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Abstract
DNA methylation is a fundamental epigenetic mark that governs chromatin organization, cell
identity, and gene expression. Here we describe a human methylome atlas, based on deep
whole-genome bisulfite sequencing allowing fragment-level analysis across thousands of
unique markers for 39 cell types sorted from 207 healthy tissue samples.
Replicates of the same cell-type are >99.5% identical, demonstrating robustness of cell
identity programs to genetic variation and environmental perturbation. Unsupervised
clustering of the atlas recapitulates key elements of tissue ontogeny, and identifies
methylation patterns retained since gastrulation. Loci uniquely unmethylated in an individual
cell type often reside in transcriptional enhancers and contain DNA binding sites for
tissue-specific transcriptional regulators. Uniquely hyper-methylated loci are rare and are
enriched for CpG islands, polycomb targets, and CTCF binding sites, suggesting a novel role
in shaping cell type-specific chromatin looping. The atlas provides an essential resource for
interpretation of disease-associated genetic variants, and a wealth of potential tissue-specific
biomarkers for use in liquid biopsies.

Summary paragraph
DNA methylation, a fundamental epigenetic mark, governs chromatin organization and gene
expression1, thus defining the molecular identity of cells and providing a window into
developmental processes with wide-ranging physiologic and clinical ramifications. Current
DNA methylation datasets have limitations, typically including only a fraction of methylation
sites, many from cell lines that underwent massive changes in culture or from tissues
containing unspecified mixtures of cells2–6.

We present a human methylome atlas based on deep whole-genome bisulfite sequencing of
39 sorted, primary cell types and use this dataset to address fundamental questions in
developmental biology, physiology and pathology. Biological replicates are >99.5% identical,
demonstrating unappreciated robustness to genetic variation and environmental
perturbations. Clustering recapitulates key elements of tissue ontogeny, identifying
methylation patterns retained since gastrulation. Loci uniquely unmethylated in individual cell
types identify novel transcriptional enhancers and are enriched for tissue-specific
transcription factors binding motifs. In contrast, loci uniquely hyper-methylated in specific cell
types are rare, enriched for CpG islands and polycomb targets, and overlap CTCF binding
sites, suggesting a novel role in shaping cell-type-specific chromatin looping. Finally, the
atlas facilitates fragment-level deconvolution of tissue and plasma methylomes across
thousands of cell-type specific regions to quantify their individual components at
unprecedented resolution.

The human cell-type-specific methylation atlas provides an essential resource for studying
gene regulation by defining cell-type-specific distal enhancers and regulators of 3D
organization, for identifying pathological changes in DNA methylation, and for the
interpretation of methylation-based liquid biopsies.
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● A deep methylation atlas of 39 human cell types, sorted from healthy samples
● Methylomes record developmental history of cells
● Thousands of novel cell type-specific methylation markers
● Hypo-methylation uncovers cell type-specific regulatory map of distal enhancers
● Hyper-methylation across CTCF sites
● Cell type-specific biomarkers facilitate fragment-level deconvolution of tissues and cfDNA
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Introduction
Understanding how the same DNA sequence is interpreted differently in different cell types is
a fundamental challenge of biology. Gene expression, DNA accessibility and chromatin
packaging are well-established essential determinants of cellular phenotype. Underneath
these lies DNA methylation, a stable epigenetic mark that underpins the lifelong
maintenance of cellular identity.

Available human DNA methylation datasets suffer from major limitations. Multiple studies
that characterized methylomes of embryonic development, differentiation, cancer or other
settings7–10, have relied on the Illumina BeadChip platforms, which are limited to a predefined
subset of 450K-860K CpG methylation sites, representing just 3% of the ~30 million CpG
sites in the human genome11. Additionally, by measuring each CpG site independently, such
assays overlook coordinated patterns of DNA methylation occurring in blocks, the critical
functional units of DNA methylation12,13.

Most DNA methylation analyses interrogated primarily bulk tissue thus precluding the study
of minority cell types, such as tissue resident immune cells, fibroblasts, or endothelial cells
whereas others analyzed cultured cells, which may contain non-physiological methylation
patterns introduced in vitro2. Some studies of the human methylome did analyze isolated
primary cells using whole-genome bisulfite sequencing (WGBS), but their scope was
limited3,5,6.

To overcome these limitations and to accurately characterize the human cell methylome, we
performed deep genome-wide sequencing, with paired-end 150bp-long reads at an average
sequencing depth of 32x (±7.2x) on FACS sorted populations of 39 human cell types
obtained from freshly dissociated adult healthy tissues. We coalesced methylation patterns
across the entire genome into blocks of homogeneously methylated CpG sites, and used
these to study the variation of methylation patterns across cell types. Here we identify and
characterize genomic regions that are differentially methylated in a tissue or cell
type-specific manner, provide some vignettes of their possible biological function, and
introduce a deconvolution algorithm with applications such as clinical diagnosis based on
circulating cell-free DNA methylation.

Results
A comprehensive methylation atlas of primary human cell types
To portray genome-wide DNA methylation across a variety of cell types, we performed
WGBS (150bp-long paired end reads to a mean depth of >30X) on 207 samples
representing 77 primary cell types from 137 consented donors. These were mapped to the
human genome (hg19) and filtered as described (Methods, Extended Table 1 and Fig. S1).

Cell types analyzed (Figure 1) represent most major human cell types, allowing a composite
view of physiological systems (e.g. GI tract, hematopoietic cells, pancreas), as well as a
comparison of similar cell types in different environments (e.g. tissue-resident
macrophages).
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Figure 1. Methylation atlas of the adult human body. (A) 207 healthy samples were obtained
from adult humans, isolated and deeply sequenced (WGBS, mean depth >30x), to form a
comprehensive human cell type-specific methylation atlas. (B) DNA methylation patterns of 207
methylomes (rows) across 344 CpG sites (columns) within a 18Kb region. Highlighted are regions
differentially unmethylated in B cells (blue), neurons (green), thyroid epithelium (yellow) and
neurons/oligodendrocytes (pink).

Identification of human methylation blocks
The 207 methylomes show great similarities between replicates, with distinctive changes
between cell types in a block-like manner as shown in Fig. 1. We sought to identify genomic
regions that are differentially methylated in specific cell types, to shed light on cell
type-specific biological processes, define cell identity, and facilitate development of
methylation biomarkers to identify the cellular origin of circulating cfDNA fragments1,12–19.

