

1 **PfD123 modulates K13-mediated survival and recovery after artemisinin exposure.**

2
3 Christopher Nötzel^{1,2*}, Björn F. C. Kafsack^{1*}

4
5 ¹ Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA

6 ² Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, New York,
7 NY, USA

8
9 Please address correspondence to chn2014@med.cornell.edu or bjk2007@med.cornell.edu

10
11 **ABSTRACT**

12 Recent advances in curbing the deadly toll of malaria have been threatened by the emergence of
13 parasites resistant to the front-line antimalarial artemisinin. Resistance is mediated by point-
14 mutations in the parasite protein Kelch13, but the mechanism of resistance is multi-factorial and
15 only partially understood. Resistance-conferring Kelch13 mutations have been shown to lead to
16 low-level activation of the parasite's integrated stress response (ISR) which has a protective
17 effect against artemisinin through an unclear mechanism. Furthermore, only a subpopulation of
18 resistant parasites ever survives drug exposure, implying an underlying heterogeneity. By
19 applying scRNAseq to the resistance-relevant early ring stage, we found expansion of a
20 subpopulation in Kelch13 mutant parasites that is chiefly characterized by transcription of the
21 putative positive translational regulator D123, while we conversely observed reduced D123
22 protein levels at the same stage. Analogous inverse changes in D123 expression are produced by
23 experimental activation of the ISR, and genetically manipulating D123 expression modulates
24 sensitivity to artemisinin, establishing it as a stress-responsive gene that contributes to
25 artemisinin resistance in Kelch13-mutant malaria parasites.

26 INTRODUCTION

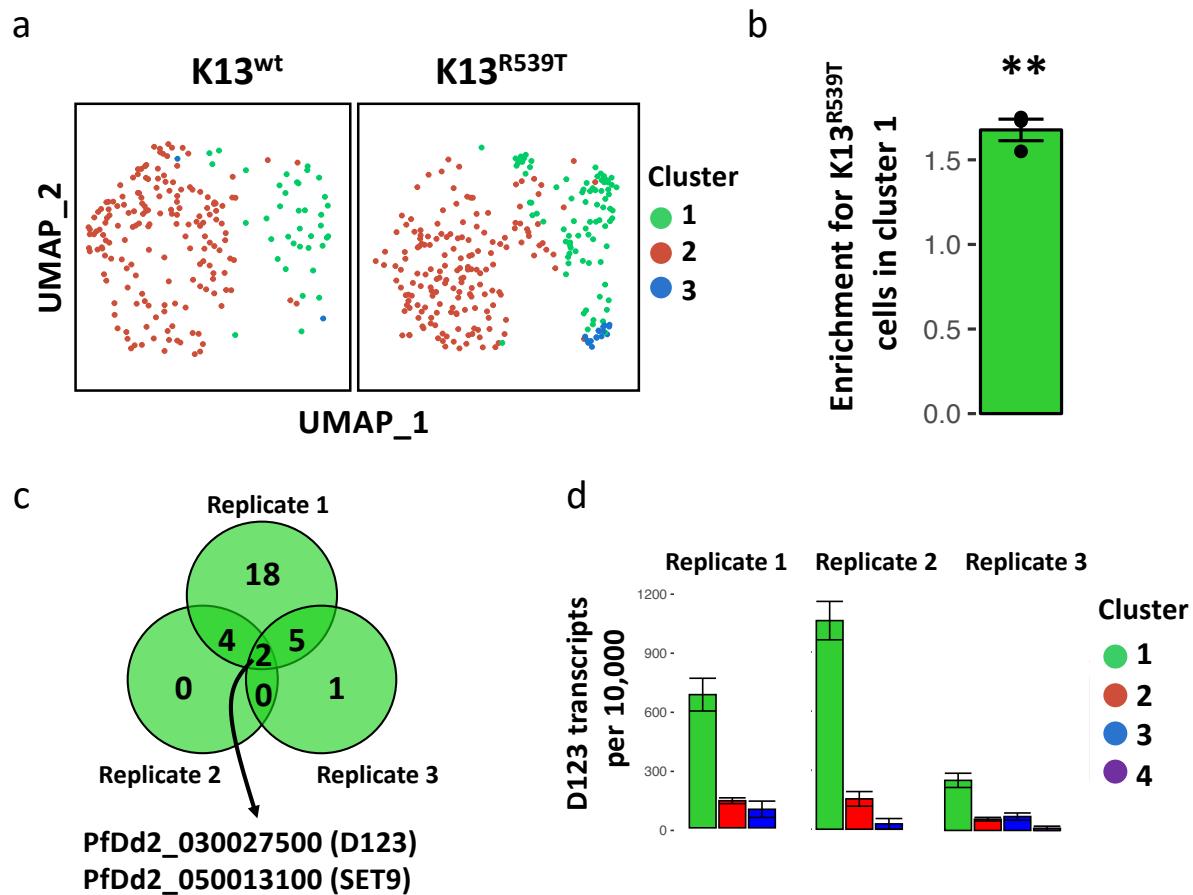
27 Malaria remains a major global health and economic burden, with around 200 million infections
28 causing 409,000 deaths annually (World Health Organization, 2020). Virtually all clinical
29 symptoms of the disease are caused by asexual replicative growth of the unicellular protozoan
30 parasite within red blood cells (Phillips et al., 2017), and this stage is the main target of all drugs
31 commonly used for treatment, including the current front-line antimalarial artemisinin (Menard
32 & Dondorp, 2017). Artemisinin and its semisynthetic derivatives (collectively referred to as ARTs)
33 are activated via free heme released during hemoglobin digestion by the parasite, thereby
34 confining its action to infected red blood cells (Wang et al., 2015). Activation involves heme-
35 mediated cleavage of the molecule's endoperoxide bond, leading to highly reactive ART
36 intermediates that inflict wide-spread cytotoxic damage and lead to activation of the parasite's
37 integrated stress response (ISR) that is poorly reversible (Bridgford et al., 2018). Importantly,
38 efficient translational shutdown at the time of artemisinin exposure, as well as eventually
39 overcoming it after drug levels subside are crucial for the parasite's ability to recover from
40 artemisinin treatment (Zhang et al., 2017).

41 Resistance to ARTs emerged initially in Western Cambodia (Dondorp et al., 2009; Noedl
42 et al., 2009), is now widespread across Southeast Asia (Imwong et al., 2020) and has recently
43 been found in Africa as well (Balikagala et al., 2021). Mutations in the parasite protein PfKelch13
44 are the molecular determinant of ART-resistance (Ariey et al., 2014; Straimer et al., 2015). One
45 major resistance mechanism is the reduced release of free heme in K13-mutant early rings due
46 to decreased hemoglobin digestion, as K13 is involved in hemoglobin uptake at that stage and
47 mutations in K13 lead to reduced K13 abundance (Birnbaum et al., 2020; Yang et al., 2019; Gnädig
48 et al., 2020; Stokes et al., 2021). Another critical contributor to resistance is an increased base-
49 line activation of the parasite's stress response that was detected in Kelch13-mutant parasites in
50 the field (Mok et al., 2015) and was also shown to be important for resistance in vitro (Cui et al.,
51 2012; Dogovski et al., 2015; Rocamora et al., 2018). Specifically, K13-mutant rings show increased
52 levels of eIF2 α phosphorylation at the resistance-relevant early ring stage (Zhang et al., 2017). In
53 addition, experimentally activating the ISR using the eIF2 α phosphatase inhibitor Salubrinal prior
54 to exposure to ARTs provides a protective effect (Zhang et al., 2017). However, how this increased
55 ISR activation exactly promotes resistance to ARTs remains unclear. It is conceivable that specific
56 downstream effectors of the ISR are changed in expression in K13-mutant early rings, but our
57 knowledge about the *Plasmodium* ISR is limited. Furthermore, the observation that only a
58 subpopulation of K13-mutant rings exposed to ARTs ever survive drug treatment implies that any
59 underlying changes in gene expression are restricted to a subpopulation of parasites (Straimer et
60 al., 2015), and the use of conventional bulk transcriptomics approaches has made a detailed
61 characterization of this heterogeneity challenging.

62 Here we used scRNAseq to characterize both the transcriptional heterogeneity at the
63 resistance-relevant 0-3 hpi ring stage in ART-sensitive and -resistant parasites, as well as the

64 heterogenous transcriptional response of parasites to ART exposure. We identify the putative
65 positive translational regulator D123 as a major stress-responsive gene that is differentially
66 expressed in K13-mutant early rings and find that genetically modulating D123 expression levels
67 leads to changes in ART-sensitivity. Taken together, this work underscores the importance of a
68 modified integrated stress response in ART-resistance and identifies a specific downstream
69 effector of the *Plasmodium* ISR that contributes to ART-resistance in K13-mutant parasites.

70


71 RESULTS

72 The putative translational regulator D123 is differentially expressed in Kelch13-mutant, 73 artemisinin-resistant early ring stage parasites.

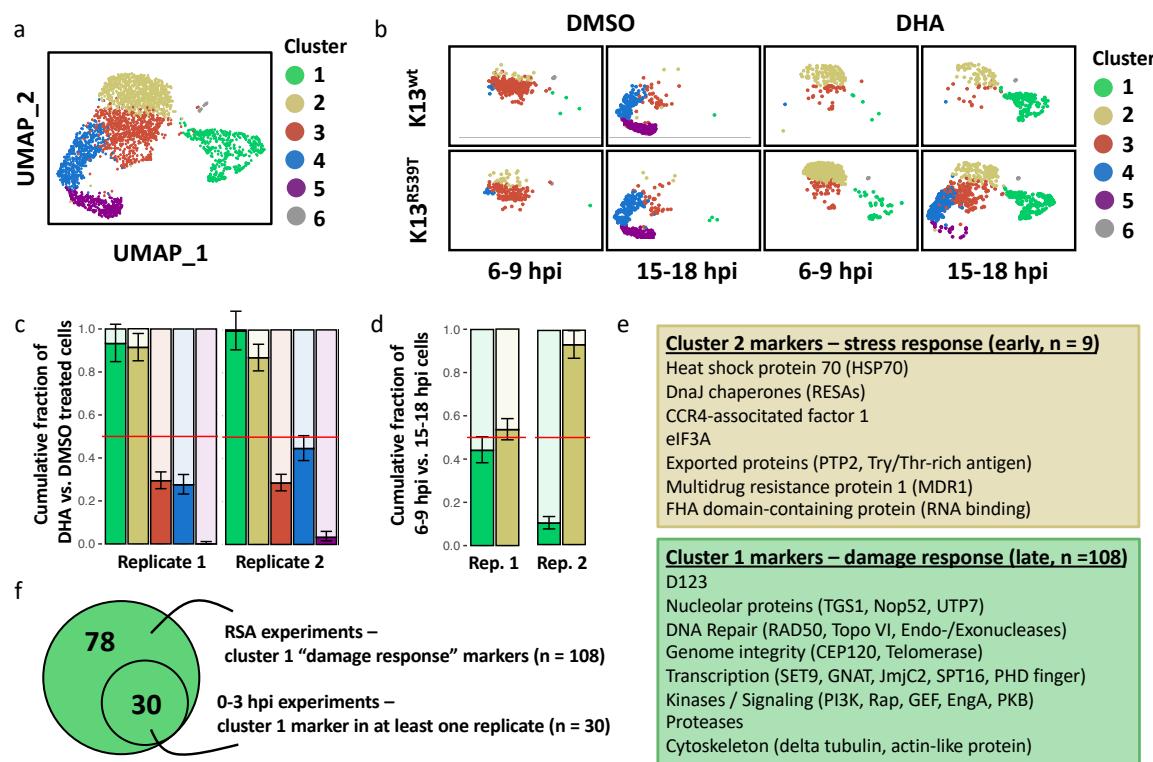
74 We hypothesized that mutations in Kelch13 lead to changes in gene expression within a
75 subpopulation of early ring stage parasites, and that these pre-existing differences promote
76 resistance to Artemisinin. To uncover any potential baseline changes in the transcriptional
77 heterogeneity in Kelch13 mutant parasites, we performed single-cell transcriptional profiling of
78 ring stage parasites immediately following invasion (0-3 hpi) in asexual Dd2 strain parasites
79 carrying either the PfKelch13 wildtype allele (K13^{wt}) or the ART-resistance-conferring R539T allele
80 (K13^{R539T}, Straimer et al., 2015, Supplementary Fig. 1a) in three biological replicates.

81 Generating 0-3 hpi samples generally yielded cultures at around 2-5% parasitemia, but
82 scRNAseq requires input samples with a maximized fraction of infected red blood cells (iRBCs) to
83 avoid wasteful sequencing of uninfected red blood cells (uRBCs). Preparing such samples from
84 ring stage cultures is challenging as they lack the paramagnetic hemozoin present in more mature
85 intra-erythrocytic stages that helps separating those from uRBCs with the help of magnetic
86 columns. An alternative would be flow-cytometry-based sorting of iRBCs, but here the lack of
87 flexibility when relying on institutional core facilities, as well as high costs and a relatively long
88 duration of sorting are of concern. Instead, we employed a recently published method that relies
89 on differences in the lipid composition between iRBCs and uRBCs to selectively enrich for iRBCs
90 using the bacterial virulence factor streptolysin-O (Brown et al., 2020; see methods). Using this
91 simple and quick protocol, we were able to reproducibly yield <70% iRBC samples that we could
92 use for scRNAseq (Supplementary Fig. 1c).

