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Abstract 

 

Spectrum clustering is a powerful strategy to minimize redundant mass spectral data by 

grouping highly similar mass spectra corresponding to repeatedly measured analytes. Based 

on spectrum similarity, near-identical spectra are grouped in clusters, after which each 

cluster can be represented by its so-called consensus spectrum for downstream processing. 

Although several algorithms for spectrum clustering have been adequately benchmarked 

and tested, the influence of the consensus spectrum generation step is rarely evaluated.  

Here, we present an implementation and benchmark of common consensus spectrum 

algorithms, including spectrum averaging, spectrum binning, the most similar spectrum, and 

the best-identified spectrum. We have analyzed diverse public datasets using two different 

clustering algorithms (spectra-cluster and MaRaCluster) to evaluate how the consensus 

spectrum generation procedure influences downstream peptide identification. The BEST and 

BIN methods were found the most reliable methods for consensus spectrum generation, 

including for datasets with post-translational modifications (PTM) such as phosphorylation. 

All source code and data of the present study are freely available on GitHub at 

https://github.com/statisticalbiotechnology/representative-spectra-benchmark.  

 

Introduction 

 

Spectrum clustering, i.e. the process of grouping similar spectra in a larger collection of MS2 

spectra into smaller subsets, has multiple applications in mass spectrometry in general and 

in proteomics in particular (1), including the generation of spectral libraries (2) and spectral 

archives (3), quality assessment of peptide identifications in public repositories (2) and 

improvement of quantification results (4, 5). Spectrum clustering algorithms strive to group 

highly similar spectra so that each cluster contains spectra generated from the same analyte 

(peptidoforms with a specific charge in the case of proteomics). Differences between tools 

for spectrum clustering vary in their implementation of the various data processing steps, 

including the pre-processing of spectra (e.g., intensity normalization and peak picking), the 

clustering algorithm used, the metric used for determining similarity between spectra, and 

the optional optimizations to increase computational efficiency. Current tools for spectrum 

clustering include MS-Cluster (3), spectra-cluster (2), MaRaCluster (6), msCRUSH (7), and 

falcon (8).  
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While the most apparent output of the process of spectrum clustering is a grouping of 

spectra into clusters, the majority of use cases benefit from a condensed single spectrum 

representation for each cluster. This is, for instance, useful for the data-driven creation of 

spectral libraries (9), for reannotation and visualization of clustering results in public data 

repositories (2), and label-free quantification (4).  The generation of high-quality 

representative spectra for each cluster is a key aspect of spectrum clustering, as the 

resulting consensus spectra form the starting point for downstream analyses. Although 

several spectrum clustering algorithms have been adequately benchmarked [8], the impact 

of the consensus spectrum generation procedure has so far not been properly evaluated. 

Several common approaches can be used to generate representative spectra, including 

spectrum binning, spectrum averaging (3), and selecting the most similar spectrum to all 

cluster members (medoid) (8). Additionally, although this strategy can only be used for 

clusters that contain one or more identified spectra, the “best-identified spectrum” method 

uses the most confidently identified spectrum as cluster representative (10, 11) 

 

Here, we have performed a comprehensive evaluation of algorithms for the generation of 

consensus spectra to assess their performance for downstream processing of spectrum 

clustering results. We have used the spectra-cluster and MaRaCluster tools to generate 

clusters from diverse publicly available datasets and explore whether consensus spectrum 

generation algorithms perform differently between different tools. Additionally, we have 

evaluated the impact of consensus spectrum generation on downstream peptide and protein 

identification performance. All code and analyses are open-source and available at 

https://github.com/statisticalbiotechnology/representative-spectra-benchmark under the 

permissive Apache 2.0 license.  

 

Methods 

 

Consensus spectrum generation algorithms and evaluation 

 

For the benchmark, we implemented four consensus spectrum generation algorithms:   

• Spectrum averaging (AVERAGE): The representative spectrum is an average of all 

the spectra in the cluster (9, 12, 13). In this algorithm, for every m/z value, the 

corresponding intensities on each spectrum in the cluster are averaged.     

• Spectrum binning (BIN): In this method, for each cluster, a consensus spectrum 

vector with bin width 0.02 m/z was first constructed (13). For all spectra in the cluster, 

peak m/z and intensity values were assigned to the corresponding bin in the 
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consensus spectrum vector. Bins that contained values from fewer than 25% of the 

cluster members were discarded. Next, the vector was converted to a consensus 

spectrum by averaging all peak m/z and intensity values per bin (2). 

