

The RNA helicase DDX39B activates FOXP3 RNA splicing to control T regulatory cell fate

Minato Hirano^{1,2,†}, Gaddiel Galarza-Muñoz^{1,3,†}, Geraldine Schott^{1,§}, Liuyang Wang⁴, Chloe Nagasawa^{1,5}, Alejandro L. Antonia⁴, Vaibhav Jain⁶, Xiaoying Yu⁷, Steven G. Widen¹, Farren B.S. Briggs⁸, Simon G. Gregory^{4,6,9}, Dennis C. Ko^{4,10}, W. Samuel Fagg^{1,11}, Shelton S. Bradrick^{1,12,‡,*}, and Mariano A. Garcia-Blanco^{1,12,13,*,§§}.

¹Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.

²National Research Center for the Control ad Prevention of Infectious Disease, Nagasaki University, Nagasaki, Japan.

³Autoimmunity Biologic Solutions, 2200 Market Street, Galveston, Texas, USA.

⁴Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA.

⁵Human Pathophysiology and Translational Medicine Program, Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA.

⁶Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA.

⁷Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, Texas, USA.

⁸Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.

⁹Department of Neurology, Duke University, Durham, North Carolina, USA.

¹⁰Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA.

¹¹Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA.

¹² Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA.

¹³ Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA.

[✉]Correspondence to: Mariano A. Garcia-Blanco (maragarc@utmb.edu) or Shelton S. Bradrick (ssbradri@utmb.edu).

-- Lead contact.

⁸ These authors contributed equally.

^aPresent address: 2654 Quivira Trce, League City, Texas, USA

38 [‡]Present address: Infectious Diseases, Surveillance & Diagnostics Division, MRIGlobal, 425
39 Volker Blvd, Kansas City, MO 64110.
40

41 **Summary:** Genes associated with increased susceptibility to multiple sclerosis (MS) have been
42 identified, but their functions are incompletely understood. One of these genes codes for the
43 RNA helicase DExD/H-Box Polypeptide 39B (DDX39B), which shows genetic and functional
44 epistasis with interleukin-7 receptor- α gene (*IL7R*) in MS-risk. Based on evolutionary and
45 functional arguments we postulated that DDX39B enhances immune tolerance decreasing MS
46 risk. Consistent with such a role we show that DDX39B controls the expression of many MS
47 susceptibility genes and important immune-related genes. Among these we identified *Forkhead*
48 *Box P3* (*FOXP3*), which codes for the master transcriptional factor in CD4 $^{+}$ /CD25 $^{+}$ T regulatory
49 cells. DDX39B knockdown led to loss of immune-regulatory and gain of immune-effector
50 expression signatures. Splicing of *FOXP3* introns, which belong to a previously unrecognized
51 subclass of introns with C-rich polypyrimidine tracts, was exquisitely sensitive to DDX39B
52 levels. Given the importance of FOXP3 in autoimmunity, this work cements DDX39B as an
53 important guardian of immune tolerance.

54

55 **Keywords:** Multiple Sclerosis, Autoimmunity, RNA helicase, DDX39B, Splicing, FOXP3, T
56 regulatory cells

57

58 Autoimmune diseases are caused by a combination of environmental and genetic factors. Genetic
59 factors associated with increased susceptibility to multiple sclerosis (MS), an autoimmune
60 disease of the central nervous system, have been identified, but their mechanisms of action are
61 incompletely understood (Briggs, 2019; International Multiple Sclerosis Genetics, 2019). We
62 established that the association between MS risk and the interleukin-7 receptor- α gene (*IL7R*) is
63 mediated by alternative splicing of *IL7R* transcripts (Gregory et al., 2007). The disease
64 associated allele of the single nucleotide polymorphism (SNP) rs6897932 in exon 6 of *IL7R*
65 strengthens an exonic splicing silencer (ESS) and increases skipping of exon 6 leading to
66 increased production of soluble *IL7R* (s*IL7R*) (Evsyukova et al., 2013; Gregory et al., 2007;
67 Schott et al., 2021). Elevated levels of s*IL7R* have been shown to exacerbate the inducible
68 murine MS-like model experimental autoimmune encephalomyelitis (EAE) and are proposed to
69 increase the bioavailability of *IL7* (Lundstrom et al., 2013). Given the importance of exon 6
70 splicing we identified RNA binding proteins that bind it and impact its splicing, and among these
71 identified the RNA helicase DExD/H-Box Polypeptide 39B (DDX39B) (Evsyukova et al., 2013;
72 Galarza-Munoz et al., 2017).

73 DDX39B, known to RNA biologists as UAP56, plays roles in RNA splicing and
74 nucleocytoplasmic transport (Shen, 2009), but was first discovered by immunologists, who
75 named it BAT1 (Spies et al., 1989) and linked it to autoimmune diseases (Degli-Esposti et al.,
76 1992). We connected the RNA biology and immunology roles of DDX39B showing that it
77 activates splicing of exon 6 and represses production of s*IL7R* (Galarza-Munoz et al., 2017).
78 Furthermore, *DDX39B* shows genetic and functional epistasis with *IL7R* in enhancing MS risk
79 (Galarza-Munoz et al., 2017). Based on these studies we proposed that DDX39B plays protective
80 role in MS and other autoimmune diseases (Galarza-Munoz et al., 2017). The alternative splicing

81 of IL7R exon 6 is conserved only in primates, while *DDX39B* is found in the major
82 histocompatibility complex (MHC) class III region in all vertebrates (Schott and Garcia-Blanco,
83 2021), suggesting that *DDX39B* controls important immune modulators other than IL7R.

84 Here we show that *DDX39B* controls expression of gene products involved in autoimmunity
85 including Forkhead Box P3 (FOXP3), a master regulator of the development, maintenance and
86 function of CD4⁺/CD25⁺ regulatory Tcells (Tregs) (Georgiev et al., 2019; Hori, 2021;
87 Josefowicz et al., 2012) and a repressor of autoimmune diseases (Bennett et al., 2001; Brunkow
88 et al., 2001; Chatila et al., 2000; Wildin et al., 2001). Splicing of FOXP3 introns, which belong
89 to a previously unknown subclass of introns with C-rich polypyrimidine tracts, is strongly
90 dependent on *DDX39B*, making FOXP3 expression highly sensitive to the levels of this RNA
91 helicase.

92

93 **DDX39B controls expression of genes associated with multiple sclerosis risk.** We had
94 previously knocked down *DDX39B* with two independent shRNAs (Sh3 and Sh5) in primary
95 human CD4⁺ T cells from six healthy human donors and shown that *DDX39B* depletion led to
96 increased skipping of IL7R exon 6 (Galarza-Munoz et al., 2017). To identify other RNAs
97 affected by *DDX39B* in these immune relevant cells, we carried out RNA sequencing (RNAseq)
98 of polyadenylated RNA from control and *DDX39B* depleted CD4⁺ T cells from two of these
99 donors (donors 1 and 4). More transcript level changes were detected with Sh3 treatment than
100 with Sh5 treatment ([Fig. S1A](#), [Table S1](#)), which was consistent with Sh3 treatment reducing
101 *DDX39B* RNA levels more profoundly ([Table S1](#)) and *DDX39B* protein levels more
102 consistently (Galarza-Munoz et al., 2017). Therefore, analysis of transcriptome alterations were
103 first carried out by comparing cells depleted of *DDX39B* using Sh3 to cells treated with a control

104 shRNA; however, all results were confirmed with both shRNAs and in samples from multiple
105 human donors.

106 We evaluated the overlap between the 762 transcripts that were significantly altered by Sh3-
107 mediated DDX39B knockdown in CD4⁺ T cells from both donors 1 and 4 (Fig. 1A, Table S2)
108 and 558 putative MS susceptibility genes identified by the International Multiple Sclerosis
109 Genetics Consortium (International Multiple Sclerosis Genetics, 2019). Expression of 421 of
110 these MS susceptibility genes was detected in our RNAseq data and expression of 41 of these
111 was significantly altered by DDX39B depletion (e.g., IL2RA, Fig. S1B). This overlap meant that
112 DDX39B differentially expressed genes (DEG) were highly enriched among MS susceptibility
113 genes ($p = 0.00013$) (Figs. 1B & S1C).

114 Based on eQTL information of the disease associated alleles (Consortium et al., 2017), we
115 classified 250 of the 558 MS susceptibility genes as potentially ‘pathogenic’ since the disease-
116 associated allele also associates with higher gene expression in lymphoblastoid cells, and 262
117 genes as potentially ‘protective’ since the disease-associated allele associates with lower
118 expression of the gene (Fig. S1C & Table S3). We found significantly more overlap than
119 expected by chance between MS pathogenic genes and protective genes with genes upregulated
120 and downregulated upon DDX39B knockdown, respectively ($p = 0.00015$ and $p = 0.03$; Fig.
121 S1D). In contrast, there was no significant overlap when the directional pairing was flipped to
122 compare MS pathogenic genes with those downregulated by DDX39B knockdown ($p = 0.7$) or
123 MS protective genes with those upregulated by DDX39B knockdown ($p = 0.1$) (Fig. S1D). These
124 data strongly suggested a shift of gene expression signature from protective to pathogenic upon
125 DDX39B depletion, and provide support for a protective role for DDX39B in MS risk.

126 **DDX39B controls expression of FOXP3.** Among the 762 transcripts that were significantly
127 altered by Sh3-mediated DDX39B knockdown in T cells from both donors (Fig. 1A, Table S2)
128 we identified Forkhead Box P3 (FOXP3) transcripts. Indeed, FOXP3 transcripts were among 122
129 high confidence targets of DDX39B significantly reduced in CD4⁺ T cells from both donors 1
130 and 4 with both Sh3 and Sh5 (Fig. S1E, Table S1). Given the importance of FOXP3 in the
131 development, maintenance and function of Tregs (Georgiev et al., 2019; Josefowicz et al., 2012),
132 and its strong association with autoimmune diseases (Dominguez-Villar and Hafler, 2018) we
133 investigated this further.

134 Consistent with the measurement from the RNAseq, RT-qPCR showed FOXP3 RNA was
135 reduced in DDX39B-depleted primary CD4⁺ T cells from the two aforementioned donors and
136 those from four additional healthy donors (Fig. 1C). Importantly, FOXP3 protein was decreased
137 in CD4⁺ T cells lysates that had measurable levels of total protein from four of these donors
138 (Figs. 1C & S1F). In blood-derived CD4⁺ T cells FOXP3 is predominantly expressed in
139 CD4⁺/CD25⁺ Tregs (Josefowicz et al., 2012). To address the effect of DDX39B knockdown in
140 Tregs we depleted DDX39B in the MT-2 Treg-like human cell line (Hamano et al., 2015) and in
141 primary human Tregs isolated from two healthy donors (donors 7 and 8) (Liu et al., 2006). As
142 observed in CD4⁺ T cells, knockdown of DDX39B led to loss of expression of FOXP3 RNA and
143 protein in MT-2 cells (Figs. 1D & S1G) and in primary human Tregs (Figs. 1E, S1H & S1I). Our
144 data showed that FOXP3 RNA and protein expression were highly sensitive to DDX39B
145 depletion.

146 **DDX39B depletion disrupts Treg-specific gene expression.** Given the effect of DDX39B
147 knockdown on FOXP3 expression we predicted important alterations in immune relevant gene
148 expression networks (Fig. 2A) and tested this prediction in primary CD4⁺ T cells, Treg-like MT-

149 2 cells and primary Tregs depleted of DDX39B using various approaches. Using Gene Set
150 Enrichment Analysis (GSEA) (Subramanian et al., 2005), we identified gene sets enriched in
151 genes differentially expressed upon DDX39B knockdown in CD4⁺ T cells ([Table S4](#)). Among
152 648 gene sets enriched for genes whose expression was decreased upon DDX39B knockdown
153 (nominal p-value ≤ 0.05), we found many related to immune function, including a gene set of
154 human homologues of murine FOXP3 targets identified by Gavin et al (Gavin et al., 2007) ([Figs.](#)
155 [2B & S2A](#)).

156 To confirm regulation of FOXP3-driven gene expression network by DDX39B in an
157 independent data set, we explored the ConnectivityMap (CMap) database provided by The Broad
158 Institute (Subramanian et al., 2017). CMap is a large-scale catalog of transcriptional responses of
159 human cells to chemical and genetic perturbations that enables the identification of conditions
160 causing similar transcriptional responses. We found that the transcriptional profile of DDX39B
161 knockdown (ID: CGS001-7919) showed significant overlap with that of FOXP3 knockdown (ID:
162 CGS001-50943, [Table S5](#)). These results suggested that the gene expression networks of
163 DDX39B and FOXP3 are tightly linked, and are consistent with our model that DDX39B
164 regulates FOXP3 expression.

165 We evaluated the effect of DDX39B knockdown on FOXP3 targets directly, and established
166 that IL2RA (CD25) and IL10 RNAs were significantly downregulated in DDX39B depleted
167 CD4⁺ T cells and primary Tregs ([Fig. 2C](#)). Other FOXP3 targets behaved differently in these two
168 cell populations, for instance EBI3, ICAM1, and TNFRSF9 were consistently downregulated by
169 DDX39B depletion in CD4⁺ T cells ([Fig. S2B](#)) but not in Tregs ([Fig. S2C](#)), suggesting the
170 existence of FOXP3 independent pathways altered by DDX39B. To complement gene
171 expression analysis, we examined the effect of depleting DDX39B on expression of immune

172 markers and secretion of immune modulators. Cell surface expression of IL2RA (CD25) was
173 decreased in MT-2 cells depleted of DDX39B (Fig. 2D) and levels of secreted IL10 decreased
174 upon knockdown in CD4⁺ T cells and Tregs (Fig. 2E).

175 We explored the effect of DDX39B knockdown on the expression of important
176 transcriptional regulators of different T cell lineages (Fig. 2A). DDX39B knockdown in MT-2
177 cells and primary Tregs decreased expression of TBX21, a transcriptional regulator of T_H1 cells,
178 but increased expression of GATA3, a transcriptional regulator of T_H2 cells (Fig. 2F). DDX39B
179 depletion did not alter expression of RORC, a regulator of T_H17 cells (data not shown). Given
180 the complex composition of T cell populations (Josefowicz et al., 2012) these results have to be
181 carefully interpreted; nonetheless, they suggest the acquisition of gene expression associated
182 with T_H2 cells. The data presented above show that DDX39B activates FOXP3 expression and
183 therefore expression of downstream immune mediators.

184 **Low DDX39B causes FOXP3 intron retention.** We investigated the mechanistic basis for the
185 dependence of FOXP3 RNA accumulation on DDX39B. Since DDX39B plays important roles in
186 constitutive splicing (Fleckner et al., 1997; Kistler and Guthrie, 2001; Shen et al., 2008),
187 alternative splicing (Galarza-Munoz et al., 2017; Nakata et al., 2017), and nucleo-cytoplasmic
188 transport (Gatfield et al., 2001; Huang et al., 2018; Jensen et al., 2001; Luo et al., 2001) we
189 investigated which of these roles was affected in FOXP3 transcripts. We depleted DDX39B in
190 the Treg-like MT-2 cells and biochemically fractionated cytoplasm, nucleoplasm and chromatin
191 (Fig. 3A) to determine which cellular compartment(s) showed reduced FOXP3 transcripts. In
192 control conditions, FOXP3 transcripts were disproportionately found to be associated with
193 chromatin or in the nucleoplasm relative to transcripts coding for the translation elongation
194 factor EEF1A1, and this association was increased for FOXP3 but not EEF1A1 RNAs upon

195 DDX39B knockdown (Fig. 3B). A significant reduction of FOXP3 RNAs was clearly observed
196 in all three cellular fractions (Fig. 3C). These data indicate that the DDX39B effect on FOXP3
197 transcripts occurred early during their biogenesis.

198 Given this early effect, we analyzed changes in FOXP3 RNA splicing. The RNAseq data
199 suggested that DDX39B knockdown in CD4⁺ T cells led to increased retention of FOXP3 introns
200 (Fig. 4A). The DDX39B-sensitive retention of FOXP3 introns was confirmed using FOXP3
201 intron-specific RT-qPCR from total primary CD4⁺ T cell RNA (Fig. 4B), total and chromatin-
202 associated MT-2 RNA (Figs. 4C & S3A), and total Treg RNA (Fig. S3B). Retention of *FOXP3*
203 introns 2, 4, 6, 7, 9, and 11 in DDX39B depleted MT-2 cells was rescued by expression of
204 recombinant DDX39B (Figs. 4D & 4E). FOXP3 protein expression was also rescued although to
205 a lesser magnitude than intron retention (Fig. 4D). We concluded that DDX39B is required for
206 efficient intron removal for several FOXP3 introns and this results in a dramatic decrease in
207 overall levels of FOXP3 RNA and protein.

208 To ascertain if changes in intron retention were seen for other DDX39B targets we
209 examined global changes in alternative splicing upon DDX39B knockdown in our RNAseq data.
210 First and foremost, we noted that only a limited number of splicing events detected by RNAseq
211 were significantly altered by DDX39B depletion (Fig. S3C). As with transcript level changes, we
212 noted more alternative splicing events changing with Sh3 than Sh5, and more with Donor 1 than
213 Donor 4 (Fig. S3C). We detected very few events in common for all conditions, perhaps because
214 of the inefficient knockdown of DDX39B observed in the libraries from cells treated with Sh5
215 and the well-documented heterogeneity of alternative splicing between individuals (Wang et al.,
216 2008). Therefore, most of our analysis focused on events changed by Sh3 in CD4⁺ T cells from
217 Donors 1 and 4 (Fig. S3C & Table S6). Retained introns were the most frequently observed type

218 of RNA splicing event changed (n = 784) with increased retention in 397 introns and decreased
219 retention in 387 (Fig. S3C). The second most common changes were in cassette exon use (n =
220 488), followed by alternative use of 5' and 3' splice sites (Fig. S3C). We conclude that DDX39B
221 regulates levels of splicing of a subset of genes and exerts its control primarily by modulating
222 intron retention as observed for FOXP3 transcripts.

223 **FOXP3 introns have C-rich py tracts.** Since removal of *FOXP3* introns was sensitive to
224 DDX39B levels, we compared *FOXP3* splice sites to those found in introns of other protein
225 coding genes on the X chromosome (Fig 5A). 5' splice sites in *FOXP3* were only modestly
226 weaker than those found in the average gene, whereas 3' splice sites were considerably weaker
227 (Table S7) and this weakness was driven by the composition of the polypyrimidine tract (py
228 tract) (Fig. 5A). *FOXP3* introns contain cytosine (C)-rich py tracts, which on the average are
229 more likely to have a C at each position, except positions -19 and -20 (measured relative to the
230 guanine (G) in the 3' splice site AG marked as position -1) (Figs. 5A & 5B). This contrasts with
231 our analysis of py tracts in other genes on the X chromosome (Figs. 5A & 5B) and previous
232 analysis for all human introns spliced by the major (U2 snRNP dependent) spliceosome (Yeo and
233 Burge, 2004), where the average position in the py tract is most likely to be occupied by uracil
234 (U).

235 Remarkably, C-rich py tracts in *FOXP3* introns are conserved in mammals from both
236 monotreme and theriiformes subclasses, which diverged over 200 million years ago (Tarver et
237 al., 2016) (Fig. 5C). Furthermore, the amphibian *Xenopus laevis* *FOXP3* has a U-poor py tract,
238 although in this case the Us are replaced by all three other nucleotides (Fig. 5C). The zebrafish
239 *Danio rerio* has two *FOXP3* paralogs and py tracts in one of these (*FOXP3a*) trend towards the
240 C-rich py tracts of mammals, while the other (*FOXP3b*) has U-rich tracts (Fig 5C). An

241 examination of *FOX* family genes revealed that close relatives of *FOXP3* diverge in their py
242 tracts, *FOXP4* shares C-rich py tracts, while *FOXP1* and *FOXP2* have U-rich tracts (Fig. 5D).
243 *RBFOX2*, a RNA binding protein and not a member of the *FOX* family of transcription factors, is
244 shown as a phylogenetic outlier (Fig. 5D). C-rich py tracts appear to be the ancestral form in the
245 family as py tracts in the more divergent *FOXN1* are more like those in *FOXP3* and *FOXP4* (Fig.
246 5D). The evolutionary conservation of C-rich py tracts in these *FOX* family genes suggests
247 important regulatory function.

248 **C-rich py tracts determine sensitivity of *FOXP3* introns to DDX39B depletion.** Since we had
249 previously shown that replacement of U residues with C in intronic py tracts inhibits splicing of
250 model pre-mRNA substrates *in vitro* (Roscigno et al., 1993), we posited that the C-rich py tracts
251 in *FOXP3* introns would make these inefficient and highly sensitive to DDX39B levels. To test
252 this we made reporter constructs where *FOXP3* introns interrupted a Renilla luciferase ORF, and
253 splicing efficiency could be inferred by luciferase activity and measured directly using RT-PCR
254 (Fig. 6A). *FOXP3* introns, but not an efficient human β globin intron 2, markedly reduced
255 luciferase expression and splicing of the luciferase reporter (data not shown). Importantly,
256 splicing reporters containing *FOXP3* introns were markedly dependent on DDX39B (Figs. 6B &
257 S4A-C). While conversion of the 5' splice site in *FOXP3* introns 7 and 11 to consensus only
258 modestly relieved DDX39B dependency, replacement of their py tracts with U-rich tracts made
259 these introns insensitive to DDX39B knockdown (Figs. 6B, S4B-C). These findings indicated
260 that weak C-rich py tracts are necessary for the strong DDX39B dependency of *FOXP3* introns.

261 To determine whether or not other DDX39B-sensitive intron retention events shared
262 sequence features with *FOXP3* introns, we analyzed our RNAseq data from DDX39B-depleted
263 CD4⁺ T cells. When 500 randomly selected unaffected introns were compared to 397 introns

264 with increased retention upon DDX39B knockdown with Sh3 in either donor 1 or 4 we found no
265 difference in the 5' splice site maximum entropy score and a modest but statistically significant
266 decrease in the 3' splice site maximum entropy score (Fig. S4D). Since the lower 3' splice site
267 score for FOXP3 introns was driven by the C-rich py tract, we examined the composition of the
268 py tract in DDX39B-sensitive introns. We found that while the frequency of U residues in
269 DDX39B sensitive events was significantly lower than in unaffected events, the frequency of C
270 was significantly higher (Fig. 6C). There was a statistically significant but very small increase in
271 G residues in these C-rich py tracts (Fig. 6C). An equivalent analysis interrogating all intron
272 retention events altered with DDX39B knockdown with both Sh3 and Sh5 led to same
273 conclusion: DDX39B sensitive introns are enriched for introns with C-rich py tracts (Fig. S4E).
274 We concluded that among introns with strong dependence on DDX39B there is significant
275 enrichment for C-rich py tracts.

276 To address whether or not C-rich py tracts are sufficient to make an intron DDX39B
277 sensitive, we analyzed splicing of introns 11, 14 and 19 in the *FOXP1* gene (Fig. S4F), which
278 encodes a homologue of *FOXP3* that contains introns with U-rich py tracts (Figs. 5D & S4F).
279 Retention of *FOXP1* introns 11, 14 and 19 was not increased with DDX39B knockdown in MT-2
280 cells (Fig. S4F). We modified the *FOXP3* intron 11 luciferase reporter replacing the intron with
281 the first and last 75 nucleotides of *FOXP1* intron 19. As expected the *FOXP1* intron 19 reporter
282 was not sensitive to DDX39B knockdown (Fig S4G). We replaced the *FOXP1* intron 19 py tract
283 with that of *FOXP3* intron 11 and noted that this C-rich tract did not confer DDX39B sensitivity
284 on *FOXP1* intron 19 (Fig S4G). *En masse* analysis of the 387 introns that were less retained upon
285 DDX39B depletion also suggested that the presence of a C-rich py tract is not sufficient to confer
286 DDX39B-dependency. Among these introns we detected an increase in the frequency of C-rich

287 py tracts, albeit of smaller magnitude than among more retained introns (Fig. S4H). Therefore a
288 C-rich py tract was required but not sufficient to impart DDX39B-dependency on any intron,
289 indicating the *FOXP3* introns have other elements that cooperate with the C-rich py tract to
290 confer DDX39B-dependency.

291 To further test our conclusions on the role of C-rich py tracts, we interrogated the behavior
292 of introns in other X chromosome genes selected only because they contained either C-rich or U-
293 rich py tracts. Of twelve introns with C-rich py tracts, in *FAM3A*, *PORCN*, *RBM10*, *RENBP*,
294 *CFP* and *G6PD*, all but two, both in the *CFP* gene, were more retained upon DDX39B
295 knockdown in MT-2 cells (Fig. S4I). In contrast, four U-rich py tract introns in *FMR1* and
296 *DDX3X* were tested and were not more retained upon DDX39B depletion (Fig S4I), thereby
297 supporting the requirement of C-rich py tracts for DDX39B-dependency.

298 Collectively, the data presented in this section show that C-rich py tracts are required for the
299 strong DDX39B-dependency of *FOXP3* introns and suggest the existence of a sub-class of
300 introns where the C-rich py tract is required for said dependency.

