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Abstract

Spectrum clustering is a powerful strategy to minimize redundant mass spectral data by
grouping highly similar mass spectra corresponding to repeatedly measured analytes. Based
on spectrum similarity, near-identical spectra are grouped in clusters, after which each
cluster can be represented by its so-called consensus spectrum for downstream processing.
Although several algorithms for spectrum clustering have been adequately benchmarked
and tested, the influence of the consensus spectrum generation step is rarely evaluated.

Here, we present an implementation and benchmark of common consensus spectrum
algorithms, including spectrum averaging, spectrum binning, the most similar spectrum, and
the best-identified spectrum. We have analyzed diverse public datasets using two different
clustering algorithms (spectra-cluster and MaRaCluster) to evaluate how the consensus
spectrum generation procedure influences downstream peptide identification. The BEST and
BIN methods were found the most reliable methods for consensus spectrum generation,
including for datasets with post-translational modifications (PTM) such as phosphorylation.
All source code and data of the present study are freely available on GitHub at

https://github.com/statisticalbiotechnology/representative-spectra-benchmark.

Introduction

Spectrum clustering, i.e. the process of grouping similar spectra in a larger collection of MS2
spectra into smaller subsets, has multiple applications in mass spectrometry in general and
in proteomics in particular (1), including the generation of spectral libraries (2) and spectral
archives (3), quality assessment of peptide identifications in public repositories (2) and
improvement of quantification results (4, 5). Spectrum clustering algorithms strive to group
highly similar spectra so that each cluster contains spectra generated from the same analyte
(peptidoforms with a specific charge in the case of proteomics). Differences between tools
for spectrum clustering vary in their implementation of the various data processing steps,
including the pre-processing of spectra (e.g., intensity normalization and peak picking), the
clustering algorithm used, the metric used for determining similarity between spectra, and
the optional optimizations to increase computational efficiency. Current tools for spectrum
clustering include MS-Cluster (3), spectra-cluster (2), MaRaCluster (6), msCRUSH (7), and
falcon (8).
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While the most apparent output of the process of spectrum clustering is a grouping of
spectra into clusters, the majority of use cases benefit from a condensed single spectrum
representation for each cluster. This is, for instance, useful for the data-driven creation of
spectral libraries (9), for reannotation and visualization of clustering results in public data
repositories (2), and label-free quantification (4). The generation of high-quality
representative spectra for each cluster is a key aspect of spectrum clustering, as the
resulting consensus spectra form the starting point for downstream analyses. Although
several spectrum clustering algorithms have been adequately benchmarked [8], the impact
of the consensus spectrum generation procedure has so far not been properly evaluated.
Several common approaches can be used to generate representative spectra, including
spectrum binning, spectrum averaging (3), and selecting the most similar spectrum to all
cluster members (medoid) (8). Additionally, although this strategy can only be used for
clusters that contain one or more identified spectra, the “best-identified spectrum” method

uses the most confidently identified spectrum as cluster representative (10, 11)

Here, we have performed a comprehensive evaluation of algorithms for the generation of
consensus spectra to assess their performance for downstream processing of spectrum
clustering results. We have used the spectra-cluster and MaRaCluster tools to generate
clusters from diverse publicly available datasets and explore whether consensus spectrum
generation algorithms perform differently between different tools. Additionally, we have
evaluated the impact of consensus spectrum generation on downstream peptide and protein
identification performance. All code and analyses are open-source and available at

https://github.com/statisticalbiotechnology/representative-spectra-benchmark  under the

permissive Apache 2.0 license.

Methods

Consensus spectrum generation algorithms and evaluation

For the benchmark, we implemented four consensus spectrum generation algorithms:

e Spectrum averaging (AVERAGE): The representative spectrum is an average of all
the spectra in the cluster (9, 12, 13). In this algorithm, for every m/z value, the
corresponding intensities on each spectrum in the cluster are averaged.

e Spectrum binning (BIN): In this method, for each cluster, a consensus spectrum
vector with bin width 0.02 m/z was first constructed (13). For all spectra in the cluster,

peak m/z and intensity values were assigned to the corresponding bin in the
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consensus spectrum vector. Bins that contained values from fewer than 25% of the
cluster members were discarded. Next, the vector was converted to a consensus
spectrum by averaging all peak m/z and intensity values per bin (2).

e Most similar spectrum (MOST): For each cluster, the spectrum that is on average
most similar to all cluster members was selected as representative (14, 15). This was
determined by first calculating the dot product of all pairwise similarities between
spectra in the cluster. Next, the spectrum with the maximal summed dot product to all
other spectra was selected as the representative for that cluster.

e Best identified spectrum (BEST): For each cluster that contained at least one
identified spectrum, the spectrum with the maximal peptide-spectrum match score
was chosen as the representative for that cluster. Note that this approach is not valid

if all spectra in the cluster are unmatched.