93 Despite the narrow time window profiled and the very low RNA content of early ring
94 stages (Martin et al., 2005; Sims et al., 2009; Supplementary Fig. 1b), we were able to resolve
95 different subpopulations within each sample, with cells separating into two major clusters (1 and
96 2) in all three replicates (Fig. 1a, Supplementary Fig. 1d-e), as well as one or two minor clusters
97 that varied by replicate. Marker analysis found that cells in cluster 2 were characterized by high
98 levels of the DnaJ chaperone Ring Infected Surface Antigen (RESA, PfDd2_010006000). RESA is
99 one of the most highly expressed genes immediately following merozoite invasion (Otto et al.,
100 2010), thus validating this cluster 2 as containing nascent ring stages. K13^{wt} and K13^{R539T} parasites
101 contributed similarly to cluster 2 and we found no significant expression differences between

Figure 1: The putative translational regulator PfD123 is differentially expressed in K13-mutant, artemisinin-resistant early ring stage parasites. a, UMAP projection of replicate 1 of the 0-3 hpi scRNAseq experiment, stratified by parasite strain. b, enrichment of cluster 1 for K13^{R539T} parasites across the three 0-3 hpi scRNAseq replicates, $n = 3$, $p = 0.009$. c, venn diagram of markers identified for cluster 1 in the three 0-3 hpi replicates (Bonferroni corrected p -value < 0.05). d, average transcript levels of D123 detected per cell for each cluster and replicate. Error bars always represent sem, statistical significance in b was tested using two-sided, one-sample t-tests ($\mu = 1$).

102 these strains among cluster 2 cells. Intriguingly, cluster 1 was significantly enriched for Kelch13-
 103 mutant parasites across all three biological replicates (1.68 fold-enrichment, $p = 0.009$, Fig. 1c-d,
 104 Supplementary Table 1) and was marked by expression of a gene encoding an uncharacterized
 105 D123-domain protein (PfDd2_030027500, “PfD123” hereafter). D123 proteins are broadly
 106 conserved across eukaryotes (Burroughs et al., 2015) and facilitate assembly of eIF2 translational
 107 initiation complex by functioning as a chaperone for the eIF2 subunits eIF2 α and eIF2 γ , thereby
 108 positively regulating protein translation (Bieganowski et al., 2004; Perzlmaier et al., 2013; Panvert
 109 et al., 2015).


110

111 **Deconvoluting the heterogeneous transcriptional response to artemisinin.**

112 Kelch13-mutant parasites exhibit increased base-line activation of the integrated stress response
113 (Zhang et al., 2017), which is known to lead to translational arrest in malaria parasites (Vembar
114 et al., 2016). Since the regulation of protein translation is intimately connected to the ISR, we
115 hypothesized that, as a putative translational regulator, expression of PfD123 might be stress-
116 responsive and that increased levels of eIF2 α phosphorylation previously described in early rings
117 of Kelch13-mutants (Zhang et al., 2017) are responsible for the increased subpopulation of cells
118 with high D123 transcript levels that we observed at that stage (Fig. 1). In order to test this, we
119 performed scRNAseq of K13^{wt} and K13^{R539T} ring-stage parasites after exposure to
120 Dihydroartemisinin (DHA) or a solvent control in a classic “ring survival assay” (RSA) setup
121 (Witkowski et al., 2013): Tightly synchronous 0-3 hpi parasites were exposed to 700 nM DHA or
122 DMSO for 6h, after which the drug was rigorously washed off and parasites were followed up for
123 survival. Single-cell transcriptomics were performed at the wash-off time point (6-9 hpi), as well
124 as 9 hours later (15-18 hpi) (n = 2, Supplementary Fig. 3a). Artemisinin itself leads to a potent
125 activation of the ISR (Bridgford et al., 2018), making artemisinin-treated parasites a suitable
126 model for stress-induced changes in gene expression. In addition, this experimental setup
127 allowed us to better understand how parasites respond specifically to treatments with DHA, and
128 whether surviving Kelch13-mutant parasites show any unique changes in gene expression after
129 drug treatment, in addition to the pre-existing differential gene expression described in Figure 1.

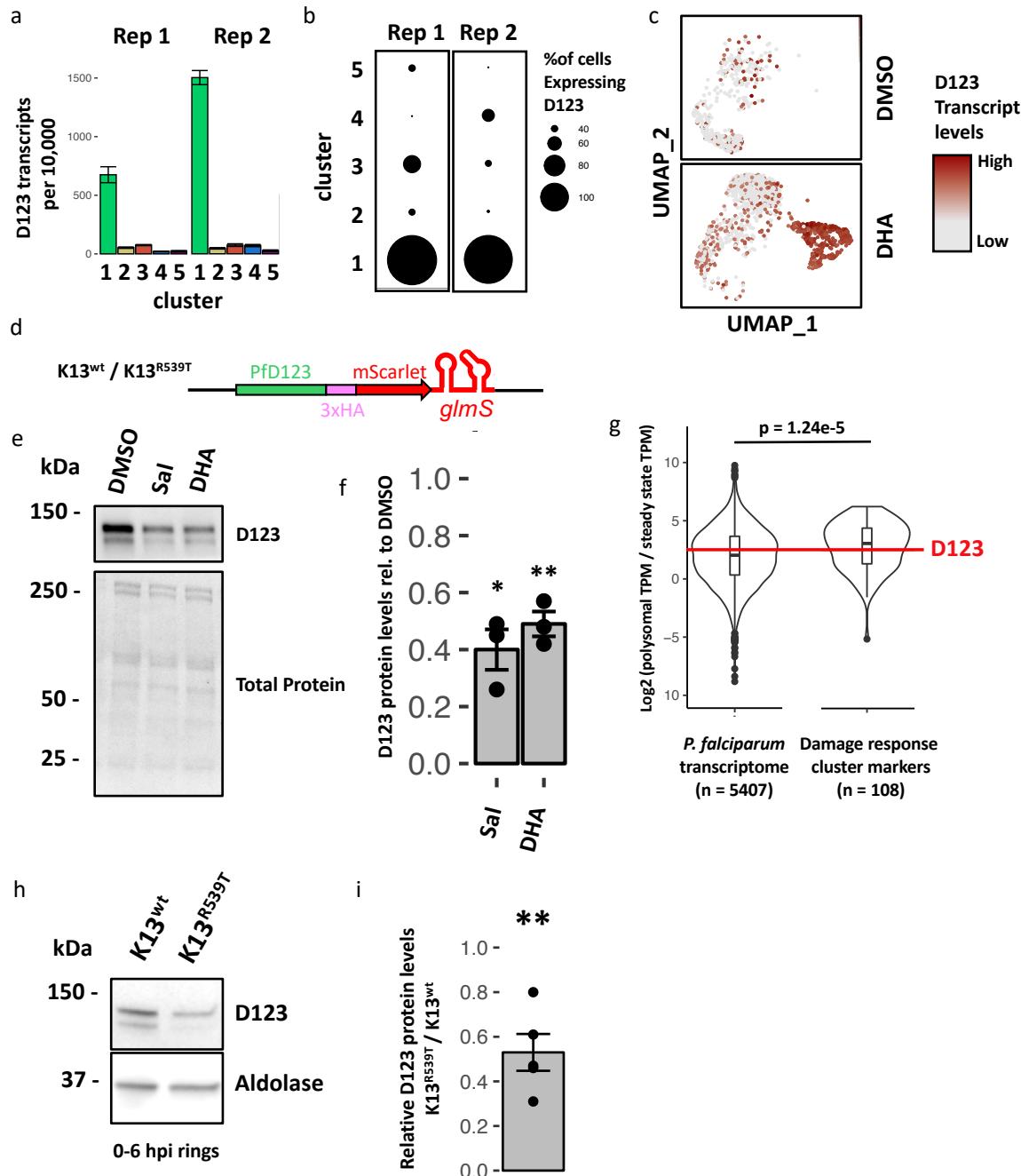
130 When analyzed together, the single-cell transcriptomes (SCTs) of these RSA time-course
131 experiments self-organized in a continuous arc along one side of the UMAP projection (clusters
132 2 – 5) with an additional, transcriptionally particularly distinct cluster 1 on the other side and one
133 smaller cluster in-between (cluster 6), the latter of which was disregarded due to its small size
134 (Fig. 2a). Visualizing the SCTs stratified by parasite strain, treatment and collection time point
135 suggests that clusters 3 – 5 mainly represent healthy parasites progressing through the cell cycle,
136 while clusters 1 and 2 are mainly composed of DHA-treated cells (Fig. 2b, Supplementary Fig. 3c).
137 Enrichment analysis confirmed that clusters 1 and 2 are ART-response clusters (Fig. 2c), while
138 correlation of pseudo-bulked SCTs to published bulk transcriptomics data validated that parasites
139 progressively move through early intra-erythrocytic development from cluster 3 through cluster
140 5 (Supplementary Fig. 4).

141 Notably, the two ART-response clusters were clearly separated on the UMAP projection
142 (Fig. 2a), indicating they both represent transcriptionally distinct stages of parasites responding
143 to ART-induced cellular stress. Both clusters were each clearly enriched for one of the two
144 collection time points, further suggesting that cluster 2 represents the immediate response to
145 DHA (mostly 6-9 hpi cells, at the end of artemisinin treatment), while cluster 1 represents the
146 later response (mostly 15-18 hpi cells collected 9h after washing off DHA) (Fig. 2d). The
147 immediate stress response (cluster 2, Fig. 2e top panel) was characterized by chaperones and
148 heat shock proteins, which help restricting protein damage, as well as by the Multidrug resistance

Figure 2: Deconvoluting the transcriptional response to artemisinin with single-cell resolution.

a, UMAP projection of 6-9 hpi and 15-18 hpi SCTs from both DMSO and DHA treated K13^{wt} and K13^{R539T} parasites. **b**, same SCTs as in a, but stratified by strain, collection time point and treatment. **c**, for each cluster, enrichment for DHA vs. DMSO treated parasites was calculated, and the cumulative fraction plotted. Error bars represent 95% confidence intervals from poisson tests. Color code for clusters is the same as in b. **d**, for cluster 1 and 2, enrichment for 6-9 hpi vs. 15-18 hpi cells was calculated, and the cumulative fraction plotted. Error bars represent 95% confidence intervals from poisson tests. Color code for clusters is the same as in b. **e**, manually curated summary of marker genes for cluster 2 (top) and cluster 1 (bottom). Only genes that were significant markers for their respective cluster in both biological replicates were considered ($p < 0.05$, Bonferroni corrected p-value). **f**, venn diagram of cluster 1 markers of RSA experiments in this figure and cluster 1 markers of 0-3 hpi experiments (Fig. 1). DHA = Dihydroartemisinin.

149 protein (MDR1), which is a pump that decreases accumulation of antimalarials in the food
 150 vacuole and shows increased copy number in other drug-resistant parasites (Foote et al., 1989).
 151 eIF3A, the RNA-binding component of the translation initiation factor complex, as well as the
 152 RNA-regulatory proteins CCR4-associated factor 1 (CAF1) and FHA-domain containing protein
 153 were also expressed in early stress responsive cells. The later response to DHA (cluster 1, Fig. 2e
 154 bottom panel) showed a high number of reproducible marker genes ($n = 108$, compared to 9
 155 markers for cluster 2) that were called with higher confidence based on adjusted p-values
 156 (Supplementary Table 2). These parasites were transcriptionally characterized by nucleolar
 157 proteins, DNA repair and genome integrity factors as well as many kinases and signaling proteins.
 158 Proteases, cytoskeletal proteins and regulators of transcription were also highly expressed.
 159 Overall, cluster 1 parasites appeared to mount a transcriptional response of recovery after the


160 damage (“damage response”), indicative of an attempt to reenter the cell cycle after drug levels
161 have subsided.

162 We were curious whether wildtype and Kelch13-mutant parasites respond differently to
163 artemisinin or express different genes as they progress through early intra-erythrocytic
164 development. However, when performing within-cluster marker analysis comparing gene
165 expression between the two strains, no reproducible differences were found for any of the
166 clusters in these experiments.

167 Kelch13-mutant parasites showed expected levels of survival after DHA-exposure in these
168 RSA scRNASeq experiments (Supplementary Fig. 3a). Accordingly, we could identify a distinct
169 subpopulation of K13-mutant parasites in the DHA-treated samples that was absent in Dd2
170 wildtype samples treated with DHA (Fig. 2b). This subpopulation appeared in both experiments,
171 was largely restricted to the 15-18 hpi time-point (Supplementary Fig. 3c) and colocalized with
172 untreated parasites moving through intra-erythrocytic development, altogether suggesting that
173 these are parasites surviving and reentering the cell cycle after DHA-exposure. We were curious
174 whether these cells showed any specific gene expression characterizing them as survivors.
175 However, marker analysis comparing them to DMSO-treated parasites within the same global
176 cluster showed no reproducible differences between the two experiments, indicating that at that
177 point in time, K13-mutant survivors are transcriptionally largely comparable to healthy, asexually
178 replicating parasites.

