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ABSTRACT
Detailed knowledge on how bacteria evade antibiotics and eventually develop resistance could open
avenues for novel therapeutics and diagnostics. It is thereby key to develop a comprehensive genome-
wide understanding of how bacteria process antibiotic stress, and how modulation of the involved
processes affects their ability to overcome said stress. Here we undertake a comprehensive genetic
analysis of how the major human pathogen Streptococcus pneumoniae responds to 20 antibiotics. We
built a genome-wide atlas of drug susceptibility determinants and generate a genetic interaction network
that connects cellular processes and genes of unknown function, which we show can be used as
therapeutic targets. Pathway analysis reveals a genome-wide “tolerome”, defined by cellular processes
that can make a bacterium less susceptible, and often tolerant, in an antibiotic specific manner. Importantly,
modulation of these processes confers fithess benefits during active infections under antibiotic selection.
Moreover, screening of sequenced clinical isolates demonstrates that mutations in tolerome genes readily
evolve and are frequently associated with resistant strains, indicating such mutations may be an important

harbinger for the emergence of antibiotic resistance.


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.26.477867; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

The emergence of antibiotic resistance in bacterial pathogens is a continuously developing complex
problem that is only solvable if besides new drugs we also learn to understand the exact (genetic)
processes that enable resistance. For instance, new antibiotics and treatment strategies are key to retain
the ability to treat resistant infections. However, a comprehensive understanding of how and under which
conditions resistance emerges, which genes and pathways contribute to drug sensitivity, and how
resistance may be prevented or even taken advantage of, are equally important, as it could make
treatments more focused and possibly less dependent on new drugs. For many antibiotics we know which
genomic changes can cause resistance. However, it is often not clear how we get there with respect to
which evolutionary paths are taken and whether for instance tolerance or lowered drug sensitivity precedes
resistance. Interestingly, clinical strains isolated during antibiotic treatment failure may lack known
resistance markers and instead contain multiple changes that may have no clear or known role in
resistance’5. However, whether these changes play a role or not is often unclear because the distribution
of changes that can affect a bacterium's drug sensitivity are largely unknown7. Therefore, understanding
which genes, pathways and processes can contribute to altered drug susceptibility, could help identify
genomic changes that not only sensitize bacteria to certain drugs, but desensitize them and may thereby

act as precursors for antibiotic escape and/or resistance development.

Resistance emerges primarily through drug target mutations blocking antibiotic lethal action, upregulation
of efflux pumps, and the acquisition of drug inactivating enzymes 7-13. Importantly, an antibiotic’s effects go
far beyond the interaction with its direct target. We, and others, have shown that when a bacterium is
challenged by an antibiotic, the imposing stress can expand throughout the bacterium and affect and
demand the involvement of many different processes 8417, For instance, while fluoroquinolones like
ciprofloxacin inhibit DNA replication by targeting gyrase and/or topoisomerase, this also triggers double
stranded breaks requiring the involvement of DNA repair mechanisms, which in turn requires nucleotide
and energy metabolism. Antibiotics can thereby trigger a stress cascade, that with mounting stress
increasingly reverberates through the organismal network, until the accumulating stress passes a threshold
at which point the organism succumbs to the pressure '®17. This explains why mutations in genes or
pathways involved in dealing with the downstream (indirect) effects of antibiotic exposure can often make
a bacterium more sensitive to a specific antibiotic. Indeed, we have shown for Streptococcus pneumoniae
and Acinetobacter baumannii that, for instance, targeting DNA repair makes bacteria more susceptible to
fluoroquinolones® 1618, or targeting the Rod-system and/or Divisome makes A. baumannii more sensitive
to cell wall synthesis inhibitors (CWSIs)é. This means that downstream genes, pathways and processes
can be used as new targets or drug potentiators, either by themselves or in combination with others®14.

Moreover, in most bacteria, as in any other organism, the majority of genes are of unknown function, it is


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.26.477867; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

unclear what role they play in a specific process and/or pathway, or how they are connected within the
organismal genomic network. Thus, besides solving gene-function, mapping-out which genes, pathways
and processes are involved in dealing with and overcoming antibiotic-stress, and how they interact with
each other, can provide key insights into uncovering new drug targets, or for instance rational combination

strategies®.

While identifying off-target genes and pathways that increase drug sensitivity may thus be useful, it is
possible that changes in associated processes could, in contrast, just as well reduce the experienced
antibiotic stress. Such changes would thereby decrease antibiotic sensitivity and could possibly function
as precursors to the emergence of resistance. A possible example of this is the induction of tolerance
and/or persistence, where a small proportion of bacterial cells in the population upon exposure to high
(transient) concentrations of antibiotics, are induced into a cell state that enables them to tolerate this
treatment. Cell states associated with tolerance include cell dormancy, slow growth, transient expression
of efflux pumps, and induction of stress response pathways 19202122 However, the mechanistic
underpinnings of tolerance and decreased antibiotic sensitivity remain largely undefined and possibly differ
between bacterial species and vary among antibiotics?3. Moreover, specific mutations can (dramatically)
increase the fraction of the surviving population 2426, indicating these tolerant phenotypes have a genetic
basis. Lastly, since clinical isolates often carry mutations located outside well-characterized drug targets -
52728 they could thus be composed of variants with different antibiotic sensitivities. Consequently, such
variants with decreased antibiotic sensitivity could enable antibiotic escape, and/or enable multi-step high-
level resistance mutations to evolve as they are given an extended opportunity to emerge?'29-32, Variants
with decreased antibiotic sensitivity may thereby play an important role in antibiotic treatment failure 53334,
However, the breadth of possible genetic alterations that can trigger tolerance and/or decrease antibiotic

sensitivity are largely unknown, making it unclear how often and probabile it is that such variants arise.

In this study we use Tn-Seq in S. pneumoniae exposed to 20 antibiotics, 17 additional environments, and
two in vivo infection conditions, to generate a genome-wide atlas of drug susceptibility determinants and
build a genome-wide interaction network that connects cellular processes and genes of unknown function.
We explore several interactions as new leads for gene function, while we show that specific interactions
can be used to guide the identification of targets for new antimicrobial strategies. We highlight one such
novel target in the membrane, by successfully developing a combinatorial antibiotic-antibody strategy that
significantly reduces the bacterial load during an acute mouse lung infection. Furthermore, detailed
mapping of antibiotic sensitivity data to pathways and genes with known function suggests a genome-wide
“tolerome” exists defined by a multitude of genomic changes to a wide variety of pathways and processes

that can make the bacterium less susceptible, and often tolerant to specific antibiotics. We untangle some
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of the underlying genetic mechanisms and show that decreased susceptibility and/or tolerance can come
from a variety of changes including those in (nucleotide) metabolism, (p)ppGpp and ATP synthesis,
transcription and translation, as well as different types of transport. By further combining in vivo-infection-
with antibiotic-Tn-Seq we predict and experimentally validate that many disruptions may retain their
decreased antibiotic sensitivity phenotype in vivo, and thereby outcompete the wildtype in the presence of
antibiotics. Moreover, by screening hundreds of clinical isolates we show that changes in tolerome genes
readily evolve in human patients and are often associated with antibiotic resistance. Consequently, these
data highlight the wide array of possibilities that can lead to lowered antibiotic sensitivity and/or tolerance

and underscore the importance of understanding the genetics of variants with altered drug susceptibility.


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.26.477867; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RESULTS

A genome-wide view of antibiotic sensitivity. To obtain a genome-wide view of the genetic determinants
that can modulate antibiotic stress in S. pneumoniae, Tn-Seq was employed in the presence of 20
antibiotics (ABXs), representing four classes and 9 different ABX groups (Fig. 1a). Six independent
transposon libraries were generated and grown for approximately 8 generations in the absence and
presence of an antibiotic at a concentration that reduces growth by approximately 30-50% (Supplementary
Table 1). Tn-mutant frequencies are determined through lllumina sequencing from the beginning and end
of the experiment with high reproducibility between libraries (R?= 0.70-0.90; Supplementary Fig. 1) which
is consistent with previous Tn-Seq experiments® 1516183538 Combined with the population expansion
during the experiment each mutant’s fithess (W) is calculated to represent their environment-specific
relative growth rate 618353940 Egch gene’s antibiotic-specific fitness is statistically compared to baseline
fitness without ABXs, and is represented as AW ( Wasx - Whoasx) and categorized as: 1) Neutral, AW = 0,
a mutant’s relative growth is similar in the absence and presence of an ABX; 2) Negative, AW < 0, a
mutant’s fitness is significantly lower and thus grows relatively slower in the presence of an ABX; 3) Positive,
AW> 0, a mutant’s fitness is significantly higher and thus grows relatively faster in the presence of an ABX.
All antibiotics trigger both positive and negative growth effects (Fig. 1b, Supplementary Table 2), which
are distributed across 22 different gene categories (Fig. 1c¢). Importantly, enrichment analysis shows there
are multiple expected patterns, for instance genes involved in DNA-repair are enriched in the presence of
fluoroquinolones; cell-wall, peptidoglycan and cell division genes are enriched in B-lactams and
glycopeptides; membrane integrity genes in lipopeptides; and transcription and translation in PSls (Fig.
1d). Additionally, throughout the manuscript we validate a total of 49 predicted genotype x phenotype
interactions, which indicates the Tn-Seq data is in line with previously shown accuracy?®.1516.18.35-38 gnd of

high quality (Fig. 1e, Supplementary Table 8).

Co-fitness interaction networks identify known and unknown genetic relationships. Screens such
as Tn-Seq are geared towards highlighting the processes and genes that are important under a specific
screening condition. With increasing conditions, genes acquire specific profiles, and those with similar
fitness profiles can help reveal pathways and/or gene-clusters with similar and/or shared tasks. To extract
such patterns, we build a correlation matrix based on each gene’s fitness-profile generated from 20
antibiotics and supplemented with previously collected Tn-Seq data from 17 additional non-antibiotic
conditions™® (Supplementary Table 3). This results in a 1519x1519 gene matrix where positive correlations
between genes come from shared phenotypes, while negative correlations come from opposing
phenotypic responses under the same condition (Supplementary Table 4). By repeatedly hiding random
parts of the data the stability and strength of each correlation is calculated and represented in a stability

score (Supplementary Table 5). The correlation matrix and stability score are turned into a network, where
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each node is a gene, and each edge is a correlation coefficient above a threshold (>0.75), which combined
with the stability score indicates the strength of the relationship between two genes. (Fig. 2a;
Supplementary Table 6). Spatial Analysis of Functional Enrichment (SAFE)*'42 is used to define local
neighborhoods within the network, i.e., areas enriched for a specific attribute (e.g., a pathway or functional
category), which identifies multiple clusters that represent specific pathways and processes including
purine metabolism, cell-wall metabolism, cell division and DNA repair (Fig. 2b; Supplementary Table 7).
Moreover, the network contains gene-clusters of high connectivity identifying highly related genes including
those within the same operon such as the ami-operon, an oligo-peptide transporter, the dlt-operon which
decorates wall and lipoteichoic acids with d-alanine, and the pst-operon a phosphate transporter (Fig. 2c,
[-111)). Besides identifying known relationships, the network also uncovers interaction clusters between
genes with known and unknown interactions and function. Several such clusters are highlighted in Fig. 2c
(IV-VI111), including genes involved in purine metabolism (further explored below), threonine metabolism,
and in secretion of serine rich repeat proteins (SRRPs), which are important for biofilm formation and
virulence*3. Importantly, the identification of biologically relevant relationships among (clusters of) genes

indicates the data is rich in known and new information.

