

1 **Single mutation makes *Escherichia coli* an insect mutualist**

2
3 Ryuichi Koga^{1*}, Minoru Moriyama¹, Naoko Onodera-Tanifuji¹, Yoshiko Ishii¹, Hiroki Takai¹,
4 Masaki Mizutani¹, Kohei Oguchi¹, Reiko Okura², Shingo Suzuki³, Yasuhiro Goto⁴, Tetsuya
5 Hayashi⁴, Masahide Seki⁵, Yutaka Suzuki⁵, Yudai Nishide^{1,6}, Takahiro Hosokawa⁷, Yuichi
6 Wakamoto^{2,8}, Chikara Furusawa^{3,8}, Takema Fukatsu^{1,9,10*}

7
8 ¹Bioproduction Research Institute, National Institute of Advanced Industrial Science and
9 Technology (AIST), Tsukuba, Japan.

10 ²Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo,
11 Tokyo, Japan.

12 ³Center for Biosystem Dynamics Research, RIKEN, Osaka, Japan.

13 ⁴Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.

14 ⁵Laboratory of Systems Genomics, Department of Computational Biology and Medical
15 Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.

16 ⁶National Agriculture and Food Research Organization (NARO), Institute of Agrobiological
17 Sciences, Tsukuba, Japan.

18 ⁷Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.

19 ⁸Universal Biology Institute, The University of Tokyo, Tokyo, Japan.

20 ⁹Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.

21 ¹⁰Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.

22
23 *Corresponding authors. Email: r-koga@aist.go.jp, t-fukatsu@aist.go.jp

24

25

26 **Abstract**

27 We report an experimental system in which *Escherichia coli* evolves into an insect mutualist.
28 When the essential gut symbiont of the stinkbug *Plautia stali* was replaced by *E. coli*, a few
29 survivor insects exhibited specific localization and vertical transmission of *E. coli*. Through
30 trans-generational maintenance with *P. stali*, several hyper-mutating *E. coli* lines independently
31 evolved host's high adult emergence and improved body color. Such "mutualistic" *E. coli* lines
32 exhibited independent mutations disrupting the carbon catabolite repression (CCR) global
33 transcriptional regulator. Each of the mutations reproduced the mutualistic phenotypes when
34 introduced into wild-type *E. coli*, confirming that the single CCR mutations instantly make *E.*
35 *coli* an insect mutualist. Our discovery uncovers that evolution of elaborate mutualism can
36 proceed more easily and rapidly than conventionally envisaged.

37

38

39 Microbial symbioses are among the major evolutionary drivers underpinning the biodiversity
40 (1,2). How ordinary free-living microbes have become sophisticated mutualists is an important
41 but unanswered question in understanding the evolution of symbiosis. To address this
42 fundamental issue, experimental evolutionary approaches may provide valuable insights (3-8).
43 Here we report a novel experimental system in which the model bacterium *Escherichia coli*
44 evolves into an insect mutualist, thereby demonstrating that evolution of mutualism can proceed
45 very easily and quickly via disruption of a global transcriptional regulator system.

46

47 ***E. coli* potentially capable of symbiosis with *P. stali***

48 Plant-sucking heteropteran bugs generally possess specific symbiotic bacteria in the midgut,
49 which contribute to their growth and survival via provisioning of essential amino acids and/or
50 vitamins (9,10). The brown-winged green stinkbug *Plautia stali* (Hemiptera: Pentatomidae)
51 (Fig. 1a) develops a specialized symbiotic organ consisting of numerous crypts in a posterior
52 region of the midgut (Fig. 1b). The crypt cavities are densely populated by a specific bacterial
53 symbiont of the genus *Pantoea* (Fig. 1c, d). The symbiont is essential for growth and survival
54 of the host insect. Normal insects infected with the uncultivable obligatory symbiont, *Pantoea*
55 sp. A (11,12), attained over 70% adult emergence rates (Fig. 1e), smeared the symbiont cells
56 onto the eggs upon oviposition (Fig. 1f), and transmitted the symbiont vertically to the offspring
57 via nymphal probing of the eggshell (Fig. 1g). Aposymbiotic insects generated by egg surface
58 sterilization died out with no adult emergence (Fig. 1e). Non-symbiotic bacteria, such as
59 *Bacillus subtilis* and *Burkholderia insecticola*, cannot establish infection and symbiosis with *P.*
60 *stali* (11). Meanwhile, when *E. coli* was inoculated to sterilized newborn nymphs, the insects
61 certainly exhibited retarded growth and high mortality, but a small number of adult insects
62 emerged, attaining 5-10% adult emergence rates (Fig. 1e; fig. S1) (11). Such adult insects,
63 which were dwarf in size and dark in color (Fig. 1h), tended to die early, but some insects
64 managed to survive, mate, and produce a small number of eggs. We dissected and inspected
65 these insects, and found that, surprisingly, although the symbiotic organ was atrophied (Fig. 1i),
66 *E. coli* localized to the midgut crypts just like the original symbiont, although the infection
67 patterns were often patchy (Fig. 1j, k; fig. S2). Furthermore, *E. coli* cells were smeared on the
68 eggshell and vertically transmitted to the offspring (Fig. 1l, m), although the transmission rates
69 and the infection titers were unstable in comparison with those of the original symbiont (Fig.
70 1l). These results suggested that, though incipiently, *E. coli* is capable of localized infection,
71 vertical transmission, and supporting host survival in *P. stali*. Considering that *E. coli* belongs
72 to the same Enterobacteriaceae as the original *Pantoea* symbiont, *E. coli* may be able to co-opt
73 the mechanisms for infection and localization of the symbiont to establish the incipient

74 symbiosis (11). In this context, it seems relevant that, in the stinkbug family Pentatomidae, the
75 gut symbiotic bacteria have evolved repeatedly from the Enterobacteriaceae through recurrent
76 acquisitions and replacements (13,14).

77

78 **Experimental evolution using hyper-mutating *E. coli***

79 This finding prompted us to apply experimental evolutionary approaches to the *P. stali*-*E. coli*
80 relationship. By continuously inoculated to and maintained with *P. stali*, would *E. coli* improve
81 the symbiosis-related traits and finally evolve into a symbiont-like entity? Considering the
82 expected difficulty in observing the evolution of elaborate symbiosis in a realistic time frame,
83 we adopted the hyper-mutating *E. coli* strain, Δ mutS, in which the DNA mismatch repair
84 enzyme gene mutS is disrupted and the molecular evolutionary rate is elevated by two orders
85 of magnitude (15). The *E. coli* strain of the same genetic background, Δ intS, in which the phage
86 integrase gene is disrupted, was used as control. Two selection schemes, growth selection and
87 color selection, were conducted (fig. S3). In growth selection lines (GmL for hyper-mutating
88 Δ mutS lines; GiL for non-mutating Δ intS lines), the first-emerged adult insect was subjected to
89 dissection of the symbiotic organ for inoculation to the next generation as well as freeze storing.
90 In color selection lines (CmL for Δ mutS lines; CiL for Δ intS lines), the most greenish adult
91 insect was subjected to dissection of the symbiotic organ for inoculation to the next generation
92 as well as freeze storing. Throughout the evolutionary experiments, the host insects were
93 supplied from a mass-reared inbred population of *P. stali*, thereby homogenizing the host
94 genetic background and focusing on the evolutionary changes of the *E. coli* side. Since it takes
95 around 1 month for newborn nymphs of *P. stali* to become adults under the rearing condition,
96 it was expected that, ideally, we would be able to run 12 host generations per year. Actually,
97 however, it took almost for two years because (i) the *E. coli*-inoculated insects generally
98 exhibited high mortality and retarded growth, (ii) for keeping the insects under a good condition,
99 frequent care without overcrowding was essential, which limited the manageable number of
100 insects per evolutionary line ranging from 50 to 100, and (iii) consequently, extended generation
101 time and stochastic extinction of the evolutionary lines frequently occurred, which had to be
102 restarted from the frozen *E. coli* stocks.

103

104 **Evolution of mutualistic *E. coli***

105 We established and maintained 12 CmL color selection lines with 11 CiL control lines, and 7
106 GmL growth selection lines with 7 CiL control lines (Fig. 2a, b). While the control DintS-
107 infected lines almost constantly exhibited low adult emergence rates, some of the hyper-
108 mutating Δ mutS-infected lines started to produce more adult insects. Notably, in a color

109 selection line CmL05, the adult emergence rate jumped up at generation 7, and the high
110 emergence rates were maintained thereafter (Fig. 2a). In a growth selection line GmL07, the
111 adult emergence rate improved as early as at generation 2, which was maintained thereafter
112 (Fig. 2b). In CmL05 and GmL07, coincident with the improvement of the adult emergence rate,
113 body color of the adult insects improved from dark to greenish (Fig. 2a-c; fig. S4), and
114 furthermore, the colony morphology of *E. coli* changed from large and flat with rich
115 extracellular matrix to small and convex with little extracellular matrix (Fig. 2c). When the
116 frozen stocks of CmL05 and GmL07 were inoculated to *P. stali*, the improved adult emergence
117 rate, the greenish body color, and the small and convex colony shape were reproducibly
118 observed (Fig. 2d, e; fig. S5). These results indicated that some evolutionary lines of hyper-
119 mutating *E. coli* have developed mutualistic traits for the host insect and that the phenotypic
120 effects are attributable to genetic changes in the evolutionary *E. coli* lines.

121

122 **Microbial traits of mutualistic *E. coli***

123 In addition to the colony size, shape and extracellular matrix on agar plates (Fig. 2c), the
124 mutualistic *E. coli* lines CmL05 and GmL07 in culture exhibited distinct microbial traits in
125 comparison with the original *E. coli* strains: slower growth rate, smaller cell size, loss of
126 flagellar motility, and unstable cell shape (fig. S6a-g). Within the host insect, the evolutionary
127 *E. coli* lines CmL05 and GmL07 showed significantly higher infection densities than the
128 original *E. coli* strains (fig. S6h). These observations revealed that the mutualistic *E. coli* lines
129 certainly have developed a variety of “symbiont-like” microbial traits.

130

131 **Transcriptomics and genomics of mutualistic *E. coli***

132 An aliquot of the dissected symbiotic organ from each generation of the color selection line
133 CmL05 was subjected to RNA sequencing, from which *E. coli*-derived reads were extracted
134 and analyzed (tables S1 and S2). Interestingly, the gene expression patterns of *E. coli* at
135 generations 7-14 after the improvement of host phenotypes were separately clustered in contrast
136 to those at generations 1-6 before the improvement (Fig. 3a). In the growth selection line
137 GmL07, similarly, the gene expression patterns of *E. coli* at generations 2-12 after the
138 improvement were distinct from that at generation 1 before the improvement and also from
139 those of the other growth selection lines GmL02 and GmL04 in which the improvement of host
140 phenotypes did not occur (Fig. 3b; tables S1 and S3). These results suggested that the evolution
141 of the mutualistic *E. coli* lines entails specific and global change of gene expression patterns.

142 In the growth selection line GmL07 and the color selection line CmL05, we surveyed
143 differentially expressed genes before and after the improvement of host phenotypes (table S4),

144 which identified 193 commonly down-regulated genes and 95 commonly up-regulated genes
145 across GmL07 and CmL05 (fig. S7a, b). The commonly down-regulated genes contained a
146 number of metabolism-related genes such as transporter genes for sugars and other nutrients
147 like maltose, ribose, galactitol, trehalose, mannose, branched chain amino acids, etc.,
148 glyoxylate bypass genes, fatty acid degradation genes, and others. Notably, core genes involved
149 in extracellular matrix (= Curli fimbriae) production were significantly down-regulated after
150 the improvement (fig. S7c), which accounted for the altered colony morphology of *E. coli*
151 associated with the improvement of host phenotypes (see Fig. 2c).

152 The improved lines CmL05 and GmL07 and the non-improved lines GmL02 and GmL04
153 were subjected to genome sequencing throughout the evolutionary course (table S5), which
154 identified many mutations accumulated in the hyper-mutating *E. coli* lines (tables S6 and S7;
155 fig. S8). In an attempt to identify candidate mutations that are correlated with the improvement
156 of the host phenotypes, we surveyed the mutations that appeared at generation 7 of CmL05 and
157 then fixed, which yielded 7 candidate genes, and also the mutations that appeared at generation
158 2 of GmL07 and then fixed, which yielded 9 candidate genes (Fig. 3c).
159

160 **Disrupted CCR pathway in mutualistic *E. coli***

161 Of these candidates, we focused on a frame shift mutation that disrupted adenylate cyclase
162 (CyaA) in CmL05, and a non-synonymous mutation that changed a functionally important
163 cAMP binding site of cAMP receptor protein (Crp) from leucine to proline in GmL07 (Fig. 3d).
164 Despite their independent origins in distinct evolutionary lines, CyaA and Crp are pivotal
165 components of the same global metabolic regulator system, the carbon catabolite repression
166 (CCR) pathway, operating in diverse bacteria including *E. coli* (16,17) (Fig. 3e). With sufficient
167 availability of glucose as the primary carbon source for *E. coli*, the CCR components are
168 subjected to glucose-mediated suppression, being in an unphosphorylated form incapable of
169 activating CyaA, by which the intracellular cAMP is maintained at a low level (fig. S9a). When
170 glucose is used up, the glucose-mediated suppression is released, by which the CCR
171 components are phosphorylated and activate CyaA, which results in an elevated intracellular
172 cAMP level and promotes cAMP binding to Crp. The resultant global transcriptional regulator
173 Crp-cAMP activates and/or represses several hundreds of operons throughout the bacterial
174 genome, referred to as the Crp-cAMP regulon, by which the bacterial metabolic pathways are
175 switched to exploit other carbon sources for adaptation to nutrient-deficient and/or high
176 bacterial density conditions (fig. S9b) (18,19). According to RegulonDB (20), the Crp-cAMP
177 regulon of *E. coli* consists of some 390 up-regulated genes and 80 down-regulated genes (fig.
178 S9c), which are involved in, for example, up-regulation of transporters and catabolic enzymes

179 for non-glucose sugars (21), quorum sensing induction (22), and production of extracellular
180 matrix (23).