We developed wgbstools, a computational machine learning suite to represent, compress,
visualize and analyze WGBS data (​​https://github.com/nloyfer/wgbs_tools). We segmented
the genome into 7,264,350 non-overlapping continuous blocks, by identifying changepoints
in DNA methylation patterns across multiple conditions. Each block spans highly correlated
CpG sites that are similarly methylated in each sample, but may co-vary across cell types.
We retained 2,807,024 methylation blocks of ≥3 CpGs, with an average length of 532bp
(IQR=551bp) and 8 CpGs (IQR=5 CpGs, Extended Figure S2). These compact genomic
units are more straightforward to robustly analyze than individual CpG sites, and due to the
regional nature of methylation can be viewed as the biological “atoms'' of human DNA
methylation13.

The extent of inter-individual variation in cell type methylation
Methylation patterns were extremely robust across different individuals. For most cell types,
≤0.5% of blocks show a difference of 50% or more across different donors, compared to
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4.9% among samples of different cell types (Extended Figure S3). This high similarity in
DNA methylation across donors is on par with the estimated inter-individual variability of
genomic sequence20. While the definition of 50% is somewhat arbitrary, other thresholds
(35%-50%) show a similar trend, with ≤0.5% variable blocks. Similar inter-individual variation
was observed in replicates obtained from different laboratories (Table S1). Strikingly, for cell
types with n≥3 biological replicates, 200/201 samples (99.5%) showed the highest similarity
to another replicate (rather than another cell type from the same donor). These results
demonstrate the reproducibility of preparations, but also highlight a fundamental biological
phenomenon: determination of the epigenome primarily by cell type-specific programs,
rather than genetic or environmental factors.

Methylation patterns record human developmental history
Whereas DNA methylation patterns reflect the functional identity of a cell, they could also be
used to track its developmental history. To identify patterns shared by the progeny of early
progenitors, we calculated the average methylation within blocks of ≥4 CpGs, and selected
those showing the highest variability across all samples (21K blocks, top 1%, Extended
Table S2 and Figures S3,S4). We then clustered all 207 methylomes using an unsupervised
agglomerative algorithm (UPGMA) that iteratively identifies and connects the two closest
samples, regardless of their labeling21. This analysis systematically grouped together
biological replicates of the same cell type (Figure 2), supporting reproducibility of cell
isolation and suggesting that 3-4 replicates of each normal cell type are sufficient to infer its
methylation patterns for practical applications such as biomarker identification.

Strikingly, the resulting fanning diagram recapitulates key elements of lineage relationships
among human tissues. For example, pancreatic islet cell types (alpha, beta, delta), which
originate from the same embryonic endocrine progenitor22, densely cluster together.
Consistently with methylomes reflecting lineage rather than function, islet cells further cluster
with pancreatic duct and acinar cells, and then with hepatocytes, with whom they share
endodermal origins. Conversely, endoderm-derived islet cells do not cluster with
ectoderm-derived neurons23, despite common tissue-specific gene regulation and exocytosis
machinery24.

Additional examples include the clustering of gastric, small intestine and colon epithelial
cells; the clustering of all blood cell types; and the clustering of multiple mesoderm-derived
cell types including vascular endothelial cells, adipocytes and skeletal muscle. Interestingly,
lung bronchial epithelium clustered with esophagus and oral epithelium, whereas lung
alveolar epithelium clustered with intestinal epithelium, consistent with evidence of early
developmental origins of the alveolar cell lineage25.

Some methylation patterns were common to lineages that formed during early
developmental stages. For example, 776 regions are unmethylated in epithelial cells derived
from early endodermal derivatives, and methylated in mesoderm and ectoderm derived cells.
We hypothesize these were demethylated in the endoderm germ layer, with derived cell
types retaining these patterns decades later. Since endoderm derivatives do not share
common function or gene expression, this provides yet another striking example of
methylation patterns as a stable lineage mark.
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Figure 2: Unsupervised agglomerative clustering reflects human developmental lineage of
healthy cell types. Cell types are indicated by edge colors.

Finally, we applied the same segmentation and clustering approach to a published
methylation atlas from the Roadmap Epigenomics project5. The algorithm did not group
related cell types, and often clustered samples based on donor identity. This further
emphasizes the importance of careful purification of homogeneous cell types, avoiding
mixed cell populations (Extended Fig. S5)

Tens to hundreds of methylation blocks uniquely characterize each cell type
We next turned to study genomic regions that are differentially methylated in a cell
type-specific manner. We organized the 207 samples into 39 groups of specific cell types,
including blood cell types (B, T, NK, Granulocytes, monocytes and tissue-resident
macrophages), breast epithelium (basal or luminal), lung epithelium (alveolar or bronchial),
pancreatic endocrine (alpha, beta, delta) or exocrine (acinar and duct) cells, vascular
endothelial cells from various sources, cardiomyocytes and cardiac fibroblasts, and more.
We also defined 12 super-groups, where related cell types were grouped together, including
muscle cells, gastrointestinal epithelium, pancreas, and more (Extended Table S3).
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Figure 3 - A Human Methylation Atlas of 207 samples across 39 cell types. (A) 953 genomic
regions, unmethylated in a cell type-specific manner. Each cell in the plot marks the average
methylation of one genomic region (column) at each of 39 cell types (rows). Up to 25 regions are
shown per cell type, with a mean length of 251 bp (9 CpGs) per region. (B) Top 25 cardiomyocyte
regions. For each region, we plot the average methylation of each CpG site (columns) across all
207 samples in the atlas, grouped into 39 cell types as before. (C) A locus specifically
unmethylated in cardiomyocytes. This marker (highlighted in light blue) is 120bp long (6 CpGs),
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and is located in the first intron of MYL4, a heart-specific gene (TPM expression of 2518 in atrial
appendage, GTEx inset). Genomic snapshot depicts average methylation (purple tracks) across six
cardiomyocyte samples, four cardiac fibroblast samples, and three aorta samples (two endothelial,
one smooth muscle cells). (D) Visualization of bisulfite converted fragments from three
cardiomyocyte samples, one cardiac fibroblast sample, and two aorta samples (endothelium and
smooth muscle). Shown are reads mapped to chr17:45289451-45289570 (hg19), with at least 3
covered CpGs. Yellow/blue dots depict methylated/unmethylated CpG sites.