179

Figure 3: Expression of PfD123 is stress-responsive. **a**, Average transcript levels of D123 detected per cell after exposure to DHA for each cluster and replicate (RSA experiments Fig. 3.2). Error bars represent sem. **b**, Percent D123+ cells for each cluster, stratified by biological replicate, plotted in dot plots (RSA experiments Fig. 3.2). **c**, UMAP projection of replicate 2 of the RSA experiments (Fig. 3.2), stratified by treatment, with each cell colored based on the detected D123 transcript levels. **d**, schematic of K13^{wt}- / K13^{R539T}-D123-3xHA-mScarlet-glmS parasite lines generated by CRISPR/Cas9 gene editing **e**, representative immunoblot of K13^{wt}-D123-3xHA-glmS ring stage parasites treated for 6h with 0.1% DMSO, 10 μ M Salubrinal or 700 nM DHA. D123 was detected using an anti-HA antibody. Total protein on membrane was visualized using BioRad TGX stain-free gel technology. **f**, densitometry-based quantification of three replicates of the experiment shown in e, with D123 protein levels of Salubrinal or DHA treated parasites shown relative to those in DMSO treated parasites. D123 signal was first normalized to total protein signal. **g**, previously published polysome profiling data of ring stage parasites was reanalyzed (Bunnik et al., 2013). The log2 ratio of reads in the polysome-associated fraction vs. those in the steady-state mRNA fraction was calculated for each transcript as an estimate for its polysome occupancy. Violin diagrams and boxplots of the ratios were plotted for all *P. falciparum* transcript (left) or for the 108 transcripts of the RSA cluster 1 damage response marker genes (right). The red line indicates the ratio calculated for D123. Statistical significance was tested using a two-sided, unpaired t-test. **h**, representative immunoblot of 0-6 hpi K13^{wt}- / K13^{R539T}-D123-3xHA-mScarlet-glmS ring stage parasites. PfAldolase expression was used as a loading control. D123 was detected using an anti-HA antibody. **i**, densitometry-based quantification of D123 protein levels in 0-6 hpi rings, plotted as the ratio of Aldolase-normalized expression of D123 in K13^{R539T}-D123-3xHA-mScarlet-glmS over K13^{wt}-D123-3xHA-mScarlet-glmS parasites, n = 5, p = 0.005. Representative replicate shown in h. Error bars always represent sem, statistical significance in f and i was tested using two-sided, one-sample t-tests (μ = 1, * = $p < 0.05$, ** = $p < 0.01$). Sal = Salubrinal, DHA = Dihydroartemisinin.

180 **Expression of PfD123 is a stress-responsive.**

181 Intriguingly, the marker lists of cluster 1 of the ring survival assay experiments ("damage
 182 response") and of cluster 1 of the untreated 0-3 hpi experiment showed complete overlap (Fig.
 183 2f), suggesting that those two subpopulations represent a similar transcriptional state. This
 184 supports our hypothesis that the parasites found in cluster 1 at 0-3 hpi (Fig. 1a) are characterized
 185 by a transcriptional response to stress, and that the expansion of this subpopulation in K13^{R539T}

186 parasites (Fig. 1b) is likely a result of the pre-existing stress in those parasites. Importantly, this
187 included D123 as one of the top markers of this damage response cluster, for which high
188 transcript levels were detected in virtually every cell of this artemisinin-responsive subpopulation
189 (Fig. 2e bottom panel, Fig. 3a-c).

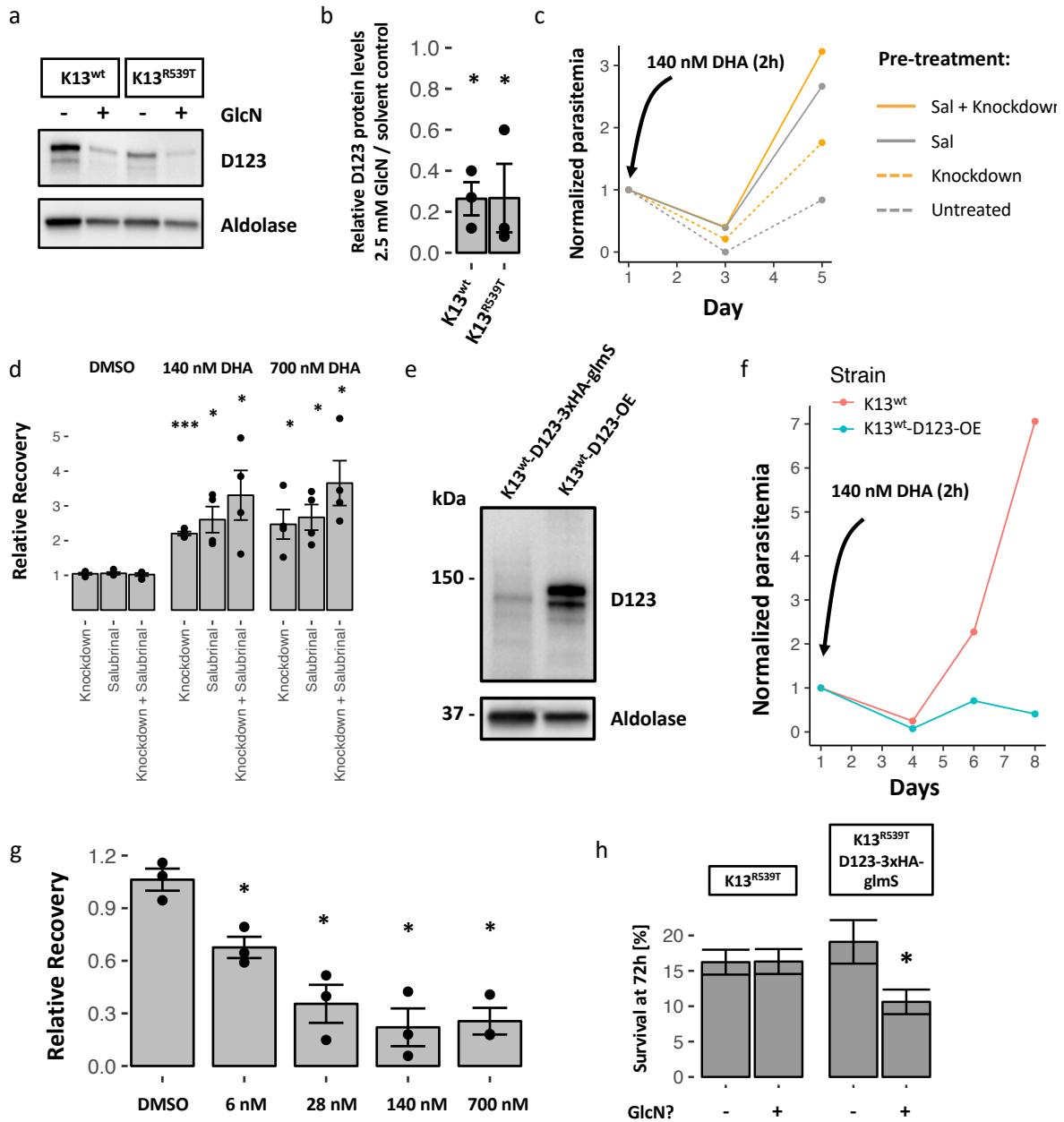
190 In order to track protein expression of D123, we generated the transgenic parasite lines
191 K13^{wt}-D123-3xHA-glmS and K13^{R539T}-D123-3xHA-glmS, where the endogenous D123 locus is
192 epitope-tagged with a 3xHA-mScarlet fusion followed by the glmS ribozyme sequence after the
193 stop codon in order to allow for conditional knockdown (Prommane et al., 2013; Fig. 3d,
194 Supplementary Fig. 2). We used this tool to test the effect of ISR activation on D123 protein levels
195 by performing immunoblots after treating K13^{wt}-D123-3xHA-glmS ring stage parasites for 6h with
196 either 700 nM DHA or 10 μ M of the eIF2 α phosphatase inhibitor Salubrinal (Boyce et al., 2005),
197 which both have been shown to robustly inflate eIF2 α phosphorylation levels in *P. falciparum*
198 (Bridgford et al., 2018; Zhang et al., 2017). Intriguingly, we found that D123 protein levels were
199 reduced by about half after treatment with either Salubrinal or DHA (Fig. 3e-f), opposing the
200 increased transcript levels observed after DHA treatment (Fig. 3a-c). Such an initial decrease of
201 protein levels after activation of the ISR could be explained by the rate at which the mRNA of
202 interest is translated: It is conceivable that protein levels of mRNAs with high ribosome
203 occupancy drop more dramatically relative to the overall proteome, when translation is arrested
204 globally after ISR activation. When we re-analyzed previously published polysome profiling data
205 of ring stage parasites (Bunnik et al., 2013), we found that D123 is a transcript with high polysome
206 occupancy, supporting this hypothesis ($\log_2(\text{polysomal fraction TPM} / \text{steady state fraction TPM})$
207 = 2.59, compared to median of 2.04 for the overall *P. falciparum* transcriptome) (Fig. 3g, left). We
208 reasoned that other markers of the damage response in cluster 1 might also represent highly
209 translated transcripts. Indeed, cluster 1 markers were highly enriched for transcripts with a high
210 polysome occupancy ($\log_2(\text{polysomal fraction TPM} / \text{steady state fraction TPM})$ = 3.08, compared
211 to median of 2.04 for the overall *P. falciparum* transcriptome, $p = 1.24e-5$) (Fig. 3g, right).

212 We were curious whether K13^{R539T} early rings display an analogous pattern of D123
213 expression, with reduced D123 protein levels contrasting the increased subpopulation of
214 parasites characterized by high D123 transcript levels we had observed (Fig. 1). Indeed, D123
215 protein levels turned out to be reduced by about 50% at the resistance-relevant early ring stage
216 (0-6 hpi) in the Kelch13 mutant context (Fig. 3h-i).

217 Taken together, these data show that D123 expression levels are responsive to stress, and
218 that the changes induced by activation of the ISR mimic those observed for untreated early K13-
219 mutant rings, with an expansion of a subpopulation marked by high D123 transcript levels but
220 reduced D123 protein levels. This suggests that the pre-existing activation of the ISR in K13-
221 mutant early rings (Zhang et al., 2017) likely is responsible for the changes in D123 expression we
222 observed at that stage (Fig. 1, Fig. 3h-i).

223 **PfD123 expression levels modulate Artemisinin sensitivity.**

224 Since D123 proteins positively regulate protein translation, we hypothesized that the pre-
225 existing, reduced D123 protein levels observed in Kelch13-mutant early ring stage parasites might
226 promote resistance to artemisinin. In order to test this, we knocked down D123 protein levels
227 using the glmS ribozyme (Fig. 4a-b), which had no significant effect on asexual growth rates
228 (Supplementary Fig. 6a).


229 However, knockdown of D123 prior to artemisinin treatment in K13^{wt}-3xHA-mScarlet-
230 glmS parasites promotes survival after artemisinin exposure at rates similar to pre-treatment
231 with Salubrinol (Fig. 4c-d), treatment with which had previously been demonstrated to promote
232 ART-resistance (Zhang et al., 2017). This suggests that reduced D123 protein levels protect from
233 artemisinin action, potentially by helping with shutting down translation more efficiently at the
234 moment of drug exposure. We reasoned that increased D123 expression should conversely
235 promote sensitivity to artemisinin. As expected, parasites that overexpressed D123 (Fig. 4e,
236 Supplementary Fig. 6b-c) showed delayed recovery after artemisinin treatment (Fig. 4f-g).
237 While reduced D123 levels at the moment of artemisinin exposure are beneficial, we
238 hypothesized that after treatment, when parasites recover from the stress and need to reinitiate
239 protein translation, they require D123 expression at high levels. To test this, we performed RSAs
240 with K13^{R539T}-3xHA-glmS parasites, with or without glmS-mediated knockdown of D123
241 throughout the whole 72h experiment. Indeed, continuous knockdown of D123 reduced survival
242 of K13-mutant parasites (Fig. 4h), suggesting that expression of D123 is critical during later stages
243 of recovery from DHA-inflicted cellular damage.

244

245 **DISCUSSION**

246 In this study, we employed scRNAseq to examine differences in the transcriptional heterogeneity
247 between wildtype and artemisinin-resistant malaria parasites at the resistance-relevant early
248 ring stage, and to deconvolute the transcriptional response of parasites to artemisinin treatment.
249 We characterize one gene in more detail: The putative translational regulator D123 that is
250 differentially expressed in K13-mutant early ring stage parasites, with expansion of a
251 subpopulation marked by high D123 transcript levels, but contrastingly reduced D123 protein
252 levels at the same stage. Analogous changes in D123 expression are observed after experimental
253 activation of the ISR, establishing it as a stress-responsive gene and suggesting that the changes
254 in D123 expression observed in K13-mutant rings is a result of the previously reported increased
255 base-line activation of the ISR in K13-mutant parasites (Mok et al., 2015; Zhang et al., 2017).
256 Lastly, by genetic modulation of D123 expression levels, we show that low D123 expression at
257 the moment of artemisinin exposure promote survival, while higher expression levels are needed
258 later, when parasites attempt to recover from the stress.