Detailed pathway mapping identifies a multitude of antibiotic susceptibility targets and pathways
to tolerance. 224 genes with a known annotation are present in the data that have at least one significant
phenotype in response to an antibiotic, and which can be split over 21 functional groups according to a
pathway or process they belong to (Fig. 3a). Each group is characterized by having multiple phenotypes
that increase sensitivity in response to one or more antibiotics (negative phenotype), while each group,
except for cell division, also has multiple phenotypes that decrease antibiotic sensitivity (Fig. 3a; positive
phenotype). Moreover, each antibiotic group triggers both negative and positive effects (Fig. 3b). Where
possible, the 21 functional groups are organized according to a pathway they belong to and/or relationships
among genes and combined with their antibiotic susceptibility profile. This results in an antibiotic
susceptibility atlas, which shows on a fine-grained scale, how inhibiting a pathway or process can affect
sensitivity to an antibiotic (Fig. 3c and Supplementary Fig. 2 and 3). For instance, in the glycolysis-group,
knocking out any of the three genes involved in forming the phosphotransferase (PTS)-system (SP_0282-
SP_0284) that imports glucose to generate glucose-6-phosphate (G-6P), has a negative effect on fithess
in the presence of 30S and 50S PSls as well as Synercid (a synergistic combination of two PSls), while it
increases fitness in the presence of all CWSIs (B-lactams, glycopeptides, and daptomycin) and
fluoroquinolones. Also, the inhibition of/lknocking out SP_0668 (gki, glucokinase), an enzyme that converts
a-D-Glucose into G-6P, has a positive effect on fitness in all CWSIs and a negative effect in 30S PSls. In
contrast, inhibiting SP_1498 (pgm, phosphoglucomutase), the major interconversion enzyme of G-6P and

G-1P, has a negative effect on fitness with all antibiotics (Fig. 3c). Within pyruvate metabolism, inhibiting
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lactate (SP_1220, Idh, L-lactate dehydrogenase), or acetaldehyde production (SP_2026, alcohol
dehydrogenase) increases sensitivity to B-lactams and glycopeptides and decreases sensitivity to 30S
PSls; inhibiting formate production (SP_0459 [pfl, formate acetyltransferase] and SP_1976 [pflA, pyruvate
formate lyase activating enzyme]) decreases sensitivity to co-trimoxazole and 30S PSIs, while inhibiting
acetyl-phosphate production (SP_0730, spxB, pyruvate oxidase) decreases sensitivity to B-lactams,
glycopeptides and co-trimoxazole. Within aspartate metabolism, interfering with SP_1068 (ppc,
phosphoenolpyruvate carboxylase), which generates oxaloacetate from phosphoenolpyruvate (PEP),
triggers a range of changes from increased sensitivity to B-lactams, and glycopeptides, to decreased
sensitivity to most other antibiotics, while the four genes involved in the production of threonine from L-
aspartate (SP_0413 [aspartate kinase], SP_1013 [asd, aspartate semialdehyde dehydrogenase],
SP_1360 [thrB, homoserine kinase], SP_1361 [him, homoserine dehydrogenase]) trigger decreased
sensitivity to fluoroquinolones and 30S and 50S PSils. In the shikimate pathway inhibiting the production
of chorismate from PEP and erythrose-5-phosphate (through genes SP_1370 [aroK], SP_1371 [aroA],
SP_1374 [aroC], SP_1375 [aroB], SP_1376 [aroE], SP_1377 [aroD)) leads to increased sensitivity to B-
lactams, co-trimoxazole, and Synercid. Cell division is the only process that upon interference, only
generates increased sensitivity, specifically for CWSIs and co-trimoxazole. Interfering with peptidoglycan
synthesis also mostly leads to increased sensitivity to CWSIs, as well as to 30S PSIs, while changes to
genes that are involved in anchoring proteins to the cell wall (SP_1218 [srtA], SP_1833) can decrease
sensitivity to CWSIs. Importantly, interfering with protein turnover, for instance through the protease
complex ClpCP (SP_2194, SP_0746) and the regulator CtsR (SP_2195), which are generally assumed to
be fundamental for responding to stress*+45, leads to decreased CWSI sensitivity and increased sensitivity
to 30S and 50S PSls (Fig. 3c and Supplementary Fig. 2). Moreover, FtsH (SP_0013), important for clean-
up of misfolded proteins from the cell wall, increases sensitivity to 30S PSls and Synercid, indicating how
important protein turnover is especially for surviving 30S PSls, which can trigger the production of faulty
proteins. Most importantly, these data show that, as expected, hundreds of options exist where disruption
of a pathway or process leads to increased sensitivity to specific antibiotics. Remarkably, there seem to

be almost as many options that can lead to decreased antibiotic sensitivity.

cozEb encodes a cell division and peptidoglycan synthesis embedded membrane protein that can
be critically targeted in vivo through an antibody-antibiotic strategy. By identifying targets that
(re)sensitize bacteria against existing antibiotics, genome-wide antibiotic susceptibility data have the
potential to guide the development of new antimicrobial strategies. One such strategy could be a combined
therapeutic antibody-antibiotic approach; the antibody would target a gene-product that is important for
sensitivity to one or more antibiotics and the product is easily accessible for the antibody at the bacterial

cell surface. To find suitable candidate targets, Tn-Seq data were filtered for gene-products that, based on
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a known function or localization prediction, are likely to be present in the cell wall or membrane, and that
when disrupted, increase sensitivity to one or more antibiotics. Moreover, it would likely be ideal if the gene
is also important for survival in vivo. A strong candidate is SP_1505, which in the interaction network is
most tightly linked to cell wall metabolism and cell division genes (Fig. 4a). After we previously
hypothesized that it may play a role in cell wall integrity 14, it was recently named cozEb, with a likely role
in organizing peptidoglycan synthesis during cell division 46, which fits its interaction profile (Fig. 4a).
Importantly, the antibiotic Tn-Seq data suggest that disruption creates increased sensitivity to vancomycin
and rifampicin, while the product is critical in the presence of daptomycin, which was confirmed through
individual growth curves (Fig. 4b). The protein has eight predicted membrane-spanning domains (Fig. 4c),
and in vivo Tn-Seq predicts it is important for survival in both the nasopharynx and lung (Fig. 4a,
Supplementary Table 2). The gene was cloned into an expression plasmid generating an ~30kD product
(Fig. 4c), which was used to raise rabbit anti-CozEb antibodies, which were confirmed to be specific for
the cozEb gene product (Fig. 4c). Potential antibody in vitro activity was determined through a bacterial
survival assay in the absence and presence of antibodies and either vancomycin or daptomycin. Incubating
bacteria with antibodies or daptomycin has no significant effect on bacterial survival, while vancomycin
alone at the concentration used slightly reduces the number of surviving bacteria. Moreover, combining
the antibody with either vancomycin or daptomycin further reduces the number of surviving bacteria in vitro
compared to any agent individually (Fig. 4d). To assess whether the antibody-antibiotic approach works in
vivo, mice were intranasally challenged with a bacterial inoculum either containing WT or AcozEb. Two
additional sets of mice were challenged with WT and 8hrs post-infection they were either treated with
daptomycin and control IgG-antibody or with daptomycin and CozEb-specific antibody. Mice were
sacrificed 24 hrs post-infection, and bacteria in the lung were enumerated. As predicted by the in vivo Tn-
Seq data the cozEb knockout has a significantly lower fitness in the lung highlighted by an up to 2.5-log
lower bacterial load compared to WT. Importantly, while the WT survives equally well in the presence of
the low daptomycin concentration and the control IgG antibody, in the presence of daptomycin and the
CozEb-targeting antibody, its survival in the lung is significantly reduced and resembles that of the cozEb
knockout (Fig. 4e). This shows that by combining antibiotic and in vivo Tn-Seq with gene annotation
information, a gene-product can be selected that is central and critical to cell-wall synthesis and cell-
division processes. Importantly, due to its presence in the membrane, it is directly targetable with an

antibody, thereby sensitizing the bacterium to an antibiotic concentration it is normally not sensitive to.

The Ami-operon encodes an antibiotic importer, and inhibition triggers tolerance. While increased
sensitivity profiles can guide the development of (re)sensitizing approaches, in contrast, the multitude of
options that may lead to reduced antibiotic sensitivity (Fig. 3), could help in identifying (new) routes that

may contribute to (the emergence of) antibiotic resistance. With lowered antibiotic sensitivity to 3 out of 4
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antibiotic classes, the ami-operon is among genes with the greatest number of positive interactions. The
operon forms a tight cluster in the interaction network (Fig. 3, 5a) and it is annotated as an oligopeptide
transporter with no clear function. Two separate knockouts for SP_1888 (amiE) and SP_1890 (amiC)
confirm decreased sensitivity to ciprofloxacin, vancomycin and gentamicin, and increased sensitivity to
Synercid (Fig. 5b). There is limited evidence that the ami-transporter may have (some) affinity for at least
two different peptides (P1 and P2) 4749, These have been theorized to possibly function as signaling
molecules and under certain circumstances may be generated by the bacterium itself 47-4°. Both peptides
were synthesized and while neither peptide affects growth of the WT or knockout mutants in the absence
of antibiotics (Supplementary Fig. 4), the WT grows slightly better in the presence of gentamicin and
peptide P2, but not P1 (Fig. 5b). This shows that some peptides may, at least partially, inhibit or occupy
the ami-transporter, and thereby trigger decreased antibiotic sensitivity, in a similar manner as a knockout
does. Besides peptides, the ami-transporter may be (non-selectively) transporting antibiotics into the cell,
which could explain its effect on antibiotic sensitivity. To explore this, bacteria were exposed to
ciprofloxacin or kanamycin and the internalized antibiotic concentration was determined through mass
spectrometry for WT and both ami knockout mutants. In both mutants the amount of internalized
ciprofloxacin was significantly lower (~1.7x in AamiE, and ~2.3x in AamiC), while the kanamycin
concentration was found to be significantly lower in AamiC (~2x; Fig. 5c). This shows that a functional ami-
transporter increases the concentration of fluoroquinolones and 30S PSls, suggestively by transporting
them into the cell, and thereby, due to a higher internal concentration, enhancing the antibiotic’s inhibitory
effects on growth. There are multiple examples that transporters can contribute to tolerance 5051, which we
recently showed is also the case for the ade transporter in Acinetobacter baumannii, which contributes to
fluoroquinolone tolerance 7. However, those examples are mostly based on efflux pumps that actively
decrease the antibiotic concentration in the cell through upregulation of such pumps. In contrast, with
respect to the ami-operon it would be the reverse, i.e., inhibition instead of upregulation would lead to
tolerance. To explore the effect on tolerance, the WT and AamiE were exposed to either 10xMIC of
gentamicin or vancomycin over a period of 24hrs. Approximately 1% of the WT population survives 4hrs
exposure to gentamicin, while none of the population survives exposure past 8 hrs. The AamiE population
displays a slower decline in survival with 1% of the population surviving the first 8hrs (tolerant cells). At
~10 hrs the decline ceases and the remaining population (~0.01%) survives at least up to 24hrs, which is
representative of a persister fraction 2'. In contrast, the WT and amiE mutant populations decline at similar
rates when exposed to vancomycin, showing that inhibition of the ami-transporter can lead to tolerance

and persistence in an antibiotic specific manner.

Purine metabolism, (p)ppGpp and ATP production are tightly linked to altered ABX susceptibility

and tolerance. Among the 21 functional groups, purine metabolism has some of the largest number of
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positive ABX interactions, mostly to B-lactams and glycopeptides (Fig. 3a, 6a). Moreover, two regulators
(SP_1821/1979) associated with this pathway decrease sensitivity to p-lactams and/or glycopeptides and
two ‘neighboring’ genes with unknown function have either the same (SP_0830), or the opposite effect
(SP_1446) on antibiotic sensitivity as their defined neighbor, suggesting they may be involved in the same
process as their neighbor (Fig. 6a). Furthermore, the global interaction network positively links an ABC-
transporter (SP_0845-0848, Fig. 2c, 6a) with multiple genes in this pathway due to its similar profile. This
operon is annotated as a putative deoxyribose-transporter, and to verify whether an interaction exists with
purine metabolism, single and double knockouts were created between SP_0846 (the transporter’'s ATP
binding protein) and SP_0829/deoB. Their profiles suggest they do not affect growth in the absence of
ABXs and have increased sensitivity to Synercid, which was confirmed in individual growth (Fig. 6b).
However, when both knockouts are in the same background, their increased sensitivity to Synercid is
masked. Thus, as indicated by the network, these results show that the ABC-transporter indeed has a
genetic interaction with purine metabolism/salvage, but plays an unknown role. Importantly, this confirms
that the global network includes valuable interactions that can be explored to uncover functional

relationships.

