

1 When host populations move north, but disease moves south:
2 counter-intuitive impacts of climate warming on disease spread

3 E. Joe Moran¹, Maria M. Martignoni ^{*2}, Nicolas Lecomte^{3,4}, Patrick Leighton⁵, and Amy Hurford^{1,2}

4 ¹Department of Biology, Memorial University of Newfoundland, St. John's, Canada, ejm6168@psu.edu,
5 ahurford@mun.ca

6 ²Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Canada,
7 mmartignoni@mun.ca, ahurford@mun.ca

8 ³Canada Research Chair in Polar and Boreal Ecology, University of Moncton, Moncton, Canada,
9 nicolas.lecomte@umanitoba.ca

10 ⁴Center for Northern Studies, University of Moncton, Moncton, Canada

11 ⁵Epidemiology of Zoonoses and Public Health Research Group (GREZOSP), Department of Pathology and
12 Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Canada,
13 patrick.a.leighton@umontreal.ca

14 January 26, 2022

15 **Abstract**

16 Empirical observations and mathematical models show that climate warming can
17 lead to the northern (or, more generally, poleward) spread of host species ranges and
18 their corresponding diseases. Here, we explore an unexpected possibility whereby
19 climate warming induces disease spread in the opposite direction to the directional shift
20 in the host species range. To test our hypothesis, we formulate a reaction-diffusion
21 equation model with a Susceptible-Infected (SI) epidemiological structure for two host
22 species, both susceptible to a disease, but spatially isolated due to distinct thermal
23 niches, and where prior to climate warming the disease is endemic in the northern
24 species only. Previous theoretical results show that species' distributions can lag behind
25 species' thermal niches when climate warming occurs. As such, we find that climate
26 warming, by shifting both species' niches forward, may increase the overlap between
27 northern and southern host species ranges, due to the northern species lagging behind
28 its thermal tolerance limit, thus facilitating a southern disease spread. As our model is
29 general, our findings may apply to viral, bacterial, and prion diseases that do not have
30 thermal tolerance limits and are inextricably linked to their hosts' distributions, such
31 as the spread of rabies from arctic to red foxes.

32 **Keywords:** climate change; spillover; reaction-diffusion equations; thermal niche; pole-
33 ward dispersal; disease spread; susceptible-infected model; rabies; arctic foxes; extinction
34 debt.

35 *Corresponding author

36 Introduction

37 Many studies have observed shifts in disease range in the same direction as climate warming-
38 induced shifting thermal isoclines (Bellard et al., 2013; Patz et al., 1996; Short et al., 2017).
39 Diseases may spread poleward, or upwards in altitude, when pathogen fitness closely tracks
40 environmental temperature shifts, either due to host or vector responses to temperature (e.g.,
41 Lyme disease (Brownstein et al., 2005)), or due to pathogen life stages that are exposed to the
42 environment (e.g., chytrid fungus (Pounds, 2001)). There are many studies investigating the
43 poleward spread of between-host and vector-borne diseases, including malaria (Martens et al.,
44 1995), dengue fever (Hales et al., 2002), bluetongue (Purse et al., 2005), wooly adelgid beetle
45 in hemlocks (Paradis et al., 2008), or beech bark disease (Stephanson and Ribarik Coe, 2017).
46 There are currently no examples of climate-induced disease spread in the opposite direction
47 of climate warming. We hypothesize that when uninfected, susceptible, populations disperse
48 poleward (to where the climate is now warmer), and meet infected populations living at
49 higher latitude, contact between the two populations can facilitate an anti-poleward wave of
50 disease.

51 Our hypothesis arises as in a multi-host system, where disease can spread to another
52 host species given sufficient between-species contact rates, differences in host ranges can pre-
53 vent disease transmission, by reducing the contact rates between species. However, climate
54 warming can affect niches geographical extent and, consequently, species distributional area,
55 thereby facilitating disease spread into susceptible populations that have previously been
56 isolated. Indeed, both empirical studies (Menéndez et al., 2006; Talluto et al., 2017) and
57 mathematical models (Hurford et al., 2019; Zhou and Kot, 2011) have shown that in re-
58 sponse to climate warming, species may lag behind their shifting thermal tolerance limits.
59 This suggests that for two host species occupying distinct niches along a thermal gradient (for
60 convenience here assumed to be a latitudinal temperature gradient in the Northern Hemis-
61 phere) the northern species may lag behind its warm tolerance limit in the South; and as
62 the southern species spreads into the northern limit of its range, the area where the two
63 species overlap increases, thus facilitating disease spread from the northern population to the
64 southern population.

65 To test whether, and under which conditions, southward disease spread can occur in
66 response to climate warming, we formulate a reaction-diffusion equation model that accounts
67 for disease dynamics for directly transmitted pathogens between spatially structured host
68 populations in a moving habitat. Moving habitat models (Harsch et al., 2014) have been
69 formalized as either reaction diffusion equations (Berestycki et al., 2009; Potapov and Lewis,
70 2004), or their discrete time analogue: Integrodifference Equations (IDE; Zhou and Kot
71 (2011)), and have been used to study how the speed of climate change impacts population
72 persistence and how population densities respond to shifting habitats. More recently, moving
73 habitat models have been expanded to incorporate infectious agents and species interactions
74 (Leung and Kot, 2015; Kura et al., 2019). Our model incorporates species growth, diffusion,
75 and interaction in a moving-habitat framework, to investigate how the population densities
76 of two host species are affected by a climate-induced shift in the location of their thermal
77 tolerance limits, and how a possible overlap of their expansion ranges may facilitate disease
78 spread.