301 **Splicing of *FOXP3* introns requires the ATPase activity of DDX39B but not its helicase
302 activity.** The py tract is recognized early in the splicing reaction by the U2 small nuclear RNA
303 auxiliary factor (U2AF) composed of U2AF1 (U2AF³⁵) and U2AF2 (U2AF⁶⁵) (Ruskin et al.,
304 1988; Zamore and Green, 1989). U2AF2 binds preferentially to U-rich sequences in the py tract
305 *in vitro* (Singh et al., 1995; Zamore et al., 1992) and this is recapitulated by crosslinking-
306 immunoprecipitation experiments *in vivo* (Wu and Fu, 2015). U2AF2 binds DDX39B, which
307 licenses the U2AF-mediated recruitment of U2 snRNP to the neighboring branchpoint sequence
308 to form the pre-splicesome (Shen et al., 2008). We conjectured that the exquisite dependency of
309 C-rich py tract *FOXP3* introns on DDX39B was mediated by its ability to promote pre-

310 spliceosome formation. Pre-spliceosome formation requires the ATPase activity of DDX39B, but
311 not its helicase activity, which is required for later steps in spliceosome assembly (Shen et al.,
312 2008). While expression of wildtype (WT) DDX39B rescued splicing of FOXP3 intron 11 in
313 DDX39B depleted cells, two ATPase defective mutants, K95A and E197A (Shen et al., 2007),
314 did not rescue splicing (Figs. 7 & S5). On the other hand, the helicase defective DDX39B mutant
315 D199A that retains ATPase activity and supports pre-spliceosome formation (Shen et al., 2008;
316 Shen et al., 2007) rescued FOXP3 intron 11 splicing (Figs. 7 & S5). Of note, the data in Fig. 7
317 indicate that the DDX39B D199A mutant rescued FOXP3 intron 11 splicing even better than the
318 WT DDX39B. This result could be explained by the fact that while the D199A lacks helicase
319 activity, it has higher ATPase activity than WT DDX39B (Shen et al., 2007). These results
320 indicate that the C-rich py tract of FOXP3 intron 11 is highly dependent on the DDX39B
321 ATPase activity and this unique dependency may distinguish its spliceosome assembly pathway
322 from more conventional introns. Nine of eleven FOXP3 introns belong to the C-rich py tract
323 subclass, and are all likely to share this requirement for the DDX39B ATPase activity, which
324 explains why overall FOXP3 expression is exquisitely sensitive to DDX39B levels.

325

326 **Discussion**

327 DDX39B (also known as BAT1) was proposed to be an anti-inflammatory factor (Allcock
328 et al., 2001) and we have shown that *DDX39B* is genetically associated with MS, an autoimmune
329 disease (Galarza-Munoz et al., 2017). Previously we discovered a molecular mechanism that
330 partially explained these phenomena. DDX39B is a potent activator of IL7R exon 6 splicing and
331 a repressor of the production of sIL7R (Galarza-Munoz et al., 2017), which exacerbates the MS-
332 like EAE (Lundstrom et al., 2013). Complementing this molecular analysis, we demonstrated

333 that alleles in DDX39B and IL7R are epistatic relative to MS risk and individuals homozygous
334 for the risk alleles at both loci have an approximately 3-fold higher chance of developing MS
335 (Galarza-Munoz et al., 2017). While this connection between DDX39B and autoimmunity was
336 compelling, evolutionary arguments suggested that this RNA helicase would play other roles in
337 immunity. Our exploration of this suggestion led to the discovery, described above, that
338 DDX39B is exquisitely required for the splicing of FOXP3 transcripts. Low levels of DDX39B
339 lead to low levels of FOXP3 and by inference low numbers of Tregs. CRISPR screens to
340 discover regulators of FOXP3 did not identify DDX39B (Cortez et al., 2020; Loo et al., 2020;
341 Schumann et al., 2020), but this is likely because knockout of DDX39B results in lethality.

342 The connection between FOXP3 and autoimmunity is well established: mutations in FOXP3
343 cause a systemic and severe autoimmune syndrome in humans (IPEX) (Bennett et al., 2001;
344 Chatila et al., 2000; Wildin et al., 2001) and the equivalent (scurfy) in mice (Brunkow et al.,
345 2001). While there is evidence supporting a prominent role for FOXP3 in MS (Fletcher et al.,
346 2009; Sambucci et al., 2018), genetic variation within FOXP3 has yet to be associated with MS
347 largely due to the fact that the X chromosome has been understudied in human genetic
348 association studies. The role of Tregs, which depend on FOXP3 transcriptional control (Hori et
349 al., 2003), on autoimmunity has been carefully documented (Dominguez-Villar and Hafler,
350 2018). Furthermore, it is clear that high expression of FOXP3 is required for full Treg function
351 and there is a FOXP3 dose-dependent effect on immune suppressive activity (Wan and Flavell,
352 2007). Therefore, given the strong dependence of FOXP3 expression on DDX39B levels, it is
353 likely that humans with low levels of DDX39B will have reduced FOXP3 expression and by
354 extension low levels of Treg cell development, maintenance and suppressive function.
355 Furthermore, given our data that DDX39B knockdown promotes GATA3 expression it is

356 possible that low levels of DDX39B could promote the conversion of Tregs to T_H2-like self-
357 reactive effector cells (Komatsu et al., 2014; Noval Rivas et al., 2015; Zhou et al., 2009). The
358 DDX39B control of FOXP3 expression cements its role in immune regulation.

359 There are other intriguing connections between DDX39B and immunity. First, we show that
360 putative MS susceptibility genes are regulated by DDX39B and some are likely regulated
361 independently of effects on FOXP3. Second, DDX39B regulates the nucleocytoplasmic transport
362 of human circular RNAs (circRNAs) larger than 1200 nucleotides (Huang et al., 2018). There is
363 an emerging realization that circRNAs play important, although heretofore incompletely
364 understood roles, in immunity and autoimmune disease (Zhou et al., 2019). Third, *DDX39B*
365 resides in the class III region of the MHC and many of its neighbors code for proteins involved
366 in RNA transactions (e.g., *DXO* and *SKIV2L*) (Lehner et al., 2004; Schott and Garcia-Blanco,
367 2021). This overrepresentation of genes involved in RNA metabolism within the class III region
368 is found in all vertebrates we have examined, suggesting an important immune function for these
369 RNA binding proteins. These observations, first revealed by studying DDX39B, suggest new and
370 interesting connections between RNA and immunity.

371 DDX39B, which is also known as UAP56, was characterized as a factor required for
372 formation of splicing complexes (Fleckner et al., 1997; Shen et al., 2008). Here we describe a
373 subclass of introns that have C-rich py tracts and depend on high levels of DDX39B for splicing.
374 Although these py tracts are poor binding sites for U2AF2 (Singh et al., 1995), we observed that
375 these introns depend on this splicing factor (Hirano et al., data not shown), and thus propose that
376 DDX39B driven U2 snRNP binding to the branchpoint sequence stabilizes U2AF2 at these
377 suboptimal sites. We suggest that for these introns the U2 snRNP complex may be the first
378 splicing commitment complex, which would be distinct from U2 snRNP-independent

379 commitment complexes in introns with U-rich py tracts (Jamison et al., 1992; Li et al., 2019;
380 Seraphin and Rosbash, 1989). Our studies indicate that these introns are exceedingly sensitive to
381 DDX39B ATPase activity, but are impervious to its helicase activity. Shen et al showed that
382 DDX39B ATPase activity, but not helicase activity, is required for binding of U2AF and
383 recruitment of U2 snRNP to the branchpoint sequence of the 3' splice site to form the pre-
384 spliceosome (Shen et al., 2008). This suggests that once bound to the branchpoint sequence and
385 py tract in these C-rich introns, the U2 snRNP-U2AF complex does not require further
386 remodeling by DDX39B. In contrast to this, activation of IL7R exon 6 requires DDX39B
387 helicase activity (Galarza-Munoz et al., 2017). Our data thus indicate distinct functions for
388 DDX39B in different splicing events, which implies multiple pathways to spliceosome assembly
389 as has been suggested before (Kistler and Guthrie, 2001; Newnham and Query, 2001). An
390 intriguing possibility is that FOXP3 introns, and perhaps many introns with C-rich py tracts, are
391 actually prone to intron 'detention' rather than retention and that certain stimuli may free them
392 from DDX39B dependency (Boutz et al., 2015).

393

394 **Acknowledgments**

395 We thank Drs. Paul Boutz (Rochester) and Harinder Singh (Pittsburgh) for excellent suggestions
396 on an early draft of this manuscript. We acknowledge members of our laboratories for excellent
397 discussions and comments to improve the science and the manuscript (MGB, SSB, SGG, DCK).
398 WSF thanks John Paul Donohue (RNA Center for Molecular Biology, UC-Santa Cruz) for expert
399 advice on the analysis of RNA sequencing data. MGB thanks Drs. Michael Sheetz and Linda
400 Kenney (UTMB) for use of their house in Santa Fe, NM to write the final draft of this
401 manuscript.

402 **Funding:** We acknowledge support from the Uehara Foundation Fellowship and McLaughlin
403 Postdoctoral Fund (MH), NIH F32 NS087899 (GGM), Duke Neurology startup and Stone family
404 funds (SGG), KL2 TR001441-07 (WSF), R21AI133305 (DCK and LW), Duke MGM Start-up
405 funds (DCK), R01 CA204806 (MGB), UTMB startup funds (MGB), and P01 AI150585 (MGB).

406 **Author contributions:** Conceptualization: MH, GGM, WSF, LY, DCK, SSB, and MGB
407 contributed to conceptualization of the manuscript. Data acquisition and initial interpretation:
408 MH contributed to Figs. 1,2,5-7 and related supplementary material, and worked with XY to
409 carry out statistical analyses of data involving donor samples. GGM contributed to Figs. 1-4 and
410 related supplementary materials. LW contributed data to Fig. 1 and related supplementary
411 materials. AA contributed data to Fig. 2. XY contributed to all statistical analysis of donor
412 samples in Figs. 1, 2 and related supplementary materials. SW carried out the bulk RNA
413 sequencing and contributed to its analysis. GS contributed Figs. 1 and 4. CN contributed to Fig.
414 S4. WSF contributed to Figs. 1, 3 and 4, and related supplementary material. SSB contributed to
415 Figs. 3 and 6 and related supplementary material. Writing, Review, Editing and Visualization:
416 MH and MGB wrote the first draft and designed the figures, which were created primarily by

417 MH with contributions from GGM and many other authors. All the other authors contributed to
418 editing and discussion. MGB assembled edits from co-authors and prepared the final draft of the
419 manuscript. **Supervision and analysis:** All authors contributed to analysis and interpretation of
420 the data, WSF and SW analyzed the raw RNA seq data, DCK, FB, & SGG supervised analysis of
421 data in Fig. 1. SSB and MGB supervised all the studies and participated in the analysis of all the
422 data presented.

423 **Competing interests:** GGM and MGB acknowledge that they have significant ownership in
424 Autoimmunity Biologic Solutions, Inc (Galveston, TX), which is commercializing therapies that
425 target the IL7R pathway in autoimmune diseases. While we do not believe this represents a
426 conflict of interest it can lead to the perception of said conflict.

427 **Data and materials availability:** There will be no restriction on any material described in this
428 manuscript. The bulk RNA sequencing datasets have been uploaded to the Gene Expression
429 Omnibus with accession number GSE145773. All data are available in the main text,
430 supplementary materials or will be made available upon request.

431

432 **Materials and Methods**

433

434 **Cells**

435 MT-2 cells were kindly provided by Bryan R. Cullen (Duke University) and grown at 37°C in
436 Roswell Park Memorial Institute (RPMI) 1640 medium (Thermo Fisher Scientific) with 10%
437 (v/v) fetal bovine serum (FBS) (Genesee Scientific) and 1% (v/v) penicillin-streptomycin
438 (Thermo Fisher Scientific). Human embryonic kidney 293T/17 (HEK 293T/17; ATCC CRL-
439 11268) and HeLa (ATCC CCL-2) cell lines were obtained from the Duke University Cell
440 Culture Facility. The HeLa Flp-In T-Rex cell line (HeLa-Flp-In) was kindly provided by Dr. E.
441 Dobrikova (Duke University). HEK293T/17, HeLa, and HeLa-Flp-In cells were cultured at 37°C
442 in Dulbecco's Modified Eagle Medium (DMEM) (Thermo Fisher Scientific) with 10% (v/v)
443 FBS, 1% (v/v) penicillin-streptomycin and 2.5 µg/ml Plasmocin (InvivoGen). HeLa_Flp-In cell
444 lines expressing wild-type or mutant versions of DDX39B (K95A, E197A and D199A) were
445 grown as described above except media was supplemented with 2.5 µg/ml blasticidin
446 (InvivoGen) and 200 µg/ml Hygromycin B (Thermo Fisher Scientific). All cells were free of
447 Mycoplasma contamination as confirmed by routine testing using the MycoAlert Mycoplasma
448 Detection Kit (Lonza).

449

450 Primary human CD4⁺ T cells were isolated and cultured as described previously (Galarza-Munoz
451 et al., 2017). In brief, peripheral blood mononuclear cells (PBMCs) from healthy donors were
452 isolated from whole blood or buffy coats using the Ficoll-Plaque Gradient method. Blood
453 samples were collected at Duke University following the institutional IRB protocol (#

454 Pro00070584) and buffy coats were purchased from the New York Blood Center. CD4⁺ T cells
455 were further isolated using CD4⁺ T cell isolation kit (Miltenyi Biotec). The isolated cells were
456 cultured in RPMI medium supplemented with 20% (v/v) FBS and 100 ng/mL human
457 recombinant IL-2 (Peprotech). Two days prior to transduction, CD4⁺ T cells or MT-2 cells were
458 activated with media containing 50 ng/mL anti-CD3 (eBioscience) and 100 ng/mL anti-CD28
459 (BD Biosciences) antibodies.

460

461 Primary human T regulatory cells (Tregs) were isolated from PBMCs using CD4⁺ CD25⁺
462 CD127^{dim/-} Regulatory T Cell Isolation Kit (Miltenyi Biotec). The isolated Treg cells were
463 expanded in culture for 14 days with TexMACS medium (Miltenyi Biotec) supplemented with
464 5% (v/v) Human AB Serum (Sigma), 500 IU/mL recombinant human IL2 (PeproTech) and Treg
465 Expansion kit (Miltenyi Biotec) which contains beads pre-loaded with anti-CD3 and anti-CD28
466 antibodies.

467

468 **Plasmids**

469 shRNA pLKO.1 plasmids expressing non-targeting control shRNA (NTC: SHC002) or anti-
470 DDX39B shRNAs (Sh3: TRCN0000286976; and Sh5: TRCN0000294383) were purchased from
471 Millipore Sigma. The construct pLCE-DDX39B was generated by cloning the coding sequence
472 of *DDX39B* into the pLCE vector. Splicing reporter plasmids (pcDNA3.1-RLuc_FOXP3 Intron
473 7, pcDNA3.1-RLuc_FOXP3 Intron 9, pcDNA3.1-RLuc_FOXP3 Intron 11, and pcDNA3.1-
474 RLuc_HGB1 Intron 2) were constructed by inserting introns 7, 9 or 11 of FOXP3 (NC_000023),
475 or intron 2 of HGB1 (NC_000011) within the open reading frame of *Renilla Luciferase* (RLuc)

476 at nucleotide positions 599, 601, 408 or 253, respectively, in the pcDNA3.1 vector (pcDNA3.1-
477 RLuc). Splice sites (SS) mutations were introduced in the corresponding parental plasmid using
478 In-Fusion HD Cloning kit (Takara Bio) to generate pcDNA3.1-RLuc_FOXP3 Intron 7 5'-SS G-
479 U, pcDNA3.1-RLuc_FOXP3 Intron 7 3'-SS PolyU, pcDNA3.1-RLuc_FOXP3 Intron 11 5'-SS
480 G-U, and pcDNA3.1-RLuc_FOXP3 Intron 11 3'-SS PolyU. To construct pcDNA3.1-
481 RLuc_FOXP1 Intron 19 WT and 3' C-rich py tract mutant, synthesized DNA fragments with the
482 FOXP1 intron sequences (NG_028243.1) were purchased from Integrated DNA Technologies
483 and were subcloned into the pcDNA3.1-RLuc plasmid. Point mutants DDX39B K95A, E197A
484 and D199A were introduced in the parental pcDNA5/FRT/TO-DDX39B plasmid (Galarza-
485 Munoz et al., 2017) using QuickChange Lightning Mutagenesis Kit (Agilent Technologies). All
486 constructs and mutations were confirmed by Sanger sequencing. Primers used to generate these
487 constructs are shown in [Table S8](#).

488

489 **Establishment of stable cell lines**

490 Generation of the inducible HeLa cell line expressing wild-type DDX39B or DDX39B mutant
491 D199A was described previously (Galarza-Munoz et al., 2017). HeLa cell lines stably expressing
492 DDX39B mutants (K95A and E197A) were constructed similarly. In brief, HeLa Flp-In T-Rex
493 cells were co-transfected with these constructs in the pcDNA5/FRT/TO plasmid and pOG44
494 plasmid, which encodes Flp recombinase, using Lipofectamine 2000 (Thermo Fisher Scientific).
495 Transfected cells were selected with 2.5 µg/ml blasticidin and 200 µg/ml Hygromycin B for 15
496 days. Expression of the transgene was induced by addition of 1 µg/mL doxycycline in the
497 culturing media.

498

499 **Lentiviral packaging**

500 Lentiviral packaging of shRNA constructs was conducted in 293T/17 cells using Lipofectamine
501 2000 (Thermo Fisher Scientific). In brief, 1.0×10^7 293T/17 cells were seeded in 15-cm dishes
502 in DMEM media and cultured overnight (three 15-cm dishes per construct). Cells were co-
503 transfected with 17 μ g of the corresponding shRNA pLKO.1 vector, pLCE-DDX39B or pLCE-
504 GFP, 17 μ g of packaging plasmid (pCMVR8.74) and 7 μ g of VSV-G envelope plasmid
505 (pMD2.G) in serum-free media and 160 μ L of Lipofectamine 2000. The media was replaced
506 with 20 mL fresh DMEM media 18 hr post-transfection. After 72 hr, supernatants were
507 collected, filtered through 0.45 mm filters and concentrated to 6 mL in Amicon Ultra 100K
508 centrifugal filter units (Millipore Sigma). Concentrated lentiviral particles were used
509 immediately or stored at -80°C.

510

511 **Lentiviral transduction of human primary CD4⁺ T cells, MT-2 cells and primary Tregs**

512 Transduction of human primary CD4⁺ T cells with either NTC or anti-DDX39B shRNAs was
513 described previously.(Galarza-Munoz et al., 2017) In brief, 4.0×10^6 activated primary CD4⁺ T
514 cells from each donor were transduced in T25 flasks with lentiviruses encoding control (NTC) or
515 DDX39B-targeting (Sh3 or Sh5) shRNAs for 3 days, and transduced cells were selected under
516 medium supplemented with 1.5 μ g/mL puromycin for 4 days. Cells were then cultured for 24
517 hours in the absence of puromycin and collected for functional analyses (8 days after initial
518 transduction). Transduction of activated MT-2 cells (1.0×10^7 cells) was carried out as for
519 primary CD4⁺ T cells. Activated primary Tregs (1.0×10^5 cells) were transduced in 96 well
520 plates and cultured for 7 days with half media exchange every 2 days (without puromycin

521 selection). In all cell types, depletion of DDX39B protein was confirmed by western blot using
522 anti-UAP56 (DDX39B) antibody (ab18106, Abcam) and α -Tubulin (AB_1904178, Cell
523 Signaling Technology) or PTBP1 (anti-PTB rabbit serum (Wagner and Garcia-Blanco, 2002)) as
524 loading control.

525

526 **DDX39B rescue in MT-2 cells**

527 To rescue DDX39B expression in MT-2 cells, 1.0×10^7 cells were co-transduced with the
528 following combination of shRNAs and expression plasmids for 3 days: (i) NTC shRNA + pLCE-
529 GFP (control), (ii) Sh5 shRNA + pLCE-GFP (knockdown), and (iii) Sh5 shRNA + pLCE-
530 DDX39B (rescue). The cells were then selected with RPMI medium supplemented with 1.5
531 μ g/mL puromycin for 2 days, followed by 24-hour culture in the absence of puromycin, and
532 collection of cell lysates for RNA and protein analyses (6 days after initial transduction). We
533 used the DDX39B shRNA Sh5 since it targets the 3' untranslated region of DDX39B mRNA,
534 and thus it depletes the endogenous DDX39B mRNAs but not the trans-gene DDX39B mRNAs.
535 Depletion or rescue of DDX39B protein was confirmed by western blot using anti-UAP56
536 (DDX39B) antibody (ab18106, Abcam) and α -Tubulin (AB_1904178, Cell Signaling
537 Technology) as loading control.

538

539 **RNA-seq library preparation, sequencing and analyses**

540 Total RNA was isolated from control (NTC) or DDX39B-depleted (Sh3 or Sh5) CD4 $^+$ T cells
541 using ReliaPrep RNA Cell Miniprep System (Promega), and treated in-column with DNase I
542 following the manufacturer's recommendations. Poly-A $^+$ RNA was enriched from 1 μ g of total

543 RNA and used as template to generate libraries using the Illumina TruSeq platform as
544 recommended by the manufacturer. Libraries were sequenced on a 2x100 paired-end format on
545 an Illumina Hi-Seq 1500. Reads were aligned to the human GRCh38 reference with program
546 STAR version 2.5.2b, using the parameters recommended for the ENCODE consortium
547 (Consortium, 2011) (Dobin et al., 2013). The STAR genome index was built from the
548 GENCODE primary genome assembly and the corresponding primary annotation file. Gfold
549 software, version 1.1.4, with default parameters was used to count reads per gene and estimate
550 expression differences between treatments. The GENCODE V24 basic annotation file was used
551 for the gene counts. In order to determine significantly changed transcript abundance, an initial
552 cutoff was used to discard transcripts averaging an RPKM of less than 2, then with a secondary
553 cutoff of $|GFold\ value| \geq 0.3$ or ≥ 0.1 (for Sh3 or Sh5, respectively, compared to NTC from the
554 same donor). A lower cutoff was used for Sh5 since it was less effective than Sh3 at knocking
555 down DDX39B. Finally, only transcripts fulfilling these parameters in both Donor 1 and Donor 4
556 were included as significantly changed (see Table S1).

557

558 Splicing analysis was carried out using Vast-tools program version 0.2.1 (Irimia et al., 2014) by
559 aligning the paired-end reads to the Vast-tools human database (vastdb.hsa.7.3.14) using the
560 default parameters. The Sh3-treated sample from each donor were compared using the
561 differential function of vast-tools to determine changes in splicing relative to NTC in the same
562 donor. Subsequently, we used the minimum value of change percent spliced in at 95%
563 confidence interval value (MV|dPSI|; <https://github.com/vastgroup/vast-tools>) to filter for
564 significantly changed events using 0.15 as cutoff (Table S6).

565

566 **MS susceptibility gene enrichment analysis**

567 The study by the International Multiple Sclerosis Genetics (IMSG) Consortium (International
568 Multiple Sclerosis Genetics, 2019) identified single nucleotide polymorphisms (SNPs)
569 genetically and/or functionally associated with increased MS risk, from which a map of MS
570 susceptibility genes was determined. We created a functional classification of the MS
571 susceptibility genes (the genes with exonic or intronic SNPs, or cis-eQTL, MS_Susceptibility:
572 558 genes) (see supplemental tables 7 & 19 in (International Multiple Sclerosis Genetics, 2019)),
573 in lymphocytes based on expression quantitative trait loci (eQTL). Gene expression profiles of
574 the MS susceptibility genes in EBV-transformed lymphocytes were obtained from GTExPortal
575 (Consortium et al., 2017) and merged with data of odds ratios (OR) of MS risk to generate risk
576 SNP and susceptibility gene pairs. Pairs of SNPs and genes with missing expression profiles
577 were excluded from the analysis. A list of 539 pairs of SNPs and genes was generated ([Table S3](#)). If the MS risk allele (OR > 1) showed higher expression of the corresponding susceptibility
578 gene (Normalized expression: NES < 0) in the lymphoblastoid cells, that gene was defined as a
579 pathogenic MS gene (MS_Pathogenic: 250 genes). If the MS risk allele (OR >1) showed lower
580 expression of the corresponding susceptibility gene (NES > 0), that gene was defined as a
581 protective MS gene (MS_Protective: 262 genes).
582

583

584 In order to estimate enrichment of differentially expressed genes (DEGs) in pre-determined MS
585 gene sets, we used a simulation method. We determined DEGs in two donors with the shRNA
586 that effectively knocked down DDX39B, Sh3, based on the Gfold method (Feng et al., 2012)
587 with a cutoff of Gfold value change > 0.3. The observed number of DEGs found in the MS gene
588 set, k, was calculated by intersecting DEGs with each MS gene set (MS_Susceptibility,

589 MS_Pathogenic, or MS_Protective). We then calculated enrichment using a resampling method.
590 We constructed a sampling distribution for the null hypothesis (X) by randomly resampling n_1
591 genes from N, and counting the number of genes overlapping with each MS gene list n_2 over
592 100,000 permutations. An empirical p value was calculated based on the fraction of instances
593 that simulated (X) was greater than or equal to the actual observed value of k for each MS gene
594 set.

595

596 **RT-qPCR analysis of RNA expression**

597 Total RNA was isolated from control or DDX39B-depleted cells using ReliaPrep RNA Cell
598 Miniprep System (Promega) or Direct-zol RNA kit (Zymo Research), and treated in-column with
599 DNase I following the manufacturer's recommendations. Reverse transcription was conducted
600 with random primers using the High Capacity cDNA Reverse Transcription Kit (Thermo Fisher
601 Scientific). DDX39B and FOXP3 RNA levels were measured by real-time quantitative PCR
602 (RT-qPCR) using PowerUP SYBR Green Master Mix (Thermo Fisher Scientific) in a
603 StepOnePlus Real-Time PCR System (Thermo Fisher Scientific). *EEF1A1* was used as
604 normalization control since its expression was not affected by DDX39B depletion.

605

606 Genes whose expression was found to be differentially expressed upon DDX39B depletion in the
607 RNAseq dataset in primary CD4⁺ T cells were analyzed by RT-qPCR in control (NTC) or
608 DDX39B-depleted (Sh3 and Sh5) primary CD4⁺ T cells (from 6 donors), MT-2 cells and primary
609 Tregs (from 2 donors). Target genes and primers are shown in Table S8. The data were

610 normalized to *EEF1A1* expression. Differentially expressed genes were determined by
611 comparing levels in DDX39B-depleted cells versus control cells.