181 Both the CyaA mutation in CmL05 and the Crp mutation in GmL07 are disruptive of the
182 CCR pathway. Considering that *E. coli* cells are packed in the host symbiotic organ very densely
183 (see [Fig. 1k](#); [fig. S2i, k](#)), it seems likely that the symbiotic *E. coli* may be under a nutrient-
184 limited condition within the host insect, at least locally. If so, it is expected that, in the
185 evolutionary *E. coli* lines, while the Crp-cAMP transcriptional regulator was activated before
186 the mutations occurred, the activation was disabled after the mutations occurred. Notably, of
187 193 genes commonly down-regulated after the CyaA mutation in CmL05 and the Crp mutation
188 in GmL07, 55 genes were reported as activated by Crp-cAMP ([fig. S10a](#)). These genes, which
189 are expected to be silenced upon disruption of the CCR system, were significantly down-
190 regulated in CmL05 and GmL07, which represented many transporter genes for non-glucose
191 sugars, carbohydrate metabolism genes, quorum sensing genes, extracellular matrix production
192 genes, transcription factor genes, and others ([fig. S10b-i](#)).

193

194 **Disrupted CCR genes make *E. coli* an insect mutualist**

195 In order to test whether these mutations are involved in the mutualistic traits of the evolutionary
196 *E. coli* lines, we prepared *E. coli* strains that carry the mutations under the wild-type genetic
197 background: the strain Δ cyaA in which cyaA gene is disrupted; and the strain $crp^{221T>C}$ whose
198 crp gene was engineered to carry the leucine-proline replacement at the cAMP binding site.
199 Both the mutant *E. coli* strains exhibited small and convex colonies with little extracellular
200 matrix, somewhat slower growth rate, smaller cell size, and loss of flagellar motility ([Fig. 4a](#);
201 [fig. S11a-e](#)), which were generally reminiscent of the characteristic traits of the improved
202 evolutionary *E. coli* lines CmL05 and GmL07 ([Fig. 2c](#); [fig. S6a-e](#)). When the mutant *E. coli*
203 strains were inoculated to sterilized newborn nymphs of *P. stali*, both the Δ cyaA-infected
204 insects and the $crp^{221T>C}$ -infected insects exhibited remarkably high adult emergence rates,
205 which were comparable to the insects infected with the improved evolutionary *E. coli* lines and
206 were significantly higher than the insects infected with the control *E. coli* strains ([Fig. 4b](#)).
207 Moreover, the Δ cyaA-infected insects and the $crp^{221T>C}$ -infected insects were greenish in color,
208 which were comparable to the greenish insects infected with the improved evolutionary *E. coli*
209 lines and distinct from the dwarf brown insects infected with the control *E. coli* strains ([Fig.](#)
210 [4c](#)). On the other hand, infection densities of $crp^{221T>C}$ and Δ cyaA were not comparable to those
211 of the improved evolutionary *E. coli* lines ([fig. S11f](#)). These results demonstrated that, strikingly,
212 the single mutations that disrupt the CCR global regulator system make *E. coli* mutualistic to
213 the host insect *P. stali*.

214

215 **Discussion**

216 We established an experimental insect-*E. coli* symbiotic system in which the model bacterium
217 is localized to host symbiotic organ, transmissible to host offspring vertically, and supportive
218 of host survival, though incompletely. By infecting and passaging a hyper-mutating *E. coli*
219 strain with the host insect trans-generationally, several evolutionary lines rapidly developed
220 improved adult emergence and body color, realizing recurrent evolution of mutualism in the
221 laboratory. Strikingly, the *E. coli*'s evolution into the insect mutualist was ascribed to single
222 mutations that convergently disrupted the bacterial CCR pathway, uncovering unexpected
223 involvement of the nutrient-responsive global transcriptional regulator in the establishment of
224 symbiosis.

225 Our finding sheds new light on the evolvability of symbiosis – elaborate mutualistic
226 symbiosis can evolve much more easily and rapidly than conventionally envisaged. We suggest
227 the possibility that the inactivation of the CCR global regulator may represent a pivotal
228 evolutionary step at an early stage of symbiosis. Densely packed in the symbiotic organ, the
229 symbiotic bacteria are expected to constantly suffer nutritional shortage and activate the CCR
230 pathway in vain, which may incur substantial metabolic cost and destabilize the symbiotic
231 association. In this context, the disruption of the CCR pathway should benefit and stabilize the
232 symbiosis. Our finding may be also relevant to the general evolutionary trend of symbiont
233 genomes toward size reduction (24) and lack of transcription factors (25). The disruption of the
234 CCR pathway causes silencing of otherwise activated about 400 genes under the Crp-cAMP
235 regulon (20), which accounts for about 10% of the whole *E. coli* genome and provides potential
236 targets for gene disruption, IS bombardment, intragenomic recombination, and reductive
237 genome evolution. We propose that, although speculative, inactivation of transcriptional
238 regulators and genome size reduction might have concurrently proceeded in this way during
239 the symbiont genome evolution.

240 The *P. stali*-*E. coli* experimental symbiotic system will open a new window to directly
241 observe and analyze the evolutionary processes and mechanisms of mutualistic symbiosis in
242 real-time. *E. coli* is among the best understood cellular organisms, whose 4.5-5.5 Mb genome
243 encodes over 4,000 genes and around 70% of them are with functional information (26,27).
244 Laboratory evolution of mutualism using such a model bacterium with ample technological and
245 genetic resources will lead to an ultimate understanding of the symbiotic evolution. Considering
246 that *E. coli* represents a universal component of the gut microbiome of human, mouse, and other
247 vertebrates (28), the insect-*E. coli* system in combination with the germfree mouse-*E. coli*
248 experimental evolution systems (29,30) would enable us to pursue not only the differences but

249 also the commonality underpinning the mechanisms of gut symbiosis across vertebrates and
250 invertebrates.

251

252 **Methods**

253 Insect and bacterial strains used in this study

254 An inbred laboratory strain of the brown-winged green stinkbug *P. stali* was established from
255 several adult insects collected at Tsukuba, Ibaraki, Japan in September 2012, and has been
256 maintained in the laboratory for years. This strain is associated with an essential and
257 uncultivable gut symbiont *Pantoea* sp. A (II) in a posterior midgut region specialized as the
258 symbiotic organ (Fig. 1; fig. S2). The insects were reared on raw peanuts, soybeans and water
259 containing 0.05% ascorbic acid (Merck, Germany) at 25 ± 1 °C and $50 \pm 5\%$ relative humidity
260 under a long-day regime of 16 h light and 8 h dark.

261 *E. coli* strains and mutants used in this study are listed below. The mutants Δ intS, Δ mutS and
262 $\text{crp}^{221\text{T} > \text{C}}$ were generated as described later.

Name	Description	Reference
BW25113	Obtained from National Bio Resource Project (NBRP)	31
Δ intS	The intS gene was replaced with kanamycin resistance gene.	This study
Δ mutS	The mutS gene was removed from Δ intS.	This study
Δ cyaA	Obtained from Keio single-gene knock-out mutant library via NBRP	27
$\text{Crp}^{221\text{T} > \text{C}}$	A nonsynonymous single nucleotide substitution was introduced in the crp gene	This study
CmL05G13a	An <i>E. coli</i> clone isolated from the glycerol stock of CmL05G13.	This study
GmL07G12a	An <i>E. coli</i> clone isolated from the glycerol stock of GmL07G12.	This study
EPI300	Obtained from Epicentre	N.A.
DH5 α	Common laboratory strain	N.A.
JM109	Common laboratory strain	N.A.
BL21	Common laboratory strain	N.A.

263

264 Construction of *E. coli* mutants

265 The *E. coli* mutant Δ intS was established by replacing intS gene of *E. coli* BW25113 with nptII
266 gene that confers kanamycin resistance by λ -Red homologous recombination using the
267 pRed/ET plasmid (Gene Bridges, Germany). The *E. coli* mutant Δ mutS was established by
268 replacing mutS gene of Δ intS with the FRT-Cm-FRT cassette (Gene Bridges, Germany) by λ -
269 Red homologous recombination, and then Cm^R was eliminated by Flp-FRT recombination. The
270 *E. coli* mutant $\text{crp}^{221\text{T} > \text{C}}$ was established from Δ intS by replacing the 221st nucleotide T of the
271 wild type crp gene with C, which changed 74th amino acid leucine of the Crp protein to proline.

272 This replacement was introduced by MAGE method (32) with a 90-mer DNA oligo (5'-
273 taaagaaaatg-atccttcctt-atctgaatca-gggtgatttt-attggcgaac-Cgggcctgtt-tgaagaggc-caggaacgtt-
274 ggcatgggt) whose 1st to 4th nucleotides were phosphothioated.
275

276 Preparation of symbiont-free nymphs by surface sterilization of eggs

277 Egg clutches produced by the stock culture of *P. stali* were soaked in 4% formaldehyde for 10
278 min, rinsed with sterilized water several times, and kept in sterilized plastic boxes until use.
279 While this treatment does not affect hatchability and survival of the eggs, newborn nymphs fail
280 to acquire the symbiotic bacteria and become symbiont-free (33).
281

282 Experimental evolution of *P. stali*–*E. coli* artificial symbiotic system

283 Evolutionary experiments in this study consisted of, for each evolutionary *P. stali* line, (i)
284 preparation of an inoculum either from *E. coli* culture of Δ mutS or Δ intS (only G1) or from an
285 adult female of the previous generation (from G2 and on), (ii) oral administration of the
286 inoculum to symbiont-free nymphs, (iii) rearing of the nymphs either to their adulthood or death,
287 (iv) selection of an adult female for inoculation to the next generation, (iv) contamination check
288 of the selected adult female, (v) preparation of an inoculum and a glycerol stock from the
289 symbiotic organ dissected from the selected female, and (vi) morphological measurements of
290 all adult insects obtained.

291 Either diluted *E. coli* culture (2.5 ml adjusted to $OD_{600} = 0.1$) or homogenate of the
292 symbiotic organ dissected from a selected female of the previous generation (2.5 ml containing
293 1/2 organ equivalent) was soaked in a cotton pad and orally administered to around 84
294 symbiont-free hatchlings derived from six surface-sterilized egg masses, by making use of the
295 nymphal behavior that, after egg surface probing for about 30 min and resting for around a day,
296 they take water without feeding and molt to second instar in a few days (11,33). These nymphs
297 were reared on sterilized peanuts, soybeans and ascorbic acid water as described previously
298 (33). In the evolutionary experiments, two selection schemes, growth selection and color
299 selection, were conducted (fig. S3). In growth selection lines (GmL for hyper-mutating Δ mutS
300 lines; GiL for non-mutating Δ intS lines), the first-emerged adult female was subjected to
301 dissection of the symbiotic organ for inoculation to the next generation as well as freeze storing.
302 In color selection lines (CmL for Δ mutS lines; CiL for Δ intS lines), adult females were collected
303 for 35 days after hatching or until at least one adult female emerged. These adult females were
304 anesthetized on ice and photographed from the ventral side using a digital camera. Their body
305 color was measured using the image analyzing software Natsumushi ver. 1.10 (34), and the
306 adult female that exhibited the highest hue angle (= greenness) was subjected to dissection of

307 the symbiotic organ for inoculation to the next generation as well as freeze storing.