79 Our study is not bound to a specific disease, and focuses on systems consisting of two
80 populations with a common pathogen, which are spatially isolated but sufficiently close in
81 space to raise concerns about a possible overlap due to niche shift. We assume that prior

82 to climate warming, there exists an infected northern population, and an uninfected, but
83 susceptible, southern population. The arctic rabies system, for example, lends itself to this
84 formulation of our pre- and post-climate warming scenarios. Indeed, historically, rabies has
85 been endemic in Arctic foxes (*Vulpes lagopus*) (i.e., the “northern population”), while red
86 foxes (*Vulpes vulpes*) (i.e., the “southern population”) have remained disease-free with only
87 sporadic outbreaks (Mørk and Prestrud, 2004; Tabel et al., 1974). The movement of red foxes
88 northward, facilitated by climate change and anthropogenic disturbance, has already led to
89 an increase in overlap among the two species which can be observed in most arctic areas
90 (Gallant et al., 2012, 2020; Savory et al., 2014), and might constitute a threat for potential
91 fast spread of rabies to the south, given the vast distribution of red foxes across Eurasia,
92 North America, part of North Africa and in most of Australia (Hoffmann and Sillero-Zubiri,
93 2021), with major consequences for human and animal health. Additionally, if rabies is spread
94 southward, rabies’ disease range may overlap with more host species, specifically skunks and
95 raccoons (Finnegan et al., 2002), opening up new transmission pathways. It is therefore
96 imperative to understand how climate warming can contribute to the risk of the southern
97 spread of diseases, for the prevention and management of rabies, as well as other prion and
98 viral diseases.

99 Model and Methods

100 We formulate a temperature-driven moving habitat model based on a reaction-diffusion
101 framework (Cantrell and Cosner, 2004) to understand disease dynamics for directly trans-
102 mitted pathogens in a warming climate, and in spatially structured host populations. Our
103 model combines disease dynamics with the reproduction, survival, and dispersal of two host
104 populations (i.e., the northern population, characterized by the sub index “n”, and the south-
105 ern population, with sub index “s”) in a landscape consisting of a thermal gradient, such that
106 each population occupies a distinct region in the North or in the South. We assume that the
107 dynamics characterizing the northern and the southern host populations are identical, except
108 for the thermal tolerance limits of the two populations.

109 **Spatio-temporal dynamics:** Susceptible and infected individuals disperse by random mo-
110 tion, where the dispersal ability is quantified by the diffusion coefficient D_n (for the northern
111 species) and D_s (for the southern species). We assume that susceptible populations exhibit
112 logistic growth, with a temperature-dependent reproductive rate $r_n(T(x, t))$ or $r_s(T(x, t))$
113 (described below, see Eq. (2)), and density-dependent mortality rate μ_n or μ_s . We assume
114 that infectious individuals do not reproduce, and die with a density-dependent mortality rate
115 ν_n or ν_s . Susceptible individuals can become infected by contacting infected individuals in
116 northern or in southern populations alike, where disease transmission occurs at rate β_{nn} , β_{ss} ,
117 β_{ns} or β_{sn} , depending on whether the contact has been between two individuals of the same
118 population (northern or southern) or of different populations.

119 The system of equation describing the spatio-temporal dynamics of the northern and

southern populations is given by:

$$\partial_t S_n(x, t) = \underbrace{D_n \partial_x^2 S_n}_{\text{Dispersal}} + \underbrace{r_n(T) S_n - \mu_n S_n^2}_{\text{Logistic growth}} - \underbrace{\beta_{nn} S_n I_n - \beta_{sn} S_n I_s}_{\text{Infection}}, \quad (1a)$$

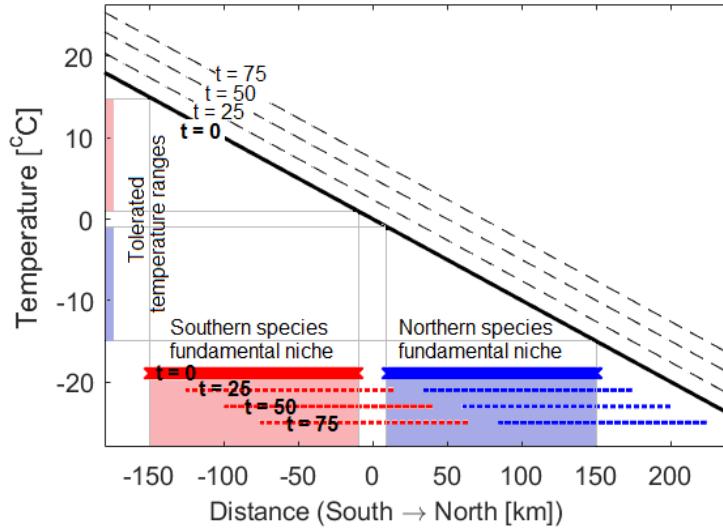
$$\partial_t I_n(x, t) = \underbrace{D_n \partial_x^2 I_n}_{\text{Dispersal}} + \underbrace{\beta_{nn} S_n I_n + \beta_{sn} S_n I_s}_{\text{Infection}} - \underbrace{\nu_n I_n^2}_{\text{Mortality}}, \quad (1b)$$

$$\partial_t S_s(x, t) = D_s \partial_x^2 S_s + r_s(T) S_s - \mu_s S_s^2 - \beta_{ss} S_s I_s - \beta_{ns} S_s I_n, \quad (1c)$$

$$\partial_t I_s(x, t) = D_s \partial_x^2 I_s + \beta_{ss} S_s I_s + \beta_{ns} S_s I_n - \nu_s I_s^2. \quad (1d)$$