259 The integrated stress response is poorly characterized in *Plasmodium* parasites, but it
260 shows great promise as a drug target (Dogovski et al., 2015; Kirkman et al., 2018; Bridgford et al.,

Figure 4: PfD123 expression levels modulate artemisinin sensitivity. **a**, representative immunoblot of D123 levels in K13^{wt}-D123-3xHA-glmS and K13^{R539T}-D123-3xHA-glmS parasites after 48h treatment with either 2.5 mM glucosamine or solvent control. **b**, densitometry-based quantification of D123 protein levels after 48h knockdown using 2.5 mM glucosamine, plotted as the ratio of Aldolase-normalized D123 expression in glucosamine- over solvent-control treated parasites, n = 3, * = p < 0.05. Representative replicates shown in Fig. 4a. **c**, representative time-course of K13^{wt}-D123-3xHA-glmS parasites after different pre-treatments (see figure legend, and methods chapter 3.4.3) and subsequent 2h pulse with 140 nM DHA. Parasitemia is normalized to the starting parasitemia of the individual treatment condition. **d**, quantification of recovery after pre-treatment and DHA pulse (0 / 140 / 700 nM). Relative recovery is defined as the normalized parasitemia at the end of the experiment, relative to parasites that did not receive any pre-treatment. n = 4, * = p < 0.05, *** = p < 0.001. **e**, representative immunoblot of D123 levels in K13^{wt}-D123-3xHA-glmS and K13^{wt}-D123-OE parasites. **f**, representative time-course of K13^{wt} and K13^{wt}-D123-OE parasites after a 2h pulse with 140 nM DHA. Parasitemia is normalized to the starting parasitemia of the individual treatment condition. **g**, quantification of recovery of K13^{wt}-D123-OE parasites after DHA pulse (0 / 6 / 28 / 140 / 700 nM). Relative recovery is defined as the normalized parasitemia at the end of the experiment, relative to Dd2 wildtype parasites; n = 3, * = p < 0.05.

Figure 4 (Continued): h, percent survival in ring survival assays, of K13^{R539T} and K13^{R539T}-D123-3xHA-glmS parasites treated with 0 mM or 2.5 mM glucosamine throughout the whole 72h experiment. n = 5, * = p < 0.05. Error bars always represent sem, statistical significance in b, d and g was tested using two-sided, one-sample t-tests (mu = 1); in h it was calculated using a two-sided, unpaired t-test. In a and e, D123 was detected using an anti-HA antibody, and PfAldolase was used as a loading control. Sal = Salubrin, DHA = Dihydroartemisinin. GlcN = glucosamine.

262 2018). Here, we provide new insights into how parasites respond to cytotoxic stress
263 transcriptionally. Our data highlight how heterogeneous the response to stress is, with two
264 transcriptionally different clusters forming in response to DHA treatment, a distinction that has
265 remain masked when bulk transcriptomics approaches have been applied previously (Natalang
266 et al., 2008; Hu et al., 2010; Shaw et al., 2015; Rocamora et al., 2018). The immediate stress
267 response (cluster 2, Fig. 2e top panel) includes Hsp70-1, which has been previously shown to be
268 transcriptionally induced in response to amino acid starvation (Pavlovic Djuranovic et al., 2020)
269 and to be induced by the ApiAP2 transcription factor PfAP2-HS (PF3D7_1342900) after heat shock
270 (Tintó-Font et al., 2021), suggesting it may be a central early stress response gene in the
271 *Plasmodium* ISR downstream of various stimuli. Several other chaperones as well as the drug
272 efflux pump MDR1 were also induced. Intriguingly, several proteins with RNA-binding properties
273 were expressed in this cluster, such as the eIF3 subunit eIF3A. The translation initiation factor
274 eIF3 can be part of stress granules (Buchan & Parker, 2009), and eIF3 and some of its subunits
275 have recently been implicated in the specialized translation of subsets of transcripts during
276 development and stress (Lee et al., 2015; Lee et al., 2016), suggesting that eIF3A may serve a
277 similar function in malaria parasites. Expression of the mRNA-decay factor PfCAF1 (Balu et al.,
278 2011) likely regulates abundance of critical mRNAs during stress, and FHA-domains are
279 commonly found in DNA damage and replication stress proteins in other eukaryotes (Durocher
280 & Jackson, 2002). Taken together, this defines a subset of early stress response genes in cluster
281 2 that are likely bypassing the translational arrest inflicted by the ISR. How this putative
282 translational bypass is regulated in *Plasmodium* parasites remains to be characterized, as there
283 are major differences in their ISR mechanisms, exemplified by the absence of canonical ISR
284 transcription factors such ATF4 and ATF6 (Chaubey et al., 2014).

285 The stress-responsive cluster 1 represents the later stage of recovering from the damage
286 inflicted by DHA, containing DNA damage response factors, nucleolar proteins, transcriptional
287 regulators and signaling proteins, amongst others (Fig. 2e, bottom panel). Of note, one of the
288 genes in this marker list was PI3K, which had previously been implicated in ART-resistance
289 (Mbengue et al., 2015). Intriguingly, this distinct set of genes was highly enriched for transcripts
290 that show high polysome occupancy in untreated ring stage parasites (Bunnik et al., 2013; Fig.
291 3f). It is tempting to speculate that the protein levels of the markers of this cluster are reduced
292 after ISR activation as the translational arrest affects highly translated proteins more strongly,
293 but that they are functionally critical for recovery and therefore are transcriptionally induced

294 through unknown mechanism once stress levels subside in order to quickly recover their protein
295 levels. Future work will have to unravel the regulatory mechanisms controlling this gene
296 expression network.

297 Efficient translational shutdown at the time of artemisinin exposure, as well as eventually
298 overcoming it after drug levels subside are crucial for the parasite's ability to recover from
299 artemisinin treatment. This idea is supported by the observation that inflating eIF2 α
300 phosphorylation levels in malaria parasites by exposing them to Salubrinol before artemisinin
301 exposure provides protection, while treating with Salubrinol after artemisinin treatment reduces
302 survival (Zhang et al., 2017). We identified the putative translational regulator D123 as a potential
303 downstream effector of the late phase of the ISR that likely mediates some of the effects that
304 had previously been observed for Salubrinol (Fig. 4). Analogous to Salubrinol treatment,
305 knockdown of D123 prior to DHA exposure provides protection (Fig. 4c-d), while knockdown
306 during and after DHA treatment reduces recovery (Fig. 4h). This points to a stress response
307 expression program that needs to be finely tuned in order to enable survival after ISR activation.
308 Importantly, we find that D123 and other cluster 1 markers are differently expressed in untreated
309 Kelch13-mutant, artemisinin resistant parasites at the resistance-relevant early ring stage. We
310 propose a model, in which the low-level activation of the ISR in Kelch13-mutant early rings (Zhang
311 et al., 2017) leads to reduced protein levels of D123 and other cluster 1 markers, which promotes
312 survival by supporting an efficient translational shutdown, while the concomitant increased
313 transcript levels resulting from the damage response support recovery once drug levels subside.
314 Importantly, we find that increased D123 transcript levels in response to stress are restricted to
315 a subpopulation of parasites (clusters 1 in Fig. 1a and Fig. 2a). Transient changes in expression of
316 stress-responsive genes that provide protection against artemisinin in some parasites but not
317 others would provide an explanation why it is only ever a subpopulation of Kelch13-mutant
318 parasites that survive exposure to artemisinin, but future work will have to conclusively
319 demonstrate this to be true.

320 Of note, the D123 Dd2 ortholog PfDd2_030027500, as opposed to its 3D7 ortholog
321 PF3D7_0322400, is currently misannotated as a pseudogene due to an additional Adenine
322 detected within a polyadenine stretch in its open reading frame, which likely is a result of
323 polymerase slippage during reference genome generation (PlasmoDB.org). When we tagged the
324 endogenous PfDd2_030027500 locus, a protein of appropriate size was detectable by
325 immunoblot, and when amplifying PfDd2_030027500 from gDNA, the additional adenine was not
326 present, together clearly demonstrating that this is a protein coding gene. Notably, in K13^{wt}-
327 D123-3xHA-mScarlet-glmS and K13^{R539T}-D123-3xHA-mScarlet-glmS parasites (Supplementary Fig.
328 2), where the endogenous D123 locus was tagged both with a 3xHA and a fluorescent mScarlet
329 tag, we were never able to detect mScarlet fluorescence, while the protein was readily detectable
330 by immunoblot using an anti-HA antibody. We confirmed that there were no mutations in the
331 mScarlet tag (data not shown) and hypothesize that fluorescence levels might be too low or

332 potentially too transient, as this protein appears to be highly translated and might only be
333 individually present for a short period of time. Its suggested high rate of translation is supported
334 by the observation that the destabilization domain used in the D123 overexpression line fails to
335 reduce D123 protein levels, leading to high D123 expression even in the absence of Aquashield
336 in the culture media (Supplementary Fig. 3c). Furthermore, when detecting D123 by
337 immunoblotting, we consistently observed two protein bands of similar size, indicating
338 processing of this protein (e.g. Fig. 1f).

339 Taken together, this work provides important new insights into how *P. falciparum*
340 responds to stress, and into how Kelch13-mutant parasites hijack those mechanisms to gain
341 protection against artemisinin.

342 **MATERIALS & METHODS**

343 *Parasites and strains*

344 The strains of parasite used in this study were Dd2 (K13^{wt}), Dd2^{R539T} (K13^{R539T}) (Straimer et al.,
345 2015), as well as additional parasite strains generated during this research project
346 (Supplementary Fig. 2, Supplementary Fig 6, see details below). They were maintained using
347 established cell culture techniques (Moll et al., 2008). K13^{wt} and K13^{R539T} strains were generously
348 gifted by Laura Kirkman and tested for the engineered phenotype, showing expected levels of
349 survival when tested in ring survival assays in June 2019.

350

351 *Ring survival assays*

352 Ring survival assays were performed as previously described (Witkowski et al., 2013). Briefly,
353 parasites were tightly synchronized to a 0-3 hpi window using percoll-sorbitol enriched schizonts
354 incubated with fresh red blood cells for 3 hours, after which the remaining schizonts were
355 removed using a 5% sorbitol wash and three washes with incomplete media. 0-3 hpi rings were
356 then exposed to 700 nM DHA or DMSO for 6h, after which the drug was washed off and parasites
357 were allowed to recover. Blood smears were collected at 72h after the start of the experiment in
358 order to count viable parasites and determine parasitemia. Dividing the parasitemia of DHA-
359 treated parasites by the parasitemia of DMSO-treated parasites from the same culture
360 determines the RSA survival.

361

362 *Other artemisinin sensitivity assays*

363 For experiments determining ART-sensitivity after D123 knockdown, semi-synchronous K13^{wt}-
364 D123-3xHA-glmS parasites were incubated with 2.5 mM glucosamine or solvent control for 24h
365 to mediate knockdown, starting at around 24 hpi. When parasites were invading new red blood
366 cells at around 48 hpi, remaining schizonts were removed using a 5% sorbitol wash. Early rings
367 remained in culture, and were treated with solvent controls, 2.5 mM glucosamine, 10 μ M
368 Salubrinal, or both, for 2h. After washing off pre-treatments, parasites were then exposed to
369 0.1% DMSO, 140 nM DHA or 700 nM DHA for 2h, after which drugs were washed off, and blood
370 smears were used to determine the starting parasitemia for each condition. Recovery was
371 followed up with daily blood smears, which were used to track parasitemia over time.
372 Experiments were terminated when at least one treatment condition grew back beyond its initial
373 starting parasitemia.

374 Experiments determining ART-sensitivity in K13^{wt}-D123-3xHA-OE parasites were set up
375 similarly: Semi-synchronous parasites were incubated with 5% sorbitol when they were
376 reinvasive new red blood cells in order to remove remaining schizonts and recover early ring
377 stage parasites, which were then incubated for 2h with different concentrations of DHA or 0.1%
378 DMSO. Drugs were washed off and blood smears were used to determine the starting
379 parasitemia for each condition. Recovery was followed up with daily blood smears, which were

380 used to track parasitemia over time. Experiments were terminated when at least one treatment
381 condition grew back beyond its initial starting parasitemia.

382

383 *Parasite isolation for single-cell RNA-seq*

384 K13^{wt} wildtype and K13^{R539T} parasites were set up for ring survival assays as described above. For
385 the 0-3 hpi experiments (Fig. 1), parasites were processed for Drop-seq immediately after the
386 sorbitol treatment and subsequent three washes with incomplete media used to remove
387 remaining schizonts after the three-hour incubation with fresh uRBCs (see below, ring survival
388 assays). For the RSA 6-9 hpi and 15-18 hpi samples (Fig. 2), parasites were processed for Drop-
389 seq immediately after washing off DHA after the 6h incubation (6-9 hpi), and then again after
390 parasites had been back in culture for an additional 9h after DHA exposure (15-18 hpi), meaning
391 that the two RSA scRNA-seq replicates each were true time-course experiments with both time-
392 point collected from the same culture flask. Parasite processing at the different time-points
393 started with the Streptolysin O-Percoll (SLOPE) method (Brown et al., 2020) to enrich for ring-
394 infected RBCs: the pellet of infected RBCs was incubated with 30 U Streptolysin-O (SLO) per 1e8
395 RBCs at RT for 6 min, then washed three-times with PBS, and fractionated on a 60% percoll
396 gradient. A small portion of the resulting iRBC-enriched pellet was dried on a glass slide and
397 Giemsa stained to determine the degree of enrichment, while the rest was resuspended in ice-
398 cold PBS + 0.01% BSA and immediately processed for Drop-seq. For all scRNA-seq experiments, a
399 small amount of culture was not processed and instead kept in culture to confirm expected levels
400 of survival for the different strains by RSA.

