

De novo transcriptome of *Taverniera cuneifolia* (Roth) Ali.

Talibali Momin¹, Apurva Punvar², Harshvardhan Zala³, Garima Ayachit²,
Madhvi Joshi², Padamnabhi Nagar¹.

¹Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda -390002.

²Gujarat Biotechnology Research Center (GBRC), Department of Science and Technology, Govt. of Gujarat. Gandhinagar 382 011.

³ Department of Genetics and Plant Breeding, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat - INDIA

*Corresponding author:

Padamnabhi Nagar:drnagar@gmail.com

Talibali Momin: talib429@gmail.com

Department of Botany,

Faculty of Science,

The Maharaja Sayajirao University of Baroda -390002.

ABSTRACT

Taverniera cuneifolia has been described as a potent substitute of Licorice in India. It has been used as an expectorant, anti-inflammatory, anti-ulcer, wound healing, blood purifier etc. Glycyrrhizin is one of the most useful bioactive sesquiterpenoid present in this plant. The present study aim to carry out transcriptome analysis in root tissue of *Taverniera cuneifolia* to identify specific functional genes involved in the biosynthesis of secondary metabolites. The root transcriptome sequencing of *Taverniera cuneifolia* resulted in a total of ~7.29 Gb of raw data and generated 55,991,233 raw reads. The high quality reads were *de novo* assembled by Trinity assembler followed through CD-HIT resulted into 35,590 “Unigene” transcripts with an average size of 419 bp. The unigenes were analyzed using BLAST2GO resulted in 27,884 (78.35%) transcript with blast hits, 22,510 (63.25%) transcript with mapping and 21,066 (59.19%) transcript with annotation. Functional annotation was carried out using NCBI’s non-redundant and Uniprot databases resulted in the identification of 21,066 (59.19%) annotated transcripts and GO assigned to 24751 (69.54%) transcripts. The gene ontology result shows maximum sequences match with Biological Processes (48%), Molecular Function (27%) and Cellular components (23%). A total of 289 metabolic enriched pathways were identified, which included pathways like Sesquiterpenoid and triterpenoid pathway which were involved in synthesis of secondary metabolite Glycyrrhizin biosynthesis. The enzymes, squalene monooxygenase, farnesyl-diphosphate farnesyltransferase, beta amyrin synthase, beta-amyrin 24-hydroxylase, were identified by functional annotation of transcriptome data. There were several other pathways like terpenoid backbone biosynthesis, steroid biosynthesis, Carotenoid biosynthesis, Flavonoids biosynthesis etc. which have been reported first time from this plant. Transcription factors were predicted by comparison with Plant Transcription Factor Database, and 1557 transcripts belonging to 85 transcription factor families were identified. This transcriptome analysis provided an important resource for future genomic studies in *Taverniera cuneifolia*, therefore representing basis in further investigation of the plant.

1 ***De novo transcriptome analysis of *Taverniera cuneifolia* (Roth) Ali.***

2 **ABSTRACT**

3 *Taverniera cuneifolia* has been described as a potent substitute of Licorice in India. It has
4 been used as an expectorant, anti-inflammatory, anti-ulcer, wound healing, blood purifier etc.
5 Glycyrrhizin is one of the most useful bioactive sesquiterpenoid present in this plant. The
6 present study Root transcriptome sequencing of *Taverniera cuneifolia* resulted in a total of
7 ~7.29 Gb of raw data and generated 55,991,233 raw reads. The high quality reads were *de*
8 *novo* assembled by Trinity assembler followed through CD-HIT resulted into 35,590 contigs
9 transcripts with an average size of 419 bp. Functional annotation was carried out using
10 NCBI's non-redundant and Uniprot databases resulted in the identification of 21,066
11 annotated transcripts and GO assigned to 24,751 transcripts. The gene ontology result shows
12 maximum sequences match with Biological Processes (48%), Molecular Function (27%) and
13 Cellular components (23%). A total of 289 metabolic enriched pathways were identified,
14 which included pathways like Sesquiterpenoid and triterpenoid pathway which were involved
15 in synthesis of secondary metabolite Glycyrrhizin biosynthesis. The enzymes, squalene
16 monooxygenase, farnesyl-diphosphate farnesyltransferase, beta amyrin synthase, beta-amyrin
17 24-hydroxylase, were identified by functional annotation of transcriptome data. There were
18 several other pathways like terpenoid backbone biosynthesis, steroid biosynthesis, Carotenoid
19 biosynthesis, Flavonoids biosynthesis etc. which have been reported first time from this plant.
20 Transcription factors were predicted by comparison with Plant Transcription Factor
21 Database, and 1557 transcripts belonging to 85 transcription factor families were identified.
22 This transcriptome analysis provided an important resource for future genomic studies in
23 *Taverniera cuneifolia*, therefore representing basis in further investigation of the plant.

24

25 **Significance**

26 Licorice (*Glycyrrhiza glabra* roots) is used as traditional Chinese herbal medicines in
27 majority of formulations. Licorice is also used in Industries like food, herbal and cosmetics
28 etc. due to its high demand in the market it is imported from foreign countries and is not
29 available locally of superior quality (Liu et al., 2015). In India, *Taverniera cuneifolia* has
30 been described as a potent substitute of Licorice, it has been quoted in ancient books like
31 Charak Samhita during the Nigandu period (Kamboj, 2000) and Barda dungar ni Vanaspati
32 ane upyog (Thaker 1910). It has been used as an expectorant, anti-inflammatory, anti-ulcer,

33 wound healing, blood purifier etc. Transcriptomic studies will assist in understanding the
34 basic molecular structure, function and organization of information within the genome of
35 *Taverniera cuneifolia*. This study will help us to identify the key metabolites their
36 expressions and genes responsible for their production.

37

38 **Key words:** *Taverniera cuneifolia*, *De novo assembly*, Transcriptome, Licorice,
39 Glycyrrhizin, Sesquiterpenoid pathway.

40

41 **Bioproject ID:** 388043

42 **This Transcriptome Shotgun Assembly project has been deposited at**
43 **DDBJ/ENA/GenBank under the accession GJAF00000000. The version described in this**
44 **paper is the first version, GJAF01000000.**

45 **Sequences Accession numbers:** SRR5626167

46

47 1. Introduction

48 India is rich in many potential medicinal plants, *Glycyrrhiza glabra* popularly known
49 as Liquorice has been used in the traditional formulation. A licorice (*Glycyrrhiza glabra*) root
50 has been used in more than 1200 formulations in traditional Chinese herbal medicines as
51 major formulations. There are many essential uses of this plant in industries like food, herbal,
52 cosmetics, nutraceuticals etc. (Pastorino et al., 2018). Due to its high demand in the market, it
53 is imported from foreign countries and not available locally of superior quality. In India,
54 *Taverniera cuneifolia* has been described as a potent substitute for Licorice. Glycyrrhizin is
55 one of the most useful bioactive sesquiterpenoid present in this plant.

56 *Taverniera cuneifolia* belong to fabaceae family, the third largest family of flowering
57 plants, with over 800 genera and 20,000 species. The three major subfamilies include
58 Mimosaceae, Papilionaceae and Caesalpiniaceae. The pea (*Pisum sativum* L.) was the model
59 organism used in Mendel's discovery (1866) and is the foundation of modern plant genetics.
60 The phylogenetic differ greatly in their genome size, base chromosome number, ploidy level
61 and reproductive biology. Two legume species in the Galegoid clade, *Medicago truncatula*
62 and *Lotus japonicus*, from Trifolieae and Loteae tribe respectively, were selected as model
63 system of studying legume genomics and biology. There are many other legumes that have
64 been studies like the soybeans, the most widely grown and economically important legume

65 whose genome has been available since 2010. The common bean (*Phaseolus vulgaris*) the
66 most widely grown grain legume whose genome is available since 2014. Many more legumes
67 have been sequenced since (Smýkal, P. et al., 2020).

68 *Taverniera cuneifolia* is an important traditional medicinal plant of India as mention
69 in Charak Samita in Nigantu period. It is often referred to as Indian licorice having the same
70 sweet taste as of *Glycyrrhiza glabra* (commercial Licorice) (Zore, 2008). The genus
71 *Taverniera* has sixteen different species (Roskov et al., 2006). It is endemic to North-east
72 Africa and South-west Asian countries (Naik, 1998). Licorice is used as important traditional
73 Chinese medicine with many clinical and industrial applications like Food, Herbal medicine,
74 cosmetics etc. (Liu et al. 2015). *Taverniera cuneifolia* locally known as Jethimad is used by
75 the tribal's of Barda Hills of Jamnagar in Western India (Saurashtra, Gujarat) as a substitute
76 for Licorice or in other words, the Plant itself is considered to be *Glycyrrhiza glabra* (Nagar,
77 2005). Many pharmacological benefits of the plants have been reported earlier like
78 expectorant, blood purification, anti-inflammatory, wound healing, anti-ulcer and used in
79 treating spleen tumors (Thaker, Manglorkar and Nagar, 2013).

80 At the Biochemical level, *Taverniera cuneifolia* has shown the presence of alkaloids,
81 flavonoids, tannins, proteins, reducing sugar and saponins. The presence of oil content in the
82 seeds of *Taverniera cuneifolia* showed polyunsaturated fatty acids, monounsaturated fatty
83 acids and saturated fatty acids (Manglorkar, 2016). *Taverniera cuneifolia* has been assessed
84 very less on phytochemical basis there are only few attempts to characterize this plant at
85 molecular level. *Taverniera cuneifolia* has eight numbers of chromosomes (Perveen and
86 Khatoon, 1989). There is limited information on genetic for this plant on NCBI. Fifteen
87 proteins have been reported from this plants which includes ribosomal protein L32, maturase,
88 photosystem 1 assembly protein Ycf4, cytochrome b6/f complex subunit VIII, D1 protein,
89 photosystem 2 protein M, MaturaseK, ribulose-1,5-bisphosphate carboxylase/oxygenase large
90 subunit, Triosephosphate translocator, Phosphogluconate dehydrogenase, UDP-
91 sulfoquinovose synthase, RNA polymerase beta subunit (Liu et al., 2017).

92 The current investigation was focused on the most valuable secondary metabolite,
93 Glycyrrhizin and other important secondary metabolites. This experiment provides the in-
94 depth characterizations of this plant. Based on the above facts attempts have been made to
95 identify the genes of various metabolic pathways in *Taverniera cuneifolia* through root
96 transcriptome sequencing. The study will give scientific insight into the molecular network of
97 *Taverniera cuneifolia*.

98

99 **Materials and Methods**

100 **Plant material and RNA isolation**

101 *Taverniera cuneifolia* plant was collected from Kutch, Gujarat, India (23.7887 N, 68.79580
102 E) from its natural habitat near the area of Lakhpat. The tissue of the plant, i.e., roots were
103 cleaned with water than with ethanol and stored in RNA later solution (Qiagen) for longer-
104 term storage. It was then shifted to -20°C in the refrigerator. The total RNA was isolated
105 from the root tissues of the Plant using the RNeasy Plant Mini Kit (Qiagen) following the
106 manufacturer's instructions. The integrity of the RNA was assessed by formaldehyde agarose
107 gel electrophoresis. Total RNA was quantified by using a Qiaxpert (Qiagen), Qubit 2.0
108 fluorometer (Life Technologies, Carlsbad, CA, USA) and Qiaxcel capillary electrophoresis
109 (Qiagen). RNA integrity number (RIN) was higher than approx. 7.0 for the sample.

110

111 **cDNA library preparation and Sequencing**

112 Ribosomal RNA depletion was carried out using a RiboMinus RNA plant kit for RNA- Seq
113 (Life Technologies, C.A). mRNA fragmentation and cDNA library was constructed using an
114 Ion total RNA-Seq kit v2 (Life Technologies, C.A), further purified using AMpure XP beads
115 (Beckman coulter, Brea, CA, USA). The library was enriched on Ion sphere particles using
116 Dynabeads MyOne Streptavidin C1 using standard protocols for the Ion Proton sequencing.
117 The raw transcriptome data have been deposited in the sequence read archive (SRA) NCBI
118 database with the accession number SRR5626167. This Transcriptome Shotgun Assembly
119 project has been deposited at DDBJ/EMBL/GenBank under the accession GJAF00000000.

120

121 **RNA-Seq data processing and *De novo* assembly**

122 Quality control of raw sequence reads was filtered to obtain the high-quality clean reads
123 using bioinformatics tools such as FASTQCv.0.11.5 using a minimum quality threshold Q20
124 (Andrews, 2010). The clean reads were subjected to de novo assembly using the Trinity
125 v2.4.0 (Grabherr et al., 2011) software to recover full-length transcripts. The redundancy of

126 Trinity generated contigs were clustered for removing duplicate reads with 85% identity
127 using CD-HIT v4.6.1 (Li and Godzik, 2006).

128

129 **Functional annotation of transcripts and classification**

130 Functional characterization of assembled sequences was done by performing BlastX of
131 contigs against the non-redundant (nr) database, (<https://www.ncbi.nlm.nih.gov/>) using an e-
132 value cut-off of 1E-5 followed by further annotation was carried out using Blast2GO (Conesa
133 and Gotz, 2005). Gene Ontology (GO) study was used to classify the functions of the
134 predicted coding sequences. The GO classified the functionally annotated coding sequences
135 into three main domains: Biological process (BP), Molecular function (MF) and Cellular
136 component (CC). Using the Kyoto encyclopedia of genes and genomes (KEGG) (Kanehisa
137 and Goto, 2000) pathway maps were determined. Further, KEGG Automated Annotation
138 Server (KAAS) was used for pathway mapping in addition to Blast2GO (Moriya et al., 2007)
139 for assignment and mapping of the coding DNA sequence (CDS) to the biological pathways.
140 KAAS provides functional annotation of genes by BLAST comparison against the manually
141 curated KEGG genes database.

142

143 **Identification of transcription factors families**

144 Transcription factors (TFs) were identified using genome-scale protein and nucleic acid
145 sequences by analyzing InterProScan domain patterns in protein sequences with high
146 coverage and sensitivity using PlantTFcat analysis tool
147 (<http://plantgrn.noble.org/PlantTFcat/>) tool (Dai et al., 2013).

148

149 **SSR prediction**

150 Simple sequence repeats (SSRs) were identified using the MISA tool (Microsatellite;
151 <http://pgrc.ipk-gatersleben.de/misa/misa.html>). We searched for SSRs ranging from mono to
152 hexanucleotide in size. The minimum repeats number 10 for mononucleotide, 6 for
153 Dinucleotide and 5 for trinucleotide to hexanucleotide was set for SSR search. The maximal
154 number of bases interrupting two SSRs in a compound microsatellite is 100 i.e. the minimum
155 distance between two adjacent SSR markers was set 100 bases.

156

157 **Results and Discussion**

158 **Transcriptome Sequencing and *De novo* assembly**

159 The total RNA of two root samples along with RIN value more than 7.0, converted to cDNA
160 library using Ion Total RNA-Seq kit v2 (Life Technologies, C.A), further purified using
161 Ampure XP beads (Beckman coulter, Brea, CA, USA). The library was enriched on Ion
162 sphere particles using Myone C1 Dynabeads. A total of 7.29 gb of raw data was generated
163 using standard protocols for the Ion proton sequencing (Table 1). The good quality roots of
164 *Taverniera cuneifolia* were used for the RNA sequencing, and a total of 55,991,233 reads
165 containing 7,286,727,421 bases were generated. The raw reads were subjected to quality
166 check by FastQC tool and the average base quality was above Q20. De novo transcriptome
167 assembly resulted in 36,896 reads assembled and the final assembly of 35,590 unique high-
168 quality reads was prepared using CD-HIT at 85% sequence similarity, with N50 value of 441
169 bp. The average GC content of 43% and average contigs length of 419.45 bp was obtained for
170 *Taverniera cuneifolia*. The statistics of transcriptome sequencing and assembly generated by
171 Trinity assembler as given (Table 2).

