
 
 
 
 
 
 

Antibodies targeting conserved non-canonical antigens and endemic coronaviruses 
associate with favorable outcomes in severe COVID-19 

 
 

Sai Preetham Peddireddy1*, Syed A. Rahman2*, Anthony R. Cillo3, Godhev Manakkat Vijay3, 
Ashwin Somasundaram3, Creg J. Workman3, William Bain4, Bryan J. McVerry4, Barbara Methe4, 
Janet S. Lee4, Prabir Ray4, Anuradha Ray4, Tullia C. Bruno3, Dario A. A. Vignali3, Georgios D. 

Kitsios4, Alison Morris4, Harinder Singh2†, Aniruddh Sarkar1†, Jishnu Das2† 
 
 

1 Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta GA, USA 
2 Center for Systems Immunology, Departments of Immunology and Computational & Systems 
Biology, University of Pittsburgh, Pittsburgh, PA, USA 
3 Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA 
4 Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University 
of Pittsburgh, Pittsburgh, PA, USA 
 
 
 
* Equal contribution/co-first author 
† Corresponding authors – Jishnu Das (jishnu@pitt.edu), Aniruddh Sarkar 
(aniruddh.sarkar@bme.gatech.edu), Harinder Singh (harinder@pitt.edu) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2022.01.24.477545doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477545
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 
 
While there have been extensive analyses characterizing cellular and humoral responses across 
the severity spectrum in COVID-19, predictors of outcomes within severe COVID-19 remain to be 
comprehensively elucidated. Recently, we identified divergent monocyte states as predictors of 
outcomes within severe COVID-19, but corresponding humoral profiles of risk have not been 
delineated. Furthermore, the nature of antibodies (Abs) directed against viral antigens beyond the 
spike protein or endemic coronavirus antigens and their associations with disease severity and 
outcomes remain poorly defined. We performed deep molecular profiling of Abs directed against 
a wide range of antigenic specificities in severe COVID-19 patients admitted to the ICU. The 
profiles consisted of canonical (S, RBD, N) and non-canonical (orf3a, orf8, nsp3, nps13 and M) 
antigenic specificities. Notably, multivariate machine learning (ML) models, generated using 
profiles of Abs directed against canonical or non-canonical antigens, were equally discriminative 
of recovery and mortality COVID-19 outcomes. In both ML models, survivors were associated 
with increased virus-specific IgA and IgG3 antibodies and with higher antigen-specific antibody 
galactosylation. Intriguingly, pre-pandemic healthy controls had cross-reactive Abs directed 
against nsp13 which is a conserved protein in other alpha and beta coronaviruses. Notably, higher 
levels of nsp13-specific IgA antibodies were associated with recovery in severe COVID-19. In 
keeping with these findings, a model built on Ab profiles for endemic coronavirus antigens was 
also predictive of COVID-19 outcome bifurcation, with higher levels of IgA and IgG3 antibodies 
against OC43 S and NL63 S being associated with survival. Our results suggest the importance 
of Abs targeting non-canonical SARS-CoV-2 antigens as well as those directed against endemic 
coronaviruses in favorable outcomes of severe COVID-19. 
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Introduction 
 
The continued spread of SARS-CoV-2 remains a significant threat globally, in spite of deployment 
of effective vaccines, due to newly emerging variants. A critical challenge is posed by the high 
symptomatic heterogeneity and unpredictable course of disease progression in COVID-19 
(Rodebaugh et al., 2021).This contributes to the overburdening of health care systems leading to 
significant additional morbidity and mortality. Progression from asymptomatic infection or mild 
symptoms to severe disease has been broadly linked to advanced age and certain comorbidities 
(Ng et al., 2021). However, for those with severe COVID-19 disease, there is still a lack of 
personalized predictors of the course of disease and its outcomes. Although, significant effort has 
been dedicated to establishing the immunological underpinnings of COVID-19 (Carvalho et al., 
2021) but the immunological drivers of mortality and survival outcomes within severe COVID-19 
patients remain unclear. Recently, we identified dysregulated monocyte states as key predictors 
of outcomes within severe COVID-19 (Cillo et al., 2021). However, the corresponding antibody 
profiles that can predict COVID-19 mortality outcomes have yet to be delineated. 
 
The humoral response directed against selected SARS-CoV-2 antigens, e.g., Spike (S) and 
Nucleocapsid (N), or their sub-domains, e.g., Receptor Binding Domain (RBD) of S, which taken 
together we term as canonical antigens here, have been extensively studied (Atyeo et al., 2020; 
Bartsch et al., 2021; Zohar et al., 2020). Relative to those with asymptomatic infection or with mild 
symptoms, antibody titers against canonical antigens are higher in patients with severe disease 
leading to early concerns about antibodies contributing to disease pathology, potentially via 
mechanisms like Antibody Dependent Enhancement (ADE) (Iwasaki and Yang, 2020; Lee et al., 
2020) or via the antibody-mediated activation of inflammatory pathways especially since 
proinflammatory antibody Fc structures have been found to correlate with disease severity (Bye 
et al., 2021; Chakraborty et al., 2020; Hoepel et al., 2021; Larsen et al., 2021). Vaccine studies, 
meanwhile, have shown that titers of vaccine-elicited neutralizing antibodies directed against the 
S antigen are a key correlate of protection (Khoury et al., 2021; Sadarangani et al., 2021).  
Recently, longitudinal profiling of antibodies against canonical antigens, after natural infection, 
has revealed distinct temporal trajectories of immunoglobulin (Ig) subclasses and non-neutralizing 
functions of these antibodies that track with disease severity and outcome (Zohar et al., 2020). 
However, it remains to be determined which of these features of Abs directed against canonical 
antigens are predictive of recovery from severe COVID-19 disease. 
 