We then focused on differentially methylated blocks, composed of 5 CpGs or more, that are
methylated (average methylation in block ≥66%) in one group of cell types, but unmethylated
(≤33%) in all other samples, or vice versa. Overall, we identified 11,125 differentially
methylated genomic regions. Intriguingly, almost all regions (98%, 10,892) were
unmethylated in one cell type, and methylated in all others (see below).

To obtain a human cell type-specific methylation atlas, we identified the top 25 differentially
unmethylated regions for each cell type (Figure 3 and Extended Table S4). These regions
are uniquely demethylated in particular cell types and methylated in all other samples, and
can serve as sensitive biomarkers for quantifying the presence of DNA from a specific cell
type in a mixture. This approach has various applications, including the analysis of
circulating cfDNA fragments16–19,26–28. Importantly, only <1% of the cell type-specific markers
are covered by RRBS sequencing, 8-9% are covered by methyl-seq hybrid capture panels,
and 13-22% are represented in the single-CpG 450K/EPIC arrays11, emphasizing the
benefits of whole-genome sequencing for exhaustive identification of biomarkers.

Cell type-specific unmethylated regions are tissue-specific enhancers
We next turned to characterize these sets of cell type-specific differentially unmethylated
regions. Using GREAT, we identified the genes adjacent to each group of markers, and
tested their enrichment for various gene-set annotations29. Genes adjacent to loci uniquely
unmethylated in a given cell type typically reflected the functional identity of this cell type
(Extended Table S5). For example, genes near B cell markers were enriched for B cell
morphology, differentiation, IgM levels, and lymphopoiesis; NK cell markers were associated
with NK cell mediated cytotoxicity, hematopoietic system, cytotoxicity, and lymphocyte
physiology; Fallopian tube markers were enriched for egg coat and perivitelline space; and
cardiomyocyte markers for cardiac relaxation, systolic pressure, muscle development, and
hypertrophy.

We then analyzed the DNA accessibility and chromatin packaging of cell type-specific
markers as defined by ATAC-seq, DNaseI-seq5,30 and histone marks indicative of active
promoters and enhancers5. The top 250 unmethylated markers for monocytes and
macrophages are highly accessible and characterized by H3K27ac and H3K4me1 in
monocytes, whereas markers of other cell types show no enrichment in monocytes (Figure
4A), with similar results for markers of other cell types (Extended Figure S6). We also show
strong coordinated enrichment of chromHMM enhancer annotations at cell type-specific
markers31 (Figure 4). These findings are consistent with previous studies that have
associated tissue-specific demethylation with gene enhancers1,32.
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Figure 4 - Cell type-specific markers as putative enhancers. A. Average ChIP-seq signal for the
active regulatory mark H3K27ac, enhancer mark H3K4me1, DNA accessibility, and chromHMM
enhancer annotations for the top 250 cell-type specific unmethylated markers for
Monocyte/Macrophages. The average signal for top 250 markers of other blood cell types
(Granulocytes, B, T, and NK cells) are shown as grey lines, for comparison. B. Cell type-specific
markers are enriched for regulatory motifs. Shown are the top transcription factor binding site motifs,
enriched among the top 1,000 differentially unmethylated regions per cell type, using HOMER motif
analysis. Motifs similar to prior (more significant) hits are skipped.

To further assess the biological importance of cell type-specific unmethylated regions, we
studied their association with transcription factors (TF) that could affect DNA methylation, or
bind DNA in a cell type-specific manner, depending on methylation and chromatin33–36 . We
performed motif analysis using HOMER37, and calculated the enrichment (within the
unmethylated markers of each cell type) for known TF binding motifs (Extended Table S6).
For most cell types the top motifs included master regulators and key TF (Figure 4B). For
example, B cells are enriched for Ebf2/HEB/E2A, granulocytes for CEBP/AP1/ETS, and T
cells for ETS/RUNX. This association between cell type-specific unmethylated regions and
TF binding motifs could identify novel gene regulatory circuits and expose distal enhancers
active in specific cell types.
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Identification of target genes regulated by cell-type specific enhancers
We aimed to identify the target genes of putative enhancers marked by cell type-specific
demethylation. Often, top markers fall within intronic regions and are likely to regulate these
genes (for example glucagon in pancreatic alpha-cells; NPPA, MYH6, and MYL4 in
cardiomyocytes, or EPCAM in GI epithelial cells), or proximally to likely targets (e.g., a
beta-cell marker 5Kb from the Insulin gene). Other markers are further apart from their target
genes. We devised a computational algorithm that integrates the distance between a marker
and its surrounding genes, with their expression patterns across multiple cell types. We
applied an iterative bidirectional z-score calculation, where the expression level of a gene in
a given cell type is compared to the expression of other genes, and the expression of that
gene elsewhere. This highlighted hallmark genes for many cell types, and suggested
putative targets for many of the top 25 unmethylated markers for each cell type. For
example, hepatocyte markers were associated with APOE, APOC1, APOC2, Alpha
2-antiplasmin, and glucagon receptor (GCGR). Similarly, cardiomyocyte markers were
associated with NPPA, NPPB, and myosin genes; and pancreatic islet markers with the
insulin and glucagon genes (Extended Table S7). These findings further support the principle
that loci specifically unmethylated in a given cell type are likely enhancers positively
regulating genes expressed in this cell type, often controlling adjacent genes. We note
however genes adjacent to a locus specifically unmethylated in a given cell type are often
broadly expressed beyond this cell type (see discussion).

Cell type-specific hyper-methylated regions are enriched for CpG islands and for
polycomb, CTCF, and REST targets
We studied the genomic regions that are methylated in one cell type, but unmethylated
elsewhere in the human body. These are enriched for CpG islands (38% of methylated
regions, compared to 1.7-2.7% of cell type-specific unmethylated regions), and are marked
by H3K27me3 and polycomb in other cell types (Figure 5A-C), as previously reported for
cancer and developmental processes38,39. These cell type-specific hyper-methylated regions
were generally less significant for motif enrichment (compared to uniquely unmethylated
regions). Intriguingly, only ~3% of the total set of cell type-specific differentially methylated
regions are hyper-methylated.