Furthermore, within purine metabolism the alarmone (p)ppGpp is synthesized from GTP and/or GDP. Like
other bacterial species, S. pneumoniae likely responds to (some) ABXs via induction of the stringent
response pathway??, in which relA (SP_1645) is the key player with both synthetase and hydrolase
activity%3. Additionally, SP_1097 is annotated as a GTP diphosphokinase and may be involved in the
synthesis of pppGpp from GTP (Fig. 6a). Our data suggests, and we confirmed for the B-lactam cefepime
(Fig. 6¢), that when synthesis of the alarmone is inhibited by deletion of relA, similar to many other
interactions in purine metabolism, this leads to reduced p-lactam and glycopeptide sensitivity (Fig. 6c¢).
Moreover, while SP_1097, as predicted, does not change ABX sensitivity (Supplementary Table 2, Fig. 6),
a double knockout of relA-SP_1097 seems to further decrease sensitivity to cefepime (Fig. 6¢, Fig. 7a).
Additionally, besides a change in growth, the single relA and double knockout (ArelA-SP_1097), also
increases tolerance to cefepime by ~1000-fold at 24hrs (Fig. 7b). To understand how relA and SP_1097
affect purine metabolism, we used LC/MS to measure (p)ppGpp, ADP, ATP, GDP and GTP. Additionally,
we included SP_0831 a purine nucleoside phosphorylase involved in nucleotide salvage, which has the
same ABX profile as ArelA (Fig. 6a, d), but should not directly affect (p)ppGpp synthesis. While (p)ppGpp
is below the limit of detection during normal growth in any of the strains, as expected ArelA and the double
mutant ArelA-SP_1097 are unable to synthesize the alarmone when exposed to mupirocin, a strong
activator of the stringent response (Fig. 6e, Supplementary Table 9). In contrast, WT, ASP_0831 and

ASP_1097 synthesize (p)ppGpp upon mupirocin exposure to a similar extent (Fig. 6e). Concerning the di-
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and trinucleotides in the pathway, upon mupirocin exposure GTP and GDP are significantly reduced in WT,
ASP_0831 and ASP_1097, likely because they are used for (p)ppGpp synthesis (Fig. 6f, Supplementary
Table 9). In contrast, while ATP and ADP again remain constant for the ArelA mutants, ATP and ADP
synthesis are significantly increased upon mupirocin exposure, especially for WT and ASP_1097. This
suggests that during activation of the stringent response, synthesis from IMP is directed towards AMP, and
not necessarily GMP, at least not enough to replenish GTP and GDP. Additionally, upon mupirocin
exposure, ATP only minimally increases for ASP_0831, while it increases over 2-fold for WT and
ASP_1097 (Fig. 6f). It has been shown for bacteria including Escherichia coli and Staphylococcus aureus
that a decreased ATP concentration can decrease sensitivity to ABXs such as ciprofloxacin®4. Additionally,
in S. aureus (p)ppGpp overexpression has been associated with decreased sensitivity to linezolid%. Our
data suggests that (p)ppGpp and ATP synthesis may be intrinsically linked, i.e., at least in S. pneumoniae
the inability to produce the alarmone also results in lowered ATP synthesis, which is associated with a
lowered ABX sensitivity to p-lactams and glycopeptides. However, ASP_0831 shows that even if (p)ppGpp
can be synthesized, modulation of purine metabolism, for instance through the salvage pathway, can result
in decreased ATP synthesis, and can lead to lowered ABX sensitivity. Importantly, in many bacterial
species, alarmone production is generally assumed to be triggered in response to different types of stress
and has been shown to affect a large variety of processes including nucleotide synthesis, lipid metabolism
and translation. (p)ppGpp is thereby a ubiquitous stress-signaling molecule that enables bacteria to
generate a response that is geared towards overcoming the encountered stress. However, contradictory
results between species indicates a possible non-uniformity across bacteria, leaving much to be learned
about how the alarmone and the processes it can control fit into the entire organismal (response) network
52 Qur data suggests that the inability (i.e., due to mutations) to generate the alarmone in S. pneumoniae
in response to B-lactams and glycopeptides is linked to reduced ATP, which under specific circumstances
may be an optimal response, as it results in decreased ABX sensitivity, and thereby a higher probability to

survive the insult (Fig. 6¢, 7a, b).

There are a multitude of predictable pathways that lead to tolerance in vivo in an antibiotic
dependent manner. To further confirm that antibiotic sensitivity can be decreased by inhibiting a variety
of processes, knockouts (KOs) were generated for fourteen mutants from 8 different processes. Thirteen
mutants displayed an increased ability to grow in the presence of an ABX compared to the WT, and at
least 8 mutants had an increased ability to survive high level exposure to an ABX (5-10xMIC) for at least
24 hours (Fig. 7a, b, Supplementary Table 8). Note that we validated 49 single KO genotype x phenotype
associations in this study, with an equal distribution across the entire spectrum of ABX sensitivity (Fig. 1e,
Supplementary Table 8). These data highlight that Tn-Seq data can be used to uncover a genome-wide

‘tolerome’, composed of a multitude of genes, pathways and processes that when modulated can decrease
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antibiotic sensitivity and/or trigger tolerance in vitro in an ABX dependent manner. Obviously, the selection
regime in vivo is far more complex and stricter than in a test tube, which raises the question whether many
of the in vitro tolerome options would be available in vivo as well. To explore this, all the Tn-Seq data with
a positive fitness in the presence of at least one antibiotic was combined with in vivo Tn-Seq data and
filtered for those genes with no or only a small fitness defect predicted in vivo during nasopharynx
colonization or lung infection (Fig. 7c, Supplementary Table 2). Two genes were selected that we had
confirmed for decreased ABX sensitivity in vitro: 1) SP_0829/deoB synthesizes Ribose-1P and is involved
in purine metabolism (Fig.6A). AdeoB has no effect on in vitro growth (Fig. 7a, d), it decreases sensitivity
to cefepime during growth (Fig. 7a, d), but does not affect survival/tolerance (Fig. 7b); 2) SP_1396/pstA is
the ATP binding protein of a phosphate ABC transporter (Supplementary Fig. 3). ApstA has no effect on
in vitro growth (Fig. 7a, d), it decreases sensitivity to meropenem during growth (Fig. 7a, d), and increases
survival/tolerance (Fig. 7b). Both mutants were mixed with WT in a 1:1 ratio and used in an in vivo mouse
infection competition model as we have done previously '8. Of the infected mice, half were administered
antibiotics at 16hrs post infection, and were sacrificed 6hrs later to determine the strain’s competitive index
(CI) (Fig. 7e). Importantly, while both mutants may have a slight disadvantage compared to the WT when
colonizing the lung or nasopharynx, their Cl increases significantly in the presence of ABXs, leading to
increased survival compared to the WT (Fig. 7e, Supplementary Table 10). Combining antibiotic- with in
vivo Tn-Seq thus confirms the existence of a wide-array of possible alterations of specific genes, pathways
and processes that can have a beneficial effect in vivo in the presence of antibiotics. Such changes could
thereby contribute to escape from antibiotic pressure and even create a path towards the emergence of

antibiotic resistance.

With the possibility that some selective pressures in mice are similar in humans, this raises the possibility
that stop codons in genes predicted by Tn-Seq to decrease antibiotic sensitivity while having no more than
a minimal in vivo defect in the absence of ABXs, could be enriched for in antibiotic resistant clinical isolates.
To test this hypothesis 4 gene-sets were compiled consisting of those that upon disruption: 1) decrease
antibiotic sensitivity in at least 1 antibiotic and have no strong defect in vivo; 2) decrease antibiotic
sensitivity in at least 1 antibiotic and have a defect in vivo; 3) have little to no effect on antibiotic sensitivity
and in vivo; 4) have no effect or increase antibiotic sensitivity and have a defect in vivo (Fig. 8a, b;
Supplementary Fig. 5). Thousands of strains were selected from the PATRIC56:57 database that could be
split into a group of co-trimoxazole (SXT) resistant and a group of B-lactam resistant strains, and each
group was matched with an equal number of sensitive strains from the database. In all strains in the SXT
and B-lactam groups, irrespective of resistant or sensitive status, the number of stop codons in gene sets
1 and 3 are highest, which reflects the Tn-Seq predicted in vivo effects, i.e., while gene sets 1 and 3 contain

mostly genes with potentially neutral effects, gene sets 2 and 4 contain many genes that are suggested to
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have a defect in vivo when disabled (e.g. with a stop codon) (Fig. 8c). Moreover, SXT resistant isolates in
gene set 1 more often contain a stop codon compared to sensitive strains, and in p-lactam resistant
isolates this is true for gene-sets 1-3 (Fig. 8d). While these are not ideal comparisons, for instance the
entire ABX profile is not clear for many strains, different changes than premature stops could have ABX/in
vivo modulating effects, strains could have experienced different ABX and/or in vivo selective pressures,
and genetic changes can be strain-background dependent, it shows that genetic changes that can affect
ABX and/or in vivo sensitivity, readily occur in clinical samples. This in turn underscores that ongoing
infections may consist of variants that enable different paths to adjusting to, or overcoming a challenging

host/ABX environment.
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CONCLUSION

The emergence and increase in antibiotic resistance among most bacterial pathogens is a continuously
developing problem with several important drivers, which include: 1) a lagging development of new drugs
and treatment strategies; 2) a lack of (rapid) diagnostics and prognostics; and 3) an incomplete
understanding of how antibiotic resistance develops. Moreover, these drivers are inherently connected
making it a complex problem to solve. First, the ability of bacteria to evolve resistance elicits an arms-race
that requires the development of new drugs and treatment strategies to keep the balance of infection-
control tipped in our favor. Thus, while developing new drugs would keep the arms-race in place, the ability
to slow or prevent the emergence of resistance could resolve the status quo. Furthermore, even though it
is critical to understand how and under which circumstances resistance evolves, the applicability of this
knowledge depends on the availability of diagnostics that could inform on the emergence of resistance
(precursors) and thereby guide and enable timely, tailored and targeted treatments. To progress towards
a comprehensive understanding of how an infection is developing in the absence or presence of treatment,
and how to decide what to do next, we believe that a detailed genetic understanding of how a bacterium
deals with and overcomes stress, as well as its genetic potential to achieve this, are key aspects. In this
study we contribute to reaching such an understanding by building and exploring a detailed atlas of ABX
sensitivities, which highlights how modulation of specific genes, pathways and processes does not only
result (as expected) in increased ABX sensitivity, but almost just as often in decreased ABX sensitivity.
We show that such an atlas can be used to identify leads for gene function, to uncover the genome’s
underlying architecture and genetic relationships among genes, for the identification of new drug targets,
and the development of new proof-of-principle antimicrobial (ABX sensitizing) strategies. Most importantly,
these data identify genome-wide genetic changes that show how modulation of genes, pathways and
processes can lead to lowered antibiotic sensitivity and tolerance, not only in vitro, but also in vivo.
Moreover, we show that mutations that have the potential to trigger the same phenotypes readily occur in
patients. These detailed data on reduced antibiotic sensitivities thereby suggest that far more potential
routes to ABX-escape, and potentially resistance, may exist than assumed. However, it does not exclude
that (multiple) general mechanisms exist that can trigger such decreased sensitivities. For instance, the
overlap in ABX sensitivity profiles (e.g. decreased sensitivity to CWSIs) that emerge from modulating
specific parts of glycolysis, pyruvate, ascorbate, glucose and purine metabolism, protein turnover and
(P)PPGpp and c-di-AMP synthesis (Supplementary Fig. 2 and 3), could possibly all be linked by a common
effect, that may at least partially come from a decreased ATP availability. Moreover, while a slower growth
rate is also often linked to decreased ABX sensitivity and tolerance, we show that it is not the driving force
behind our results as most of the created KOs have no effect on growth in the absence of ABXs. Importantly,
we believe these data are both an argument and potential starting point for a platform to predict clinically

relevant mutations and determinants of antibiotic resistance/tolerance. Consequently, these results


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.26.477867; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

underscore the importance of understanding the genetics of variants with altered drug susceptibility, as
their genetics makes them diagnostically identifiable and trackable, while their often-associated collateral

sensitivities to other ABXs or drugs could make them targetable.
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METHODS

Bacterial culturing, growth curves and tolerance experiments. Experiments were performed with S.
pneumoniae strain TIGR4 (NCBI Reference Sequence: NC_003028.3). TIGR4 is a serotype 4 strain that
was originally isolated from a patient from Norway with Invasive Pneumococcal Disease (IPD) 5859, All
‘SP_’ gene numbers in the tables and figures are according to the TIGR4 genome. Single gene knockouts
were constructed by replacing the coding sequence with a chloramphenicol and/or spectinomycin
resistance cassette as described previously 83536 S, pneumoniae was grown on sheep’s blood agar
plates or statically in THY, C+Y or semi-defined minimal media at pH 7.3, with 5 yl/ml Oxyrase (Oxyrase,
Inc), at 37°C in a 5% CO; atmosphere 5. Where appropriate, cultures and blood plates contained 4 pyg/ml
chloramphenicol (Cm) and/or 200 pg/ml spectinomycin (Spec). Single strain growth assays were
performed three times using 96-well plates by taking ODsoo measurements on a Tecan Infinite 200 PRO
plate reader or BioSpa 8 (BioTek). Tolerance experiments were performed by exposing exponentially
growing bacteria to ~10xMIC of an antibiotic. Samples were taken at different time-points over a 24hr

period, washed with PBS and plated on blood-agar for enumeration.