• Most similar spectrum (MOST): For each cluster, the spectrum that is on average 

most similar to all cluster members was selected as representative (14, 15). This was 

determined by first calculating the dot product of all pairwise similarities between 

spectra in the cluster. Next, the spectrum with the maximal summed dot product to all 

other spectra was selected as the representative for that cluster. 

• Best identified spectrum (BEST): For each cluster that contained at least one 

identified spectrum, the spectrum with the maximal peptide-spectrum match score 

was chosen as the representative for that cluster.  Note that this approach is not valid 

if all spectra in the cluster are unmatched. 

 

Data manipulation steps were implemented as reproducible Nextflow workflows (Figure 1). 

The spectra-cluster (version 1.1.2) (2) and MaRaCluster (version 1.0) (6) spectrum 

clustering tools were used to cluster the mass spectrum data, and the MS-GF+ sequence 

database search engine (version v2021.03.22) (16) was used to perform peptide 

identification. For each cluster, representative (consensus) spectra were directly generated 

from the clustering output using the first three consensus generation procedures described 

above. For the best-identified method, the spectra were additionally identified using MS-

GF+, after which the PSMs with the maximum scores were selected as representatives for 

each cluster. To ensure a fair comparison between all consensus spectrum generation 

procedures, clusters that only contained unidentified spectra were ignored, as no valid 

representative spectrum could be obtained using the best-identified method. To evaluate 

downstream peptide identification performance, the consensus spectra obtained for both 

spectrum clustering tools with each consensus spectrum generation method were searched 

using MS-GF+ (16), after which the number of peptide identifications was compared 

between all combinations of clustering and consensus generation methods, and with the 

original data without clustering. 
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Figure 1: Study workflow, including clustering and peptide identification of publicly available ProteomeXchange 

datasets, consensus spectrum generation using alternative procedures, and evaluation of cluster representatives 

using an identification benchmark. 

 

Benchmark Datasets 

 

We used four public ProteomeXchange datasets: PXD008355, PXD023047, PXD021518, 

and PXD023361 (Table 1). RAW data from each dataset was converted to MGF using the 

ThermoRawFileParser (version: 1.2.3) tool (17) with default parameters. Among them, 

PXD008355, PXD023047, and PXD021518 are from Arabidopsis thaliana (mouse-ear 

cress), and PXD023361 is from Saccharomyces cerevisiae (baker's yeast). The datasets 

have been acquired using three different instrument models: Q Exactive, Q Exactive HF, and 

Q Exactive HF-X. The description of the samples, instrument configuration, sample 

processing steps, and analytical method can be read in the original publications: 

PXD008355 (18), PXD023047 (19), PXD021518 (20), and PXD023361 (21).  

 

Table 1. Datasets were reanalysed to evaluate the performance of each consensus spectrum generation 

algorithm. The number of peptide identifications and peptide-spectrum matches can be found in the 

Supplementary Notes. In addition, the description of each dataset can be found in the original publication and 

PRIDE Archive (22).  
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Project accession Instrument No. MS/MS 
PXD008355 (18) Q Exactive 1,477,567 
PXD023047 (19) Q Exactive HF 109,333 
PXD021518 (20) Q Exactive HF-X 286,410 
PXD023361 (21) Q Exactive 38,286 

 

For datasets PXD008355, PXD023047, and PXD021518, the Arabidopsis Thaliana protein 

database was downloaded from http://ftp.ebi.ac.uk/pride-

archive/2019/07/PXD008355/TAIR10.fasta, while for dataset PXD023361 the 

Saccharomyces cerevisiae database was downloaded from 

http://ftp.pride.ebi.ac.uk/pride/data/archive/2021/04/PXD023361/uniprot-S_yeast.fasta.  

 

For datasets PXD008355, PXD021518, and PXD023361, the precursor error tolerance was 

set to 10 ppm; while for dataset PXD023047, it was set to 20ppm. Target-decoy was 

performed using MS-GF+ (parameter -tda). For datasets PXD023047 and PXD021518 two 

modifications were allowed (NumMods=2): fixed carbamidomethyl cysteine modification, and 

variable methionine oxidation; while for datasets PXD008355 and PXD023361 

Phosphorylation was also considered as variable modification.   