172

173 **Functional annotation of transcripts**

174 A total of 35,590 transcripts (contigs) assembled by Trinity were subjected to functional
175 annotation using different databases like the Nr Protein database, KEGG, UniProt, etc. GO
176 terms were assigned to transcripts (Supplementary Fig. S2). All transcripts were screened for
177 similarity to a known organism based on the data of species-specific distribution, and it can
178 be concluded that the transcript showed the highest blast hits with *Medicago truncatula*
179 (18,734, 52.63%) followed by *Cicer arietinum* (16,044, 45.08%) and *Glycine max* (15,991,
180 44.93%). A total of 10590 (29.75%), 8642 (24.28%), 8549 (24.02%), 8399 (23.59%) contigs
181 were found to be similar to *Cajanus cajan*, *Glycine soja*, *Trifolium pratense*, *Trifolium*
182 *subterraneum*, respectively (Figure 1). The functionally annotated transcripts (27,884,
183 78.34%) of *Taverniera cuneifolia* were classified using Blast2GO into three main domains;
184 Biological processes, Cellular component and Molecular function gene ontology (Table S1).
185 Among them the most abundant were the Biological processes consisting of 44,395(48.8%)
186 sequences followed by different Molecular Function consisting of 25,025 (27.5%) sequences
187 and last the cellular components consist of 21,508 (23.6%) sequences (Figure 2, 3, 4). The

188 annotated transcripts were subjected to the Kyoto encyclopedia genes and genomes (KEGG)
189 pathway wherein the transcripts were linked to enzymes found in a large number of pathways
190 available in KEGG. The maximum number of annotated transcripts assigned to hydrolases,
191 followed by transferases and oxidoreductases class of enzymes (Figure 5).

192

193 **Gene ontology classification**

194 The contigs were further annotated by Blast2Go software with assembled 27,884 transcripts
195 GO terms and divided into three broad categories as Biological Processes (44,395[49%]),
196 Molecular Function (25,025[27%]) and Cellular Component (21,508[24%]) category (Table
197 S1).

198 The Biological Processes were the most abundant component of GO terms. Among the
199 44,395 Biological Processes, the maximum number of contigs i.e. represented “Biological
200 process,” followed by “Metabolic process” and “Cellular process” (Figure 2).

201 A total of 25,025 transcripts were associated with the Molecular function and a relatively
202 large no of the transcript was associated with “Molecular function” followed by “Catalytic
203 activity” and “Binding”, respectively ”(Figure 3).

204 In addition, Cellular Component a total of 21,508 transcripts were associated with the
205 “Cellular component” as the highest match followed by “Cell” and “Cell part”
206 respectively”(Figure 4).

207

208 **Pathway Annotation by KEGG**

209 Kyoto Encyclopedia of Genes and Genomes (KEGG) serves as knowledge source to perform
210 functional annotation of the genes. The KEGG represents various biochemical pathways for
211 the genes associated with it. Approximately 289 pathways were annotated and among them,
212 Metabolic pathways (102), Biosynthesis of secondary metabolites (55), Microbial
213 metabolism in diverse environment (22) showed the maximum hit with the database. Some of
214 the important pathways from this plant are discussed below which have been reported with
215 the gene and ko-id. (Table S2).

216 Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the
217 myriad compounds produced by plants. Moreover, the ecological importance
218 of terpenoids has gained increased attention to develop strategies for sustainable pest control
219 and abiotic stress protection. The gene that has shown in this plant includes **Terpenoids**

220 **backbone biosynthesis (ko00900)** (Supplementary Fig. S3). which includes three gene,
221 ko:K03526 gcpE; (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase [EC:1.17.7.1
222 1.17.7.3], ko:K05356 SPS; all-trans-nonaprenyl-diphosphate synthase [EC:2.5.1.84 2.5.1.85],
223 ko:K15889 PCME; prenylcysteine alpha-carboxyl methylesterase [EC:3.1.1.-].
224 Monoterpeneoid biosynthesis having two gene ko: K21373 UGT8; 7-deoxyloganetic acid
225 glucosyltransferase [EC:2.4.1.323], ko:K21374 UGT85A23_24; 7-deoxyloganetin
226 glucosyltransferase [EC:2.4.1.324] and Diterpenoid biosynthesis (ko00904) includes
227 ko:K05282 GA20ox; gibberellin-44 dioxygenase [EC:1.14.11.12].

228 **Sesquiterpenoid and triterpenoid biosynthesis (ko00909)** (Supplementary Fig. S4). which
229 includes three gene namely ko:K00801 FDFT1; farnesyl-diphosphate farnesyltransferase
230 [EC:2.5.1.21], ko:K15813 LUP4; beta-amyrin synthase [EC:5.4.99.39], ko:K20658 PSM;
231 alpha/beta-amyrin synthase [EC:5.4.99.40 5.4.99.39]. This are the gene on further reactions
232 like oxidation and reductions leads to the production of Glycyrrhizin that is important
233 secondary metabolites as mention above.

234 **Carotenoid biosynthesis (ko00906)** (Supplementary Fig. S5) includes ko:K09842 AAO3;
235 abscisic-aldehyde oxidase [EC:1.2.3.14], ko:K09843 CYP707A; (+)-abscisic acid 8'-
236 hydroxylase [EC:1.14.14.137], ko:K14595 AOG; abscisate beta-glucosyltransferase
237 [EC:2.4.1.263].

238 **Ubiquinone and other terpenoid-quinone biosynthesis (ko00130)** (Supplementary Fig. S6)
239 include ko:K03809 wrbA; NAD(P)H dehydrogenase (quinone) [EC:1.6.5.2].

240 **Zeatin biosynthesis (ko00908)** (Supplementary Fig. S7) includes ko:K00791 miaA; tRNA
241 dimethylallyltransferase [EC:2.5.1.75], ko:K13496 UGT73C; UDP-glucosyltransferase 73C
242 [EC:2.4.1.-].

243 **Flavonoid biosynthesis (ko00941)** (Supplementary Fig. S8) inludes ko:K13065 E2.3.1.133;
244 shikimate O-hydroxycinnamoyltransferase [EC:2.3.1.133].

245

246 **Candidate genes involved in biosynthesis pathways**

247 Among the 35,591 transcripts that have been annotated using different database, we have
248 identified six gene that play important role in the biosynthesis pathway of Glycyrrhizin
249 production from *Taverniera cuneifolia* (Table S3). Each six different gene includes in
250 formation of Glycyrrhizin.

251 There were 4912 unigenes hypothetical protein predicted from this plant, of which 30
252 unigenes that had a hit length above 400 were noted (Table S4). 94 unigenes that predicted
253 Cytochrome P450 family protein from this plant, of which 17 unigenes with a hit length
254 above 150 were noted (Table S5).

255 **Discussion**

256 Secondary metabolites have key role in providing the defense mechanism to plants against
257 stresses and these metabolites have very important role in many economic important like
258 industries, pharma sector etc (Pagare et al., 2015). There has been no molecular data
259 recorded for this plant as such. The new advancement in the field of omics technologies has
260 led to high-throughput sequencing data which lead us to prediction of genes, enzymes,
261 complex pathways. (Metzker,2010). De novo of many medicinally important plants such as
262 *Saussurea lappa* (Bains, S et al, 2018), *Vigna radiate* L (Chen, H et al, 2015), *Glycyrrhiza*
263 *glabra* (Chin,Y et al, 2007), pigeonpea *Cajanus cajan* (L .) Millspaugh (Dutta, S. et al,
264 2011), *Dracocephalum tanguticum* (Li, H., Fu, Y., Sun, H., Zhang, Y., & Lan, X., 2017) etc.
265 have reported the transcripts involved in active metabolite production using NGS technology.

266 Transcriptome analysis has proved to be one of the advanced methods for the identification of
267 gene expressing in different pathways of metabolism, growth, development, response towards
268 stress, cell signaling etc. This has help in classifying and categorization different role in
269 secondary metabolic compound. Glycyrrhizin, a well-known secondary metabolite that is
270 found in roots of Licorice has same property that is been found in the roots *Taverniera*
271 *cuneifolia* which has many uses as described above. A whole transcriptome analysis of root
272 of *Taverniera cuneifolia* has opened the unique transcripts which are reported first time from
273 this plant to be involved in the pathways of primary and secondary metabolism (Sharma,
274 Kumar, Beriwal, et al, 2019).

275 The de novo assembled transcripts of *Taverniera cuneifolia* were mapped to non-redundant
276 protein database using blastx tool. A total of 35,590 transcripts annotated to the database
277 showed the maximum similarity with *Medicago truncatula* [(18,734) 52.6 %] followed by
278 *Cicer arietinum* [(16,044) 45%] and *Glycine max* [(15,991) 44.9%] and so on, which belong
279 to same family Fabaceae order fabales.

280 **Main metabolism-related gene of *Taverniera cuneifolia*.**

281 Glycyrrhizin is triterpenoid-saponin produced in Licorice roots. It is synthesized via the
282 cytosolic melvonic acid pathway for the production of 2,3-oxidosqualene, which is then
283 cyclized to β -amyrin by β -amyrin synthase (bAS). Then, β -amyrin undergoes a two-step
284 oxidation at the C-30 position followed by glycosylation reactions at the C-3 hydroxyl group
285 to synthesize glycyrrhizin as shown in (Supplementary Fig. S9)(Seki et al 2008, 2011).
286 *Taverniera cuneifolia* also known as Indian Licorice can be used as substitute of *Glycyrrhiza*
287 *glabra* as it has same features that of this plant. This plant contains varieties of different
288 compound that can be used in future research like triterpenoids, flavonoids, polysaccharides
289 etc, which have been reported first time from this plant. Among them Glycyrrhizin is a
290 primary focus compound that has many economic importance use in different fields. In our
291 experiment we have compared the enzymes and genes for the production of Glycyrrhizin
292 with proposed pathway for biosynthesis of Glycyrrhizin by (Seki et al, 2011), In which
293 Glycyrrhizin is produce by a series of chemical reaction i.e. oxidation of different compound
294 associated with Melvanoic Acid pathway. In this particular pathway there are series of
295 chemical reaction by which Farnesyl diphosphate (FPP) molecule catalyzed by squalene
296 synthase (SQS) originating Squalene. There are fifteen different transcripts that we have
297 found in our plants that are associated for the production of squalene and then by oxidation
298 by squalene epoxidase (SQE) to 2, 3 – oxidosqualene to form β - Amyrin. There are five gene
299 identified from our plant that catalyzed by bAS i.e β - Amyrin synthase to form β - Amyrin.
300 Further β - Amyrin goes into various oxidation reaction with the help of Beta-amyrin 11-
301 oxidase /CYP88D6 and 11-oxo-beta-amyrin 30-oxidase/CYP72A154 to form Glycyrrhetic acid.
302 The last step includes conversion of glycyrrhetic acid to glycyrrhizin which includes
303 glycosylation steps in which different enzymes related to UDP-glycuronosyl transferases
304 family are included. There were 32 different UDP-glycuronosyl genes which have been
305 identified from our plant that led to last reaction given in table (Table S3).

306 At this point *Taverniera cuneifolia* have not been intensively studied and there as such no any
307 reports that showed the details about the enzymes associated in the Glycyrrhizin pathway we
308 have associated with reference pathway proposed by (seki et al 2008, 2011). As there has
309 been no proper investigation for the pathway for glycyrrhizin known till today.

310 We have extensively worked upon the proteins which we have opted from our data of
311 *Taverniera cuneifolia*. Approx. 4912 genes have been isolated that showed different proteins
312 reported firstly from this plant among them the details have been provided in (Table S4) (we
313 have approx. shown only those hypothetical proteins whose hit length is above 400 bases). In

314 our studies we also found that there were more than 90 transcripts that showed the function
315 related to Cytochrome P450 family protein. This protein has an immense ability to synthesis
316 many new molecules required in the system to function and cope up with.

317 **Identification of SSR markers and Transcription factors**

318 The potential SSR from mono to hexanucleotide were predicted using MISA Perl script. A
319 total of 35,590 unigene sequences were examined and 2912 SSR were obtained. It was found
320 that only 2454 number of sequences were containing SSRs. Further, only 365 sequences
321 contained >1 SSR marker and 265 were present in compound form. Tri-nucleotide
322 represented the maximum numbers of SSRs (1291), followed by Mono-nucleotide (832) and
323 then Di-nucleotide (597) (Table 3). The analysis of the transcripts revealed 1557 unique
324 transcripts belonging to 85 transcription factor families. Among the identified unigenes, the
325 highest of them represented the WD40 family followed by C2H2, MYB-HB, AP2-EREBP,
326 PHD etc. the top 15 have been shown in the table.(Figure 6).

327 **Acknowledgments:**

328 We are grateful to GBRC (Gujarat Biotechnology Research Centre) for providing the
329 platform for performing the experiment. All the facilities were provided by GBRC including
330 Computational Analysis. The Department of Botany, Faculty of Science, The Maharaja
331 Sayajirao University Baroda for the all the supports for this work.

332 **Author's contribution:**

333 All authors have contributed to various aspects of this work. PN and MJ conceived the idea
334 and designed the experiments. TM and HZ performed the experiment. TM, HZ, GA and AP
335 analyzed the data. TM analyzed the results and wrote the manuscript. PSN, HZ and MJ
336 finalized the manuscript.

337 **References**

338 A, W. L., and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing
339 large sets of protein or nucleotide sequences, 22(13), 1658-1659.
340 <https://doi.org/10.1093/bioinformatics/btl158>.

341 Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local
342 alignment search tool. *Journal of molecular biology* 215, 403-410.

343 Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data.
344 Available online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>.

345 Bains, S., Thakur, V., Kaur, J., Singh, K., & Kaur, R. (2018). Genomics Elucidating
346 genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in *Saussurea*
347 *lappa* by de novo leaf transcriptome analysis. *Genomics*, 0-1.
348 <https://doi.org/10.1016/j.ygeno.2018.09.022>.

349 Beier, S., Thiel, T., Münch, T., Scholz, U., & Mascher, M. (2017). MISA-web: a web
350 server for microsatellite prediction. *Bioinformatics* (Oxford, England), 33(16), 2583–
351 2585. <https://doi.org/10.1093/bioinformatics/btx198>.

352 Chen, H., Wang, L., Wang, S., Liu, C., Blair, M. W., & Cheng, X. (2015). Transcriptome
353 sequencing of mung bean (*Vigna radiata* L.) genes and the identification of EST-SSR
354 markers. *PLoS ONE*, 10(4). <https://doi.org/10.1371/journal.pone.0120273>

355 Chin, Y. W., Jung, H. A., Liu, Y., Su, B. N., Castoro, J. A., Keller, W. J., ... Kinghorn,
356 A. D. (2007). Anti-oxidant constituents of the roots and stolons of licorice (*Glycyrrhiza*
357 *glabra*). *Journal of Agricultural and Food Chemistry*, 55(12), 4691–4697.
358 <https://doi.org/10.1021/jf0703553>.

359 Chirumbolo, S. (2016). Commentary: The antiviral and antimicrobial activities of
360 licorice, a widely-used Chinese herb, 7(April), 1–3. <https://doi.org/10.1002/ptr.2295>

361 Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid
362 guanidinium thiocyanate-phenol-chloroform extraction. *Analytical Biochemistry*, 162(1),
363 156–159. [https://doi.org/10.1016/0003-2697\(87\)90021-2](https://doi.org/10.1016/0003-2697(87)90021-2)

364 Conesa, A., Götz, S., García-gómez, J. M., Terol, J., Talón, M., Genómica, D., ...
365 Valencia, U. P. De. (2005). Blast2GO : a universal tool for annotation , visualization and
366 analysis in functional genomics research, 21(18), 3674–3676.
367 <https://doi.org/10.1093/bioinformatics/bti610>.