Beyond the canonical antigens, the SARS-CoV-2 genome is predicted to encode up to 25 
additional proteins (Gordon et al., 2020), which we term here as non-canonical antigens. It has 
been observed that cellular and humoral immune responses directed against these non-canonical 
targets also arise upon SARS-CoV-2 infection (Grifoni et al., 2020; Shrock et al., 2020). Antibody 
responses against some non-canonical antigens have been shown to be serological markers of 
COVID-19 at early and late time-points of illness (Hachim et al., 2020). However, it remains to be 
determined if antibodies directed against non-canonical antigens versus those directed against 
canonical antigens can independently or combinatorially predict the outcomes of severe COVID-
19 disease. Given the prolonged exposure to a high viral burden in patients with severe COVID-
19, antibodies against non-canonical antigens may play a role in protection or exacerbation in 
severe COVID-19. In the context of other viral infections, generation of antibodies directed against 
non-neutralizing targets has been linked to either protective, neutral or detrimental effects 
(Lamere et al., 2011; To et al., 2012). Indeed, in the context of COVID-19 as well, there is 
evidence pointing to the lack of selective targeting of S versus N antigens being linked to disease 
severity (Zohar et al., 2020). Additionally, it is notable that a number of these non-canonical 
SARS-CoV-2 protein antigens are known to share high sequence similarity with the corresponding 
proteins in endemic human coronaviruses (eHCoVs) (Hicks et al., 2021). Whether prior eHCoV 
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exposure and the associated immune memory effects outcome after SARS-CoV-2 infection 
remains an unsettled debate and both protective and pathological effects have been reported in 
recent literature (Aydillo et al., 2021; Guo et al., 2021). It is plausible that the effects of prior 
eHCoV infection is mediated via the evolution or expansion of the pre-existing or cross-reactive 
B cell clones to these highly similar non-canonical antigens. Thus, tracking the antibody 
responses against these antigens could provide important insights in formulating improved SARS-
CoV-2 as well as pan-coronavirus vaccines beyond the S-based formulations in current use.  
 
To address these questions regarding the association and potential functions of specific Abs in 
severe COVID-19 disease outcomes, we developed a highly multiplexed, sample-sparing SARS-
CoV-2 humoral profiling platform which measures biophysical properties of antigen-specific 
antibodies directed against a broad set of canonical and non-canonical antigens as well as eHCoV 
antigens including their isotypes, subclasses, Fc receptor binding and glycosylation. Serum 
samples of COVID-19 patients admitted into the ICU were profiled using this antibody profiling 
platform along with those from pre-pandemic healthy controls. The resultant high-dimensional 
data was analyzed with machine-learning based methods to generate multivariate models of Ab 
features that predicted severe COVID-19 disease outcomes. Importantly, we found that Abs 
directed against canonical and non-canonical antigens were independently equally predictive of 
disease outcomes. We also found that similar antibody profile differences of both antigen classes 
drove outcome bifurcation with survivors having more IgA and IgG3 antibodies and higher 
antigen-specific antibody galactosylation. Notably, pre-pandemic healthy controls were found to 
have antibodies against specific non-canonical antigens with high similarity to those in eHCoVs. 
Finally, eHCoV-specific antibodies were themselves also predictive of outcome in severe COVID-
19 with higher levels of IgA and IgG3 being associated with survival. Thus, our results suggest 
the importance of Abs targeting non-canonical SARS-CoV-2 antigens as well as Abs directed 
against endemic coronaviruses in favorable outcomes of severe COVID-19. 
 
Results 
 
Multivariate antibody responses against canonical antigens are predictive of severe COVID-19 
outcomes 
 
Using our highly multiplexed, SARS-CoV-2 antibody profiling platform, we characterized and 
quantified serum Abs directed against canonical antigens for 21 severe COVID-19 patients from 
blood drawn soon after their ICU admission (Fig. 1a, UPMC cohort). Importantly, all 21 patients 
represented severe cases from natural infection (14 survivors and 7 non-survivors). Demographic 
details for these patients have been previously described (Bain et al., 2021; Cillo et al., 2021). 
Briefly, COVID-19 was diagnosed in these subjects based on reference-standard nasopharyngeal 
swab SARS-CoV-2 qPCR. Patients were admitted to the ICU a median of 6 days after symptom 
onset and serum was collected from these patients within 24 hours post-enrollment in the study. 
Of a wide range of measured clinical covariates, higher age and higher BMI showed trends of 
being associated with higher mortality and the administration of glucocorticoids trended to being 
associated with survival, none of these were univariate significant at these sample sizes (Bain et 
al., 2021; Cillo et al., 2021). This further motivates the need for the use of a multivariate approach 
that relies on molecular rather than clinical features to predict outcome bifurcation. 
 
