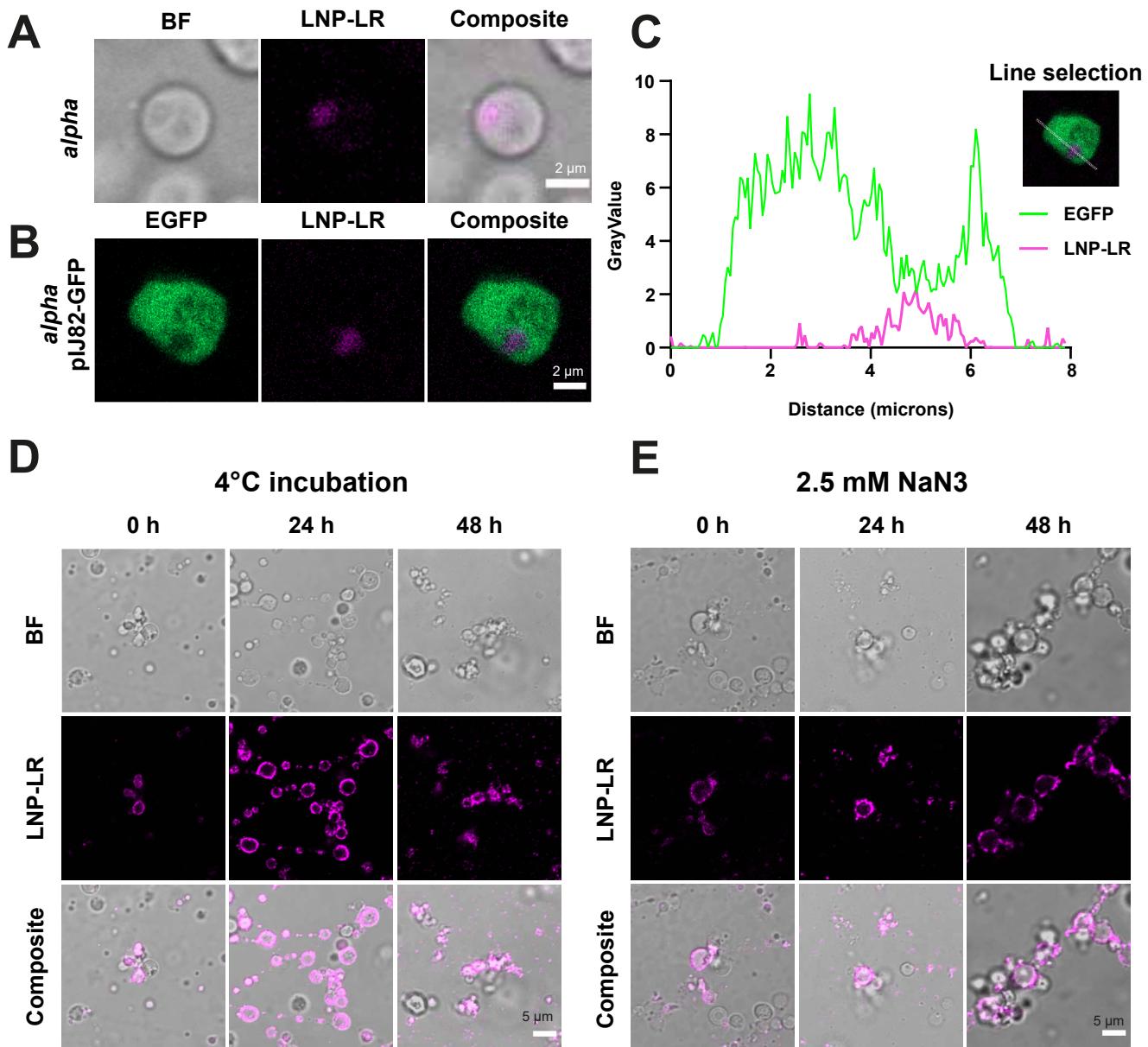
(C) Localization of putative ComEA and ComEC genes (BOQ63\_29625 and BOQ63\_29630, respectively) on the chromosome of *K. viridifaciens* DSM 40239 as compared to *comEC* and *comEA* of naturally transformable *Bacillus subtilis* str. 168.

(D) Natural transformation assay of 7-day of *alpha* and *alphaΔcomEA/EC* using pFL-ssgB. ns = not significant (n=5 replicates, two-tailed independent t-test,  $t(8)=1.572$ ,  $P=0.155$ ). Data are represented as mean  $\pm$ SD with individual data points.

(E) Natural transformation efficiency of 1-, 3- and 7-day old *alpha* after 24 h incubation with pFL-ssgB. Asterisks indicate statistically significant different transformation efficiency (n=4 replicates, one-way ANOVA,  $F(2,9) = 12.16$ , Tukey post-hoc test,  $P=.006$  (1-3 day) and  $.005$  (1-7 day)). Data are represented as mean  $\pm$ SD with individual data points.

(F) Generalized polarization as measurement of membrane fluidity of 1-, 3- and 7-day old *alpha* as calculated from the shift in the fluorescence emission spectrum of the membrane dye Laurdan. Lower GP indicates a higher membrane fluidity. Data are represented as mean  $\pm$ SD with individual data points, n=3.