368 Dai, X., Sinharoy, S., Udvardi, M., & Zhao, P. X. (2013). PlantTFcat: An online plant
369 transcription factor and transcriptional regulator categorization and analysis tool. *BMC*
370 *Bioinformatics*, 14(1). <https://doi.org/10.1186/1471-2105-14-321>.

371 Dutta, S., Kumawat, G., Singh, B. P., Gupta, D. K., Singh, S., Dogra, V., Singh, N. K.
372 (2011). Development of genic-SSR markers by deep transcriptome sequencing in
373 pigeonpea [*Cajanus cajan* (L.) Millspaugh]. <https://doi.org/10.1186/1471-2229-11-17>

374 Garg, R., & Jain, M. (2013). RNA-Seq for transcriptome analysis in non-model plants.
375 Methods in Molecular Biology. https://doi.org/10.1007/978-1-62703-613-9_4

376 Ghawana, S., Paul, A., Kumar, H., Kumar, A., Singh, H., Bhardwaj, P. Kumar, S. (2011).
377 An RNA isolation system for plant tissues rich in secondary metabolites. BMC Research
378 Notes, 4(1), 85. <https://doi.org/10.1186/1756-0500-4-85>

379 Gohil Amit, N., & Daniel, M. (2014). Development of quality standards of *Taverniera*
380 *cuneifolia* (Roth) Arn. root - A substitute drug for liquorice. International Journal of
381 Pharmacognosy and Phytochemical Research, 6(2), 255–259.

382 Gore, R., & Gaikwad, S. (2015). Checklist of Fabaceae Lindley in Balaghat Ranges of
383 Maharashtra, India. Biodiversity Data Journal, 3, e4541.
384 <https://doi.org/10.3897/BDJ.3.e4541>

385 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I. Regev,
386 A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference
387 genome, 29(7). <https://doi.org/10.1038/nbt.1883>

388 Haas, B. J., Delcher, A. L., Mount, S. M., Wortman, J. R., Jr, R. K. S., Hannick, L. I.,
389 White, O. (2003). Improving the *Arabidopsis* genome annotation using maximal
390 transcript alignment assemblies, 31(19), 5654–5666. <https://doi.org/10.1093/nar/gkg770>

391 J. Thaker, Kathiyawadna Bardadungarni jadibuti teni pariksha ane upyog, Gujarati Press
392 Publishers, Mumbai (1910).

393 Kamboj VP (2000). Herbal Medicine. Current Science, 78, 35-9.

394 Kanehisa, M., Goto, S., 2000. KEGG: Kyoto encyclopedia of genes and genomes.
395 Nucleic acids research 28, 27–30.

396 Li, B., Fillmore, N., Bai, Y., Collins, M., Thomson, J. A., Stewart, R., & Dewey, C. N.
397 (2014). Evaluation of de novo transcriptome assemblies from RNA-Seq data, 1–21.
398 <https://doi.org/10.1186/s13059-014-0553-5>

399 Li, H., Fu, Y., Sun, H., Zhang, Y., & Lan, X. (2017). Transcriptomic analyses reveal
400 biosynthetic genes related to rosmarinic acid in *Dracocephalum tanguticum*. Scientific
401 Reports, (January), 1–10. <https://doi.org/10.1038/s41598-017-00078>.

402 Li, J., Dai, X., Zhuang, Z., & Zhao, P. X. (2016). LegumeIP 2.0—a platform for the study
403 of gene function and genome evolution in legumes. Nucleic Acids Research, 44(D1),
404 D1189–D1194. <https://doi.org/10.1093/nar/gkv1237>

405 Li, Y., Luo, H.-M., Sun, C., Song, J.-Y., Sun, Y.-Z., Wu, Q., Chen, S.-L. (2010). EST
406 analysis reveals putative genes involved in glycyrrhizin biosynthesis. BMC Genomics,
407 11(268), 268. <https://doi.org/10.1186/1471-2164-11-268>.

408 Liao, Z., Chen, M., Guo, L., Gong, Y., Tang, F., Sun, X., & Tang, K. (2004). Rapid
409 isolation of high-quality total RNA from taxus and ginkgo. *Preparative Biochemistry &*
410 *Biotechnology*, 34(3), 209–214. <https://doi.org/10.1081/PB-200026790>

411 Liu, P. L., Wen, J., Duan, L., Arslan, E., Ertuğrul, K., & Chang, Z. Y. (2017). *Hedysarum*
412 *L.*(Fabaceae: Hedysareae) is not monophyletic—evidence from phylogenetic analyses
413 based on five nuclear and five plastid sequences. *PLoS One*, 12(1), e0170596.

414 Liu, Y., Zhang, P., Song, M., Hou, J., Qing, M., Wang, W., & Liu, C. (2015).
415 Transcriptome analysis and development of SSR molecular markers in *Glycyrrhiza*
416 *uralensis* fisch. *PLoS ONE*, 10(11), 1–12. <https://doi.org/10.1371/journal.pone.0143017>

417 Mangalorkar, Bioprospecting the potential of *Taverniera cuneifolia* Roth Ali. Ph.D
418 Thesis in Department of Botany, Faculty of Science, The Maharaja Sayajirao University
419 of Baroda. Gujarat, India (2016).

420 Maroufi, A. (2016). Selection of reference genes for real-time quantitative PCR analysis
421 of gene expression in *Glycyrrhiza glabra* under drought stress. *Biologia Plantarum*, 60(4).
422 <https://doi.org/10.1007/s10535-016-0601-y>

423 Metzker, M. L. (2010). Sequencing technologies - the next generation. *Nature Reviews.*
424 *Genetics*, 11(1), 31–46. <https://doi.org/10.1038/nrg2626>

425 Mochida, K., Sakurai, T., Seki, H., Yoshida, T., Takahagi, K., Sawai, S., Saito, K. (2017).
426 Draft genome assembly and annotation of *Glycyrrhiza uralensis*, a medicinal legume.
427 *Plant Journal*, 89(2), 181–194. <https://doi.org/10.1111/tpj.13385>

428 Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., Kanehisa, M., 2007. KAAS: an
429 automatic genome annotation and pathway reconstruction server. *Nucleic acids research*
430 35, W182--W185.

431 Nadiya, F., Anjali, N., Thomas, J., Gangaprasad, A., & Sabu, K. K. (2017).
432 Transcriptome profiling of *Elettaria cardamomum* (L.) Maton (small cardamom).
433 *Genomics Data*, 11, 102–103. <https://doi.org/10.1016/j.gdata.2016.12.013>.

434 Naik, V.N., 1998. Flora of Marathwada (Ranunculaceae to Convolvulaceae). Amrut
435 Prakashan, Aurangabad, India.

436 P. Sharma, S. Kumar, S. Beriwal, et al., Comparative transcriptome profiling and co-
437 expression network analysis reveals functionally coordinated genes associated with
438 metabolic processes of *Andrographis paniculata*, *Plant Gene* (2019).
439 <https://doi.org/10.1016/j.plgene.2020.100234>

440 P.S.Nagar, Floristic Biodiversity of Barda Hills and its Surroundings, Scientific
441 Publishers, Jodhpur, India (2005).

442 Pagare, Saurabh, Bhatia, M., Tripathi, N., Pagare, Sonal, Bansal, Y.K., 2015.
443 Secondary metabolites of plants and their role: Overview. Current Trends Biotechnology
444 Pharm 9, 293 –304.

445 Pastorino, G, Cornara, L, Soares, S, Rodrigues, F, Oliveira, MBPP (2018). Liquorice
446 (*Glycyrrhiza glabra*): A phytochemical and pharmacological review. Phytotherapy
447 Research. 2018; 32: 2323– 2339. <https://doi.org/10.1002/ptr.6178>.

448 Perveen, Shaista. & Khatoon, Surayya. (1989). Chromosome numbers in Papilionaceae
449 from Pakistan. Pakistan J. Bot, 21, 247-251.

450 Ramilowski, J. A., Sawai, S., Seki, H., Mochida, K., Yoshida, T., Sakurai, T., Daub, C.
451 O. (2013). *Glycyrrhiza uralensis* transcriptome landscape and study of phytochemicals.
452 Plant and Cell Physiology, 54(5), 697–710. <https://doi.org/10.1093/pcp/pct057>.

453 Rasool, S., & Mohamed, R. (2016). Plant cytochrome P450s: nomenclature and
454 involvement in natural product biosynthesis. Protoplasma.
455 <https://doi.org/10.1007/s00709-015-0884-4>.

456 Roskov Y.R., Bisby F.A., Zarucchi J.L., Schrire B.D. & White R.J. (eds.) ILDIS World
457 Database of Legumes: draft checklist, version 10 [published June 2006, but CD shows
458 November 2005 date]. ILDIS, Reading, UK, 2006 [CD-Rom: ISBN 0 7049 1248 1] (also
459 available here at <https://ildis.org/LegumeWeb10.01.shtml>).

460 School of graduate studies faculty of science departement of chemistry Bioassay Guided
461 Phytochemical Investigation on Roots of *Taverniera Abyssinica* (Dingetegna) By :
462 Mekuriaw Assefa Advisor : Ermias Dagne (Professor) July , (2010).

463 Seki, H., Ohyama, K., Sawai, S., Mizutani, M., Ohnishi, T., Sudo, H., Muranaka, T.
464 (2008). Licorice -amyrin 11-oxidase, a cytochrome P450 with a key role in the
465 biosynthesis of the triterpene sweetener glycyrrhizin. Proceedings of the National
466 Academy of Sciences, 105(37), 14204–14209. <https://doi.org/10.1073/pnas.0803876105>

467 Seki, H., Sawai, S., Ohyama, K., Mizutani, M., Ohnishi, T., Sudo, H., Muranaka, T.
468 (2011). Triterpene Functional Genomics in Licorice for Identification of CYP72A154
469 Involved in the Biosynthesis of Glycyrrhizin. The Plant Cell, 23(11), 4112–4123.
470 <https://doi.org/10.1105/tpc.110.082685>.

471 Smýkal, P., von Wettberg, E. J., & McPhee, K. (2020). Legume genetics and biology:
472 from Mendel's pea to legume genomics.

473 Stadler, M., Dagne, E., Anke, H., 1994. Nematicidal activity of two phytoalexins form
474 *Taverniera abyssynica*. Planta Med. 60 (6), 550-552.

475 Sudo, H., Seki, H., Sakurai, N., Suzuki, H., Shibata, D., Toyoda, A., Saito, K. (2009).
476 Expressed sequence tags from rhizomes of *Glycyrrhiza uralensis*. Plant Biotechnology,
477 26(1), 105–107. <https://doi.org/10.5511/plantbiotechnology.26.105>

478 Thiel, T., Michalek, W., Varshney, K., & Graner, A. (2003). Exploiting EST databases
479 for the development and characterization of gene-derived SSR-markers in barley (*480 Hordeum vulgare L.*), 411–422. <https://doi.org/10.1007/s00122-002-1031-0>

481 V.N.Naik, Flora of Marathawada (Ranunculaceae to convolvulaceae), Amrut prakashan,
482 Aurangabad, India (1998).

483 Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genic microsatellite markers in
484 plants : features and applications, 23(1). <https://doi.org/10.1016/j.tibtech.2004.11.005>

485 Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G., ... Zhang, G.
486 (2013). Draft genome sequence of chickpea (*Cicer arietinum*) provides a resource for
487 trait improvement. Nature Biotechnology, 31(3), 240–246.
488 <https://doi.org/10.1038/nbt.2491>

489 Villa-Ruano, N., Pacheco-Hernández, Y., Lozoya-Gloria, E., Castro-Juárez, C. J., Mosso-
490 Gonzalez, C., & Ramirez-Garcia, S. A. (2015). Cytochrome P450 from Plants: Platforms
491 for valuable phytopharmaceuticals. Tropical Journal of Pharmaceutical Research.
492 <https://doi.org/10.4314/tjpr.v14i4.24>

493 Wolf, J. B. W. (2013). Principles of transcriptome analysis and gene expression
494 quantification: an RNA-seq tutorial, 559–572. <https://doi.org/10.1111/1755-0998.12109>

495 Yang, R., Yuan, B., Ma, Y., Wang, L., Liu, C., & Liu, Y. (2015). HMGR, SQS, β -AS,
496 and Cytochrome P450 Monooxygenase Genes in *Glycyrrhiza uralensis*. Chinese Herbal
497 Medicines, 7(4), 290–295. [https://doi.org/10.1016/s1674-6384\(15\)60054-5](https://doi.org/10.1016/s1674-6384(15)60054-5)

498 Zhang, C., Zhang, B., Vincent, M. S., Zhao, S., & Quantification, G. (2016).
499 Bioinformatics Tools for RNA-seq Gene and Isoform Quantification Next Generation
500 Sequencing & Applications, 3(3). <https://doi.org/10.4172/2469-9853.1000140>

501 Zhang, Y., Zhang, X., Wang, Y.-H., & Shen, S.-K. (2017). De Novo Assembly of
502 Transcriptome and Development of Novel EST-SSR Markers in *Rhododendron rex* Lévl.
503 through Illumina Sequencing. Frontiers in Plant Science, 8(September), 1–12.
504 <https://doi.org/10.3389/fpls.2017.01664>

505 Zore, G. B., Winston, U. B., Surwase, B. S., Meshram, N. S., Sangle, V. D., Kulkarni, S.
506 S., & Mohan Karuppayil, S. (2008). Chemoprofile and bioactivities of *Taverniera*
507 *cuneifolia* (Roth) Arn.: A wild relative and possible substitute of *Glycyrrhiza glabra* L.
508 Phytomedicine, 15(4), 292–300. <https://doi.org/10.1016/j.phymed.2007.01.006>.

1 **Captions for Tables:**

2 Table 1: Summary of sequencing data generated for root sample of *Taverniera cuneifolia*.
3 Table 2: Results based on combined assembly of *Taverniera cuneifolia* root transcriptome.
4 Table 3: Identification of Simple Sequence Repeats (SSRs) from *Taverniera cuneifolia* root
5 transcriptome.
6 Table 4: Candidate “Unigenes” encoding enzymes involved in the Sesquiterpenoid and
7 Triterpenoid biosynthesis, Flavonoid biosynthesis, Terpenoid backbone biosynthesis, Carotenoid
8 biosynthesis, Monoterpene biosynthesis and Zeatin biosynthesis identified from *Taverniera*
9 *cuneifolia* Transcriptome.