Unlike well-characterized differences in Spike antibody titers of COVID-19 patients across the 
severity spectrum, we wished to determine whether antibody profiles at the point of ICU admission 
could predict bifurcation of subsequent outcomes – survival vs death (Fig. 1a). Furthermore, 
unlike previous studies that have focused on temporal differences (Zohar et al., 2020), we focused 
on Ab profiles measured at the point of ICU admission as it represents a clinically relevant and 
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actionable time-point. Further, there weren’t significant differences in other characteristics 
including age, treatment and viral loads between the survivors and non-survivors. 

We observed that both survivors and non-survivors had significantly higher antibodies 
across canonical specificities than pre-pandemic healthy controls, confirming the quality and 
specificity of our assay (Figs. S1a-S1o). However, the univariate differences between survivors 
and non-survivors were not striking (Fig. 1b, Figs. S1a-S1o). No single feature was discriminative 
by clinical outcomes. Therefore, we pursued a multivariate machine learning approach that 
incorporates different quantitative and qualitative aspects of the antibody response to determine 
if it could discriminate patients by clinical outcome. We used a two-step machine learning 
approach, as previously described (Ackerman et al., 2018; Das et al., 2020; Lu et al., 2020a; 
Sadanand et al., 2018; Suscovich et al., 2020), in an attempt to identify a minimal set of predictive 
Ab features that could discriminate between survivors and non-survivors. Our approach 
comprised feature selection using the LASSO; the use of L1 regularization on high-dimensional 
data (i.e., data where the number of Ab features far exceeds the number of subjects) that helps 
prevent overfitting (Ackerman et al., 2018; Das et al., 2020; Lu et al., 2020a; Sadanand et al., 
2018; Suscovich et al., 2020). This was followed by classification using the down-selected 
features. We found that a model generated using this approach was significantly predictive of 
outcome as measured in a k-fold cross-validation framework with permutation testing (Fig. 1c, 
Methods). The model was based on three features – anti-Spike IgA, anti-Spike RBD IgA2 and 
RBD-directed antibody galactosylation (Fig. 1d). As an orthogonal way to visualize the 
stratification achieved by these Ab features, we performed partial least squares discriminant 
analyses (PLS-DA) using just these three down-selected features. The PLS-DA demonstrated 
that these 3 markers were able to stratify the survivors and the non-survivors (Fig. 1e). Notably, 
all three Ab features were higher in survivors compared to non-survivors (Fig. 1d), suggesting 
that higher levels of IgA antibodies directed against the Spike protein or its RBD and the increased 
levels of galactosylation of RBD-specific antibodies are associated with favorable outcomes.  

  
 To validate the robustness of the uncovered Ab features, we tested the performance of 
our model on an orthogonal cohort of severe ICU patients (MGH cohort) (Zohar et al., 2020). 
Critically, we had no role in the study design or recruitment strategy for this cohort. Our model 
generated using the UPMC cohort remained significantly predictive for the MGH cohort (Fig. 1f), 
albeit with a slightly decreased performance. We attributed this reduction in performance to the 
availability of fewer features in the MGH cohort dataset, specifically the lack of antigen-specific 
antibody glycosylation measurements, one of the three discriminating features for our model. The 
other 2 features (anti-Spike IgA, anti-RBD IgA2) exhibited identical univariate trends across the 
two cohorts and datasets (Fig. S1p). Overall, our results demonstrate that a model built using Ab 
profiles corresponding to canonical specificities is robust, both to cross-validation and cross-
prediction with a distinct cohort. More importantly, they demonstrate that within severe COVID-19 
patients, outcome bifurcation can be accurately predicted at the point of ICU admission based on 
IgA rather than IgG antibodies directed against S and its RBD as well as RBD-specific antibody 
galactosylation.  
 
Multivariate antibody responses against non-canonical antigens independently predict severe 
COVID-19 outcomes 
 
Next, we sought to examine the levels of Ab responses directed against non-canonical antigens 
(nsp3, nsp13, orf3a, orf8) in patients with severe COVID-19 and whether they were independently 
predictive of outcome. We detected Ab responses to these non-canonical antigens both in the 
survivors and non-survivors, with no significant univariate differences between them (Fig 2a, Figs. 
S2a-S2o), similar to what we observed for canonical Ab specificities. So, we constructed a 
multivariate model, as described above, using only the Ab responses corresponding to non-
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canonical specificities. Strikingly, this model was also significantly predictive of outcomes (Fig. 
2b), and the performance of this model was as good as that of our previous model built using 
canonical specificities (Figs. 2b, 1c). The model selected four features: anti-orf8 IgA, anti-nsp13 
IgG3, anti-M antibody FcR3A binding and anti-M antibody galactosylation (Fig. 2c).  Analogous 
to our earlier analyses, a PLS-DA visualization also demonstrated that these 4 features were able 
to stratify the survivors and the non-survivors (Fig. 2d). Importantly, these 4 Ab features, unlike 
many others (Figs. S2a-S2o), were higher in survivors. Our findings thus address an important 
question regarding higher antibody titers, especially against non-neutralizing non-canonical target 
antigens being potentially associated with worse outcomes in severe COVID-19 (Lee et al., 2020). 
The results suggest that higher antibody titers with particular isotypes directed against specific 
canonical as well as non-canonical antigens are associated with favorable outcomes in severe 
disease.  
 