308 The symbiotic organ of the selected female was dissected in PBS (0.8% NaCl, 0.02% KCl,
309 0.115% Na₂HPO₄, 0.02% KH₂PO₄, pH 7.4), rinsed with 70% ethanol, and homogenized in 200
310 µL sterile water. Of the 200 µL homogenate, 5 µL was used for contamination check by
311 quantitative PCR. The number of *E. coli* genome copies was evaluated in terms of kanamycin
312 resistance gene copies, which is present in the Δ intS and Δ mutS mutants but absent in wild-
313 type *E. coli* and other bacteria. The number of total bacterial genome copies was evaluated
314 based on bacterial 16S rRNA gene copies. When the former *E. coli* genome copy number was
315 approximately the same as the latter bacterial genome copy number, the specimen was
316 diagnosed as free of contamination. When the specimen was diagnosed as contaminated, the
317 next best female was used. For quantitative PCR, the primers Tn5-1789F (5'-TGC TCG ACG
318 TTG TCA CTG AA-3') and Tn5-1879R (5'-GCA GGA GCA AGG TGA GAT GA-3') were used
319 for kanamycin resistance gene, while the primers 16S-967F (5'-CAA CGC GAA GAA CCT
320 TAC C-3') and 16S-1046R (5'-CGA CAG CCA TGC ANC ACC T-3') were used for bacterial
321 16S rRNA gene. The PCR reaction was performed using Brilliant PCR mix (Agilent
322 Technologies, USA). The standard curve was drawn using serially diluted Δ intS genomic DNA,
323 which contains one kanamycin gene copy and seven 16S rRNA gene copies per genome. The
324 thermal profile was the initial denaturation at 95°C for 3 min followed by 40 cycles of
325 incubation at 95°C for 5 sec and at 60°C for 10 sec. To confirm specific amplification, melting
326 curve analysis was also included. The reaction was conducted on Mx3000p (Agilent
327 Technologies, USA). While 100 µL of the homogenate of the female symbiotic organ diagnosed
328 as free of contamination was used as the inoculum to the next generation, the remaining
329 homogenate (~95 µL) was mixed with an equal volume of 20% glycerol and stored at -80°C.
330

331 Inoculation of *E. coli* frozen stocks to *P. stali*

332 The frozen glycerol stocks were thawed, of which 50 mL was taken and diluted with sterile
333 water to 3 mL. Each of three replicates of around 84 symbiont-free hatchlings from six surface-
334 sterilized egg masses was fed with 1 ml inoculum soaked in a cotton pad as described above.
335 The symbiont A and Δ mutS were included in the evaluation as positive and negative controls,
336 respectively. Adult emergence of the insects was monitored for 50 days after hatching. All the
337 adult insects were photographed from the dorsal side with a digital camera, and hue angle (=
338 greenness) of the scutellum and thorax width were measured using ImageJ (35). For the
339 subsequent RNA sequencing analyses and resequencing of *E. coli* genomes, the symbiotic
340 organs were isolated from the adult insects and homogenized in 100 µL PBS. Of 100 µL
341 homogenate, 50 µL was subjected to RNA sequencing and the remaining 50 µL was used for

342 genome resequencing.

343

344 RNA sequencing analyses

345 The homogenate of the symbiotic organ was subjected to total RNA extraction using RNAiso
346 (Takara Bio, Japan) and RNeasy Mini Kit (Qiagen, Nederland). Then, ribosomal RNAs of both
347 insect and bacterial origins were removed from the total RNA samples using Ribo-Zero Gold
348 rRNA Removal Kit (Epidemiology) (Illumina, USA). The rRNA-depleted RNAs were
349 converted to paired end libraries using Sure Select Strand Specific RNA Kit (Agilent
350 Technologies, USA) or TruSeq RNA Library Prep Kit v2 (Illumina, USA) (see [table S1](#)). The
351 libraries were sequenced with Hiseq 3000 or Hiseq X (Illumina, USA).

352 The obtained sequences were trimmed, mapped to *E. coli* BW25113 genome sequence
353 (Accession number NZ_CP009273), and read-counted with CLC Genomics Workbench 10.0
354 (Qiagen, Germany). Normalizations and differential expression analyses were conducted with
355 EdgeR ver. 3.32.1 (36). Complex Heatmap ver. 2.10.0 (37) was used for clustering analyses and
356 drawing heatmaps of the RNA sequencing libraries.

357

358 Genome resequencing and detection of structural changes

359 DNA samples were extracted from the homogenates of the symbiotic organ using QIAamp
360 DNA Mini Kit (Qiagen, Germany). The extracted DNAs were converted to paired end libraries
361 using Nextera XT DNA Library Prep Kit (Illumina, USA) and the libraries were sequenced
362 with MiSeq (Illumina, USA). CLC Genomic Workbench ver. 10.0 was used for detection of *E.*
363 *coli* genome variants that emerged during the evolutionary experiments. The heatmaps of the
364 variant frequency data were drawn using Complex Heatmap (37).

365

366 Fluorescence in situ hybridization

367 Fluorescence in situ hybridization (FISH) analyses were performed essentially as described
368 (38). The whole insect bodies or isolated digestive tracts were fixed with PBS containing 4%
369 formaldehyde (Fujifilm, Japan). The fixed samples were embedded in Technovit 8100 (Kulzer,
370 Germany) and processed into 2 µm tissue sections using a rotary microtome RM2255 (Leica,
371 Germany). The AlexaFluor555-labeled oligonucleotide probes Eco934 (5'-CAT GCT CCA
372 CCG CTT GTG-3') and SymAC89R (5'-GCA AGC TCT TCT GTG CTG CC-3') were used to
373 detect *E. coli* and the symbiont A, respectively (12). Host nuclei were counterstained with 4',
374 6-diamidino-2-phenylindole (DAPI) (Dojindo, Japan). The hybridized specimens were
375 observed using a fluorescence dissection microscope M165FC (Leica, Germany), an
376 epifluorescence microscope DM6B (Leica, Germany), and a laser confocal microscope

377 LSM700 (Zeiss, Germany).

378

379 Infection of *E. coli* mutants and effects on host phenotypes

380 *E. coli* mutants were cultured, diluted, and orally administrated to symbiont-free newborn
381 nymphs of *P. stali* as described above. The insects were reared to monitor their adult emergence
382 for 42 days after hatching. The dorsal images of the adults were taken with an image scanner
383 GT-X830 (Epson, Japan), and the hue angle of the scutellum and thorax width were measured
384 and analyzed using the software Natsumushi (34). *P. stali* harboring the original symbiont
385 *Pantoea* sp. A was also included as a reference. As for the adult females infected with *E. coli*,
386 bacterial titers in the symbiotic organs were measured by quantitative PCR. KAPA SYBR Fast
387 qPCR Kit (Roche, USA), Tn5-1789F and Tn5-1879R primer sets were used for quantification.
388 The standard curves were drawn using serially diluted pT7Blue (Takara Bio, Japan) plasmid
389 carrying a kanamycin resistance gene fragment. The quantitative PCR reactions were conducted
390 on Light Cycler 96 (Roche, Switzerland).

391

392 Measurement of *E. coli* phenotypes

393 For inspection of colony morphology and extracellular matrix production, *E. coli* cultures were
394 spread onto LB agar plates containing 80 µg/mL Congo Red (Merck, USA) and incubated at
395 25°C for 3 days. Colonies formed on the plate were photographed by using a scanner GT-X850
396 and/or dissection microscope S9i (Leica, Germany).

397 For growth curve measurements, each glycerol stock of *E. coli* was inoculated to 2 mL LB
398 broth (Becton Dickinson, USA) and incubated at 25°C for 16 h with shaking at 200 rpm. The
399 cell culture was diluted to OD₆₀₀ = 0.005 in 25 mL LB broth, and incubated at 25°C with shaking
400 at 200 rpm. From the bacterial culture, 120 µL of cell suspension was sampled every hour, and
401 the samples were subjected to measurement of OD₆₀₀ using a spectrometer UV-1800 (Shimadzu,
402 Japan).

403 For time-lapse analyses of growth and morphology of individual *E. coli* cells, two types
404 of microfluidic devices were used. One type was a microfluidic device in which bacterial cells
405 were enclosed in microchambers etched on a glass coverslip. A cellulose membrane was
406 attached to a coverslip via biotin-streptavidin binding, on which the microchambers were
407 fabricated as described previously (39,40). Another type was a microfluidic device made of
408 polydimethylolefin (PDMS) with a channel structure similar to Mother Machine 3 as described
409 previously (41) (see [fig. S6f](#)). The width of the cell observation channels in this device was 9
410 µm, which was broader than that of the Mother Machine and thus each cell observation channel
411 could harbor 30-70 individual *E. coli* cells depending on cell sizes. *E. coli* cells in exponential

412 phase were introduced into both types of the microfluidic devices and observed under a Nikon
413 Ti-E microscope (Nikon, Japan) equipped with ORCA-fusion camera (Hamamatsu Photonics,
414 Japan). In the time-lapse measurements, phase-contrast images were acquired with a $100 \times$ oil
415 immersion objective lens (Plan Apol, NA 1.45) at an interval of 3 min, in which 50-100 XY
416 positions were simultaneously observed. The microscope was controlled from a computer using
417 Micromanager 4. In the microchamber device measurements, LB broth was supplemented with
418 0.1% bovine serum albumin and 0.02% Tween-80 to suppress cell adhesion, and introduced
419 into the devices at a flow rate of 2 mL/h.

420 For measurements of size and flagellar motility, *E. coli* cells were grown in LB medium
421 with shaking at 25°C to around $OD_{600} = 2.0$, observed under a phase-contrast microscope IX71
422 (Olympus, Japan), recorded by a CCD camera DMK33UP5000.WG (The Imaging Source,
423 Germany) at 30 frames per second, and analyzed using ImageJ v1.53 (35) and IGOR Pro 8.02
424 J (WaveMetrics, USA). The cell size data were measured for individual six cultures. The
425 swimming ratio data were obtained as the number of swimming cells in 100 cells from
426 individual eight cultures.

427

428 Statistics

429 Statistical analyses were conducted by using R ver. 4.1.2 (42) and RStudio (43). R was also
430 used to plot the data.

431

432 **References**

- 433 1. McFall-Ngai, M. *et al.* Animals in a bacterial world, a new imperative for the life sciences.
434 *Proc. Natl. Acad. Sci. USA* **110**, 3229-3236 (2013).
- 435 2. Gilbert, S. F., Bosch, T. C. G. & Ledón-Rettig, C. Eco-Evo-Devo: developmental symbiosis
436 and developmental plasticity as evolutionary agents. *Nat. Rev. Genet.* **16**, 611-622 (2015).
- 437 3. Hoang, K. L., Morran, L. T. & Gerardo, N. M. Experimental evolution as an underutilized
438 tool for studying beneficial animal–microbe interactions. *Front. Microbiol.* **7**, 1444 (2016).
- 439 4. King, K. C. *et al.* Rapid evolution of microbe-mediated protection against pathogens in a
440 worm host. *ISME J.* **10**, 1915-1924 (2016).
- 441 5. Tso, G. H. W. *et al.* Experimental evolution of a fungal pathogen into a gut symbiont.
442 *Science* **362**, 589-595 (2018).
- 443 6. Robinson, C. D. *et al.* Experimental bacterial adaptation to the zebrafish gut reveals a
444 primary role for immigration *PLoS Biol.* **16**, e2006893 (2018).
- 445 7. Mehta, A. P. *et al.* Engineering yeast endosymbionts as a step toward the evolution of
446 mitochondria. *Proc. Natl. Acad. Sci. USA* **115**, 11769-11801 (2018).

447 8. Drew, G. C., EJ Stevens, E. J. & King, K. C. Microbial evolution and transitions along the
448 parasite–mutualist continuum. *Nat. Rev. Microbiol.* **19**, 623-638 (2021).

449 9. Nikoh, N. *et al.* Reductive evolution of bacterial genome in insect gut environment. *Genome*
450 *Biol. Evol.* **3**, 702-714 (2011).

451 10. Salem, H. *et al.* Vitamin supplementation by gut symbionts ensures metabolic homeostasis
452 in an insect host. *Proc. R. Soc. B* **281**, 20141838 (2014).

453 11. Hosokawa, T. *et al.* Obligate bacterial mutualists evolving from environmental bacteria in
454 natural insect populations. *Nat. Microbiol.* **1**, 15011 (2016).

455 12. Oishi, S. *et al.* Morphogenesis and development of midgut symbiotic organ of the stinkbug
456 *Plautia stali* (Hemiptera: Pentatomidae). *Zool. Let.* **5**, 16 (2019).

457 13. Hosokawa T. *et al.* Recurrent evolution of gut symbiotic bacteria in pentatomid stinkbugs.
458 *Zool. Let.* **2**, 34 (2016).

459 14. Otero-Bravo, A. & Sabree, Z. L. Multiple concurrent and convergent stages of genome
460 reduction in bacterial symbionts across a stink bug family. *Sci. Rep.* **11**, 7731 (2021).

461 15. Giraud, A. *et al.* Costs and benefits of high mutation rates: adaptive evolution of bacteria in
462 the mouse gut. *Science* **291**, 2606-2608 (2001).

463 16. Deutscher, J. *et al.* How phosphotransferase system-related protein phosphorylation
464 regulates carbohydrate metabolism in bacteria. *Microbiol. Mol. Biol. Rev.* **70**, 939-1031
465 (2006).

466 17. Görke, B. & Stülke, J. Carbon catabolite repression in bacteria: many ways to make the
467 most out of nutrients *Nat. Rev. Microbiol.* **6**, 613-624 (2008).

468 18. Martinez-Antonio, A. & Collado-Vides, J. Identifying global regulators in transcriptional
469 regulatory networks in bacteria. *Curr. Opin. Microbiol.* **6**, 482-489 (2003).

470 19. Zheng, D. *et al.* Identification of the CRP regulon using in vitro and in vivo transcriptional
471 profiling. *Nucleic Acids Res.* **32**, 5874-5893 (2004).

