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ABSTRACT 24 
Emerging evidence indicates that the gut microbiome contributes to endurance exercise performance, 25 
but the extent of their functional and metabolic potential remains unknown. Using elite endurance 26 
horses as a model system for exercise responsiveness, we built the first equine gut microbial gene 27 
catalog comprising more than 25 million non-redundant genes representing 4,696 genera spanning 28 
95 phyla. The unprecedented resolution unrevealed functional pathways relevant for both the 29 
structure of the microbiome and the host health and recovered 369 novel metagenome-assembled 30 
bacterial genomes, providing useful reference for future studies. Integration of microbial and host 31 
omic datasets suggested that microbiomes harboring rare species were functionally dissimilar from 32 
those enriched in Lachnospiraceae taxa. Moreover, they offered expanded metabolic pathways to 33 
fine-tune the cardiovascular capacity through mitochondria-mediated mechanisms. The results 34 
identify an associative link between horse endurance capability and its microbiome gene function, 35 
laying the basis for nutritional interventions that could benefit endurance athletes.  36 
 37 
Keywords: athletic performance, endurance exercise, holo-omics, horse, microbial gene catalog 38 
 39 
INTRODUCTION 40 
Endurance athletes undergo prolonged cardiovascular exercise and withstand physiological 41 
stress that disrupts the body's homeostasis. This, in turn, overwhelms organs and the system's 42 
normal function 1,2. The ability to run for long distances at high speed is scarcely distributed 43 
across land mammals. Through years of selective breeding, Arabian horses have gained built-44 
in biological mechanisms to run at more than 160 km at 20 km/h, an effort comparable to that 45 
of marathon or ultra-marathon runners 3. The effective body heat dissipation and the ability to 46 
endure extreme exercise enable this breed to have outstanding endurance capabilities 4.  47 
 48 
Endurance exercise performance is primarily limited by cardiovascular fitness, exercise 49 
economy and the ability to sustain work without either excessive blood lactate levels or 50 
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fatigue 5. The athletes with the greatest improved cardiovascular fitness and fatigue resistance 51 
often succeed in competitions 5.  52 
 53 
Undoubtedly, endurance exercise performance entails complex multifactorial processes 54 
whose mechanisms are still not fully understood. New evidence has shown that the gut 55 
microbiome and its associated metabolites impact host athletic performance during endurance 56 
racing in humans 6,7. The gut microbiome produces thousands of unique small molecules that 57 
can potentially affect many aspects of physiology such as regulating immunity, hydration and 58 
redox reactions as well as shaping the gut-brain axis that affects fatigue and stress perception 59 
2,8–12. These metabolites can act locally in the intestine or can accumulate up to millimolar 60 
concentrations in different body fluids 13. Higher microbial diversity has been correlated with 61 
improved cardiorespiratory fitness and performance in marathon runners regardless of the 62 
sex, age, body mass index and diet 14. Other reports have also found significant associations 63 
between the cardiovascular capacity, as assessed by the maximum oxygen consumption and 64 
the Firmicutes-Bacteroidetes ratio 15 or reduced levels of fecal Eubacterium spp. 16. Deeper 65 
characterization of the links between athletic performance and the gut microbiome revealed 66 
that the single bacterium Veillonella atypica is required to enhance athletic performance in 67 
treadmill mice experiments 6,7.  68 
 69 
While current knowledge of the relationships between gut microbiome and endurance 70 
performance are in their infancy in humans, controlling for known confounding factors (such 71 
as diet, training loads, medications, occurring illnesses, environment and genetic background) 72 
has proven difficult. In this respect, Arabian horses emerge as a suitable in vivo model for 73 
characterizing the microbiome adaptations to endurance exercise due to their natural aptitude 74 
for athletic performance, the homogeneity of their genetic and environmental backgrounds 75 
and the relative ease of sampling during endurance races. Furthermore, recent findings 76 
suggest that gut microbial metabolites in endurance horses act as mitochondria function 77 
regulators that prevent hypoglycemia 17, which is the limiting factor for fatigue onset and 78 
thus, performance.  79 
Despite these findings, if and how gut microbiome functions are responsible for better 80 
adaptations to fatigue resistance, as well as success in athletic performances are not well 81 
understood. To address this gap, we have built the first gene catalog of the equine gut 82 
microbiome in elite endurance horses. Our results expanded the current representation of the 83 
equine gut microbiome with more than 25 millions of non-redundant genes identified and 369 84 
new metagenome-assembled genomes (MAGs). Moreover, by using the holo-omic approach 85 