As noted above, IgA antibodies for both canonical (S-, S-RBD) and non-canonical (orf8) antigens 
were higher in survivors compared to non-survivors, (Figs. 1d, 2c). Further, increased 
galactosylation of both RBD- and M- specific Abs was associated with favorable outcomes (Figs. 
1d, 2c). Thus, similar Ab profiles for both canonical and non-canonical specificities were 
associated with survival. This was corroborated, by constructing a predictive model by combining 
canonical and non-canonical specificities. As anticipated, the predictive performance of the model 
remained unchanged (Fig. 2e) and it highlighted a subset of the Ab features revealed by those 
based on canonical and non-canonical Ag specificities alone (Fig. 2f). Next, we examined whether 
the ratios of IgA/IgG or IgA/IgM antibodies directed against S, RBD and orf8 (antigens identified 
in the earlier analyses) were predictive of outcomes. This was a post-hoc analysis (Methods) 
where we focused on ratios of IgA/IgG antibodies for features identified in the canonical and non-
canonical models (Fig. 2g). A multivariate PLS-DA visualization using just these 3 ratios 
discriminated between survivors and non-survivors (Figs 2h). These results reinforce the 
importance of IgA antibodies directed against both canonical and non-canonical specificities as 
important predictors of outcome in severe COVID-19. Overall, our results demonstrate that Abs 
with particular non-canonical antigen specificities are independently as informative as those Abs 
directed against the canonical S protein in predicting severe COVID-19 disease mortality 
outcomes.  

 
Antibodies directed against endemic CoV antigens as predictors of severe COVID-19 outcome 
 
In the process of analyzing corresponding Ab profiles in pre-pandemic healthy controls we noticed 
significant levels of reactivities to specific non-canonical SARS-CoV-2 antigens, particularly 
nsp13 and nsp3 (Figs S1a-S1o and S2a-S2o). This was unlike Abs directed against canonical 
antigens including S which were, on the other hand, very close to or at baseline in these controls 
(Figs S1a-S1o and S2a-S2o). Given this surprising finding of Ab reactivity to nsp13 and nsp3 in 
sera of pre-pandemic individuals we hypothesized that these Abs may have been generated by 
prior infections of such individuals with eHCoVs and their cross-reactivity to SARS-Cov-2 nsp13 
and nsp3 was a consequence of the greater conservation of these proteins across coronaviruses. 
To test this hypothesis, we analyzed the sequence similarity of nsp13 and S to corresponding 
antigens in SARS/MERS-CoV and eHCoVs (Fig. 3d), While S shares low sequence similarity to 
SARS-CoV and eHCoV S antigens, nsp13 has high sequence similarity to corresponding 
SARS/MERS-CoV and eHCoV antigens (Fig. 3d). Thus, antibodies directed against endemic 
eHCoV nsp13 may cross-react with their SARS-CoV2 homologs.  
 
Given the possibility of pre-existing cross-reactive Abs to SARS-Cov-2 antigens we constructed 
a multivariate 3-way machine learning model that could discriminate not only between survivors 
and non-survivors, but also pre-pandemic healthy controls. Such a model might highlight 
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additional Ab features pertaining to conserved non-canonical antigens that discriminate severe 
COVID-19 outcomes.  The 3-way model performed even better than the previous 2-way models 
that discriminated between survivors and non-survivors (Fig. 3a). The LASSO model selected 5 
features that reflected the intriguing trends described above. These features included anti-S IgG3, 
S-specific and N-specific antibody galactosylation as well as anti-nsp13 IgA1 and IgM (Fig. 3b). 
Analogous to our earlier analyses, a PLS-DA visualization also demonstrated that these 5 
features were able to stratify survivors, non-survivors and healthy controls (Fig. 3c). Strikingly, 
while anti-S IgG3 was close to baseline in pre-pandemic healthy controls, the anti-nsp13 IgM was 
highest in pre-pandemic healthy controls and anti-nsp13 IgA1 was highest in survivors followed 
by healthy controls (Fig 3b). This raises the possibility that boosting of a pre-existing cross-
reactive memory B cell response to nsp13 may account for the increased levels of these IgA Abs 
in severe COVID-19 patients and in turn their association with favorable outcomes.  
  