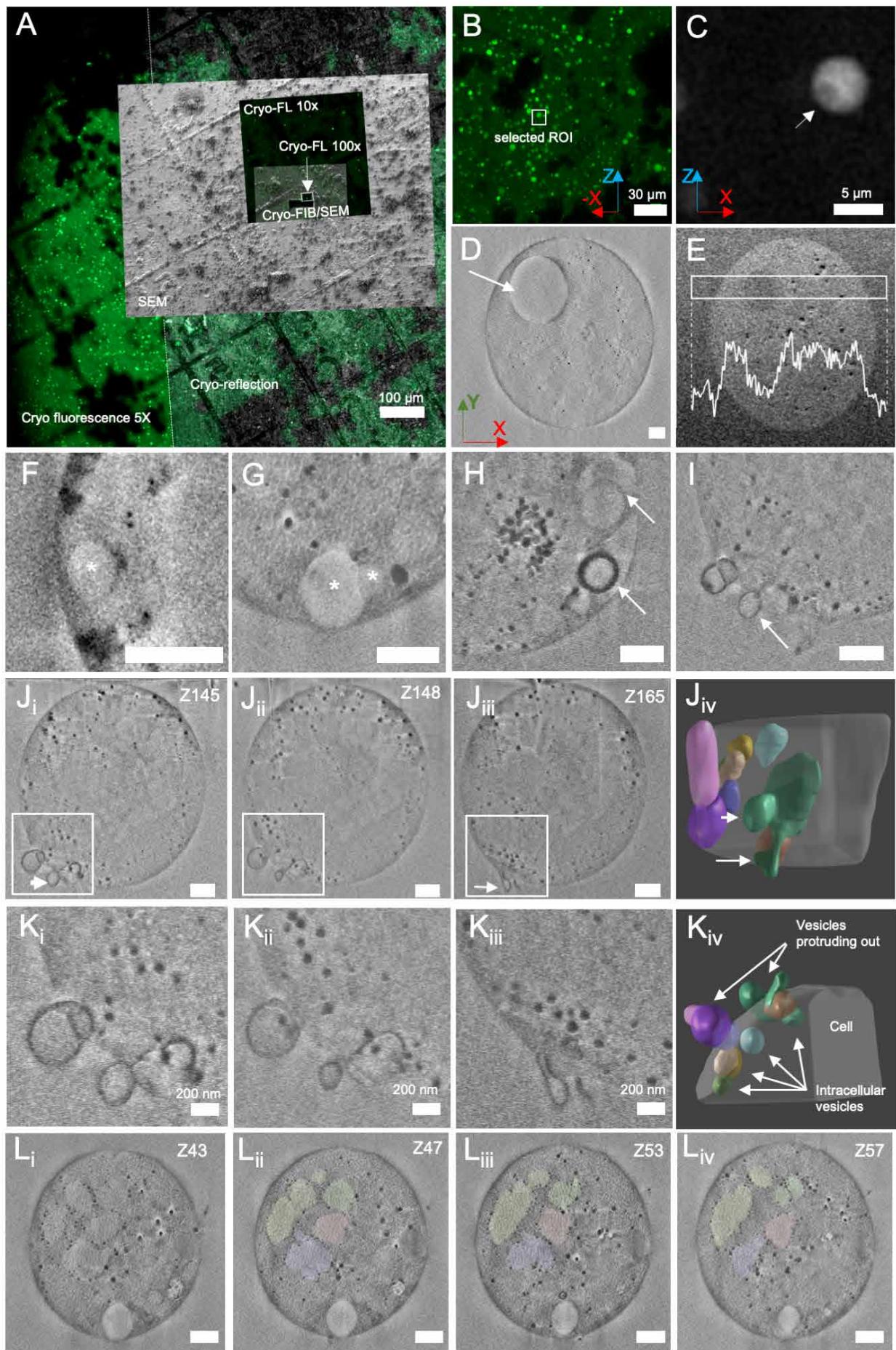

**Figure 2. Formation of Internal Vesicles and Uptake of External Fluids in L-forms**

(A) Fluorescence micrograph of *alpha* pIJ82-GFP (cytoplasmic eGFP; green) incubated with Cy-5 labelled plasmid DNA (pFL-*ssgB*; magenta). BF = Brightfield. Scale bar = 2  $\mu$ m.

(B) Incubation of *alpha* pIJ82-GFP with the membrane-impermeable dye SynapseRed C2M (SynapseRed; magenta), showing two z-slices of one L-form cell. BF = brightfield. Scale bar = 2  $\mu$ m.

(C) Stills of a time-lapse imaging experiment of *alpha* producing DivIVA-eGFP (*alpha* pKR2) (green) incubated with 3 kDa Dextran-Texas Red (D-TR; magenta). Arrows indicate localization of DivIVA-eGFP. Scale bar = 2  $\mu$ m. See also Video S1.

(D) Formation of foci and ring-structures of DivIVA-eGFP in *alpha* pKR2 (green) incubated with Dextran-Texas Red (D-TR, magenta). Scale bar = 2  $\mu$ m. Note that L-forms are able to take up fluorescently stained DNA and Dextran by formation of internal vesicles.




**Figure 3. Localization of Lipid Nanoparticles in Internal L-form Vesicles**

(A-B) Localization of LNP-LR (Lipid Nanoparticle containing 18:1 Liss Rhod PE; magenta) in internal vesicles of *alpha* (A) and *alpha* pIJ82-GFP (B) after overnight or 3-day incubation at 30°C respectively. Scale bar = 2 μm.

(C) Density profile plot and corresponding line selection of *alpha* pIJ82-GFP incubated with LNP-LR showing a decrease in cytoplasmic eGFP emission correlates with an increase in LNP-LR emission.

(D-E) Localization of LNP-LR during incubation with *alpha* at 4°C (D) or in the presence of 2.5 mM sodium azide at 30°C (E) after 0, 24 and 48 h incubation. Similar results were obtained with 1 and 10 mM sodium azide (data not shown). Scale bar = 5 μm. Note that incubation of L-forms with lipid nanoparticles (average size of 125 nm) results in their localization inside internal vesicles, a process that can be inhibited by incubation at 4°C or sodium azide.

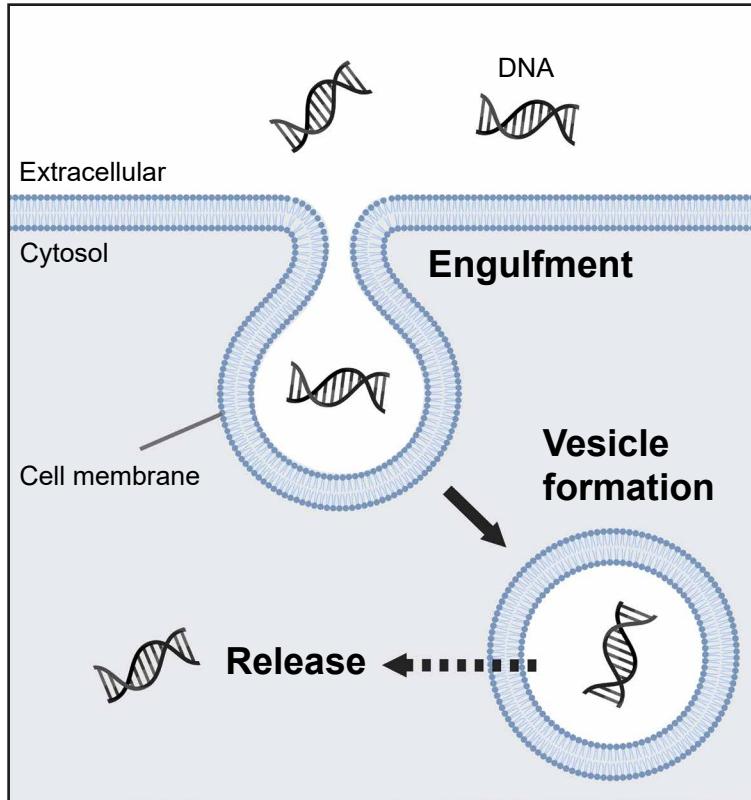


#### Figure 4. 3D Cryo-Fluorescence and Cryo-FIB-SEM of L-forms Reveals its Ultra-Structure in High Resolution

(A) Correlated fluorescence and electron micrographs of the frozen sample (Zen Connect image). The bright green dots indicate individual cells of *alpha* pIJ82-GFP. A finderTOP raster visible both in fluorescence and electron microscopy facilitates alignment between the two imaging modules. The small squares indicate different regions of interest, imaged at higher resolution. FL: Fluorescence light

(B) Higher resolution image of one region of interest, showing many fluorescent cells.