10 **Table 1: Summary of sequencing data generated for root sample of *Taverniera***
 11 ***cuneifolia*.**

Sr. No.	Features	Raw data	
		Sample run 1	Sample run 2
1	Total reads	26,652,853	29,338,380
2	Total nucleotides (bp)	3,604,710,778	3,682,016,643
3	Mean read length (bp)	135 bp	126 bp

12
 13
 14 **Table 2: Result based on combined assembly of *Taverniera cuneifolia* root transcriptome.**
 15

Sr. No.	Characteristics	Values
1	Total assembled contigs/transcript	35,590
2	GC %	43.25
3	Contig N ₅₀ (bp)	441
4	Median Contig length (bp)	322
5	Average Contig length (bp)	419.45
6	Total assembled bases	14,928,144

16
 17 **Table 3: Identification of Simple Sequence Repeats (SSRs) from *Taverniera cuneifolia* root**
 18 **transcriptome.**

SSR statistics	Count
Total number of sequences examined	35,590
Total size of examined sequences (bp)	1,49,28,144
Total number of identified SSRs	2,912
Number of SSR containing sequences	2,454
Number of sequences containing more than 1 SSR	365
Number of SSRs present in compound formation	265
Mono-nucleotide	832
Di-nucleotide	597
Tri-nucleotide	1291
Tetra-nucleotide	153
Penta-nucleotide	33
Hexa-nucleotide	6

19
 20 **Table 4: Candidate “Unigenes” encoding enzymes involved in the Sesquiterpenoid and**
 21 **Triterpenoid biosynthesis, Flavonoid biosynthesis, Terpenoid backbone biosynthesis,**
 22 **Carotenoid biosynthesis, Monoterpene biosynthesis and Zeatin biosynthesis identified from**
 23 ***Taverniera cuneifolia* Transcriptome.**

Pathway	Name	Description	KO no.	EC no.
Sesquiterpenoid and Triterpenoid biosynthesis	FDFT1	farnesyl-diphosphate farnesyltransferase	ko:K00801	2.5.1.21
	LUP4	beta-amyrin synthase	ko:K15813	5.4.99.39
	PSM	alpha/beta-amyrin synthase	ko:K20658	5.4.99.40

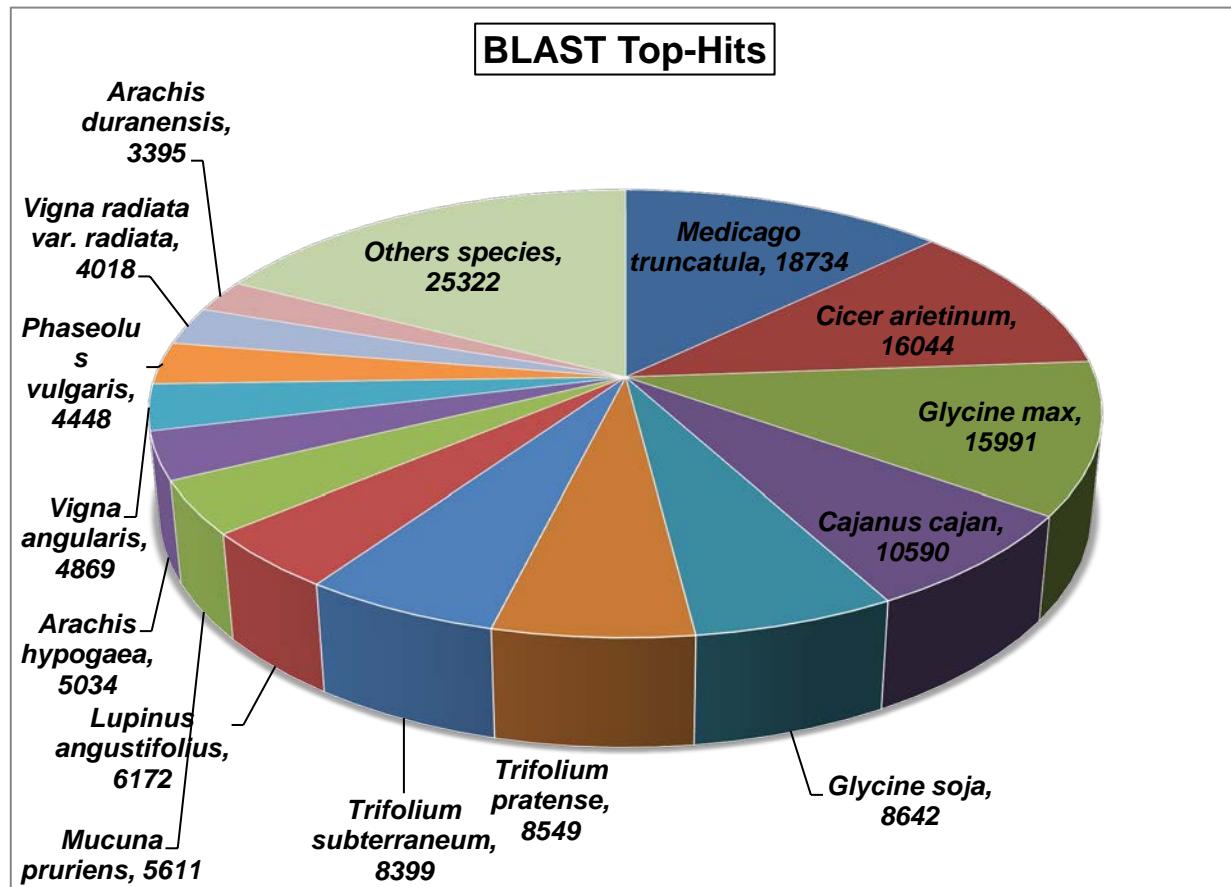
				5.4.99.39
Flavanoid biosynthesis		shikimate O-hydroxycinnamoyltransferase	ko:K13065	2.3.1.133
Terpenoid backbone biosynthesis	gcpE	(E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase	ko:K03526	1.17.7.1 1.17.7.3
	SPS	all-trans-nonaprenyl-diphosphate synthase	ko:K05356	2.5.1.84 2.5.1.85
	PCME	prenylcysteine alpha-carboxyl methylesterase	ko:K15889	3.1.1.-]
Carotenoid biosynthesis	AAO3	abscisic-aldehyde oxidase	ko:K09842	1.2.3.14
	CYP707A	(+)-abscisic acid 8'-hydroxylase	ko:K09843	1.14.14.137
	AOG	abscisate beta-glucosyltransferase	ko:K14595	2.4.1.263
Monoterpeneoid biosynthesis	UGT8	7-deoxyloganetic acid glucosyltransferase	ko:K21373	2.4.1.323
	UGT85A23_24	7-deoxyloganetin glucosyltransferase	ko:K21374	2.4.1.324
Zeatin biosynthesis	miaA	tRNA dimethylallyltransferase	ko:K00791	2.5.1.75
	UGT73C	UDP-glucosyltransferase 73C	ko:K13496	2.4.1.-

25 **Captions for Figures:**

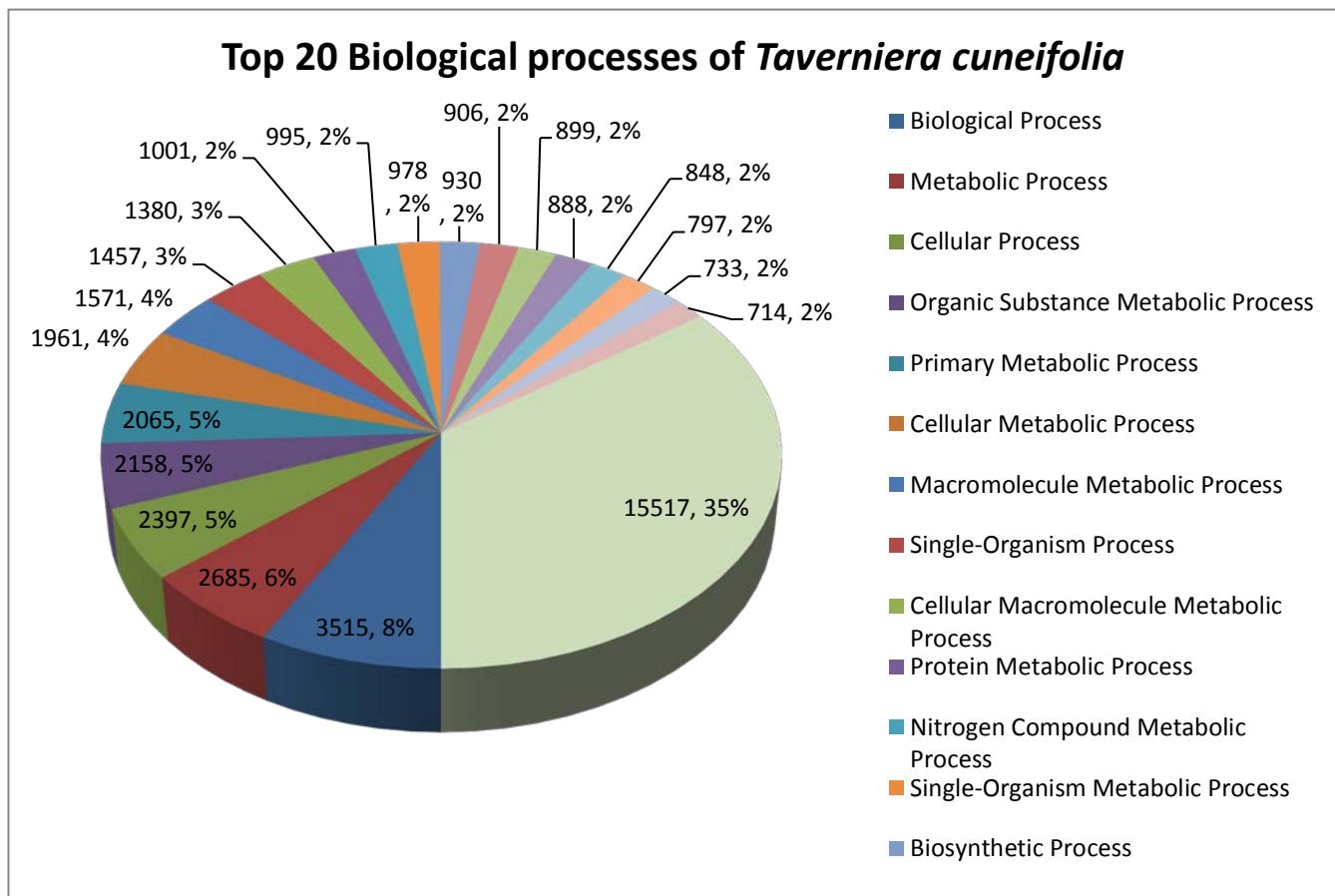
26 Figure 1: Species distribution of the top BLAST hits of *Taverniera cuneifolia* transcripts in
27 Nr database

28 Figure 2: Biological processes gene ontology of *Taverniera cuneifolia* transcripts

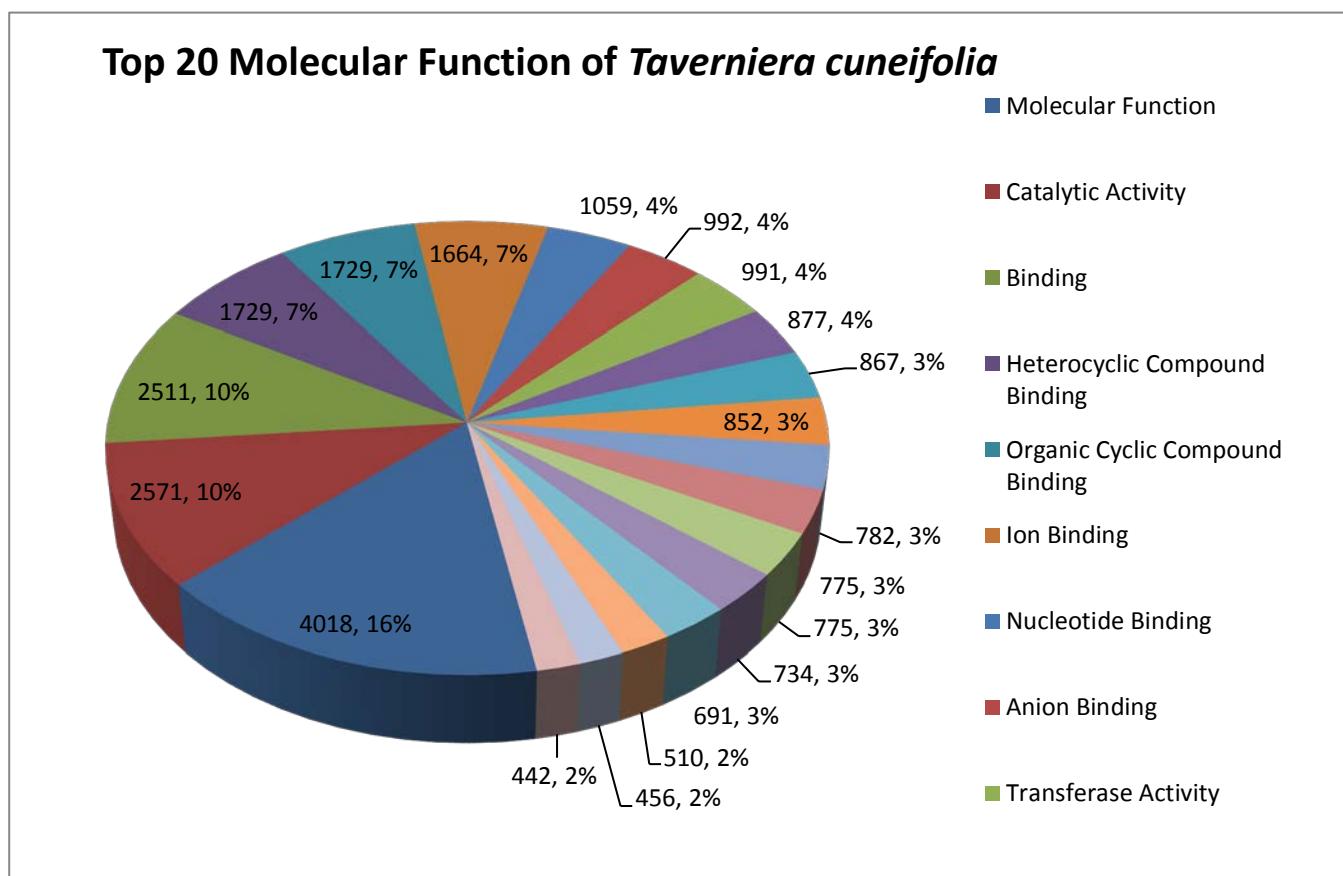
29 Figure 3: Molecular functions gene ontology of *Taverniera cuneifolia* transcripts