612

613 **Western blot analysis of DDX39B and FOXP3 protein expression**

614 Whole cell lysates from control (NTC) or DDX39B-depleted (Sh3 and Sh5) cells were collected
615 in 1 X RIPA buffer (150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, and 50
616 mM Tris-HCl at pH 7.5) freshly supplemented with 1X protease inhibitors (Roche). The cell
617 lysates were quantified by bradford and equal amount of total protein was loaded per lane on
618 NuPAGE 4%–12% Bis-Tris pre-cast gels (Life Technologies), transferred to nitrocellulose
619 membranes (Whatman), and blotted using standard protocols with antibodies against DDX39B
620 (ab18106, Abcam), FOXP3 (AB_467554, Thermo Fisher Scientific), and either PTB or α -
621 Tubulin (AB_1904178, Cell Signaling Technology) as loading control.

622

623 **Gene-set Enrichment Analysis (GSEA)**

624 To conduct GSEA analysis with our RNAseq data set in primary CD4 $^{+}$ T cells, we generated a
625 gene list from the control condition (NTC: Donor1-NTC, Donor4-NTC) and a gene list from the
626 DDX39B knockdown condition (KD: Donor1-Sh3, Donor4-Sh3). All the genes that passed the
627 initial cutoff (RPKM of ≥ 2 in both NTC libraries) were used. GSEA was conducted with the C2
628 curated genesets collections of Molecular Signatures Database (Subramanian et al., 2005).
629 Among 5501 genesets in the C2 collection, 730 genesets passed the cutoff of the nominal p-value

630 (p < 0.05). Of these, 648 and 82 genesets showed enrichment to NTC and KD groups,
631 respectively (Table S4).

632

633 **Flow Cytometry analysis**

634 8.8 × 10⁶ MT-2 cells were cultured in 6 well plates and transduced with lentiviruses as described
635 above. Control (NTC) or DDX39B-depleted (Sh3 and Sh5) MT-2 cells were fixed and
636 permeabilized with True-Nuclear Transcription Factor Buffer Set (BioLegend). The
637 permeabilized cells were stained with antibodies against FOXP3 conjugated with Alexa Fluor
638 647 (AB_2539534, Thermo Fisher Scientific), CD25 (IL2RA) conjugated with Alexa Fluor 488
639 (AB_493044, BD Biosciences) or fluorophore-matched isotype control. For each sample, 10,000
640 events were recorded on a Guava Easy-Cyte System (Millipore Sigma) and forward scatter
641 (FCC), side scatter (SSC) and fluorescence intensity parameters were extracted. Mean
642 fluorescence intensity (MFI) for each target was determined and plotted using FlowJo software
643 (BD Biosciences).

644

645 **Measuring IL10 in DDX39B-depleted cells**

646 Secreted IL10 from control (NTC) or DDX39B-depleted (Sh3 and Sh5) primary CD4⁺ T cells
647 and Tregs was measured by Luminex cytokine profiling analysis of supernatants of cultured
648 cells. In brief, 24 hours prior to collection, the cell medium was replaced with fresh medium free
649 of supplements. At the time of collection, supernatants were collected on ice and stored at -80°C
650 until analysis. Multiplex cytokine profiling was carried out on a Luminex MAGPIX system

651 (Luminex) using the Milliplex Human Premixed 41 Plex Immunology Multiplex panel
652 (Millipore Sigma) following the manufacturer's recommendations.

653

654 **Subcellular Fractionation of MT-2 cells**

655 Subcellular fractionation of MT-2 cells was conducted following a protocol described previously
656 (Bhatt et al., 2012) with minor modification. Control (NTC) or DDX39B-depleted (Sh3 and Sh5)
657 MT-2 cells were washed with Phosphate-buffered saline (PBS), then lysed in NP40 cytoplasmic
658 lysis buffer [0.075% (v/v) NP-40, 20 mM Tris-HCl pH7.5, 150 mM NaCl, 1mM DTT, and 1X
659 protease inhibitor] for 2.5 minutes on ice. Cell lysates were then layered on top of a sucrose
660 cushion [24% (w/w) sucrose, 20 mM Tris-HCl pH7.5, 150 mM NaCl, 1mM DTT, and 1X
661 protease inhibitor] and centrifuged at 14,000 rpm for 10 min. For further separation of
662 nucleoplasm and chromatin, the pelleted nuclei were treated with glycerol nucleoplasm lysis
663 buffer [50% (v/v) Glycerol, 20 mM Tris-HCl pH7.5, 75 mM NaCl, 0.5 mM EDTA, 1 mM DTT
664 and 1X protease inhibitor], mixed gently, and treated with urea nuclei lysis buffer [1% (v/v) NP-
665 40, 1M Urea, 20 mM HEPES pH7.5, 1 mM DTT, 7.5 mM MgCl₂, 0.2 mM EDTA and 1X
666 protease inhibitor] for 2 minutes on ice, followed by centrifugation at 14,000 rpm for 2 min.
667 Supernatants were collected as nucleoplasm fraction and the pellets were collected as the
668 chromatin fraction. Successful separation of subcellular compartments was confirmed by western
669 blot with antibodies against markers of the different compartments: cytoplasmic α-Tubulin
670 (AB_1904178, Cell Signaling Technology), nucleoplasmic Nucleolin (AB_533406, Bethyl
671 Laboratories), and chromatin-associated hnRNP C (AB_627731, Santa Cruz Biotechnology).
672 RNA was isolated from each fraction using Direct-zol RNA kit (Zymo Research), and 200 ng of
673 RNA from each compartment was used for reverse transcription with random primers as above.

674 The abundance of FOXP3 and EEF1A1 RNAs were quantified in each fraction by RT-qPCR and
675 normalized to total RNA as above. The percentage of EEF1A1 and FOXP3 RNA in each
676 compartment was calculated by dividing by the corresponding total signal from the three
677 compartments.

678

679 **RT-qPCR analysis of retained introns in FOXP3, FOXP1 and other RNAs**

680 To quantify intron retention events, we designed RT-qPCR primers to amplify total FOXP3
681 transcripts (constitutive exon 11), spliced FOXP3 transcripts (spanning the exon-exon junction
682 between constitutive exons 10 and 11) and retained intron-containing FOXP3 transcripts: intron
683 2 (spanning the intron 2/exon 3 junction), intron 4 (spanning the intron 4/exon 5 junction), intron
684 6 (spanning the exon 6/intron 6 junction), intron 7 (spanning the intron 7/exon 8 junction), intron
685 9 (spanning the exon 9/intron 9 junction) or intron 11 (spanning the intron 11/exon 12 junction)
686 (Table S8). Likewise, we designed primers to amplify total FOXP1 transcripts (within
687 constitutive exon 21) and FOXP1 transcripts with retained introns: intron 11 (spanning intron
688 11/exon 12 junction), intron 14 (spanning intron 14/exon 15 junction) or intron 19 (spanning
689 intron 19/exon 20 junction). Retained intron values were normalized to the corresponding total
690 FOXP3 or FOXP1 RNA, and the data for DDX39B-depleted (Sh3 or Sh5) primary CD4⁺ T cells,
691 MT-2 cells or primary Tregs is presented as fold-change over control (NTC). For the rescue
692 experiments of endogenous DDX39B-depletion in MT-2 cells, cells transduced with NTC and
693 GFP lentiviruses were used as controls. Detections of retained introns in FAM3A, PORCN,
694 RBM10, RENBP, CFP and G6PD (C-rich py tracts) or FMR1 and DDX3X (U-rich py tracts)
695 were conducted in the same manner. All primers used for this analysis are shown in Table S8.

696

697 **Phylogenetic analysis of the *FOXP3* gene**

698 The evolutionary history of the *FOXP3* gene was inferred by using the Maximum Likelihood
699 method based on the Tamura-Nei model (Tamura and Nei, 1993), and a phylogenetic tree was
700 generated with MEGA7 software (Kumar et al., 2016). The percentage of trees in which the
701 associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic
702 search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix
703 of pairwise distances estimated using the Maximum Composite Likelihood approach, and then
704 selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch
705 lengths measured in the number of substitutions per site. The analysis involved 15 genomic
706 sequences of *FOXP3*, *FOXP3a* and *FOXP3b* gene from different vertebrate organisms:

707 Human_ENSG00000049768, Gorilla_ENSGGOG00000000913,
708 Macaque_ENSMMUG00000008624, Tarsier_ENSTSYG00000035932,
709 Microbat_ENSMLUT00000005714.2, Mouse_ENSMUSG00000039521,
710 Rat_ENSRNOG00000011702, Cow_ENSBTAG00000013279, Dog_ENSCAFG00000015934,
711 Elephant_ENSLAFG00000003504, Opossum_ENSMODG00000009847,
712 Platypus_ENSOANG00000013584, Xenopus_ENSXETG00000031498,
713 Zebrafish_FOXP3a_ENSDARG00000055750, and
714 Zebrafish_FOXP3b_ENSDARG00000078279.

715 Likewise, the evolutionary history of the *FOX* family gene was inferred by using the Maximum
716 Likelihood method as described above. The analysis involved 12 protein-coding sequences of
717 human FOX family genes (FOXA1: ENST00000250448.3, FOXD1: ENST00000615637.3,
718 FOXE1: ENST00000375123.4, FOXF1: ENST00000262426.6, FOXH1: ENST00000377317.4,
719 FOXN1: ENST00000226247.2, FOXO1: ENST00000379561.6, FOXP1: ENST00000318789.9,

720 FOXP2: ENST00000350908.9, FOXP3: ENSG0000004976, FOXP4: ENST00000373063.7, and
721 RBFOX2: ENST00000449924.6).

722

723 **FOXP3 splicing reporter assays**

724 2.0×10^5 HeLa cells were transfected in 12 well plates with control (NTC: all-stars non-targeting
725 control, Qiagen) or DDX39B-targeting (D11: Hs_BAT1_11, and D13: Hs_BAT1_13, Qiagen)
726 siRNAs using Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific). After
727 two days of culture, the Renilla luciferase (RLuc) splicing reporter plasmids were co-transfected
728 with a Firefly luciferase plasmid (pGL3 control-FLuc, Promega) as transfection control. After 24
729 hours, cell lysates were collected for measurements of luciferase activity and RNA isolation.
730 RLuc and FLuc activities were measured by Dual-Luciferase Reporter Assay System (Promega),
731 and the data are presented as RLuc/FLuc.

732 To directly quantify the splicing efficiency of the reporters, RNA was isolated and used for
733 reverse transcription as described above. Spliced and unspliced reporter transcripts were
734 measured by endpoint PCR (Platinum Taq DNA polymerase, Thermo Fisher Scientific) with
735 primers specific to the RLuc coding sequence. PCR amplicons were detected by electrophoresis
736 on 6% non-denaturing polyacrylamide/TBE gels with SYBR Gold Nucleic Acid Gel Stain
737 (Thermo Fisher Scientific). Splicing efficiency was measured by densitometry analysis of the
738 PCR amplicons in image J (Schindelin et al., 2012; Schneider et al., 2012).

739

740 For the splicing-rescue assay, HeLa-Flp-In cells stably expressing either wild-type or mutant
741 (K95A, E197A or D199A) DDX39B *trans*-genes were transfected with control siRNA (NTC) or

742 DDX39B-targeting siRNA D13, which targets the 3' untranslated region (3'UTR) of DDX39B
743 mRNA. After two days of culture, expression of DDX39B *trans*-genes in NTC- or D13-treated
744 cells was either induced by 1 μ g/mL doxycycline or not (doxycycline withheld) to generate the
745 following four conditions: NTC –doxycycline (control), NTC +doxycycline (overexpression),
746 D13 –doxycycline (knockdown) and D13 +doxycycline (rescue). The cells were then transfected
747 with pcDNA3.1-RLuc_FOXP3 Intron 11 and harvested 24 hours after for analyses. DDX39B
748 protein expression was confirmed by western blot, and the splicing efficiency of the reporters
749 was evaluated by endpoint PCR as described above.

750

751 **Py tract sequence analysis of retained introns**

752 5' SS (from -3 to + 6 nt at the 5' Exon-Intron junction) and 3' SS (from -20 to +3 nt at the 3'
753 Intron-Exon junction) sequences of *FOXP3*, *FOX* family genes and X chromosome genes (2155
754 genes) were obtained from Human genome assembly (GRCh38.p13) using the UCSC table
755 browser (Karolchik et al., 2004; Kent et al., 2002) and Galaxy platform (Afgan et al., 2018).
756 Sequence logos of the splice sites of *FOX* family genes and X chromosomal genes (total 2155
757 genes) were generated by WebLogo3 (Crooks et al., 2004). Sequences of 3' SS (from -20 to -3
758 nt) were defined as poly-pyrimidine tract (Py tract) sequence, and nucleotide probability at each
759 of these positions was determined per gene. The sequence logo for a given gene shows the
760 average at each position of the Py tract from all introns for that particular gene.

761

762 For comparison of Py tracts of introns that were DDX39B-sensitive (retained in the knockdown)
763 versus DDX39B-insensitive (unchanged in the knockdown), we compared the 402 introns that

764 were significantly retained versus 500 events randomly selected from the total unchanged
765 introns. 5' SS and 3' SS sequences for these events were obtained using the Galaxy platform, and
766 MaxEntScore for these were determined by MaxEntScan (Yeo and Burge, 2004). The nucleotide
767 probability at each position of the Py tract region was determined as above.

768

769 **Statistical analysis**

770 In all figures, error bars represent standard deviation (S.D.). Asterisks denote level of statistical
771 significance: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ and **** $p < 0.0001$. Statistical analyses were
772 conducted in Prism8 (GraphPad Software) or SAS (SAS Institute). For the statistical analysis of
773 experiments using CD4⁺ T cells from individual donors, One-way repeated measures ANOVA
774 was used. To specifically compare each experimental (Sh3 and Sh5) group to control (NTC) after
775 a significant Omnibus f test, Dunnett's test was performed to control family-wise type I error rate
776 due to multiple comparisons. For the experiments other than CD4⁺ T cells, One-way ANOVA
777 model followed by aforementioned Dunnett's tests were conducted to compare between
778 experimental (Sh3 and Sh5) and control (NTC). For the rescue assay of splicing, One-way
779 ANOVA models followed by Tukey's tests were used to perform pairwise comparisons among
780 all tested conditions. For the sequence analysis of retained introns, outliers of Max entropy
781 scores were identified and removed (ROUT, $Q = 0.5\%$) (Motulsky and Brown, 2006). Then,
782 Mann-Whitney tests or Kruskal-Wallis tests were conducted.

783

784 Statistical analysis of RT-qPCR data in CD4⁺ T cell were carried out using a linear mixed model
785 on the delta CT values (dCT). For each gene the linear mixed model includes treatment [Control,
786 DDX39B Knockdown1 (Sh3), DDX39B Knockdown2 (Sh5)] as fixed effect, and random

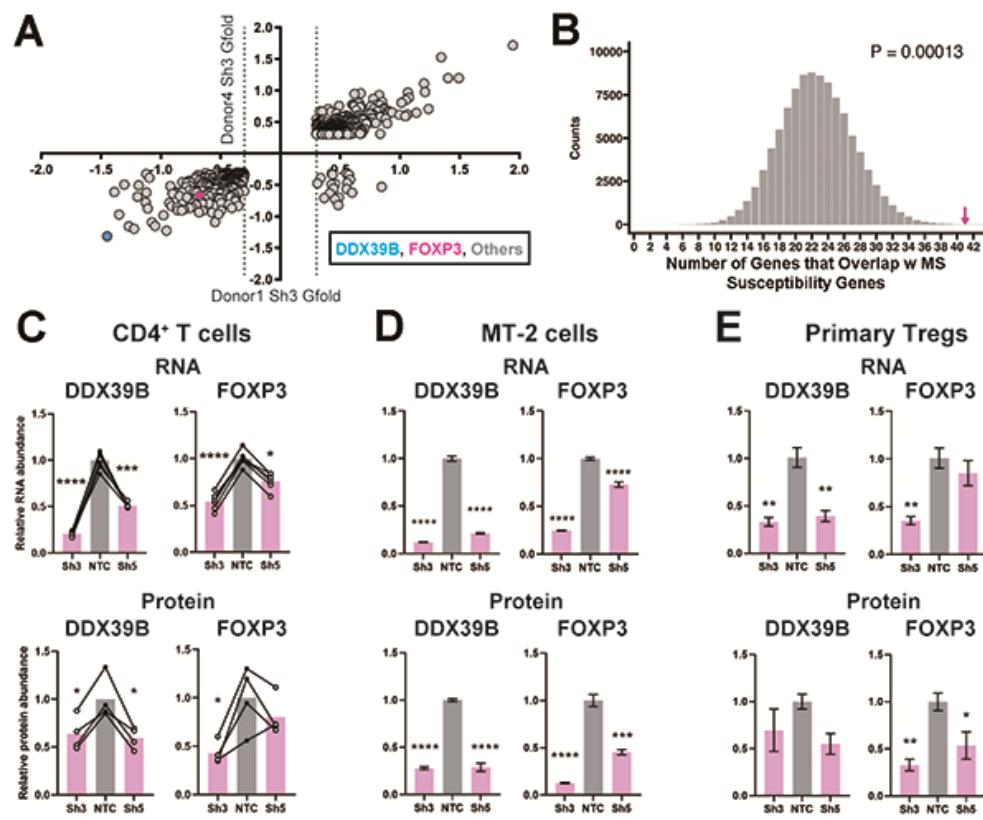
787 intercept to account for the heterogeneity of the individuals and correlations among repeated
788 measures from the same individual. The fold-change differences [delta-delta CT (ddCT) values]
789 and their standard error (SE) between treatment groups versus the control were estimated from
790 the model. The p-values were adjusted by False Discovery Rate (FDR) method, which controls
791 the false discovery rate due to multiplicity in hypothesis testing. To facilitate the interpretation
792 using relative expression, the point estimate of the ddCT values were converted to 2^{-ddCT} .

793

794

795 **References**

- 796
- 797 Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Cech, M., Chilton, J., Clements,
798 D., Coraor, N., Gruning, B.A., *et al.* (2018). The Galaxy platform for accessible, reproducible
799 and collaborative biomedical analyses: 2018 update. *Nucleic Acids Res* **46**, W537-W544.
- 800 Allcock, R.J., Williams, J.H., and Price, P. (2001). The central MHC gene, BAT1, may encode a
801 protein that down-regulates cytokine production. *Genes Cells* **6**, 487-494.
- 802 Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., Whitesell, L., Kelly,
803 T.E., Saulsbury, F.T., Chance, P.F., and Ochs, H.D. (2001). The immune dysregulation,
804 polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3.
805 *Nat Genet* **27**, 20-21.
- 806 Bhatt, D.M., Pandya-Jones, A., Tong, A.J., Barozzi, I., Lissner, M.M., Natoli, G., Black, D.L.,
807 and Smale, S.T. (2012). Transcript dynamics of proinflammatory genes revealed by sequence
808 analysis of subcellular RNA fractions. *Cell* **150**, 279-290.
- 809 Bouts, P.L., Bhutkar, A., and Sharp, P.A. (2015). Detained introns are a novel, widespread class
810 of post-transcriptionally spliced introns. *Genes Dev* **29**, 63-80.
- 811 Briggs, F. (2019). Unraveling susceptibility to multiple sclerosis. *Science* **365**, 1383-1384.
- 812 Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko, S.A., Wilkinson,
813 J.E., Galas, D., Ziegler, S.F., and Ramsdell, F. (2001). Disruption of a new forkhead/winged-
814 helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. *Nat
815 Genet* **27**, 68-73.
- 816 Chatila, T.A., Blaeser, F., Ho, N., Lederman, H.M., Vougaropoulos, C., Helms, C., and
817 Bowcock, A.M. (2000). JM2, encoding a fork head-related protein, is mutated in X-linked
818 autoimmunity-allergic disregulation syndrome. *J Clin Invest* **106**, R75-81.
- 819 Consortium, E.P. (2011). A user's guide to the encyclopedia of DNA elements (ENCODE).
820 *PLoS Biol* **9**, e1001046.
- 821 Consortium, G.T., Laboratory, D.A., Coordinating Center -Analysis Working, G., Statistical
822 Methods groups-Analysis Working, G., Enhancing, G.g., Fund, N.I.H.C., Nih/Nci, Nih/Nhgri,
823 Nih/Nimh, Nih/Nida, *et al.* (2017). Genetic effects on gene expression across human tissues.
824 *Nature* **550**, 204-213.
- 825 Cortez, J.T., Montauti, E., Shifrut, E., Gatchalian, J., Zhang, Y., Shaked, O., Xu, Y., Roth, T.L.,
826 Simeonov, D.R., Zhang, Y., *et al.* (2020). CRISPR screen in regulatory T cells reveals
827 modulators of Foxp3. *Nature* **582**, 416-420.
- 828 Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004). WebLogo: a sequence logo
829 generator. *Genome Res* **14**, 1188-1190.
- 830 Degli-Esposti, M.A., Leelayuwat, C., and Dawkins, R.L. (1992). Ancestral haplotypes carry
831 haplotypic and haplospecific polymorphisms of BAT1: possible relevance to autoimmune
832 disease. *Eur J Immunogenet* **19**, 121-127.
- 833 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson,
834 M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**,
835 15-21.
- 836 Dominguez-Villar, M., and Hafler, D.A. (2018). Regulatory T cells in autoimmune disease. *Nat
837 Immunol* **19**, 665-673.


- 838 Evsyukova, I., Bradrick, S.S., Gregory, S.G., and Garcia-Blanco, M.A. (2013). Cleavage and
839 polyadenylation specificity factor 1 (CPSF1) regulates alternative splicing of interleukin 7
840 receptor (IL7R) exon 6. *RNA* *19*, 103-115.
- 841 Feng, J., Meyer, C.A., Wang, Q., Liu, J.S., Shirley Liu, X., and Zhang, Y. (2012). GFOLD: a
842 generalized fold change for ranking differentially expressed genes from RNA-seq data.
843 *Bioinformatics* *28*, 2782-2788.
- 844 Fleckner, J., Zhang, M., Valcarcel, J., and Green, M.R. (1997). U2AF65 recruits a novel human
845 DEAD box protein required for the U2 snRNP-branchpoint interaction. *Genes Dev* *11*, 1864-
846 1872.
- 847 Fletcher, J.M., Lonergan, R., Costelloe, L., Kinsella, K., Moran, B., O'Farrelly, C., Tubridy, N.,
848 and Mills, K.H. (2009). CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and
849 are impaired in multiple sclerosis. *J Immunol* *183*, 7602-7610.
- 850 Galarza-Munoz, G., Briggs, F.B.S., Evsyukova, I., Schott-Lerner, G., Kennedy, E.M., Nyanhete,
851 T., Wang, L., Bergamaschi, L., Widen, S.G., Tomaras, G.D., *et al.* (2017). Human Epistatic
852 Interaction Controls IL7R Splicing and Increases Multiple Sclerosis Risk. *Cell* *169*, 72-84 e13.
- 853 Gatfield, D., Le Hir, H., Schmitt, C., Braun, I.C., Kocher, T., Wilm, M., and Izaurralde, E.
854 (2001). The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in
855 *Drosophila*. *Curr Biol* *11*, 1716-1721.
- 856 Gavin, M.A., Rasmussen, J.P., Fontenot, J.D., Vasta, V., Manganiello, V.C., Beavo, J.A., and
857 Rudensky, A.Y. (2007). Foxp3-dependent programme of regulatory T-cell differentiation. *Nature*
858 *445*, 771-775.
- 859 Georgiev, P., Charbonnier, L.M., and Chatila, T.A. (2019). Regulatory T Cells: the Many Faces
860 of Foxp3. *J Clin Immunol* *39*, 623-640.
- 861 Gregory, S.G., Schmidt, S., Seth, P., Oksenberg, J.R., Hart, J., Prokop, A., Caillier, S.J., Ban, M.,
862 Goris, A., Barcellos, L.F., *et al.* (2007). Interleukin 7 receptor alpha chain (IL7R) shows allelic
863 and functional association with multiple sclerosis. *Nat Genet* *39*, 1083-1091.
- 864 Hamano, R., Wu, X., Wang, Y., Oppenheim, J.J., and Chen, X. (2015). Characterization of MT-2
865 cells as a human regulatory T cell-like cell line. *Cell Mol Immunol* *12*, 780-782.
- 866 Hori, S. (2021). FOXP3 as a master regulator of Treg cells. *Nat Rev Immunol* *21*, 618-619.
- 867 Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the
868 transcription factor Foxp3. *Science* *299*, 1057-1061.
- 869 Huang, C., Liang, D., Tatomer, D.C., and Wilusz, J.E. (2018). A length-dependent evolutionarily
870 conserved pathway controls nuclear export of circular RNAs. *Genes Dev* *32*, 639-644.
- 871 International Multiple Sclerosis Genetics, C. (2019). Multiple sclerosis genomic map implicates
872 peripheral immune cells and microglia in susceptibility. *Science* *365*.
- 873 Irimia, M., Weatheritt, R.J., Ellis, J.D., Parikshak, N.N., Gonatopoulos-Pournatzis, T., Babor,
874 M., Quesnel-Vallieres, M., Tapiol, J., Raj, B., O'Hanlon, D., *et al.* (2014). A highly conserved
875 program of neuronal microexons is misregulated in autistic brains. *Cell* *159*, 1511-1523.
- 876 Jamison, S.F., Crow, A., and Garcia-Blanco, M.A. (1992). The spliceosome assembly pathway
877 in mammalian extracts. *Mol Cell Biol* *12*, 4279-4287.
- 878 Jensen, T.H., Boulay, J., Rosbash, M., and Libri, D. (2001). The DECD box putative ATPase
879 Sub2p is an early mRNA export factor. *Curr Biol* *11*, 1711-1715.
- 880 Josefowicz, S.Z., Lu, L.F., and Rudensky, A.Y. (2012). Regulatory T cells: mechanisms of
881 differentiation and function. *Annu Rev Immunol* *30*, 531-564.
- 882 Karolchik, D., Hinrichs, A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Haussler, D., and Kent,
883 W.J. (2004). The UCSC Table Browser data retrieval tool. *Nucleic Acids Res* *32*, D493-496.