Data manipulation steps were implemented as reproducible Nextflow workflows (Figure 1).
The spectra-cluster (version 1.1.2) (2) and MaRaCluster (version 1.0) (6) spectrum
clustering tools were used to cluster the mass spectrum data, and the MS-GF+ sequence
database search engine (version v2021.03.22) (16) was used to perform peptide
identification. For each cluster, representative (consensus) spectra were directly generated
from the clustering output using the first three consensus generation procedures described
above. For the best-identified method, the spectra were additionally identified using MS-
GF+, after which the PSMs with the maximum scores were selected as representatives for
each cluster. To ensure a fair comparison between all consensus spectrum generation
procedures, clusters that only contained unidentified spectra were ignored, as no valid
representative spectrum could be obtained using the best-identified method. To evaluate
downstream peptide identification performance, the consensus spectra obtained for both
spectrum clustering tools with each consensus spectrum generation method were searched
using MS-GF+ (16), after which the number of peptide identifications was compared
between all combinations of clustering and consensus generation methods, and with the

original data without clustering.
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Figure 1: Study workflow, including clustering and peptide identification of publicly available ProteomeXchange
datasets, consensus spectrum generation using alternative procedures, and evaluation of cluster representatives

using an identification benchmark.

Benchmark Datasets

We used four public ProteomeXchange datasets: PXD008355, PXD023047, PXD021518,
and PXD023361 (Table 1). RAW data from each dataset was converted to MGF using the
ThermoRawFileParser (version: 1.2.3) tool (17) with default parameters. Among them,
PXD008355, PXD023047, and PXD021518 are from Arabidopsis thaliana (mouse-ear
cress), and PXD023361 is from Saccharomyces cerevisiae (baker's yeast). The datasets
have been acquired using three different instrument models: Q Exactive, Q Exactive HF, and
Q Exactive HF-X. The description of the samples, instrument configuration, sample
processing steps, and analytical method can be read in the original publications:
PXD008355 (18), PXD023047 (19), PXD021518 (20), and PXD023361 (21).

Table 1. Datasets were reanalysed to evaluate the performance of each consensus spectrum generation
algorithm. The number of peptide identifications and peptide-spectrum matches can be found in the
Supplementary Notes. In addition, the description of each dataset can be found in the original publication and
PRIDE Archive (22).
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Project accession Instrument No. MS/MS
PXD008355 (18) Q Exactive 1,477,567
PXD023047 (19) Q Exactive HF 109,333
PXD021518 (20) Q Exactive HF-X 286,410
PXD023361 (21) ~ Q Exactive 38,286

For datasets PXD008355, PXD023047, and PXD021518, the Arabidopsis Thaliana protein
database was downloaded from http://ftp.ebi.ac.uk/pride-
archive/2019/07/PXD008355/TAIR10.fasta, while for dataset PXD023361 the

Saccharomyces cerevisiae database was downloaded from
http://ftp.pride.ebi.ac.uk/pride/data/archive/2021/04/PXD023361/uniprot-S yeast.fasta.

For datasets PXD008355, PXD021518, and PXD023361, the precursor error tolerance was
set to 10 ppm; while for dataset PXD023047, it was set to 20ppm. Target-decoy was
performed using MS-GF+ (parameter -tda). For datasets PXD023047 and PXD021518 two
modifications were allowed (NumMods=2): fixed carbamidomethyl cysteine modification, and
variable methionine oxidation; while for datasets PXD008355 and PXD023361

Phosphorylation was also considered as variable modification.

Code availability

All code and analyses are freely available as open source under the Apache 2.0 license at

https://github.com/statisticalbiotechnology/representative-spectra-benchmark. The

consensus generation procedures were implemented in Python 3.6. Software dependencies
that were used include Matplotlib (version 3.1.2) (23), Numba (version 0.47.0) (24), NumPy
(version 1.17.3) (25), Pandas (version 0.25.3), pyOpenMS (version 2.4.0) (26), Pyteomics
(version 4.1.2) (27), and spectrum_utils (version 0.3.3) (28).