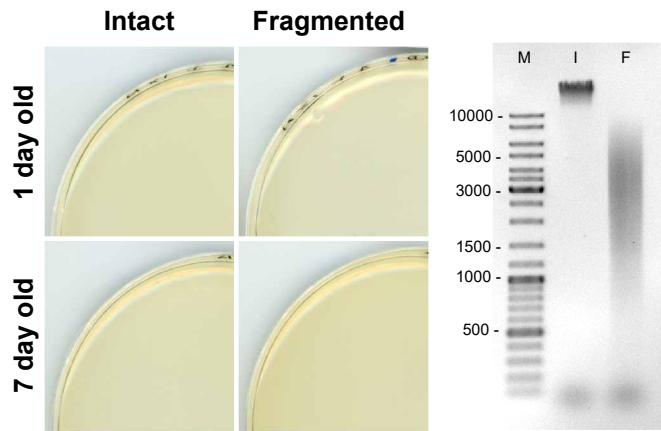
(C) L-form depicted by white box in B, showing intracellular dark sphere (~ 1 micrometer, white arrow).


(D) SEM image (SE, Inlens) of cell in C with white arrow indicating the internal vesicle. The X, Y and Z arrows in B, C and D indicate the 3D orientation of the imaged cell as observed in 3D FIB-SEM.

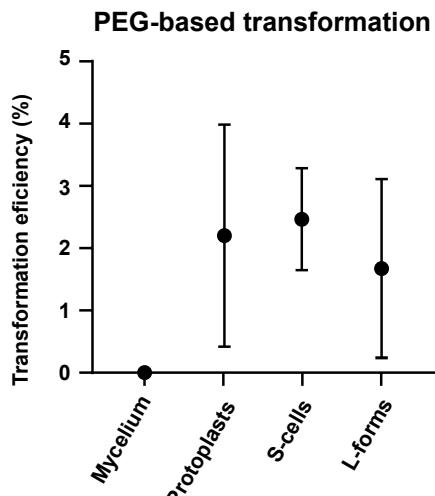
(E) Superposition of five consecutive slices (backscattered images) of cell in D). Inset: Intensity plot profile (white) of the region in white box.

(F-I) FIB-SEM slices showing different types of internal vesicles. (F-G) Vesicles lining the cell membrane. Asterisks indicate vesicles. (H) Vesicle complex, note the different membrane thickness of vesicles indicated with white arrows. See also Figure S6D and Video S3. (I) Membrane protrusions as indicated with white arrow.

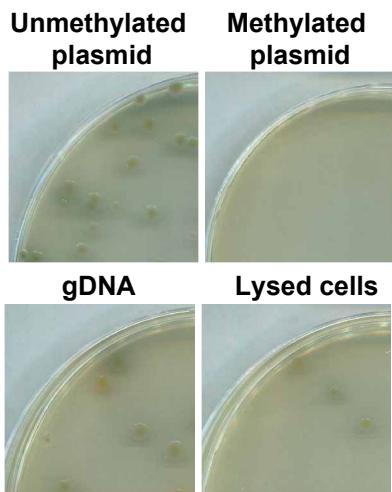
(J-K) Analysis of the interconnected vesicles of the cell in I). (Ji-iii) Three consecutive slices showing the interaction of different vesicles. Ki-iii show higher magnification of the regions in white boxes in Ji-iii, respectively). (Jiv, Kiv) 3D segmentation of Ki-iii. While some of the vesicles are intracellular, others protrude out of the cell. A complete connected vesicle structure is shown in green and is indicated by white arrows in I, Jiii and Jiv. See also Figure S6A-C and Video S2.


(L) Regions with different contrast are lined with black particles representing putative lipid bodies. The size distribution of the black particles is between 25 to 60 nm. Scale bars represent 500 nm unless otherwise specified.

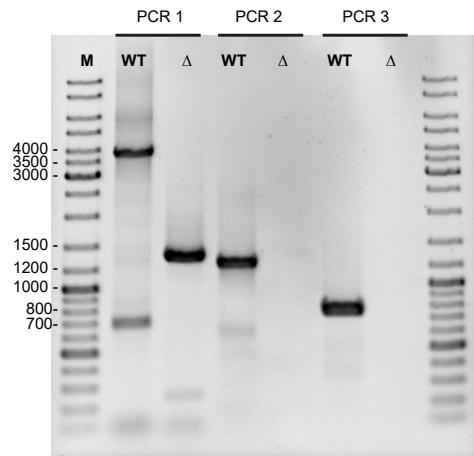



**Figure 5. Proposed Model for DNA Uptake by Internal Vesicle Formation in L-forms**

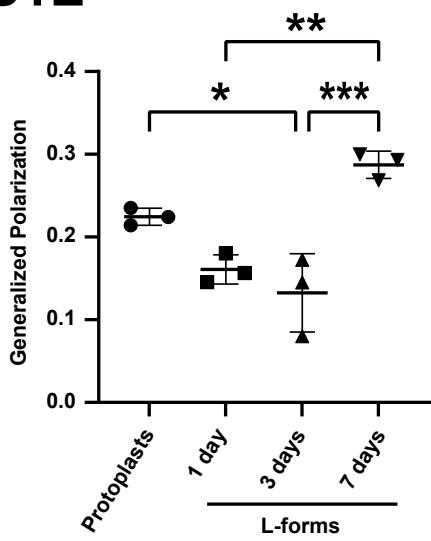
Excess membrane synthesis results in invagination of the cell membrane, leading to the formation of internal vesicles in L-forms. In this process, extracellular liquid containing DNA or other macromolecules is engulfed. Finally, DNA is released from internal vesicles by an unknown process (indicated by dashed arrow), which may involve vesicle disruption. Image created with BioRender.com.