- 884 Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler,
885 D. (2002). The human genome browser at UCSC. *Genome Res* 12, 996-1006.
- 886 Kistler, A.L., and Guthrie, C. (2001). Deletion of MUD2, the yeast homolog of U2AF65, can
887 bypass the requirement for sub2, an essential spliceosomal ATPase. *Genes Dev* 15, 42-49.
- 888 Komatsu, N., Okamoto, K., Sawa, S., Nakashima, T., Oh-hora, M., Kodama, T., Tanaka, S.,
889 Bluestone, J.A., and Takayanagi, H. (2014). Pathogenic conversion of Foxp3+ T cells into TH17
890 cells in autoimmune arthritis. *Nat Med* 20, 62-68.
- 891 Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics
892 Analysis Version 7.0 for Bigger Datasets. *Mol Biol Evol* 33, 1870-1874.
- 893 Lehner, B., Semple, J.I., Brown, S.E., Counsell, D., Campbell, R.D., and Sanderson, C.M.
894 (2004). Analysis of a high-throughput yeast two-hybrid system and its use to predict the function
895 of intracellular proteins encoded within the human MHC class III region. *Genomics* 83, 153-167.
- 896 Li, X., Liu, S., Zhang, L., Issaian, A., Hill, R.C., Espinosa, S., Shi, S., Cui, Y., Kappel, K., Das,
897 R., *et al.* (2019). A unified mechanism for intron and exon definition and back-splicing. *Nature*
898 573, 375-380.
- 899 Liu, W., Putnam, A.L., Xu-Yu, Z., Szot, G.L., Lee, M.R., Zhu, S., Gottlieb, P.A., Kapranov, P.,
900 Gingeras, T.R., Fazekas de St Groth, B., *et al.* (2006). CD127 expression inversely correlates
901 with FoxP3 and suppressive function of human CD4+ T reg cells. *J Exp Med* 203, 1701-1711.
- 902 Loo, C.S., Gatchalian, J., Liang, Y., Leblanc, M., Xie, M., Ho, J., Venkatraghavan, B.,
903 Hargreaves, D.C., and Zheng, Y. (2020). A Genome-wide CRISPR Screen Reveals a Role for
904 the Non-canonical Nucleosome-Remodeling BAF Complex in Foxp3 Expression and Regulatory
905 T Cell Function. *Immunity* 53, 143-157 e148.
- 906 Lundstrom, W., Highfill, S., Walsh, S.T., Beq, S., Morse, E., Kockum, I., Alfredsson, L., Olsson,
907 T., Hillert, J., and Mackall, C.L. (2013). Soluble IL7Ralpha potentiates IL-7 bioactivity and
908 promotes autoimmunity. *Proc Natl Acad Sci U S A* 110, E1761-1770.
- 909 Luo, M.L., Zhou, Z., Magni, K., Christoforides, C., Rappaport, J., Mann, M., and Reed, R.
910 (2001). Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and
911 Aly. *Nature* 413, 644-647.
- 912 Motulsky, H.J., and Brown, R.E. (2006). Detecting outliers when fitting data with nonlinear
913 regression - a new method based on robust nonlinear regression and the false discovery rate.
914 *BMC Bioinformatics* 7, 123.
- 915 Nakata, D., Nakao, S., Nakayama, K., Araki, S., Nakayama, Y., Aparicio, S., Hara, T., and
916 Nakanishi, A. (2017). The RNA helicase DDX39B and its paralog DDX39A regulate androgen
917 receptor splice variant AR-V7 generation. *Biochem Biophys Res Commun* 483, 271-276.
- 918 Newnham, C.M., and Query, C.C. (2001). The ATP requirement for U2 snRNP addition is
919 linked to the pre-mRNA region 5' to the branch site. *RNA* 7, 1298-1309.
- 920 Noval Rivas, M., Burton, O.T., Wise, P., Charbonnier, L.M., Georgiev, P., Oettgen, H.C.,
921 Rachid, R., and Chatila, T.A. (2015). Regulatory T cell reprogramming toward a Th2-cell-like
922 lineage impairs oral tolerance and promotes food allergy. *Immunity* 42, 512-523.
- 923 Roscigno, R.F., Weiner, M., and Garcia-Blanco, M.A. (1993). A mutational analysis of the
924 polypyrimidine tract of introns. Effects of sequence differences in pyrimidine tracts on splicing. *J*
925 *Biol Chem* 268, 11222-11229.
- 926 Ruskin, B., Zamore, P.D., and Green, M.R. (1988). A factor, U2AF, is required for U2 snRNP
927 binding and splicing complex assembly. *Cell* 52, 207-219.

- 928 Sambucci, M., Gargano, F., De Rosa, V., De Bardi, M., Picozza, M., Placido, R., Ruggieri, S.,
929 Capone, A., Gasperini, C., Matarese, G., *et al.* (2018). FoxP3 isoforms and PD-1 expression by T
930 regulatory cells in multiple sclerosis. *Sci Rep* 8, 3674.
- 931 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
932 S., Rueden, C., Saalfeld, S., Schmid, B., *et al.* (2012). Fiji: an open-source platform for
933 biological-image analysis. *Nat Methods* 9, 676-682.
- 934 Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of
935 image analysis. *Nat Methods* 9, 671-675.
- 936 Schott, G., Galarza-Munoz, G., Trevino, N., Chen, X., Weirauch, M., Gregory, S.G., Bradrick,
937 S.S., and Garcia-Blanco, M.A. (2021). U2AF2 binds IL7R exon 6 ectopically and represses its
938 inclusion. *RNA*.
- 939 Schott, G., and Garcia-Blanco, M.A. (2021). MHC Class III RNA Binding Proteins and
940 Immunity. *RNA Biol* 18, 640-646.
- 941 Schumann, K., Raju, S.S., Lauber, M., Kolb, S., Shifrut, E., Cortez, J.T., Skartsis, N., Nguyen,
942 V.Q., Woo, J.M., Roth, T.L., *et al.* (2020). Functional CRISPR dissection of gene networks
943 controlling human regulatory T cell identity. *Nat Immunol* 21, 1456-1466.
- 944 Seraphin, B., and Rosbash, M. (1989). Identification of functional U1 snRNA-pre-mRNA
945 complexes committed to spliceosome assembly and splicing. *Cell* 59, 349-358.
- 946 Shen, H. (2009). UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and
947 nuclear export. *BMB Rep* 42, 185-188.
- 948 Shen, H., Zheng, X., Shen, J., Zhang, L., Zhao, R., and Green, M.R. (2008). Distinct activities of
949 the DExD/H-box splicing factor hUAP56 facilitate stepwise assembly of the spliceosome. *Genes*
950 *Dev* 22, 1796-1803.
- 951 Shen, J., Zhang, L., and Zhao, R. (2007). Biochemical characterization of the ATPase and
952 helicase activity of UAP56, an essential pre-mRNA splicing and mRNA export factor. *J Biol*
953 *Chem* 282, 22544-22550.
- 954 Singh, R., Valcarcel, J., and Green, M.R. (1995). Distinct binding specificities and functions of
955 higher eukaryotic polypyrimidine tract-binding proteins. *Science* 268, 1173-1176.
- 956 Spies, T., Blanck, G., Bresnahan, M., Sands, J., and Strominger, J.L. (1989). A new cluster of
957 genes within the human major histocompatibility complex. *Science* 243, 214-217.
- 958 Subramanian, A., Narayan, R., Corsello, S.M., Peck, D.D., Natoli, T.E., Lu, X., Gould, J., Davis,
959 J.F., Tubelli, A.A., Asiedu, J.K., *et al.* (2017). A Next Generation Connectivity Map: L1000
960 Platform and the First 1,000,000 Profiles. *Cell* 171, 1437-1452 e1417.
- 961 Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,
962 Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., *et al.* (2005). Gene set enrichment
963 analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc*
964 *Natl Acad Sci U S A* 102, 15545-15550.
- 965 Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the
966 control region of mitochondrial DNA in humans and chimpanzees. *Mol Biol Evol* 10, 512-526.
- 967 Tarver, J.E., Dos Reis, M., Mirarab, S., Moran, R.J., Parker, S., O'Reilly, J.E., King, B.L.,
968 O'Connell, M.J., Asher, R.J., Warnow, T., *et al.* (2016). The Interrelationships of Placental
969 Mammals and the Limits of Phylogenetic Inference. *Genome Biol Evol* 8, 330-344.
- 970 Wagner, E.J., and Garcia-Blanco, M.A. (2002). RNAi-mediated PTB depletion leads to
971 enhanced exon definition. *Mol Cell* 10, 943-949.
- 972 Wan, Y.Y., and Flavell, R.A. (2007). Regulatory T-cell functions are subverted and converted
973 owing to attenuated Foxp3 expression. *Nature* 445, 766-770.

- 974 Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F.,
975 Schroth, G.P., and Burge, C.B. (2008). Alternative isoform regulation in human tissue
976 transcriptomes. *Nature* *456*, 470-476.
- 977 Wildin, R.S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J.L., Buist, N., Levy-Lahad, E.,
978 Mazzella, M., Goulet, O., Perroni, L., *et al.* (2001). X-linked neonatal diabetes mellitus,
979 enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. *Nat Genet*
980 *27*, 18-20.
- 981 Wu, T., and Fu, X.D. (2015). Genomic functions of U2AF in constitutive and regulated splicing.
982 *RNA Biol* *12*, 479-485.
- 983 Yeo, G., and Burge, C.B. (2004). Maximum entropy modeling of short sequence motifs with
984 applications to RNA splicing signals. *J Comput Biol* *11*, 377-394.
- 985 Zamore, P.D., and Green, M.R. (1989). Identification, purification, and biochemical
986 characterization of U2 small nuclear ribonucleoprotein auxiliary factor. *Proc Natl Acad Sci U S*
987 *A* *86*, 9243-9247.
- 988 Zamore, P.D., Patton, J.G., and Green, M.R. (1992). Cloning and domain structure of the
989 mammalian splicing factor U2AF. *Nature* *355*, 609-614.
- 990 Zhou, X., Bailey-Bucktrout, S.L., Jeker, L.T., Penaranda, C., Martinez-Llordella, M., Ashby, M.,
991 Nakayama, M., Rosenthal, W., and Bluestone, J.A. (2009). Instability of the transcription factor
992 Foxp3 leads to the generation of pathogenic memory T cells in vivo. *Nat Immunol* *10*, 1000-
993 1007.
- 994 Zhou, Z., Sun, B., Huang, S., and Zhao, L. (2019). Roles of circular RNAs in immune regulation
995 and autoimmune diseases. *Cell Death Dis* *10*, 503.
- 996
- 997
- 998

999 **Figures and Figure Legends**

1000

1001 **Fig. 1. Loss of FOXP3 expression in DDX39B-depleted T cells. (A)** RNA abundance changes
1002 between control (NTC) and DDX39B-depleted (Sh3) CD4⁺ T cells from two healthy individuals
1003 (Donor 1 and Donor 4) identified by RNAseq. Data points for DDX39B (cyan) and FOXP3
1004 (magenta) are indicated. **(B)** Enrichment analysis of MS susceptibility genes in DEGs following
1005 DDX39B depletion. Resampling 100,000 times resulted in a distribution of the number of genes
1006 that overlap by chance, with 23 being the most common result. The observed overlap of 41
1007 (Magenta arrow) demonstrates substantial enrichment (empirical $p=0.00013$). **(C-E, upper**
1008 **panels)** Levels of DDX39B RNA and FOXP3 RNA, normalized to EEF1A1 RNA levels, after
1009 DDX39B depletion in CD4⁺ T cells (C) Treg-like MT-2 cells (D), or primary Tregs (E). **(C-E,**
1010 **lower panels)** Levels of DDX39B and FOXP3 relative to Tubulin after DDX39B depletion in

1011 CD4⁺ T cells (C), MT-2 cells (D), or primary Tregs (E). Connected dots indicate samples from
1012 the same donor. In all figures the error bars indicate standard deviation. *: p < 0.05, **: p < 0.01,
1013 ***: p < 0.001 and ****: p < 0.0001.

1014 **Legends for supplementary figures associated with Figure 1.**

1015 **Fig. S1A. Transcript level changes upon DDX39B depletion in primary human CD4⁺ T**
1016 **cells.** DDX39B was depleted in primary CD4⁺ T cells from two healthy donors (donors 1 and 4)
1017 using DDX39B targeting (Sh3 and Sh5) shRNAs. RNAseq was used to examine transcript level
1018 changes between these cells and those treated with control (NTC) shRNA. The figure illustrates
1019 the comparison of the transcripts whose expression changed significantly (up or down) for each
1020 donor and shRNA combination. Criteria for inclusion were (a) transcripts were required to have
1021 RPKM ≥ 2 and (b) transcript level changes between conditions had $|G_{fold}| \geq 0.3$ for Sh3
1022 or ≥ 0.1 for Sh5.

1023 **Fig. S1B. Examples of MS susceptibility genes differentially expressed upon DDX39B**
1024 **knockdown.** The heat map shows expression of five genes between control (NTC) and DDX39B
1025 depleted (Sh3) T cells.

1026 **Fig. S1C. Schematic diagram of the enrichment analysis of MS-susceptibility genes among**
1027 **genes whose expression is altered by DDX39B knockdown.** List of odds ratio (OR) of Risk-
1028 SNP and Susceptibility genes were obtained from International Multiple Sclerosis Genetics
1029 Consortium (2019). Detail of the classification is described in the Methods section. The list of
1030 the MS_Pathogenic and MS_Protective genes is shown in [Table S3](#).

1031 **Fig. S1D. Enrichment analysis of the MS_Pathogenic or MS_Protective genes.** Resampling

1032 100,000 times resulted in a distribution of the number of genes that overlap by chance with
1033 experimental overlap indicated by magenta arrow. P value was calculated based on the fraction
1034 of instances. Details of the analysis are described in the Methods section.

1035 **Fig. S1E. Coverage tracks of reads mapping to the *FOXP3* gene in control and DDX39B-**

1036 **depleted CD4⁺ T cells.** The figure shows coverage of RNAseq reads mapping to the *FOXP3*
1037 gene in control (NTC) or DDX39B-depleted (Sh3 or Sh5) CD4⁺ T cells from two healthy donors
1038 (Donors 1 and 4).

1039 **Fig. S1F. Western blot analysis of FOXP3 expression upon DDX39B depletion in CD4⁺ T**

1040 **cells.** FOXP3 protein abundance was analyzed by western blot in CD4⁺ T cells from four donors
1041 transduced with either control (NTC) or DDX39B targeting (Sh3 or Sh5) shRNAs. The data
1042 were normalized to a-tubulin. Densitometry quantification of these data is shown in [Fig. 1C](#).

1043 **Fig. S1F Source Data.** Two versions of source data files have been uploaded for all gels/blots

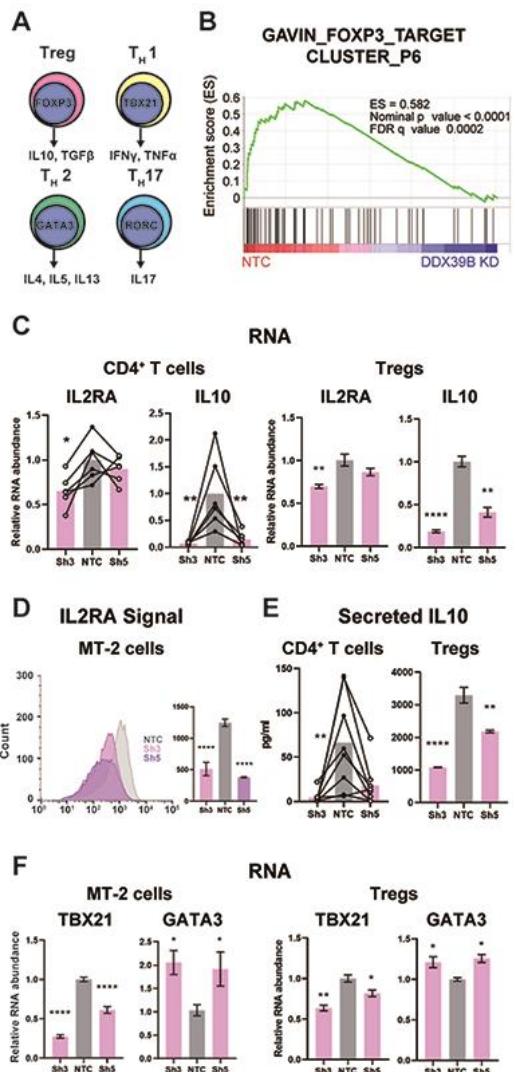
1044 shown in this figure: (1) the original files of the full raw unedited gels or blots and; (2) figures
1045 with the uncropped gels or blots with the relevant bands clearly labelled.

1046 **Fig. S1G. Western blot analysis of FOXP3 expression upon DDX39B depletion in MT-2**

1047 **cells.** DDX39B was depleted in MT-2 cells by lentivirus transduction with either non-targeting
1048 control (NTC) or DDX39B targeting (Sh3 or Sh5) shRNAs. DDX39B and FOXP3 protein
1049 abundance was measured by western blot and normalized to a-tubulin. Densitometry
1050 quantification of these data is shown in [Fig. 1D](#).

1051 **Fig. S1G Source Data.** Two versions of source data files have been uploaded for all gels/blots
1052 shown in this figure: (1) the original files of the full raw unedited gels or blots and; (2) figures
1053 with the uncropped gels or blots with the relevant bands clearly labelled.

1054 **Fig. S1H. Quantification of DDX39B and FOXP3 RNA upon DDX39B depletion in primary**
1055 **Tregs.** Human primary Tregs from Donor 8 were transduced with either non-targeting control
1056 (NTC) or DDX39B targeting (Sh3 or Sh5) shRNAs. DDX39B and FOXP3 RNA abundance was
1057 measured by RT-qPCR and normalized to EEF1A1 RNA expression.. ***: p<0.001. The result
1058 for donor 7 is shown in [Fig. 1E](#)


1059 **Fig. S1I. DDX39B and FOXP3 expression upon DDX39B depletion in primary Tregs.**

1060 DDX39B was depleted in Tregs from two donors (Donors 7 and 8) via lentivirus transduction
1061 with either non-targeting control (NTC) or DDX39B targeting (Sh3 or Sh5) shRNAs. DDX39B
1062 and FOXP3 protein abundance was measured by western blot and normalized to PTBP1.
1063 Quantification of data for Donor 7 is shown in [Fig. 1E](#).

1064 **Fig. S1I Source Data.** Two versions of source data files have been uploaded for all gels/blots
1065 shown in this figure: (1) the original files of the full raw unedited gels or blots and; (2) figures
1066 with the uncropped gels or blots with the relevant bands clearly labelled.

1067

1068

1070 **Fig. 2. DDX39B depletion causes loss of Treg gene expression signature. (A)** Schematic of
1071 genes expressed in different T cell lineages: Tregs, T_H17, T_H1, and T_H2 effector cells. **(B)**
1072 Enrichment of the FOXP3 target gene-list in the control (NTC) over DDX39B-depleted (Sh3)
1073 CD4⁺ T cells from two individual donors (Donor 1 and Donor 4). **(C)** RNA abundance of IL2RA
1074 (CD25) and IL10 relative to EEF1A1 in DDX39B-depleted CD4⁺ T cells (Left) and primary
1075 Tregs (Right). **(D)** FOXP3 expression and surface expression of IL2RA (CD25) by flow
1076 cytometry in DDX39B-depleted MT-2 cells. **(E)** IL10 secretion in DDX39B-depleted CD4⁺ T
1077 cells (Left) and Tregs (Right). **(F)** RNA abundance of transcription factors regulating T cell

1078 differentiation: TBX21 (T_H1), GATA3 (T_H2) in MT-2 cells (Left) and primary Tregs (Right). *:

1079 p < 0.05, **: p < 0.01, ***: p < 0.001 and ****: p < 0.0001.

1080

1081 **Legends for supplementary figures associated with Figure 2.**

1082 **Fig. S2A. GSEA results of FOXP3-related gene sets enriched in normal over DDX39B**

1083 **depleted cells.** GSEA was conducted comparing the transcriptome of control (NTC) and

1084 DDX39B-depleted (Sh3) CD4⁺ T cells. Additional data for the

1085 GAVIN_FOXP3_TARGET_CLUSTER_P6 gene set are shown in [Fig. 2B](#).

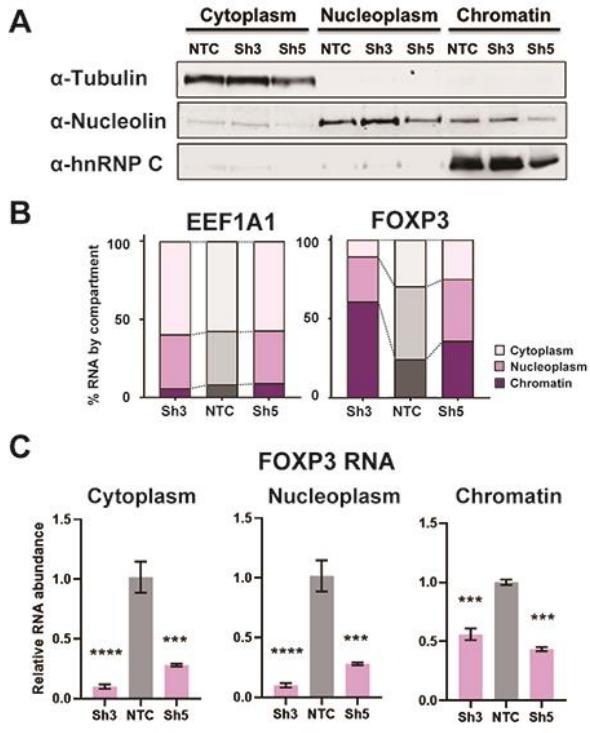
1086 **Fig. S2B. Effect of DDX39B depletion on expression of genes in CD4⁺ T cells.** Expression of

1087 genes with known immune function and *GAPDH* (as a control), normalized to *EEF1A1*

1088 expression, was measured by RT-qPCR in control (NTC) or in primary CD4⁺ T cells depleted of

1089 DDX39B (Sh3 or Sh5) shRNAs. *: p < 0.05, **: p < 0.01, ***: p < 0.001 and ****: p < 0.0001.

1090 **Fig. S2C. Effect of DDX39B depletion on expression of Treg genes.** DDX39B was depleted in


1091 Tregs from Donors 7 and 8, and expression of seven Treg-related genes (from Gavin et al.,

1092 2017) were measured by RT-qPCR and normalized to *EEF1A1* expression. *: p < 0.05, **: p <

1093 0.01 and ***: p < 0.0001.

1094

1095

1096

1097 **Fig. 3. DDX39B depletion disturbs an early step in FOXP3 RNA biogenesis. (A)** Protein
1098 abundance of subcellular compartment markers in fractionated control (NTC) or DDX39B-
1099 depleted (Sh3 & Sh5) MT-2 cells. **(B)** Percent EEF1A1 or FOXP3 RNA in subcellular
1100 compartments. **(C)** FOXP3 RNA abundance relative to EEF1A1 in subcellular compartments
1101 upon DDX39B depletion.

1102

Fig. 3A Source Data. Two versions of source data files have been uploaded for all gels/blots
1103 shown in this figure: (1) the original files of the full raw unedited gels or blots and; (2) figures
1104 with the uncropped gels or blots with the relevant bands clearly labelled.

1105

1106 **Legends for supplementary figures associated with Figure 3.**

1107

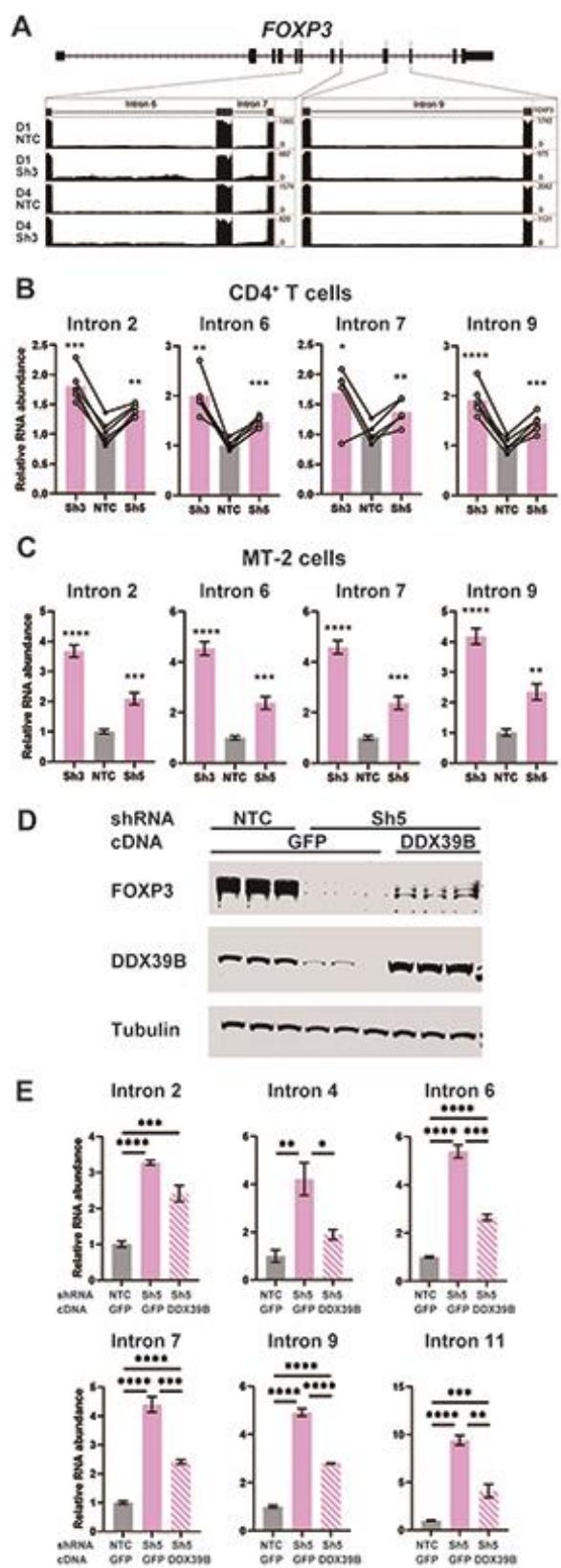
1108 **Fig. S3A. Quantification of *FOXP3* retained introns in the chromatin fraction of MT-2**

1109 **cells.** Control (NTC) or DDX39B-depleted (Sh3 or Sh5) MT-2 cells were fractionated into
1110 cytoplasm, nucleoplasm and chromatin fractions. Retained *FOXP3* introns were quantified in the
1111 chromatin compartment by RT-qPCR using intron-specific primers and normalized to total
1112 *FOXP3* RNA. **: p < 0.01, ***: p < 0.001.