472 20. Santos-Zavaleta, A. *et al.* RegulonDB v 10.5: tackling challenges to unify classic and high
473 throughput knowledge of gene regulation in *E. coli* K-12. *Nucleic Acids Res.* **47**, D212-
474 D220 (2019).

475 21. Shimada, T. *et al.* Novel roles of cAMP receptor protein (CRP) in regulation of transport
476 and metabolism of carbon sources. *PLoS One* **6**, e20081 (2011).

477 22. Xavier, K. B. & Bassler, B. L. Regulation of uptake and processing of the quorum-sensing
478 autoinducer AI-2 in *Escherichia coli*. *J. Bacteriol.* **187**, 238-248 (2005).

479 23. Müller, C. M. *et al.* Type 1 fimbriae, a colonization factor of uropathogenic *Escherichia*
480 *coli*, are controlled by the metabolic sensor CRP-cAMP. *PLoS Pathog.* **5**, 1000303 (2009).

481 24. McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. *Nat.*

482 *Rev. Microbiol.* **10**, 13-26 (2012).

483 25. Moran, N. A. *et al.* Regulation of transcription in a reduced bacterial genome: nutrient-
484 provisioning genes of the obligate symbiont *Buchnera aphidicola*. *J. Bacteriol.* **187**, 4229-
485 4237 (2005).

486 26. Blount, Z. D. The unexhausted potential of *E. coli*. *eLife* **4**, e05826 (2015).

487 27. Baba, T. *et al.* Construction of *Escherichia coli* K-12 in-frame, single-gene knockout
488 mutants: the Keio collection. *Mol. Syst. Biol.* **2**, 2006.0008 (2006).

489 28. Tenaillon, O. *et al.* The population genetics of commensal *Escherichia coli*. *Nat. Rev.*
490 *Microbiol.* **8**, 207-217 (2010).

491 29. Giraud, A. *et al.* Dissecting the genetic components of adaptation of *Escherichia coli* to the
492 mouse gut. *PLoS Genet.* **4**, e2 (2019).

493 30. Barroso-Batista, J. *et al.* Specific eco-evolutionary contexts in the mouse gut reveal
494 *Escherichia coli* metabolic versatility. *Curr. Biol.* **30**, 1049-1062.e7 (2020).

495 31. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in
496 *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. USA* **97**, 6640-6645
497 (2000).

498 32. Nyerges Á., *et al.* A highly precise and portable genome engineering method allows
499 comparison of mutational effects across bacterial species. *Proc. Natl. Acad. Sci. USA* **113**,
500 2502-2507 (2016).

501 33. Nishide, Y., *et al.* Aseptic rearing procedure for the stinkbug *Plautia stali* (Hemiptera:
502 Pentatomidae) by sterilizing food-derived bacterial contaminants. *Appl. Entomol. Zool.* **53**,
503 407-415 (2017).

504 34. Tanahashi, M. & Fukatsu, T. *Natsumushi* - Image measuring software for entomological
505 studies. *Entomol. Sci.* **21**, 347-360 (2018).

506 35. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image
507 analysis. *Nat. Methods* **9**, 671-675 (2012).

508 36. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a Bioconductor package for
509 differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139-140
510 (2010).

511 37. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in
512 multidimensional genomic data. *Bioinformatics* **32**, 2847-2849 (2016).

513 38. Koga, R., Tsuchida, T. & Fukatsu, T. Quenching autofluorescence of insect tissues for in
514 situ detection of endosymbionts. *Appl. Entomol. Zool.* **44**, 281-291 (2009).

515 39. Inoue, I., Wakamoto, Y., Moriguchi, H., Okano, K. & Yasuda, K. On-chip culture system
516 for observation of isolated individual cells. *Lab. Chip* **1**, 50-55 (2001).

517 40. Hashimoto, M., *et al.* Noise-driven growth rate gain in clonal cellular populations. *Proc.*
518 *Natl. Acad. Sci. USA* **113**, 3251-3256 (2016).

519 41. Wang, P., *et al.*, Robust growth of *Escherichia coli*. *Curr. Biol.* **20**, 1099–1103 (2010).

520 42. R Core Team. R: A language and environment for statistical computing. R Foundation for
521 Statistical Computing, Vienna, Austria (2021). <https://www.R-project.org/>

522 43. RStudio Team. RStudio: Integrated Development Environment for R (2020).
523 <http://www.rstudio.com/>

524 44. Hayashi, T., *et al.* Female-specific specialization of a posterior end region of the midgut
525 symbiotic organ in *Plautia splendens* and allied stinkbugs. *Appl. Environ. Microbiol.* **81**,
526 2603-2611 (2015).

527

528 **Acknowledgments**

529 We thank U. Asaga, S. Kimura, J. Makino and T. Matsushita for insect rearing and technical
530 assistance. This study was supported by the JST ERATO grants JPMJER1803 and
531 JPMJER1902 (TF, CF, YW, RK) and the JSPS KAKENHI grant JP25221107 (TF, RK).
532 Genome sequencing and analyses were supported by the JSPS KAKENHI grant JP16H06279.
533

534 **Author contributions:** RK and TF conceived the project and designed the experiments. RK,
535 MMo, NOT and YN performed insect-*E. coli* evolutionary experiments, RK, MMo, NOT, YI,
536 HT, YN and THo analyzed insect phenotypes, RK, MMi, KO, RO and YW analyzed *E. coli*
537 phenotypes, RK, MMo, NOT, YG and THa performed genome sequencing and analyses, MMo,
538 RK, NOT, MS and YS conducted RNA sequencing and analyses, RK, HT, SS and CF designed
539 and generated hyper-mutating and other *E. coli* strains, and TF wrote the manuscript with input
540 from all the other authors.

541

542 **Competing interests**

543 The authors declare no competing interests.

544

545 **Data and materials availability**

546 All RNA sequencing and DNA sequencing data produced in this study were deposited in DDBJ
547 Sequence Read Archive (DRA) (see [tables S1 and S5](#)). All data are available in the manuscript
548 or the supplementary materials.

549

550

551 **Fig. 1. Infection, localization and vertical transmission of *E. coli* in the gut symbiotic**
552 **system of *P. stali*.** (a) Normal symbiotic adult female, large in size and green in color. (b)
553 Dissected alimentary tract, in which symbiotic organ is well developed and yellow in color. (c)
554 Fluorescence in situ hybridization (FISH) localization of symbiont cells to the symbiotic organ.
555 (d) Magnified FISH image showing symbiont localization to crypt cavities of the symbiotic
556 organ. (e) Adult emergence rates of newborn nymphs inoculated with normal symbiont (Sym,
557 *Pantoea* sp. A), no bacteria (Apo, aposymbiotic), and *E. coli*. (f) Symbiont cells smeared on
558 egg surface. (g) Newborn nymphs sucking symbiont cells from eggshell. (h) *E. coli*-infected
559 adult female, dwarf in size and brown in color. (i) Dissected alimentary tract, in which
560 symbiotic organ is atrophied. (j) FISH localization of *E. coli* to the symbiotic organ. (k)
561 Magnified FISH image visualizing *E. coli* localization to crypt cavities of the symbiotic organ.
562 (l) Bacterial titers in symbiont-inoculated and *E. coli*-inoculated nymphs one day after second
563 instar molt in terms of groEL and nptII gene copies per insect, respectively. (m) *E. coli* cells
564 smeared on egg surface.

565
566

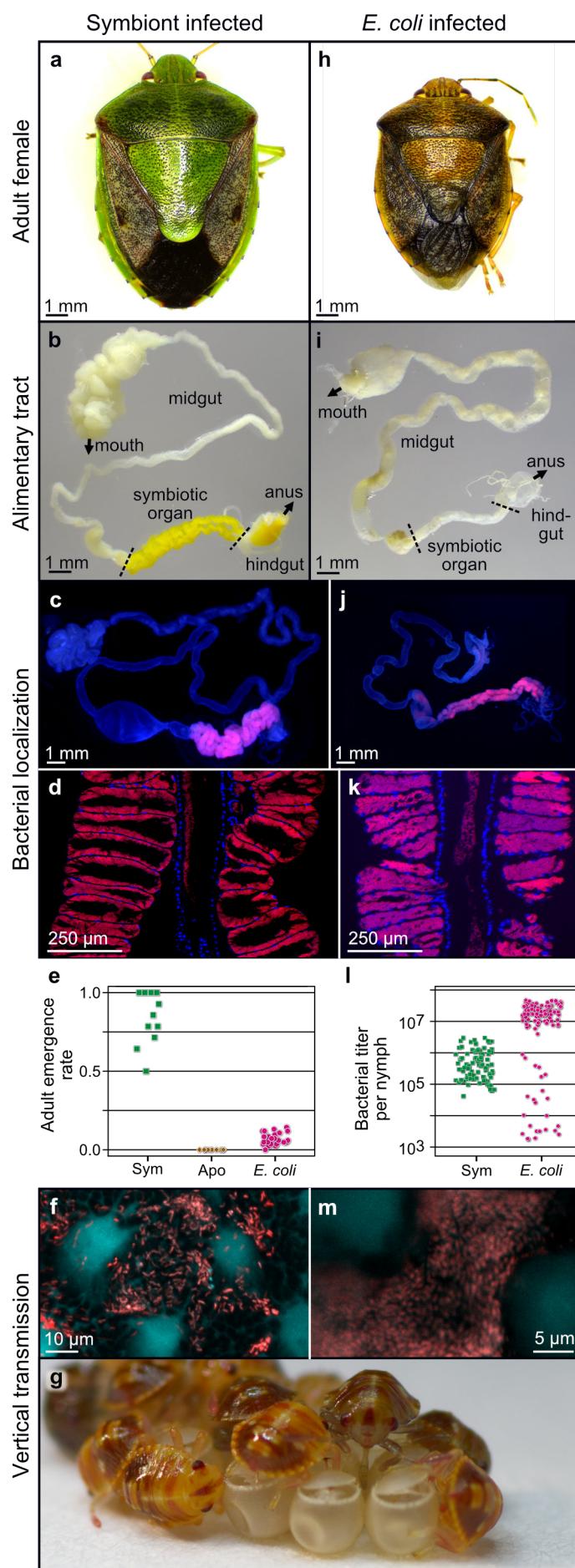


Fig. 1

570 **Fig. 2. Evolution of mutualistic traits for *P. stali* in hyper-mutating *E. coli* lines. (a)**
571 Evolutionary *E. coli* lines subjected to host's body color selection. Data of adult emergence rate
572 and body color are displayed by heat maps. White asterisks indicate missing data of body color
573 measurement. **(b)** Evolutionary *E. coli* lines subjected to host's growth speed selection. Data of
574 adult emergence rate and days to the first adult emergence are displayed by heat maps. Note
575 that in **(a)** and **(b)**, when an evolutionary line produced no adult insect and recovery from the
576 freeze stock failed twice consecutively, the evolutionary line was terminated due to shortage of
577 inoculum. From generation 10 and on, selected evolutionary lines were maintained. **(c)** Host's
578 body color and colony morphology of evolutionary *E. coli* lines. Red colonies are due to rich
579 extracellular matrix produced on the agar plates containing Congo red. **(d, e)** Adult emergence
580 patterns of *P. stali* infected with the representative *E. coli* lines, CmL05, GmL07, GmL02 and
581 GmL04, in the original evolutionary experiments **(d)** and those in the confirmation experiments
582 using frozen *E. coli* stocks **(e)**. In **(c)-(e)**, magenta lines and blue lines highlight "improved"
583 generations and "non-improved" generations, respectively.