Tn-Seq experiments, fithess (W) and enrichment analyses. Six independent transposon libraries, each
containing ~10,000 insertion mutants, were constructed with transposon Magellan6 in WT-T4 as described
previously 14183560 Selection experiments were conducted in rich medium with glucose as a carbon source
in the presence or absence of 20 different antibiotics at a concentration that slows growth by ~30-50%
(Supplementary Table 1). Sample preparation, lllumina sequencing and fitness calculations were done as
described 141835406061 |n short, for each insertion, fithess W is calculated by comparing the fold expansion
of the mutant relative to the rest of the population by using an equation that we specifically developed to
have fitness represent the growth rate of a mutant'83561, All of the insertions in a specified region or gene
are then used to calculate the average fitness and standard deviation of the gene knockout in question.
This means that Wi, represents the growth rate per generation, which makes fitness independent of time
and enables comparisons between conditions. To determine whether fithess effects are significantly
different between conditions three requirements have to be fulfilled: 1) W;is calculated from at least three
data points, 2) the difference in fithess between the presence and absence of antibiotic has to be larger
than 15% (thus W;- W;=<-0.15 or > 0.15), and 3) the difference in fithess has to be significantly different
in a one sample ttest with Bonferroni correction for multiple testing'®3%6'. To determine whether a
particular process or pathway is specifically involved in responding to an antibiotic-group, a hypergeometric
test was performed to test for enrichment. The distribution of significant genes within each process was

compared to the distribution of the pathways in the overall genome. A p-value and Benjamini-Hochberg
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adjusted p-value were calculated for each process and antibiotic group, where an adjusted p-value below

5% is considered to identify statistical enrichment.

Co-fitness network construction and SAFE analysis. A gene x condition matrix was constructed to
identify correlating fitness profiles and built a co-fitness network. The matrix is based on 20 antibiotic
conditions from experiments performed here, supplemented with 17 conditions from van Opijnen and
Camilli 20128 (Supplementary Table 3). The additional conditions consist of Sucrose, Fructose, Cellobiose,
Raffinose, Sialic Acid, Galactose, Mannose, Maltose, GlcNac, Bipyridyl, transformation, hydrogen-
peroxide, methyl-methane sulfonate, pH6, temperature, Norfloxacin. Genes with missing data were
removed resulting in a 1519 gene x 37 condition matrix (Supplementary Table 3). Genes and conditions
were correlated using a Pearson's correlation coefficient and a Spearman’s correlation coefficient.
Resulting in two 1519x1519, gene vs gene matrices. A significance cutoff was applied and correlations
>0.75 were retained and used as edges to build a co-fitness network consisting of 1519 genes and 2399
edges. An edge-weighted spring embedded layout was applied with Cytoscape ¢, with the absolute
correlation value as the edge weight. This results in a network with several major clusters and multiple
genes unconnected to the main network. A stability test was performed to determine the robustness and
quality of each edge in the network by building a correlation matrix from partial data. 30 conditions were
selected 100 times to build a correlation matrix and using the same cutoff criteria a co-fitness matrix was
compiled. Every edge with a correlation value above the threshold was assigned a 1 and every edge below
the cut-off 0. This resulted in 100 binary matrices which were then summated, resulting in every gene vs
gene interaction being assigned a stability score with a value N out of 100. A SAFE (Spatial Analysis of
Functional Enrichment) analysis*'#2 on the co-fitness network was performed with Cytoscape. A SAFE
analysis is geared towards defining local neighborhoods for each node within a network and calculates an
enrichment score for every functional attribute. It then highlights the areas that are the most enriched for
that attribute. Attributes were assigned by merging KEGG®3 pathway annotation and available functional
category annotations, which covers 94% of the genes within the network. The distance threshold was set
to the 1st percentile of the map-weighted distance, the Jaccard similarity index was set to 0.5, and nodes

in different landscapes were retained.

CozEb (SP_1505) cloning and protein expression. Cloning and expression of SP_1505 was undertaken
commercially (Genscript). Codon-optimized SP_1505 was cloned into pET28a with a C-terminal His-tag.
E. coli BL21 (DE3) was transformed with recombinant plasmid. A single colony was inoculated into LB
medium containing kanamycin; cultures were incubated at 37°C at 200 rpm and IPTG was introduced for
induction. SDS-PAGE and Western blot were used to monitor the expression. Protein was purified from

1L batch culture in Terrific Broth. Cells were harvested by centrifugation, cell pellets were lysed by
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sonication, and supernatant after centrifugation was kept for future purifications. SP_1505 protein was
obtained by three-step purification using Ni column, Superdex 200 column and Q Sepharose. Fractions
were pooled and dialyzed followed by 0.22 um filter sterilization. Protein was initially analyzed by SDS-
PAGE and Western blot by using standard protocols for molecular weight and purity measurements. The
primary antibody for Western blot is Mouse-anti-His mAb (GenScript, Cat.No.A00186). The concentration
was determined by BCA protein assay with BSA as a standard. Final protein product was stored in 50 mM
Tris-HCI, 150 mM NacCl, 10% Glycerol, 0.2% DDM, pH 8.0 and stored at -80°C.

CozEb (SP_1505) antibody generation, purification and quantification.

A single rabbit was vaccinated by a commercial vendor (Rockland) with recombinant SP_1505 via the
following schedule. Rabbit was immunized via intradermal route with 0.1 mgs SP_1505 with Complete
Freund’s Adjuvant (CFA) followed by an intradermal 0.1 mg booster injection with Incomplete Freund’s
Adjuvant IFA as an adjuvant at day 7, followed by two subcutaneous 0.1 mg booster injections at days 14
and 28 with IFA. Terminal bleed was collected on day 52 following challenge. SP_1505 IgG was purified
from immunized rabbit serum using protein G resin and columns (Pierce) according to manufacturer
specifications. Following purification, antibody was concentrated using 10,000 MWCO centrifugal filters
(Millipore) and was dialyzed three times against PBS in a 3.5kDa Slide-A-Lyzer dialysis cassette (Thermo
Scientific). Antibody specificity was determined by Western Blot using the parental wild-type and

corresponding deletion mutants.

Cell fractionation, TCA precipitation and Western Blotting.

Strains were grown in Todd-Hewitt broth to OD 0.4. Following this, cells were fractionated as previously
described®4. Briefly, 2mL of culture was centrifuged at maximum speed. The pellet was resuspended in
cell wall digestion buffer [1x Protease inhibitor cocktail (Roche), 300U/uL mutanolysin, 1Img/mL lysozyme
in a 30% sucrose-10mM Tris (pH 7.5) buffer with 20mM MgCI2 and 20mM MES (pH 6.5)] and incubated
at 37°C for 60 minutes. After centrifugation, the supernatant containing the cell wall was saved. Pelleted
protoplasts were snap frozen in a dry ice ethanol bath, then treated with MgCI2, CaCl2, DNase | (Qiagen),
and RNAse A (Roche) in 50mM Tris buffer (pH 7.5) with 20mM HEPES (pH 8.0), 20mM NaCl, and 1mM
DTT with protease inhibitors. The pellet was incubated on ice for one hour, then spun at max speed for 30
minutes at 4°C. The supernatant, which contained the cytoplasmic fraction, and the pellet, which contained
the membrane fraction, were saved. 100% TCA was added to the samples so that the final concentration
of TCA was 20%. Samples were incubated on ice for 30 min, then centrifuged at full speed at 4°C to pellet
precipitated protein. The TCA supernatant was aspirated, and the pellet was washed twice with 100%
acetone, then air-dried at 95°C for 1 minute. Pellets were resuspended in NuPage LDS sample buffer

(Thermo Scientific) and boiled at 100°C for 10 minutes. Samples were loaded into NuPage SDS-PAGE
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gels (Thermo Scientific) and transferred to nitrocellulose membranes using the XCell Sure-Lock mini-cell
electrophoresis system (Thermo Scientific). Nitrocellulose membranes were blocked overnight in 5%
NFDM and treated with primary antibody against SP_1505 at a concentration of 1:500. After washing,
membranes were treated with secondary antibody goat anti-rabbit IgG-HRP (Bio-Rad) at a concentration
of 1:3000. Membranes were developed using the SuperSignal West Dura Extended Duration Substrate

(Thermo Scientific) and were visualized using a BioRad ChemiDoc MP imaging system.

Antibiotic-antibody targeted in vitro bacterial survival.

Bacteria were inoculated from TSA plates into C+Y media, at OD 0.4, culture was split into 1 mL aliquots
and treated with vancomycin (0.25 pg/ml) or daptomycin (0.5 pg/ml). For antibody treatment, strains were
grown in C+Y media until OD 0.3. At this time, samples were treated with SP_1505 antibody or control
rabbit IgG antibody (Sigma) at concentrations indicated in figure legends, incubated for 30 minutes,
followed by antibiotic treatment. At 4hrs post antibiotic addition samples were plated for bacterial

enumeration.

Antibiotic-antibody mouse challenge.

Isoflurane-anesthetized 7-week-old female BALB/c mice were inoculated intranasally with 106 CFU of wild
type pneumococcal cells in a volume of 100 L. Eight hours following the challenge mice were treated with
vehicle (Plasmalyte), vancomycin (0.25 mg/kg), daptomycin (2.5mg/kg), a-SP_1505 antibody (100 uL),
and control rabbit IgG. At 16 hours following antibody/antibiotic treatment (24hr post-challenge) mice were
euthanized, and lungs and chest cavity blood were removed for quantification of bacteria. Whole lungs
were washed twice in PBS, and lung tissue was subsequently homogenized in 1 mL PBS. Homogenized
lung samples were centrifuged at 300xg, and bacteria-containing supernatant was plated onto Neomycin-

containing blood agar plates for CFU titers.

Peptide production.

Peptide P1 (Ser-Asn-Gly-Leu-Asp-Val-Gly-Lys-Ala-Asp) and peptide P2 (Ala-Lys-Thr-lle-Lys-lle-Thr-Gin-
Thr-Arg) were synthesized on a preloaded Wang resin using the standard Fmoc/tBu chemistry for peptide
synthesis. All coupling reactions were carried out in DMF using HBTU as the coupling reagent, 0.4 N-
Methyl Morpholine in DMF as base. After each coupling, deprotection of the Fmoc group was done by
using 20% piperidine in DMF. After completion of synthesis, peptides were cleaved from resin using TFA

and purified using RP-HPLC. The integrity and purity of the peptides were confirmed using LC-MS.

Antibiotic accumulation.
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Antibiotic accumulation was determined as previously described®®. S. pneumoniae were grown in THY to
OD 0.6. Cells were pelleted, washed twice in PBS and resuspended in 3.5mL PBS. 1mL of cells were
incubated with 50uM antibiotic for 10 minutes at 37°C. Following incubation, 800uL of drugged cells were
spun (3min, 13,000xg) through 700uL of a 9:1 mix of AR20 and high temperature silicon oils (cooled to -
80°C), after which the supernatant of silicone oil and free compound were carefully removed. For lysis,
pelleted cells were resuspended in 200uL dH-O and lysed via bead beating (3x 15s at 5m/s). Debris was
pelleted (10’ at 20,000xg) and 100uL of supernatant was removed and saved. Cell debris was resuspended
in the remaining 50uL dH>O and mixed with 200uL methanol. Potential cell debris was pellet again and
150uL of the methanol extract was mixed with the 200uL dH>O supernatant from the previous step. The

extract was pelleted one final time (10’ at 20,000g) before being filtered (0.22um).

Samples were analyzed with a Waters Acquity M Class series UPLC system and Xevo G2 QTOF tandem
MS/MS with Zspray. 100nl of extract was separated using a Phenomenex Kinetex 2.6 um XB-C18, 100 A
(300 pm x 150 mm) column with solvent A, 0.1% formic acid in water, and solvent B, 0.1% formic acid in
acetonitrile. The inlet method utilized a flow rate of 8 ulmin-' with the following gradient: 0—4 min, 99.9%
solvent A and 0.1% solvent B; 4-5min, 10% solvent A and 90% solvent B; 5—6 min, 99.9% solvent A and
0.1% solvent B. Tandem mass spectra were acquired with the following conditions: Ciprofloxacin: CV:20,
CE:25, m/z ion: 333.14.—5245.11; Kanamycin: CV:40, CE:20, m/z ion: 485.25—>163.11. High-resolution
spectra were calibrated by co-infusion of 2ngml-' leucine enkephalin lockspray (Waters). Data were
quantified using Waters MassLynx software where the AUC was determined by integrating the
corresponding daughter peak of the parent compound. Concentrations of the unknown compounds were
determined by the linear fit of the corresponding standard curve. Concentrations are reported as the

average of three biological replicates.