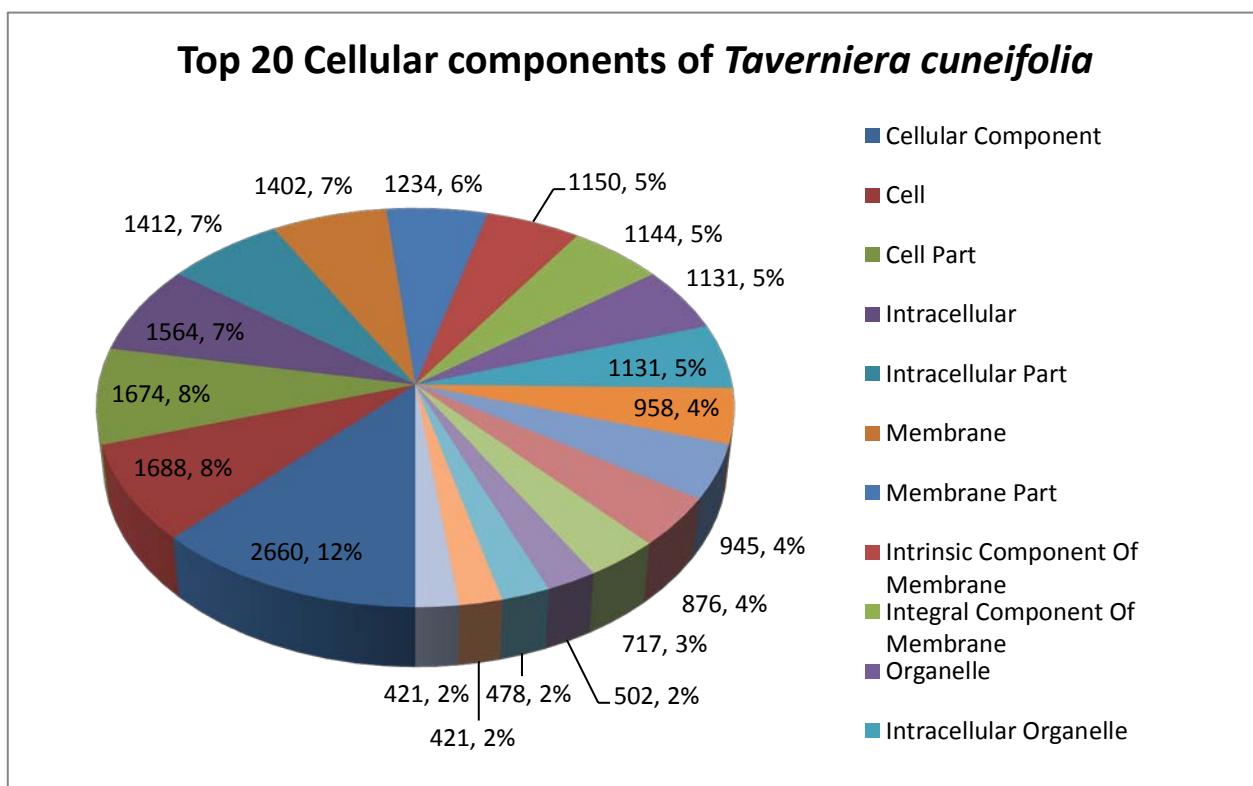

30 Figure 4: Cellular components gene ontology of *Taverniera cuneifolia* transcripts

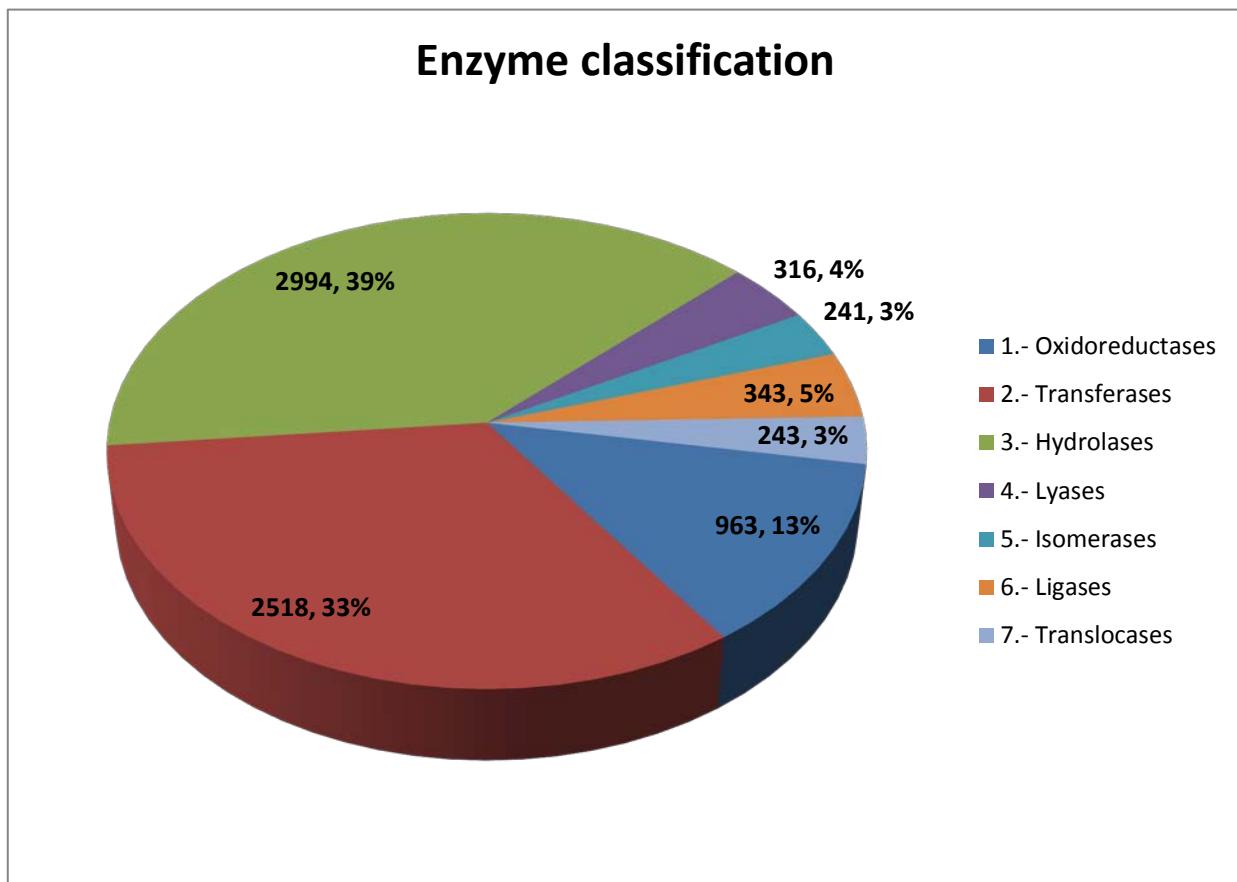
31 Figure 5: Enzyme classification of *Taverniera cuneifolia* transcripts based on KEGG pathway

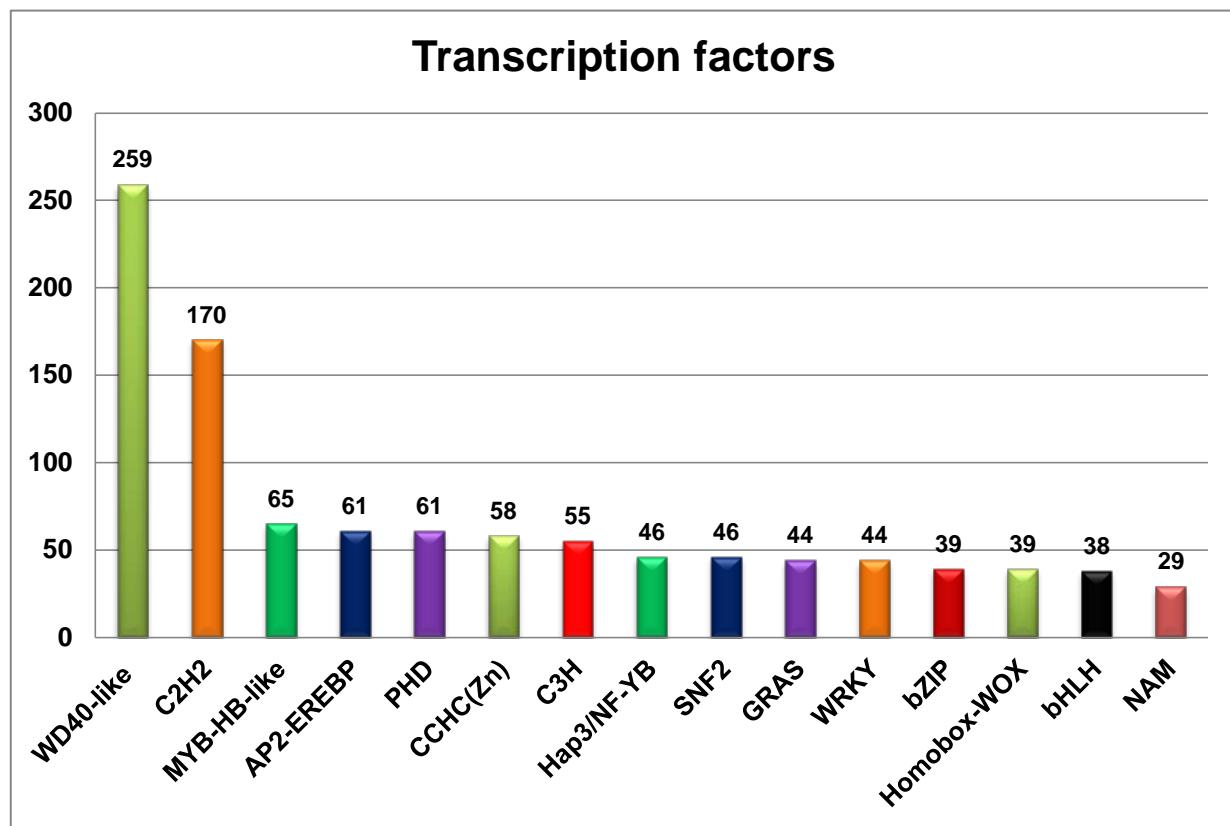

32 Figure 6: Top 15 Transcription factors families detection from *Taverniera cuneifolia* root
33 transcriptome.

34


35
36
37
38 Figure 1: Species distribution of the top BLAST hits of *Taverniera cuneifolia* transcripts in Nr
39 database.


40 Figure 2: Biological processes gene ontology of *Taverniera cuneifolia* transcripts.


41 Figure 3: Molecular functions gene ontology of *Taverniera cuneifolia* transcripts.


42 Figure 4: Cellular components gene ontology of *Taverniera cuneifolia* transcripts.

43 Figure 5: Enzyme classification of *Taverniera cuneifolia* transcripts based on KEGG pathway.

44 Figure 6: Top 15 Transcription factors families detection from *Taverniera cuneifolia* root
45 transcriptome.

46 **Supplementary Tables:**

47 **Table S1: GO sequence distribution of biological processes, molecular functions and cellular**
48 **components.**

GO term	Process	No. of Transcripts
Biological processes (44,395)	Biological process	3515
	Metabolic process	2685
	Cellular process	2397
	Organic substance metabolic process	2158
	Primary metabolic process	2065
	Cellular metabolic process	1961
	Macromolecule metabolic process	1571
	Single-organism process	1457
	Cellular macromolecule metabolic process	1380
	Protein metabolic process	1001
	Nitrogen compound metabolic process	995
	Single-organism metabolic process	978
	Biosynthetic process	930
	Organic substance biosynthetic process	906
	Cellular nitrogen compound metabolic process	899
	Cellular biosynthetic process	888
	Cellular protein metabolic process	848
	Single-organism cellular process	797
	Organic cyclic compound metabolic process	733
	Heterocycle metabolic process	714
	Cellular aromatic compound metabolic process	712
	Macromolecule biosynthetic process	673
	Nucleobase-containing compound metabolic process	659
	Cellular macromolecule biosynthetic process	650
	Cellular nitrogen compound biosynthetic process	637
	Phosphorus metabolic process	632
	Gene expression	631
	Phosphate-containing compound metabolic process	629
	Biological regulation	614
	Macromolecule modification	589
	Protein modification process	576
	Cellular protein modification process	576
	Regulation of biological process	555
	Localization	533
	Nucleic acid metabolic process	531
	Establishment of localization	530
	Transport	529
	Regulation of cellular process	513
	Organonitrogen compound metabolic process	493

Cellular components (21,508)	Oxidation-reduction process	483
	Phosphorylation	478
	RNA metabolic process	459
	Organic cyclic compound biosynthetic process	437
	Response to stimulus	433
	Heterocycle biosynthetic process	421
	Aromatic compound biosynthetic process	416
	Small molecule metabolic process	386
	Nucleobase-containing compound biosynthetic process	383
	Organonitrogen compound biosynthetic process	359
Molecular functions (25,025)	Cellular component	2660
	Cell	1688
	Cell part	1674
	Intracellular	1564
	Intracellular part	1412
	Membrane	1402
	Membrane part	1234
	Intrinsic component of membrane	1150
	Integral component of membrane	1144
	Organelle	1131
	Intracellular organelle	1131
	Membrane-bounded organelle	958
	Intracellular membrane-bounded organelle	945
	Cytoplasm	876
	Cytoplasmic part	717
	Macromolecular complex	502
	Nucleus	478
	Organelle part	421
	Intracellular organelle part	421
Biological processes (19,303)	Molecular function	4018
	Catalytic activity	2571
	Binding	2511
	Heterocyclic compound binding	1729
	Organic cyclic compound binding	1729
	Ion binding	1664
	Nucleotide binding	1059
	Transferase activity	991
	Ribonucleoside binding	877
	Purine ribonucleoside binding	867
	Hydrolase activity	852
	Adenyl ribonucleotide binding	775
	Oxidoreductase activity	456
	Anion binding	992
	Cation binding	782

	ATP binding	734
	Nucleic acid binding	691
	Transferase activity, transferring phosphorus-containing groups	510
	Metal ion binding	775
	Kinase activity	442

49

50 **Table S2: Distribution of transcripts to biological pathways using KEGG specific to plants**
 51 **along with KO-ID.**

KO-ID	KEGGS Pathways Distribution	Transcripts no.
ko01100	Metabolic pathways	102
ko01110	Biosynthesis of secondary metabolites	55
ko01120	Microbial metabolism in diverse environments	22
ko04075	Plant hormone signal transduction	15
ko03040	Spliceosome	14
ko01200	Carbon metabolism	13
ko03010	Ribosome	13
ko04144	Endocytosis	13
ko03013	RNA transport	12
ko04714	Thermogenesis	12
ko04626	Plant-pathogen interaction	12
ko04016	MAPK signaling pathway - plant	11
ko04120	Ubiquitin mediated proteolysis	10
ko04141	Protein processing in endoplasmic reticulum	10
ko01230	Biosynthesis of amino acids	10
ko00520	Amino sugar and nucleotide sugar metabolism	10
ko03018	RNA degradation	10
ko00190	Oxidative phosphorylation	9
ko03015	mRNA surveillance pathway	8
ko00500	Starch and sucrose metabolism	7
ko01240	Biosynthesis of cofactors	7
ko04146	Peroxisome	7
ko00620	Pyruvate metabolism	7
ko00010	Glycolysis / Gluconeogenesis	6
ko03050	Proteasome	5
ko00052	Galactose metabolism	5
ko04810	Regulation of actin cytoskeleton	5
ko00051	Fructose and mannose metabolism	5
ko03008	Ribosome biogenesis in eukaryotes	5
ko00270	Cysteine and methionine metabolism	5
ko00240	Pyrimidine metabolism	5

ko04142	Lysosome	5
ko00920	Sulfur metabolism	4
ko00410	beta-Alanine metabolism	4
ko03420	Nucleotide excision repair	4
ko00230	Purine metabolism	4
ko00983	Drug metabolism - other enzymes	4
ko04110	Cell cycle	4
ko00020	Citrate cycle	4
ko00970	Aminoacyl-tRNA biosynthesis	4
ko04072	Phospholipase D signaling pathway	4
ko00250	Alanine, aspartate and glutamate metabolism	4
ko00720	Carbon fixation pathways in prokaryotes	4
ko00940	Phenylpropanoid biosynthesis	4
ko00564	Glycerophospholipid metabolism	4
ko00710	Carbon fixation in photosynthetic organisms	4
ko00480	Glutathione metabolism	4
ko01212	Fatty acid metabolism	4
ko00906	Carotenoid biosynthesis	3
ko00030	Pentose phosphate pathway	3
ko00071	Fatty acid degradation	3
ko00280	Valine, leucine and isoleucine degradation	3
ko00330	Arginine and proline metabolism	3
ko04712	Circadian rhythm - plant	3
ko00040	Pentose and glucuronate interconversions	3
ko01210	2-Oxocarboxylic acid metabolism	3
ko03020	RNA polymerase	3
ko00909	Sesquiterpenoid and triterpenoid biosynthesis	3
ko00900	Terpenoid backbone biosynthesis	3
ko00460	Cyanoamino acid metabolism	2
ko03410	Base excision repair	2
ko00902	Monoterpene biosynthesis	2
ko00340	Histidine metabolism	2
ko00908	Zeatin biosynthesis	2
ko00980	Metabolism of xenobiotics by cytochrome P450	2
ko03440	Homologous recombination	2
ko00061	Fatty acid biosynthesis	2
ko00630	Glyoxylate and dicarboxylate metabolism	2
ko02010	ABC transporters	2
ko01040	Biosynthesis of unsaturated fatty acids	2
ko04978	Mineral absorption	2
ko04024	cAMP signaling pathway	2

k000592	alpha-Linolenic acid metabolism	2
k000290	Valine, leucine and isoleucine biosynthesis	2
k000260	Glycine, serine and threonine metabolism	2
k000625	Chloroalkane and chloroalkene degradation	2
k000510	N-Glycan biosynthesis	2
k004310	Wnt signaling pathway	2
k004020	Calcium signaling pathway	2
k000310	Lysine degradation	2
k003060	Protein export	2
k004922	Glucagon signaling pathway	2
k000640	Propanoate metabolism	2
k000941	Flavonoid biosynthesis	1
k003430	Mismatch repair	1
k000220	Arginine biosynthesis	1
k002020	Two-component system	1
k000945	Stilbenoid, diarylheptanoid and gingerol biosynthesis	1
k000513	Various types of N-glycan biosynthesis	1
k000903	Limonene and pinene degradation	1
k000966	Glucosinolate biosynthesis	1
k000730	Thiamine metabolism	1
k000400	Phenylalanine, tyrosine and tryptophan biosynthesis	1
k004122	Sulfur relay system	1
k000100	Steroid biosynthesis	1
k000380	Tryptophan metabolism	1
k000982	Drug metabolism - cytochrome P450	1
k000790	Folate biosynthesis	1
k003030	DNA replication	1
k004979	Cholesterol metabolism	1
k000904	Diterpenoid biosynthesis	1
k003022	Basal transcription factors	1
k000130	Ubiquinone and other terpenoid-quinone biosynthesis	1