119 where $S_n(x, t)$, $I_n(x, t)$, $S_s(x, t)$ and $I_s(x, t)$ represent the densities of susceptible and infected
 120 individuals in the northern and southern populations respectively, at time t and at location
 121 x . Although, for application to a specific host-parasite system, the modelling of population
 122 growth, disease dynamics, and dispersal may require a more complex framework than that
 123 provided in Eq. (1), in order to emphasize the broad validity of our findings we aimed for
 124 the simplest possible formulation of the population dynamics, which relies on very minimal
 125 assumptions. Possible extensions of the model will be discussed later in this manuscript.

126 **Temperature, species niches and climate warming:** In Eqs. (1a) and (1c), the birth
 127 rates $r_n(T)$ and $r_s(T)$ are represented as functions of temperature $T = T(x, t)$, which de-
 128 pends on the location x and on time t . Specifically, we assume that birth rates are constant
 129 and greater than zero within the species' thermal tolerance range, identified as the species
 130 "thermal" or "fundamental niche", and zero outside of the thermal tolerance range. We write:
 131


$$r_n(T(x, t)) = \begin{cases} r_n > 0 & \text{for } T_m < T(x, t) < T_M, \\ 0 & \text{otherwise,} \end{cases} \quad (2)$$

132 where, T_m and T_M are the lowest and highest temperatures that a species can reproduce at,
 133 and an analogous expression can be written for $r_s(T)$. While a more gradual change in the
 134 net reproduction rate along the temperature gradient may be more realistic (Amarasekare
 135 and Savage, 2012), our assumption of a rectangular niche shape represents the least favorable
 136 conditions for the northern population to lag behind the southern limit of its thermal tol-
 137 erance, and therefore, the least favorable conditions for a warming-induced southern wave of
 138 infection. Therefore, we expect that if southward disease spread is possible for the rectangu-
 139 lar niche shape, this spread will also occur when both species' niches are assumed to change
 140 more continuously as a function of temperature.
 141

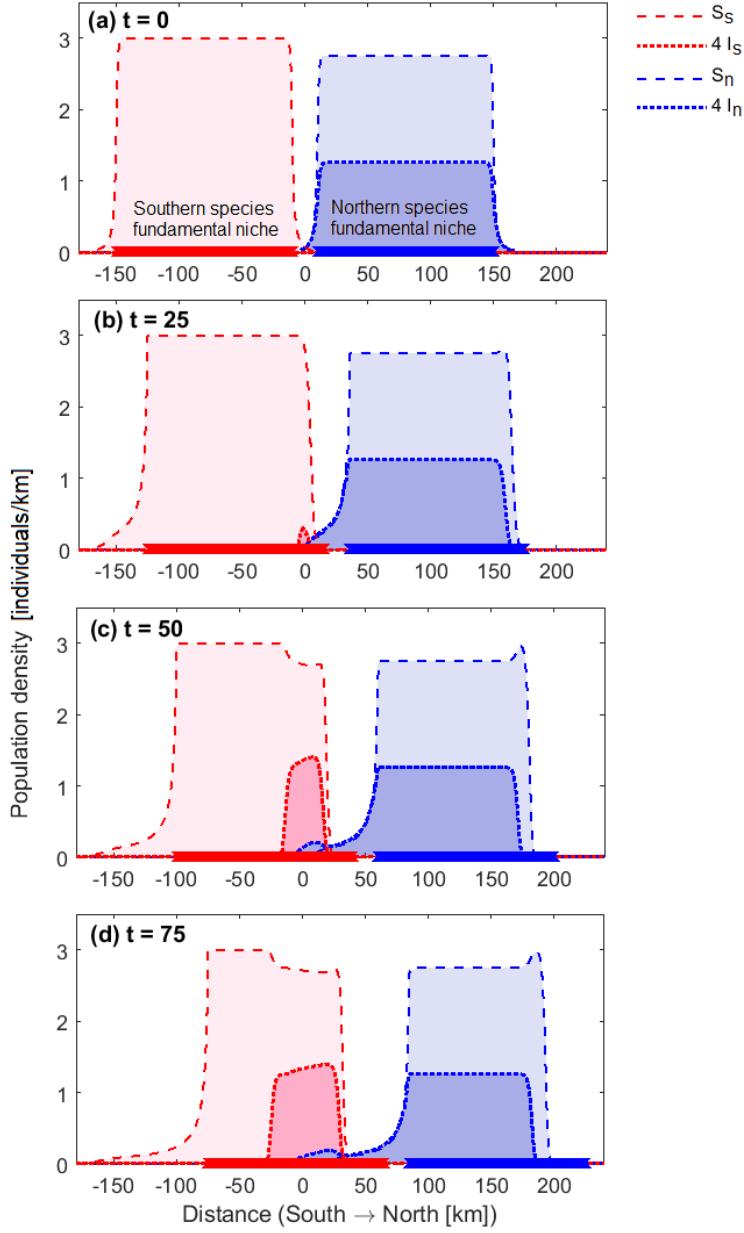
142 Species' thermal tolerance limits translate into a hospitable region in space (the species
 143 niche) where the temperature range is within the indicated limits. We assume the spatial
 144 location $x = [-L, L]$ to be a one-dimensional domain corresponding to a temperature gradi-
 145 ent in the Northern Hemisphere, where the temperature decreases gradually from "-L" (the
 146 "south") to "L" (the "north") (Fig. 1). We choose $L = 150$ km, and a temperature range prior
 147 to climate change extending from 15°C at $-L$ to -15° at L over 300 km. The default ther-
 148 mal tolerance limits of the northern species are assumed to range from -15°C to -1°C , while
 149 the thermal tolerance limits of the southern species range from 1°C to 15°C . The impact of
 150 varying those limits will be investigated as described in the next subsection.