584
585
586

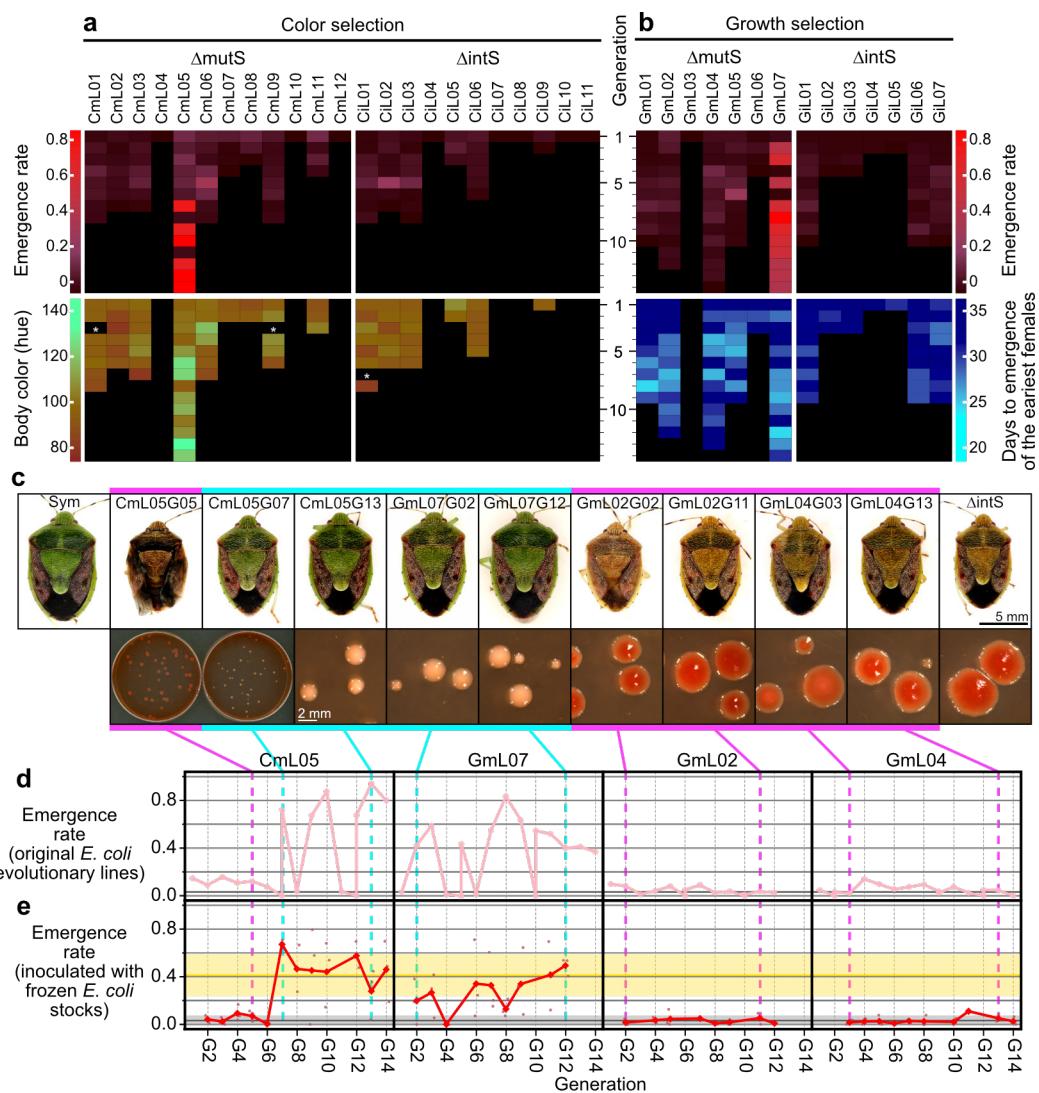


Fig. 2

590 **Fig. 3. Transcriptomics and genomics of evolutionary *E. coli* lines. (a, b)** Clustering
591 dendrograms and heatmaps based on gene expression levels across generations of evolutionary
592 *E. coli* lines subjected to color selection (right, 3,401 genes) **(a)** and growth selection (left,
593 3,360 genes) **(b)**. Gray and colored areas depict non-improved and improved generations,
594 respectively. **(c)** Mutations identified in the genomes of CmL05 and GmL07 as coincident with
595 the improvement of host phenotypes. **(d)** Candidate mutations disrupting the catabolite
596 repression pathway: a frame shift mutation in *cyaA* of CmL05 (top) and a non-synonymous
597 mutation causing change from leucine to proline at a functionally important cAMP binding
598 domain in *crp* of GmL07 (bottom). **(e)** Schematic presentation as to how CRP pathway is
599 disrupted by the *cyaA* and *crp* mutations.

600
601

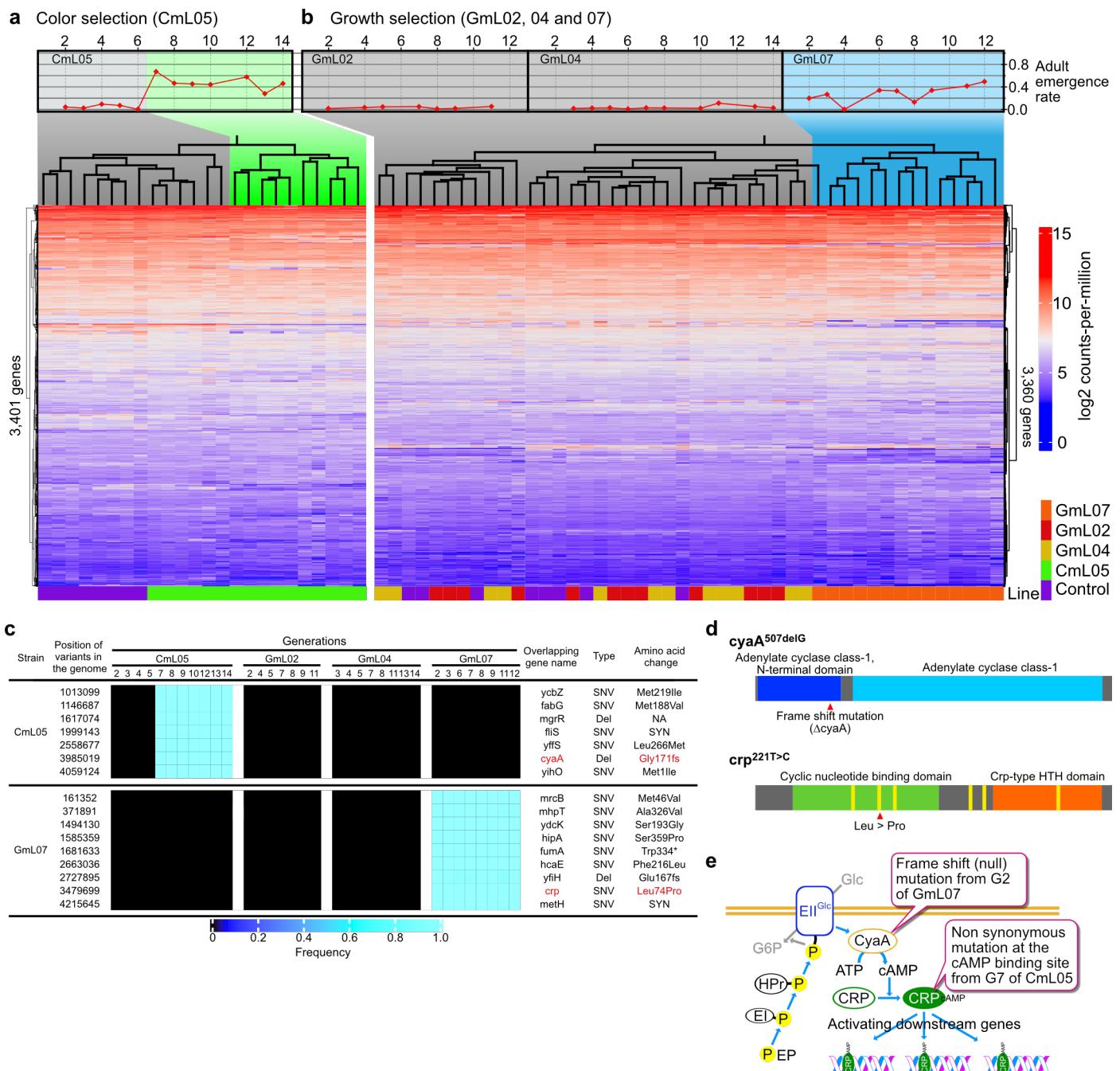


Fig. 3

605 **Fig. 4. Single mutations disrupting carbon catabolite repression pathway make *E. coli***
606 **mutualistic to *P. stali*.** **(a)** Small, convex and white colonies of Δ cyaA and $\text{crp}^{221T>C}$. **(b)** Adult
607 emergence rates of *P. stali* infected with Δ cyaA and $\text{crp}^{221T>C}$. Different alphabetical letters
608 indicate statistically significant differences (pairwise Wilcoxon rank sum test with Bonferroni
609 correction: $P < 0.05$). **(c)** Adult insects infected with Δ cyaA and $\text{crp}^{221T>C}$, which are larger in
610 size and green in color in comparison with those infected with control Δ intS.
611
612

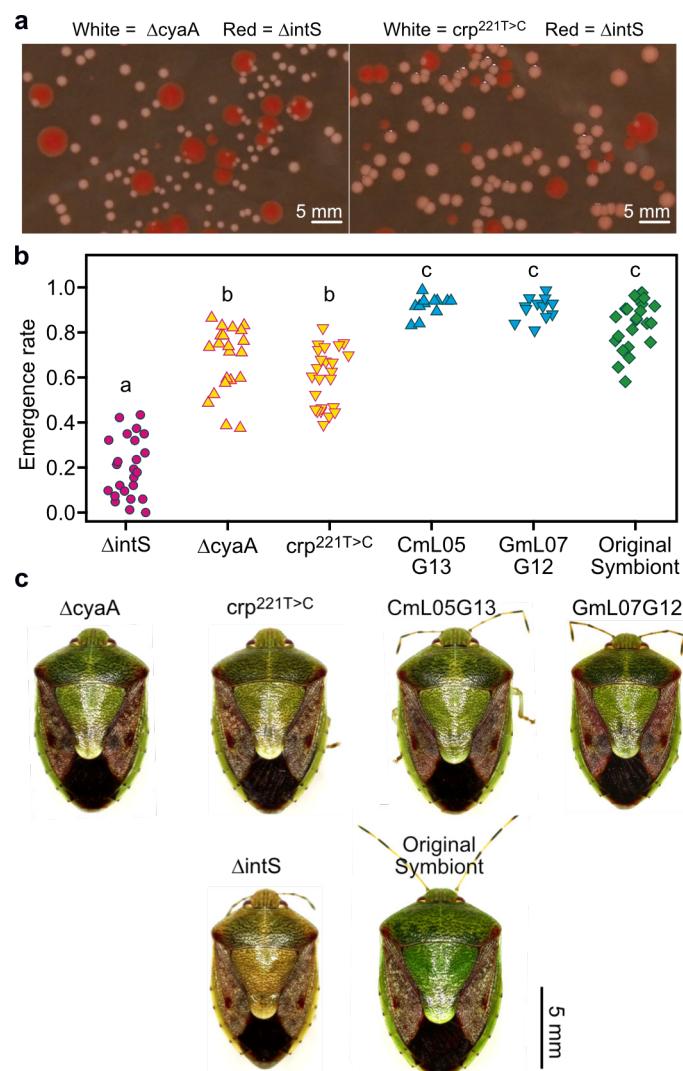
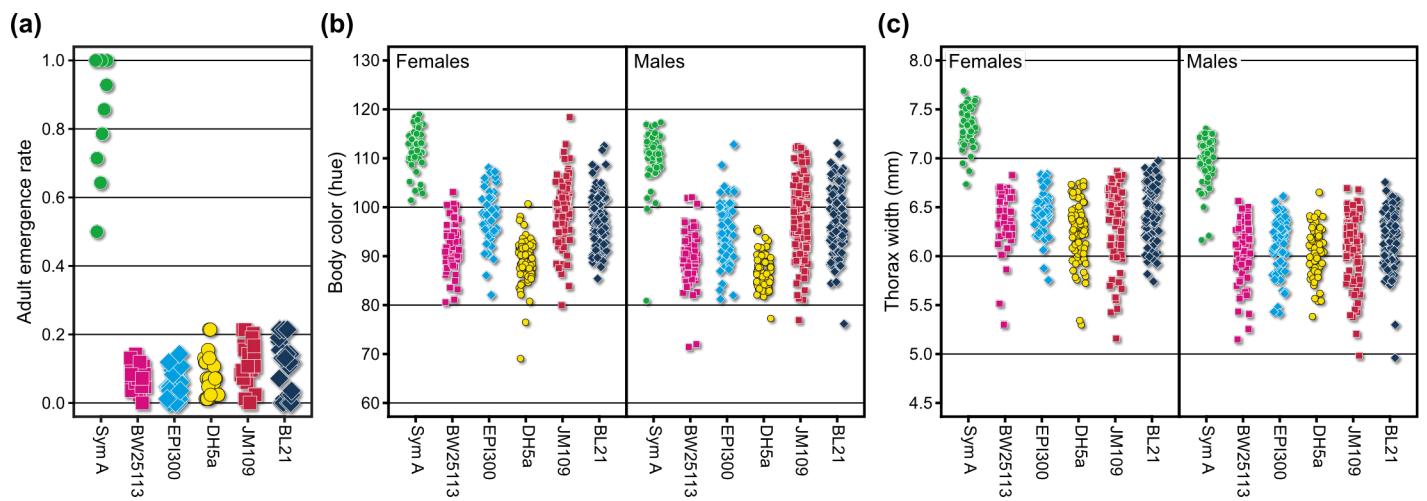
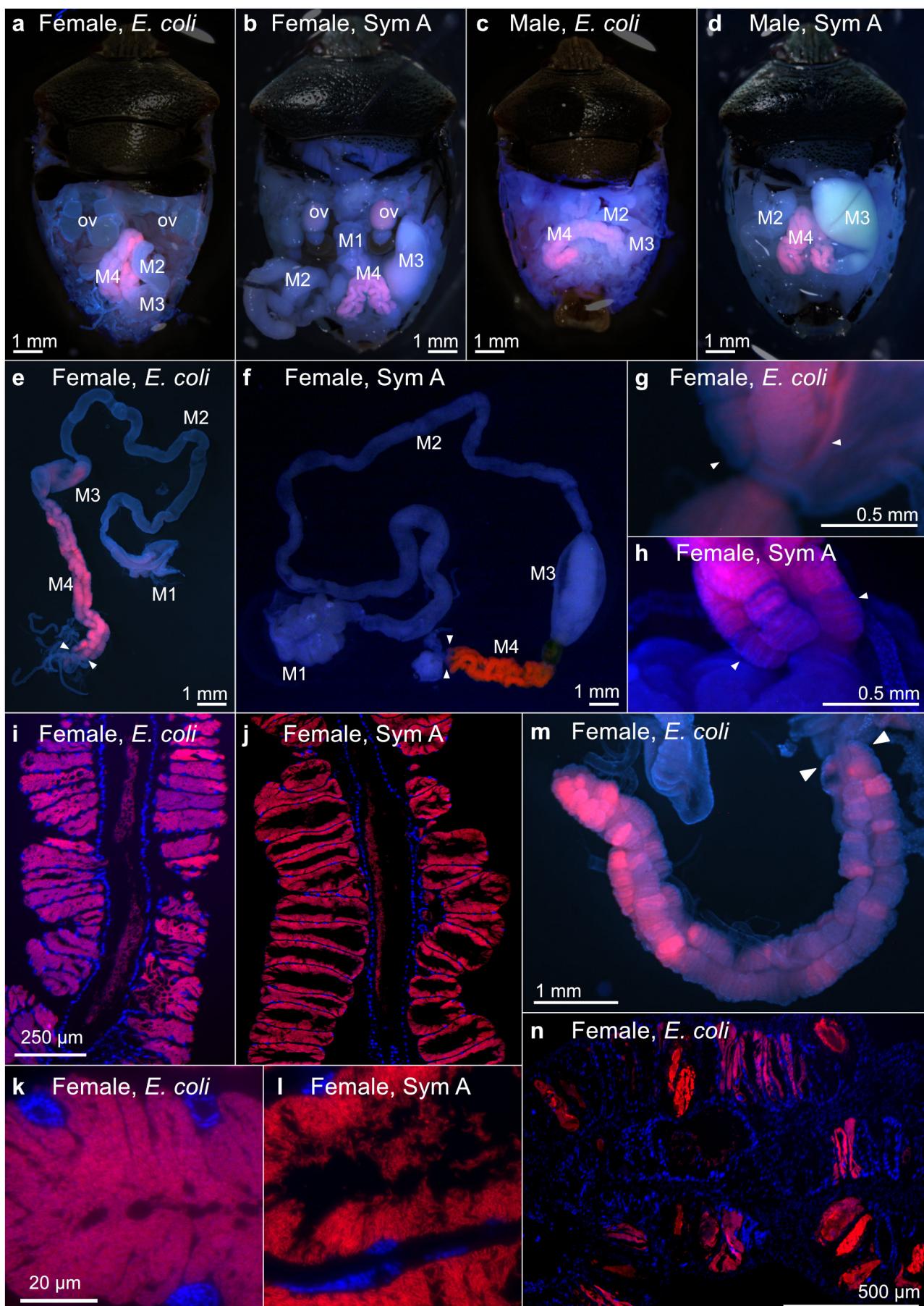
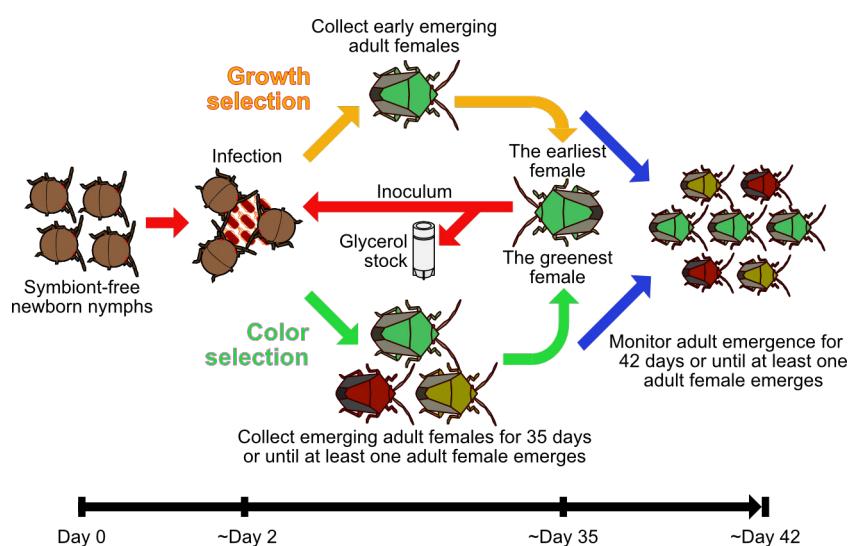