Results

Figure 2 shows the number of PSMs (FDR=1%) identified with MS-GF+ (datasets
PXD023047, PXD021528, PXD008355, and PXD023361) for spectrum clustering using
MaRaCluster and spectra-cluster followed by consensus spectrum generation using the
MOST, AVERAGE, BIN, and BEST procedures. Among the four public proteomics datasets,
whether using spectrum clustering results from MaRaCluster or spectra-cluster, the
identification rate for the MOST method is lower compared to the other methods, while the

BIN and BEST methods achieve a higher spectrum identification rate (Figure 2).
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Figure 2: The number of PSMs obtained by MS-GF+ when searching consensus spectra produced
by the MOST, AVERAGE, BIN, and BEST representative cluster generation methods for public
proteomics datasets PXD023047, PXD021528, PXD008355, and PXD023361. Note that the bar plots
are truncated past O to highlight relevant performance differences.

While the number of identified spectra only differs by a small amount between the various
consensus spectrum generation procedures, when analyzing big public proteomics
databases (billions of spectra) (29) these differences can be translated into millions of
spectrum identifications. Among the methods that transform the original spectra, the BIN
method is the one that performs best. The BIN method divides the m/z values into small bins
and then overlaps multiple spectra within those bins. If there are multiple intensities in a bin,
the algorithm will superimpose intensities in the same bin, favoring the most intensive peaks,
which could improve peptide identification. However, in some cases, can also remove

important peaks from the MS/MS spectra.
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Figure 3: Distribution of MS-GF+ RawScores for MOST, AVERAGE, BIN, and BEST representative
spectra from the public proteomics datasets PXD023047, PXD021528, PXD008355, and PXD023361.

Most of the consensus generation methods modify the original spectra, not only by removing
or keeping some of the spectrum peaks, but also by modifying the corresponding intensity of
each peak. We have used the distributions of the MS-GF+ RawScore to explore the
relationship between the final spectra and the quality of the peptide identifications. Figure 3
shows the distribution of MS-GF+ RawScore for the four consensus generation methods
(MOST, AVERAGE, BIN, and BEST) after clustering with MaRaCluster and spectra-cluster.
For both clustering tools, the BIN and BEST method generate consensus spectra with higher
average RawScore values (Figure 3), and similar to the previous metric (humber of PSMs),
the BEST algorithm achieves the highest average RawScore (Supplementary Note 1). The
representative consensus spectra generated by the MOST method have the lowest average
RawScore (Figure 3). The distribution of RawScore values (Figure 3) shows that the
RawScores are more homogenous for the BIN method (lower standard deviation) than for all

the other methods, including the BEST algorithm (Supplementary Note 1).


https://doi.org/10.1101/2022.01.25.477699
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.25.477699; this version posted January 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

130 MaRaCluster-MOST 4
MaRaCluster-AVERAGE * >
MaRaCluster-BIN ' 4
- MaRaCluster-BEST » *
120 -4 spectra-cluster-MOST r
-4~ spectra-cluster-AVERAGE 2 F 4 “
-4~ spectra-cluster-BIN e - - -
M- spectra-cluster-BEST - i - ——
110 L - - -
- -
- - P
13 — "
c . = - - —— —
g 100 ,‘,:--.-:-—-— ——:3-—--— =
. .
= A - +
© = o - - am -
.8_ " -~ -_— oy L - m -
¢ 90
=
)
1 d
80
70
60
1 2 3 4 5 10 20

Cluster Size

Figure 4. RawScore mean of the four different evaluated methods under different cluster sizes (1, 2,
3, 4,5, 5-10, 10-20, 20 or higher).

Figure 4 shows the changes in mean RawScore of the identified spectra generated with the
four evaluated methods (MOST, AVERAGE, BIN, and BEST) for clusters of different sizes
(cluster sizes 1, 2, 3, 4, 5, 5-10, 10-20, 20 or higher). As expected, for clusters of one
spectrum, no differences have been seen between different consensus methods, but minor
differences are observed between clustering algorithms. For other small clusters containing
three or fewer spectra, consensus spectra derived from the spectra-cluster results, in
combinations with all the consensus spectrum generation methods, provide higher mean
RawScores than consensus spectra derived from MaRaCluster results. In contrast, for larger
clusters, MaRaCluster consensus spectra lead to higher mean RawScores. For both
spectra-cluster and MaRaCluster, the mean RawScore increases with increasing cluster
size. The BEST and BIN algorithms are stable for both clustering algorithms and all datasets
(Supplementary Note 1), and the scores of these two algorithms are generally higher than
MOST and AVERAGE. In combination with MaRaCluster, the AVERAGE algorithm shows
instability and the score of the AVERAGE algorithm is generally lower than the other three
algorithms.