After pooling together all cell type-specific hyper-methylated regions, we identified a strong
enrichment for target sequences of the chromatin regulator CTCF (p≤1E-26, Figure 5D).
This suggests that DNA methylation of CTCF binding sites could act as a tissue-specific
regulatory switch to modulate its binding, potentially affecting tissue-specific 3D genomic
organization33,40,41. To test this idea, we compared patterns of DNA methylation at CTCF sites
with genome-wide CTCF protein binding in specific tissues. Figure 5E shows the methylation
pattern and the published in vivo CTCF occupancy at one locus, which is methylated
specifically in the colon and intestine. Consistent with DNA methylation preventing CTCF
binding, ChIP data show selective absence of CTCF binding at this locus in the colon. In
addition, loci methylated in specific cell types were enriched for targets of the transcriptional
repressor of neural genes, REST/NRSF (p≤1E-18), and this was seen most prominently in
the methylome of pancreatic islet cells (Figure 5F). While DNA methylation has not been
shown to affect the binding or activity of REST, this finding raises the intriguing possibility
that methylation of REST targets in islets could permit endocrine differentiation
independently of REST repression.
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Figure 5 - Cell type-specific hyper-methylated regions are enriched for CpG islands,
polycomb targets, and CTCF and REST/NSRF. (A) 37.9% of top cell type-specific
hyper-methylated markers (1,185 of 3,125, p<1E-100) overap CpG islands. For comparison, 1.7% of
cell type-specific hypo-methylated regions (198 of 11,371, p<2E-29) overlap CpG islands, which
make <0.9% of the genome (black line). (B) These regions are typically enriched for H3K27me3 in
other cell types. Shown are the average H3K27me3 signals in monocytes and macrophages near all
cell type-specific hyper-methylated regions (top, blue) or near monocytes/macrophages-specific
hyper-methylated regions (green). (C) Similar plots for Polycomb annotations in monocytes and
macrophages (chromHMM), for all or monocyte/macrophage-specific markers. (D) Motif analysis of
cell type-specific hyper-methylated regions (top 100 per cell type) identifies known CTCF and
REST/NSRF motifs. (E) Analysis of ChIP-seq data for one such site (chr1:209364093-209364250,
highlighted in blue, hg19), specifically methylated in the small intestine and colon epithelium (box 1),
and unmethylated elsewhere. As shown below, this site is bound in multiple cell types and tissues,
but is mostly unbound in the stomach and colon epithelium, in vivo (box 2). (F) REST/NSRF motif is
present within 15% of top 100 cell type-specific hyper-methylated regions in the endocrine pancreas,
5% of top delta-cell markers, and 2% of top beta-cell markers, compared to ~0.1% in background
sequences, in accordance with REST target expression in the endocrine pancreas.

Accurate and sensitive cellular decomposition outperforms array-based atlas
Lastly, we applied the methylation atlas for analysis of methylomes obtained from composite
tissue samples and cfDNA. We developed a computational framework for labeling
sequenced DNA fragments based on their methylation status, computed the methylation
score of each biomarker across all cell types, and applied a computational deconvolution
algorithm for the analysis of methylomes derived from mixtures.

To estimate the accuracy of our markers, we used in silico mixtures of sequenced reads. For
each cell type, we mixed a given percentage of reads from that cell type in leukocyte reads,
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then used the deconvolution algorithm to infer the amount of each cell type in the mixture.
We repeated this process for all cell types at concentrations varying from 0% to 10%. As
shown in Figure 6A, we found that a set of 25 methylation markers per cell type resulted in
an ability to accurately detect DNA from a given source when present in just 0.03-0.1% of a
mixture, an order-of-magnitude improvement in comparison to current 450K approaches.

We then estimated the cellular composition of leukocytes and cfDNA using WGBS data from
23 healthy donors. Over 98% of leukocyte-derived DNA was attributed to granulocytes,
monocytes and macrophages, NK, T, and B cells, consistent with typical blood counts
(Figure 6B, Extended Table S8). The cfDNA of healthy subjects was mostly derived from
leukocytes: granulocytes (32%), monocytes/macrophages (19%), and lymphocytes (4%).
Solid tissues that contributed to cfDNA included vascular endothelial cells (7%) and
hepatocytes (2.5%) (Figure 6C), consistent with previous results26. The current atlas also
revealed a significant contribution of megakaryocytes (27%) and erythrocyte progenitor cells
(6%) to cfDNA, which was not observed in previous studies that used reference methylomes
of a more limited scope.

Endothelial cell-free DNA correlates with COVID-19 severity
Analysis based on DNA methylation patterns offers an opportunity to identify the tissue
origins of cfDNA. COVID-19 inflicts damage to multiple tissues, some of which have no
biomarkers. We used the atlas to deconvolve shallow whole-genome bisulfite sequencing
data from 52 hospitalized COVID-19 patients42. We identified excessive cell-free DNA
fragments from granulocytes, erythrocyte progenitors, lung and liver, consistent with
published analysis of these samples. Strikingly, we also identified a significant contribution of
vascular endothelial cells to the cfDNA of these patients, which could not be discovered in
the published analysis in the absence of endothelial cell methylome reference (Figure 6D).
Interestingly, the concentration of endothelial cell-derived cfDNA was higher in patients with
a severe disease (WHO score≥7), compared to those with a milder disease (WHO score≤6,
p≤6E-5, Mann-Whitney). These results suggest that vascular endothelial cell death plays a
significant role in the pathogenesis of COVID-19, potentially related to coagulopathy, and
highlight the benefit of using a comprehensive cell type-specific atlas for cfDNA methylome
analysis.