1113

1114 **Fig. S3B. Quantification of *FOXP3* retained introns in primary Tregs.** DDX39B was
1115 depleted in Tregs from two independent donors (donors 7 and 8) via lentivirus transduction with
1116 either DDX39B targeting (Sh3 or Sh5) shRNAs. Retained *FOXP3* introns were quantified from
1117 total RNA of control cells treated with a non-targeting shRNA (NTC) or DDX39B depleted cells
1118 (Sh3 or Sh5) by RT-qPCR using intron-specific primers and normalized to total *FOXP3* RNA. *:
1119 p < 0.05.

1120

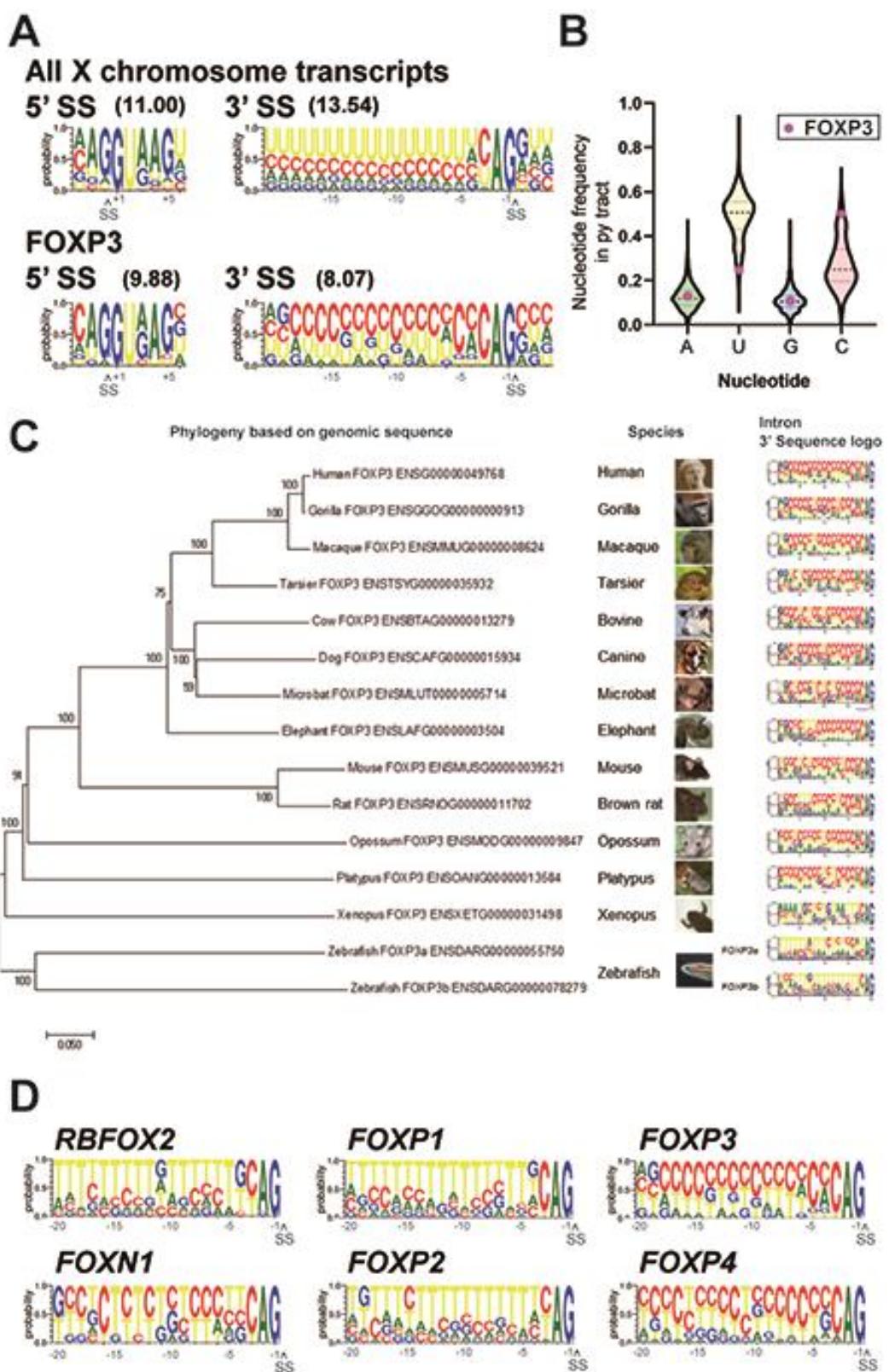

1121 **Fig. S3C. Alternative splicing events observed upon DDX39B depletion in CD4⁺ T cells.**

1122 Splicing analysis of RNAseq data was carried out using Vast-Tools. **i.** Total events changed
1123 between control and either of two knockdown conditions (Sh3 & Sh5) in two donors (donor 1 &
1124 4). **ii.** Type of events of Sh3 knockdown in either donor are shown. Alt 5'SS, alternative 5' splice
1125 site; Alt 3'SS, alternative 3' splice site. **iii.** Intron retention events in either donor are divided into
1126 those showing more retention or less retention with DDX39B knockdown.

1127

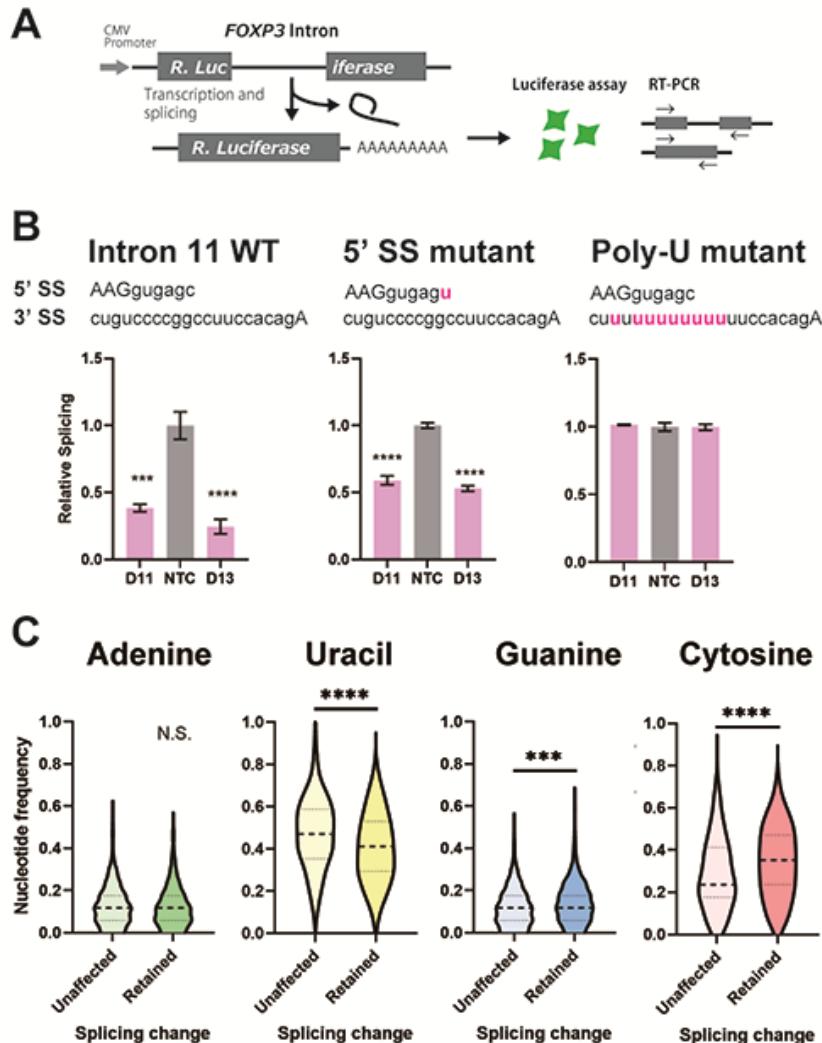
1128

1129


1131 **Fig.4. DDX39B depletion triggers the retention of FOXP3 introns. (A)** RNAseq reads
1132 mapping to the FOXP3 genomic region in control (NTC) or DDX39B depleted (Sh3) CD4⁺ T
1133 cells from Donors 1 and 4. Read counts for *FOXP3* introns 6, 7 and 9 are shown on the Y-axis in
1134 the two insets. **(B, C)** Abundance of FOXP3 RNA introns relative to total FOXP3 RNA after
1135 DDX39B depletion in CD4⁺ T cells from six donors (B) or MT-2 cells (C). **(D-E)** Rescue of the
1136 DDX39B depletion (Sh3) by exogenous expression (GFP or DDX39B) in MT-2 cells. The
1137 abundance of FOXP3 and DDX39B relative to Tubulin (D) or FOXP3 RNA introns relative to
1138 total FOXP3 RNA (E) are shown.*: p < 0.05, **: p < 0.01, ***: p < 0.001 and ****: p < 0.0001.

1139

1140 **Fig. S4D Source Data.** Two versions of source data files have been uploaded for all gels/blots
1141 shown in this figure: (1) the original files of the full raw unedited gels or blots and; (2) figures
1142 with the uncropped gels or blots with the relevant bands clearly labelled.


1143

1144

1146 **Fig. 5. *FOXP3* introns have conserved C-rich py tracts. (A)** Sequence logos of the 5' and 3'
1147 splice sites (SS) of *FOXP3* versus all other chromosome X genes. 5' or 3' MaxEntScore based
1148 on the highest-probability sequence are shown. **(B)** Distribution of the py tract nucleotide
1149 frequency among chromosome X genes. Magenta dots indicate *FOXP3*. **(C)** Phylogenetic tree and
1150 3' SS sequence logos of the *FOXP3* among 14 species. Zebrafish has two *FOXP3* genes
1151 (*FOXP3a* and *FOXP3b*). **(D)** 3' SS sequence logos of FOX family genes. *RBFOX2* is shown as
1152 an outgroup.

1153

1163 (unaffected) or sensitive (retained) to DDX39B depletion. *: p < 0.05, **: p < 0.01, ***: p < 0.001
1164 and ****: p < 0.0001.

1165

1166 **Legends for supplementary figures associated with Figure 6.**

1167

1168 **Fig. S4A. Luciferase activity of the splicing reporters.** Control (NTC) or DDX39B-depleted
1169 (D11 or D13 siRNAs) HeLa cells were co-transfected with a Firefly luciferase reporter
1170 (transfection control, FLuc) and Renilla luciferase (RLuc) splicing reporters with no intron,
1171 human β globin (HGB1) intron 2, or *FOXP3* introns 7, 9 or 11. Relative splicing efficiency of
1172 reporters was inferred by measuring luciferase activity (RLuc/FLuc) normalized to NTC. *: p <
1173 0.05, **: p < 0.01, ***: p < 0.001 and ****: p < 0.0001.

1174

1175 **Fig. S4B. RT-PCR analysis of splicing efficiency of wild-type or mutant *FOXP3* Intron 11**
1176 **RLuc reporters.** Control (NTC) or DDX39B-depleted (D11 or D13) HeLa cells were
1177 transfected with *FOXP3* intron 11 RLuc reporters (WT, 5' SS consensus or 3' Poly-U mutant),
1178 and splicing efficiency was directly measured by endpoint RT-PCR. Quantification of the gels is
1179 shown in [Fig. 6B](#).

1180 **Fig. S4B Source Data.** Two versions of source data files have been uploaded for all gels/blots
1181 shown in this figure: (1) the original files of the full raw unedited gels or blots and; (2) figures
1182 with the uncropped gels or blots with the relevant bands clearly labelled.

1183

1184 **Fig. S4C. RT-PCR analysis of splicing efficiency of wild-type or mutant *FOXP3* Intron 7**
1185 **RLuc reporters.** Control (NTC) or DDX39B-depleted (D11 or D13) HeLa cells were

1186 transfected with *FOXP3* intron 7 RLuc reporters (WT, 5' SS consensus or 3' Poly-U mutant),
1187 and splicing efficiency was directly measured by endpoint RT-PCR. Quantification is shown on
1188 the right for the lower two panels; given the very low level of splicing with intron 7 WT reporter
1189 it could not be accurately quantified. ***: p<0.001 and ****: p < 0.0001.

1190 **Fig. S4C Source Data.** Two versions of source data files have been uploaded for all gels/blots
1191 shown in this figure: (1) the original files of the full raw unedited gels or blots and; (2) figures
1192 with the uncropped gels or blots with the relevant bands clearly labelled.

1193

1194 **Fig. S4D. Comparison of Max entropy splice sites (SS) score between unaffected and**
1195 **DDX39B-sensitive introns.** Max entropy score of 5' SS and 3' SS of unaffected (500 randomly
1196 selected) and introns with increased retention upon DDX39B depletion (397 events) was
1197 determined using *MaxEntScan* (Yeo G and Burge CB (2004). Dashed lines within the violin
1198 plots denote median values. *: p < 0.05.

1199

1200 **Fig. S4E. Comparison of Max entropy splice site (SS) scores (top panel) and nucleotide**
1201 **composition of py tracts (bottom panel) of unaffected introns or introns that were more**
1202 **retained in CD4⁺ T cells from either donor 1 or 4 depleted of DDX39B by treatment with**
1203 **Sh3 or Sh5.** *: p < 0.05, **: p < 0.01, ***: p<0.001 and ****: p < 0.0001.

1204

1205 **Fig. S4F. Retention of *FOXP1* introns is not increased upon DDX39B depletion in MT-2**
1206 **cells.** *FOXP1* transcripts including introns 11, 14, or 19 were quantified by intron-specific RT-
1207 qPCR in control (NTC) and DDX39B-depleted (Sh3 or Sh5) MT-2 cells and normalized to total
1208 *FOXP1* transcripts. *: p < 0.05.

1209

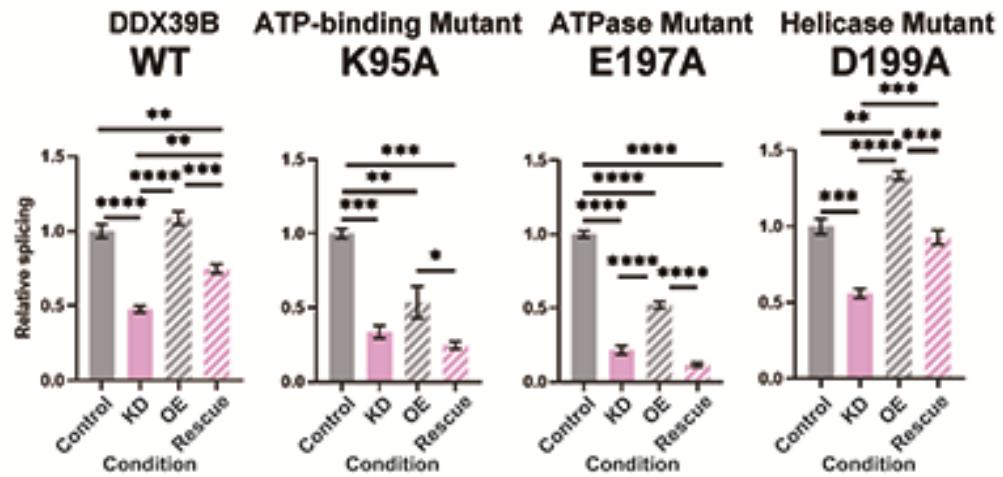
1210 **Fig. S4G. RT-PCR analysis of splicing efficiency of wild-type or mutant *FOXP1* Intron 19**

1211 **RLuc reporters.** Control (NTC) or DDX39B-depleted (D13) HeLa cells were transfected with
1212 *FOXP3* or *FOXP1* RLuc reporters. Splicing efficiency was directly measured by endpoint RT-
1213 PCR. Quantification is shown on the right. **: p<0.01 and ***: p<0.001.

1214 **Fig. S4G Source Data.** Two versions of source data files have been uploaded for all gels/blots
1215 shown in this figure: (1) the original files of the full raw unedited gels or blots and; (2) figures
1216 with the uncropped gels or blots with the relevant bands clearly labelled.

1217

1218 **Fig. S4H. Comparison of py tract composition between unaffected and less-retained
1219 introns.** Nucleotide frequency of py tracts of unaffected (500 randomly selected) and those that
1220 are less-retained upon DDX39B knockdown (387) was calculated. Dashed lines denote median
1221 values. p < 0.05, **: p < 0.01, ***: p<0.001 and ****: p < 0.0001.


1222

1223 **Fig. S4I. Detection of intron retention events in X chromosome genes with C-rich or U-rich
1224 py tracts.** Introns of the transcripts with C-rich (**top**) or U-rich (**bottom**) py tract were quantified
1225 by intron-specific RT-qPCR in control (NTC) and DDX39B-depleted (Sh3 or Sh5) MT-2 cells
1226 and normalized to their corresponding total transcripts. *: p < 0.05, **: p < 0.01, ***: p<0.001
1227 and ****: p < 0.0001.

1228

1229

1230

1231

1232 **Fig. 7. *FOXP3* intron 11 splicing requires DDX39B ATPase activity but not its helicase**
1233 **activity.** Rescue of the splicing of *FOXP3* intron 11 reporter by induced expression of wild type
1234 (WT) or mutant (K95A, E197A and D199A) DDX39B. KD and OE indicate knockdown and
1235 over-expression, respectively. *: p < 0.05, **: p < 0.01, ***: p < 0.001 and ****: p < 0.0001.

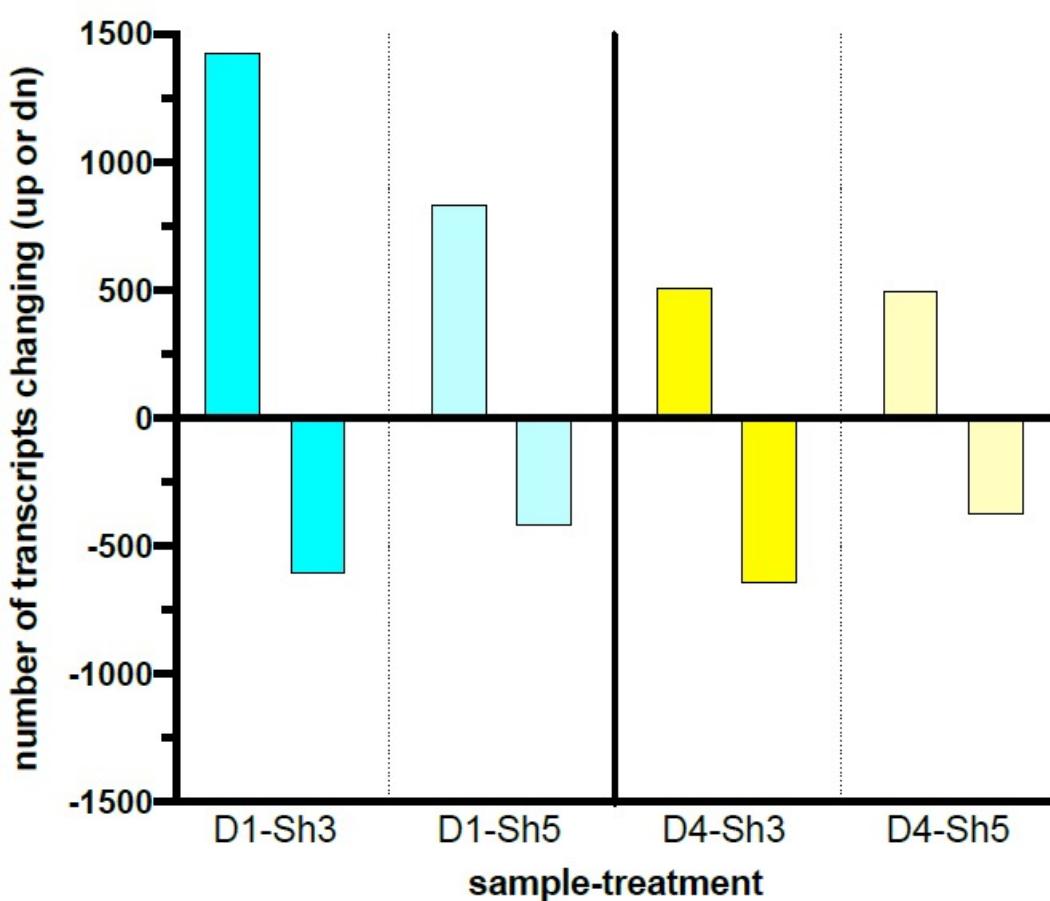
1236

1237 **Legends for supplementary figures associated with Figure 6.**

1238

1239 **Fig. S5. Expression of WT or mutant DDX39B in stable cell lines.** Stable HeLa cell lines with
1240 inducible expression of WT or mutant DDX39B *trans*-genes were transfected with control
1241 (NTC) or DDX39B (D13) siRNAs, and expression of a siRNA-resistant DDX39B transgene was
1242 induced with Doxycycline. DDX39B protein expression was quantified by western blot (left).
1243 Sanger sequencing of DDX39B RT-PCR amplicons from rescue with mutant DDX39B *trans*-
1244 genes (D13 + Doxycycline) shows preferential expression of DDX39B *trans*-genes under rescue
1245 conditions (right).

1246 **Fig. S5 Source Data.** Two versions of source data files have been uploaded for all gels/blots
1247 shown in this figure: (1) the original files of the full raw unedited gels or blots and; (2) figures
1248 with the uncropped gels or blots with the relevant bands clearly labelled.


1249

1250

Fig. S1. DDX39 controls FOXP3 expression.

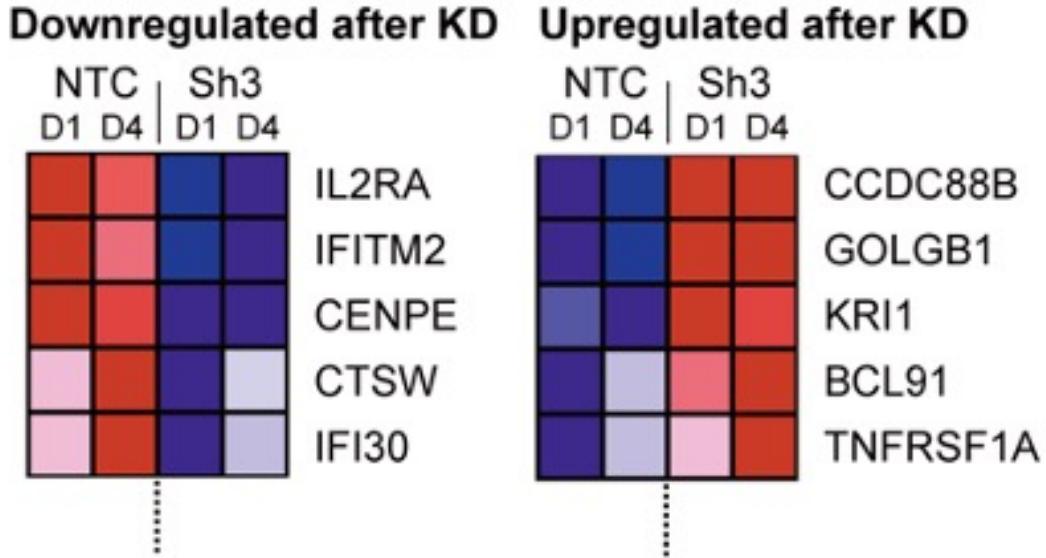

(Related to Figure 1 and to Tables S1, S2 and S3)

Fig. S1A

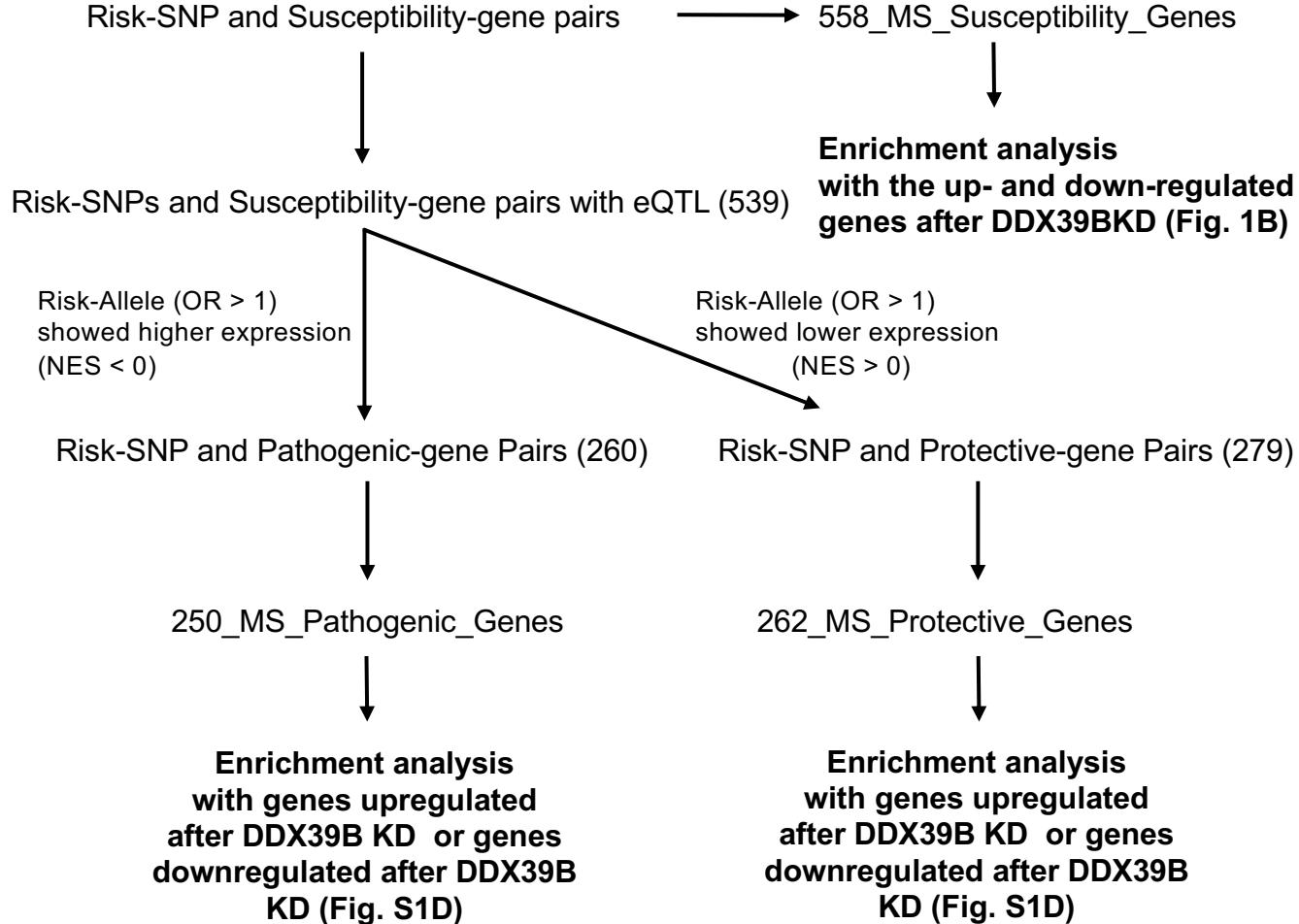

Fig. S1A. Transcript level changes upon DDX39B depletion in primary human CD4⁺ T cells. DDX39B was depleted in primary CD4⁺ T cells from two healthy donors (donors 1 and 4) using DDX39B targeting (Sh3 and Sh5) shRNAs. RNAseq was used to examine transcript level changes between these cells and those treated with control (NTC) shRNA. The figure illustrates the comparison of the transcripts whose expression changed significantly (up or down) for each donor and shRNA combination. Criteria for inclusion were (a) transcripts were required to have RPKM ≥ 2 and (b) transcript level changes between conditions had $|G_{fold} \text{ values}| \geq 0.3$ for Sh3 or ≥ 0.1 for Sh5.