401

402 *Drop-seq and sequencing analysis pipeline*

403 Single-cell transcriptomic profiles were generated using Drop-seq, a technology designed for
404 highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
405 (Macosko et al., 2015), and applied to malaria parasites as previously described (Poran et al.,
406 2017). In brief, single-cell suspensions and uniquely barcoded beads were colocalized in droplets
407 using a microfluidics device (see CAD file from <http://mccarrolllab.com/dropseq/>, manufactured
408 by FlowJEM). The droplets are composed of cell-lysis buffer and serve as compartmentalizing
409 chambers for RNA capture. For some of the samples in this study, the cell-lysis buffer was
410 modified to contain 4 M Guanidine-HCl for additional RNase inhibition in addition to the
411 published recipe (Macosko et al., 2015). Flow rates were adjusted to maintain stable droplet
412 formation and increase droplet homogeneity, yielding 1 nanoliter droplets in our setup. For some
413 of the samples in this study, the oil flow rate was increased to reduce droplet size with the goal
414 to improve RNA capture efficiency by increasing the local RNA concentration within the droplet
415 during lysis. The maximum oil flow rate that still allowed for stable droplet formation and
416 homogeneous droplets yielded 500 picoliter droplets. For each setting (1 nl versus 500 pl), cell

417 and bead concentrations were adjusted to accommodate variation in droplet size compared to
418 the original publication (Macosko et al., 2015).

419 Droplet breakage and single-cell library preparations followed the procedure as described
420 (Macosko et al., 2015). In brief, collected droplets were disrupted and RNA-hybridized beads
421 were extracted. Reverse transcription was performed with template switching to allow for cDNA
422 amplification by PCR. An additional pre-PCR step was added to determine the appropriate
423 number of cycles (31-33 cycles for 0-3 hpi samples, 27-28 cycles for 6-9 hpi samples, 24-27 cycles
424 for 15-18 hpi samples) to achieve a cDNA library at a concentration of 400–1,000 $\mu\text{g }\mu\text{l}^{-1}$, as
425 suggested by the protocol. cDNA samples were purified using Agencourt AMPure XP (Beckman
426 Coulter), and were run on a 2100 BioAnalzyer instrument with a High Sensitivity DNA kit (Agilent
427 Technologies). Samples were prepared for sequencing using the Illumina Nextera XT kit, and
428 sequenced on a NextSeq 500 (Illumina) at an average of 50,000 reads per cell. Raw reads were
429 processed and aligned (STAR aligner) using the standard Drop-seq pipeline, and according to the
430 'Drop-seq Alignment Cookbook', both found at <http://mccarrolllab.com/dropseq/>. Reads were
431 aligned to the polyadenylated *P. falciparum* Dd2 transcriptome (PlasmoDB v. 43). For each read,
432 a single optimal mapping position was retained. Unique transcripts mapping to alternative splice
433 variants were combined for subsequent analysis. Single-cell expression matrices were generated
434 using cellular barcodes and unique molecular identifiers (UMIs). Transcript capture from the
435 different parasite stages improved progressively with increasing hpi of the samples, reflecting
436 the increasing RNA content of parasites as they progress through intra-erythrocytic development
437 (Martin et al., 2005, Supplementary Fig. 1b, Supplementary Fig. 3b).

438

439 *Single-cell transcriptome analysis*

440 Data normalization, clustering and differential expression were performed using the Seurat R
441 package (Satija et al., 2015). Cells with less than 10 (0-3 hpi replicates 1 and 3), 5 (0-3 hpi replicate
442 2) or 50 (6-9 and 15-18 hpi) UMIs and genes detected in fewer than three cells were excluded
443 from analysis. SCTs were internally normalized to 10,000 transcripts, log transformed and
444 regressed on the number of UMIs per cell before dimensionality reduction and clustering. We
445 selected ~600–700 highly variable genes using the expression and dispersion (variance/mean) of
446 genes, and performed principle component analysis. The most significant principal components
447 (heuristically determined based on PC significance elbow plot) were used for clustering
448 and UMAP representations (Becht et al., 2018). Clustering resolution was chosen such that
449 visually distinct groups of cells were assigned to individual clusters.

450

451 *SCT correlation with bulk RNA-seq data*

452 Mapping the clusters 3–5 of the RSA scRNAseq experiments to the time series bulk RNA-seq
453 dataset (Bártfai et al., 2010) was performed by pseudo-bulking the SCTs within each cluster and

454 then calculating the Pearson's correlation coefficient of the clusters with each of the 8 bulk-RNA-
455 seq time points. The two scRNAseq replicates were analyzed separately.

456

457 *Plasmid constructions and generation of novel engineered parasite strains*

458 K13^{wt}-D123-3xHA-mScarlet-glmS and K13^{R539T}-D123-3xHA-mScarlet-glmS parasite lines (also
459 referred to as K13^{wt}-D123-3xHA-glmS and K13^{R539T}-D123-3xHA-glmS for brevity) were generated
460 by co-transfected K13^{wt} and K13^{R539T} respectively with pUF1-Cas9-yDHDOH and pD123-3xHA-
461 mScarlet-glmS (Supplementary Fig. 2a), and selecting with DSM1 and G418 until viable parasites
462 were recovered by blood smear. Successful editing of the genomic D123 locus was verified by
463 PCR using a forward primer outside of the 5' homology block and reverse primers binding in the
464 recoded 3' end of the gene or in the mScarlet tag (Supplementary Fig. 2b). Constructs were
465 designed such that the single intron of PfDd2_030027500 as well as a poly-adenine stretch just
466 3' of the stop codon were removed in the transgenic lines. Since the genomic locus was tagged
467 without integration of selection marker expression cassettes, drug selection was dropped once
468 correct editing had been verified.

469 K13^{wt}-ddFKBP-mScarlet-3xHA-D123 parasites (also occasionally referred to as K13^{wt}-
470 D123-OE for brevity) were overexpressing tagged D123 using a calmodulin promoter, and were
471 generated by transfecting pddFKBP-mScarlet-3xHA-D123-OE into K13^{wt} parasites
472 (Supplementary Fig. 6b) and selecting with Blasticidin S until viable parasites were recovered by
473 blood smear. Successful overexpression was verified by immunoblot. Blasticidin S selection was
474 maintained for continuous culture, but was dropped at the beginning of experiments.

475

476 *Protein extractions and immunoblotting*

477 Parasites were released from red bloods by incubating RBCs with 0.05% saponin in PBS for 10
478 min on ice. The pellet was washed with PBS until the supernatant showed no more signs of
479 hemoglobin release. Proteins were isolated from parasite pellets using MPER lysis buffer (Thermo
480 Fisher) supplemented with 1x complete protease inhibitors (Sigma-Aldrich). A small aliquot was
481 set aside for protein quantification using BioRad Protein Assay, while the rest was supplemented
482 with SDS-loading buffer and boiled at 95C for 5 min. Pellets were then frozen and stored at -80C
483 until use.

484 10 µg of protein extracts were separated on a 4-20% gradient SDS-PAGE TGX stain-free
485 gels and transferred to PVDF membranes using an iBlot (transfer program "P0"). Total protein
486 was visualized on membranes using BioRad stain-free crosslinking technology. Membranes were
487 then blocked with 5% milk powder in TBS-T (0.1% tween), and incubated with primary antibodies
488 for 1h at RT or at 4C overnight (1:2,500 rat anti-HA; 1:5,000 rabbit anti-aldolase; in 5% milk
489 powder in TBS-T). After three washes with TBS-T, secondary antibodies were incubated for 1h at
490 RT (1:10,000 rabbit HRP-anti-rat; 1:10,000 goat HRP-anti-rabbit; in 5% milk powder in TBS-T).
491 After three more washes in TBS-T chemiluminescence-based visualization was performed using

492 SuperSignal West Pico PLUS substrate (Thermo Fisher) or SuperSignal West Femto Maximum
493 Sensitivity substrate (Thermo Fisher). Densitometry-based quantification of immunoblot signals
494 was performed using ImageJ imaging software.

495

496 *Analysis of previously published polysome profiling data*

497 TPM counts of whole-transcriptome analyses of steady-state mRNA fractions and polysome-
498 associated mRNA fractions collected at the ring stage (Bunnik et al., 2013) were downloaded
499 from PlasmoDB.org. Only uniquely mapped reads were analyzed. Genes for which no steady-
500 state or polysome-associated reads were detected were removed from the dataset. Polysome-
501 occupancy was estimated for each gene by calculating the log2 of the ratio (polysome-associated
502 TPM / steady-state TPM).

503

504 *Other statistical analyses*

505 Significance of cluster marker analysis was assessed using the Wilcoxon Rank Sum test, *P* values
506 in multiple hypothesis testing are FDR corrected (Bonferroni correction). No statistical methods
507 were used to predetermine sample size. The experiments were not randomized. The
508 investigators were not blinded to allocation during experiments and outcome assessment.

509

510 **ACKNOWLEDGEMENTS**

511 **General Acknowledgements**

512 We would like to thank the WCM Genomics core facility, as well as Olivier Elemento for
513 generously gifting the Drop-seq setup to the Kafsack laboratory, and Laura Kirkman for gifting
514 the K13^{wt} and K13^{R539T} parasite lines. This work was supported by WCM internal startup funds
515 (B.F.C.K.) and a US Department of Defense CDMRP PRMRP-Discovery Award W81XWH-18-1-0222
516 (B.F.C.K.). C.N. was supported by WCM graduate fellowships and the Jacques Cohenca
517 Predoctoral Fellowship.

518

519 **Contributions**

520 B.F.C.K. conceived the study and wrote a pearl script for polyadenylated reference transcriptome
521 generation. C.N. performed all experiments, analyzed the data, designed and generated the
522 figures and wrote the manuscript.

523

524 **Competing interests**

525 The authors declare no competing financial interests.

526

527

528 **REFERENCES**

529

530 Acharya, P., Kumar, R., & Tatu, U. (2007). Chaperoning a cellular upheaval in malaria: heat
531 shock proteins in *Plasmodium falciparum*. *Molecular and biochemical parasitology*, 153(2), 85–
532 94. <https://doi.org/10.1016/j.molbiopara.2007.01.009>

533

534 Anderson, P., & Kedersha, N. (2009). Stress granules. *Current biology: CB*, 19(10), R397–R398.
535 <https://doi.org/10.1016/j.cub.2009.03.013>

536

537 Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A. C., Khim, N., Kim, S., Duru, V.,
538 Bouchier, C., Ma, L., Lim, P., Leang, R., Duong, S., Sreng, S., Suon, S., Chuor, C. M., Bout, D. M.,
539 Ménard, S., Rogers, W. O., Genton, B., ... Ménard, D. (2014). A molecular marker of artemisinin-
540 resistant *Plasmodium falciparum* malaria. *Nature*, 505(7481), 50–55.
541 <https://doi.org/10.1038/nature12876>

542

543 Armstrong, C. M., & Goldberg, D. E. (2007). An FKBP destabilization domain modulates protein
544 levels in *Plasmodium falciparum*. *Nature methods*, 4(12), 1007–1009.
545 <https://doi.org/10.1038/nmeth1132>

546

547 Babbitt, S. E., Altenhofen, L., Cobbold, S. A., Istvan, E. S., Fennell, C., Doerig, C., Llinás, M., &
548 Goldberg, D. E. (2012). *Plasmodium falciparum* responds to amino acid starvation by entering
549 into a hibernatory state. *Proceedings of the National Academy of Sciences of the United States
550 of America*, 109(47), E3278–E3287. <https://doi.org/10.1073/pnas.1209823109>

551

552 Balikagala, B., Fukuda, N., Ikeda, M., Katuro, O. T., Tachibana, S. I., Yamauchi, M., Opio, W.,
553 Emoto, S., Anywar, D. A., Kimura, E., Palacpac, N., Odongo-Aginya, E. I., Ogwang, M., Horii, T., &
554 Mita, T. (2021). Evidence of Artemisinin-Resistant Malaria in Africa. *The New England journal of
555 medicine*, 385(13), 1163–1171. <https://doi.org/10.1056/NEJMoa2101746>

556

557 Balu, B., Maher, S. P., Pance, A., Chauhan, C., Naumov, A. V., Andrews, R. M., Ellis, P. D., Khan, S.
558 M., Lin, J. W., Janse, C. J., Rayner, J. C., & Adams, J. H. (2011). CCR4-associated factor 1
559 coordinates the expression of *Plasmodium falciparum* egress and invasion proteins. *Eukaryotic
560 cell*, 10(9), 1257–1263. <https://doi.org/10.1128/EC.05099-11>

561

562 Bártfai, R., Hoeijmakers, W. A., Salcedo-Amaya, A. M., Smits, A. H., Janssen-Megens, E., Kaan,
563 A., Treeck, M., Gilberger, T. W., Françoijis, K. J., & Stunnenberg, H. G. (2010). H2A.Z demarcates
564 intergenic regions of the *plasmodium falciparum* epigenome that are dynamically marked by

565 H3K9ac and H3K4me3. *PLoS pathogens*, 6(12), e1001223.
566 <https://doi.org/10.1371/journal.ppat.1001223>

567

568 Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I., Ng, L. G., Ginhoux, F., & Newell, E. W.
569 (2018). Dimensionality reduction for visualizing single-cell data using UMAP. *Nature
570 biotechnology*, 10.1038/nbt.4314. Advance online publication.
571 <https://doi.org/10.1038/nbt.4314>

572

573 Bieganowski, P., Shilinski, K., Tsichlis, P. N., & Brenner, C. (2004). Cdc123 and checkpoint
574 forkhead associated with RING proteins control the cell cycle by controlling eIF2gamma
575 abundance. *The Journal of biological chemistry*, 279(43), 44656–44666.
576 <https://doi.org/10.1074/jbc.M406151200>

577

578 Birnbaum, J., Scharf, S., Schmidt, S., Jonscher, E., Hoeijmakers, W., Flemming, S., Toenhake, C.
579 G., Schmitt, M., Sabitzki, R., Bergmann, B., Fröhlke, U., Mesén-Ramírez, P., Blancke Soares, A.,
580 Herrmann, H., Bártfai, R., & Spielmann, T. (2020). A Kelch13-defined endocytosis pathway
581 mediates artemisinin resistance in malaria parasites. *Science (New York, N.Y.)*, 367(6473), 51–
582 59. <https://doi.org/10.1126/science.aax4735>

583

584 Boyce, M., Bryant, K. F., Jousse, C., Long, K., Harding, H. P., Scheuner, D., Kaufman, R. J., Ma, D.,
585 Coen, D. M., Ron, D., & Yuan, J. (2005). A selective inhibitor of eIF2alpha dephosphorylation
586 protects cells from ER stress. *Science (New York, N.Y.)*, 307(5711), 935–939.
587 <https://doi.org/10.1126/science.1101902>

588

589 Bridgford, J. L., Xie, S. C., Cobbold, S. A., Pasaje, C., Herrmann, S., Yang, T., Gillett, D. L., Dick, L.
590 R., Ralph, S. A., Dogovski, C., Spillman, N. J., & Tilley, L. (2018). Artemisinin kills malaria parasites
591 by damaging proteins and inhibiting the proteasome. *Nature communications*, 9(1), 3801.
592 <https://doi.org/10.1038/s41467-018-06221-1>

593

594 Brown, A. C., Moore, C. C. & Guler, J. L. Cholesterol-dependent enrichment of understudied
595 erythrocytic stages of human *Plasmodium* parasites. *Sci Rep* **10**, 4591 (2020).