Cell-type disentanglement of composite samples
Finally, we analyzed whole-genome methylomes from ENCODE6 and the Roadmap
Epigenomics atlas5 using our atlas (based on 25 markers per cell type). Deconvolution of
some methylomes revealed a homogenous composition as intended, e.g. 99% T-cell DNA in
Roadmap T cells samples (Extended Table S9). However analysis of other samples revealed
a highly heterogeneous composition. For example, heart ventricle samples were composed
of only 33% cardiomyocytes, 40% endothelial cells and 16% cardiac fibroblasts (Fig. 6E);
one pancreatic islet methylome had as much as 22% exocrine pancreas; liver methylomes
were made of <60% hepatocytes, 20% blood and 20% endothelial cells; and the colon
methylomes with <50% colon epithelium, 25% colon fibroblasts and 20% blood. Most
strikingly, Roadmap lung samples are dominated by blood (39%), endothelium (33%), and
smooth muscle (6%), with only 7-29% of DNA derived from lung epithelial cells (Figure 6F-I
and Extended Table S9). Thus, the atlas facilitates determination of tissue composition, an
essential requirement for extraction of accurate information about methylation patterns in
any given sample.
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Figure 6 - Fragment-level deconvolution using cell type-specific biomarkers. (A) Cell
type-specific markers outperform array-based atlas and achieve <0.1% resolution. Shown are in
silico simulations for five cell types, computationally mixed within leukocytes. Each mixture was
analyzed using our atlas (red), and compared to Moss et al. (gray). Box plots show predicted
contribution in 10 simulations, with 1 SD error bars. (B-C) Cell type composition in leukocytes and
plasma samples from healthy donors. Box plots show overall proportions of leukocytes,
megakaryocytes and erythroblasts (MEP), and other cell types. (D) Analysis of low coverage
plasma samples from 52 SARS-CoV-2 patients42 identifies endothelial derived cfDNA in patients
with WHO ordinal scale ≥ 7 (requiring admittance to ICU). (E-I) Fragment-level deconvolution
of Roadmap/ENCODE samples5,6 reveals cell type-specific contributions (E) Heart ventricle
samples contain a mixture of cardiomyocytes, endothelial cells, fibroblasts, and blood. (F) Liver
samples contain <60% of hepatocyte DNA, with blood and endothelial cells. (G) Colon samples
are composed of <50% epithelium, with fibroblasts and blood. (H) Lung sample contains <30% of
lung epithelial cells. (I) Pancreas islets show composition of beta, alpha, duct and acinar cells.
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Discussion
The comprehensive atlas of human cell type methylomes described here sheds light on
principles of DNA methylation, and provides a valuable resource for multiple lines of
investigation, as well as translational applications.

Variation of DNA methylation between replicates and different cell types
Our analysis revealed that methylation patterns are strikingly similar among healthy
replicates of the same cell type from different individuals. The similarity between individuals
reflects the extreme robustness of cell differentiation and maintenance circuits, at least as far
as healthy tissues are concerned. Pathologies involving destabilization of the epigenome
obviously disrupt these circuits, resulting in a larger variety of methylation patterns among
cells that descend from a specific normal cell type. We predict that even in cancers (of the
same primary anatomic site and histologic type), comparative methylome analysis of purified
epithelial cells, performed at the level of methylation blocks, will reveal a smaller
inter-individual variation than typically assumed.

As the atlas blocks revealed, each cell type has a set of genomic regions that are uniquely
unmethylated in that cell type compared to others, as well as additional genomic regions that
share methylation patterns with related cell types. Using unsupervised clustering of cell
type-specific methylomes we found that cell types in the atlas were clustered in ways that
reflected their developmental origins, rather than expression patterns. This offers a
fascinating view of DNA methylation as a living record of the methylomes of progenitor cells,
retained in the genome through dramatic developmental transitions and decades of life
thereafter. Perhaps the most striking example of this principle is the clustering of cells
according to their germ layer of origin. The loci that drive the clustering of colon epithelial
cells from one adult donor with lung alveolar cells of another donor are probably reflecting
the common origins of these cell types in the embryonic endoderm, which forms during
gastrulation and diverges shortly after. We propose that comparative methylome analysis will
allow reconstructing parts of the methylomes of fetal structures or cell types, similarly to the
reconstruction of last common ancestors in evolutionary biology.

Cell type-specific demethylation identifies enhancers and TF binding motifs
The vast majority of the cell type-specific differentially methylated regions were specifically
demethylated in one cell type. The chromatin of these regions is typically highly accessible
and bears histone marks associated with active gene regulation, as found in enhancers and
promoters. Moreover, differentially unmethylated loci are enriched for TF binding site motifs
that operate in that cell type. Finally, we devised an integrated approach that, based on
distance and gene expression profiles, allowed us to highlight possible target genes for
these putative enhancer regions. Notably, many enhancer regions were associated with
nearby genes that are broadly expressed, potentially reflecting gene regulation by multiple
tissue-specific enhancers. Our findings are consistent with, and considerably expand upon,
previous studies that revealed tissue-specific hypomethylation occuring at enhancers33–35.
Further analysis of this atlas will reveal the complete set of human enhancers in each cell
type.
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Roles for cell type-specific hyper-methylation
Conversely, we identified genomic regions that are specifically methylated in one or two cell
types, representing ~3% of cell type-specific differentially methylated regions. They are often
located in CpG islands, and characterized by H3K27me3 and polycomb binding in tissues
where the locus is not methylated38,39. This epigenetic repressive switching was previously
described in cancer and during early development39,43, but its role during differentiation of
specific cell types remains unclear. These regions are enriched for CTCF binding sites,
suggesting a role for DNA methylation in attenuating the binding of CTCF and thus
modulating the cell type-specific 3D organization of neighboring DNA33,34,44.

Cell type-specific DNA methylation biomarkers for cell-free DNA analysis
The atlas described here is the most comprehensive whole-genome healthy DNA
methylation atlas to-date. We have identified over a thousand cell type-unique DNA
methylation regions that could serve as accurate and specific biomarkers for identifying cell
death events by monitoring cfDNA. Notably, most of these marker regions are not covered
by 450K/EPIC BeadChip DNA methylation arrays, and were not previously appreciated. As
may be apparent, many cell types are missing in the atlas, typically because of limited
availability of material. Examples include osteoblasts, cholangiocytes, cells of the adrenal
gland, urethral epithelium and hematopoietic stem cells. Additionally, we did not separate
many sub-populations of interest, for example different types of neurons or lymphocytes.
The atlas is viewed as a living, publicly available database to be updated in the future. The
resolution of the atlas yields a quantitative understanding of composite tissues, and allows
one to identify missing methylomes of additional cell types that are yet to be characterized.