Fig. S1B

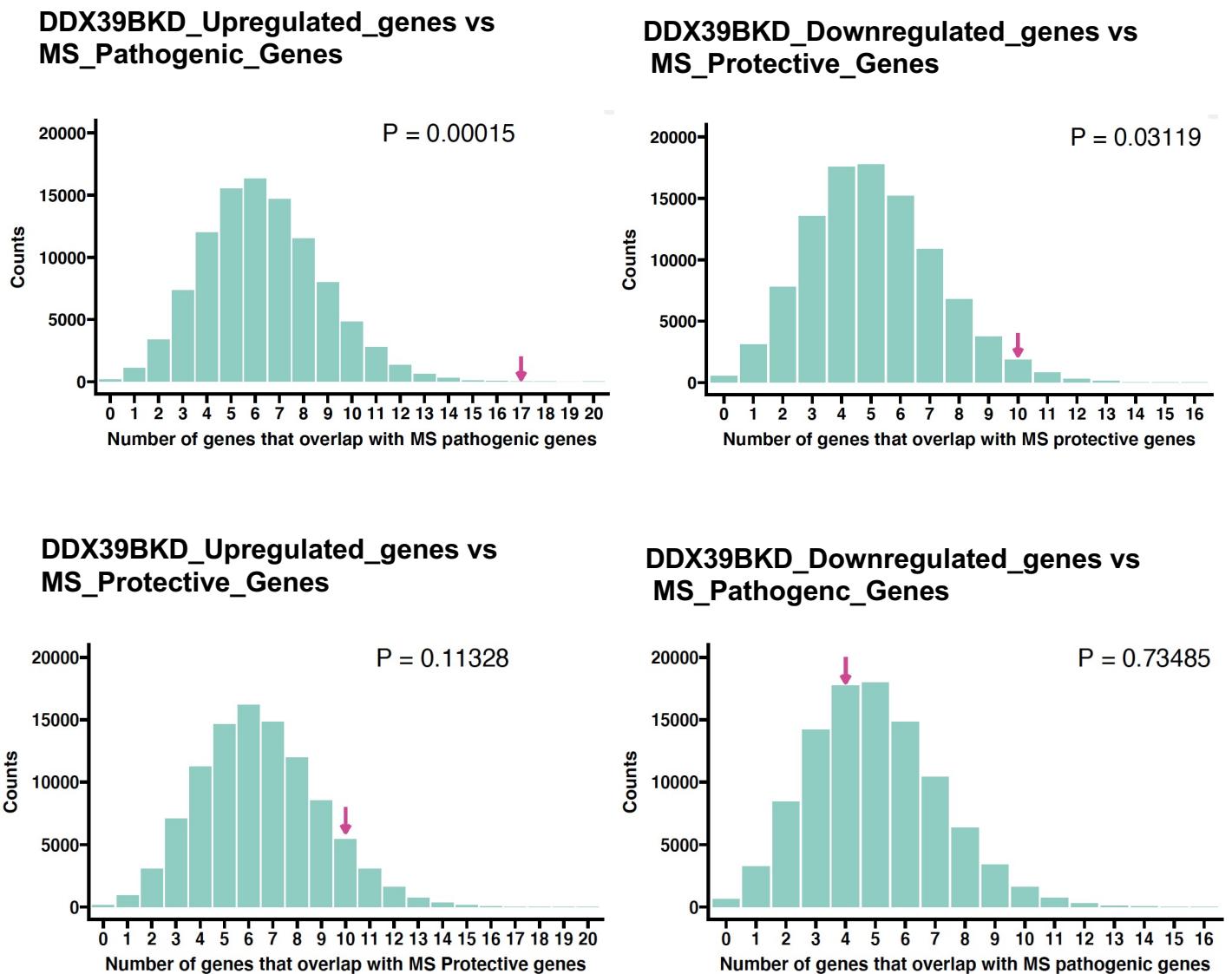

Fig. S1B. Examples of MS susceptibility genes differentially expressed upon DDX39B knockdown. The heat map shows expression of five genes between control (NTC) and DDX39B depleted (Sh3) T cells.

Fig. S1C

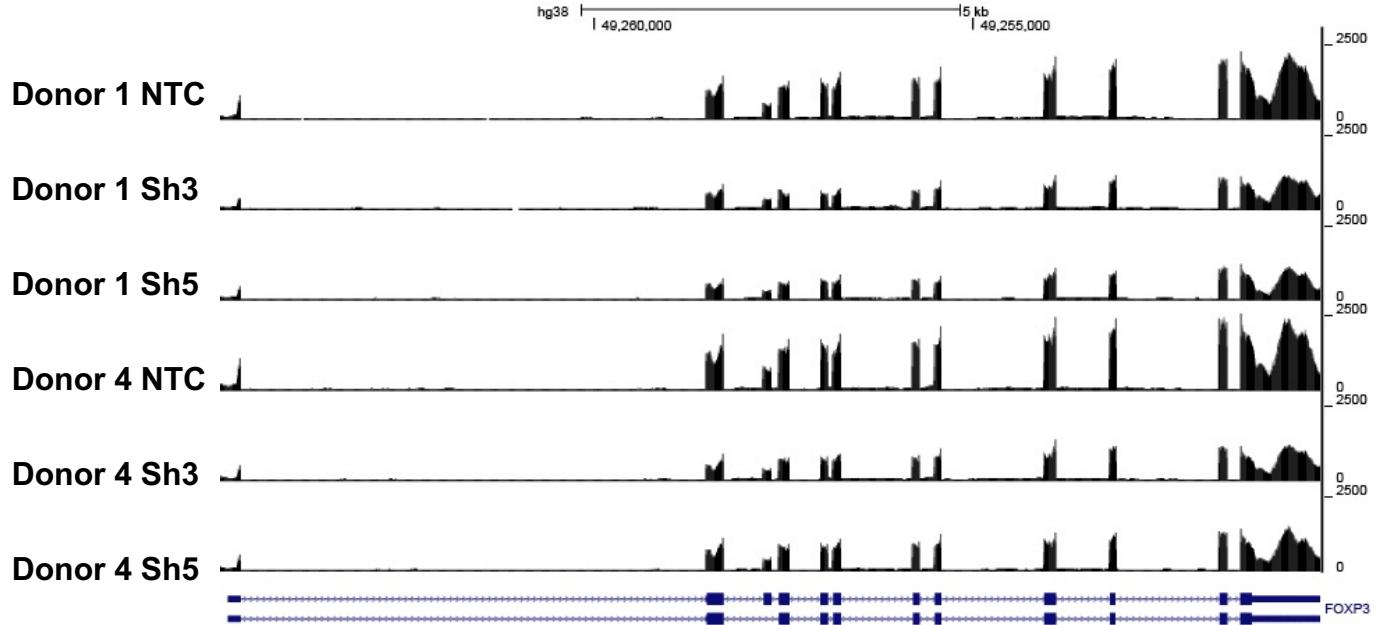

Fig. S1C. Schematic diagram of the enrichment analysis of MS-susceptibility genes among genes whose expression is altered by DDX39B knockdown. List of odds ratio (OR) of Risk-SNP and Susceptibility genes were obtained from International Multiple Sclerosis Genetics Consortium (2019). Detail of the classification is described in the Methods section. The list of the MS_Pathogenic and MS_Protective genes is shown in Table S3.

Fig. S1D

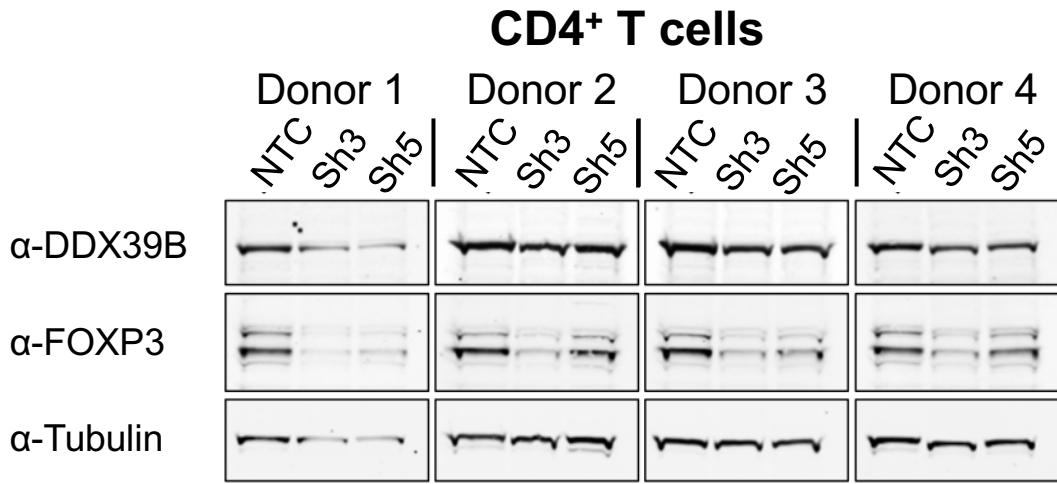

Fig. S1D. Enrichment analysis of the MS_Pathogenic or MS_Protective genes. Resampling 100,000 times resulted in a distribution of the number of genes that overlap by chance with experimental overlap indicated by magenta arrow. P value was calculated based on the fraction of instances. Details of the analysis are described in the Methods section.

Fig. S1E

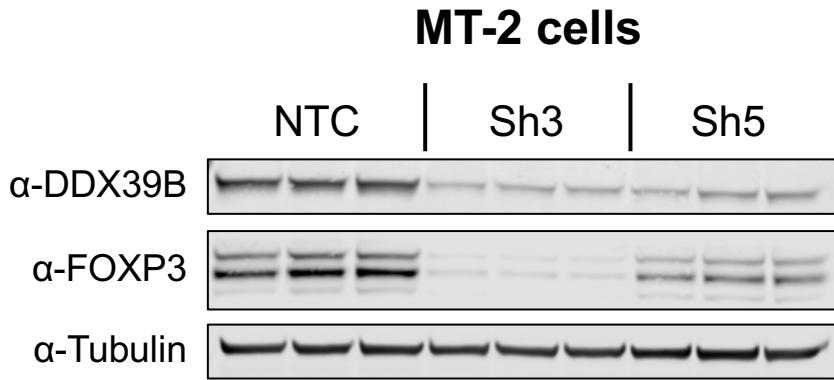

Fig. S1E. Coverage tracks of reads mapping to the *FOXP3* gene in control and DDX39B-depleted CD4⁺ T cells. The figure shows coverage of RNAseq reads mapping to the *FOXP3* gene in control (NTC) or DDX39B-depleted (Sh3 or Sh5) CD4⁺ T cells from two healthy donors (Donors 1 and 4).

Fig. S1F

Fig. S1F. Western blot analysis of FOXP3 expression upon DDX39B depletion in CD4⁺ T cells. FOXP3 protein abundance was analyzed by western blot in CD4⁺ T cells from four donors transduced with either control (NTC) or DDX39B targeting (Sh3 or Sh5) shRNAs. The data were normalized to α -tubulin. Densitometry quantification of these data is shown in Fig. 1C.

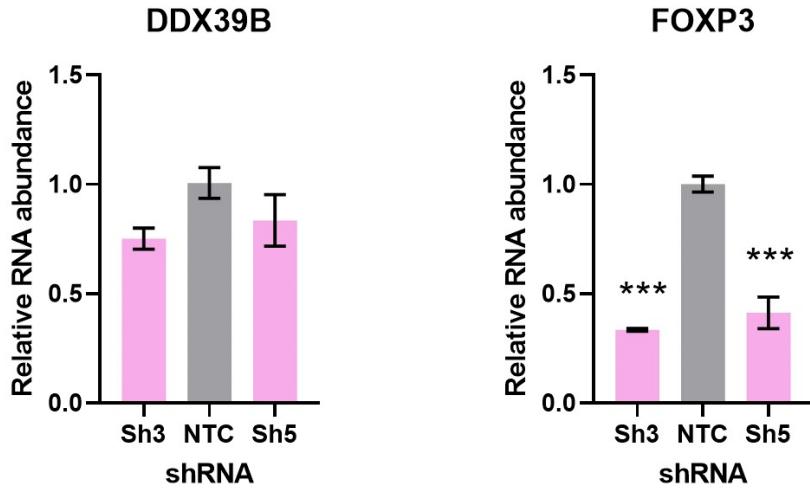
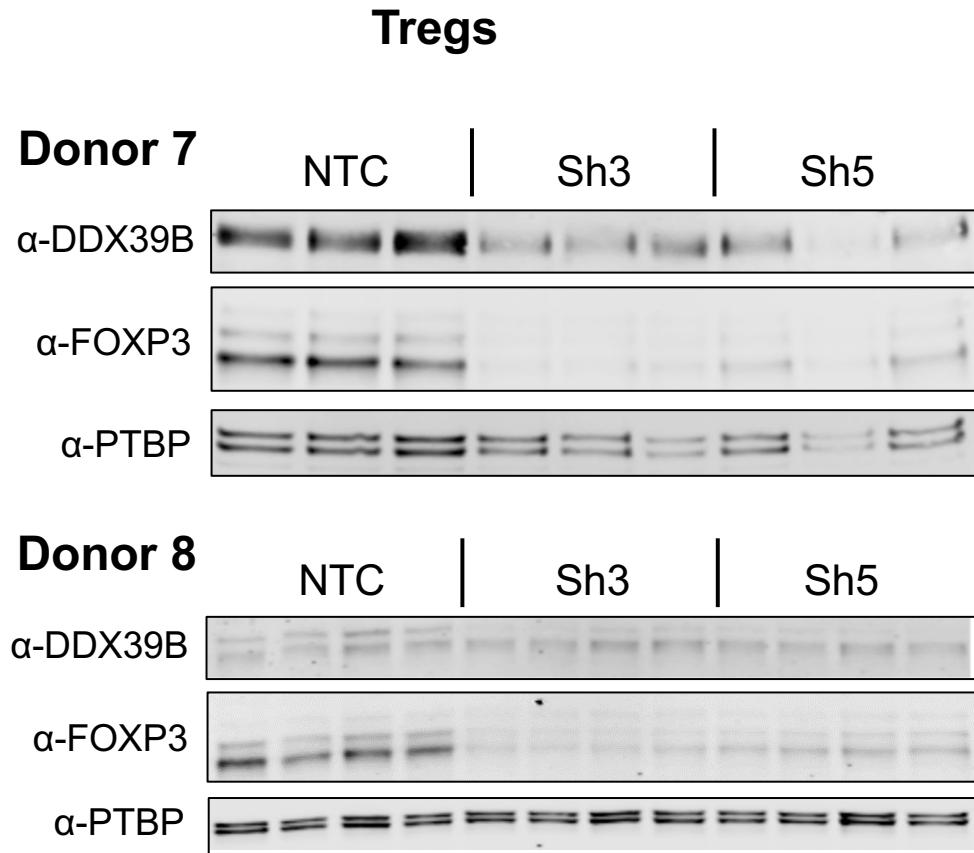

Fig. S1G

Fig. S1G. Western blot analysis of FOXP3 expression upon DDX39B depletion in MT-2 cells. DDX39B was depleted in MT-2 cells by lentivirus transduction with either non-targeting control (NTC) or DDX39B targeting (Sh3 or Sh5) shRNAs. DDX39B and FOXP3 protein abundance was measured by western blot and normalized to α -tubulin. Densitometry quantification of these data is shown in Fig. 1D.


Fig. S1H

Tregs Donor 8

Fig. S1H. Quantification of DDX39B and FOXP3 RNA upon DDX39B depletion in primary Tregs. Human primary Tregs from Donor 8 were transduced with either non-targeting control (NTC) or DDX39B targeting (Sh3 or Sh5) shRNAs. DDX39B and FOXP3 RNA abundance was measured by RT-qPCR and normalized to EEF1A1 RNA expression.. ***: p<0.001. The result for donor 7 is shown in Fig. 1E

Fig. S1I

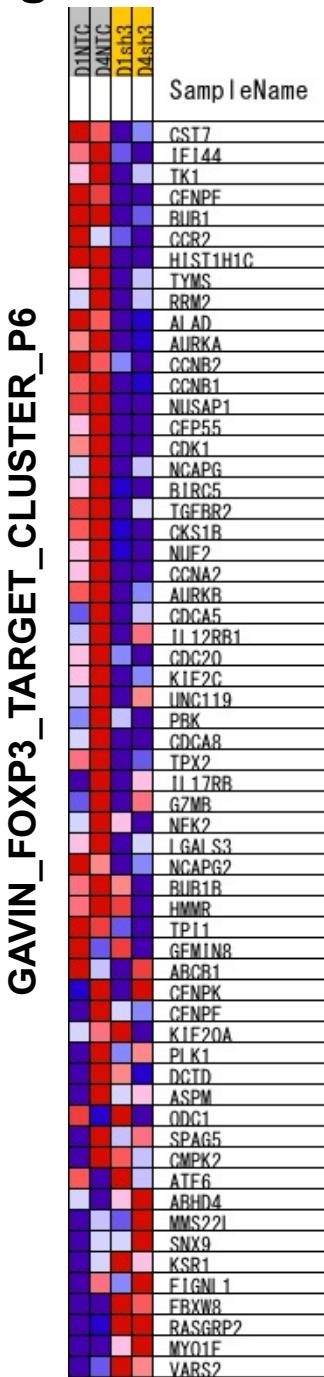
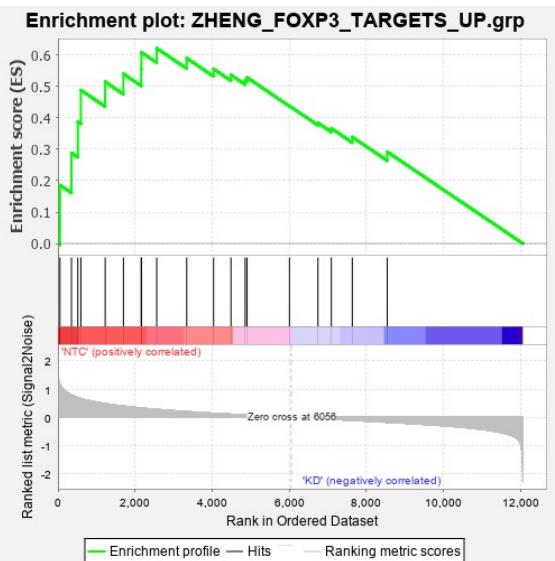
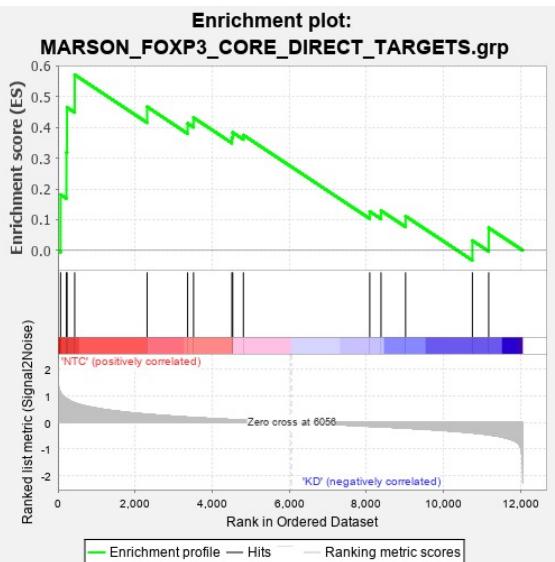


Fig. S1I. DDX39B and FOXP3 expression upon DDX39B depletion in primary Tregs. DDX39B was depleted in Tregs from two donors (Donors 7 and 8) via lentivirus transduction with either non-targeting control (NTC) or DDX39B targeting (Sh3 or Sh5) shRNAs. DDX39B and FOXP3 protein abundance was measured by western blot and normalized to PTBP1. Quantification of data for donor 7 is shown in Fig. 1E.


Fig. S2. FOXP3 pathways affected by DDX39B depletion.