(p)ppGpp induction and LC/MS analysis. S. pneumoniae strains were grown at 37 °C in 10 mL ThyB to
an OD of ~0.5. Cultures were split into 5 mL aliquots for mupirocin-treated versus untreated controls. To
induce the stringent response and ppGpp production, mupirocin was added in a final concentration of 25
pg/mL and incubated at 37 °C for 30 minutes. Cells were centrifuged at 6000x g for 5, supernatant was
discarded and cell pellets were frozen at -80 °C. For LC/MS analysis cell pellets were resuspended in 2 ml
cold methanol, and 150 pmol of ['3C10]-GTP (Sigma) was added and incubated at -80 °C for 30 minutes.
Samples were centrifuged at 4000 x g for 10°, and the supernatant was removed and dried overnight in a
Savant Speedvac Concentrator SPD 1010 (Thermo Fisher). Samples were analyzed using a Shimadzu
Prominence UFLC attached to a QTrap 4500 equipped with a Turbo V ion source (Sciex). Samples (5 pL)

were injected onto a SeQuant ZIC-cHILIC, 3 um, 2.1 x 150 mm column at 30 °C (Millipore) using a flow
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rate of 0.3 ml/min. Solvent A was 25 mM ammonium acetate, and Solvent B was 75% acetonitrile + 25
mM ammonium acetate. The HPLC program was the following: starting solvent mixture of 0% A/100% B,
0 to 2 min isocratic with 100% B; 2 to 4 min linear gradient to 85% B; 4 to 17 min linear gradient to 65% B;
17 to 22 min isocratic with 65% B; 22 to 25 min linear gradient to 100% B; 25 to 30 min isocratic with 100%
B. The QTrap 4500 was operated in the negative mode, and the ion source parameters were: ion spray
voltage, -4500 V; curtain gas, 30 psi; temperature, 400 °C; collision gas, medium; ion source gas 1, 20 psi;
ion source gas 2, 35 psi; declustering potential, -40 V; and collision energy, -40 V. The MRM transitions
are: ppGpp, 602.0/159.0; pppGpp, 682.0/159.0, and ['3C10]-GTP, 522.0/159.0. ['3C10]-GTP was used as
the internal standard. The system was controlled by the Analyst software (Sciex) and analyzed with
MultiQuant™ 3.0.2 software (Sciex). Peaks corresponding to ppGpp and pppGpp were quantified relative
to the internal standard. The limit of detection for ppGpp and pppGpp is 5 pmol, and for GTP, GDP, ATP
and ADP 0.05pmol.

In vivo mouse competition experiment wo/w antibiotics. /In vivo competition experiments were
essentially performed as previously described (van Opijnen and Camilli 2012). Specifically, groups of at
least 12 outbred 4-6-week-old Swiss Webster mice (Taconic Inc.,) were anesthetized by isoflurane
inhalation and challenged intranasally (i.n.) with 50 ul, ~1.5 x 107 CFU, bacterial suspension in 1X PBS.
Each bacterial suspension contained a 1:1 mixture of S. pneumoniae TIGR4 wildtype and ASP_0829 or
ASP_1396. The challenge dose was always confirmed by serial dilution and plating on blood agar plates.
Infected mice receiving antibiotic treatment were administered either 1 mg/kg cefepime (WTvsASP_0829)
or 10 mg/kg meropenem (WTvsASP_1396) 16 hours post-bacterial challenge by intraperitoneal (i.p.)
injection. Antibiotic dosing was previously determined to reduce bacterial loads 10-100-fold in vivo. Mice
were euthanized by CO; asphyxiation at 6 hours post-antibiotic administration (or 22 hours post-bacterial
challenge). Blood by cardiac puncture, nasopharynx lavage, and total homogenized lungs were collected
from each animal to determine bacterial burden by serial dilution and plating blood agar plates as

previously described?s.

Clinical-strain stop-codon analysis.

Four gene-sets were compiled to test for the differential occurrence of stop-codons in patient samples.
Each gene-set consists of 34 genes and are defined as: Set 1 consists of genes that when disrupted lead
to a significant decrease in antibiotic sensitivity in the presence of at least one antibiotic (in vitro ABx fitness
positive), and have no fithess defect in lung and nasopharynx (in vivo neutral or positive); Set 2 consists
of genes that when disrupted lead to a significant decrease in antibiotic sensitivity in the presence of at
least one antibiotic (in vitro ABx fithess positive), and have a significant fithess defect in lung and

nasopharynx (in vivo fitness negative); Set 3 consists of genes that when disrupted have no fitness benefit
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in any of the antibiotics (in vitro ABx fitness neutral), but with a significant fithess benefit in lung and
nasopharynx (in vivo fitness positive); Set 4 consists of genes that have decreased fitness in the presence
of antibiotics (in vitro ABx fitness negative), and that have a significant fitness defect of >15% in lung and
nasopharynx (in vivo fitness negative). The PATRIC database was screened for antibiotic resistant S.
pneumoniae isolates. There is a potential risk that isolates in the database are clonally related, which could
mean that multiple isolates would contain exactly the same sequence and for instance the same stop
codon, which could bias the analysis. To reduce this potential bias candidate isolates were limited to those
belonging to a different MLST type. While this considerably reduced the number of potential isolates, we
were able to collect 533 B-lactam resistant and 1147 co-trimoxazole resistant strains. Moreover, an equal
number of non-resistant strains were compiled. From each genome, gene sequences were extracted that
match those from each of the 4 gene-sets. Each gene was scanned for premature stop codons occurring
in the first 90% of a gene. For each gene-set the number of strains with at least one stop codon in the
gene-set were recorded, as well as the total number of stop-codons in all genes in a set. To test for
differences in the number of isolates containing a stop codon within (susceptible vs. resistant) and between

sets a Fisher’s exact test was performed.
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FIGURE LEGENDS

Figure 1. A genome-wide atlas of negative and positive fitness effects, highlights a multitude of
processes that can modulate antibiotic susceptibility. a. Project setup and overview. Tn-Seq is
performed with S. pneumoniae TIGR4, which is exposed to 20 antibiotics at a concentration that reduces
growth by 30-50%. Genome-wide fitness is determined for each condition, suggesting a multitude of
options exists to increase as well as decrease antibiotic sensitivity. A co-fitness network is constructed by
adding Tn-Seq data from 17 additional conditions, which through a SAFE analysis highlights functional
clusters, and connects known and unknown processes. The genome-wide atlas and network are used to
develop an antibiotic-antibiotic combination strategy, and to map out the wide-ranging options that can
lead to decreased antibiotic sensitivity in vitro and in vivo and that are associated with a higher rate of stop-
codons in clinical samples. b. There are a large number of genetic options that can modulate antibiotic
sensitivity; with significant increased ( AW < -0.15) and decreased sensitivity ( AW > 0.15) split over all
antibiotics almost equally likely. ¢. Additionally, increased and decreased antibiotic sensitivity are
distributed across a wide variety of functional categories. d. Enrichment analysis shows that some
pathways/processes such as glycolysis are relatively often involved in modulating responses to antibiotics,
while other processes are more specific. e. Validated growth experiments performed throughout the project

highlight the Tn-Seq data is of high quality. S.E.M. bars are shown.

Figure 2. A co-fitness network identifies tight genetic clusters of known and unknown genes and
processes. a. A 1519x1519 gene correlation matrix based on Tn-Seq data from 37 conditions generates
a network with genes as nodes, and edges as interactions with a stability score and thresholded
correlation >0.75. The network contains one large connected component and multiple smaller components
placed underneath; b. A SAFE analysis identifies at least 11 clusters within the network that represent
specific pathways and processes; €. The network contains highly connected clusters of smaller groups of
genes for instance those within the same operon such as cluster |. the ami-operon, a putative oligo-peptide
transporter; Il. the dlt-operon which decorates wall and lipoteichoic acids with d-alanine; and lll. the pst-
operon a phosphate transporter. Several additional clusters are highlighted containing annotated and
unannotated genes, connected through known and unknown interactions including cluster IV, which
contains genes involved in purine metabolism (green nodes) and a putative deoxyribose transporter
(yellow; boxed 1.); V. genes involved in threonine metabolism (blue) and several genes located as
neighbors to SP_2066/thrC with unclear functions (boxed 2), including a regulator (SP_2062; purple) and
a transporter (SP_2065; yellow); VI. genes involved in secretion of serine rich repeat proteins (SRRPs),

which are important for biofilm formation and virulence, grey-nodes are unannotated genes.
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Figure 3. A multitude of options, pathways and processes can simultaneously lead to increased
and decreased antibiotic susceptibility. a. Genes with at least one significant phenotype are split over
21 groups according to a pathway or process they belong to, which highlights how modulation of most
pathways can lead to increased (negative) and decreased (positive) antibiotic sensitivity. b. While
sensitivity to each antibiotic (group) can be increased by knocking out genes in the genome (negative),
sensitivity can be decreased (positive) almost as often for most ABXs, except for Synercid, and to a lesser
extent rifampicin, where most effects are negative. ¢. Detailed view of 7 out of 21 groups/processes
highlighting how modulation of specific targets within each process leads to changes in antibiotic sensitivity.
Each group is indicated with a number which is the same as in a. Where possible genes are ordered
according to their place in a process/pathway, and gene numbers (SP_) are combined with gene names
and annotation. Each indicated gene is combined with an ‘antibiotic sensitivity bar’ indicating whether
disruption leads to increased (red/negative) or decreased (green/positive) sensitivity to a specific or group
of antibiotics. When phenotypic responses are the same, multiple genes are indicated with a single bar
(e.g. SP0282/SP0283/SP0284 in glycolysis, or SP0413/SP1013/SP1361/SP1360 in Aspartate
metabolism). Gene numbers in blue have no effect on growth in the absence of antibiotics when knocked
out, while gene numbers in purple have a significant growth defect in the absence of ABXs (see for detailed
fitness in the absence and presence of antibiotics Supplementary Table 2). Essential genes are not
indicated and genes with an asterisk have a partial or tentative annotation that has not been resolved. All

21 groups are listed in Supplementary Figures 2 and 3.

Figure 4. CozEb an integral membrane protein increases antibiotic sensitivity and can be targeted
with an antibody. a. cozEb/SP_1505 is tightly clustered with cell division and cell wall metabolism genes,
it is predicted to increase sensitivity to glycopeptides and the lipopeptide daptomycin, and has a decreased
fitness in the mouse lung and nasopharynx. b. Growth curves of AcozEb validate its increased sensitivity
to daptomycin and vancomycin. ¢. CozEb has 8 transmembrane domains, which generates a ~30Kd
product (BSA is shown as a control). The cloned protein was used to raise antibodies, which proofed to be
specific for a product in the WT membrane, but does not bind anything in AcozEb, indicating the antibodies
are specific for the membrane protein CozEDb. d. Incubation of WT for 2hrs with vancomycin or daptomycin
and in the presence of CozEb antibody, slightly but significantly decreases bacterial survival. e. An in vivo
lung infection with WT or AcozEb confirms the mutant is less fit in vivo. While challenging the WT with
daptomycin and IgG does not affect bacterial survival, a challenge with daptomycin and CozEb-specific
antibodies, significantly reduces the recovered CFUs 24hrs post infection. Significance is measured

through an ANOVA with Dunnett correction for multiple testing: *p<0.05, **p<0.01, ***p<0.001.
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Figure 5. Modulation of the ami transporter decreases sensitivity to many antibiotics. a. The ami-
operon forms a tight cluster, and upon knockout is predicted to decrease sensitivity to most antibiotics and
increase sensitivity to Synercid. b. Growth curves of individual knockout mutants of amiE and amiC validate
changes in antibiotic sensitivity and suggest the transporter phenotypically responds to peptide P2. c.
Intracellular antibiotic accumulation analysis shows that the WT strain with an intact transporter reaches a
higher intracellular antibiotic concentration, suggesting the transporter is involved in importing antibiotics,
explaining why a knockout or occupation with a peptide such as P2, can lead to decreased antibiotic
sensitivity. d. While modulation of the transporter leads to decreased sensitivity to gentamicin and
vancomycin during growth, it leads to increased survival (i.e., tolerance) to gentamicin, but not vancomycin.
Significance is measured through an ANOVA with Dunnett correction for multiple testing: *p<0.05, **p<0.01,
***n<0.001.