## S1A

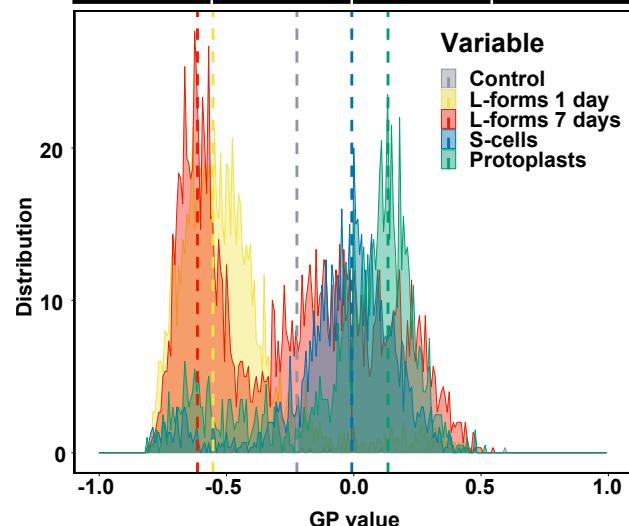
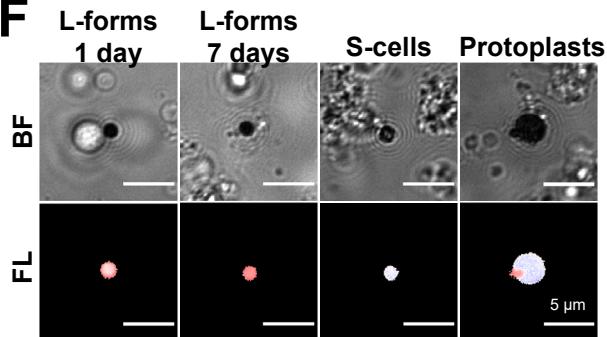



## S1B




## S1C





## S1D



## S1E



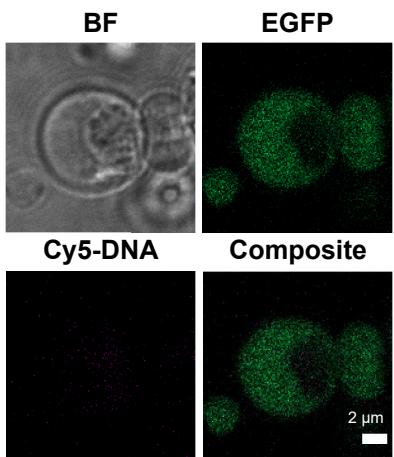
## S1F



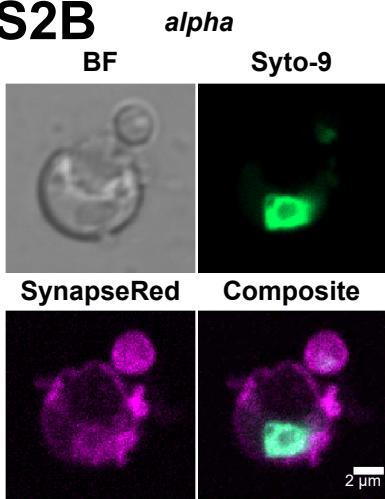
**Figure S1. Analysis of Natural and Artificial DNA Uptake and Membrane Fluidity of Cell-Wall Deficient Cells and Confirmation of *alphaΔcomEA/EC* Mutant, Related to Figure 1**

(A) (Left) Transformation plates showing absence of natural transformation upon incubation of 1-and 7-day old L-form *alpha* with intact or fragmented gDNA of *alphaΔssgB* containing an apramycin resistance cassette. (Right) Gel electrophoresis of 100 ng intact (I) or fragmented (F) gDNA of *alphaΔssgB* as used in the natural transformation assay.

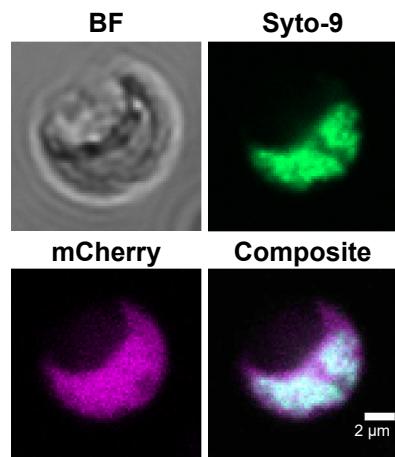
(B) Polyethylene glycol (PEG)-based transformation efficiency of *K. viridifaciens* mycelium, protoplasts, S-cells and L-forms using plasmid DNA (pRed\*) containing an apramycin resistance gene, shown as the percentage of transformed colonies per total colony forming units. Data are represented as mean  $\pm$  SD, n=3.


(C) PEG-based transformation of *alpha* using unmethylated or methylated plasmid DNA (pRed\*), gDNA or filter-sterilized salt-lysed cells from mutant line *alphaΔssgB*.

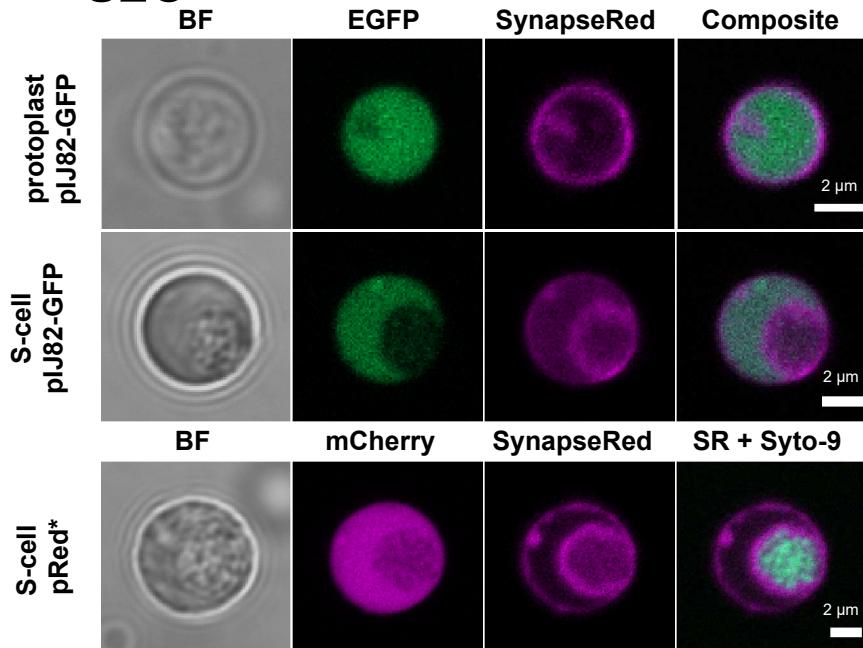
(D) Gel electrophoresis of PCR products from three different PCR mixes to confirm the replacement of *comEA* and *comEC* by an apramycin resistance cassette. WT = gDNA *alpha*;  $\Delta$  = gDNA *alphaΔcomEA/EC*. Expected products: PCR 1 WT = 3676 bp, mutant = 1294 bp; PCR 2 WT = 1197 bp, mutant = no amplification, PCR 3 WT = 745 bp, mutant = no amplification.