151 Climate warming, beginning at time $t = 0$, causes an increase in temperature by 0.1°C
 152 per year (Pachauri et al., 2014), which in our simulations correspond to a northern shift of
 153 1 km per year. Therefore, climate change causes a shift in the thermal tolerance limits (and

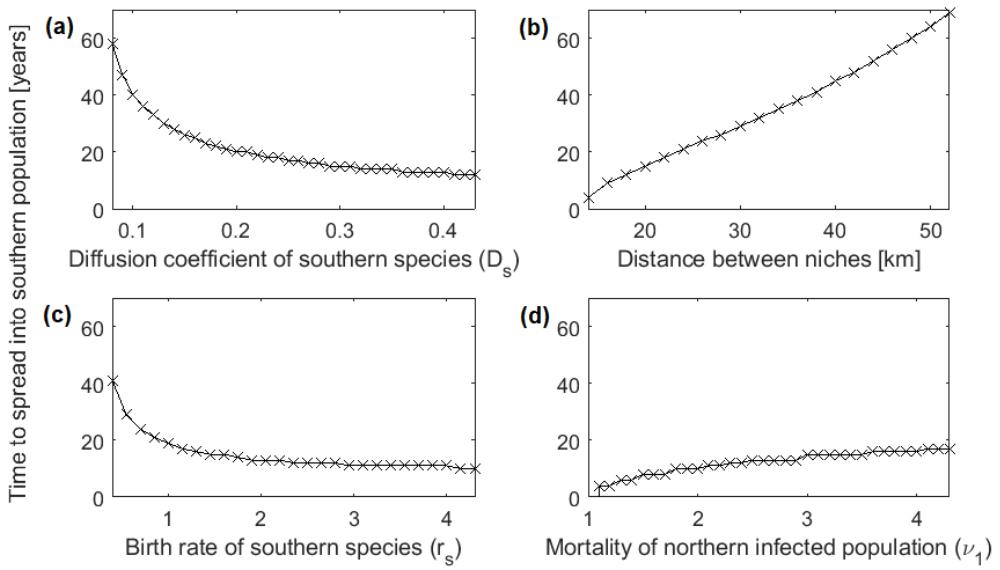
154 thus in the fundamental niche) of each species northwards, at a constant rate, and equally
 155 at all points in space.

Figure 1: Hypothesized south-to-north temperature gradient as a function of location x prior to climate warming (solid black line, $t = 0$) and after 25, 50 and 75 years of climate warming (dashed black lines, $t = 25, 50, 75$). The temperature is assumed to increase 0.1°C per year, which corresponds to a yearly 1 km shift to the north. The location of the fundamental thermal niches of the northern (in blue, color online) and southern (red, color online) populations prior and after climate warming are represented as horizontal solid lines (for $t = 0$) and dashed lines (for $t = 25, 50, 75$). The tolerated temperature ranges of each species prior to climate change are indicated on the vertical axis, where the northern species tolerates lower temperatures (ranging from -15° to -1°), and the southern species tolerates higher temperatures (ranging from 1° to 15°). The impact of varying the Euclidean distance between niches, and thus the thermal tolerance limits of each species, is discussed in Fig. 3b.

156 **Simulations:** We will focus on the situation where, prior to climate change, species dis-
 157 tributions has reached endemic equilibrium, where the disease is present in the northern
 158 population only. Although the southern population is also susceptible, it is spatially isolated
 159 due to the distinct thermal niche, and thus disease-free. We assume a numerical cutoff value
 160 of 0.001, below which population densities are considered to be zero.


161 As climate change occurs, the temperature gradient is uniformly increased, which results
 162 in a spatial shift in the thermal niches of both species. We simulate 75 years of climate
 163 warming, and investigate how the time needed for the disease to reach the southern population
 164 is affected by the dispersal ability, reproduction, mortality, and disease transmission rate of
 165 the two populations, and by variation in the thermal tolerance limits, affecting the Euclidean
 166 distance between fundamental niches. Simulations are run in MATLAB R2020b and the
 167 computer code is available at <https://figshare.com/s/60caec76973c3da640d0>.