596

597 Buchan, J. R., & Parker, R. (2009). Eukaryotic stress granules: the ins and outs of
598 translation. *Molecular cell*, 36(6), 932–941. <https://doi.org/10.1016/j.molcel.2009.11.020>

599

600 Bunnik, E. M., Chung, D. W., Hamilton, M., Ponts, N., Saraf, A., Prudhomme, J., Florens, L., & Le
601 Roch, K. G. (2013). Polysome profiling reveals translational control of gene expression in the

602 human malaria parasite *Plasmodium falciparum*. *Genome biology*, 14(11), R128.
603 <https://doi.org/10.1186/gb-2013-14-11-r128>

604

605 Burroughs, A. M., Zhang, D., & Aravind, L. (2015). The eukaryotic translation initiation regulator
606 CDC123 defines a divergent clade of ATP-grasp enzymes with a predicted role in novel protein
607 modifications. *Biology direct*, 10, 21. <https://doi.org/10.1186/s13062-015-0053-x>

608

609 Chaubey, S., Grover, M., & Tatu, U. (2014). Endoplasmic reticulum stress triggers
610 gametocytogenesis in the malaria parasite. *The Journal of biological chemistry*, 289(24), 16662–
611 16674. <https://doi.org/10.1074/jbc.M114.551549>

612

613 Cui, L., Wang, Z., Miao, J., Miao, M., Chandra, R., Jiang, H., Su, X. Z., & Cui, L. (2012).
614 Mechanisms of in vitro resistance to dihydroartemisinin in *Plasmodium falciparum*. *Molecular
615 microbiology*, 86(1), 111–128. <https://doi.org/10.1111/j.1365-2958.2012.08180.x>

616

617 Dogovski, C., Xie, S. C., Burgio, G., Bridgford, J., Mok, S., McCaw, J. M., Chotivanich, K., Kenny, S.,
618 Gnädig, N., Straimer, J., Bozdech, Z., Fidock, D. A., Simpson, J. A., Dondorp, A. M., Foote, S.,
619 Klonis, N., & Tilley, L. (2015). Targeting the cell stress response of *Plasmodium falciparum* to
620 overcome artemisinin resistance. *PLoS biology*, 13(4), e1002132.
621 <https://doi.org/10.1371/journal.pbio.1002132>

622

623 Dondorp, A. M., Nosten, F., Yi, P., Das, D., Phyo, A. P., Tarning, J., Lwin, K. M., Ariey, F.,
624 Hanpithakpong, W., Lee, S. J., Ringwald, P., Silamut, K., Imwong, M., Chotivanich, K., Lim, P.,
625 Herdman, T., An, S. S., Yeung, S., Singhasivanon, P., Day, N. P., ... White, N. J. (2009). Artemisinin
626 resistance in *Plasmodium falciparum* malaria. *The New England journal of medicine*, 361(5),
627 455–467. <https://doi.org/10.1056/NEJMoa0808859>

628

629 Durocher, D., & Jackson, S. P. (2002). The FHA domain. *FEBS letters*, 513(1), 58–66.
630 [https://doi.org/10.1016/s0014-5793\(01\)03294-x](https://doi.org/10.1016/s0014-5793(01)03294-x)

631

632 Foote, S. J., Thompson, J. K., Cowman, A. F., & Kemp, D. J. (1989). Amplification of the multidrug
633 resistance gene in some chloroquine-resistant isolates of *P. falciparum*. *Cell*, 57(6), 921–930.
634 [https://doi.org/10.1016/0092-8674\(89\)90330-9](https://doi.org/10.1016/0092-8674(89)90330-9)

635

636 Gnädig, N. F., Stokes, B. H., Edwards, R. L., Kalantarov, G. F., Heimsch, K. C., Kuderjavy, M.,
637 Crane, A., Lee, M., Straimer, J., Becker, K., Trakht, I. N., Odom John, A. R., Mok, S., & Fidock, D.
638 A. (2020). Insights into the intracellular localization, protein associations and artemisinin

639 resistance properties of *Plasmodium falciparum* K13. *PLoS pathogens*, 16(4), e1008482.
640 <https://doi.org/10.1371/journal.ppat.1008482>
641
642 Hu, G., Cabrera, A., Kono, M., Mok, S., Chaal, B. K., Haase, S., Engelberg, K., Cheemadan, S.,
643 Spielmann, T., Preiser, P. R., Gilberger, T. W., & Bozdech, Z. (2010). Transcriptional profiling of
644 growth perturbations of the human malaria parasite *Plasmodium falciparum*. *Nature
645 biotechnology*, 28(1), 91–98. <https://doi.org/10.1038/nbt.1597>
646
647 Imwong, M., Dhorda, M., Myo Tun, K., Thu, A. M., Phy, A. P., Proux, S., Suwannasin, K.,
648 Kunasol, C., Srisutham, S., Duanguppama, J., Vongpromek, R., Promnarate, C., Saejeng, A.,
649 Khantikul, N., Sugaram, R., Thanapongpichat, S., Sawangjaroen, N., Sutawong, K., Han, K. T.,
650 Htut, Y., ... White, N. J. (2020). Molecular epidemiology of resistance to antimalarial drugs in the
651 Greater Mekong subregion: an observational study. *The Lancet. Infectious diseases*, 20(12),
652 1470–1480. [https://doi.org/10.1016/S1473-3099\(20\)30228-0](https://doi.org/10.1016/S1473-3099(20)30228-0)
653
654 Kirkman, L. A., Zhan, W., Visone, J., Dziedziech, A., Singh, P. K., Fan, H., Tong, X., Bruzual, I.,
655 Hara, R., Kawasaki, M., Imaeda, T., Okamoto, R., Sato, K., Michino, M., Alvaro, E. F., Guiang, L.
656 F., Sanz, L., Mota, D. J., Govindasamy, K., Wang, R., ... Lin, G. (2018). Antimalarial proteasome
657 inhibitor reveals collateral sensitivity from intersubunit interactions and fitness cost of
658 resistance. *Proceedings of the National Academy of Sciences of the United States of
659 America*, 115(29), E6863–E6870. <https://doi.org/10.1073/pnas.1806109115>
660
661 Lee, A. S., Kranzusch, P. J., & Cate, J. H. (2015). eIF3 targets cell-proliferation messenger RNAs
662 for translational activation or repression. *Nature*, 522(7554), 111–114.
663 <https://doi.org/10.1038/nature14267>
664
665 Lee, A. S., Kranzusch, P. J., Doudna, J. A., & Cate, J. H. (2016). eIF3d is an mRNA cap-binding
666 protein that is required for specialized translation initiation. *Nature*, 536(7614), 96–99.
667 <https://doi.org/10.1038/nature18954>
668
669 Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A. R.,
670 Kamitaki, N., Martersteck, E. M., Trombetta, J. J., Weitz, D. A., Sanes, J. R., Shalek, A. K., Regev,
671 A., & McCarroll, S. A. (2015). Highly Parallel Genome-wide Expression Profiling of Individual
672 Cells Using Nanoliter Droplets. *Cell*, 161(5), 1202–1214.
673 <https://doi.org/10.1016/j.cell.2015.05.002>
674

675 Martin, R. E., Henry, R. I., Abbey, J. L., Clements, J. D. & Kirk, K. The 'permeome' of the malaria
676 parasite: an overview of the membrane transport proteins of *Plasmodium falciparum*. *Genome*
677 *Biol.* **6**, R26 (2005).

678

679 Mbengue, A., Bhattacharjee, S., Pandharkar, T., Liu, H., Estiu, G., Stahelin, R. V., Rizk, S. S.,
680 Njimoh, D. L., Ryan, Y., Chotivanich, K., Nguon, C., Ghorbal, M., Lopez-Rubio, J. J., Pfrender, M.,
681 Emrich, S., Mohandas, N., Dondorp, A. M., Wiest, O., & Haldar, K. (2015). A molecular
682 mechanism of artemisinin resistance in *Plasmodium falciparum* malaria. *Nature*, **520**(7549),
683 683–687. <https://doi.org/10.1038/nature14412>

684

685 Menard, D., & Dondorp, A. (2017). Antimalarial Drug Resistance: A Threat to Malaria
686 Elimination. *Cold Spring Harbor perspectives in medicine*, **7**(7), a025619.
687 <https://doi.org/10.1101/csphperspect.a025619>

688

689 Mok, S., Ashley, E. A., Ferreira, P. E., Zhu, L., Lin, Z., Yeo, T., Chotivanich, K., Imwong, M.,
690 Pukrittayakamee, S., Dhorda, M., Nguon, C., Lim, P., Amaratunga, C., Suon, S., Hien, T. T., Htut,
691 Y., Faiz, M. A., Onyamboko, M. A., Mayxay, M., Newton, P. N., ... Bozdech, Z. (2015). Drug
692 resistance. Population transcriptomics of human malaria parasites reveals the mechanism of
693 artemisinin resistance. *Science (New York, N.Y.)*, **347**(6220), 431–435.
694 <https://doi.org/10.1126/science.1260403>

695

696 Moll, K., Ljungström, I., Perlmann, H. & Scherf, A. (eds) *Methods in Malaria Research* 5th edn
697 (MR4/ATCC, 2008).

698

699 Natalang, O., Bischoff, E., Deplaine, G., Proux, C., Dillies, M. A., Sismeiro, O., Guigon, G.,
700 Bonnefoy, S., Patarapotikul, J., Mercereau-Puijalon, O., Coppée, J. Y., & David, P. H. (2008).
701 Dynamic RNA profiling in *Plasmodium falciparum* synchronized blood stages exposed to lethal
702 doses of artesunate. *BMC genomics*, **9**, 388. <https://doi.org/10.1186/1471-2164-9-388>

703

704 Noedl, H., Socheat, D., & Satimai, W. (2009). Artemisinin-resistant malaria in Asia. *The New*
705 *England journal of medicine*, **361**(5), 540–541. <https://doi.org/10.1056/NEJM0900231>

706

707 Otto, T. D., Wilinski, D., Assefa, S., Keane, T. M., Sarry, L. R., Böhme, U., Lemieux, J., Barrell, B.,
708 Pain, A., Berriman, M., Newbold, C., & Llinás, M. (2010). New insights into the blood-stage
709 transcriptome of *Plasmodium falciparum* using RNA-Seq. *Molecular microbiology*, **76**(1), 12–24.
710 <https://doi.org/10.1111/j.1365-2958.2009.07026.x>

711

712 Panvert, M., Dubiez, E., Arnold, L., Perez, J., Mechulam, Y., Seufert, W., & Schmitt, E. (2015).
713 *Cdc123, a Cell Cycle Regulator Needed for eIF2 Assembly, Is an ATP-Grasp Protein with Unique*
714 *Features. Structure (London, England: 1993), 23(9), 1596–1608.*
715 <https://doi.org/10.1016/j.str.2015.06.014>

716

717 Pavlovic Djuranovic, S., Erath, J., Andrews, R. J., Bayguinov, P. O., Chung, J. J., Chalker, D. L.,
718 Fitzpatrick, J. A., Moss, W. N., Szczesny, P., & Djuranovic, S. (2020). *Plasmodium*
719 *falciparum* translational machinery condones polyadenosine repeats. *eLife*, 9, e57799.
720 <https://doi.org/10.7554/eLife.57799>

721

722 Perzlmaier, A. F., Richter, F., & Seufert, W. (2013). Translation initiation requires cell division
723 cycle 123 (Cdc123) to facilitate biogenesis of the eukaryotic initiation factor 2 (eIF2). *The*
724 *Journal of biological chemistry, 288(30), 21537–21546.*
725 <https://doi.org/10.1074/jbc.M113.472290>

726

727 Phillips, M. A., Burrows, J. N., Manyando, C., van Huijsdijnen, R. H., Van Voorhis, W. C., &
728 Wells, T. (2017). Malaria. *Nature reviews. Disease primers, 3, 17050.*
729 <https://doi.org/10.1038/nrdp.2017.50>

730

731 Prommana, P., Uthaipibull, C., Wongsombat, C., Kamchonwongpaisan, S., Yuthavong, Y.,
732 Knuepfer, E., Holder, A. A., & Shaw, P. J. (2013). Inducible knockdown of Plasmodium gene
733 expression using the glmS ribozyme. *PLoS one, 8(8), e73783.*
734 <https://doi.org/10.1371/journal.pone.0073783>

735

736 Rocamora, F., Zhu, L., Liang, K. Y., Dondorp, A., Miotto, O., Mok, S., & Bozdech, Z. (2018).
737 Oxidative stress and protein damage responses mediate artemisinin resistance in malaria
738 parasites. *PLoS pathogens, 14(3), e1006930.* <https://doi.org/10.1371/journal.ppat.1006930>

739

740 Satija, R., Farrell, J. A., Gennert, D., Schier, A. F., & Regev, A. (2015). Spatial reconstruction of
741 single-cell gene expression data. *Nature biotechnology, 33(5), 495–502.*
742 <https://doi.org/10.1038/nbt.3192>

743

744 Shaw, P. J., Chaotheing, S., Kaewprommal, P., Piriyapongsa, J., Wongsombat, C., Suwannakitti,
745 N., Koonyosying, P., Uthaipibull, C., Yuthavong, Y., & Kamchonwongpaisan, S. (2015).
746 Plasmodium parasites mount an arrest response to dihydroartemisinin, as revealed by whole
747 transcriptome shotgun sequencing (RNA-seq) and microarray study. *BMC genomics, 16, 830.*
748 <https://doi.org/10.1186/s12864-015-2040-0>

749

750 Sims, J. S. et al. Patterns of gene-specific and total transcriptional activity during
751 the *Plasmodium falciparum* intraerythrocytic developmental cycle. *Eukaryot. Cell* **8**, 327–338
752 (2009).