(E) Generalized Polarization (GP) as measure of membrane fluidity of *K. viridifaciens* protoplasts, 1-, 3- and 7- day old L-form *alpha*. Lower GP indicates higher fluidity. \*, \*\* and \*\*\* indicate P  $\leq$  0.05, 0.01 and 0.001, respectively (one-way ANOVA, F (3,8) = 19.49, Tukey post-hoc test, n=3). Data are represented as mean  $\pm$  SD with individual data points, n=3.

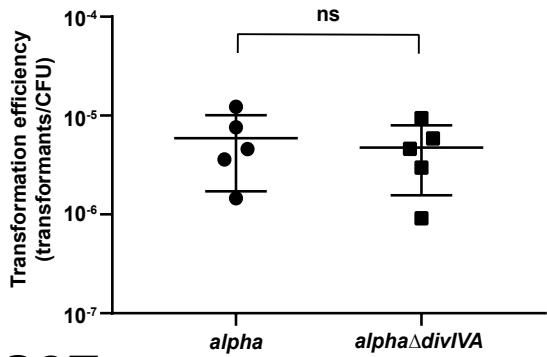
(F) Membrane fluidity of L-form *alpha* (1- and 7-day old), S-cells and protoplasts of *K. viridifaciens*. Top rows show brightfield images and heatmap of fluorescence emission (red to blue colour indicate GP values of -1.0 to 1.0 respectively) of representative cells stained with a Laurdan dye for quantifying the membrane fluidity (BF = brightfield, FL = fluorescence emission). Bottom panel shows frequency distributions of the Generalized Polarization (GP). Lower GP values correspond to higher membrane fluidity indicating that L-forms have more fluid membranes compared to S-cells and protoplasts. Control = cells imaged and analysed without Laurdan staining.