To further test the possibility that boosting of pre-existing Abs to eHCoVs that may cross-react 
with SARS-CoV-2 antigens can associate with severe COVID-19 disease outcomes, we analyzed 
Abs directed against eHCoV antigens (OC43 S and NL63 S) and used that dataset to build a 
multivariate ML model. Remarkably, a multivariate model built only on Abs directed against OC43 
S and NL63 S was significantly predictive of outcomes, and was also independently able to 
accurately discriminate between survivors, non-survivors and pre-pandemic healthy controls (Fig. 
3e). Interestingly, while both survivors and non-survivors had significantly higher IgG antibodies 
to OC43 S than healthy controls, IgA, IgG3 antibodies and antibody binding to Fc receptor 3A 
were higher in survivors and healthy controls compared to non-survivors (Fig. 3f). IgA and IgG3 
antibodies against OC43 S were also found to be higher in survivors relative to healthy controls. 
A PLS-DA visualization also demonstrated that these 5 markers were able to stratify survivors, 
non-survivors and healthy controls (Fig. 3g). These findings suggest that pre-existing Abs to 
canonical and non-canonical antigens of eHCoVs and their boosting, especially of particular 
isotypes and subclasses, by SARS-CoV-2 infection may have a beneficial role in favorable 
outcomes in severe COVID-19 disease.  
 
Discussion 
 
Our study represents the deepest humoral profile of antibodies against canonical specificities and 
the first comprehensive profile of antibodies directed against non-canonical antigens as well as 
those directed against eHCoV antigens, in the context of severe COVID-19 disease. Critically, we 
found that multivariate models incorporating antibody responses against canonical antigens, and 
against non-canonical antigens were independently, equally discriminative of outcome. This 
demonstrates the importance of looking beyond the Spike and other canonical antigens (Zohar et 
al., 2020) and studying antibody profiles against these underexplored non-canonical specificities. 
Interestingly, similar molecular features of antibodies for both canonical and non-canonical 
specificities drove outcome bifurcation with survivors having more IgA and IgG3 isotypes, as well 
as higher antibody galactosylation. Importantly, these results demonstrate that within severe 
COVID-19 patients, outcome bifurcation can be accurately predicted at ICU admission based on 
IgA and IgG3 antibodies against canonical or non-canonical specificities. Notably, even with a 
small ICU cohort (n=21), we were able to obtain predictive models that were robust to cross-
validation and permutation testing. This was made possible by deep high-dimensional Ab profiles 
corresponding with >100 Ab features/subject and the use of regularization-based machine 
learning to avoid overfitting (Ackerman et al., 2018; Das et al., 2020; Lu et al., 2020a; Sadanand 
et al., 2018; Suscovich et al., 2020).    
 
Interestingly, pre-pandemic healthy controls were found to have humoral responses against 
SARS-CoV2 proteins with high sequence similarity with endemic coronaviruses, particularly 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2022.01.24.477545doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477545
http://creativecommons.org/licenses/by-nc-nd/4.0/


nsp13.  Notably, higher levels of IgA antibodies against nsp13 were found to be correlated with 
protection in severe COVID-19. Humoral profiles of eHCoV antibodies were also predictive of 
outcome bifurcation, with higher levels of IgA and IgG3 antibodies against OC43 and NL63 S 
being associated with survival.  
 
Taken together, we demonstrate that antibodies targeting a range of specificities beyond just 
dominant and subdominant epitopes of the S protein, are predictive of outcome in severe COVID-
19 disease. Further, in the context of a polyclonal response, examining the qualitative biophysical 
properties of these antibodies against non-canonical antigens i.e., not just IgG titers, but 
isotype/subclass composition, binding to Fc receptors and glycosylation profiles, which are all 
known to dictate Ab function, provides important discriminating features. While previous studies 
have focused solely on a small subset of SARS-CoV2 antigens, our study provides the first 
concrete evidence that that antibody responses against different subsets of antigens (canonical, 
non-canonical and endemic) are independently and equally discriminative of outcome. It has been 
speculated that higher antibody titers, especially against non-neutralizing targets, could be 
reflective of more severe disease and could also potentially be tied to ADE (Lee et al., 2020). 
Instead, our results suggest beneficial effects of IgA and IgG3 antibodies directed against 
canonical as well as non-canonical SARS-CoV-2 antigens. IgA antibodies function at mucosal 
surfaces and have previously been tied to vaccine-induced protection (Ackerman et al., 2018) in 
preventing death in severe COVID-19. Additionally, IgG3 is known to be a particularly potent 
inducer of antibody effector functions via higher affinity association with FcRs. Our findings 
suggest that class-switching to IgA and IgG3 isotypes directed not only at canonical but also non-
canonical specificities may be important contributors to favorable outcomes in severe COVID-19. 
Further, complementary to earlier findings of aberrant glycosylation, specifically afucosylation, of 
S-specific Abs being correlated to disease severity (Larsen et al., 2021), we find here that 
differential glycosylation, specifically higher galactosylation, of Abs specific to both canonical and 
non-canonical antigens is associated with survival in severe COVID-19. 
 