54 **Table S3: Transcripts/genes that is associated with *Glycyrrhizin* production in *Taverniera cuneifolia* from Nr database.**

Sr. No.	Transcript ID	Best hit Transcripts associated with Glycyrrhizin biosynthesis pathway from Nr database
GENE 1 Squalene synthase/ epoxidase/monooxygenase		
1	TRINITY_DN11206_c0_g1_i1	ADG36709.1 squalene synthase 1
2	TRINITY_DN11206_c0_g1_i2	ADG36709.1 squalene synthase 1
3	TRINITY_DN25523_c0_g1_i1	XP_007041440.1 squalene monooxygenase
4	TRINITY_DN7116_c0_g1_i1	ADG36706.1squalene synthase 1
5	TRINITY_DN9998_c0_g1_i1	ADG36711.1squalene synthase 1
6	TRINITY_DN9998_c0_g1_i2	CAJ77652.1squalene synthase 1
7	TRINITY_DN9998_c0_g1_i3	ADG36699.1squalene synthase 1
8	TRINITY_DN5897_c0_g1_i1	AHY94896.1squalene epoxidase
9	TRINITY_DN10863_c0_g1_i1	AKO83630.1squalene epoxidase
10	TRINITY_DN14273_c0_g1_i2	AHY94896.1squalene epoxidase
11	TRINITY_DN14273_c1_g1_i1	KEH39980.1squalene monooxygenase
12	TRINITY_DN3414_c0_g1_i1	APA19297.1squalene synthase
13	TRINITY_DN10934_c0_g1_i2	XP_004498941.1 squalene monooxygenase-like
14	TRINITY_DN10934_c0_g1_i3	AKO83630.1squalene epoxidase
15	TRINITY_DN10934_c0_g1_i4	AKO83630.1squalene epoxidase
GENE 2 Beta-amyrin synthase		
1	TRINITY_DN11239_c0_g1_i0031	AAO33578.1beta-amyrin synthase
2	TRINITY_DN11239_c0_g1_i2	NP_001236591.2beta-amyrin synthase
3	TRINITY_DN28103_c0_g1_i1	XP_018838319.1 beta-amyrin synthase
4	TRINITY_DN11371_c0_g1_i1	NP_001236591.2 beta-amyrin synthase
5	TRINITY_DN11371_c0_g1_i2	AHI17180.1 beta-amyrin synthase
GENE 3 Beta-amyrin 11-oxidase/CYP88D6		
1	TRINITY_DN20252_c0_g1_i1	B5BSX1.1 Full=Beta-amyrin 11-oxidase; AltName: Full=Cytochrome P450 88D6
2	TRINITY_DN11652_c0_g1_i3	B5BSX1.1 Full=Beta-amyrin 11-oxidase; AltName: Full=Cytochrome P450 88D6
3	TRINITY_DN11652_c0_g1_i4	AQQ13664.1 beta-amyrin 11-oxidase
4	TRINITY_DN11652_c0_g1_i6	XP_004510262.1 beta-amyrin 11-oxidase-like
GENE 4 11-oxo-beta-amyrin 30-oxidase/CYP72A154		
1	TRINITY_DN5998_c0_g1_i1	XP_004488667.1 11-oxo-beta-amyrin 30-oxidase-like
2	TRINITY_DN11613_c0_g1_i1	H1A988.1 Full=11-oxo-beta-amyrin 30-oxidase; AltName: Full=Cytochrome P450 72A154
3	TRINITY_DN11613_c0_g1_i2	XP_004511068.1 11-oxo-beta-amyrin 30-oxidase-like
4	TRINITY_DN11613_c0_g1_i7	XP_004511068.1 11-oxo-beta-amyrin 30-oxidase-like
5	TRINITY_DN11613_c0_g1_i9	XP_004511068.1 11-oxo-beta-amyrin 30-oxidase-like
6	TRINITY_DN9161_c0_g1_i1	RHN74756.1putative 11-oxo-beta-amyrin 30-oxidase
7	TRINITY_DN10411_c0_g1_i2	XP_004511068.1 11-oxo-beta-amyrin 30-oxidase-like
8	TRINITY_DN10411_c0_g1_i3	XP_004511068.1 11-oxo-beta-amyrin 30-oxidase-like
9	TRINITY_DN10411_c0_g1_i4	XP_004511068.1 11-oxo-beta-amyrin 30-oxidase-like
10	TRINITY_DN5730_c0_g1_i1	XP_004488667.1 11-oxo-beta-amyrin 30-oxidase-like
GENE 5 Beta-amyrin 24-hydroxylase/CYP93E7		
1	TRINITY_DN11492_c0_g1_i1	AIN25419.1beta-amyrin 24-hydroxylase CYP93E7
GENE 6 UDP-glycosyltransferase family protein		
1	TRINITY_DN25514_c0_g1_i1	RHN5110.1putative UDP-glucuronosyl/UDP-glucosyltransferase
2	TRINITY_DN11708_c3_g1_i1	XP_022880903.1UDP-glycosyltransferase 73B5-like
3	TRINITY_DN1272_c0_g1_i1	AMQ26133.1UDP-glycosyltransferase 3

4	TRINITY_DN14507_c0_g1_i1	KEH43353.1 UDP-glycosyltransferase family protein
5	TRINITY_DN7469_c0_g1_i1	XP_013451680.1 UDP-glycosyltransferase 1
6	TRINITY_DN30090_c0_g1_i1	XP_019428832.1 UDP-glycosyltransferase 73C6-like
7	TRINITY_DN17733_c0_g1_i1	XP_003600815.1 UDP-glycosyltransferase 76B1 isoform X1
8	TRINITY_DN18323_c0_g1_i1	XP_012568016.1 UDP-glucose:glycoprotein glucosyltransferase
9	TRINITY_DN1735_c0_g1_i1	XP_004489724.1 UDP-glycosyltransferase 74E1
10	TRINITY_DN1735_c0_g1_i2	XP_004489724.1 UDP-glycosyltransferase 74E1
11	TRINITY_DN19316_c0_g1_i1	XP_020228882.1 UDP-glycosyltransferase 87A1-like
12	TRINITY_DN10035_c0_g1_i1	RDX79205.1 UDP-glycosyltransferase 71K2
13	TRINITY_DN6951_c0_g1_i1	XP_004490590.1 UDP-glycosyltransferase 71D1-like
14	TRINITY_DN12074_c0_g1_i1	KEH43353.1 UDP-glycosyltransferase family protein
15	TRINITY_DN27452_c0_g1_i1	AES66918.2 UDP-glucosyltransferase family protein
16	TRINITY_DN16244_c0_g1_i1	XP_012568016.1 UDP-glucose:glycoprotein glucosyltransferase
17	TRINITY_DN21948_c0_g1_i1	PNY11551.1 UDP-glycosyltransferase-like protein
18	TRINITY_DN29071_c0_g1_i1	RDX76823.1 UDP-glycosyltransferase 72B1
19	TRINITY_DN14490_c0_g1_i1	XP_014489827.1 UDP-glycosyltransferase 87A1
20	TRINITY_DN14236_c0_g1_i1	XP_012568460.1 UDP-glycosyltransferase 87A1-like
21	TRINITY_DN14292_c0_g1_i1	PNY09424.1 UDP-glycosyltransferase 76F1-like protein
22	TRINITY_DN23324_c0_g1_i1	PNY15296.1 UDP-glycosyltransferase 87A1-like protein
23	TRINITY_DN28174_c0_g1_i1	XP_013451922.1 UDP-glycosyltransferase 74G1
24	TRINITY_DN29171_c0_g1_i1	XP_004490654.1 UDP-glycosyltransferase 87A1
25	TRINITY_DN16300_c0_g1_i1	KHN41573.1 UDP-glycosyltransferase 83A1
26	TRINITY_DN14033_c0_g1_i1	XP_003544901.1 UDP-glycosyltransferase 87A1
27	TRINITY_DN22391_c0_g1_i1	XP_003599976.1 putative UDP-glucose glucosyltransferase
28	TRINITY_DN9589_c0_g1_i1	XP_013451680.1 UDP-glycosyltransferase 1
29	TRINITY_DN9589_c1_g1_i1	XP_014515686.1 UDP-glycosyltransferase 1-like
30	TRINITY_DN20336_c0_g1_i1	XP_004503216.1 UDP-glycosyltransferase 76F1-like isoform X1
31	TRINITY_DN17416_c0_g1_i1	XP_012568016.1 UDP-glucose:glycoprotein glucosyltransferase
32	TRINITY_DN29577_c0_g1_i1	XP_020240106.1 UDP-glycosyltransferase 71K1 isoform X1

56

57

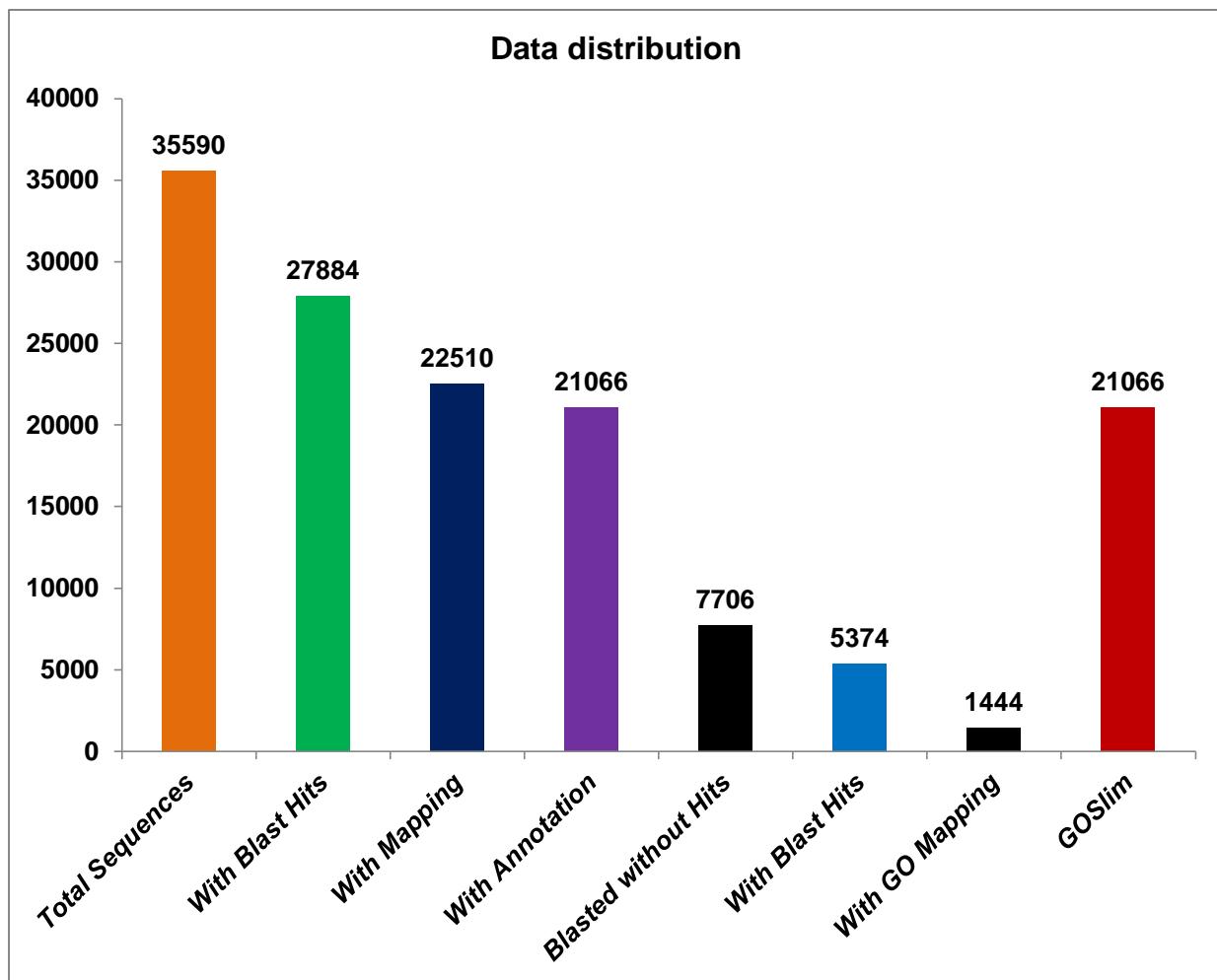
58

59

60 **Table S4: Transcripts/genes that showed the Hypothetical protein in *Taverniera cuneifolia***
 61 **with hit length above 400, (total over all 4912 hypothetical protein).**

Sr. No.	Transcript ID	Transcripts associated with Glycyrrhizin biosynthesis pathway
1	TRINITY_DN11292_c0_g1_i3	gi 593801532 ref XP_007163803.1 hypothetical protein PHAVU_001G265500g
2	TRINITY_DN11286_c0_g1_i4	gi 593795660 ref XP_007160868.1 hypothetical protein PHAVU_001G023500g
3	TRINITY_DN10387_c0_g1_i1	gi 965601928 dbj BAT89106.1 hypothetical protein VIGAN_05279900
4	TRINITY_DN10679_c0_g1_i1	gi 920709256 gb KOM51253.1 hypothetical protein LR48_Vigan08g208000
5	TRINITY_DN11770_c6_g1_i1	gi 920715088 gb KOM55176.1 hypothetical protein LR48_Vigan10g106800
6	TRINITY_DN11705_c1_g1_i3	gi 593797882 ref XP_007161979.1 hypothetical protein PHAVU_001G113800g
7	TRINITY_DN11740_c0_g1_i2	gi 147782060 emb CAN61004.1 hypothetical protein VITISV_015023
8	TRINITY_DN6658_c0_g1_i1	gi 920703423 gb KOM46648.1 hypothetical protein LR48_Vigan07g035200
9	TRINITY_DN6650_c0_g1_i1	gi 965663984 dbj BAT79693.1 hypothetical protein VIGAN_02261400
10	TRINITY_DN11563_c0_g1_i4	gi 593701389 ref XP_007151112.1 hypothetical protein PHAVU_004G018900g
11	TRINITY_DN11531_c0_g1_i1	gi 593700643 ref XP_007150760.1 hypothetical protein PHAVU_005G178600g
12	TRINITY_DN11540_c0_g1_i2	gi 147781743 emb CAN61179.1 hypothetical protein VITISV_032292
13	TRINITY_DN11053_c1_g1_i2	gi 357441957 ref XP_003591256.1 hypothetical protein MTR_1g084990
14	TRINITY_DN11043_c0_g1_i2	gi 763758066 gb KJB25397.1 hypothetical protein B456_004G189700
15	TRINITY_DN11043_c0_g1_i4	gi 763758066 gb KJB25397.1 hypothetical protein B456_004G189700
16	TRINITY_DN11647_c0_g1_i2	gi 965604026 dbj BAT91203.1 hypothetical protein VIGAN_06251600
17	TRINITY_DN11647_c0_g1_i5	gi 965604026 dbj BAT91203.1 hypothetical protein VIGAN_06251600
18	TRINITY_DN11626_c1_g1_i1	gi 593612647 ref XP_007142864.1 hypothetical protein PHAVU_007G023200g
19	TRINITY_DN11665_c3_g1_i2	gi 947109915 gb KRH58241.1 hypothetical protein GLYMA_05G114900
20	TRINITY_DN11468_c0_g1_i2	gi 593799252 ref XP_007162664.1 hypothetical protein PHAVU_001G169900g
21	TRINITY_DN11472_c0_g2_i1	gi 920703664 gb KOM46889.1 hypothetical protein LR48_Vigan07g059300
22	TRINITY_DN11487_c0_g1_i3	gi 947099253 gb KRH47745.1 hypothetical protein GLYMA_07G047800
23	TRINITY_DN11430_c1_g2_i1	gi 593704437 ref XP_007152592.1 hypothetical protein PHAVU_004G142900g