## S2A

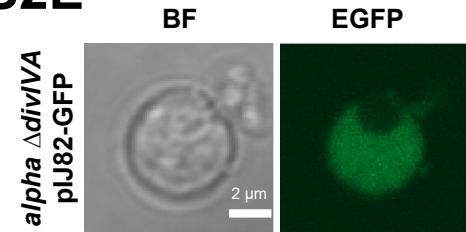



## S2B

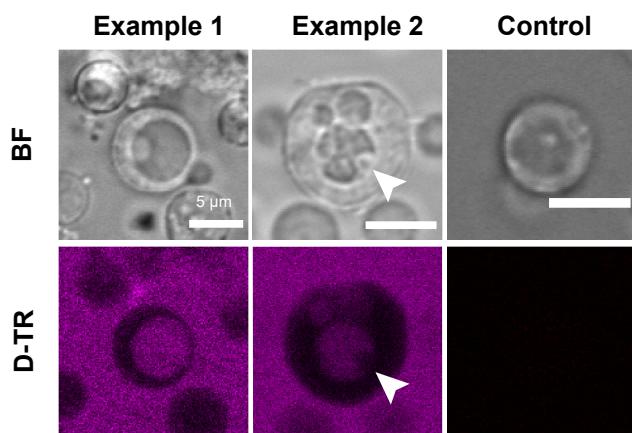



## *alpha* pRed\*

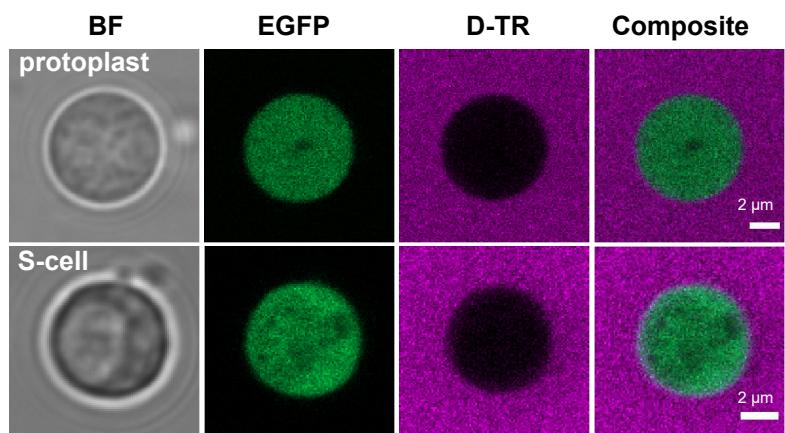



## S2C




## S2D




## S2E



## S2F



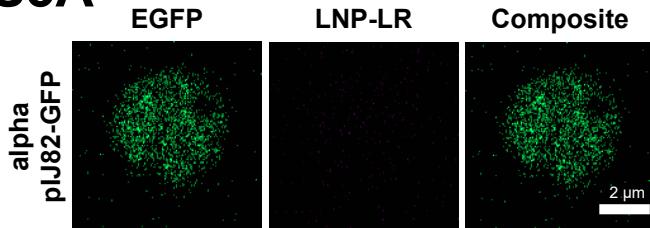
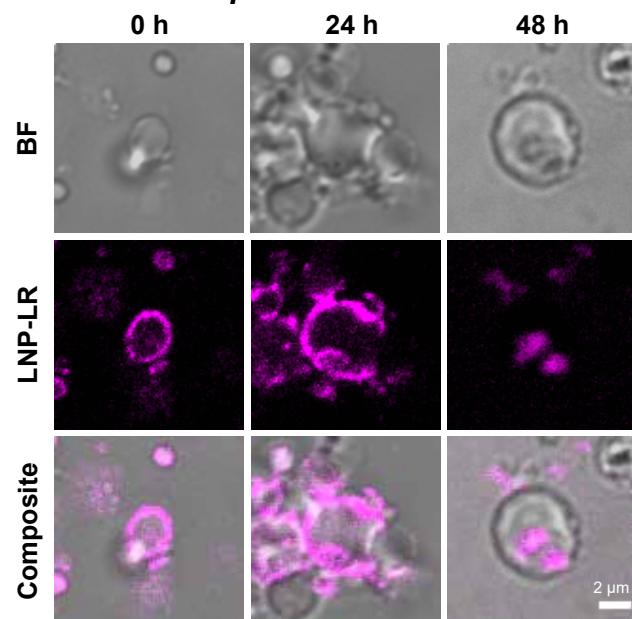
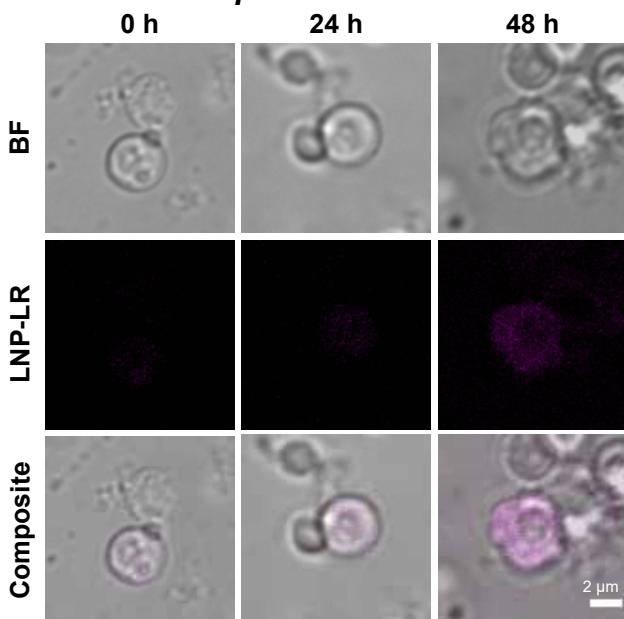
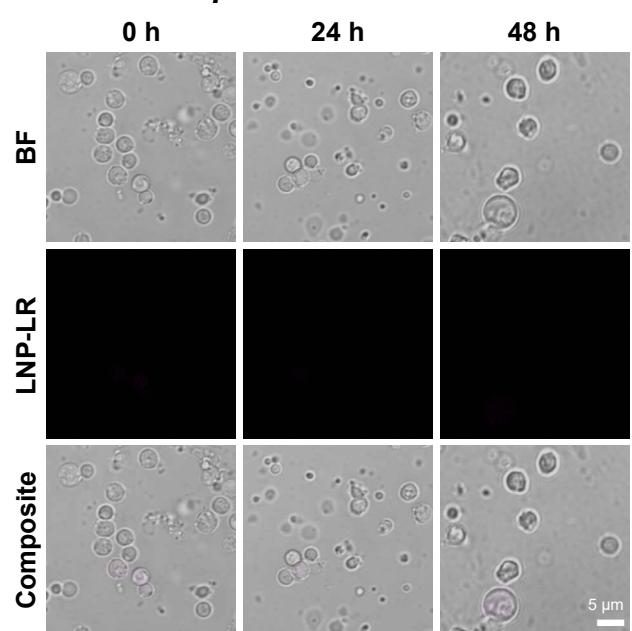
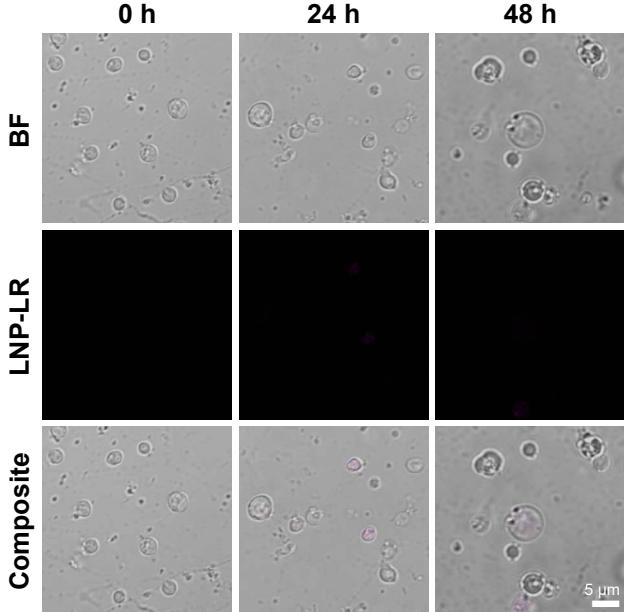
## S2G



**Figure S2. Analysis of DNA Content, Internal Vesicles and Uptake of D-TR of Cell-Wall Deficient Cells, and effect of *divIVA* deletion on DNA Uptake, Related to Figure 2**

(A) *alpha* pIJ82-GFP incubated without Cy-5 DNA as fluorescence control.

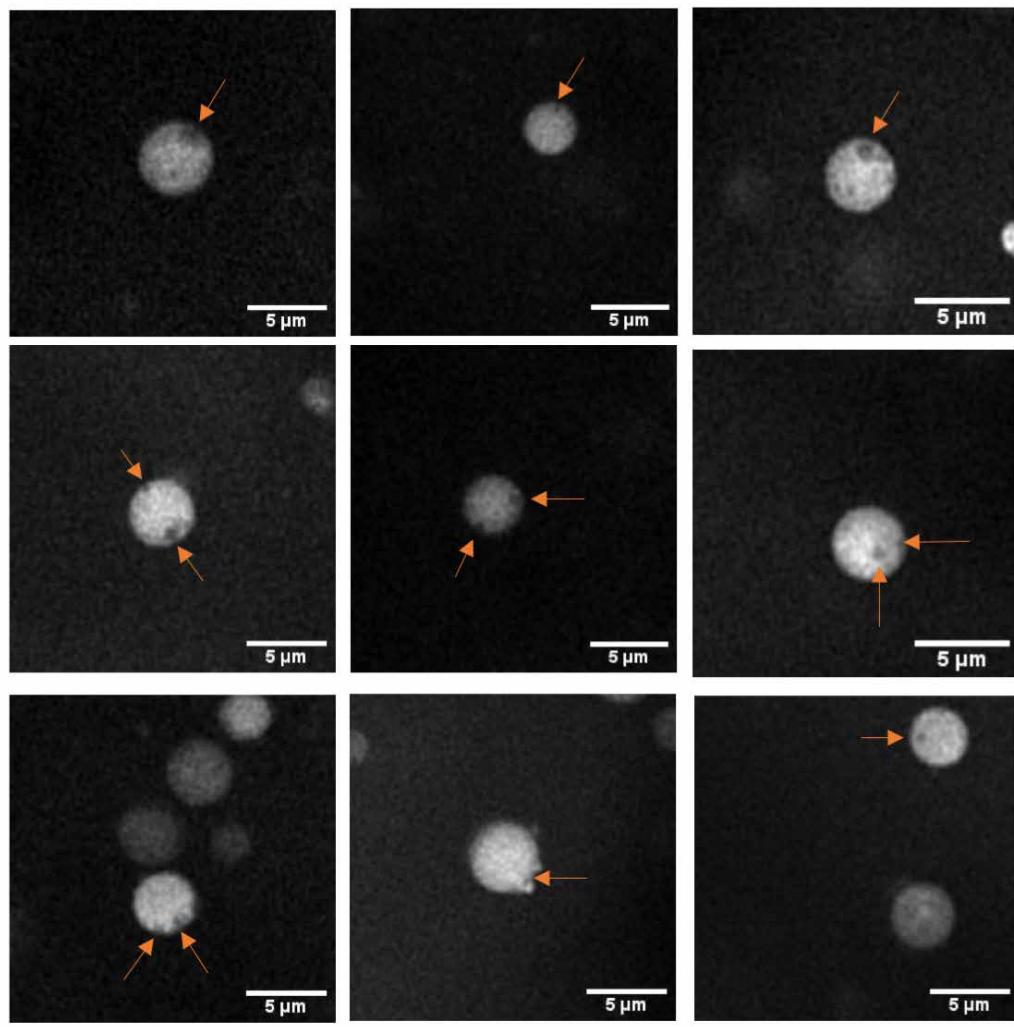
(B) *alpha* and *alpha* pRed\* stained with SYTO-9 (green) to indicate chromosomal DNA. *alpha* is stained with SynapseRed C2M (SynapseRed; magenta) to visualize cell membranes, whereas (absence of) cytosolic mCherry for *alpha* pRed\* (magenta) indicates the presence of an internal vesicle.