In summary, we present a comprehensive methylome atlas of primary human cell types and
provide examples for biological insights that can be gleaned from this resource. Among the
many potential utilities of this atlas, perhaps most promising is the possibility to use it for
deconvolution of cell types in a mixed cell type sample, and sensitive identification of the
tissue of origin of cfDNA in plasma of individuals with cancer and other diseases16–19,26–28.
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Methods
Human tissue samples
Human tissues were obtained from various sources as detailed in Extended Table S1. The
majority (150) of the 207 samples analyzed were sorted from tissue remnants obtained at
the time of routine, clinically indicated surgical procedures at the Hadassah Medical Center
(Extended Table S1). In all cases, normal tissue distant from any known pathology was
used. Surgeons and/or pathologists were consulted prior to removing the tissue to confirm
that its removal would not compromise the final pathologic diagnosis in any way. For
example, in patients undergoing right colectomy for carcinoma in the cecum, the distal most
part of the ascending colon and the most proximal part of the terminal ileum were obtained
for cell isolation. Normal bone marrow was obtained at the time of joint replacement in
patients with no known hematologic pathology. The patient population included 137
individuals (n=61 males, n=75 females), aged 3-83 years. The majority of donors were
White. Approval for collection of normal tissue remnants was provided by the Institutional
Review Board (IRB, Helsinki Committee), Hadassah Medical Center, Jerusalem, Israel.
Written informed consent was obtained from each donor or legal guardian prior to surgery.
As described in Extended Table S1, some cells and tissues were obtained through
collaborative arrangements: pancreatic exocrine and liver samples (cadaveric organ donors,
n=5) from Prof. Markus Grompe, Oregon Health & Science University. Adipocytes
(subcutaneous adipocytes at time of cosmetic surgery following weight loss; n=3),
oligodendrocytes and neurons (brain autopsies, n=14) from Profs. Kirsty L. Spalding and
Henrik Druid, Karolinska Institute, Stockholm, and research grade cadaveric pancreatic islets
from Prof. James Shapiro, University of Alberta (n=16). In all cases tissues were obtained
and transferred in compliance with local laws and after the approval of the local ethics
committee on human experimentation. Sixteen cell types were obtained from commercial
sources, including 15 from Lonza Walkersville, Walkersville, MD, U.S.A. and one from Sigma
Aldrich. Three cell preparations were obtained from the Integrated Islet Distribution Program
(IIDP, https://iidp.coh.org).

Tissue dissociation and FACS sorting of purified cell populations
Fresh tissue obtained at the time of surgery was trimmed to remove extraneous tissue. Cells
were dispersed using enzyme-based protocols optimized for each tissue type (Extended
Figure S1). The resulting single-cell suspension was incubated with the relevant antibodies
and FACS sorted to obtain the desired cell type.
Purity of live sorted cells was determined by mRNA analysis for key known cell-type specific
genes whereas purity of cells that were fixed prior to sorting was determined using
previously validated cell-type specific methylation signals. DNA was extracted using the
DNeasy Blood and Tissue kit (#69504 Qiagen; Germantown, MD) according to the
manufacturer’s instructions, and stored at -20°C for bisulfite conversion and whole genome
sequencing.

Whole-genome bisulfite sequencing
Up to 75 ng of sheared gDNA was subjected to bisulfite conversion using the EZ-96 DNA
Methylation Kit (Zymo Research; Irvine, CA), with liquid handling on a Hamilton MicroLab
STAR (Hamilton; Reno, NV). Dual indexed sequencing libraries were prepared using
Accel-NGS Methyl-Seq DNA library preparation kits (Swift BioSciences; Ann Arbor, MI) and
custom liquid handling scripts executed on the Hamilton MicroLab STAR. Libraries were
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quantified using KAPA Library Quantification Kits for Illumina Platforms (Kapa Biosystems;
Wilmington, MA). Four uniquely dual indexed libraries, along with 10% PhiX v3 library
(Illumina; San Diego, CA), were pooled and clustered on a Illumina NovaSeq 6000 S2 flow
cell followed by 150-bp paired-end sequencing.

Whole-genome bisulfite sequencing computational processing
Paired-end FASTQ files were mapped to the human (hg19), lambda, pUC19 and viral
genomes using bwa-meth (V 0.2.0), with default parameters45, then converted to BAM files
using SAMtools (V 1.9)46. Duplicated reads were marked by Sambamba (V 0.6.5), with
parameters “-l 1 -t 16 --sort-buffer-size 16000 --overflow-list-size 10000000”47. Reads with
low mapping quality, duplicated, or not mapped in a proper pair were excluded using
SAMtools view with parameters -F 1796 -q 10. Reads were stripped from non-CpG
nucleotides and converted to PAT files using wgbstools (V 0.1.0)48.

Genomic segmentation into multi-sample homogenous blocks
We developed and implemented a multi-channel Dynamic Programming segmentation
algorithm to divide the genome into continuous genomic regions (blocks) showing
homogeneous methylation levels across multiple CpGs, for each sample48. We model the
CpG sites with a generative probabilistic model, assuming there is a universal underlying
segmentation of all ~28M sites into an unknown number of blocks. This segmentation, unlike
the methylation patterns, is similar across different cell types and individuals. Each block

induces a Bernoulli distribution with some , where is the block index and is the sampleθ
𝑖
𝑘 𝑖 𝑘

( ), and all CpG sites are represented by random variables sampled i.i.d from the𝑘 = 1,..., 𝐾
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Finding an Optimal Segmentation
We used dynamic programming to find a segmentation that maximizes a log-likelihood score
for the blocks. The score for the i’th block is the log-likelihood of the beta values of the sites
in this block across all K samples. We compute K Bayesian estimators for the block’s
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observations in block i. They are constant hyper-parameters of the model, which set the
tradeoff between longer to more homogenous blocks. The log-likelihood of a single block in
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Dynamic Programming Algorithm
We maintain a table T for the optimal scores (N=28,217,448). holds the score of1 × 𝑁 𝑇[𝑖]
the optimal segmentation of sites . holds the final optimal score. The table is1,..., 𝑖 𝑇[𝑁]
updated from 1 to N as follows:
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𝑇[𝑖] =
𝑖'<𝑖
max {𝑇[𝑖'] + 𝑠𝑐𝑜𝑟𝑒(𝑏𝑙𝑜𝑐𝑘[𝑖' + 1,..., 𝑖])}

is the maximum over the sites preceding site ( ), of the score of the optimal𝑇[𝑖] 𝑖 𝑖' < 𝑖
segmentation that ends on site ( ), concatenated with the single block from to .𝑖' 𝑇[𝑖'] 𝑖’ + 1 𝑖
A similar traceback table is also maintained, in order to retrieve the optimal segmentation. In
order to improve performance, we set an upper bound on block length (either in CpG sites or
bases), which improves running time and allows for multi-processing.

Segmentation and clustering analysis
We segmented the genome into 7,264,350 blocks using wgbstools (with parameters
“segment --max_bp 5000”), with all of the 207 samples as reference, and retained 2,107,635
blocks that cover ≥4 CpGs. For the hierarchical clustering we selected the top 1% (21,077)
blocks showing the largest variability in average methylation across all samples. Blocks with
sufficient coverage of ≥10 observations (calculated as sequenced CpG sites) across ⅔ of the
samples we further retained. We then computed the average methylation for each block and
sample calculated using wgbstools (“--beta_to_table -c 10”), marked blocks with <10
observations as missing values, and imputed their methylation values using sklearn
KNNImputer (V 0.24.2)49. The 207 samples were clustered with the UPGMA clustering
algorithm21, using scipy (V 1.6.3)50, and L1 norm. The fanning diagram (Figure 2) was plotted
using ggtree (V 2.2.4)51.