24	TRINITY_DN11430_c1_g2_i4	gi 593704437 ref XP_007152592.1 hypothetical protein PHAVU_004G142900g
25	TRINITY_DN10796_c0_g1_i3	gi 965661959 dbj BAT77668.1 hypothetical protein VIGAN_02025800
26	TRINITY_DN4344_c0_g1_i1	gi 593694898 ref XP_007147954.1 hypothetical protein PHAVU_006G168300g
27	TRINITY_DN11312_c0_g1_i2	gi 922399741 ref XP_013467009.1 hypothetical protein MTR_1g041275
28	TRINITY_DN11307_c0_g1_i4	gi 920679711 gb KOM26600.1 hypothetical protein LR48_Vigan303s002200
29	TRINITY_DN10957_c0_g1_i3	gi 920681762 gb KOM28542.1 hypothetical protein LR48_Vigan549s009700
30	TRINITY_DN11114_c0_g1_i2	gi 357466213 ref XP_003603391.1 hypothetical protein MTR_3g107090


63 **Table S5: Transcripts/genes that showed the Cytochrome P450 family protein in *Taverniera***
64 ***cuneifolia***

Sr. No.	Transcript ID	Transcripts associated with Cytochrome P450 family protein
1	TRINITY_DN10399_c0_g1_i2	gi 356515730 ref XP_003526551.1 PREDICTED: NADPH--cytochrome P450 reductase
2	TRINITY_DN11569_c1_g1_i1	gi 357514033 ref XP_003627305.1 cytochrome P450 family monooxygenase
3	TRINITY_DN11569_c1_g1_i3	gi 357514033 ref XP_003627305.1 cytochrome P450 family monooxygenase
4	TRINITY_DN1922_c0_g1_i2	gi 502156756 ref XP_004510631.1 PREDICTED: cytochrome P450 78A3
5	TRINITY_DN11093_c0_g1_i2	gi 922394449 ref XP_013465628.1 cytochrome P450 family Ent-kaurenoic acid oxidase
6	TRINITY_DN11010_c1_g1_i1	gi 357470373 ref XP_003605471.1 cytochrome P450 family monooxygenase
7	TRINITY_DN11652_c0_g1_i4	gi 838228579 gb AKM97308.1 cytochrome P450 88D6
8	TRINITY_DN8146_c0_g1_i1	gi 371940464 dbj BAL45206.1 cytochrome P450 monooxygenase
9	TRINITY_DN9931_c0_g1_i2	gi 502150242 ref XP_004507858.1 PREDICTED: NADPH--cytochrome P450 reductase
10	TRINITY_DN9161_c0_g1_i1	gi 922392052 ref XP_013464437.1 cytochrome P450 family protein
11	TRINITY_DN3071_c0_g1_i1	gi 922399435 ref XP_013466867.1 cytochrome P450 family protein
12	TRINITY_DN5499_c0_g1_i1	gi 922394449 ref XP_013465628.1 cytochrome P450 family Ent-kaurenoic acid oxidase
13	TRINITY_DN2780_c0_g1_i1	gi 502161259 ref XP_004512097.1 PREDICTED: cytochrome P450 84A1
14	TRINITY_DN2767_c0_g1_i1	gi 356569428 ref XP_003552903.1 PREDICTED: cytochrome P450 714C2-like
15	TRINITY_DN10453_c0_g1_i1	gi 356540462 ref XP_003538708.1 PREDICTED: cytochrome P450 87A3-like
16	TRINITY_DN10993_c0_g1_i1	gi 922380457 ref XP_013460458.1 cytochrome P450 family protein
17	TRINITY_DN11158_c1_g1_i4	gi 922327835 ref XP_013443310.1 cytochrome P450 family 71 protein

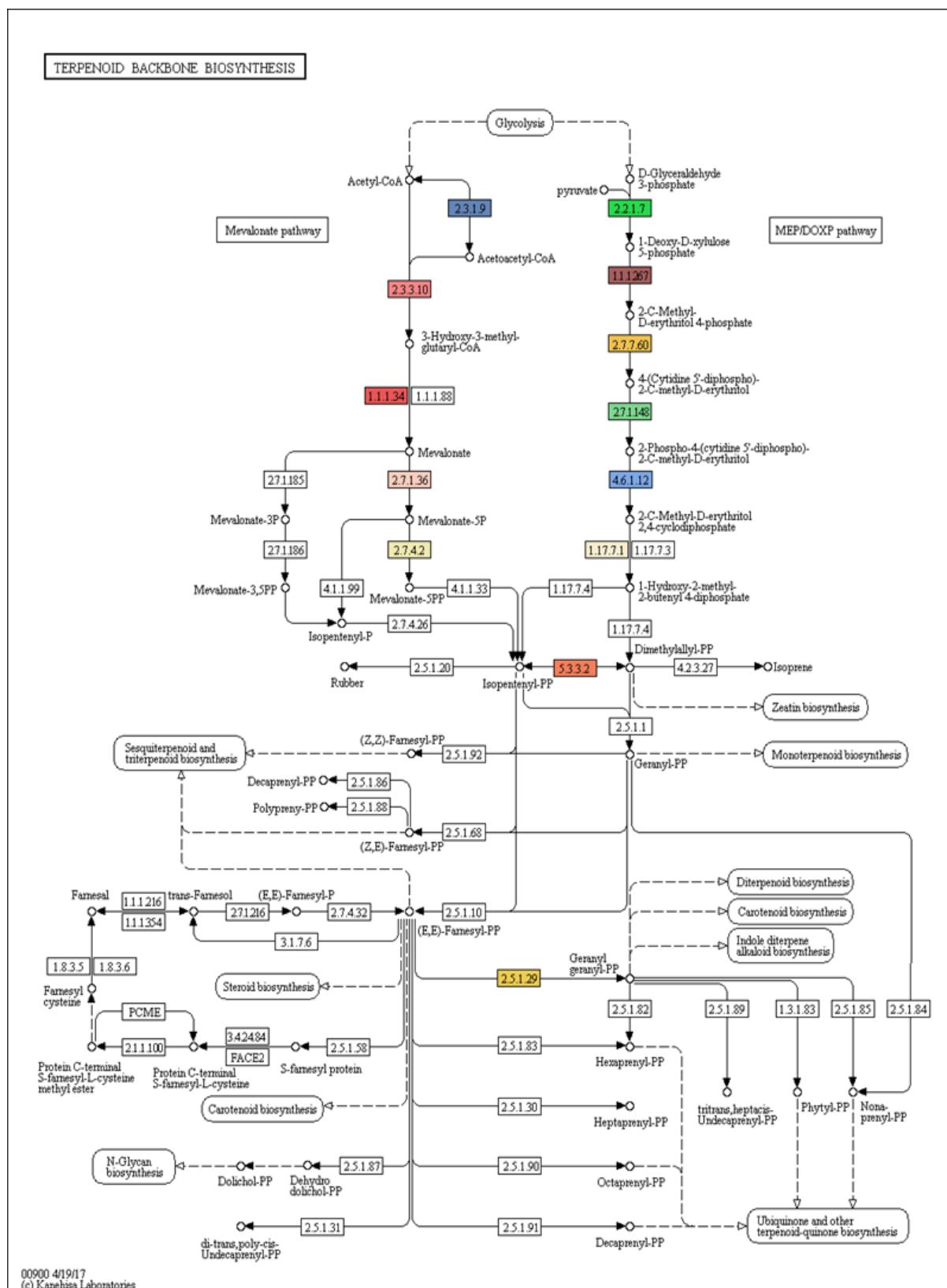
65

66

67 **Supplementary Figures:**

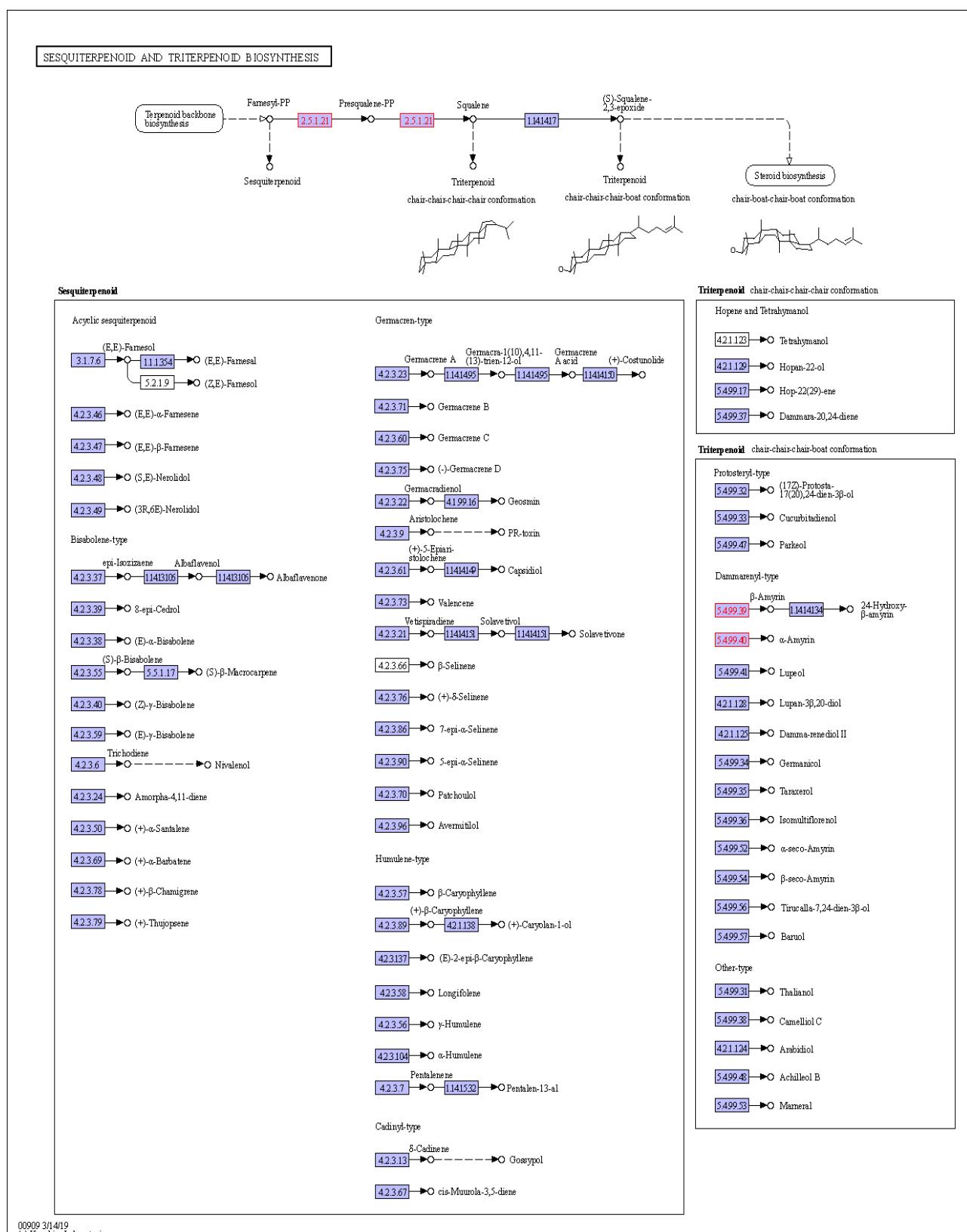
69 **Supplementary Fig. S1:** Data distribution of *Taverniera cuneifolia* transcripts subjected to
70 functional annotation.

71


72

73

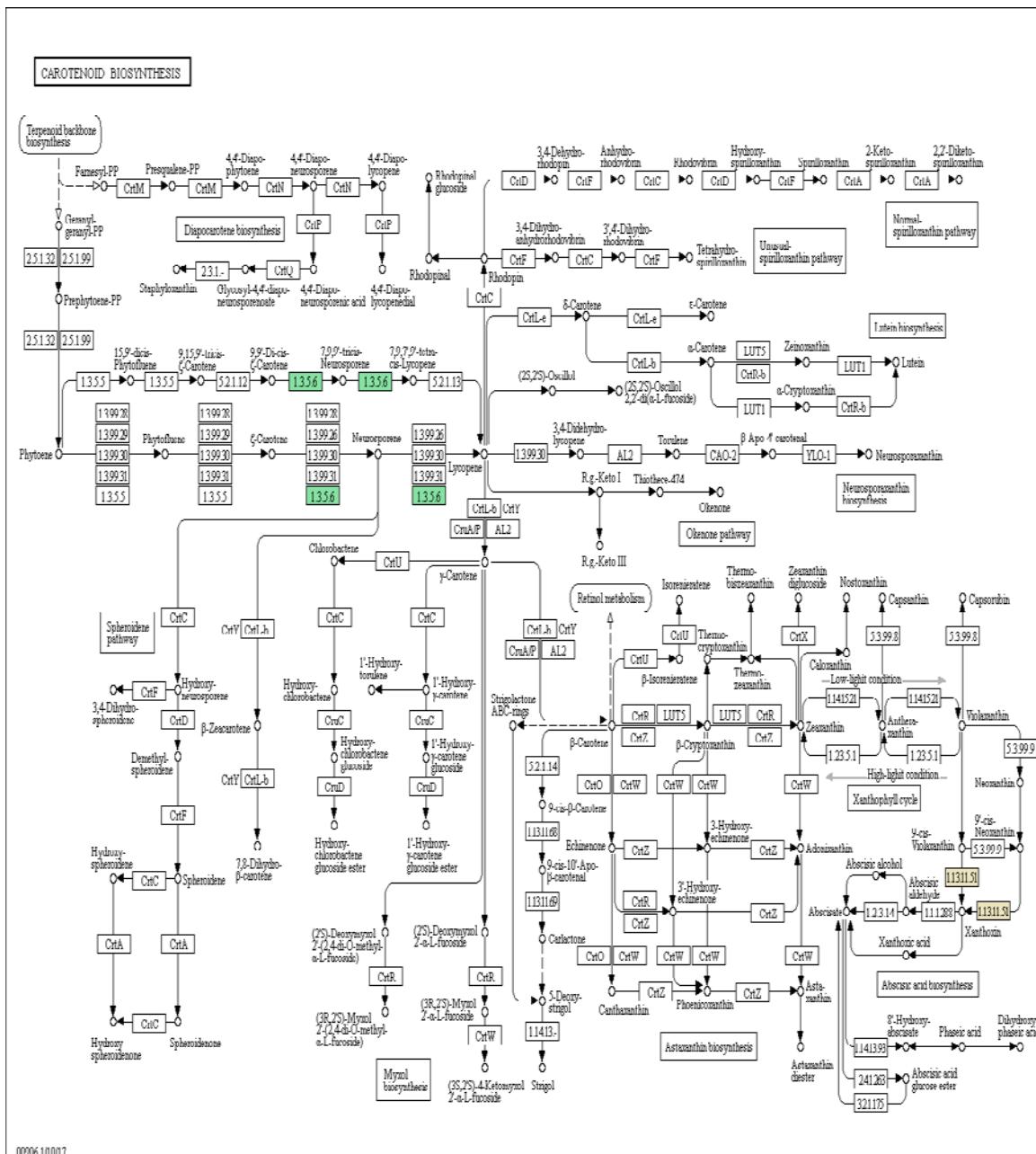
74 **Supplementary Fig. S2:** Annotation of *Taverniera cuneifolia* transcripts to different database sources.