(C) Protoplasts and S-cells of *K. viridifaciens* pIJ82-GFP producing cytosolic eGFP incubated with SynapseRed for 72 h (top rows), and S-cells of *K. viridifaciens* pRed\* producing cytosolic mCherry incubated with SynapseRed (SR) and SYTO-9 for 72 h (bottom row). Chromosomal DNA is visualized using SYTO-9 staining. Note that presence of internal membrane structures causes a reduction in cytosolic fluorescence emission.

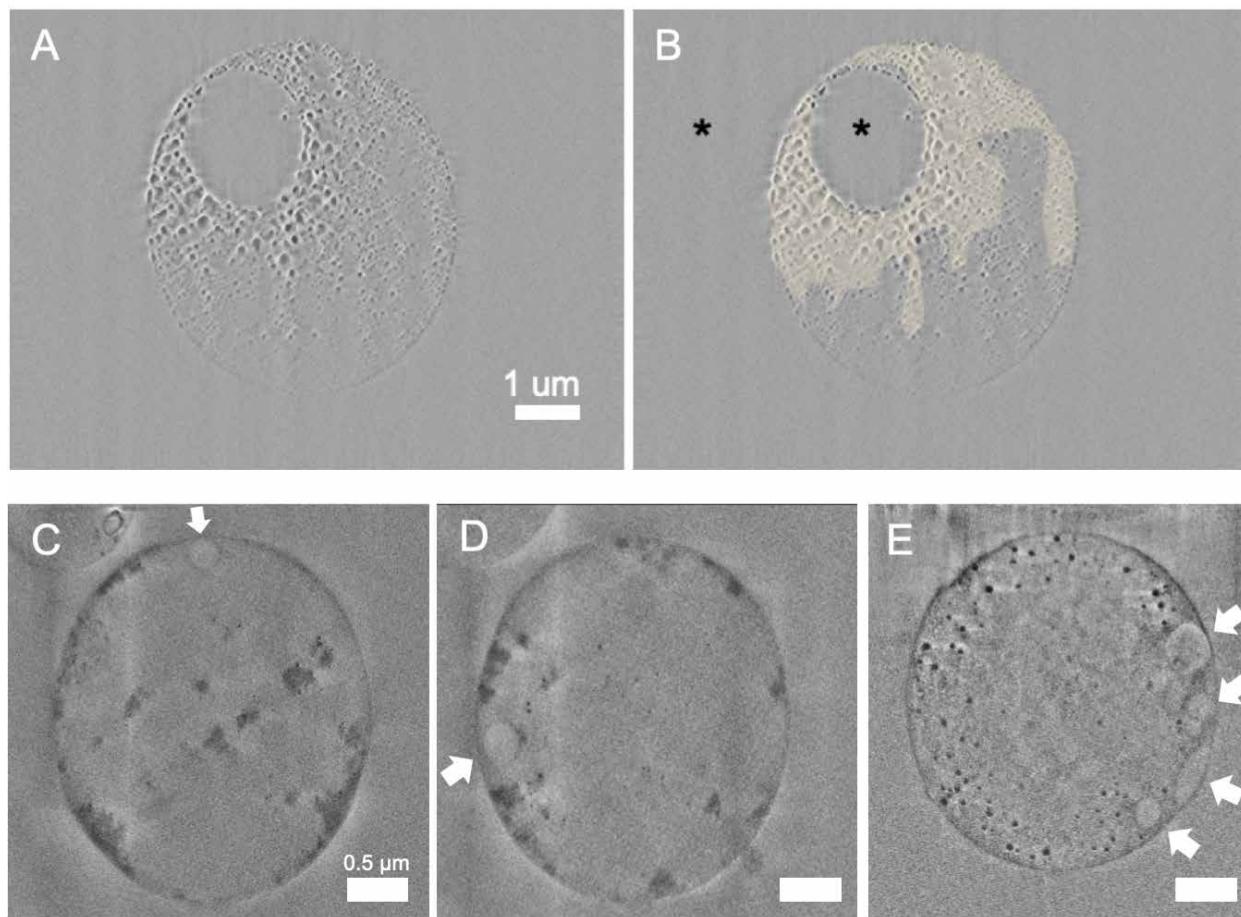
(D) Natural transformation assay of 7-day old *alpha* and *alpha* $\Delta$ *divIVA* using pFL-ssgB. ns = not significant (two-tailed independent t-test,  $t(8)=0.489$ ,  $P=0.638$ ). Data are represented as mean  $\pm$  SD with individual data points,  $n=5$ .

(E) L-forms without DivIVA can produce internal vesicles as shown for 5-day old *alpha* $\Delta$ *divIVA* pIJ82-GFP producing cytosolic eGFP. Scale bar = 2  $\mu$ m.

(F) *alpha* incubated with (example 1 and 2) or without (control) Dextran Texas-Red (D-TR; magenta), showing the formation of internal vesicles filled with D-TR. The arrow indicates the presence of a non-fluorescent secondary internal vesicle inside an existing internal vesicle (example 2). Scale bar = 5  $\mu$ m.