Related to Fig. 2 and Table S3,


Fig. S2A

ZHENG_FOXP3_TARGETS_UP
ES = 0.622, Nom p value = 0.0016

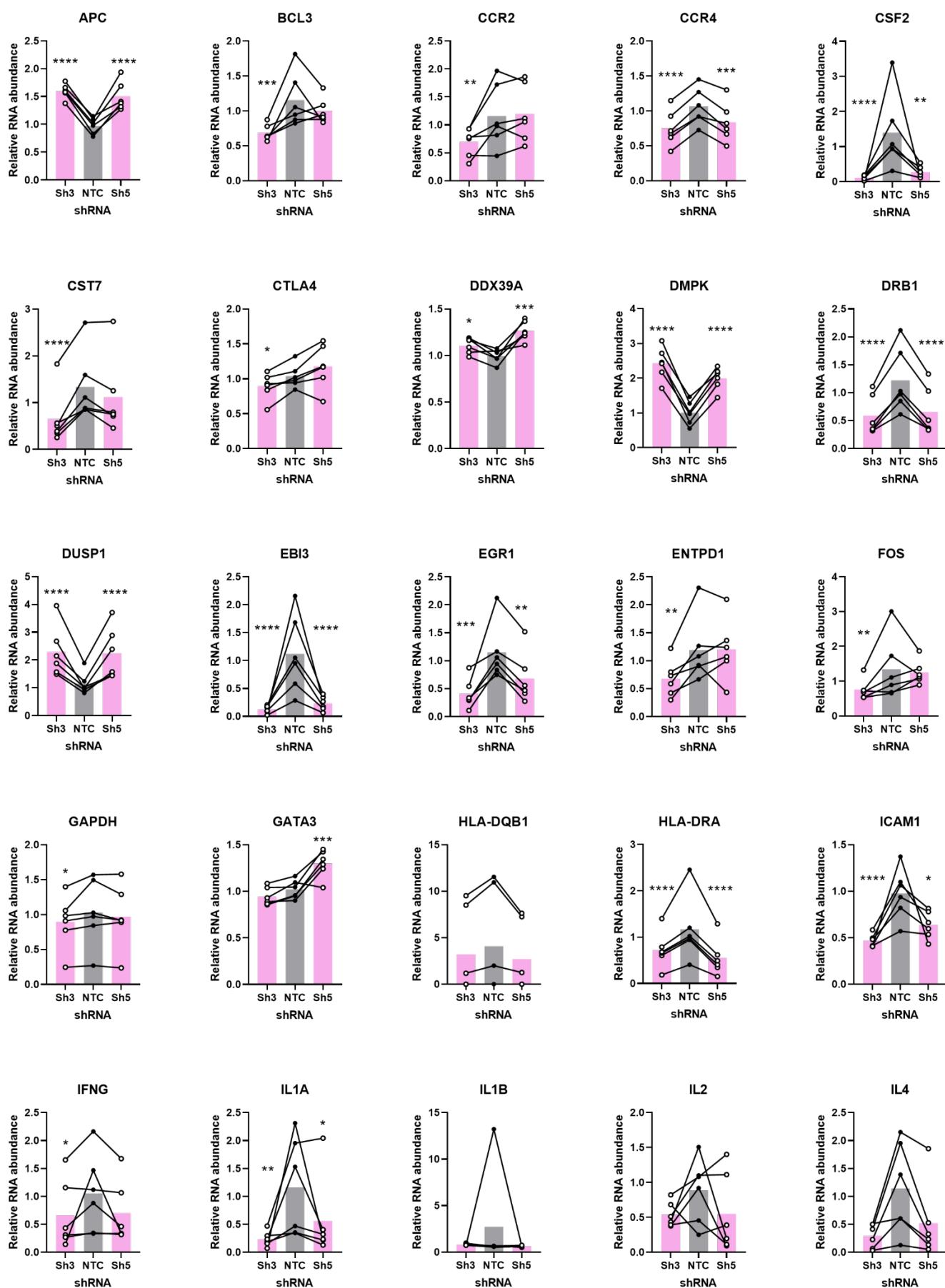
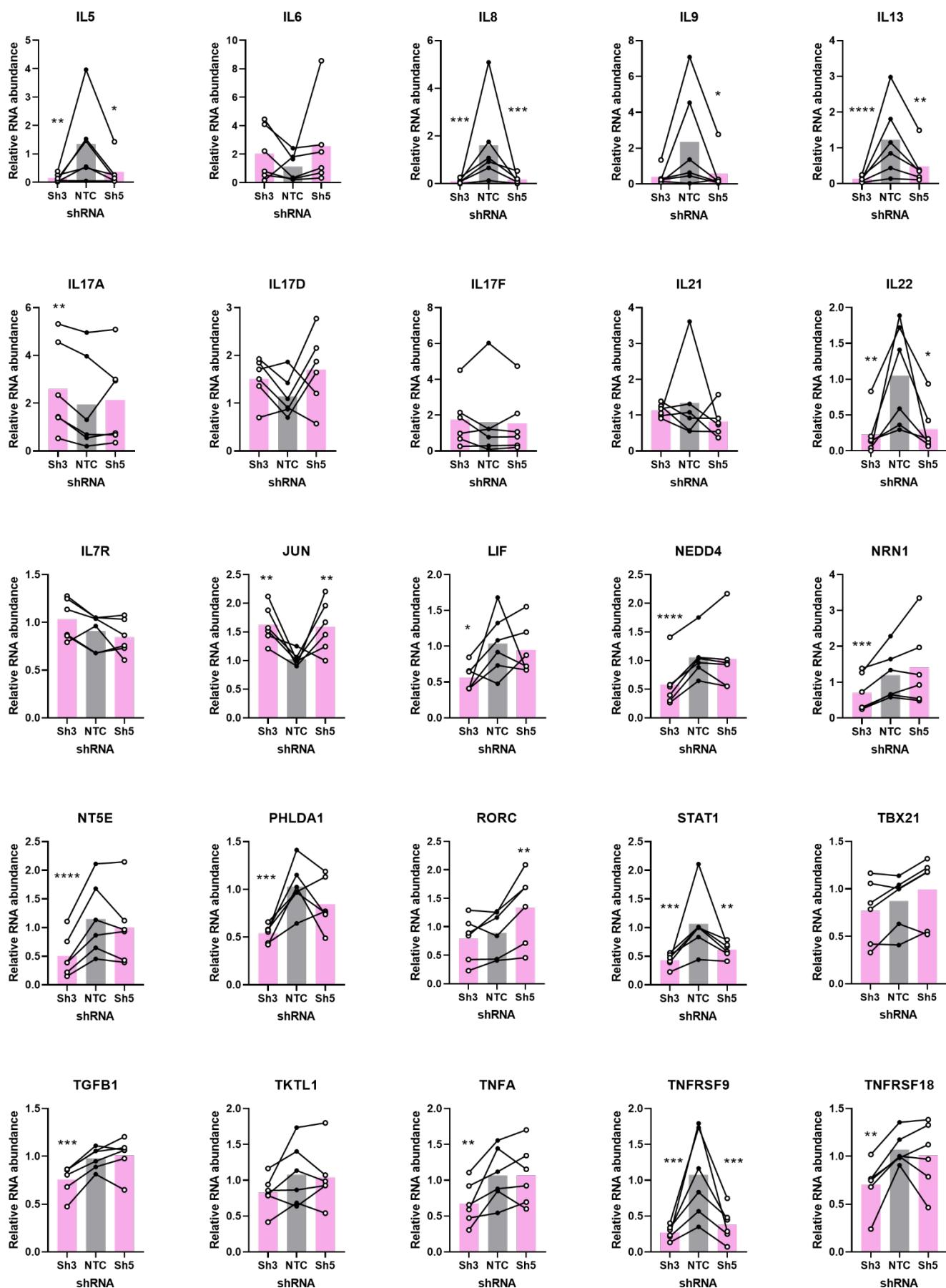
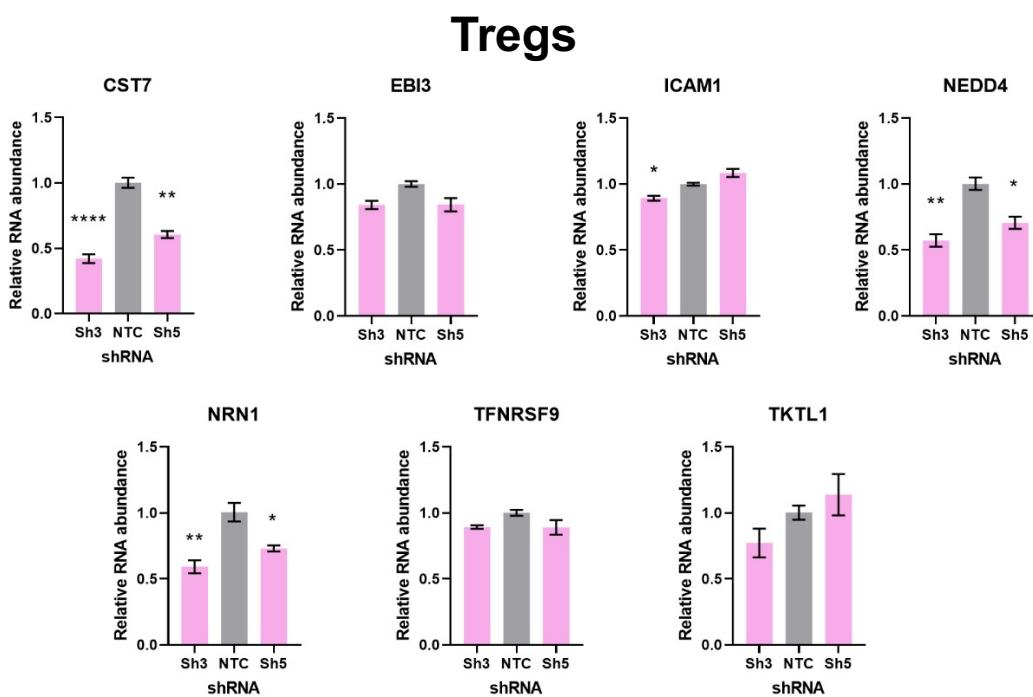

MARSON_FOXP3_CORE_DIRECT_TARGETS
ES = 0.572, Nom p value = 0.045

Fig. S2A. GSEA results of FOXP3-related gene sets enriched in normal over DDX39B depleted cells. GSEA was conducted comparing the transcriptome of control (NTC) and DDX39B-depleted (Sh3) CD4⁺ T cells. Additional data for the GAVIN_FOXP3_TARGET_CLUSTER_P6 gene set are shown in Fig. 2B.


Fig. S2B

CD4⁺ T cells

Fig. S2B (cont)


CD4⁺ T cells

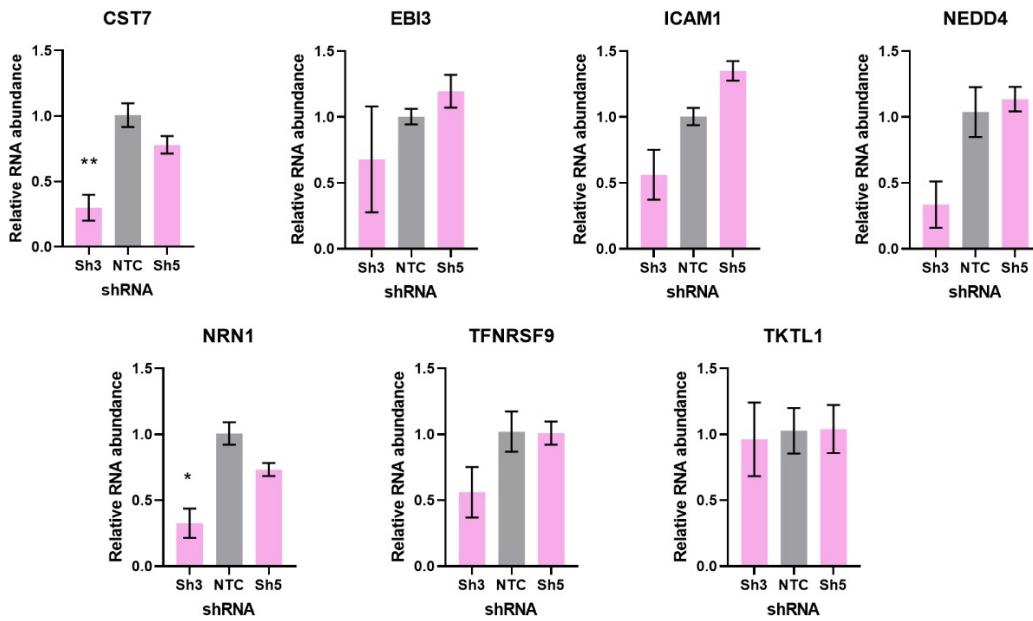

Fig. S2B. Effect of DDX39B depletion on expression of genes in CD4⁺ T cells. Expression of genes with known immune function and *GAPDH* (as a control), normalized to *EEF1A1* expression, was measured by RT-qPCR in control (NTC) or in primary CD4⁺ T cells depleted of DDX39B (Sh3 or Sh5) shRNAs. *: p < 0.05, **: p < 0.01, ***: p < 0.001 and ****: p < 0.0001.

Fig. S2C

Donor 7

Donor 8

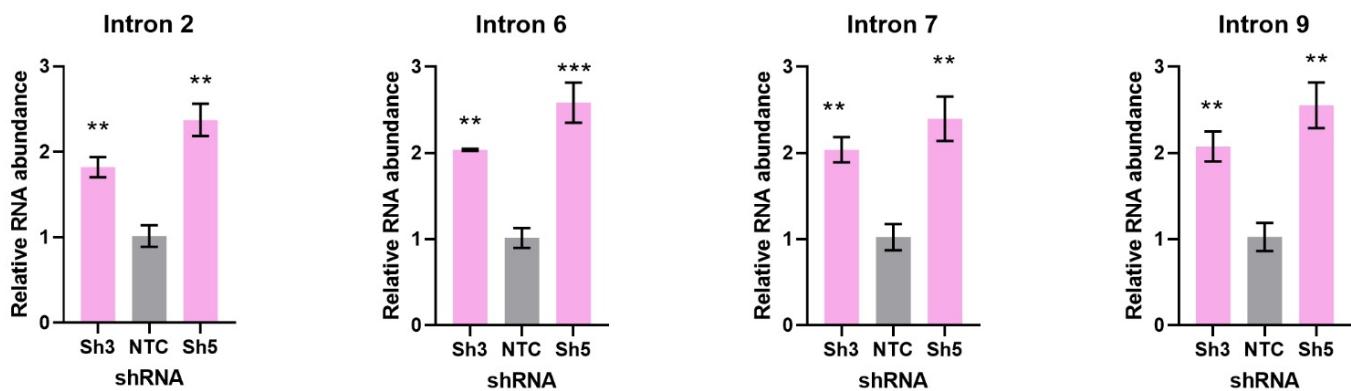

Fig. S2C. Effect of DDX39B depletion on expression of Treg genes.
DDX39B was depleted in Tregs from Donors 7 and 8, and expression of seven Treg-related genes (from Gavin et al., 2017) were measured by RT-qPCR and normalized to *EEF1A1* expression. *: $p < 0.05$, **: $p < 0.01$ and ****: $p < 0.0001$.

Fig. S3. Low DDX39B causes intron retention.

Related to Figure 4.

Fig. S3A

MT-2 Chromatin Fraction

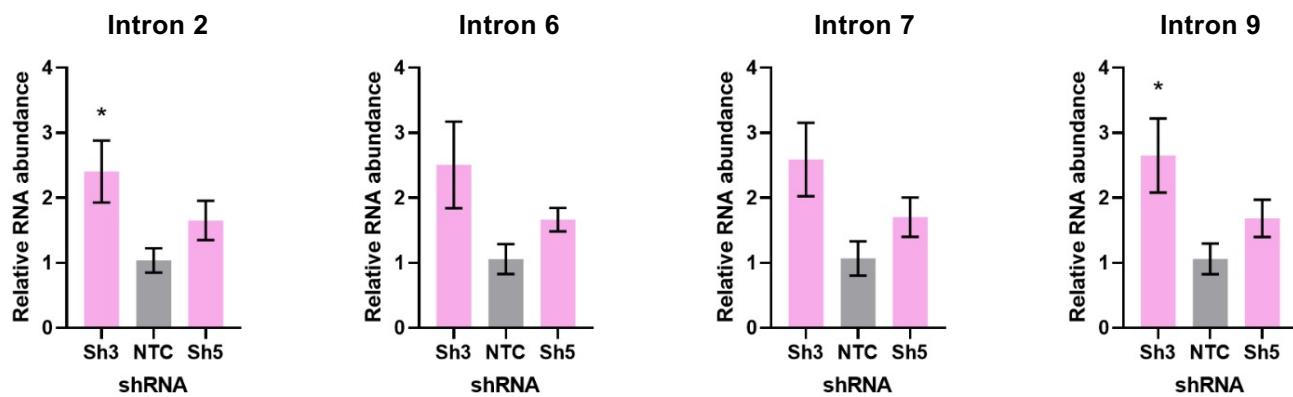
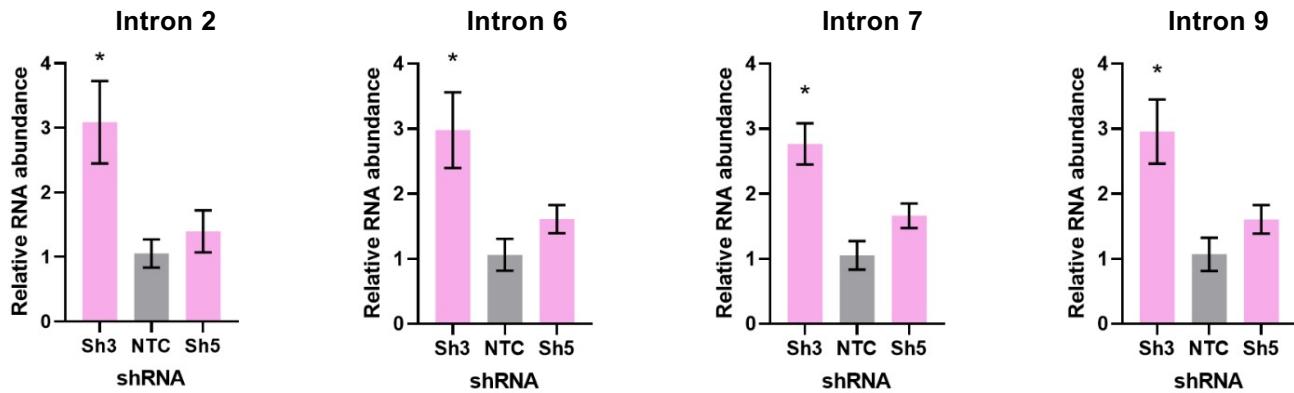
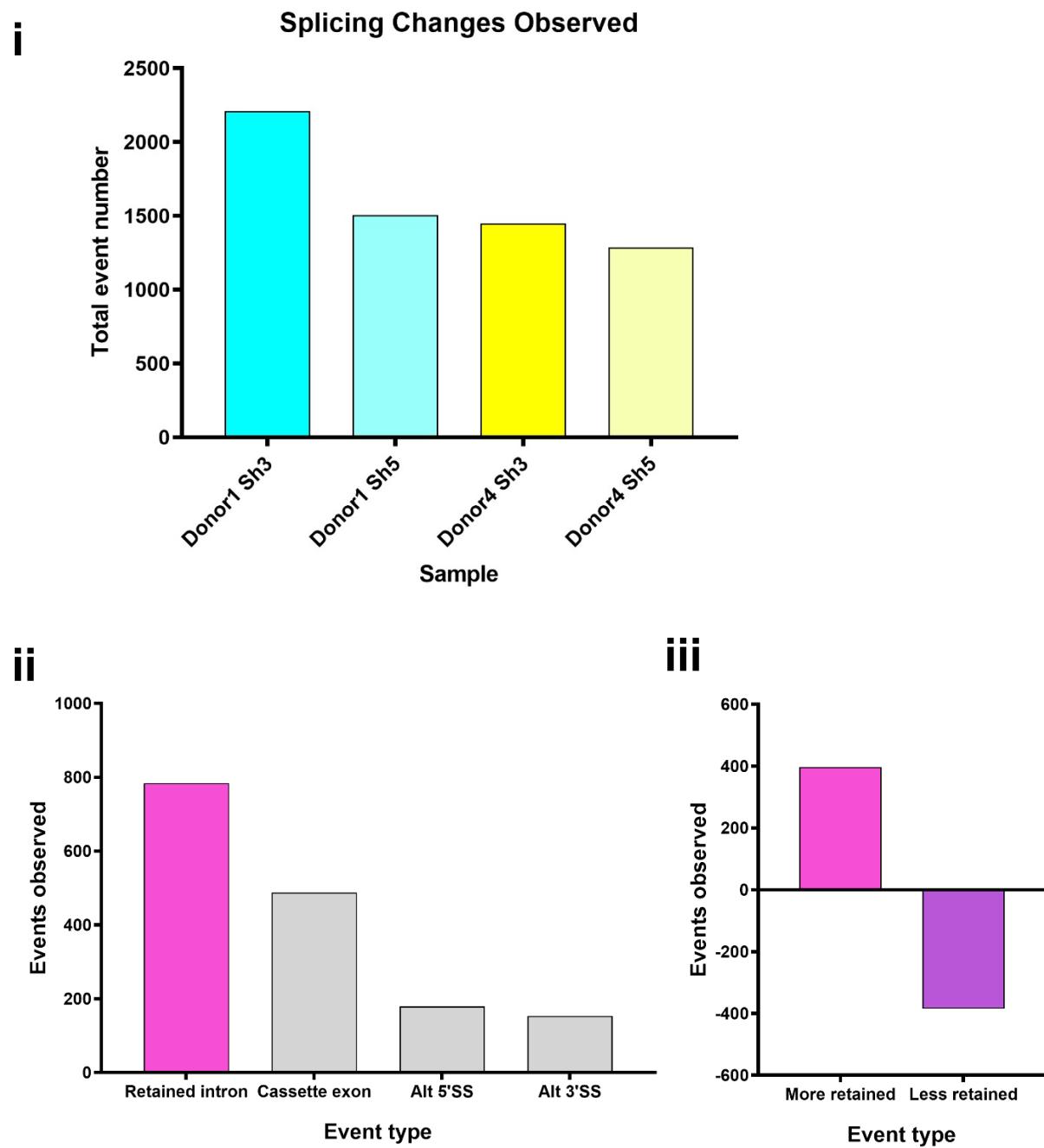


Fig. S3A. Quantification of *FOXP3* retained introns in the chromatin fraction of MT-2 cells. Control (NTC) or DDX39B-depleted (Sh3 or Sh5) MT-2 cells were fractionated into cytoplasm, nucleoplasm and chromatin fractions. Retained *FOXP3* introns were quantified in the chromatin compartment by RT-qPCR using intron-specific primers and normalized to total *FOXP3* RNA. **: p < 0.01, ***: p < 0.001.


Fig. S3B

Tregs

Donor 7



Donor 8

Fig. S3B. Quantification of *FOXP3* retained introns in primary Tregs. DDX39B was depleted in Tregs from two independent donors (donors 7 and 8) via lentivirus transduction with either DDX39B targeting (Sh3 or Sh5) shRNAs. Retained *FOXP3* introns were quantified from total RNA of control cells treated with a non-targeting shRNA (NTC) or DDX39B depleted cells (Sh3 or Sh5) by RT-qPCR using intron-specific primers and normalized to total *FOXP3* RNA. *: p < 0.05.

Fig. S3C

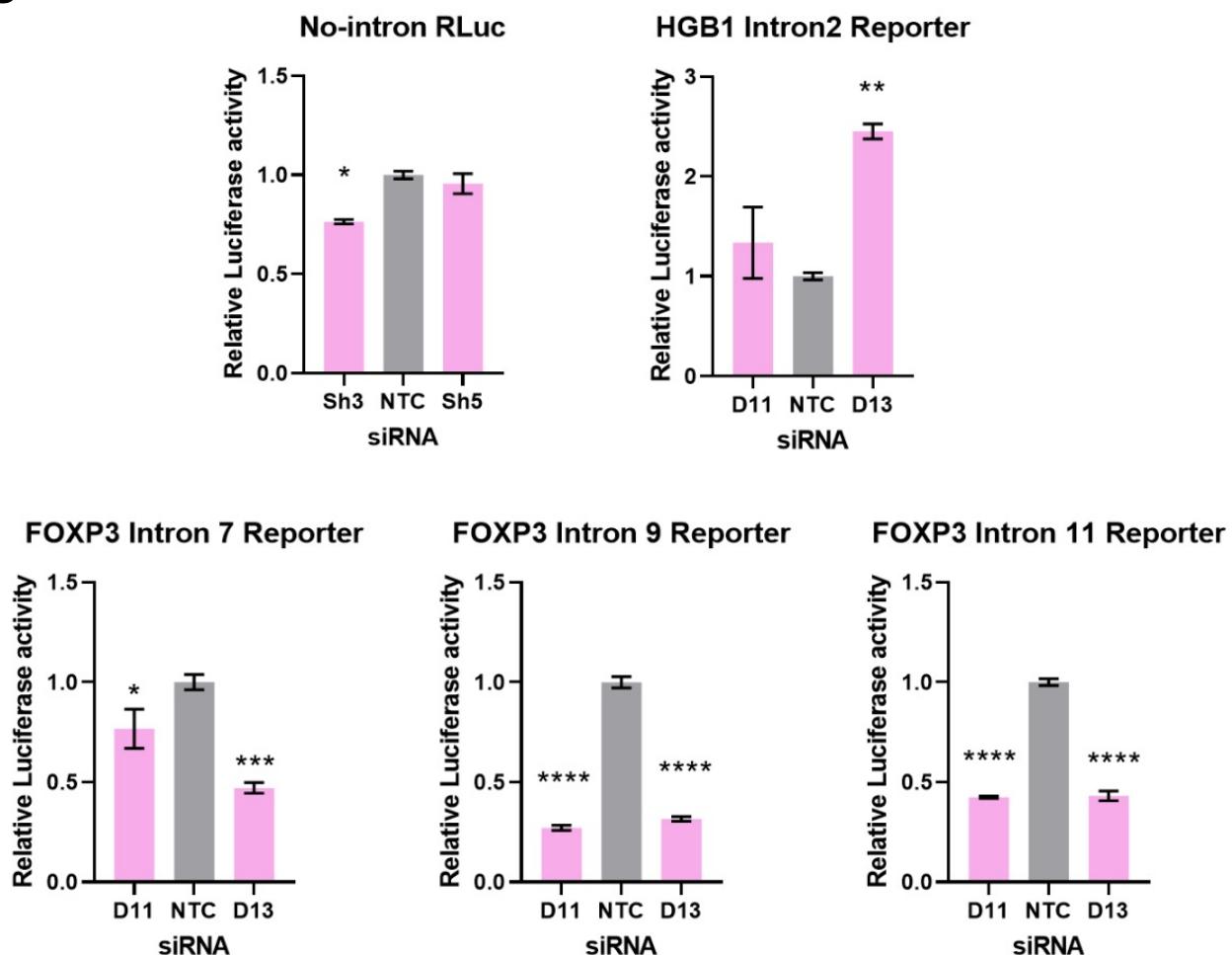


Fig. S3C. Alternative splicing events observed upon DDX39B depletion in CD4⁺ T cells. Splicing analysis of RNAseq data was carried out using Vast-Tools. **i.** Total events changed between control and either of two knockdown conditions (Sh3 & Sh5) in two donors (donor 1 & 4). **ii.** Type of events of Sh3 knockdown in either donor are shown. Alt 5'SS, alternative 5' splice site; Alt 3'SS, alternative 3' splice site. **iii.** Intron retention events in either donor are divided into those showing more retention or less retention with DDX39B knockdown.

Fig. S4. C-rich polypyrimidine tracts determine DDX39B sensitivity.

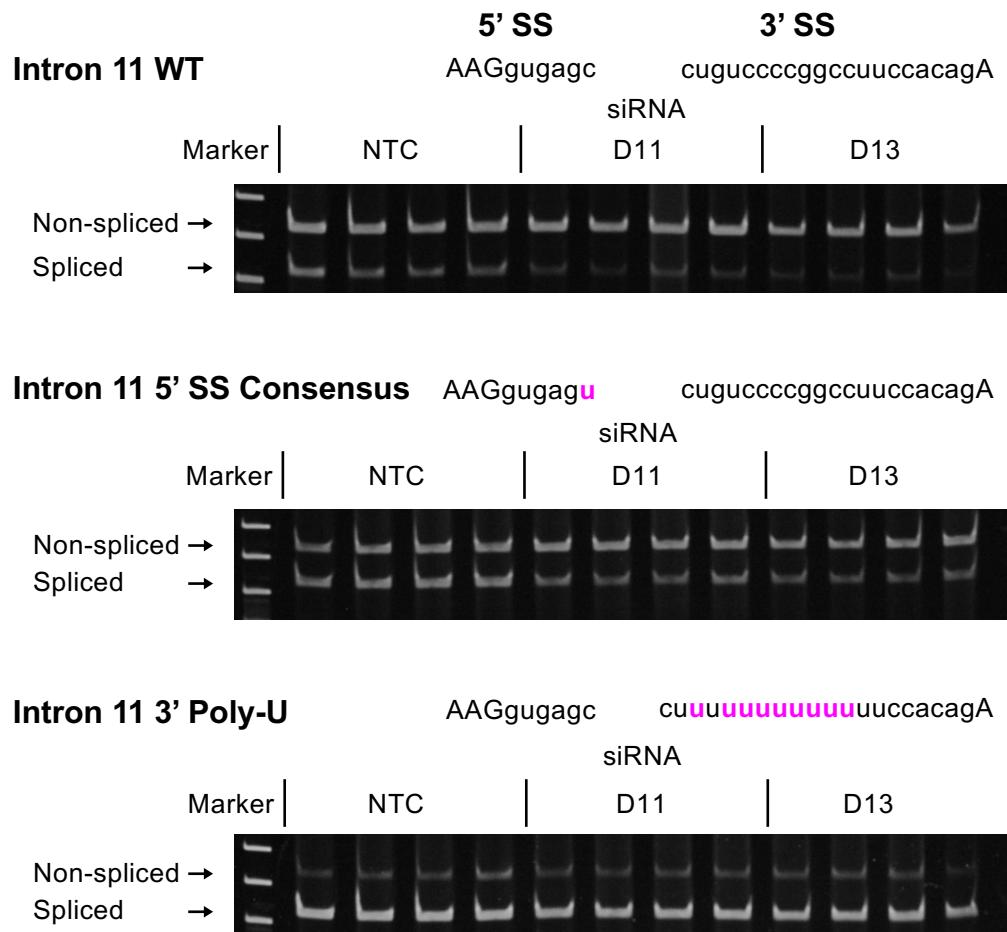

Related to Figure 6.