Figure 6. Modulation of purine metabolism affects alarmone and ATP synthesis and is linked to
changes in ABX sensitivity. a. Several key steps of purine metabolism and their antibiotic sensitivity bars
are indicated, with the same color coding as in Fig. 3. Note that for completeness SP_1097 is listed as
well, for which we found no change in ABX sensitivity, which is denoted with ‘np’ for no phenotype. Also
indicated is the putative deoxyribose transporter (SP_0845-0848) and its co-fitness interactions, which is
shown as a high-connectivity cluster in Fig. 2. b. To determine whether the predicted interaction between
SP_0845-0848 and purine metabolism leads to specific phenotypic changes, single knockouts were
generated for deoB/SP_0829 and SP_0846, as well as a double knockout. While mutants and WT grow
equally well in the absence of antibiotics, in the presence of Synercid, as predicted and indicated by their
ABX sensitivity bar, the single knockouts display a higher sensitivity to the drug then the WT. The double
mutant’s fithess in the presence of Synercid should change according to the multiplicative model if they
act independently; i.e. their combined sensitivity should be the multiplicative of the individuals and thus
further increase. Instead, the double knockout suppresses the increased sensitivity phenotype of the single
mutants, indicating that the positive interaction that is found in the co-fitness network leads to a positive
genetic interaction between these genes. ¢. Single and double knockouts of SP_1097 and SP_1645/relA
grow just as well as WT in the absence of antibiotics. As predicted SP_1097 is equally sensitive to cefepime
as the WT, while ArelA has decreased sensitivity as indicated by its ABX sensitivity bar in a. Additionally,
the double knockout has decreased sensitivity to cefepime, indicating the dominant phenotype of ArelA. d.
The phenotype of ASP_0831 was validated in growth as well, showing no change in growth in the absence
of ABX, and decreased sensitivity in the presence of cefepime (FEP). e. The alarmone (p)ppGpp is below
the limit of detection in the absence of stress (b.l.d.), upon induction with mupirocin it is synthesized in
equal amounts in WT, ASP_0831 and ASP_1097, while it cannot be synthesized if relA is absent. f.

Synthesis of di- and trinucleotides is significantly affected in the different mutants upon mupirocin exposure.


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.26.477867; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Significance is measured through a paired t-test with an FDR adjusted p-value for multiple comparisons:

*p<0.05, **p<0.01, ***p<0.001, ns not significant.

Figure 7. Decreased antibiotic sensitivity and tolerance can be achieved by modulation of a wide
variety of processes. a. Relative growth rates of 16 knockout mutants involved in 7 processes measured
in the presence of 7 antibiotics, validate that decreased ABX sensitivity can be achieved by modulating a
wide variety of processes. b. Significantly increased survival during exposure to 5xMIC of an ABX over a
24hr period is observed for 9 out of 12 knockouts. Significance is measured with an ANOVA with Dunnett

* k%

correction for multiple comparisons: **p<0.01, ***p<0.001. ¢. Tn-Seq data with a positive fitness in the
presence of at least one antibiotic is plotted against in vivo Tn-Seq data showing those genes with only a
small fitness defect, no defect or an increased predicted in vivo fitness, either during nasopharynx
colonization or lung infection. Circled and indicated with arrows are SP_0829 in red and SP_1396 in black.
d. In vitro growth curves validate decreased sensitivity to cefepime (SP_0829) and meropenem (SP_1396).
e. Mice were challenged with WT and MT in a 1:1 ratio of which half received ABX 16hrs post infection
(p.i.), and all were sacrificed 24hrs p.i. Displayed are the mutant’s competitive index (C.l.) in the
nasopharynx and lung, and in the presence and absence of cefepime (SP_0829) or meropenem
(SP_1396). In all instances, the addition of ABX significantly increases the C.I of the mutant. Significance

is measured with a Mann-Whitney test **p<0.01, ***p<0.001.

Figure 8. Stop codons are enriched in clinical samples in Tn-Seq predicted tolerome genes. a.
Based on in vivo and ABX Tn-Seq data, four gene-sets consisting of 34 genes each were compiled with
specific fitness profiles in the presence of antibiotics and in vivo. Shown are the in vivo effects for
nasopharynx, while lung data are depicted in Supplementary Fig. 5. AW represents the fithess difference
of a gene in a specific condition (e.g., an antibiotic, in vivo) minus its fitness in vitro in rich medium. Dashed
lines indicate significance cut-offs, greyed-out dots indicate genes with no significant change in fitness in
the presence of antibiotics, colors represent antibiotics and are the same as in Fig. 1. b. Detailed
distributions for each gene set highlights whether effects in the presence of antibiotics, in the nasopharynx
and lungs increase (+), do not affect (0) or decrease (-) relative fitness. Gene set rationales are described
in the text. ¢. The total number of stop codons in each gene set for 2296 co-trimoxazole and 1166 (-
lactam resistant and sensitive strains. d. The number of sensitive and resistant strains with at least one
stop codon in a gene in each gene-set. Significance is measured through a Fisher’s exact test: **p<0.01,
***n<0.001, ****p<0.0001.


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.26.477867; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

References

10

11

12

13

14

15

16

17

18

Honsa, E. S. et al. RelA Mutant Enterococcus faecium with Multiantibiotic Tolerance Arising in an
Immunocompromised Host. mBio 8, doi:10.1128/mBi0.02124-16 (2017).

Band, V. |. et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae.
Nat Microbiol 1, 16053, doi:10.1038/nmicrobiol.2016.53 (2016).

Band, V. |. et al. Antibiotic combinations that exploit heteroresistance to multiple drugs effectively
control infection. Nat Microbiol 4, 1627-1635, doi:10.1038/s41564-019-0480-z (2019).

Nicoloff, H., Hjort, K., Levin, B. R. & Andersson, D. I. The high prevalence of antibiotic
heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat Microbiol 4,
504-514, doi:10.1038/s41564-018-0342-0 (2019).

Michiels, J. E., Van den Bergh, B., Verstraeten, N. & Michiels, J. Molecular mechanisms and clinical
implications of bacterial persistence. Drug resistance updates : reviews and commentaries in
antimicrobial and anticancer chemotherapy 29, 76-89, doi:10.1016/j.drup.2016.10.002 (2016).
Geisinger, E. et al. Antibiotic susceptibility signatures identify potential antimicrobial targets in the
Acinetobacter baumannii cell envelope. Nat Commun 11, 4522, doi:10.1038/s41467-020-18301-2
(2020).

Huo, W. et al. Immunosuppression broadens evolutionary pathways to treatment failure during
Acinetobacter baumannii pneumonia. under review biorxiv doi.org/10.1101/2021.04.07.438861
(2021).

Ma, C., Yang, X. & Lewis, P. J. Bacterial Transcription as a Target for Antibacterial Drug
Development. Microbiol Mol Biol Rev 80, 139-160, doi:10.1128/MMBR.00055-15 (2016).

Wood, S. etal.in The Pangenome: Diversity, Dynamics and Evolution of Genomes (eds H. Tettelin
& D. Medini) 169-202 (2020).

Gillings, M. R., Paulsen, |. T. & Tetu, S. G. Genomics and the evolution of antibiotic resistance. Ann
N Y Acad Sci 1388, 92-107, doi:10.1111/nyas.13268 (2017).

McKeegan, K. S., Borges-Walmsley, M. I. & Walmsley, A. R. Microbial and viral drug resistance
mechanisms. Trends in microbiology 10, S8-14 (2002).

Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775-781
(2000).

Wright, G. D. Mechanisms of resistance to antibiotics. Current opinion in chemical biology 7, 563-
569 (20083).

van Opijnen, T., Dedrick, S. & Bento, J. Strain Dependent Genetic Networks for Antibiotic-
Sensitivity in a Bacterial Pathogen with a Large Pan-Genome. PLoS pathogens 12, e1005869,
doi:10.1371/journal.ppat. 1005869 (2016).

Jensen, P. A, Zhu, Z. & van Opijnen, T. Antibiotics Disrupt Coordination between Transcriptional
and Phenotypic Stress Responses in Pathogenic Bacteria. Cell Rep 20, 1705-1716,
doi:10.1016/j.celrep.2017.07.062 (2017).

Geisinger, E. et al. The landscape of intrinsic and evolved fluoroquinolone resistance in
Acinetobacter baumannii includes suppression of drug-induced prophage replication. bioRxiv,
doi:http://dx.doi.org/10.1101/442681 (2018).

Zhu, Z. et al. Entropy of a bacterial stress response is a generalizable predictor for fitness and
antibiotic sensitivity. Nat Commun 11, 4365, doi:10.1038/s41467-020-18134-z (2020).

van Opijnen, T. & Camilli, A. A fine scale phenotype-genotype virulence map of a bacterial
pathogen. Genome Res 22, 2541-2551, doi:10.1101/gr.137430.112 (2012).



https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.26.477867; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

available under aCC-BY-NC-ND 4.0 International license.

Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic
switch. Science 305, 1622-1625, doi:10.1126/science.1099390 (2004).

Lewis, K. Persister cells, dormancy and infectious disease. Nature reviews. Microbiology 5, 48-56,
doi:10.1038/nrmicro1557 (2007).

Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance
and persistence to antibiotic treatment. Nature reviews. Microbiology 14, 320-330,
doi:10.1038/nrmicro.2016.34 (2016).

Nandakumar, M., Nathan, C. & Rhee, K. Y. Isocitrate lyase mediates broad antibiotic tolerance in
Mycobacterium tuberculosis. Nat Commun 5, 4306, doi:10.1038/ncomms5306 (2014).

Trastoy, R. et al. Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and
Respiratory Environments. Clinical microbiology reviews 31, doi:10.1128/CMR.00023-18 (2018).
Moyed, H. S. & Bertrand, K. P. hipA, a newly recognized gene of Escherichia coli K-12 that affects
frequency of persistence after inhibition of murein synthesis. Journal of bacteriology 155, 768-775,
doi:10.1128/jb.155.2.768-775.1983 (1983).

Schumacher, M. A. et al. HipBA-promoter structures reveal the basis of heritable multidrug
tolerance. Nature 524, 59-64, doi:10.1038/nature14662 (2015).

Pontes, M. H. & Groisman, E. A. A Physiological Basis for Nonheritable Antibiotic Resistance. mBio
11, doi:10.1128/mBi0.00817-20 (2020).

Saroj, S. D., Clemmer, K. M., Bonomo, R. A. & Rather, P. N. Novel mechanism for fluoroquinolone
resistance in Acinetobacter baumannii. Antimicrobial agents and chemotherapy 56, 4955-4957,
doi:10.1128/AAC.00739-12 (2012).

Guerillot, R. et al. Convergent Evolution Driven by Rifampin Exacerbates the Global Burden of
Drug-Resistant Staphylococcus aureus. mSphere 3, doi:10.1128/mSphere.00550-17 (2018).
Levin-Reisman, |. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826-
830, doi:10.1126/science.aaj2191 (2017).

Balaban, N. Q. & Liu, J. in Persister Cells and Infectious Disease (ed K. Lewis) Ch. 1, 1-18
(Springer, 2019).

Lewis, K. 1 online resource (Springer,, Cham, 2019).

Liu, J., Gefen, O., Ronin, I., Bar-Meir, M. & Balaban, N. Q. Effect of tolerance on the evolution of
antibiotic resistance under drug combinations. Science 367, 200-204,
doi:10.1126/science.aay3041 (2020).

Van den Bergh, B., Fauvart, M. & Michiels, J. Formation, physiology, ecology, evolution and clinical
importance  of bacterial persisters. FEMS  microbiology reviews 41, 219-251,
doi:10.1093/femsre/fux001 (2017).

Fisher, R. A., Gollan, B. & Helaine, S. Persistent bacterial infections and persister cells. Nature
reviews. Microbiology 15, 453-464, doi:10.1038/nrmicro.2017.42 (2017).

van Opijnen, T., Bodi, K. L. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fithess
and genetic interaction studies in microorganisms. Nat Methods 6, 767-772,
doi:10.1038/nmeth.1377 (2009).

Mann, B. et al. Control of virulence by small RNAs in Streptococcus pneumoniae. PLoS pathogens
8, 1002788, doi:10.1371/journal.ppat.1002788 (2012).