Cell type-specific markers
The 207 atlas samples were grouped into 51 groups by their cell type (Extended Table S3),
including 39 basic groups (e.g. epithelial cells pancreatic alpha-cells), and composite
super-groups (e.g. epithelial alpha, beta, and delta cells, all from the endocrine pancreas).
We performed a one-vs-all comparison, to identify differentially methylated blocks unique for
each set. For this, we first identified blocks that cover ≥5 CpGs, with length varying between
10 to 500bp. We then calculated the average methylation per block/sample, as the number
of methylated CpGs sites within all sequenced reads across each block). Blocks with
insufficient coverage (<25 observations) were assigned a default value of 0.5. We then
selected blocks with average methylation below 0.33 across samples from one cell type, with
an average methylation of ≥0.66 in all others, or vice versa.

For cell type-specific markers, we selected the top 25, 100 or 250 or 1,000 blocks with the
highest delta-beta for each cell type. For hypo-methylated markers this was computed as the
difference between the 75th percentile among the block average methylation within samples
in the target set, and the 2.5th percentile among the rest of samples (background set). This
allowed for ~1 outlier sample in the target group, and ~5 outliers outside. Analogously, for
hyper-methylated markers we computed the 97.5th percentile of the background and the 25th

percentile within the target samples.

Enrichment for gene set annotations
Analysis of gene set enrichment was performed using GREAT29. For each cell type, we
selected the top 250 differentially unmethylated regions, and ran GREAT via batch web
interface using default parameters. Enrichments for “Ensembl Genes” were ignored, and a
significance threshold of Binomial FDR≤0.05 was used.
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Enrichment for chromatin marks
For each cell type, we analyzed the top 250 differentially unmethylated regions vs. published
ChIP-seq (H3K27ac and H3K4me1) and DNase-seq from the Roadmap Epigenomics project
(downloaded from ftp.ncbi.nlm.nih.gov/pub/geo/DATA/roadmapepigenomics/by_experiment
and http://egg2.wustl.edu/roadmap/data/byDataType/dnase/BED_files_enh in bigwig and
bed formats). These include E032 for B cells markers, E034 for T cells markers, E029 for
monocytes/macrophages markers, E066 for liver hepatocytes, E104 for heart
cardiomyocytes and fibroblasts, E109 and E110 for gastric/small intestine/colon5.
Annotations for chromHMM were downloaded (15-states version) from
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/co
reMarks/jointModel/final31, and genomic regions annotated as enhancers (7_Enh) were
extracted and reformatted in bigwig format. Raw single-cell ATAC-seq data were
downloaded from GEO GSE16565930, as “feature” and “matrix” files for 70 samples. For
each sample, cells of the same type were pooled together to output a bedGraph file, which
was mapped from hg38 to hg19 using UCSC liftOver52. Overlapping regions were dropped
using bedtools (V 2.26.0)53. Finally, bigWig files were created using bedGraphToBigWig (V
4)54. Heatmaps and average plots were prepared using deepTools (V 3.4.1)55, with the
computeMatrix, plotHeatmap, and plotProfile functions. We used default parameters except
for --referencePoint=center, 15Kb margins, and binSize=200 for ChIP-seq, DNaseI and
chromHMM data, and 75Kb margins with binSize=1000 for ATAC-seq data.

Motif analysis
For each cell type, we analyzed the top 250 differentially unmethylated regions for known
motifs, using HOMER’s findMotifsGenome.pl function, with -bits and -size 250 parameters37.
Additionally, we analyzed the top 100 differentially methylated regions for each cell type
(using the same parameters), as well as their combined set, composed of 3,125 regions in
total.

Methylation marker-gene associations
For each cell type-specific marker, we identified all neighboring genes, up to 500Kb apart.
We then examined the expression levels of these genes across the GTEx datasets, covering
50 tissues and cell types56. We then calculated the over-expression level of each
<gene,condition> pair, by computing the deviation (Z-score) of that gene across all
conditions (row-wise calculation), and then the deviation of that condition across all genes
(column-wise calculation), repeatedly until convergence. This Z-score reflects the
bidirectional enrichment of each <gene,condition> combination, compared to all other
genes/conditions. We then classified each <marker,gene,condition> combination as Tier 1:
distance≤5Kb, expression≥10 TPM, and Z-score≥1.5; or Tier 2: same but as Tier 1, with
dist≤50Kb; or Tier 3: up to 750Kb, expression≥25 TPM, and Z-score≥5; or Tier 4: same as
Tier 3 with Z-score≥3.5.

Inter-individual variation in cell type methylation
We define a similarity score between two samples as the fraction of blocks containing ≥3
CpGs, and ≥10 binary observations (sequenced CpG sites), where the average methylation
of the two samples differs by ≥0.5. Only cell types with n≥3 FACS-sorted replicates from
different donors are considered (138 samples in total).
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CTCF ChIP-seq analysis
CTCF ChIP-seq data were downloaded from the ENCODE project6, as 168 bigwig files,
covering 61 tissues/cell types (hg19). Samples of the same cell type were averaged using
multiBigwigSummary bins (V 3.4.1)55.

Endodermal marker analysis
The 776 endodermal hypo-methylated markers were found using wgbstools’ find_markers
function (V 0.1.0), with parameters “--delta 0.4 --tg_quant 0.1 --bg_quant 0.1”48.
Endoderm-derived epithelium (51 samples was compared to 105 non-epithelial samples
from mesoderm or ectoderm. Blocks were selected as markers if the average methylation of
the 90th percentile of the epithelial samples was lower than the 10th percentile of the
non-epithelial samples by at least 0.4.