753

754 Stokes, B. H., Dhingra, S. K., Rubiano, K., Mok, S., Straimer, J., Gnädig, N. F., Deni, I., Schindler, K.
755 A., Bath, J. R., Ward, K. E., Striepen, J., Yeo, T., Ross, L. S., Legrand, E., Ariey, F., Cunningham, C.
756 H., Souleymane, I. M., Gansané, A., Nzoumbou-Boko, R., Ndayikunda, C., ... Fidock, D. A.
757 (2021). *Plasmodium falciparum* K13 mutations in Africa and Asia impact artemisinin resistance
758 and parasite fitness. *eLife*, **10**, e66277. <https://doi.org/10.7554/eLife.66277>

759

760 Straimer, J., Gnädig, N. F., Witkowski, B., Amaratunga, C., Duru, V., Ramadani, A. P., Dacheux,
761 M., Khim, N., Zhang, L., Lam, S., Gregory, P. D., Urnov, F. D., Mercereau-Puijalon, O., Benoit-
762 Vical, F., Fairhurst, R. M., Ménard, D., & Fidock, D. A. (2015). Drug resistance. K13-propeller
763 mutations confer artemisinin resistance in *Plasmodium falciparum* clinical isolates. *Science*
764 (*New York, N.Y.*), **347**(6220), 428–431. <https://doi.org/10.1126/science.1260867>

765

766 Tintó-Font, E., Michel-Todó, L., Russell, T. J., Casas-Vila, N., Conway, D. J., Bozdech, Z., Llinás,
767 M., & Cortés, A. (2021). A heat-shock response regulated by the PfAP2-HS transcription factor
768 protects human malaria parasites from febrile temperatures. *Nature microbiology*, **6**(9), 1163–
769 1174. <https://doi.org/10.1038/s41564-021-00940-w>

770

771 Vembar, S. S., Droll, D., & Scherf, A. (2016). Translational regulation in blood stages of the
772 malaria parasite *Plasmodium* spp.: systems-wide studies pave the way. *Wiley interdisciplinary*
773 *reviews. RNA*, **7**(6), 772–792. <https://doi.org/10.1002/wrna.1365>

774

775 Wang, J., Zhang, C. J., Chia, W. N., Loh, C. C., Li, Z., Lee, Y. M., He, Y., Yuan, L. X., Lim, T. K., Liu,
776 M., Liew, C. X., Lee, Y. Q., Zhang, J., Lu, N., Lim, C. T., Hua, Z. C., Liu, B., Shen, H. M., Tan, K. S., &
777 Lin, Q. (2015). Haem-activated promiscuous targeting of artemisinin in *Plasmodium*
778 *falciparum*. *Nature communications*, **6**, 10111. <https://doi.org/10.1038/ncomms10111>

779

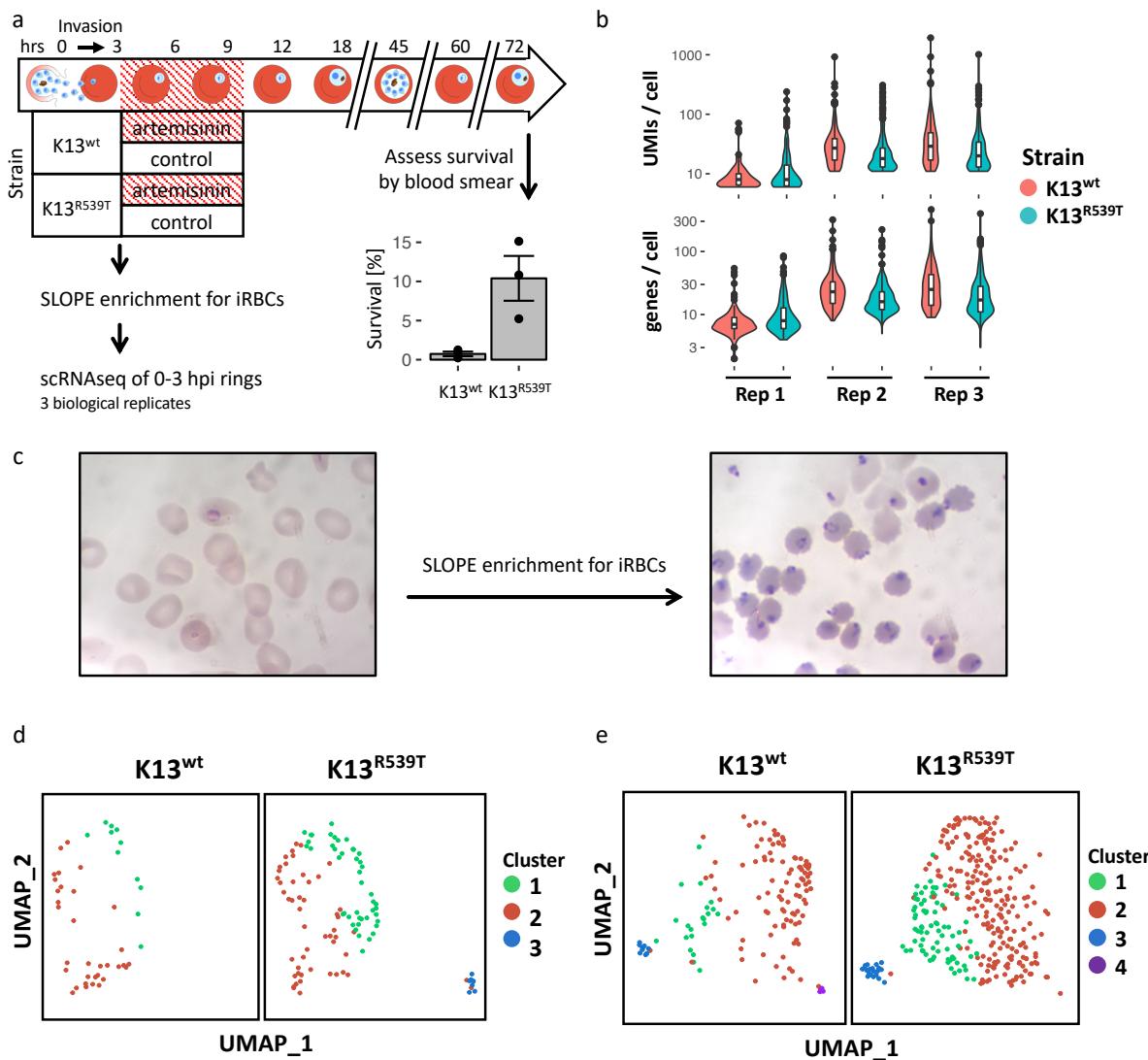
780 Witkowski, B., Amaratunga, C., Khim, N., Sreng, S., Chim, P., Kim, S., Lim, P., Mao, S., Sopha, C.,
781 Sam, B., Anderson, J. M., Duong, S., Chuor, C. M., Taylor, W. R., Suon, S., Mercereau-Puijalon,
782 O., Fairhurst, R. M., & Menard, D. (2013). Novel phenotypic assays for the detection of
783 artemisinin-resistant *Plasmodium falciparum* malaria in Cambodia: in-vitro and ex-vivo drug-
784 response studies. *The Lancet. Infectious diseases*, **13**(12), 1043–1049.
785 [https://doi.org/10.1016/S1473-3099\(13\)70252-4](https://doi.org/10.1016/S1473-3099(13)70252-4)

786

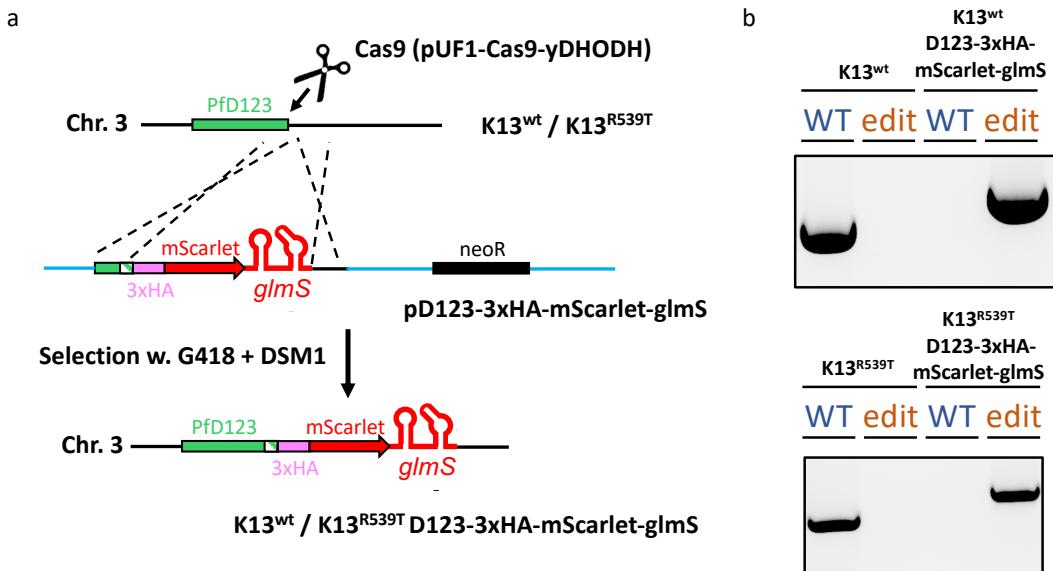
787 World Health Organization. World malaria report 2020: 20 years of global progress and
788 challenges. Geneva: World Health Organization (2020).

789

790 Yang, T., Yeoh, L. M., Tutor, M. V., Dixon, M. W., McMillan, P. J., Xie, S. C., Bridgford, J. L., Gillett,
791 D. L., Duffy, M. F., Ralph, S. A., McConville, M. J., Tilley, L., & Cobbold, S. A. (2019). Decreased
792 K13 Abundance Reduces Hemoglobin Catabolism and Proteotoxic Stress, Underpinning
793 Artemisinin Resistance. *Cell reports*, 29(9), 2917–2928.e5.
794 <https://doi.org/10.1016/j.celrep.2019.10.095>