Carter, R. et al. Genomic Analyses of Pneumococci from Children with Sickle Cell Disease Expose
Host-Specific Bacterial Adaptations and Deficits in Current Interventions. Cell Host and Microbe 15,
587-599, doi:papers://58864D70-D09B-4A16-B641-1ABEEB7FEOBA/Paper/p22252 (2014).


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.26.477867; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

available under aCC-BY-NC-ND 4.0 International license.

Thibault, D. et al. Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-
cell phenotypes. Nat Commun 10, 5729, doi:10.1038/s41467-019-13719-9 (2019).

McCoy, K. M., Antonio, M. L. & van Opijnen, T. MAGenTA: a Galaxy implemented tool for complete
Tn-Seq analysis and data visualization. Bioinformatics 33, 2781-2783,
doi:10.1093/bioinformatics/btx320 (2017).

van Opijnen, T. & Levin, H. L. Transposon Insertion Sequencing, a Global Measure of Gene
Function. Annu Rev Genet, doi:10.1146/annurev-genet-112618-043838 (2020).

Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular function.
Science 353, doi:10.1126/science.aaf1420 (2016).

Baryshnikova, A. Systematic Functional Annotation and Visualization of Biological Networks. Cell
Syst 2, 412-421, doi:10.1016/j.cels.2016.04.014 (2016).

Rose, L. et al. Antibodies against PsrP, a novel Streptococcus pneumoniae adhesin, block
adhesion and protect mice against pneumococcal challenge. The Journal of infectious diseases
198, 375-383, d0i:10.1086/589775 (2008).

Derre, I., Rapoport, G. & Msadek, T. CtsR, a novel regulator of stress and heat shock response,
controls clp and molecular chaperone gene expression in gram-positive bacteria. Molecular
microbiology 31, 117-131, doi:10.1046/j.1365-2958.1999.01152.x (1999).

Ibrahim, Y. M., Kerr, A. R., Silva, N. A. & Mitchell, T. J. Contribution of the ATP-dependent protease
CIpCP to the autolysis and virulence of Streptococcus pneumoniae. Infection and immunity 73,
730-740, doi:10.1128/1A1.73.2.730-740.2005 (2005).

Stamsas, R. M. et al. A CozE homologue contributes to cell size homeostasis of Streptococcus
pneumoniae. . mBio in press (2020).

Hoover, S. E. et al. A new quorum-sensing system (TprA/PhrA) for Streptococcus pneumoniae D39
that regulates a lantibiotic biosynthesis gene cluster. Molecular microbiology 97, 229-243,
doi:10.1111/mmi.13029 (2015).

Nasher, F., Heller, M. & Hathaway, L. J. Streptococcus pneumoniae Proteins AmiA, AliA, and AliB
Bind Peptides Found in Ribosomal Proteins of Other Bacterial Species. Frontiers in microbiology
8, 2688, d0i:10.3389/fmicb.2017.02688 (2017).

Nasher, F. et al. Peptide Ligands of AmiA, AliA, and AliB Proteins Determine Pneumococcal
Phenotype. Frontiers in microbiology 9, 3013, doi:10.3389/fmicb.2018.03013 (2018).

Pu, Y. et al. Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells.
Molecular cell 62, 284-294, doi:10.1016/j.molcel.2016.03.035 (2016).

El Meouche, I. & Dunlop, M. J. Heterogeneity in efflux pump expression predisposes antibiotic-
resistant cells to mutation. Science 362, 686-690, doi:10.1126/science.aar7981 (2018).

Irving, S. E., Choudhury, N. R. & Corrigan, R. M. The stringent response and physiological roles of
(pp)pGpp in bacteria. Nature reviews. Microbiology 19, 256-271, doi:10.1038/s41579-020-00470-
y (2021).

Kazmierczak, K. M., Wayne, K. J., Rechtsteiner, A. & Winkler, M. E. Roles of rel(Spn) in stringent
response, global regulation and virulence of serotype 2 Streptococcus pneumoniae D39. Molecular
microbiology 72, 590-611, doi:10.1111/j.1365-2958.2009.06669.x (2009).

Conlon, B. P. et al. Persister formation in Staphylococcus aureus is associated with ATP depletion.
Nat Microbiol 1, 16051, doi:10.1038/nmicrobiol.2016.51 (2016).

Gao, W. et al. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid
susceptibility and switch on the stringent response to promote persistent infection. PLoS pathogens
6, €1000944, doi:10.1371/journal.ppat.1000944 (2010).


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.26.477867; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

56

57

58

59

60

61

62

63

64

65

available under aCC-BY-NC-ND 4.0 International license.

Gillespie, J. J. et al. PATRIC: the comprehensive bacterial bioinformatics resource with a focus on
human pathogenic species. Infection and immunity 79, 4286-4298 (2011).

Wattam, A. R. et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and
Analysis Resource Center. Nucleic Acids Res 45, D535-D542, doi:10.1093/nar/gkw1017 (2017).
Aaberge, |. S., Eng, J., Lermark, G. & Lovik, M. Virulence of Streptococcus pneumoniae in mice: a
standardized method for preparation and frozen storage of the experimental bacterial inoculum.
Microbial pathogenesis 18, 141-152 (1995).

Tettelin, H. Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae.
Science 293, 498-506, doi:10.1126/science.1061217 (2001).

van Opijnen, T., Lazinski, D. W. & Camilli, A. Genome-Wide Fitness and Genetic Interactions
Determined by Tn-seq, a High-Throughput Massively Parallel Sequencing Method for
Microorganisms. Curr Protoc Microbiol 36, 1E 3 1-24, doi:10.1002/9780471729259.mc01e03s36
(2015).

van Opijnen, T. & Camilli, A. Transposon insertion sequencing: a new tool for systems-level
analysis of microorganisms. Nature reviews. Microbiology 11, 435-442, doi:10.1038/nrmicro3033
(2013).

Shannon, P. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction
Networks. Genome Research 13, 2498-2504, doi:10.1101/gr.1239303 (2003).

Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. & Hirakawa, M. KEGG for representation and
analysis of molecular networks involving diseases and drugs. Nucleic acids research 38, D355-360
(2010).

Price, K. E. & Camilli, A. Pneumolysin localizes to the cell wall of Streptococcus pneumoniae.
Journal of bacteriology 191, 2163-2168, doi:10.1128/JB.01489-08 (2009).

Richter, M. F. et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic.
Nature 545, 299-304, doi:10.1038/nature22308 (2017).


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.26.477867; this version posted January 26, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ACKNOWLEDGEMENTS
DNA sequencing was performed at the Boston College Sequencing Core. The authors wish to thank Jon
Anthony for running the Aerobio sequencing analyses pipeline, and Ralph Isberg and Vaughn Cooper for
valuable discussions. This work was supported by a Charles King Trust Fellowship to F.R., NIH RO1
Al110724 to T.v.O., and U01 Al124302 to T.v.O. and J.W.R.

AUTHOR CONTRIBUTIONS

T.v.O. devised the study and wrote the manuscript. E.R, B.S, LM.N.R, F.R, A.N, S.J.W, B.J, N.B, K.L, J.G,
M.F, S.M.R, R.E.L, C.R, JW.R, and T.v.O. performed wet-lab experiments, data collection and
interpretation. D.L. and T.v.O. performed Tn-Seq data analysis, pathway and network construction,
analysis and interpretation. J.W.R. contributed to key conceptual ideas. All authors contributed to

manuscript editing and approved the final paper.

DATA AVAILABILITY
Sequencing data is available at the Short Read Archive (BioProject accession number PRJNA750080).


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1.

A.
08 Tn-Seq in S. pneumoniae Co-fitness - genomewide network  Antibody x Antibiotic target
' 20 Antibiotics - 9 groups/4 classes generation & validation. identification & validation
+ABX :;‘gg)' N zr's;;r;‘; ?“Tgh’;:;"ggéﬁm)v(F‘f;Le)P“G“IeCO_ 20 Antibiotics + 17 Stress conditions: Sensitizing ABX and in vivo targets
e 0.6 :3?(;3%1& epiide: Teicoplarin (TECiy Vancomycin (VA*LN); Eonnectlné; prf()cessefs anq genes of . enable arl]ternatlve antlmlcrobla.l
5 Vreduction Lipopeptide: Daptomycin (DAP). DSI - Fluoro: nown and unknown function. (Figure 2) ~ a@pproaches. (Figure 5)
8 quinolones: Ciprofloxacin (CIP), Levofloxacin
a4 (LVX); Cotrimoxazole (SXT). PSI - 30S: Genta- L. L.
o mycin (GEN), Kanamycin (KAN) Tetraoyclin (TET);: - Detailed fitness to pathway in vitro & in vivo Tolerome
02 Chirampherienl (AW, Gartmomyen GLR),  Mapping & validation. identification & validation
Linezolid (LZD); Synercid (SYN).RSI - Rifampicin 100s of significant fitness values mapped 20 Antibiotics x 2 in vivo conditions
(RIF). CWSI DS RSl (Figure 1) to 224 annotated genes identify detailed predict in vivo fitness and stop codon
0 o = pathways/process involved in modulating enrichment in patient samples.
fme ABX sensitivity including (p)ppGpp and ATP
synthesis. (Figures 3-7) (Figures 7,8)
B. 1 c
ey 1
0.5 e ) o B-lact.
e e e it 3 057 z i eGlyco.
esesesec .....,.,.-.'.'...... o S i £ < elLipo.
a o Mwmr&?% ot T L - - Fluoro.
@ “eeesemes 2 & PR ¥ ; P T eSXT
£ oA S-05q @ ¥ T Y : T %% 4308
; . : - : s : . : ¢ © e50S
® B-lact. S s S G A S S A S S R S LA X5V B
o Lipo. 5<% 0 g 2 =8 =& 5 £33 g 8 2 8 F % £ 32 g
Fluoro S a2 3 8§ o 8 O % 3 53 8 & © 3 5 5 8 5 2 8
057 ST 8 i53z3 2£2:8° 5 3382¢G838¢5¢8§
308 c 38 °© © 38 0° Bwogx &3 o g F =
®50S < E o P4
e Syn. <
-1 o Rif.
D. E.
cucoyss SEENEN ENENES 010 20
Capsule biosynthesis ||
Cell division - NI B §
Pentose Phosphate Pathway -J NN B 008 =
Shikimate pathway -l || | ] » 1.5
Wall/Lipoteichoic Acid biosynthesis - || 7]
Purine metabolism 2 2
Peptidoglycan biosynthesis - [ I 006 g =
Ascorbate metabolism - [l < 1.0
Membrane integrity - || g ;.
Aspartate metabolism - I 004 T o)
DNA Repair - [ ] s [7p]
General metabolism - T ] s s 05
Folate biosynthesis - | ] ~
Pyruvate metabolism - [ ] 0.04
Transcription & Translation - [ ]
Cation/Metal Transport - [ | 0.0
§, %’ 0.00 0.0 0.5 1.0 1.5 2.0

10el-g
“dooA|
dodn

boionjy
1XS
S0e

in vitro Growth | Fitness (W)



https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2.

A. Co-fitness
Interaction
Network

o®

B o2 .':";fﬁ‘.'* a. Purine metabolism
(g‘f o't Y 4 ':- b. Shikimate pathway
"":‘ "‘. R o's s c. Cell wall metabolism
o.‘"o . e ® X e
¢3 CRfes L8yt MF yo®  d. Cell division
A \'.: ) ’! L) 1S
,‘:’& "b..:r'. .“3 ‘%_ e. DNA repair
> C % PPl TR o . .
: SAlFE' .’;.,, ...f‘.‘..... 3 :_o p.’ o f. Threonine .metabolls.m
analysis e’ ° O g. Glucose biosynthesis

h. Ascorbate metabolism

i. Wall/Lipoteichoic acid biosynthesis
j- Arginine metabolism

° k. V-type ATPase

...'..... LY .... .....‘. o °

L)

°®
()

()

|. ami-operon (unknown transport)

I1. dit-operon (teichoic acid decoration w. alanine)
IIl. pst-operon (phosphate transport)

IV. purine metabolism

V. threonine metabolism

VI. secretion cell wall associated SRRPs


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3.
A.