UXM fragment-level deconvolution algorithm
We developed a fragment-level deconvolution algorithm: the fraction of methylated CpG
sites was computed per fragment, and it was annotated as U (mostly unmethylated), M
(mostly methylated) or X (mixed). We then calculated, for each genomic region (marker), the
proportion of U/X/M reads among all reads with ≥ k CpGs. Here, we used k=4 and
thresholds of ≤25% methylated CpGs for U reads and ≥75% methylated CpGs for M. We
then constructed a reference atlas with 1,291 markers (top 25 markers per cell type/group,𝐴
including megakaryocytes), wherein the cell holds the U proportion of the i’th marker in𝐴

𝑖,𝑗

the j’th cell type (for hypo-methylated markers), or the M proportion (for hyper-methylated
markers). Given an input sample, we compute the U or M read count within each marker as
a 1,266x1 vector, we normalized each row in accordingly, by multiplying the U/M𝐴
proportions in each cell type by the total read coverage of each marker in the input𝐶

𝑖
𝑖

sample. Finally, non-negative least squares (NNLS) is applied to infer the coefficient vector 𝑥
by minimizing subject to non-negative x, and is normalized such𝑑𝑖𝑎𝑔(𝐶) · 𝐴 · 𝑥 − 𝑏| |

2
𝑥

that .
𝑗
∑ 𝑥

𝑗
= 1

in silico simulations WGBS deconvolution
For each of the 39 cell types from the atlas, fragments were merged across replicates (after
deduping) and split into training (70%) and test (30%) sets. For background, we merged
n=23 leukocyte samples and simulated mixtures of different cell types, including
cardiomyocytes (n=6), bladder epithelium (n=5), breast epithelium (n=7), endothelial cells
(n=19), and erythrocyte progenitors (n=3). For each cell type, we simulated 10 mixtures at
input proportions of 10%, 3%, 1%, 0.3%, 0.1%, 0.03% and 0%. Merging, splitting, and
mixing of reads were performed using wgbstools [V0.1.0]48. A matching reference atlas was
constructed using training set fragments only, across top 25 markers for each cell type.
Simulated mixtures were analyzed using our UXM algorithm, across fragments with ≥5 CpGs
in breast epithelial samples, and ≥4 for the other types.

Array based 450K data were simulated using wgbstools (beta_to_450k function, V0.1.0),
and deconvolution performed as in Moss et al.26 (https://github.com/nloyfer/meth_atlas).
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WGBS deconvolution
Leukocytes and matching plasma samples (n=23) were processed as described above, and
analyzed using the WGBS methylation atlas, including n=3 megakaryocyte samples from
BLUEPRINT57. 52 plasma samples from 28 SARS-CoV-2 patients42 were downloaded as
FASTQ files were processed as described above. Because of the low coverage (1-2X) of
these samples, we extended the marker set from top 25 to top 250 markers per cell type.
Roadmap Epigenomics samples5 were processed as described above and analyzed using
the UXM algorithm. Predicted cell type contributions were averaged across replicates.

Data availability
The Human DNA Methylation atlas data are deposited in the Gene Expression Omnibus
database, accession GSE186458 with access code cjujgaisfjkxnmz. Code is available at
https://github.com/nloyfer/wgbs_tools
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Supplemental Data
Extended Table S1. List of 207 samples, including tissue of origin, cell type, cell type group, germinal
layer of cell type, source of tissue sample, clinical details of donor, sorting details, and sequencing
depth. Abbreviations: Had-HU = Hadassah Hospital/Hebrew University; KI = Karolinska Institute; IIDP
= Integrated Islet Distribution Program; OHSU = Oregon Health & Science University; UA = University
of Alberta

Extended Table S2. List of methylation blocks with ≥4 CpGs that show the highest variability (top
1%) across samples.

Extended Table S3. List of 39 cell types (top) and 12 super groups (bottom).

Extended Table S4. List of 953 cell type-specific unmethylated markers. Also included are additional
279 markers, uniquely unmethylated in combinations of a few related cell types (e.g. pancreatic
alpha, beta, and delta cells, gastrointestinal cell types, etc.).

Extended Table S5. Cell type-specific markers are enriched for functional terms. Shown are some of
the top 10 terms for each marker group, with a significance threshold of FDR≤1E-10.

Extended Figure S2. Segmentation of the human genome into 7,264,350 continuous
homogeneous blocks. The histograms show the number of segmented blocks as a function of the
number of CpGs they contain (left), or their length in bases (right), or as a function . In addition to the
2,746,623 blocks of length 3-30 CpGs (plotted above), there were additional 3,271,607 blocks of one
CpG, and 1,185,719 blocks of two CpGs, as well 60,401 of >30 CpGs.
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Extended Figure S3. Biological replicates of the same cell type, from different individuals
show a surprisingly low rate of differentially methylated blocks. We focused on 37 cellular
subtypes with n≥3 replicates (e.g. endothelial cells from a specific tissue) and measured the average
percent of methylation blocks (≥3 CpGs) that differ in their methylation by 50% (absolute delta beta),
across replicates (shown as Y-axis). Nearly all cellular subtypes (36/37) differ by ≤0.5% of blocks
suggesting a very high degree of conservation among replicates. Dotted red line marks the average
number of differential blocks between two random samples of different cell types (4.9%).

Extended Figure S4: Average methylation in top differentially methylated blocks. Shown are
the average methylation values at the 1% most variable blocks of 4 CpGs or more (21,077 blocks).
For each block, we computed the average methylation in each sample, and classified them as
unmethylated (<50%) or methylated (>50%). Boxplots show the 25th through 75th percentiles among
the average methylation levels in unmethylated blocks/samples (blue), methylated ones (yellow) or
the difference between methylated and unmethylated samples in the same block (green).
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Extended Figure S5. (A) Same as Figure 2, colored by developmental lineage from germ layers,
including endoderm (green), mesoderm (blue), and ectoderm (red). (B) same as Figure 2, for Roadmap
Epigenomics DNA methylation atlas.

Extended Figure S6. Markers of putative enhancers in other atlas cell types , including top 250
unmethylated markers for B cells (top left), Hepatocytes (top right), Gastric/Small Intestine/Colon
epithelium (bottom left), and cardiomyocytes/heart fibroblasts (bottom right). Gray lines mark the
same ChIP-seq/ATAC/DNase/chromHMM signal, averaged across all 11,371 unmethylated markers
(top 250 per cell type).

Extended Table S6. Transcription factor binding site enrichment among top 1000 uniquely
unmethylated regions for each cell type.
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Extended Table S7. Methylation marker-gene associations. Each cell type-specific unmethylated
region was associated with over-expressed genes (up to 750Kb) in related tissues.

Extended Table S8. Fragment-level deconvolution of 23 blood and 23 plasma samples.

Extended Table S9. Fragment-level deconvolution of 104 WGBS samples from Roadmap and
ENCODE.
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