168 Results


169 Our numerical simulations show that climate warming may induce the southward spread of
 170 disease when host species' ranges shift northwards (Fig. 2). Prior to climate change, the
 171 disease reaches endemic equilibrium in the northern population and, because of the spatial
 172 isolation arising from the distinct thermal niches, the disease does not spread into the southern

173 population (Fig. 2a). After 25 years of continuous climate warming, the thermal niches of both
174 populations have moved northwards, as have their population densities, but these densities
175 now lag behind their thermal tolerance limits (Fig. 2b). The infected northern individuals
176 (b; blue dashed line) shown south of $x = 35$ km occupy habitat that is too warm, and will
177 ultimately go extinct even if no further climate warming occurs; however, extinction takes
178 time and disease spread to the southern population is enabled via this transient persistence.
179 Indeed, the lag of the northern infected population behind its southern thermal tolerance limit
180 is sufficient to “bridge the gap” to the northern limit of the southern susceptible population (b; right-most red dashed line), allowing the disease to be transmitted to the previously isolated
181 and uninfected southern species. Once disease establishes in the southern population, we
182 observe a wave of infection, which moves southward in space (Fig. 2c and d).

183 A climate-induced southern spread of the disease is observed only if the thermal tolerance
184 limits, and thus fundamental niches, of the two host species are far enough to be spatially
185 separated before climate warming occurs, but close enough to allow disease spread after
186 climate warming begins. When a southern spread is observed, the Euclidean distance between
187 niches greatly affects the number of years of climate warming needed before disease spread
188 between populations is observed (Fig. 3a). Additionally, southern disease spread requires
189 a high dispersal ability and birth rate of the southern species (Fig. 3b and c), and it is
190 more likely to be observed when the mortality rate of northern infected individuals is low
191 (Fig. 3d). Other model parameters, such as the disease transmission rates and the dispersal
192 ability, mortality, and birth rate of susceptible individuals in the northern population, do not
193 greatly affect the number of years needed till southern spread is observed (see supplementary
194 information, Fig. S.1).

Figure 2: Population dynamics (a) prior to climate change ($t = 0$), and after (b) 25 years, (c) 50 years, and (d) 75 years of climate warming. The southern and northern population densities as a function of the location x are represented in blue and red respectively (color online), with dashed lines representing susceptible individuals and dotted lines representing infectious individuals. Thick blue and red horizontal lines indicate the fundamental niches of the northern and southern species respectively. Prior to climate change, the disease is endemic in the northern population, while the southern population is disease free. Climate change induces a gradual northern shift of both fundamental niches, and disease spread from the northern to the southern population. For visual purposes, the density of the infected populations have been multiplied by 4. Parameters used for the simulation are: $r_n = r_s = 1.5$, $\mu_n = \mu_s = 0.5$, $\nu_n = \nu_s = 3.5$, $D_n = D_s = 0.3$, $\beta_{nn} = \beta_{ss} = \beta_{ns} = \beta_{sn} = 0.4$.

Figure 3: Years of climate warming elapsing before the spread of the disease in a southern population is observed, as a function of (a) the dispersal ability of the southern species (D_s), (b) the thermal tolerance limits of the northern and southern species, determining the Euclidean distance between their fundamental niches prior to climate warming, (c) the birth rate of susceptible individuals of the southern population (r_s), and (d) the mortality rate of the northern infected population (ν_1). Other parameter values are given in Fig. 2.

196 Discussion

197 We find that climate warming can induce the spread of infectious diseases in the direction
 198 opposite to host species range shifts. This occurs when lagging species distributions, in-
 199 duced by climate change, connect previously isolated populations, facilitating a southern (or
 200 anti-poleward) disease spread. The lag of species distribution behind their thermal tolerance
 201 limits has previously been noted for single species moving habitat models (Berestycki et al.,
 202 2009; Zhou and Kot, 2011). Specifically, as the niche shifts northwards in response to cli-
 203 mate warming, individuals that do not track with their thermal niches do not immediately
 204 go extinct in habitat that has recently become inhospitable, but exhibit exponential decay
 205 (Amarasekare and Savage, 2012). The area where the population is eventually expected to
 206 go extinct has been termed “extinction debt”, and has been demonstrated both empirically
 207 (Menéndez et al., 2006; Talluto et al., 2017) and theoretically (Hurford et al., 2019; Zhou and
 208 Kot, 2011). Here we propose that “extinction debt” areas can facilitate disease spread in the
 209 opposite direction of climate warming, via this transient persistence of infected individuals.

210 We note that the conditions required for the southern spread of disease may be restrictive:
 211 1) there must exist a spatially isolated susceptible, but uninfected population in the south;
 212 and 2) the southern population must not be so isolated that individuals cannot disperse into
 213 the regions occupied by the lagging infected northern population (made recently suitable for
 214 the southern species due to climate warming). High dispersal ability and birth rate of the
 215 southern species, as well as a small death rate of infected individuals in the North can also
 216 largely determine whether southern spread of disease will be observed, and after how many
 217 years of climate warming the spread will occur.