1.Glycolysis

2. Pyruvate metabolism.

3. Pentose Phosphate Pathway
4. Aspartate metabolism

5. Shikimate pathway

6. Ascorbate metabolism
7.Folate biosynthesis

8. Purine metabolism

9. Capsule biosynthesis

10. Glucose biosynthesis

11. Cell division

12. Peptidoglycan. biosynthesis
13. Wall/Lipoteichoic Acid biosynthesis
14. Membrane integrity
15.DNA Repair

16. Transcription & Translation
17. Protein turnover

18. C-di-AMP syntheis

19. Regulation

20. Cation/Metal Transport

21. Various Transport

ABX group/class

ABX sensitivity bar

' : 71819

Negative Positive

1. PTS
SP0282-0284

Glucose-1P

SP0688 SP1498

EiSEn mmm|
aD-Gluc—G-6P

2. SP0459
SP1976 SP1220
TTTEE 1T
Formate<—Pyruvate — Lactate

SP0730 SP2026

e STAIN %

Process / Group Genes

5_
5_
3_
7_
7_
5_
2_
15 -
5_
8_
7_
21 -
7
13
7
23 |
17
2
5 4
15
45 |

Negative | Positive

T T
50 # of ABX effects 50

4.

PEP SP1068

Oxaloacetate
SP1544

L-Aspartate
SP0413
SP1013
SP1361
SP1360

SP2066
Threonine

ABX Groups
1.B-lactams

2. Glycopeptides

3. Lipopeptide

4. Fluoroquinolones
5. Cotrimoxazole

6. 30S PSls

7.50S PSls

8. Synercid

9. Rifampicin

Negative | Positive

1 1
50 # of instances 50

5.

D-Erythrose-5P (3.) SP1375 MITH TH]
SP1377 BN WE W)

PEP (2.) spi376 mrrmrm
SP1370 BT T H]
SP1371 EITHTH]
SP1369 SP1374 NTTHTH]

Phenylalanine =— Chorismate

11 parB | SP2240 smc .
. L—:Djj recruiter
smc | SP1247 |chromosome i g oP1664
BN WLl |segregation .
SCPA-sCRB L SP1875/76 | complex SP1731

magZ | SP0374 (Sjﬁllles%sn fgittlére

divisjon
megllator

regulation

re%ulator
SP21957 CtsR|cell wall

12.murA-2 | SP1966 rodZ | SP2223 : idcB | SP0629 P
ROFA lea o0 MR gupiye PG Pem LD |mifcation
murM/N | SP0615/16 e el P [ EEEEEES |
cozEb | SP1505* Irgeracts with ~ RmMR231SP1026 ﬁG ) %0 B-lactamase
§  EEEEE | pbp’s DadA | SP1479 ydrolysis (Al SP1218

&:\:‘:\:\:\:‘ S-mr Anchoring t

Rl e $7036° Class Ay IvtC | SP1573 SP1833 calfuial® ©
pb%Za | SP2010 activity 5010 B IIITTT
prsA | SP0981* pbp *
Ol (L] maturation Shoosr
pbp3 | SPO872 Class C, division SP2063*

coordinator [EEEEE ]

17.

SP0664 | ZmpB
BN TTTTTT]

SP0979 | PePF

| brotoin P2224 SP0263
SP0746 ' SP2194 turnover e ooe SP0801
cleichgel s SP1549
SP0925

o PR
SP2188 | hslO ?;ggiggation) SP0771 1 PpiB folding SP1429
SP2239 | hirA |protection — JIRLEE acceleration  5p1935

EEE T 111 TR



https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4.

@ Cell wall metabolism B. 0.8 C.
A. ® Cell division ‘ ’S 5 105
i 0.6
© hypothetical Daptomycin anﬁbody
0.44 1 ug/ml
0.2
€
S oo0! @ wr —
=] ' © ASP_1505
© o8 X 3
8 ' ® WT +AB « Membrane
0.6 o ASP_1 505 + AB a b a b
[
0.4 5 @
Vancomycin .
or 10 02 0.25 ug/ml g
E'g g ﬁ = ' 0.0¢
’-§ © g ’ 0 5 10
CWSI DSI PSI RSl invivo Time (Hrs)
D E' 7 *kk
*k * 1 — I n 1
109_ :—ns| ! 109 —_ I ns 1 I f t O S |
P ns nfection —
€ = = “ Spnin. e 2 °
£ oo | an H —+ o L 105~
310 = S
L ° = ®
= . e ¢t O shrs| ABXandiorAb S . °g°
S107] - 108 i o <Administration =
g EYA o s
@ { ] é g 4
£108] ° 16hrs E 107
S = ©
S f oy % °
10° e 107 Mouse S 10%7
' : ' ' ' ' ' sacrifice® a ° oo
- Vanco. 1505 Vanco. . Dapto. 1505 Dapto. CFU enum.
025 Ab +1505 05 Ab +1505 102 | | | |
ug/mli Ab ug/ml Ab TIGR4 ASP1505  WT+  WT+
WT Dapto. + Dapto. +

IgG 1505Ab


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5.

OD600 nm

Ciprofoxacin
0.8ug/ml

7 vancomycin

0.23ug/ml

v

Synercid 7] Gent7m|ycin ~
SP1891-1887 0.25ug/mL 71T 15ug/m
amiA-F ABC transporter 0.6 1 '{%
) ) ) ) ) E
G)—;-wj S04 .
WL T o)
5855 §> % Ela o
088370
578 0.2 4
CWSI DSl PSI RSI
0.0 , . ) T T
0 5 10 15 0 5 10
Time (Hrs) Time (Hrs)
C. D.
*
L
1 100 ..
— 8- ns 10X Gentamicin
s T 107 o WT
= ——
5 o WT-T4 © A1888
L 6- ™ A1888 c 10?
o 1 A1890 S
[&)
CDO 4- g 10-3- :
~ (_g \ i
< <€ 40 !
2 s O b
24 c s Ht i
S 1077 i i
L i i
0- g 10% | i
Ciprofloxacin Kanamycin = , . ;
-/ (I} '
ABX accumulation 10 ' :
NS i
0 MDK99 10 20
MDK99.99

Time (Hrs)

5 . 1l0 . 1l5
Time (Hrs)

© TIGR4 WT
©® A1888/amiE
© A1890/amiC

O WT + P1
® WT + P2

10
10X Vancomycin
10'1 -1 o WT

® A1888

-2

10

3

10

10
10°
6 ]

10

1077

8

1079

10 20
Time (Hrs)


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 6.

E. .15 0.15
A. 8. Purine metabolism and (p)ppGpp synthesis g PPGPpP pppGpp = Mupirocin
=
SP0045 urA| SP0019 g1
deoB | SP0829 purB | SP0056 purB [ SP0056 ks
eo—R.jg]j \:\l::\:\ n ﬁ) P - ATP GTP ATP s os
ibose- . 50
relA | SP1645 | T oon Capans J ™ ADP dGTP dATP £
G B TTTTTT] 9 CIITITPm] . nrdD | SP0202 z bid bid
ppLpp GDP GMP hvpo- adenine PLITT W] 00 : . .
‘ " § xihthine SE9% Regulators™: T 5 9§ 5 % =z § & %
PPPGPP guanine’poia| spoot2 Sl 55 5 5 § 5 & s
SP1979 3 3
SPO831 N\ Cin-sin o] = z
. . o %
Genomic Ne(%hbors: 1] 4
SP0830* — SP(829/0831
SP1446"—= SP1445
=== co-fitness interaction ABC transporter
F.
0.8 . [0 =3 wo/w Mupirocin
" 081 o ABX Synercid 20{ ATP .. -
T 0.11 ug/ml
- \E 15 2
g 06 § 06
o 10 : ns
o 1 ns
8 0.4 0.4 5
Q 0 -2
(e} ASP_0829 80-
02 0.2 o ASP_0846 ADP 4
| ® ASP_0829x0846 6ol
0.0 0.0 2f X "
0 5 10 15 0 10 15 404
Time (Hours) Time (Hours) 8 ; ns ns
£ 204
0.87 0.8 = o
' 2 ol 22
Cefepime 3 s 3]
N
0.6 0.6{ 0.008 ug/ml < GTP =
E o wr g 4 - o xx ns + NS
S ASP_1645 g, 1
o 4 © ASP_1097
© 0.4 0
® ASP_1097/1645 5 -2
[a)
(e} ; 4
0.2 0.2
L 0 -8
0.0 : , 8  app
003 I o 0 5 10 2
D. Time (Hours) Time (Hours) 6 ns
B -
0.8
4
2
0.6 - 24 4
£
8 o = - [T} ~ [T} -8 F - o N~ ©
2 04 = g & 8 § Sg883
(m] o o o g g & & %
© < 9P 081 4 4 39 38 4499¢%
0.2 — o o
© WT + CEF 4 4
® ASP_0831+ CEF
0.0 . .
0 10

5
Time (Hours)



https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 7.

(2] [24] [a] [4] 2]

Hokk Hekk Hek

ns.

il . Ih“l A Il

!!’!‘

ASP1544 ]

e o o
© © [©3 A

o o () @

[\ I\ — o

5 6 @ a
S| < < <
Meropenem o0
>

A1396

ASP1097

B. - [16]
" ABX
A. "o 10%. e
2.5+ *kk Hkx Kk L kKK kkk] kkk i kkk | kkk | NS, Kk kkkl kkk | kkk i [IS.1 KKk ek © FEP/MEM
. ? .X'IAP’\/ILVX
° 3
< 2.0 ® SXT E 10°
> 3 ) *GEN IS
2 ¢ ! 3 10°
2 15 8 L ® ] ] Process: g 10
S 2. Pyruvate met S
W . o 4. Aspartate met. 3 101
c 10 --+-—-3-+ -+ -+ - s— - - k- = oo - = — - 8 Purine met. %
B ' 8" (p)ppGpp prod. 1 i
© 054 13. WalllLipo teich. L= 1 1 it
(O 16. Transcr. & Transl.
21. Transport 101
0.0 ? Unknown ‘0 i ‘© ‘0 ™y
2 2 2 2 8 ILEL 88 SR 85 2 X9 g 8 8 & 8
2 2 8 8 2 23 &% & 28 8 82 2 ge - - o 9o =
o o o o 4 & oo oo & & oo o =5y 5 % 5 Z, 5
4 9 99 9 99% 99 %9 4949 4 %2 < < 4 <
C. o087 e D.
B-lact 081
[ ] ¢ B-lact. i
[ 0.6 :Sg’go' 2ggezrgme
2% %, . o e Y
L ]
< ¢ . e o0 o +30S S
E [ 79 e ® ° ° 041 ® ‘ Py -gOS Q 0.4
e Syn.
04 . o ,® ool o « R o)
%® o® s e e -» 0 ° O 10829 0.2
oz ‘ C B o Y o S g z O 1396
‘ ’ o A 0.0 . .
0 5 10
0.0 0.2 0.4 0.6 0.8 0.0 0.2 04 0.6 Time (Hours)
AW Nasopharynx AW Lungs
" Infection 1007 . Y
Spni.n.e ®
MTvs.WT
10 . i 8
16hrs E o
AB* R oo :? :3, S -
A . o .
® administration S & oo A
6hrs 0.10 * .
gﬂa%l:i?i% eo ASP0829 vs. WT o ASP1396 vs. WT
CFU enumeration 0.01 40— _Cefepime _____ Meropenem
- +ABX - +ABX - +ABX - +ABX
Lung Nasopharynx Lung Nasopharynx

5
Time (Hours)

g xo
e 5O
& 5
< <
3
°WT
AMT
© WT + ABX
® AMT + ABX


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 8.

Set4 -%
0 25 50 75 100

o
o
2
*R
:
™y
©
wn
wna
<
- [ | 3
i
7 ™
8 & |3 5
- o * b
0 € o
212 AE
' m *|
—
%% Q o o o [<)
-8 & K
ha
o
] 5 ~
- b
BN F o
: B @
-3 2
e %) X N
[0} b
S% o] b
an
T ~—
o x
+ O + O + O nhm m m m m o
<av oseN sbun o < o ~ ™ 2
% ~— ~—

sjoaye ssauyy bag-u] jo suonngusig SU0p0o dois Jo # [e10L

ke

B
C.

ke

ol

SL'0
0s'0
g0

583 B-IactamR vs 583 B-IactamS

§gc'0-
05°0-
GL°0-
0'L-

o
AW Nasopharynx

ns

ol

SL'0
0s0
g0

ns

ns

§e'0-
05°0-
GL°0-
0'L-

o
AW Nasopharynx

Fkkk

1148 SXTH vs 1148 SXTS

-0.25
-0.50
-0.75

xav mv xa@v Mmv 8 8 8 8 8 =©°

Irs) <5 ® « -
uopoo dojs 8uo ISes| 1B YlIM S8JR|0S] JO #

D.


https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/