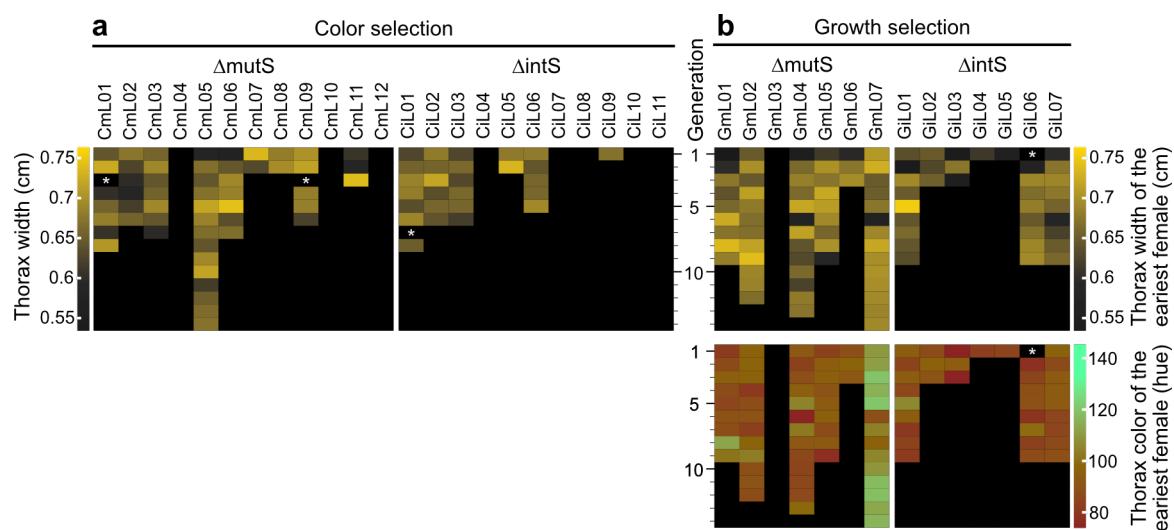
Fig. 4


616 **Fig. S1. Phenotypes of *P. stali* adults infected with laboratory strains of *E. coli*.** (a) Adult
617 emergence rate. (b) Body color (greenish hue) of females (left) and males (right). (c) Body size
618 (thorax width) of females (left) and males (right). Sym A is *Pantoea* sp. A, the original,
619 uncultivable and essential gut symbiont of *P. stali* (11). BW25113, EPI300, DH5a, JM109 and
620 BL21 are commonly used laboratory strains of *E. coli*.

621

622


626 **Fig. S2. FISH localization of *E. coli* and original symbiont *Pantoea* sp. A (= Sym A) in *P. stali*.** (a-d) Localization in abdominal body cavity of adult insects: (a) *E. coli* in adult female,
627 (b) Sym A in adult female, (c) *E. coli* in adult male, and (d) Sym A in adult male. FISH signals
628 are localized to the midgut M4 region. Signals in oocytes are due to autofluorescence.
629 Abbreviations: M1, M2, M3, and M4, midgut regions M1, M2, M3, and M4 (= symbiotic
630 organ); ov, ovary. (e, f) Localization of *E. coli* (e) and Sym A (f) in dissected alimentary tract
631 of adult females. Arrowheads indicate female-specific enlarged end crypts at the posterior end
632 of the symbiotic organ, which are presumably involved in vertical symbiont transmission by
633 storing bacteria-containing secretion (44). (g, h) Magnified images of the end crypts infected
634 with *E. coli* (g) and Sym A (h). Note that *E. coli*-infected end crypts are atrophied in comparison
635 with Sym A-infected ones. (i, j) Localization of *E. coli* (i) and Sym A (j) in the crypt cavities
636 of the symbiotic organ. (k, l) Magnified images of *E. coli* cells (k) and Sym A cells (l) packed
637 in the crypt cavity. (m, n) Patchy localization patterns of *E. coli* in the symbiotic organ, which
638 are often found with *E. coli* but seldom observed with Sym A.
639
640
641


645 **Fig. S3. Experimental scheme for evolution of mutualistic *E. coli* with *P. stali*.**

646

647

651 **Fig. S4. Effects of evolutionary *E. coli* lines on body size and color of *P. stali*. (a)**
652 Evolutionary *E. coli* lines subjected to host's body color selection. Data of host's body width
653 are displayed by heat maps. Also see [Fig. 2a](#). **(b)** Evolutionary *E. coli* lines subjected to host's
654 growth speed selection. Data of host's body width and color are displayed by heat maps. Also
655 see [Fig. 2b](#).
656
657

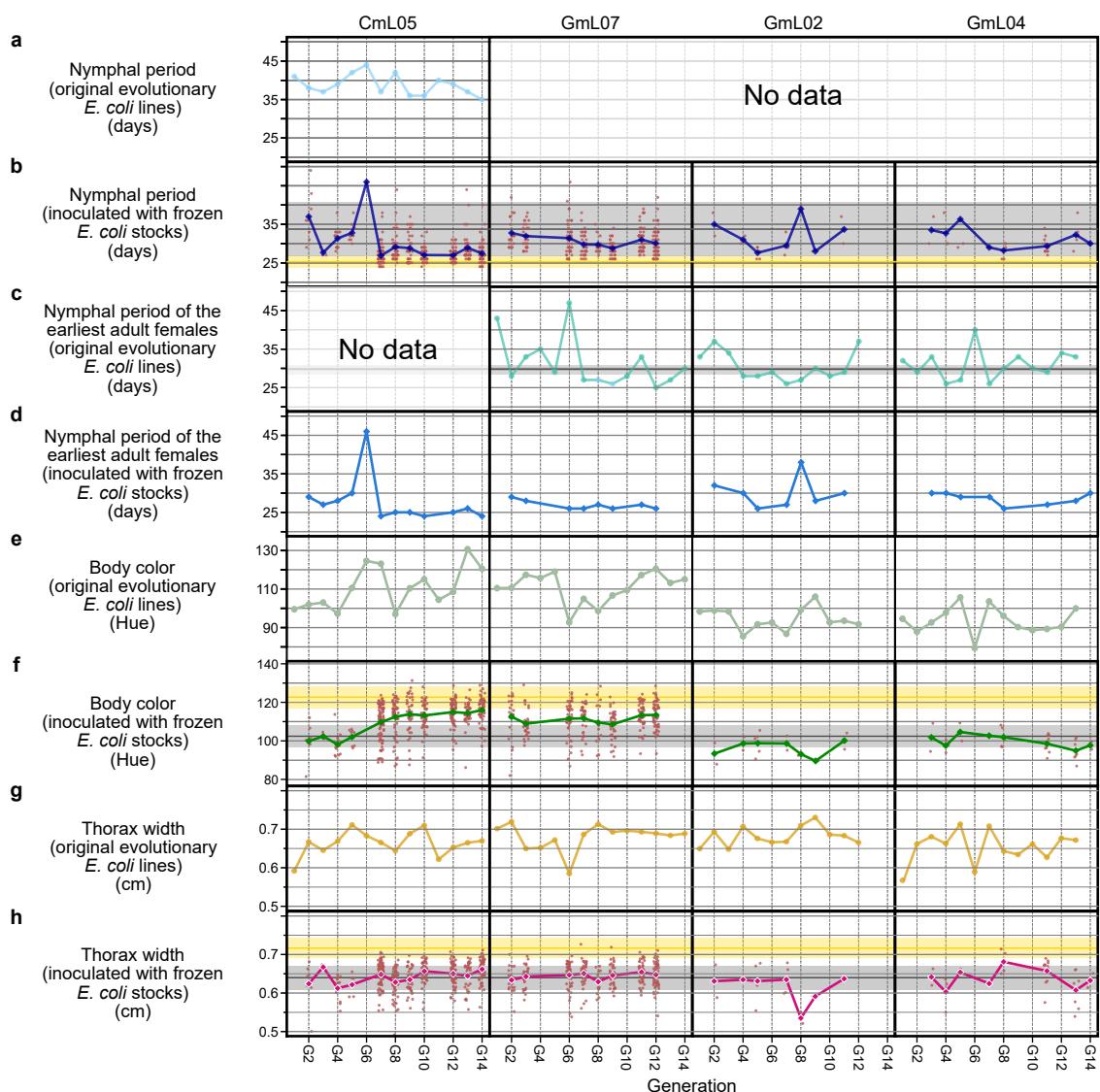
661 **Fig. S5. Adult phenotypes of *P. stali* infected with the evolutionary *E. coli* lines CmL05,**

662 **GmL07, GmL02 and GmL04.** (a, b) Nymphal period. (c, d) Nymphal period of the earliest

663 adult females. (e, f) Body color. (g, h) Thorax width. (a, c, e, g) Phenotypes of adult insects