While there has been speculation regarding the roles of cross-reactive B and T cells as well as 
antibodies in driving outcome bifurcation for COVID-19 (Anderson et al., 2021; Le Bert et al., 
2020; Shrock et al., 2020; (Loyal et al., 2021), our study identifies for the first time a range of 
multivariate humoral profiles of antibodies that can be robustly associated with outcome 
bifurcation in severe COVID-19. A recent study reported that not everyone exposed to SARS-
CoV2 necessarily develops seropositivity, suggesting that some individuals clear sub-clinical 
infections (Swadling et al., 2021). In these individuals, pre-existing nsp13-specific T cells are 
expanded (Swadling et al., 2021). These findings strongly complement those described herein 
and collectively suggest that pre-existing nsp13-specific B cell responses are also likely boosted 
on exposure to SARS-CoV2 and in turn associate with favorable outcomes. Overall, our findings 
have major implications in the context of elucidating immunological states and associated 
intervention modalities in severe COVID-19. Our characterization of the protective nature of 
antibody responses against a broad panel of antigens has implications for the formulation of 
improved SARS-COV-2 as well as pan-coronavirus vaccines. 
 
Methods 
 
Sample preparation 
 
Serum was obtained as described earlier and stored at -80C until used. Upon thawing before use, 
all samples were transferred to a 96 well U-bottom plate at an appropriate dilution for the intended 
probe (1:500 for IgG2, IgG3, IgG4, IgA, IgA1, IgA2, IgM, RCA I, SNA, C1Q & 1:2000 for IgG, 
IgG1, FcRs). 
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Multiplexed Antigen-Specific Antibody Profiling  
 
A multiplexed antigen-specific Ab profiling workflow was developed based on a protocol reported 
earlier (Brown et al., 2017). Briefly, pooled barcoded antigen-coupled beads were incubated with 
samples and then with fluorescently labelled probes. Following set of probes were used: 1) 
Antigen-specific subclass/isotype titers were measured using PE-labeled mouse-anti-human 
IgG1, IgG2, IgG3, IgG4, total IgG, IgA1, IgA2, IgM. 2) Antigen FcR/complement binding profiles 
were measured using biotinylated FcRs (FcR1, FcR2A, FcR2B, FcR3A, FcR3B) tetramerized with 
streptavidin-PE or PE-labeled complement (C1q). 3) Antigen-specific glycosylation profiles were 
measured using lectin-binding using PE-labeled lectins (SNA for sialic acid, RCA1 for 
galactosylation). 
 
All antigens including SARS-CoV-2 Antigens (Spike [ImmuneTech IT-002-032p], Spike RBD 
[ImmuneTech IT-002-036p], Nucleocapsid [SinoBiological IT-002-036p], Orf3a [Bioworld 
NCP0026P], ORF8 [Bioworld NCP0025P], NSP3 [mybiosource MBS156024], NSP13 
[mybiosource MBS2563852], M protein [mybiosource MBS156019]) and eHCoV antigens (HCoV-
OC43 [SinoBiological 40607-V08B], HCoV-NL63 [SinoBiological 40604-V08B]) were coupled to 
Luminex MagPlex magnetic microsphere beads of different regions at a ratio of about 8ug of 
antigen per million beads using an EDC-NHS chemistry and then blocked with and stored until 
use in storage buffer (1XPBS, 0.1% BSA, 0.1% Tween) at 4C. PE coupled anti-Igs (Southern 
Biotech) were diluted from the stock vials to a concentration of 1ug/ml in 1XPBS. Biotinylated 
FcRs (Acro Biosystems) were reacted with Streptavidin-PE (Thermo Fisher) at a 4:1 molar ratio 
for 20 mins and then diluted to a concentration of 1ug/ml in 1XPBS. Rhodamine/Cy-3 coupled 
lectins (Vector Labs) were diluted in lectin buffer to a concentration of 20ug/ml. 
 
Conjugated beads were diluted in assay buffer (1XPBS, 0.1% BSA) to make a working bead 
solution and added at a 1:9 sample:bead volume ratio in wells of a 96 well flat bottom plate, and 
incubated for 1 hour. Sample-bound beads were then washed twice in a wash buffer (PBS, 0.1% 
Tween) using a magnetic plate separator and resuspended in the appropriate probe buffer. 
Diluted probe solution was then added to the wells at a1:9 bead:probe volume ratio and incubated 
for 30 mins. All incubation steps were performed at room temperature on a plate shaker. Probe-
bound beads were then washed twice with wash buffer and resuspended in Luminex MagPix 
drive fluid before reading on a Luminex MagPix instrument. All assays were performed in 
duplicate and a correlation coefficient of R2>0.8 was verified for technical replicability. An 
arithmetic mean of the two measured MFI values from the replicates is then used as the readout. 
 
Machine learning models to discriminate by outcome using humoral responses against different 
specificities (canonical, non-canonical and endemic CoV antigens) 
 