Fig. S4A

Fig. S4A. Luciferase activity of the splicing reporters. Control (NTC) or DDX39B-depleted (D11 or D13 siRNAs) HeLa cells were co-transfected with a Firefly luciferase reporter (transfection control, FLuc) and Renilla luciferase (RLuc) splicing reporters with no intron, human β globin (HGB1) intron 2, or FOXP3 introns 7, 9 or 11. Relative splicing efficiency of reporters was inferred by measuring luciferase activity (RLuc/FLuc) normalized to NTC. *: $p < 0.05$, **: $p < 0.01$, ***: $p < 0.001$ and ****: $p < 0.0001$.

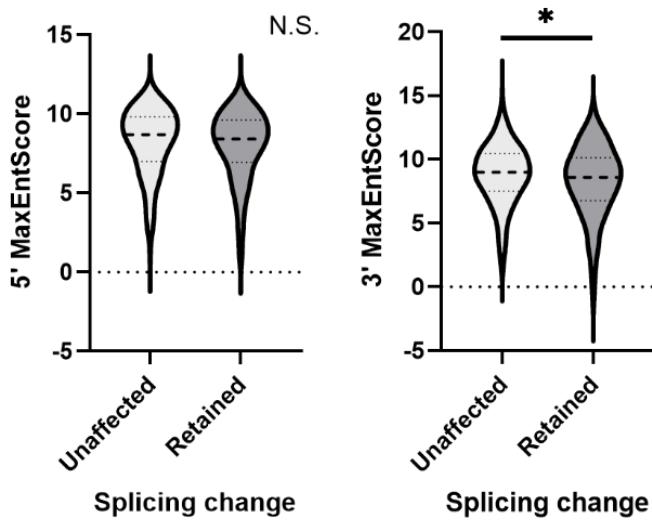

Fig. S4B

Fig. S4B. RT-PCR analysis of splicing efficiency of wild-type or mutant *FOXP3* Intron 11 RLuc reporters. Control (NTC) or DDX39B-depleted (D11 or D13) HeLa cells were transfected with *FOXP3* intron 11 RLuc reporters (WT, 5' SS consensus or 3' Poly-U mutant), and splicing efficiency was directly measured by endpoint RT-PCR. Quantification of the gels is shown in Fig. 6B.

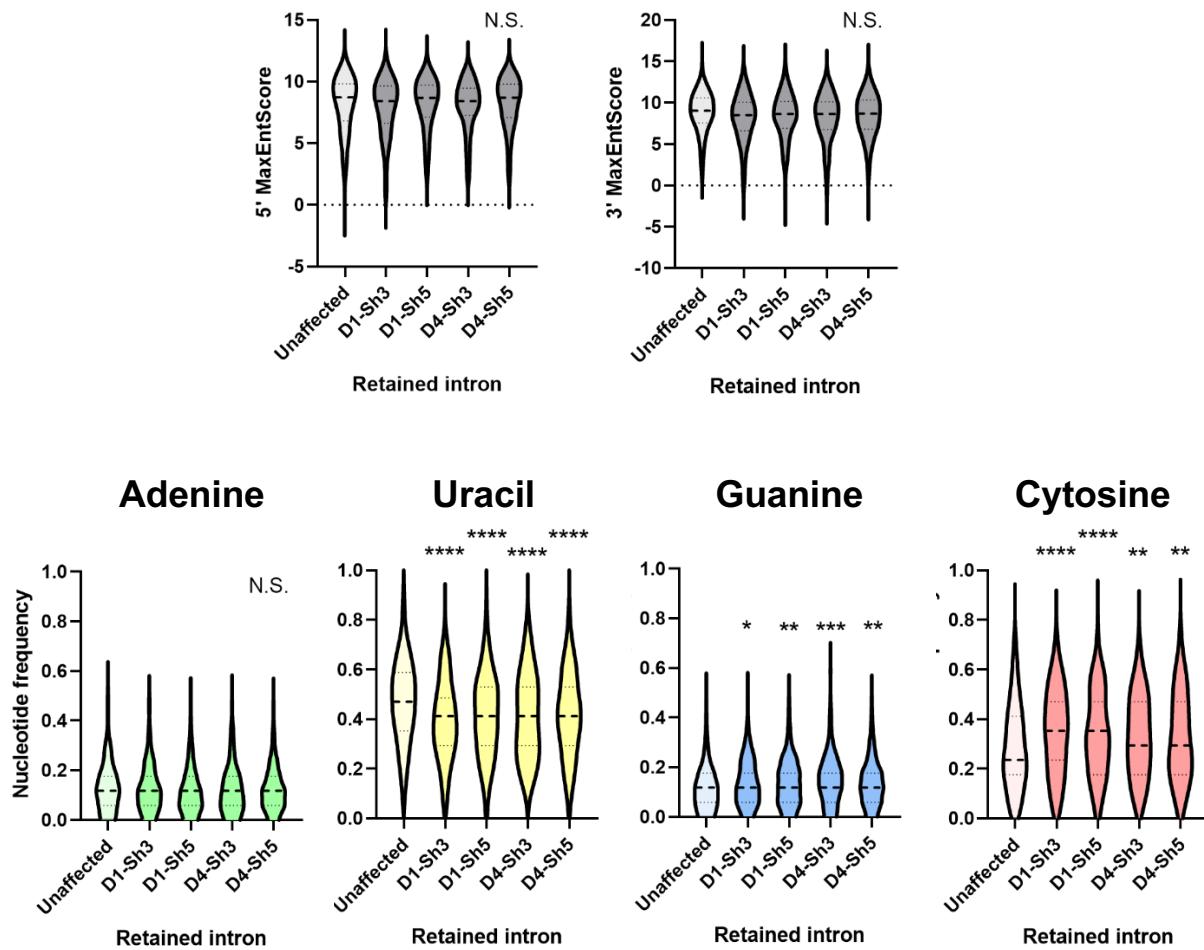


Fig. S4D

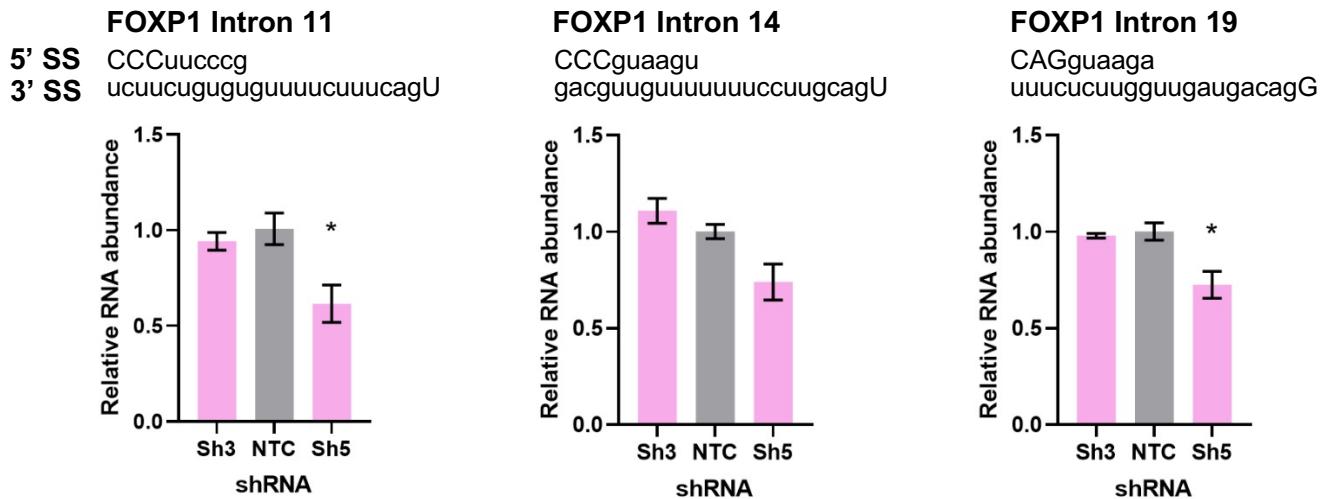

Fig. S4D. Comparison of Max entropy splice sites (SS) score between unaffected and DDX39B-sensitive introns. Max entropy score of 5' SS and 3' SS of unaffected (500 randomly selected) and introns with increased retention upon DDX39B depletion (397 events) was determined using *MaxEntScan* (Yeo G and Burge CB (2004)). Dashed lines within the violin plots denote median values. *: p < 0.05.

Fig. S4E

Fig. S4E. Comparison of Max entropy splice site (SS) scores (top panel) and nucleotide composition of py tracts (bottom panel) of unaffected introns or introns that were more retained in CD4⁺ T cells from either donor 1 or 4 depleted of DDX39B by treatment with Sh3 or Sh5. *: p < 0.05, **: p < 0.01, *: p < 0.001 and ****: p < 0.0001.**

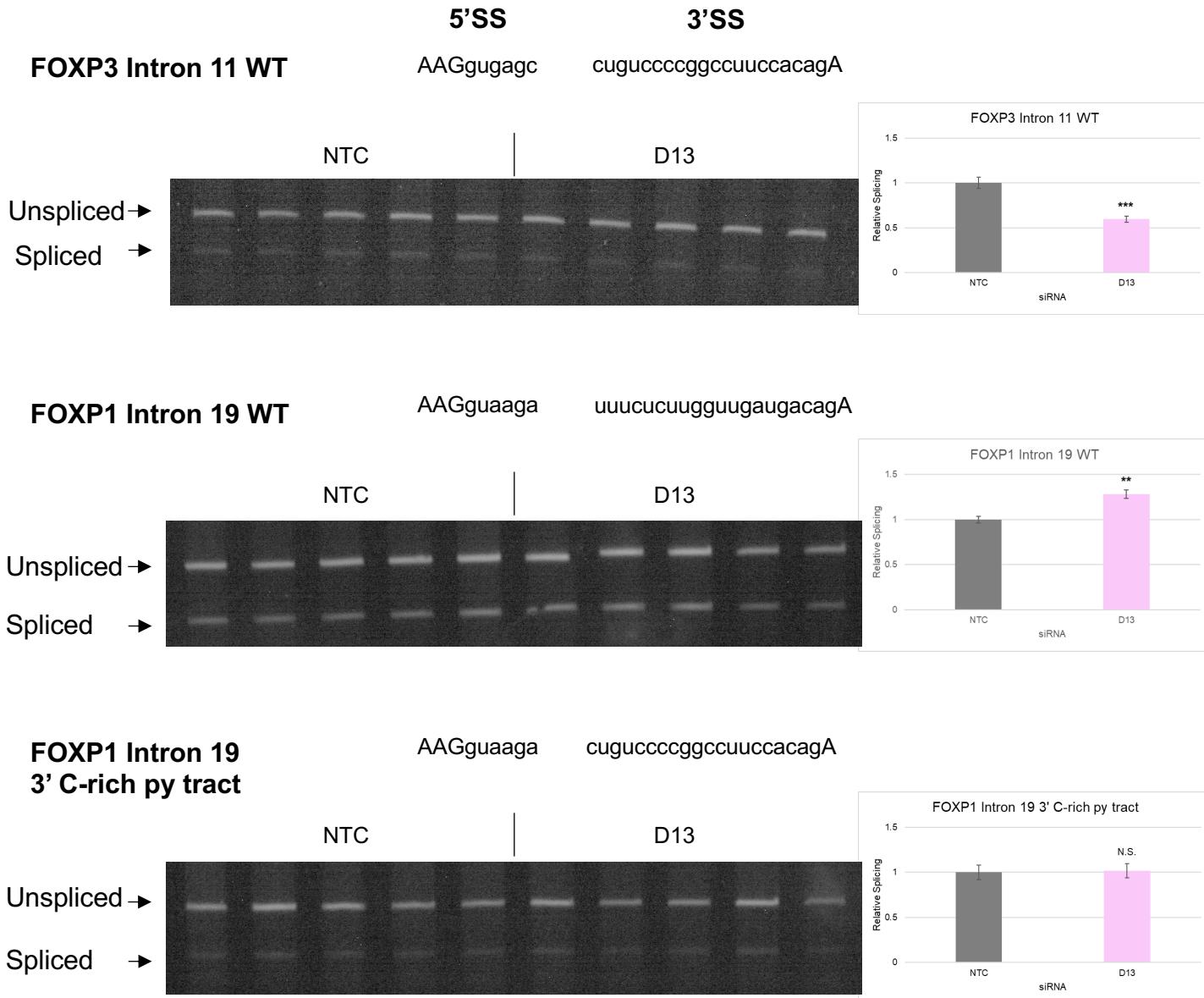

Fig. S4F

Fig. S4F. Retention of *FOXP1* introns is not increased upon *DDX39B* depletion in MT-2 cells.

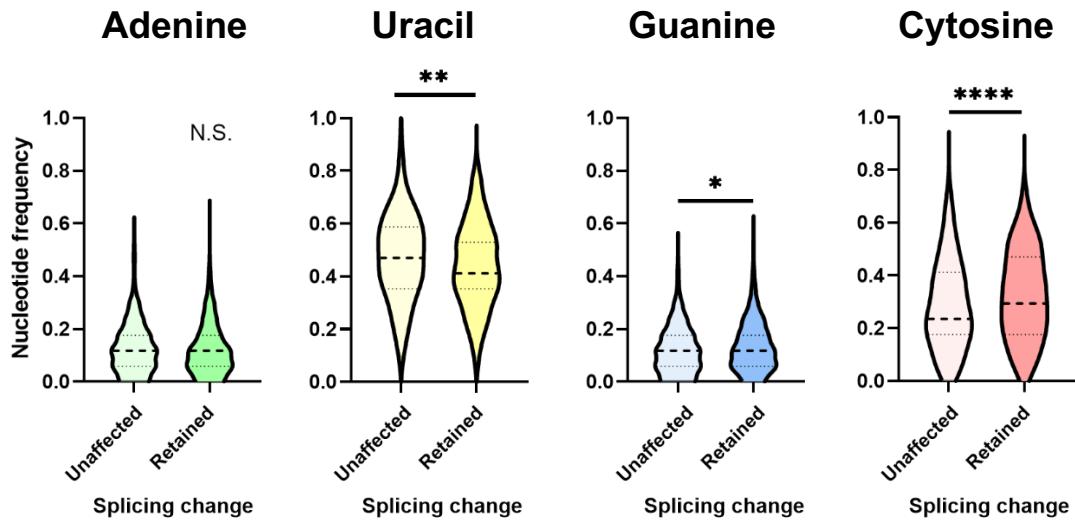
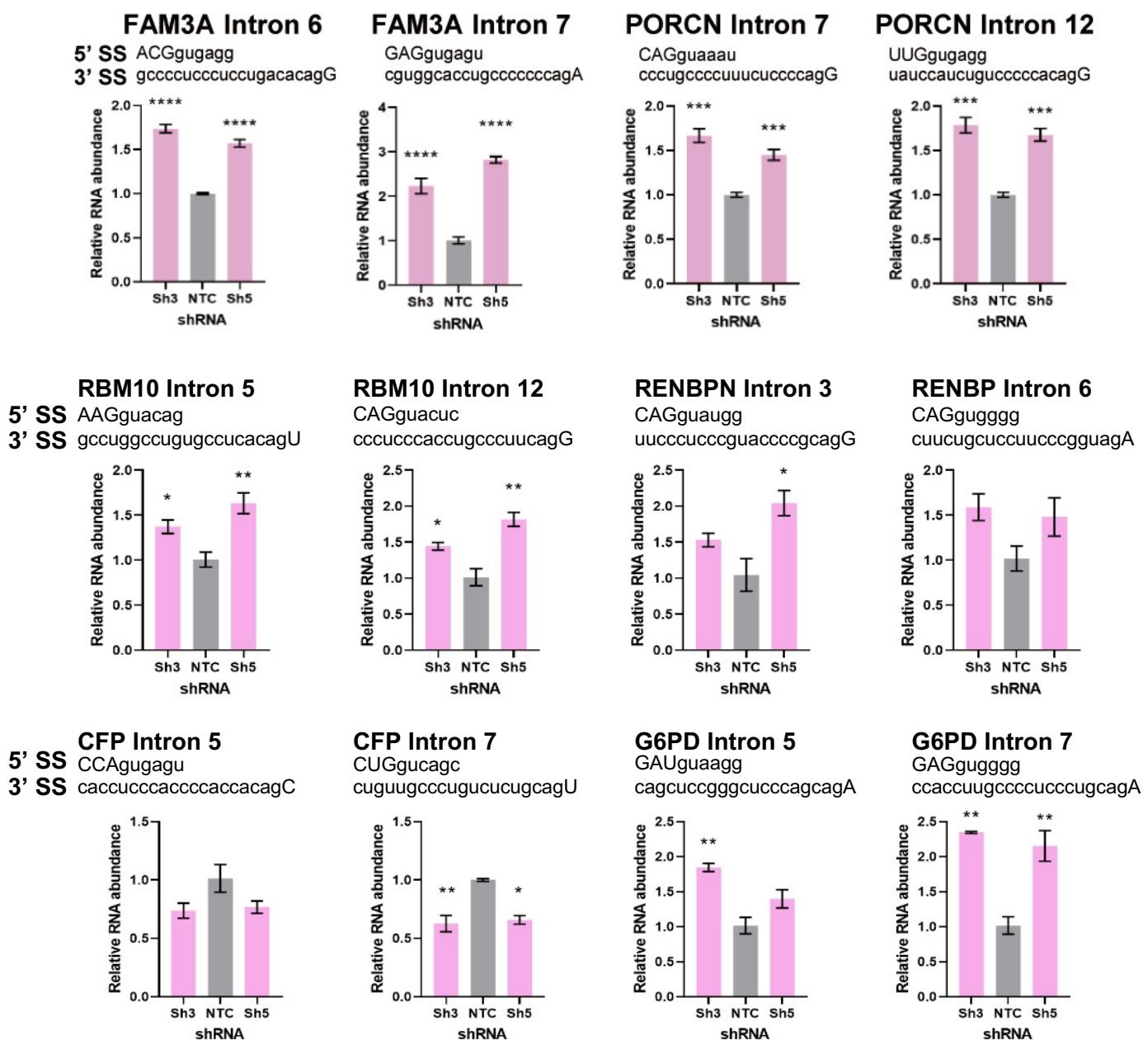

FOXP1 transcripts including introns 11, 14, or 19 were quantified by intron-specific RT-qPCR in control (NTC) and *DDX39B*-depleted (Sh3 or Sh5) MT-2 cells and normalized to total *FOXP1* transcripts. *: p < 0.05.

Fig. S4G

Fig. S4G. RT-PCR analysis of splicing efficiency of wild-type or mutant *FOXP1* Intron 19 RLuc reporters. Control (NTC) or DDX39B-depleted (D13) HeLa cells were transfected with *FOXP3* or *FOXP1* RLuc reporters. Splicing efficiency was directly measured by endpoint RT-PCR. Quantification is shown on the right. **: p<0.01 and ***: p<0.001.


Fig. S4H

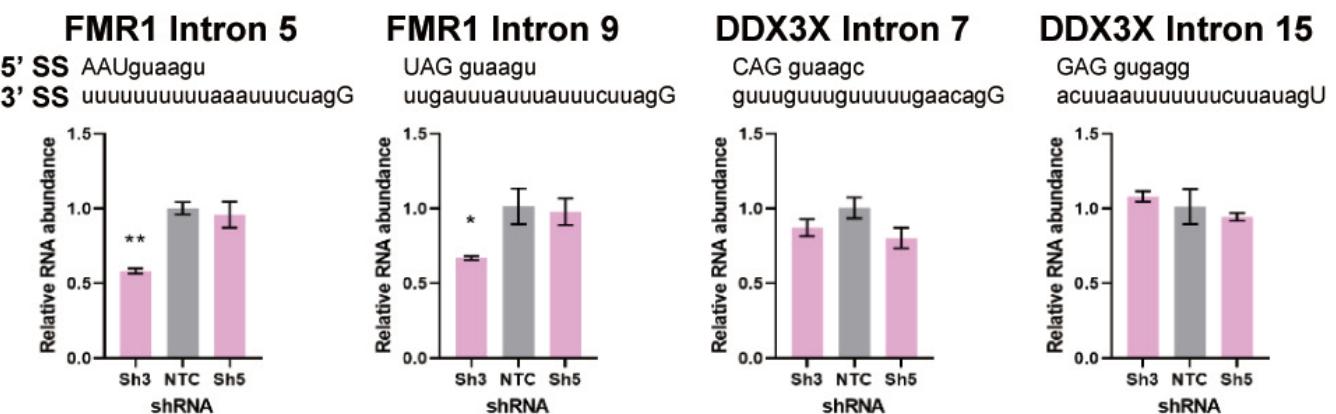

Fig. S4H. Comparison of py tract composition between unaffected and less-retained introns. Nucleotide frequency of py tracts of unaffected (500 randomly selected) and those that are less-retained upon DDX39B knockdown (387) was calculated. Dashed lines denote median values. $p < 0.05$, **: $p < 0.01$, ***: $p < 0.001$ and ****: $p < 0.0001$.

Fig. S4I

C-rich py tract genes

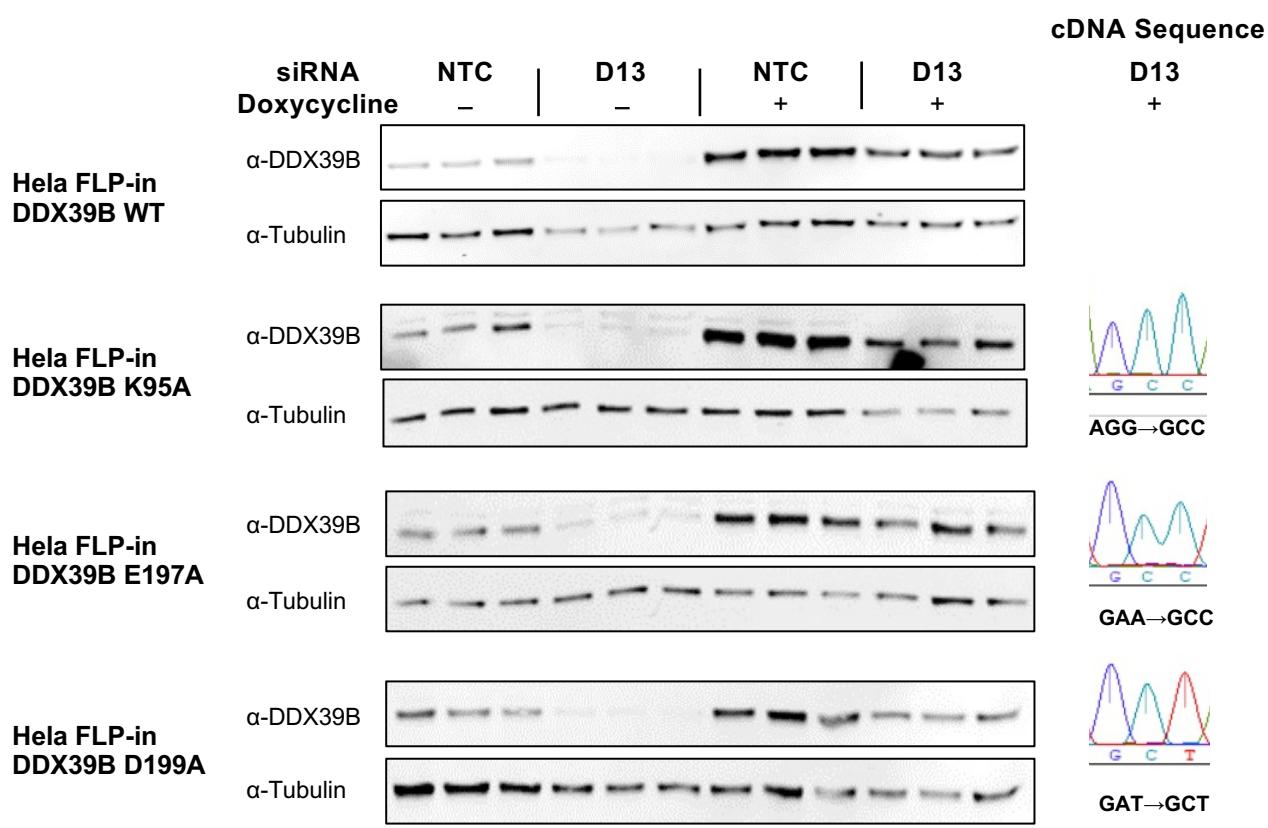

U-rich py tract genes

Fig. S4I. Detection of intron retention events in X chromosome genes with C-rich or U-rich py tracts. Introns of the transcripts with C-rich (**top**) or U-rich (**bottom**) py tract were quantified by intron-specific RT-qPCR in control (NTC) and DDX39B-depleted (Sh3 or Sh5) MT-2 cells and normalized to their corresponding total transcripts. *: p < 0.05, **: p < 0.01, ***: p < 0.001 and ****: p < 0.0001.

Fig. S5

(relates to Figure 7)

Fig. S5. Expression of WT or mutant DDX39B in stable cell lines.

Stable HeLa cell lines with inducible expression of WT or mutant DDX39B *trans*-genes were transfected with control (NTC) or DDX39B (D13) siRNAs, and expression of a siRNA-resistant DDX39B transgene was induced with Doxycycline. DDX39B protein expression was quantified by western blot (left). Sanger sequencing of DDX39B RT-PCR amplicons from rescue with mutant DDX39B *trans*-genes (D13 + Doxycycline) shows preferential expression of DDX39B *trans*-genes under rescue conditions (right).