75

76
77

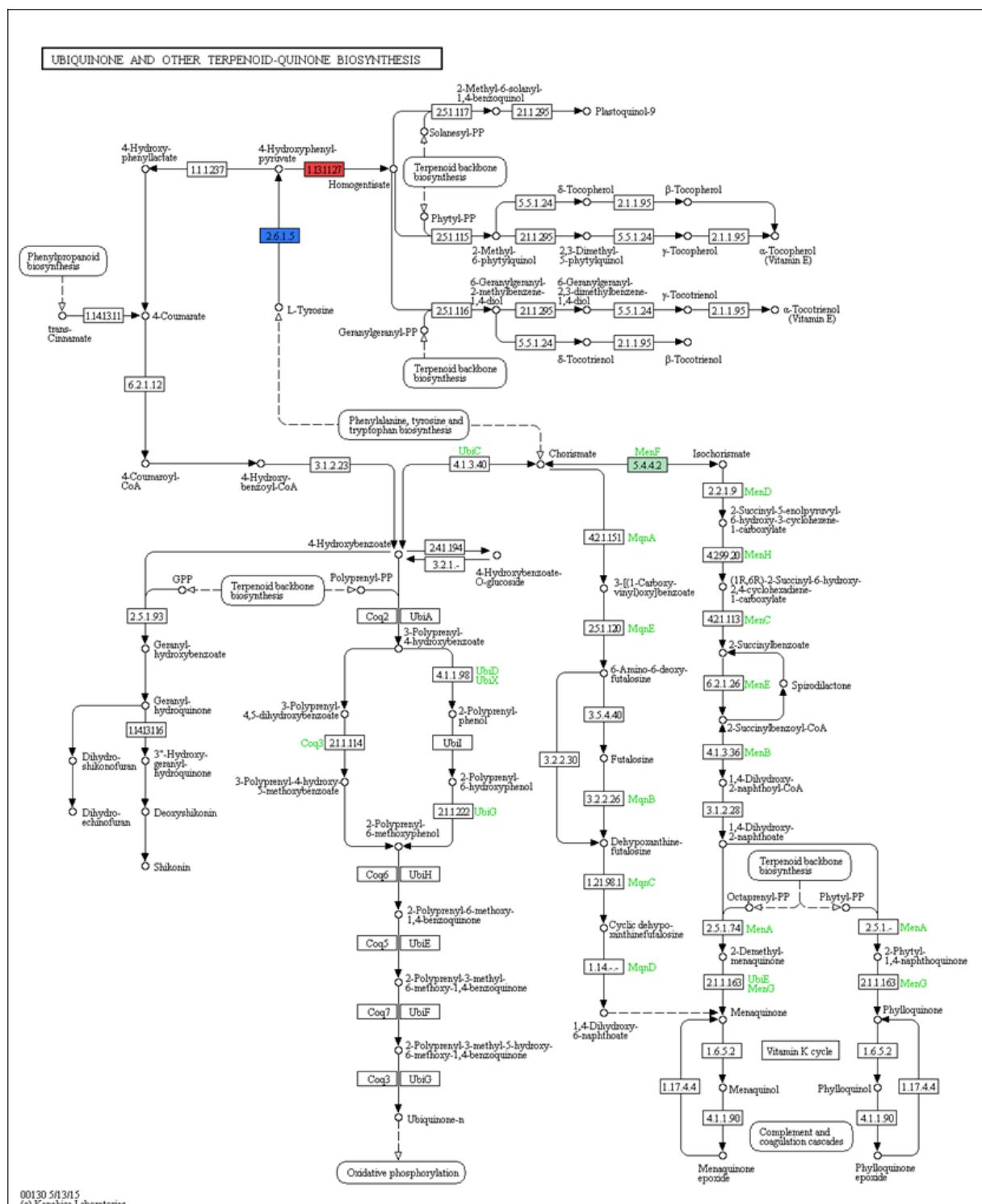
78 **Supplementary Fig. S3:** Terpenoids backbone biosynthesis pathways (Ko00900), color boxes are the
79 gene found from *Taverniera cuneifolia* sequences.

80


81

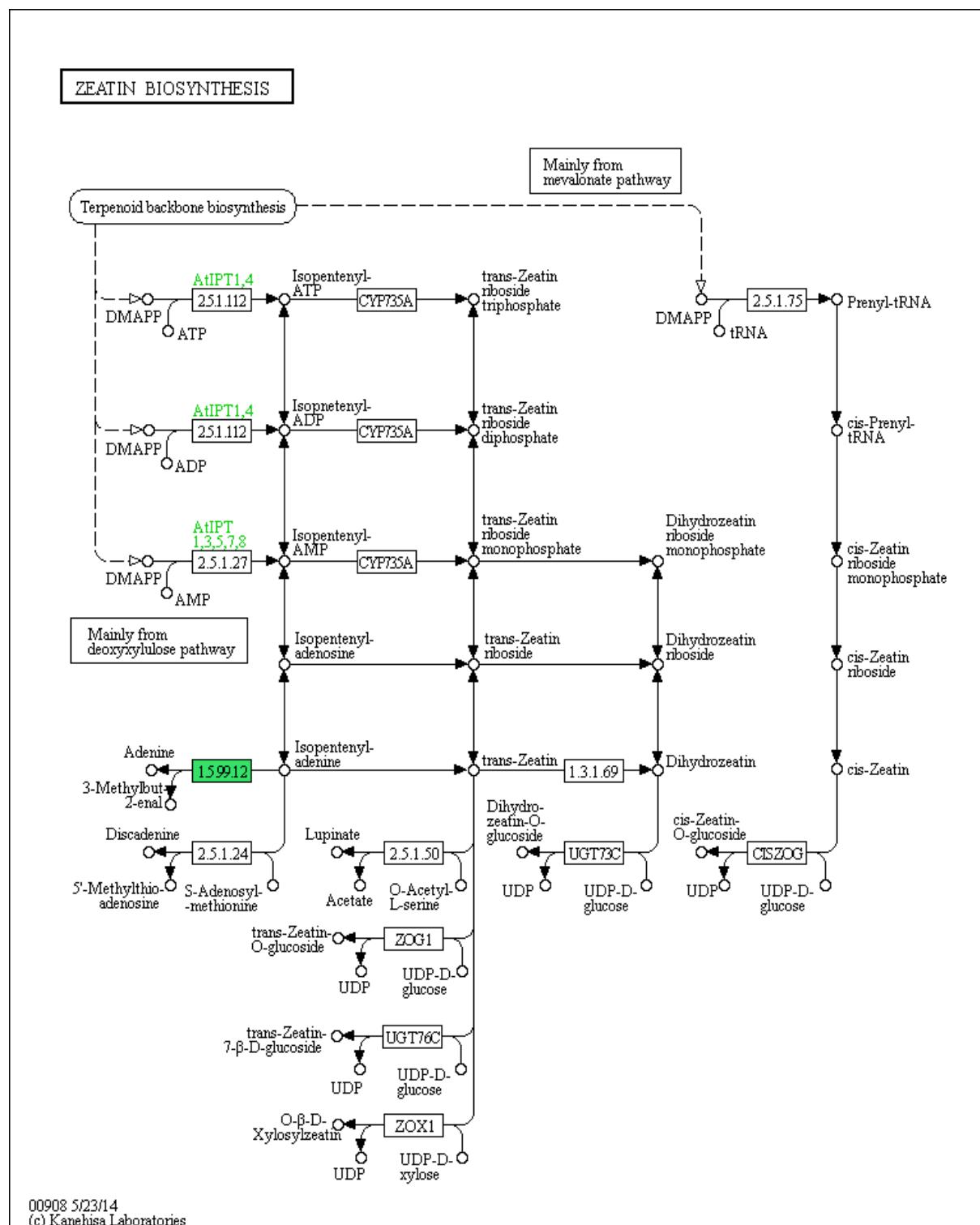
82

83 **Supplementary Fig. S4:** Sesquiterpenoid and triterpenoid biosynthesis pathway (ko00909) highlighted
84 boxes are the gene found in *Taverniera cuneifolia* sequences.


85

86

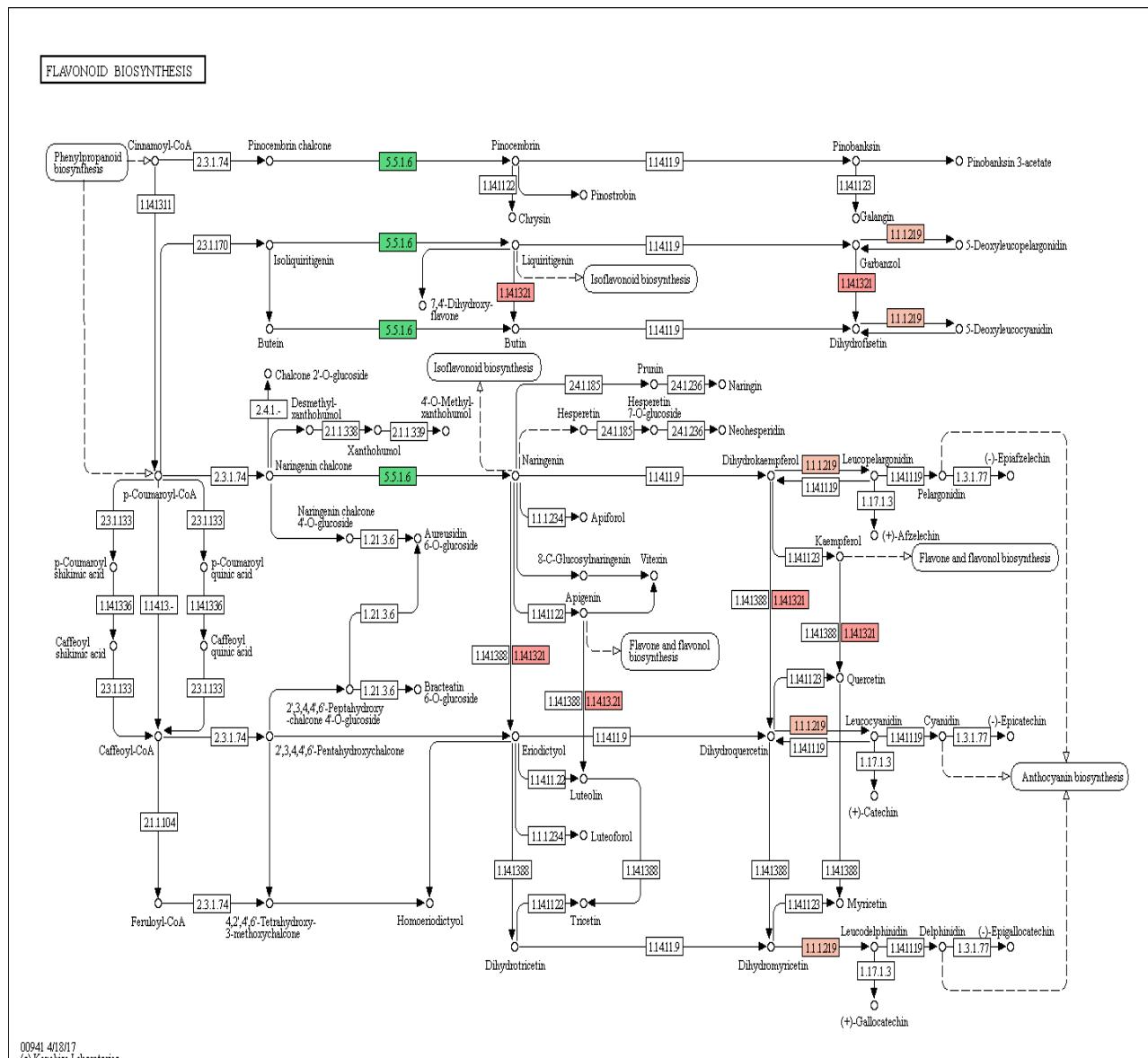
87
88


89 **Supplementary Fig. S5:** Carotenoid biosynthesis pathway (ko00906) , color boxes are the gene found
90 in *Taverniera cuneifolia* sequences.

91
92

93 **Supplementary Fig. S6:** Ubiquinone and other terpenoid-quinone biosynthesis pathway (ko00130),
94 color boxes are the gene found in *Taverniera cuneifolia* sequences.

95



96
97

00908 5/23/14
(c) Kanehisa Laboratories

98 **Supplementary Fig. S7:** Zeatin biosynthesis pathway (ko00908), color box are the gene found in
99 *Taverniera cuneifolia* sequences.

100
101
102

103

104

105 **Supplementary Fig. S8:** Flavonoid biosynthesis pathway (ko00941), color boxes are the gene found
106 in *Taverniera cuneifolia* sequences.

107

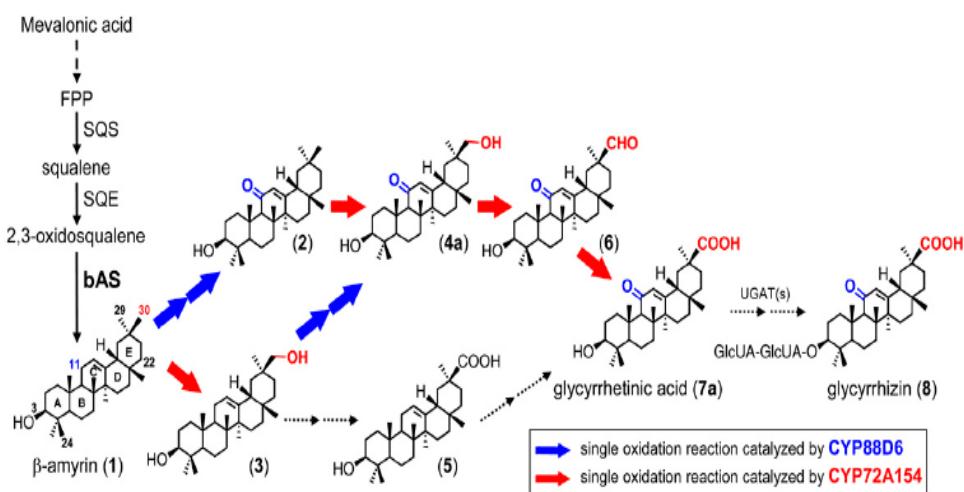


Figure 1. Proposed Pathway for Biosynthesis of Glycyrrhizin.

The structures of possible biosynthetic intermediates between β-amyrin (1) and glycyrrhizin (8) are shown: (2), 11-oxo-β-amyrin; (3), 30-hydroxy-β-amyrin; (4a), 30-hydroxy-11-oxo-β-amyrin; (5), 11-deoxoglycyrrhetic acid; (6), glycyrrhetic aldehyde; and (7a), glycyrrhetic acid. Solid black arrows indicate a dimerization reaction of two farnesyl diphosphate (FPP) molecules catalyzed by squalene synthase (SQS) originating squalene, oxidation by squalene epoxidase (SQE) to 2,3-oxidosqualene, or cyclization catalyzed by bAS. A dashed arrow between mevalonic acid and farnesyl diphosphate indicates multiple enzyme reactions. The blue arrow indicates a single oxidation reaction catalyzed by the CYP88D6 enzyme (Seki et al., 2008); the red arrow indicates a single oxidation reaction catalyzed by the CYP72A154 enzyme, as described herein; the dotted arrows signify undefined oxidation and glycosylation steps. UGATs, UDP-glucuronosyl transferases.

108

109

110

111 **Supplementary Fig. S9:** Proposed Glycyrrhizin biosynthesis pathway in Liquorice roots by
112 seki et al 2011

113