Data was pre-processed to remove features with low values (mean MFI < 50). This was done in 
an unsupervised setting to avoid any biases. All features were centered and scaled (i.e., z-scored) 
to have a mean 0 and standard deviation 1. 
We used a two-step machine learning model to identify a minimal set of predictive biomarkers of 
outcome. This comprised feature selection on the high-dimensional data (features >> number of 
subjects) using the least absolute shrinkage and selection operator (LASSO)(Tibshirani, 1996), 
followed by classification using the down-selected features using support vector 
machines(SVM)(Breiman, 2001). The use of LASSO (L1 regularization) helps prevent over-fitting 
on high dimensional data. This two-step procedure is similar to what has been successfully used 
earlier for high-dimensional humoral immune measurements(Ackerman et al., 2018; Lu et al., 
2020b; Sadanand et al., 2018). 
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The performance of the models were evaluated in a rigorous 10-fold cross validation framework, 
and the significance of the models was quantified using permutation testing(Ojala and Garriga, 
2010). The overall framework is analogous to what has been previously described(Ackerman et 
al., 2018; Lu et al., 2020b; Sadanand et al., 2018). Briefly, the dataset was split into 10 subsets – 
9 subsets are used for training while the 10th one is used for testing. Each subset served as the 
test set once, therefore each individual was in the test fold exactly once for each cross-validation 
run. For each test fold, LASSO-based feature selection was performed using the nine training 
folds. The coefficient for the LASSO penalty term (i.e., lambda for regularization) was determined 
via a second internal cross-validation using only the fold-specific training dataset. A fold-specific 
support vector machine (SVM) model was built using the LASSO-selected features and training 
data for that fold. This fold-specific classifier was subsequently used to predict the labels for the 
individuals in the test set for that fold. This process was repeated for each of the ten folds to 
generate a set of predicted outcomes for each individual. This was then compared to the true set 
of outcome labels to calculate a classification accuracy for that cross-validation replicate. We 
performed 100 independent ten-fold cross-validation replicates, to account for different ways in 
which the training and test folds can be split. This is a stringent and appropriate way of performing 
cross-validation, as both steps involved in the model (feature selection and subsequent 
classification using the selected features) are performed in a cross-validation setting with data 
held out. The significance of model performance was evaluated using permutation testing(Ojala 
and Garriga, 2010), by randomly shuffling the data with respect to the arm labels, within the cross-
validation framework described above (i.e., a cross-validation framework matched to the actual 
model). To visualize the modules selected by the LASSO model on the whole dataset, we applied 
a partial least squares discriminant analysis (PLSDA). PLSDA is a supervised dimension 
reduction method, which transforms a new set of features that are linear combination of the 
original features and then fits a linear model via least squares using these new features. We 
carried out separate PLSDA analyses using down-selected features from applying LASSO on the 
whole dataset. PLSDA was applied for both 2 groups (between survivors and non-survivors) and 
3 groups (among survivors, non-survivors, and healthy controls). 
We analyzed the canonical, non-canonical and non-SARS-CoV2 specificities separately. We start 
with humoral responses for canonical (S/RBD/N) antigenic specificities to generate multivariate 
machine learning model for outcome (survivors vs non-survivors) bifurcation. We applied a similar 
approach on the non-canonical (orf3a/orf8/nsp3/nsp13/M) antigenic specificities for outcome 
bifurcation. We then combined both the canonical and non-canonical antigens and generate 
multivariate machine learning for outcome bifurcation between survivors and non-survivors. Then 
we also bring in the healthy controls along with the survivors and non-survivors and generate 
multivariate machine learning model for outcome prediction (3-way). We also built a multivariate 
machine learning model using endemic coronavirus antigenic specificities. 
 
Validation-cohort 
 
To validate the robustness of biomarkers that we found in the Pittsburgh cohort, we only selected 
the canonical antigenic specificities that were common with the Boston cohort. Then we trained 
the machine learning model using only these common features of Pittsburgh cohort. The model 
(both feature selection and model fitting) was performed using only our cohort (Pittsburgh), and 
the model generation process was completely blinded to this second orthogonal validation cohort 
(Boston), ensuring that this is a true cross-prediction. Then we tested the performance of both the 
Pittsburgh and Boston cohort (common antigenic specificities) learned using the Pittsburgh cohort 
only. ROC curves for the LASSO selected features trained on both the cohort to compare and 
validate the performances. 
 
PLS-DA based visualization using IgA/IgG and IgA/IgM ratios 
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We performed a post-hoc greedy feature selection based on the ratios of IgA to IgG and IgA to 
IgM. We took the Spike, RBD, and Orf8 specificities for the ratios. We then performed a PLSDA 
on the selected ratios and to exhibit the discriminating power of these feature-ratios between 
survivors and non-survivors. 
 
Implementation of LASSO and PLS 
 
LASSO was implemented using glmnet in R. If no feature was selected by LASSO in a specific 
fold for a given replicate, we randomly selected 5 features (only for that fold in that replicate) and 
use an ordinary least squares estimator. PLS was implemented using the plsr function in R. 
 
 
 
Figure Legends 
 
Figure 1 – Multivariate antibody responses against canonical antigens are predictive of severe 
COVID-19 outcomes 
 
A. Conceptual overview of SARS-CoV-2 antibody profiling platform characterized and quantified 
serum Abs directed against canonical/non-canonical antigens. 
B. Polar plots illustrating measured Ab features against canonical Ag specificities – Spike, Spike 
RBD, and Nucleocapsid 
C. Performance of LASSO model to discriminate between survivors and non-survivors built using 
deep humoral profiles against canonical Ag specificities. Model performance is measured in a k-
fold cross-validation framework with permutation testing. Actual denotes the performance of the 
model, built on real data. Permuted denotes performance of the model on shuffled data in a 
matched cross-validation framework (negative control). 
D. LASSO-selected features from model built using deep humoral profiles against canonical Ag 
specificities. 
E. PLS-DA using only the LASSO-selected features from the model in (D) to discriminate between 
survivors and non-survivors. 
F. Performance of the model (built using the Pitt cohort) on an orthogonal (MGH, Boston) cohort. 
 