In addition to peptide identification, we explored how using consensus spectra instead of the

original spectra affects phospho-peptide identification and phosphorylation site localization.
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We analyzed the number of phosphorylation sites identified in dataset PXD008355 after
clustering with both tools (MaRaCluster and spectra-cluster) and the four different
consensus spectrum generation methods (MOST, AVERAGE, BIN, and BEST). We have
evaluated two metrics, (i) the number of phosphorylated PSMs identified and (ii) the
phosphorylation sites identified.

Figure 5 shows the intersection of the phosphorylated PSMs among the four representative
cluster methods after spectrum clustering with MaRaCluster and spectra-cluster. Most of the
PSMs (91.2% for MaRaCluster and 96.4% for spectra-cluster) for the four representative
cluster methods produce the same phosphorylated PSMs. The BIN method produces the
largest number of unique PSMs, which is about double the number of other methods,
followed by the BEST, MOST, and AVERAGE methods (Figure 5).

(a) (b)
MOST AVERAGE MOST AVERAGE

Figure 5: The intersection of the total phosphorylated PSMs among the four representative cluster methods in (a)

MaRaCluster, and (b) spectra-cluster.

While the majority of phosphorylated PSMs are aggregated among all methods, around ~1%
are different and we also observed differences in terms of phosphorylation sites. Table 2
shows the difference in phosphorylation sites between BIN and BEST representative spectra
from MaRaCluster and spectra-cluster (extended table, Supplementary Notes 3). Because
the BEST and BIN methods were the best performing consensus generation (13) options in
terms of peptide identification, we focus the discussion on these two methods (extended
table, Supplementary Notes 3). Most phosphorylated PSMs (63,165 for MaRaCluster and
89,161 for spectra-cluster) for the BEST and BIN methods are identical. However, a small
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number of phospho sites are different (2683 in MaRaCluster and 1494 in spectra-cluster),
some of them due to different peptide identifications, some of them due to differences in the
localization accuracy after clustering and the change of the spectra. These small differences
can be attributed to the fact that the BIN method modifies the ion peak intensity and m/z of

the spectrum through the binning algorithm.

Table 2: Analysis of phosphorylation sites identification of dataset PXD008355, after clustering with MaRaCluster
and spectra-cluster, and generation of the consensus spectra using two different methods (BEST, BIN). We
quantified the number of total phosphorylated PSMs and phosphorylation sites for each combination of clustering
method and consensus generation method. In addition, we added the number of identical and different phospho-

sites between the BEST and BIN methods for each clustering algorithm.

No. No.
PSMs PSMs
Cluster No. phospho . . °
methods Methods PSMs No. phosphosites _ Wlth _W|th
identical  different
sites sites
BEST 66914 81238
MaRaCluster BIN 68429 83091 63165 2683
BEST 91195 109877
spectra-cluster BIN 92202 111230 89161 1494

Conclusions

Representative spectra from clusters have typically been generated using four different
algorithms: spectrum averaging, spectrum binning, the most similar spectrum, and the best-
identified spectrum. Most tools and resources, including SpectraST (9), MassIVE (11, 30)
spectral libraries, or spectra-cluster and PRIDE Cluster (2) use one of these methods.
However, to our knowledge, no systematic analysis has been performed to compare multiple
algorithms to generate consensus spectra. We implemented a Python framework to
benchmark existing algorithms to generate representative spectra from clustering results

from two different popular clustering tools—MaRaCluster and spectra-cluster.

The BEST and BIN methods were found to be the most reliable methods for consensus
spectrum generation, including for datasets with post-translational modifications such as
phosphorylation. The BEST method generates representative consensus spectra based on
existing spectrum identification results, which requires that all clusters contain identified
spectra. Therefore, the BEST method cannot be used on spectral archives (clusters of non-
identified spectra) or if clustering is performed before the identification step. The BIN method
is based on the original spectrum file and binning algorithm to generate representative

consensus spectra and performed best in all benchmarks and comparisons after the BEST
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method. While the BIN algorithm modifies the original spectra, we do not observe major
differences in identifying phosphorylated peptides and phosphorylation sites compared to
the results of the BEST method to generate representative spectra. The fact that the BEST
method is performing so well, compared to existing methods, suggests that better algorithms

could be developed in the future to generate consensus spectra from clustering results.
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