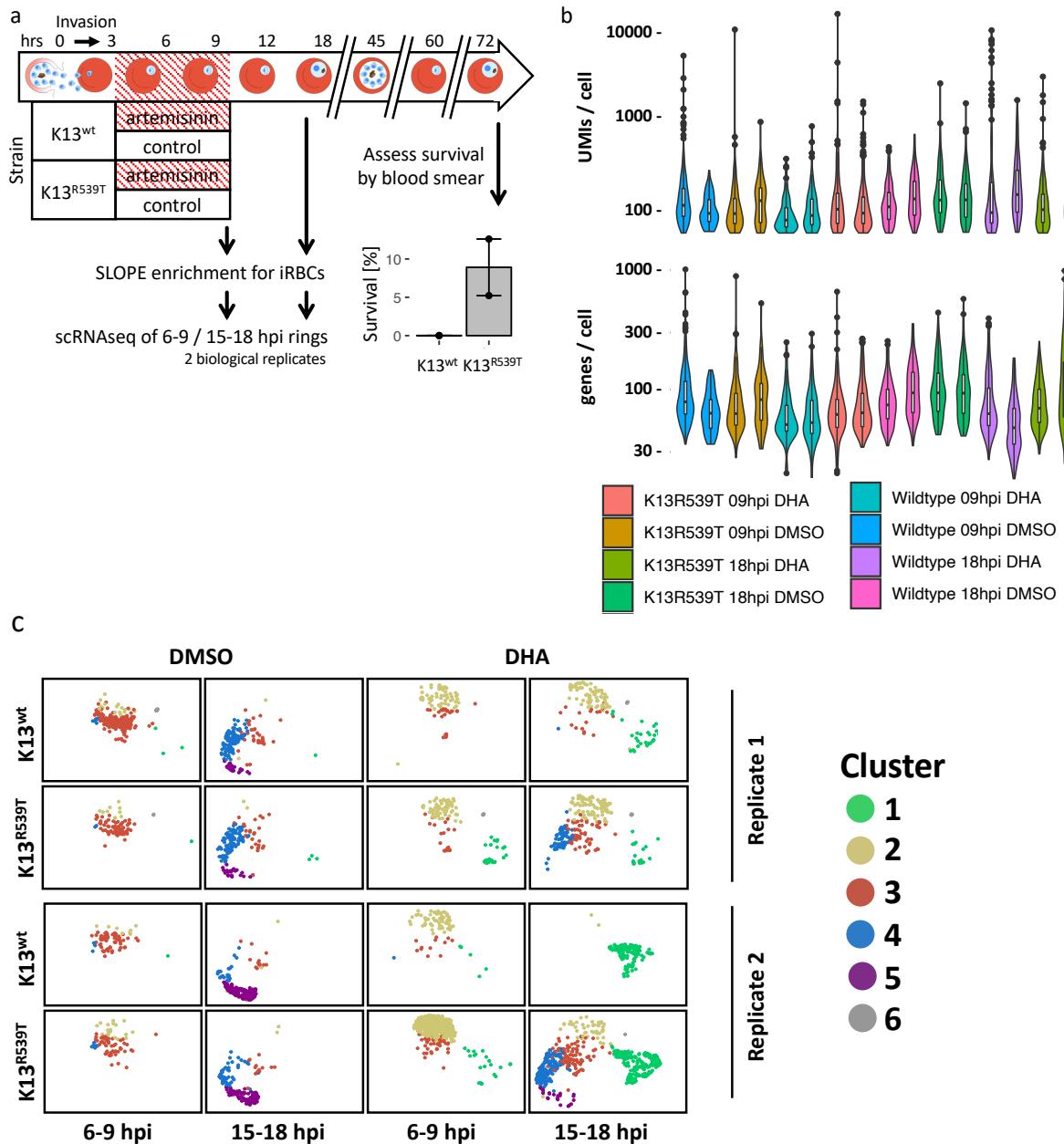

795

796 Zhang, M., Gallego-Delgado, J., Fernandez-Arias, C., Waters, N. C., Rodriguez, A., Tsuji, M., Wek,
797 R. C., Nussenzweig, V., & Sullivan, W. J., Jr (2017). Inhibiting the Plasmodium eIF2 α Kinase PK4
798 Prevents Artemisinin-Induced Latency. *Cell host & microbe*, 22(6), 766–776.e4.
799 <https://doi.org/10.1016/j.chom.2017.11.005>

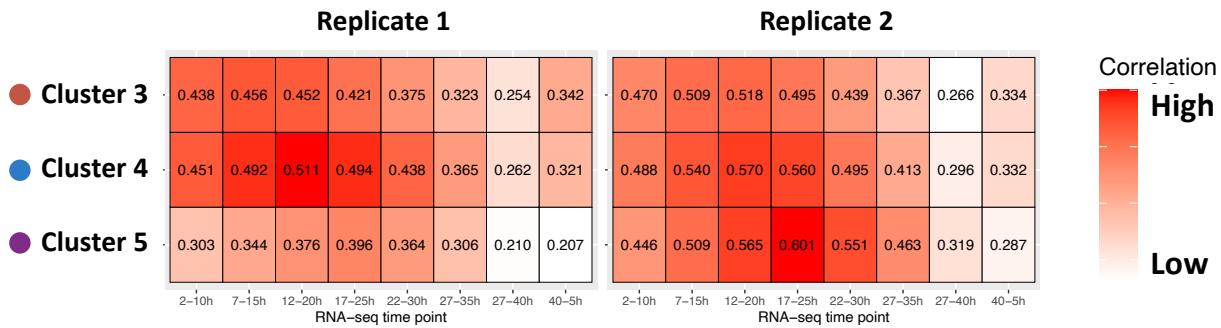

800

801

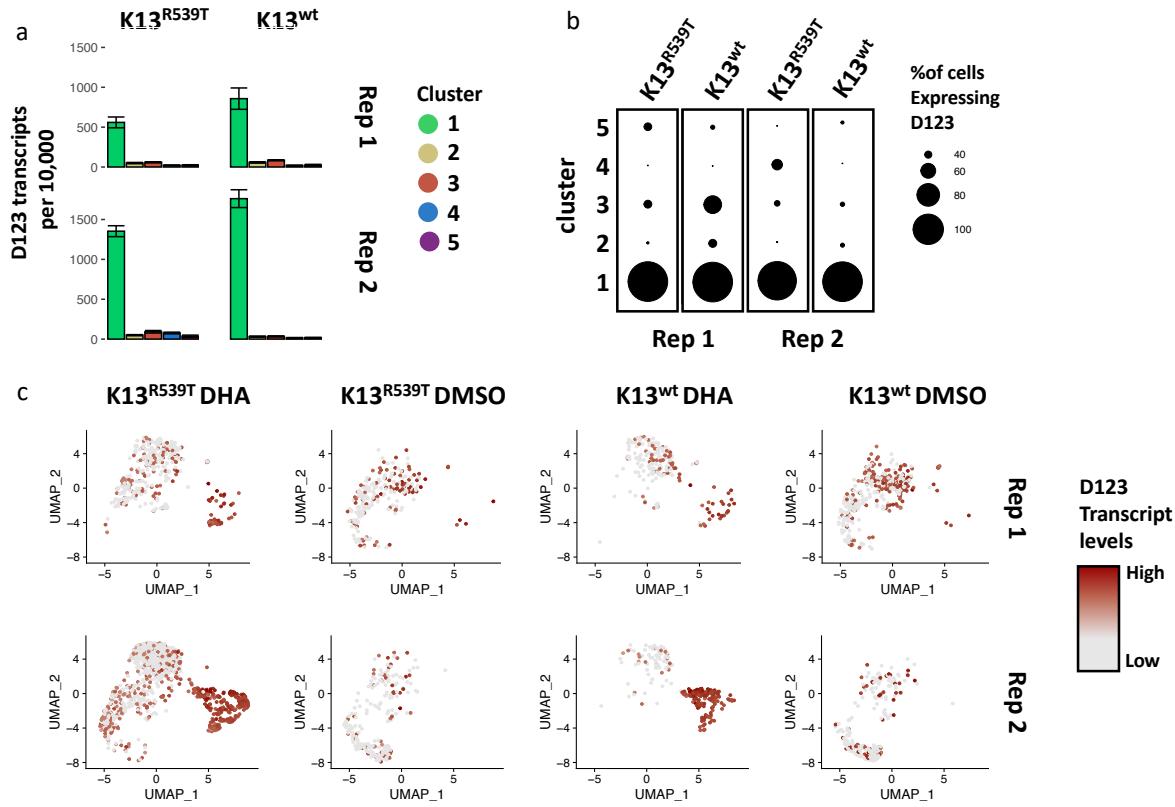
SUPPLEMENTARY FIGURES



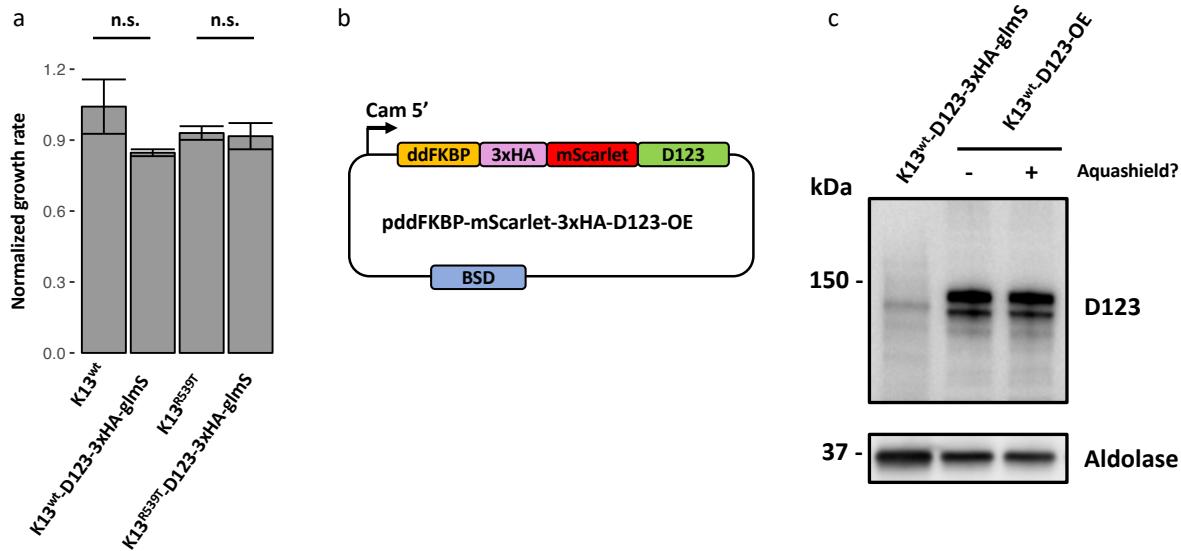
Supplementary Figure 1: scRNAseq of artemisinin-sensitive and -resistant 0-3 hpi ring stage parasites. **a**, experimental setup for early ring scRNAseq experiments and corresponding RSA survival data. Tightly synchronous 0-3 hpi ring parasites were enriched for infected red blood cells using the SLOPE method (Brown et al., 2020), then immediately processed for scRNAseq. Some remaining culture was kept aside and followed up to determine relative survival rates (bar plot in bottom right corner, $n = 3$, $p = 0.076$, two-sided unpaired t-test, error bars represent sem). **b**, unique molecular identifiers (UMIs, top) and genes (bottom) detected per cell in the six 0-3 hpi scRNAseq samples. **c**, representative Giemsa smears of 18 hpi ring stage parasites before (left) and after (right) enrichment for iRBCs using SLOPE. **d, e**, UMAP projections of replicate 2 (d) and replicate 3 (e) of the 0-3 hpi scRNAseq experiments, stratified by parasite strain.


814
815 **Supplementary Figure 2: Generation of epitope-tagged D123 knockdown parasite lines in $K13^{wt}$ and**
816 **$K13^{R539T}$.** a, overview of the strategy for generating $K13^{wt}$ -D123-3xHA-mScarlet-glmS and $K13^{R539T}$ -D123-
817 3xHA-mScarlet-glmS parasite lines. Green striped area indicates part of the ORF between Cas9 cut-site
818 and STOP codon that was recoded. b, PCR validation of successful gene editing. "WT" and "edit" PCRs
819 both share same forward primer positioned within the ORF, outside the 5' homology region. Reverse primer
820 for "WT" PCR was positioned in sequence that ended up recoded after editing, while reverse primer for
821 "edit" PCR was positioned within the mScarlet tag.

822


823
824
825
826
827
828
829
830
831
832
833

Supplementary Figure 3: scRNASeq of artemisinin-sensitive and -resistant parasites after artemisinin treatment. a, experimental setup for scRNASeq experiments of ring stage parasites after artemisinin treatment and corresponding RSA survival data. Tightly synchronous 0-3hpi ring parasites were exposed to 0.1% DMSO or 700 nM DHA, and samples were collected at 6-9 hpi and 15-18 hpi, respectively. Parasites were enriched for infected red blood cells using the SLOPE method (Brown et al., 2020), then immediately processed for scRNASeq. Some remaining culture was kept aside and followed up to determine relative survival rates (bar plot in bottom right corner, $n = 2$). **b**, unique molecular identifiers (UMIs, top) and genes (bottom) detected per cell in the experiments described in a. **c**, UMAP projections all experiments described in a, stratified by parasite strain, collection time point, treatment and biological replicate.


834
835
836
837
838
839
840

Supplementary Figure 4: Parasites progress through intra-erythrocytic development from cluster 3 to 5 in the RSA scRNAseq experiments. SCTs of clusters 3-5 were pseudo-bulked and then correlated to the individual time points of a time-series RNA-seq bulk transcriptomics dataset (Bartfai et al., 2010). Tile color shading is based on Pearson's correlation coefficient of the respective pair-wise comparison, with the coefficient printed on each tile.

841
842
843
844
845
846
847

Supplementary Figure 5: Expression of D123 in response to artemisinin. **a**, same data as in Fig. 3a, but stratified by strain and replicate. Error bars represent sem. **b**, same data as in Fig. 3b, but stratified by strain and replicate. **c**, UMAP projections of all SCTs of the RSA experiments (Fig. 2), stratified by treatment, strain and replicate, with each cell colored based on the detected D123 transcript levels. DHA = Dihydroartemisinin.

848
849 **Supplementary Figure 6: Modulation of D123 expression levels.** a, growth rates of different parasite
850 strains after 2.5 mM glucosamine treatment, plotted normalized to the growth rate when treated with a
851 solvent control. b, schematic representation of the plasmid map and strategy used for overexpression of
852 D123. Similar to the parasite lines where the endogenous D123 locus was tagged, little to no fluorescence
853 was detected for D123-OE parasites (data not shown). c, Same representative immunoblot as shown in
854 Fig. 4e, but including an additional lane showing D123 expression levels in $K13^{wt}\text{-ddFKBP-3xHA-mScarlet-}$
855 D123-OE parasites after 24h pretreatment with 500 nM Aquashield. ddFKBP is supposed to target D123
856 to the proteasome, rendering D123 overexpression regulatable, as it should only be stabilized upon addition
857 of Aquashield to the culture media. However, D123 protein levels were high in this line even in the absence
858 of Aquashield in the media. D123 was detected using an anti-HA antibody, and PfAldolase was used as a
859 loading control.