218 Our counter-intuitive results have implications for epidemic readiness in regions adjacent
 219 to areas where disease is endemic. Arctic rabies is an example of a disease system which po-

220 potentially exhibits the necessary prerequisites for warming-induced southward disease spread.
221 Other host-host disease systems may include arctic fox and raccoon dogs in Europe, which
222 exhibit similar latitudinal distribution and interactions to the arctic - red fox system (Mørk
223 and Prestrud, 2004), or bovine tuberculosis and brucellosis: bacterial pathogens that are en-
224 demic diseases in northern bovids, such as the woodland bison of northern Canada (Joly and
225 Messier, 2005; Nishi et al., 2006), and might may spread in southern ungulate populations
226 given climate induced range shifts.

227 In addition to host-host systems, our model can also apply to host-parasite systems,
228 if a free-living parasite is long-lived and able to withstand warmer temperatures than the
229 host. In such systems, if the pathogen is shed, and the climate later warms, the distribution
230 of the pathogen can lag behind the warm tolerance limit of the host. This can be the
231 case for *Echinococcus multilocularis* for instance, an intestinal parasite endemic to northern
232 latitudes which causes Alveolar echinococcosis disease in carnivorous animals, and can remain
233 infectious in the environment for over 1.5 years (Veit et al., 1995). The presence of multiple
234 hosts of the parasite (such as foxes, wolves, coyotes, or even domestic dogs) raises concerns
235 on whether climate change may contribute to its possible southward movement (Massolo
236 et al., 2014). Also Chronic Wasting Disease (CWD), spread by infectious prions, can persist
237 for more than 2 years in the environment (Miller et al., 2004), and prions from comparable
238 animal diseases (e.g., scrapie disease in sheeps) can persist for up to 16 years (Georgsson
239 et al., 2006).

240 Our model, despite its simplicity, provides an important first step in raising awareness
241 around the risk of southern disease spread due to climate change. Future modelling efforts
242 should consider different dispersal patterns (Sutherland et al., 2000), different niche struc-
243 tures (Barton et al., 2019), and different temperature dependence of birth and mortality rates
244 (Amarasekare and Savage, 2012; Hurford et al., 2019). The impact that competition between
245 host species might have on reducing the disease transmission risk (Tannerfeldt et al., 2002)
246 should also be quantified. Additionally, host species may experience large year-to-year fluc-
247 tuations in their population densities (Simon et al., 2019), which may affect disease spread.
248 Models would be needed to show how the spread speed may change under various scenarios,
249 such as higher or lower year-to year variations. Specific parametrization and and/or adapta-
250 tion of the model to real existing systems, such as those described in the previous paragraphs,
251 can provide useful quantitative insights into when and whether southern disease spread might
252 occur, to support decisions on where to focus disease monitoring efforts.

253 Authorship statement

254 MM and EJM wrote the manuscript. MM wrote the code and completed the analysis, building
255 on earlier code and analysis by EJM. PL, NL and AH motivated the research question and
256 revised the manuscript. AH, MM, and EJM conceived of the analysis.

257 Acknowledgement

258 AH, PL and NL were supported by the National Sciences and Engineering Research Council
259 (NSERC) Discovery Grant (AH: 2014-05413; PL: 2014-03793; NL: 2014-03043). AH and PL
260 were supported by the One Health Modelling Network for Emerging Infections (OMNI). AH
261 was supported by the Emerging Infectious Disease Modelling Consortium. NL was supported

262 by the Canada Research Chair Program, by the Canadian Innovation Fund, and by the
263 Université de Moncton.

264 References

265 Priyanga Amarasekare and Van Savage. A framework for elucidating the temperature de-
266 pendence of fitness. *The American Naturalist*, 179(2):178–191, 2012.

267 Madeleine G Barton, Susana Clusella-Trullas, and John S Terblanche. Spatial scale, topog-
268 graphy and thermoregulatory behaviour interact when modelling species' thermal niches.
269 *Ecography*, 42(2):376–389, 2019.

270 Celine Bellard, Wilfried Thuiller, Boris Leroy, Piero Genovesi, Michel Bakkenes, and Franck
271 Courchamp. Will climate change promote future invasions? *Global change biology*, 19(12):
272 3740–3748, 2013.

273 Henri Berestycki, Odo Diekmann, Cornelis J Nagelkerke, and Paul A Zegeling. Can a species
274 keep pace with a shifting climate? *Bulletin of Mathematical Biology*, 71(2):399, 2009.

275 John S Brownstein, Theodore R Holford, and Durland Fish. Effect of climate change on lyme
276 disease risk in north america. *EcoHealth*, 2(1):38–46, 2005.

277 Robert Stephen Cantrell and Chris Cosner. *Spatial ecology via reaction-diffusion equations*.
278 John Wiley & Sons, 2004.

279 Christopher J Finnegan, Sharon M Brookes, Nicholas Johnson, Jemma Smith, Karen L Mans-
280 field, Victoria L Keene, Lorraine M McElhinney, and Anthony R Fooks. Rabies in North
281 America and Europe. *Journal of the Royal Society of Medicine*, 95(1):9–13, 2002.

282 Daniel Gallant, Brian G Slough, Donald G Reid, and Dominique Berteaux. Arctic fox versus
283 red fox in the warming Arctic: four decades of den surveys in north Yukon. *Polar Biology*,
284 35(9):1421–1431, 2012.

285 Daniel Gallant, Nicolas Lecomte, and Dominique Berteaux. Disentangling the relative influ-
286 ences of global drivers of change in biodiversity: A study of the twentieth-century red fox
287 expansion into the Canadian Arctic. *Journal of Animal Ecology*, 89(2):565–576, 2020.