 

Code availability 

 

All code and analyses are freely available as open source under the Apache 2.0 license at 

https://github.com/statisticalbiotechnology/representative-spectra-benchmark. The 

consensus generation procedures were implemented in Python 3.6. Software dependencies 

that were used include Matplotlib (version 3.1.2) (23), Numba (version 0.47.0) (24), NumPy 

(version 1.17.3) (25), Pandas (version 0.25.3), pyOpenMS (version 2.4.0) (26), Pyteomics 

(version 4.1.2) (27), and spectrum_utils (version 0.3.3) (28). 

 

Results 

 

Figure 2 shows the number of PSMs (FDR=1%) identified with MS-GF+ (datasets 

PXD023047, PXD021528, PXD008355, and PXD023361) for spectrum clustering using 

MaRaCluster and spectra-cluster followed by consensus spectrum generation using the 

MOST, AVERAGE, BIN, and BEST procedures. Among the four public proteomics datasets, 

whether using spectrum clustering results from MaRaCluster or spectra-cluster, the 

identification rate for the MOST method is lower compared to the other methods, while the 

BIN and BEST methods achieve a higher spectrum identification rate (Figure 2).  
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Figure 2: The number of PSMs obtained by MS-GF+ when searching consensus spectra produced 

by the MOST, AVERAGE, BIN, and BEST representative cluster generation methods for public 

proteomics datasets PXD023047, PXD021528, PXD008355, and PXD023361. Note that the bar plots 

are truncated past 0 to highlight relevant performance differences. 

 

While the number of identified spectra only differs by a small amount between the various 

consensus spectrum generation procedures, when analyzing big public proteomics 

databases (billions of spectra) (29) these differences can be translated into millions of 

spectrum identifications. Among the methods that transform the original spectra, the BIN 

method is the one that performs best. The BIN method divides the m/z values into small bins 

and then overlaps multiple spectra within those bins. If there are multiple intensities in a bin, 

the algorithm will superimpose intensities in the same bin, favoring the most intensive peaks, 

which could improve peptide identification. However, in some cases, can also remove 

important peaks from the MS/MS spectra. 
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Figure 3: Distribution of MS-GF+ RawScores for MOST, AVERAGE, BIN, and BEST representative 

spectra from the public proteomics datasets PXD023047, PXD021528, PXD008355, and PXD023361.   

 

Most of the consensus generation methods modify the original spectra, not only by removing 

or keeping some of the spectrum peaks, but also by modifying the corresponding intensity of 

each peak. We have used the distributions of the MS-GF+ RawScore to explore the 

relationship between the final spectra and the quality of the peptide identifications. Figure 3 

shows the distribution of MS-GF+ RawScore for the four consensus generation methods 

(MOST, AVERAGE, BIN, and BEST) after clustering with MaRaCluster and spectra-cluster. 

For both clustering tools, the BIN and BEST method generate consensus spectra with higher 

average RawScore values (Figure 3), and similar to the previous metric (number of PSMs), 

the BEST algorithm achieves the highest average RawScore (Supplementary Note 1). The 

representative consensus spectra generated by the MOST method have the lowest average 

RawScore (Figure 3). The distribution of RawScore values (Figure 3) shows that the 

RawScores are more homogenous for the BIN method (lower standard deviation) than for all 

the other methods, including the BEST algorithm (Supplementary Note 1).  
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Figure 4:  RawScore mean of the four different evaluated methods under different cluster sizes (1, 2, 

3, 4, 5, 5-10, 10-20, 20 or higher). 

 

Figure 4 shows the changes in mean RawScore of the identified spectra generated with the 

four evaluated methods (MOST, AVERAGE, BIN, and BEST) for clusters of different sizes 

(cluster sizes 1, 2, 3, 4, 5, 5-10, 10-20, 20 or higher). As expected, for clusters of one 

spectrum, no differences have been seen between different consensus methods, but minor 

differences are observed between clustering algorithms. For other small clusters containing 

three or fewer spectra, consensus spectra derived from the spectra-cluster results, in 

combinations with all the consensus spectrum generation methods, provide higher mean 

RawScores than consensus spectra derived from MaRaCluster results. In contrast, for larger 

clusters, MaRaCluster consensus spectra lead to higher mean RawScores. For both 

spectra-cluster and MaRaCluster, the mean RawScore increases with increasing cluster 

size. The BEST and BIN algorithms are stable for both clustering algorithms and all datasets 

(Supplementary Note 1), and the scores of these two algorithms are generally higher than 

MOST and AVERAGE. In combination with MaRaCluster, the AVERAGE algorithm shows 

instability and the score of the AVERAGE algorithm is generally lower than the other three 

algorithms. 