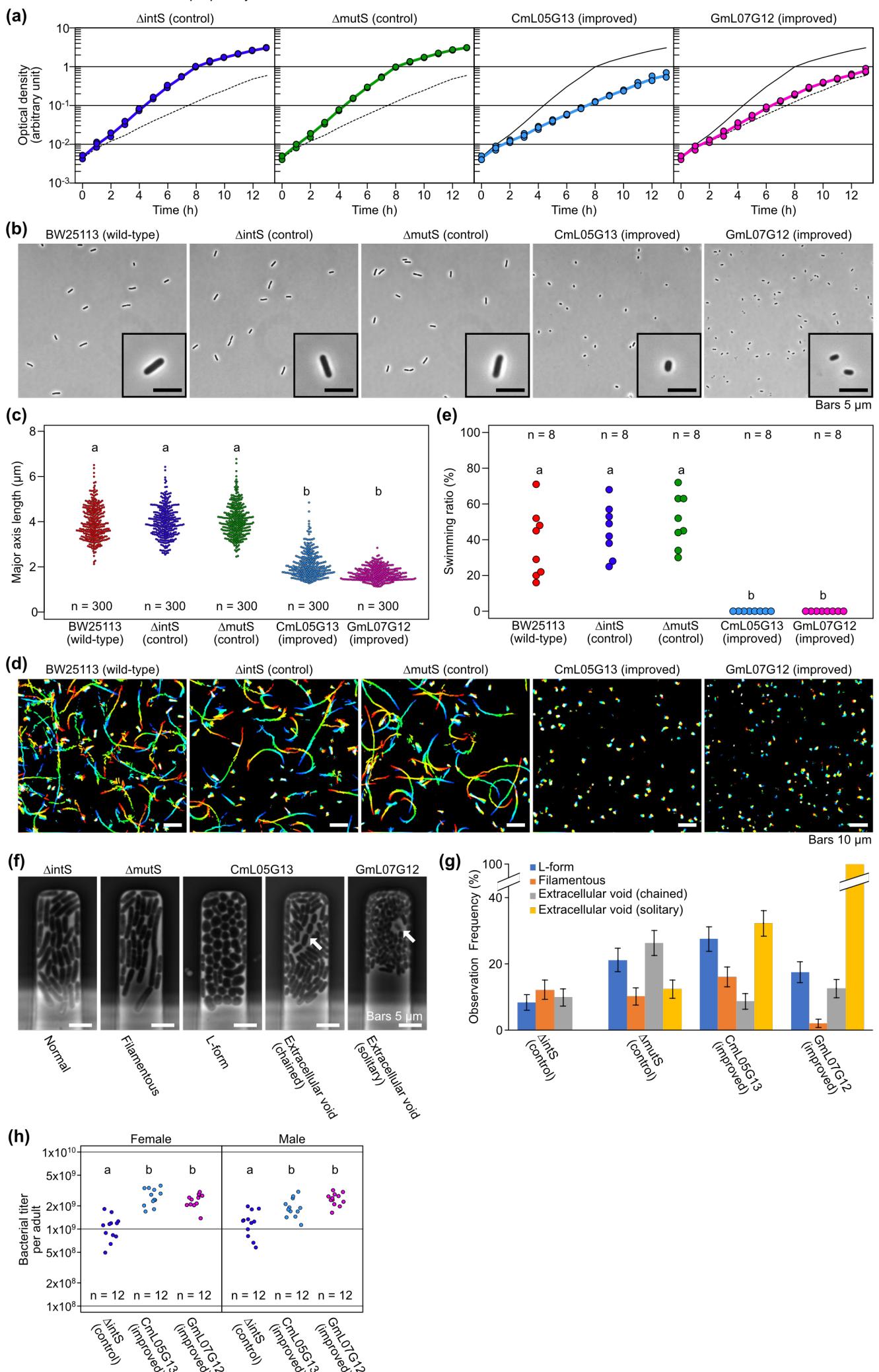
664 infected with the original evolutionary *E. coli* lines. (b, d, f, h) Phenotypes of adult insects

665 inoculated with the frozen *E. coli* stocks. Line charts show mean values while dots indicate


666 individual data points. Note that, corresponding to each original evolutionary *E. coli* line, three

667 insect groups were inoculated with the frozen *E. coli* stock.

668


669

670

674 **Fig. S6. Microbial traits of evolutionary *E. coli* lines CmL05 and GmL07 in comparison**
675 **with original *E. coli* strains BW25113, Δ intS and Δ mutS cultured in liquid medium. (a)**
676 Growth curves (3 replicates each). Upper solid line is the trace of Δ intS growth curve, whereas
677 lower dotted line is the trace of CmL05 growth curve. (b) Morphology of bacterial cells. (c)
678 Quantification of cell size in terms of major axis length. (d) Motility of bacterial cells visualized
679 by rainbow plot for 2 sec. (e) Quantification of bacterial motility in terms of number of
680 swimming cells per 100 cells observed. (f) Characteristic cellular shape and growth mode in
681 microfluidic channels. From left to right, the micrographs show the microchannels harboring
682 *E. coli* cells with normal rod-like shape (Δ intS), filamentation shape (Δ mutS), L-form-like
683 round shape (CmL05), extracellular void space and chained growth (CmL05), and extracellular
684 void space and solitary growth (GmL07). Arrows indicate the cells showing the extracellular
685 void space. (g) Frequency of the microchannels in which *E. coli* cells exhibited characteristic
686 cell shape and growth mode. The total numbers of microchannels observed in the time-lapse
687 measurements were 131 (Δ intS), 137 (Δ mutS), 149 (CmL05G13), and 143 (GmL07G12). (h)
688 Bacterial titers in adult females 35 days after emergence in terms of ntpII gene copies per insect.
689 In (c), (e) and (h), different alphabetical letters indicate statistically significant differences
690 (pairwise Wilcoxon rank sum test: $P < 0.05$).

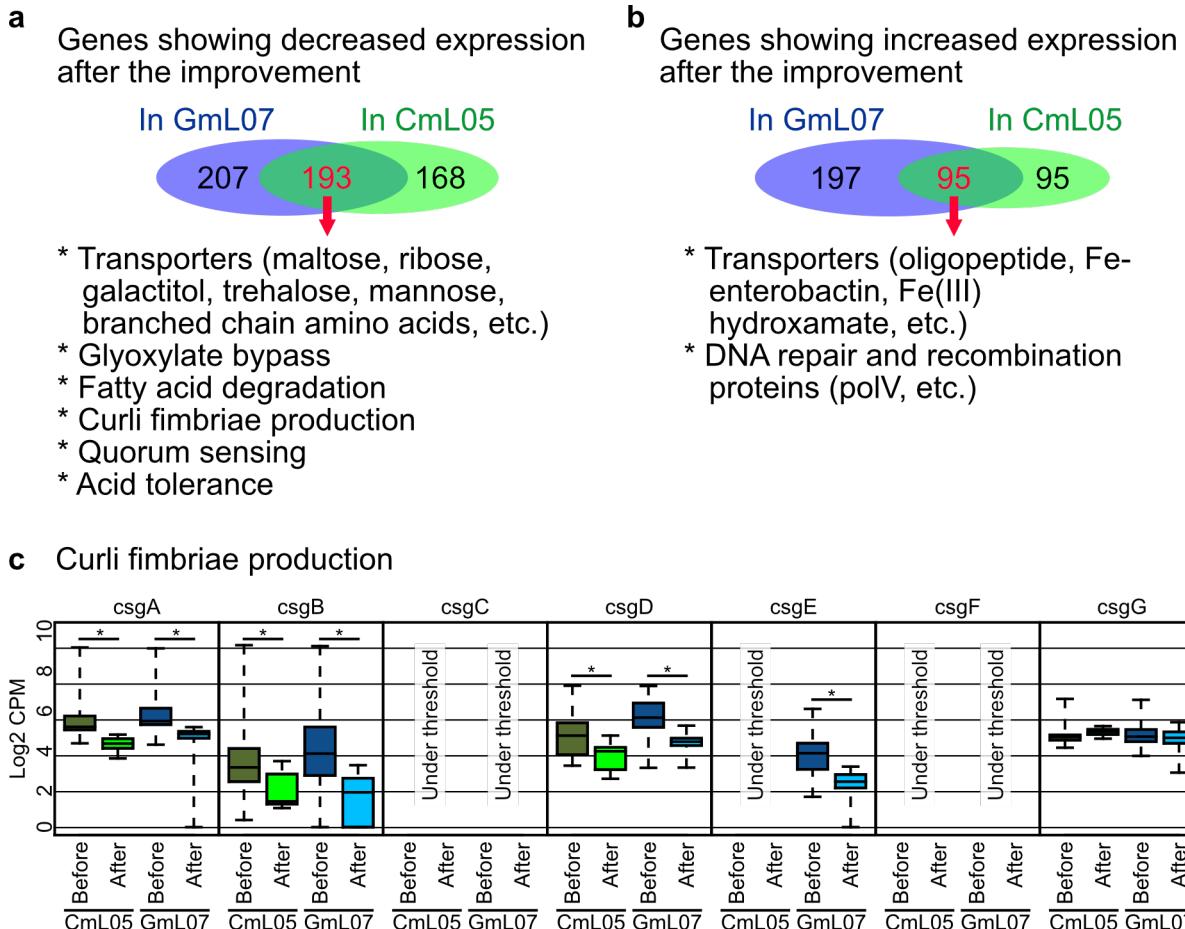
691
692

696 **Fig. S7. Gene expression changes of evolutionary *E. coli* lines GmL07 and CmL05 before**

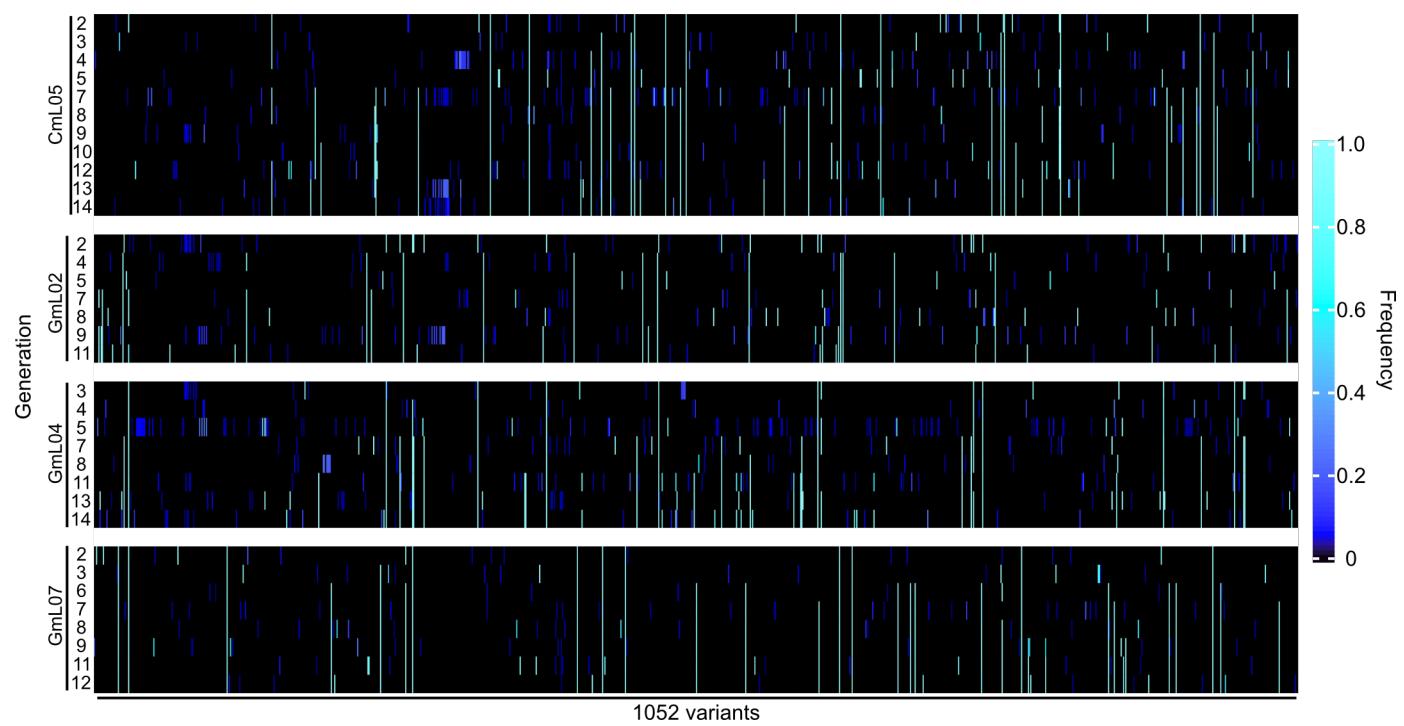
697 **and after improvement of host phenotypes. (a, b)** Venn diagrams showing down-regulated

698 genes **(a)** and up-regulated genes **(b)** after the improvement of host phenotypes. **(c)** Expression

699 levels of genes involved in extracellular matrix (Curli fimbriae) production before and after the


700 improvement of host phenotypes. Asterisks indicate statistically significant differences (FDR

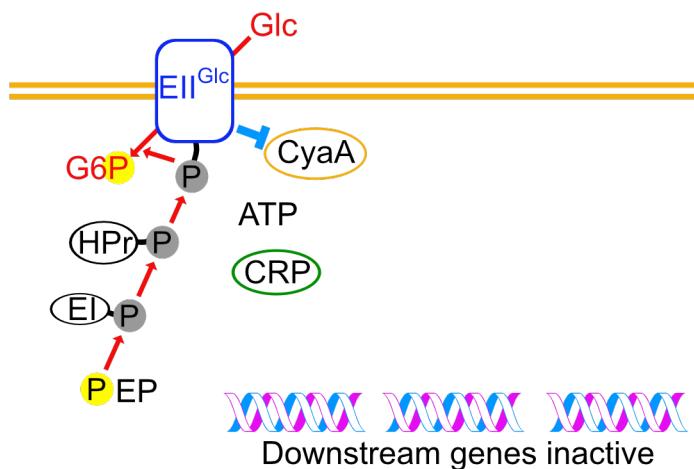
701 q-value < 0.01).