288 Gudmundur Georgsson, Sigurdur Sigurdarson, and Paul Brown. Infectious agent of sheep
289 scrapie may persist in the environment for at least 16 years. *Journal of General Virology*,
290 87(12):3737–3740, 2006.

291 Simon Hales, Neil De Wet, John Maindonald, and Alistair Woodward. Potential effect of
292 population and climate changes on global distribution of dengue fever: an empirical model.
293 *The Lancet*, 360(9336):830–834, 2002.

294 Melanie A Harsch, Ying Zhou, Janneke HilleRisLambers, and Mark Kot. Keeping pace with
295 climate change: stage-structured moving-habitat models. *The American Naturalist*, 184
296 (1):25–37, 2014.

297 M Hoffmann and C Sillero-Zubiri. *Vulpes vulpes* (amended version of 2016 assessment). *The*
298 *IUCN Red List of Threatened Species*, 2021.

299 Amy Hurford, Christina A Cobbold, and Péter K Molnár. Skewed temperature dependence
300 affects range and abundance in a warming world. *Proceedings of the Royal Society B*, 286
301 (1908):20191157, 2019.

302 Damien O Joly and Francois Messier. The effect of bovine tuberculosis and brucellosis on
303 reproduction and survival of wood bison in Wood Buffalo National Park. *Journal of Animal
304 Ecology*, pages 543–551, 2005.

305 Klodeta Kura, Doran Khamis, Claire El Mouden, and Michael B Bonsall. Optimal control
306 for disease vector management in SIT models: an integrodifference equation approach.
307 *Journal of Mathematical Biology*, 78(6):1821–1839, 2019.

308 M-R Leung and M Kot. Models for the spread of white pine blister rust. *Journal of Theoretical
309 Biology*, 382:328–336, 2015.

310 WJ Martens, Louis W Niessen, Jan Rotmans, Theo H Jetten, and Anthony J McMichael. Po-
311 tential impact of global climate change on malaria risk. *Environmental Health Perspectives*,
312 103(5):458–464, 1995.

313 Alessandro Massolo, Stefano Liccioli, Christine Budke, and Claudia Klein. *Echinococcus*
314 *multilocularis* in North America: the great unknown. *Parasite*, 21, 2014.

315 Rosa Menéndez, Adela González Megías, Jane K Hill, Brigitte Braschler, Stephen G Willis,
316 Yvonne Collingham, Richard Fox, David B Roy, and Chris D Thomas. Species richness
317 changes lag behind climate change. *Proceedings of the Royal Society B: Biological Sciences*,
318 273(1593):1465–1470, 2006.

319 Michael W Miller, Elizabeth S Williams, N Thompson Hobbs, and Lisa L Wolfe. Environ-
320 mental sources of prion transmission in mule deer. *Emerging Infectious Diseases*, 10(6):
321 1003, 2004.

322 Torill Mørk and Pål Prestrud. Arctic rabies—a review. *Acta Veterinaria Scandinavica*, 45(1):
323 1–9, 2004.

324 John S Nishi, Todd Shury, and Brett T Elkin. Wildlife reservoirs for bovine tuberculosis
325 (*Mycobacterium bovis*) in Canada: strategies for management and research. *Veterinary
326 Microbiology*, 112(2-4):325–338, 2006.

327 Rajendra K Pachauri, Myles R Allen, Vicente R Barros, John Broome, Wolfgang Cramer,
328 Renate Christ, John A Church, Leon Clarke, Qin Dahe, Purnamita Dasgupta, et al. *cli-
329 mate change 2014: synthesis report. Contribution of Working Groups I, II and III to the
330 fifth assessment report of the Intergovernmental Panel on Climate Change*. Ipc, 2014.

331 Annie Paradis, Joe Elkinton, Katharine Hayhoe, and John Buonaccorsi. Role of winter
332 temperature and climate change on the survival and future range expansion of the hemlock
333 woolly adelgid (*Adelges tsugae*) in eastern North America. *Mitigation and Adaptation
334 Strategies for Global Change*, 13(5):541–554, 2008.

335 Jonathan A Patz, Paul R Epstein, Thomas A Burke, and John M Balbus. Global climate
336 change and emerging infectious diseases. *Jama*, 275(3):217–223, 1996.

337 Alex B Potapov and Mark A Lewis. Climate and competition: the effect of moving range
338 boundaries on habitat invasibility. *Bulletin of Mathematical Biology*, 66(5):975–1008, 2004.

339 J Alan Pounds. Climate and amphibian declines. *Nature*, 410(6829):639–640, 2001.

340 Bethan V Purse, Philip S Mellor, David J Rogers, Alan R Samuel, Peter PC Mertens, and
341 Matthew Baylis. Climate change and the recent emergence of bluetongue in europe. *Nature
342 Reviews Microbiology*, 3(2):171–181, 2005.

343 GA Savory, CM Hunter, MJ Wooller, and DM O'Brien. Anthropogenic food use and diet
344 overlap between red foxes (*Vulpes vulpes*) and arctic foxes (*Vulpes lagopus*) in Prudhoe
345 Bay, Alaska. *Canadian Journal of Zoology*, 92(8):657–663, 2014.