(G) Protoplasts and S-cells of *K. viridifaciens* pIJ82-GFP incubated with D-TR for 72 h. Note that no internalization of D-TR was observed.

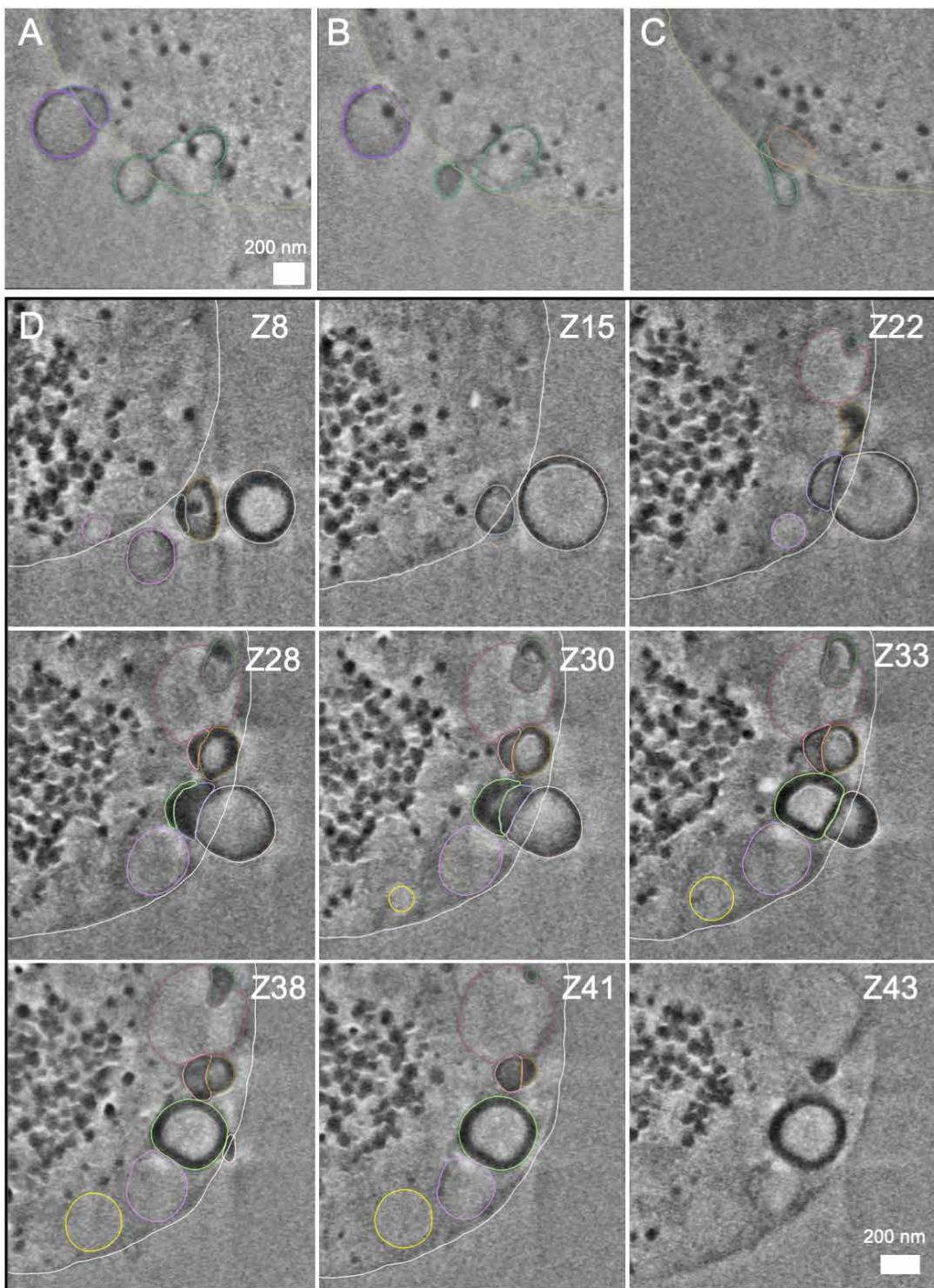
**S3A****S3B***alpha with LNP-LR***S3C***alpha with PBS***S3D***alpha with PBS at 4°C***S3E** *alpha with PBS and 2.5 mM NaN<sub>3</sub>***Figure S3. Uptake of LNP-LR by alpha, Related to Figure 3**


(A) *alpha* pIJ82-GFP incubated without LNP-LR (LNP-Liss Rhod; magenta) as imaging control.

(B-C) *alpha* incubated with (B) or without (C) LNP-LR showing localization of LNP-LR after 0 h, 24 h and 48 h or examples of autofluorescence, respectively.

(D-E) *alpha* incubated with PBS at 4 degrees (D) or with PBS at 30°C in the presence of 2.5 mM sodium azide (E) as control for fluorescence emission. Images were obtained after 0, 24 and 48 h incubation.




**Figure S4. High Resolution Cryo-Fluorescence of L-forms, Related to Figure 4**  
*alpha* pIJ82-GFP imaged using cryo-fluorescence microscopy. Putative vesicles are indicated with arrows. Images were captured using the long distance 100x objective.



**Figure S5. Over-dose experiment of L-form Cell using FIB-SEM, Related to Figure 4**

(A-B) FIB-SEM slice of over-dose experiment using *alpha* pIJ82-GFP. The yellow colour in B) indicates areas with distinguished beam damage. The vesicle (black asterisk in the center of the cell) seems to be less to none affected by the dose, similar to the medium outside the cell (black asterisk outside of the cell). The image in Figure 4D is taken before this experiment, and Figure 4E is obtained by summing several slices deeper in the cell after acquiring this image.

(C-E) FIB-SEM slices of two cells (C-D correspond to the cell in Figure 4F and E corresponds to the cell in Figure 4 H-K), white arrows indicate vesicles that line the cell membrane. Scale bar in C-E is 0.5  $\mu$ m.



**Figure S6. 3D Segmentation of L-form Vesicles, Related to Figure 4**

(A-C) FIB-SEM slices corresponding to Figure 4I, Jiv and Ki-iii, respectively. Colours correspond to the segmented colours in Figure 4Kiv. Vesicles that are budding out the cells are connected to other vesicles or are elongated inside the cell. Scale bar = 200 nm. See also Video S2.

(D) FIB-SEM slices corresponding to the cell in Figure 4H. Z-number indicates the slice. Colours indicate individual vesicles. See also Video S3.