702

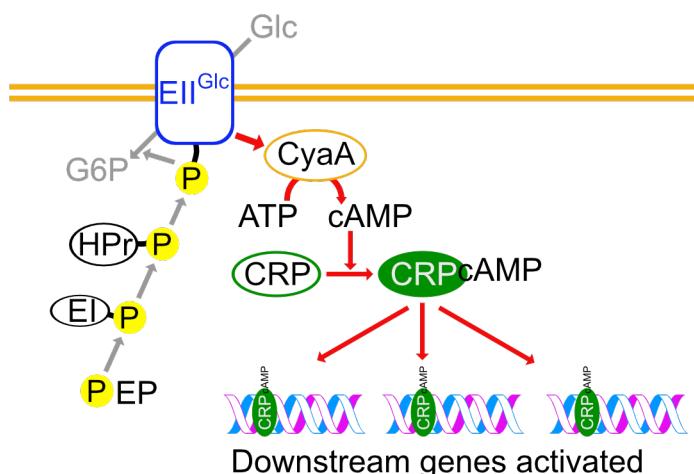
703

704

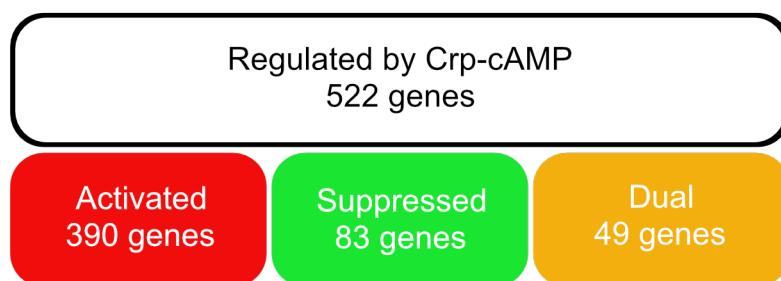
708 **Fig. S8. Mutations in the genomes of evolutionary *E. coli* lines CmL05, GmL02, GmL04**
709 **and GmL07 in the experimental evolutionary course.** Frequencies of 1,052 variants
710 identified in the experimental evolution lines and generations are color-coded. Vertical axis
711 represents the generations of the experimental evolution lines whereas horizontal axis
712 represents an array of 1,052 variants. This figure is the graphical representation of [table S7](#).
713
714
715

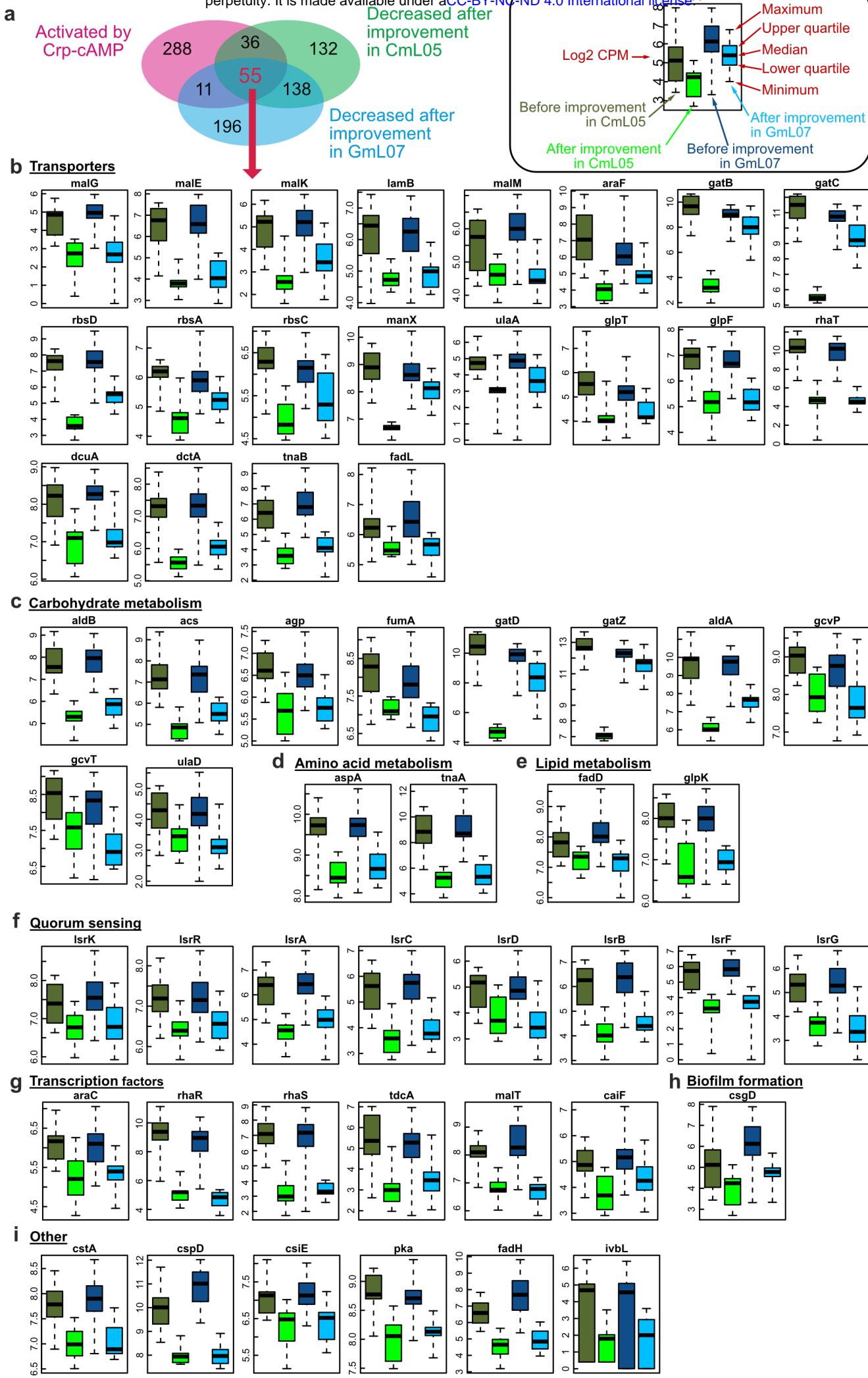

719 **Fig. S9. Carbon catabolite repression (CCR) pathway and Crp-cAMP regulon of *E. coli*.**
720 (a) CCR pathway repressed in the presence of glucose. (b) CCR pathway activated in the
721 absence of glucose. (c) Number of genes constituting the Crp-cAMP regulon of *E. coli*
722 estimated by RegulonDB (20).

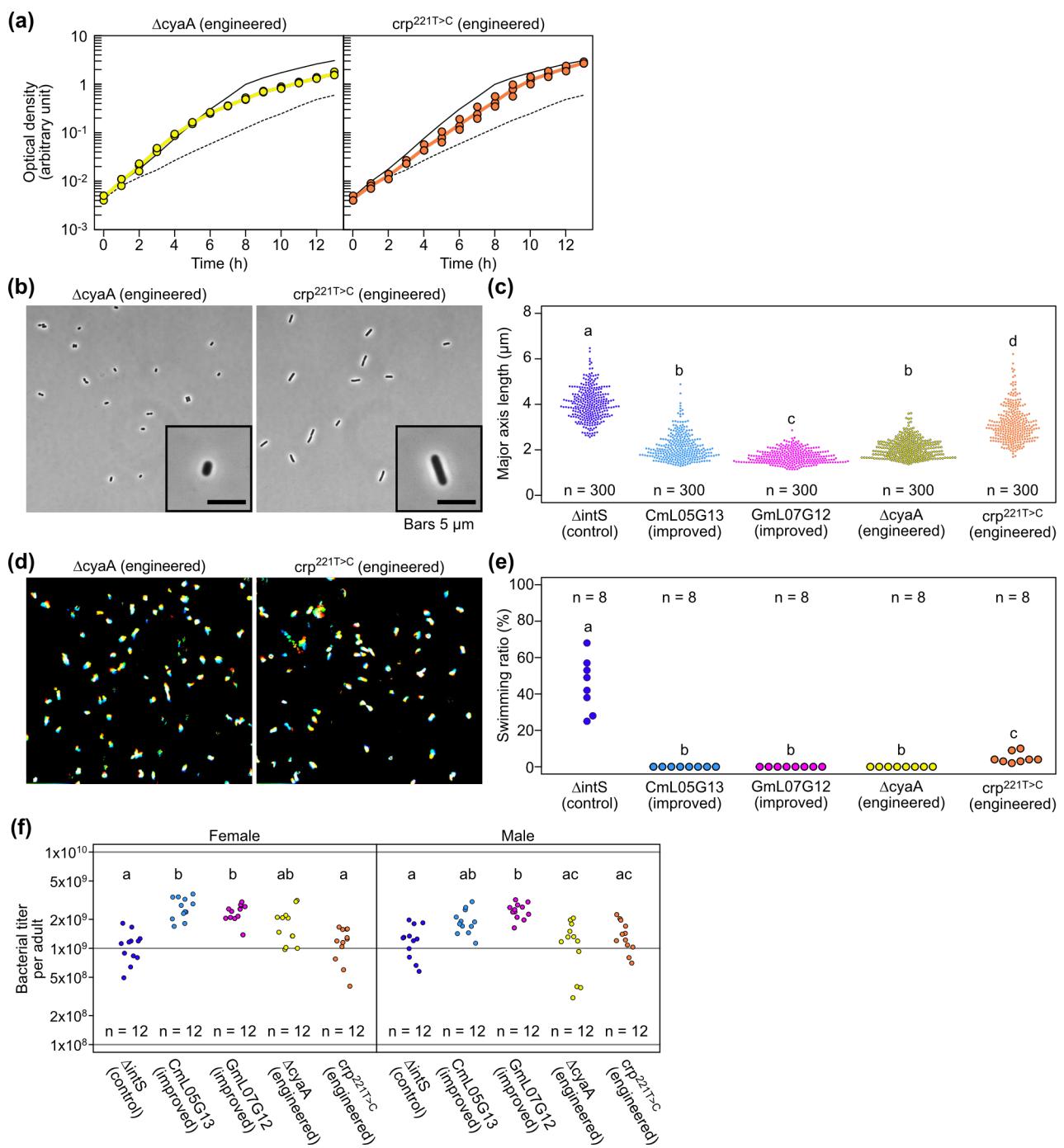
723


724

725


a CCR pathway repressed in the presence of glucose


b CCR pathway activated in the absence of glucose


c Crp-cAMP regulon genes in *E. coli*

729 **Fig. S10. Genes commonly down-regulated in GmL07 and CmL05 after the**
730 **improvement of host phenotypes, and also down-regulated by disruption of Crp-cAMP**
731 **in *E. coli*. (a)** Venn diagram showing the commonly down-regulated genes. **(b-i)** Expression
732 levels of the commonly down-regulated genes in GmL07 and CmL05 after the improvement
733 of host phenotypes. **(b)** Transporter genes. **(c)** Carbohydrate metabolism genes. **(d)** Amino
734 acid metabolism genes. **(e)** Lipid metabolism genes. **(f)** Quorum sensing genes. **(g)**
735 Transcription factor genes. **(h)** Biofilm (= Curli fimbriae) formation genes. **(i)** Other genes.
736
737
738

742 **Fig. S11. Phenotypic traits of Δ cyaA and $crp^{221T>C}$ mutants of *E. coli*.** (a) Growth curves
743 (3 replicates each). Upper solid line is the trace of Δ intS growth curve, whereas lower dotted
744 line is the trace of CmL05 growth curve. (b) Morphology of bacterial cells. (c) Quantification
745 of cell size in terms of major axis length. (d) Motility of bacterial cells visualized by rainbow
746 plot for 2 sec. (e) Quantification of bacterial motility in terms of number of swimming cells
747 per 100 cells observed. (f) Bacterial titers in adult females 35 days after emergence in terms
748 of ntpII gene copies per insect. In (c), (e) and (f), different alphabetical letters indicate
749 statistically significant differences (pairwise Wilcoxon rank sum test: $P < 0.05$).
750
751
752