Figure 2 – Multivariate antibody responses against non-canonical antigens independently 
predict severe COVID-19 outcomes 
 
A. Polar plots illustrating measured antibody responses against non-canonical antigenic 
specificities orf3a, orf8, nsp3, nps13 and M. 
B. Performance of LASSO model to discriminate between survivors and non-survivors built using 
deep humoral profiles against non-canonical Ag specificities. Model performance is measured in 
a k-fold cross-validation framework with permutation testing. Actual denotes the performance of 
the model, built on real data. Permuted denotes performance of the model on shuffled data in a 
matched cross-validation framework (negative control). 
C. LASSO-selected features from model built using deep humoral profiles against non-canonical 
Ag specificities. 
D. PLS-DA using only the LASSO-selected features from the model in (C) to discriminate between 
survivors and non-survivors. 
E. Performance of LASSO model to discriminate between survivors and non-survivors built 
using deep humoral profiles against canonical and non-canonical Ag specificities. Model 
performance is measured in a k-fold cross-validation framework with permutation testing. Actual 
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denotes the performance of the model, built on real data. Permuted denotes performance of the 
model on shuffled data in a matched cross-validation framework (negative control). 
F. LASSO-selected features from combined canonical and non-canonical antigenic specificities. 
G. Post-hoc feature selection based on the ratios of IgA to IgG and IgA to IgM. 
H. PLS-DA using only the ratios of IgA to IgG and IgA to IgM from the model in (G) to 
discriminate between survivors and non-survivors. 
 
Figure 3 – Antibodies directed against endemic CoV antigens as predictors of severe COVID-19 
outcome 
 
A. Performance of LASSO model to discriminate between survivors, non-survivors and healthy 
controls built using deep humoral profiles against canonical and non-canonical Ag specificities. 
Model performance (3-way) is measured in a k-fold cross-validation framework with permutation 
testing. Actual denotes the performance of the model, built on real data. Permuted denotes 
performance of the model on shuffled data in a matched cross-validation framework (negative 
control). 
B. LASSO-selected features from model built using deep humoral profiles against canonical and 
non-canonical Ag specificities.  
C. PLS-DA using only the LASSO-selected features from the model in (B) to discriminate between 
healthy controls, survivors, and non-survivors. 
D. Sequence similarities of SARS CoV2 Spike and NSP13 with corresponding homologs in OC43, 
NL63, HKU1, 229E, SARSCoV, and MERS CoV. 
E. Performance of LASSO model to discriminate between survivors, non-survivors and healthy 
controls built using deep humoral profiles against non-SARS-CoV2 Ag specificities. Model 
performance is measured in a k-fold cross-validation framework with permutation testing for 
outcome prediction between survivors, non-survivors, and healthy controls (3-way). Actual 
denotes the performance of the model, built on real data. Permuted denotes performance of the 
model on shuffled data in a matched cross-validation framework (negative control). 
F. LASSO-selected features from model built using deep humoral profiles against non-SARS-
CoV2 Ag specificities. 
G. PLS-DA using only the LASSO-selected features from the model in (F) to discriminate 
between healthy controls, survivors, and non-survivors. 
 
 
Supplementary Figure 1 
 
A-O. Dot plots showing deep humoral profiles against canonical (S/RBD/N) Ag specificities for 
survivors, non-survivors, and healthy controls (A-IgG, B-IgG1, C-IgG3, D-IgA, E-IgA1, F-IgA2, G-
IgM, H-Galactose, I-Sialic acid, J-FcR2a, K-FcR3a, L-FcR3b, M-FcR1, N-FcR2b, O-C1Q. 
 
P. Visualizing distribution of survivors and non-survivors for IgA.Spike and IgA2.Spike.RBD. 
 
Supplementary Figure 2 
 
A-O. Dot plots showing deep humoral profiles against non-canonical (orf3a/orf8/nsp3/nsp13/M) 
Ag specificities for survivors, non-survivors, and healthy controls (A-IgG, B-IgG1, C-IgG3, D-IgA, 
E-IgA1, F-IgA2, G-IgM, H-Galactose, I-Sialic acid, J-FcR2a, K-FcR3a, L-FcR3b, M-FcR1, N-
FcR2b, O-C1Q. 
 
P. LASSO-selected features from model built using deep humoral profiles against canonical and 
non-canonical Ag specificities. 
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Supplementary Figure 3 
 
A-O. Dot plots showing deep humoral profiles against non-SARS-CoV2 (HCoVOC43, 
HCoVNL63) Ag specificities for survivors, non-survivors, and healthy controls (A-IgG, B-IgG1, C-
IgG3, D-IgA, E-IgA1, F-IgA2, G-IgM, H-Galactose, I-Sialic acid, J-FcR2a, K-FcR3a, L-FcR3b, M-
FcR1, N-FcR2b, O-C1Q. 
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