 

In addition to peptide identification, we explored how using consensus spectra instead of the 

original spectra affects phospho-peptide identification and phosphorylation site localization. 
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We analyzed the number of phosphorylation sites identified in dataset PXD008355 after 

clustering with both tools (MaRaCluster and spectra-cluster) and the four different 

consensus spectrum generation methods (MOST, AVERAGE, BIN, and BEST). We have 

evaluated two metrics, (i) the number of phosphorylated PSMs identified and (ii) the 

phosphorylation sites identified.   

 

Figure 5 shows the intersection of the phosphorylated PSMs among the four representative 

cluster methods after spectrum clustering with MaRaCluster and spectra-cluster. Most of the 

PSMs (91.2% for MaRaCluster and 96.4% for spectra-cluster) for the four representative 

cluster methods produce the same phosphorylated PSMs. The BIN method produces the 

largest number of unique PSMs, which is about double the number of other methods, 

followed by the BEST, MOST, and AVERAGE methods (Figure 5).   

 

 

Figure 5: The intersection of the total phosphorylated PSMs among the four representative cluster methods in (a) 

MaRaCluster, and (b) spectra-cluster. 

 

While the majority of phosphorylated PSMs are aggregated among all methods, around ~1% 

are different and we also observed differences in terms of phosphorylation sites. Table 2 

shows the difference in phosphorylation sites between BIN and BEST representative spectra 

from MaRaCluster and spectra-cluster (extended table, Supplementary Notes 3). Because 

the BEST and BIN methods were the best performing consensus generation (13) options in 

terms of peptide identification, we focus the discussion on these two methods (extended 

table, Supplementary Notes 3). Most phosphorylated PSMs (63,165 for MaRaCluster and 

89,161 for spectra-cluster) for the BEST and BIN methods are identical. However, a small 
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number of phospho sites are different (2683 in MaRaCluster and 1494 in spectra-cluster), 

some of them due to different peptide identifications, some of them due to differences in the 

localization accuracy after clustering and the change of the spectra. These small differences 

can be attributed to the fact that the BIN method modifies the ion peak intensity and m/z of 

the spectrum through the binning algorithm.  

 

Table 2: Analysis of phosphorylation sites identification of dataset PXD008355, after clustering with MaRaCluster 

and spectra-cluster, and generation of the consensus spectra using two different methods (BEST, BIN). We 

quantified the number of total phosphorylated PSMs and phosphorylation sites for each combination of clustering 

method and consensus generation method. In addition, we added the number of identical and different phospho-

sites between the BEST and BIN methods for each clustering algorithm.  

 

Cluster 
methods  Methods 

No. phospho 
PSMs No. phosphosites 

No. 
PSMs 
with 

identical 
sites 

No. 
PSMs 
with 

different 
sites 

MaRaCluster 
  BEST 66914 81238 

63165 2683 
  BIN 68429 83091 

spectra-cluster 
  BEST 91195 109877 

89161 1494 
  BIN 92202 111230 

 

 

Conclusions 

 

Representative spectra from clusters have typically been generated using four different 

algorithms: spectrum averaging, spectrum binning, the most similar spectrum, and the best-

identified spectrum. Most tools and resources, including SpectraST (9), MassIVE (11, 30) 

spectral libraries, or spectra-cluster and PRIDE Cluster (2) use one of these methods. 

However, to our knowledge, no systematic analysis has been performed to compare multiple 

algorithms to generate consensus spectra. We implemented a Python framework to 

benchmark existing algorithms to generate representative spectra from clustering results 

from two different popular clustering tools—MaRaCluster and spectra-cluster.  

 

The BEST and BIN methods were found to be the most reliable methods for consensus 

spectrum generation, including for datasets with post-translational modifications such as 

phosphorylation. The BEST method generates representative consensus spectra based on 

existing spectrum identification results, which requires that all clusters contain identified 

spectra. Therefore, the BEST method cannot be used on spectral archives (clusters of non-

identified spectra) or if clustering is performed before the identification step. The BIN method 

is based on the original spectrum file and binning algorithm to generate representative 

consensus spectra and performed best in all benchmarks and comparisons after the BEST 
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method. While the BIN algorithm modifies the original spectra, we do not observe major 

differences in identifying phosphorylated peptides and phosphorylation sites compared to 

the results of the BEST method to generate representative spectra. The fact that the BEST 

method is performing so well, compared to existing methods, suggests that better algorithms 

could be developed in the future to generate consensus spectra from clustering results.   
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