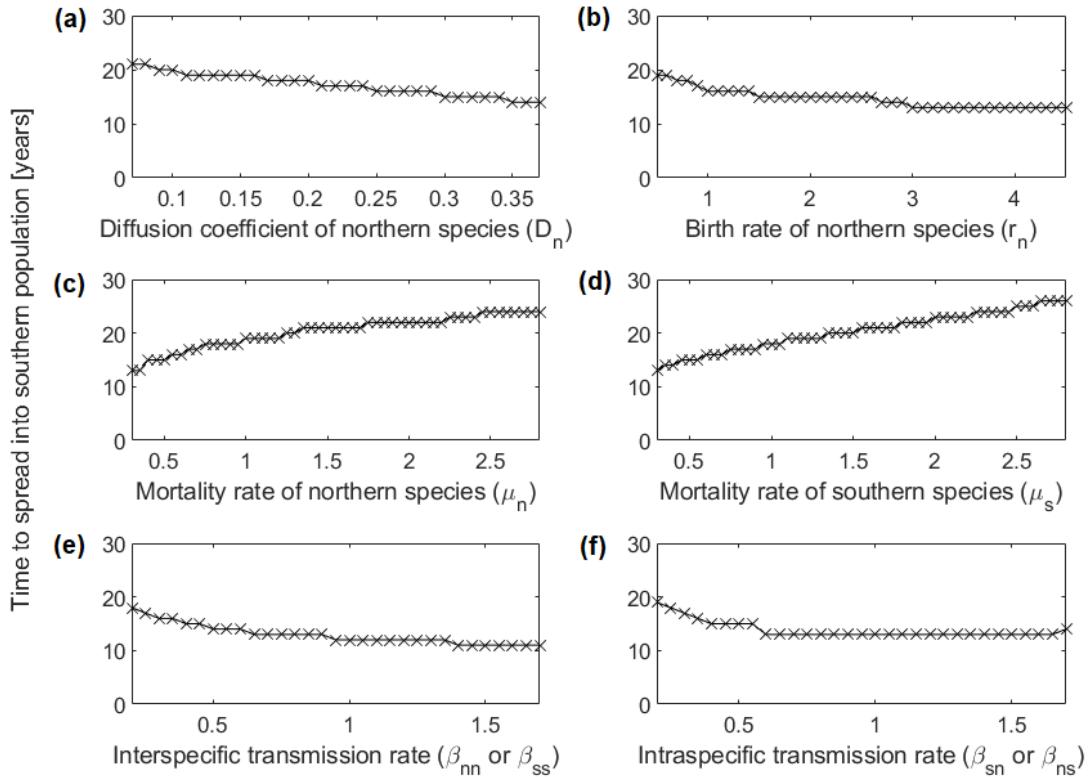
346 Erica E Short, Cyril Caminade, and Bolaji N Thomas. Climate change contribution to
347 the emergence or re-emergence of parasitic diseases. *Infectious Diseases: Research and
348 Treatment*, 10:1178633617732296, 2017.

349 Audrey Simon, Olivia Tardy, Amy Hurford, Nicolas Lecomte, Denise Bélanger, and Patrick
350 Leighton. Dynamics and persistence of rabies in the Arctic. *Polar Research*, 2019.

351 Christopher Alexander Stephanson and Natalie Ribarik Coe. Impacts of beech bark disease
352 and climate change on American beech. *Forests*, 8(5):155, 2017.

353 Glenn D Sutherland, Alton S Harestad, Karen Price, and Kenneth P Lertzman. Scaling of
354 natal dispersal distances in terrestrial birds and mammals. *Conservation ecology*, 4(1),
355 2000.

356 H Tabel, AH Corner, WA Webster, and CA Casey. History and epizootiology of rabies in
357 Canada. *The Canadian Veterinary Journal*, 15(10):271, 1974.


358 Matthew V Talluto, Isabelle Boulangeat, Steve Vissault, Wilfried Thuiller, and Dominique
359 Gravel. Extinction debt and colonization credit delay range shifts of eastern north american
360 trees. *Nature Ecology & Evolution*, 1(7):1–6, 2017.

361 Magnus Tannerfeldt, Bodil Elmhagen, and Anders Angerbjörn. Exclusion by interference
362 competition? The relationship between red and arctic foxes. *Oecologia*, 132(2):213–220,
363 2002.

364 P Veit, B Bilger, V Schad, J Schäfer, W Frank, and R Lucius. Influence of environmental
365 factors on the infectivity of *Echinococcus multilocularis* eggs. *Parasitology*, 110(1):79–86,
366 1995.

367 Ying Zhou and Mark Kot. Discrete-time growth-dispersal models with shifting species ranges.
368 *Theoretical Ecology*, 4(1):13–25, 2011.

369 **Supplementary information**

Figure S.1: Years of climate warming elapsing before the spread of the disease in a southern population is observed, as a function of (a) the dispersal ability of the northern species (D_s), (b) the birth rate of the northern species (r_n), (c) the mortality rate of the northern species (μ_n), (d) the mortality rate of the southern species (μ_s), (e) the interspecific transmission rate (β_{sn} and β_{ns}), (f) the intraspecific transmission rate (β_{nn} or β_{ss}). Other parameter values are given in Fig. 2.