that incorporates multi-omic data from host and microbiome domains we have shown that the 86 
gut microbiome composition and functions and the mitochondria activity are key 87 
determinants for cardiovascular fitness. Rare microbes and their pool of genetic resources 88 
likely offered metabolic pathways that fine-tuned mitochondrial function and consequently 89 
confer enhanced cardiovascular capacity compared to microbial ecosystems with reduced 90 
diversity but higher abundance of the Lachnospiraceae family.  91 
 92 
RESULTS 93 
 94 
Building the first horse gut microbiome gene catalog 95 
We constructed a microbial gene catalogue from the feces of 11 highly trained endurance 96 
horses (Suppl Table S1). After quality filtering and host sequences decontamination, 1,124 97 
millions of high-quality clean paired reads were available, with an average sequencing depth 98 
per sample similar to that used for the construction of chicken 18 and bovine 19 gut gene 99 
catalog (n = of 102 millions of paired reads per sample on average; Suppl Table S2). These 100 
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data were de novo assembled (total assembly size of 21.68 Gb; Suppl Fig S1a) to build a non-101 
redundant gene catalog of 25,250,066 genes with an average length of 618 bp (Suppl Table 102 
S2 and Fig S1a-f). Individual horses harbored around half of these genes (n = 11,809,713 103 
genes) on average (Fig 1a).  104 
 105 
Taxonomic assignments were made from clean read pairs searching for maximum exact 106 
matches between translated sequences and a reference database 20. This approach yielded an 107 
annotation for 61% of all sequences (Fig 1b) and revealed a diverse community of 95 phyla 108 
encompassing 1,110 families and 4,696 genera. Bacteria (95%) defined most of the 109 
assemblage in terms of abundance and diversity, followed by a handful of eukaryotes 110 
(3.27%), archaea (1.14%) and viruses (0.15%). At the phylum level, the bacterial phyla 111 
Firmicutes (44.3%) and Bacteroidetes (26.5%) greatly outnumbered Proteobacteria (7.5%), 112 
Spirochaetes (6.2%), Actinobacteria (4.6%), Euryarchaeota (1.1%), Ciliophora (0.90%) and 113 
Ascomycota (0.90%; Fig 1c). Consistent with a recent metagenomic study in the wild 114 
Przewalski’s horses 21, Ascomycota and Basidiomycota were among the top Eukaryota 115 
phylum in the gut.  116 
 117 
We then identified the most dominant microbial phylotypes. Dominant phylotypes (top 25% 118 
most common phylotypes sorted by their abundance and found in more than half of the 119 
samples) accounted for ~94% of the total annotated sequences on average and were 120 
represented by 1,146 unique genera (Suppl Table S3). The great majority of these dominant 121 
microbes (85%) closely matched the most abundant bacterial genera recovered using 16S 122 
rRNA based prediction (relative abundance > 0.1%; Suppl Table S4 and Fig S1g). The core 123 
microbiome (Fig 1d) was defined by a narrow section of the phylomes (less than 0.15% of 124 
the overall microbial genera) that were highly abundant (38 to 54% of the sequences). Along 125 
with Bacteroides (6.66% ± 0.57) and Prevotella (9.41% ± 1.54), which have been found to be 126 
dominant genera in the gut of marathon and triathlon athletes, respectively 22, this core 127 
microbiome included species from Fibrobacter (9.44% ± 3.71), Treponema (5.96% ± 1.59), 128 
Clostridium (4.91% ± 0.49) and Ruminococcus (4.04% ± 0.79). All of them are in full 129 
agreement with the core microbiome of endurance horses inferred from 16S rRNA-based 130 
sequencing 23–26. 131 
  132 
To gain functional insights, genes and functional modules were annotated using the non-133 
supervised orthologous groups (EggNOG) database. We identified a total of 12,060 KEGG 134 
orthologous groups (KOs) and 137 different carbohydrate-active enzymes (CAZymes), which 135 
encompassed 44% (n = 11,132,404) and 3.38% (n = 665,235) of the gene catalog, 136 
respectively. The majority of KOs had functions related to essential microbial gut functions, 137 
including genetic information processing and signaling, carbohydrate and amino acid 138 
metabolism. However, we also identified a number of pathways (i.e., drug resistance, 139 
biosynthesis of secondary metabolites, endocrine system and neurodegenerative diseases) 140 
relevant for both the structure of the microbiome and the host health (Suppl Fig S2a). Most of 141 
the CAZYmes (85.4%; n = 568,462 genes) pertained to glycoside hydrolase (GH) and 142 
polysaccharide lyases (PL) families, highlighting the indispensable role of gut metagenome in 143 
complex dietary glycans metabolism (Suppl Fig S2b and Table S5).  144 
 145 
Taking advantage of this deep shot-gun sequencing of the microbiome, we investigated the 146 
presence of antimicrobial resistance (AMR) genes. Considered horses harbored 57 clusters of 147 
AMR genes representing the major antibiotic classes, including tetracycline (n = 20), 148 
aminoglycosides (n = 20) and macrolides, lincosamides and streptogramins (MLS, n = 9; Fig 149 
1e; Suppl Table S6). The overall AMR gene composition was similar to those of human 27 150 
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and livestock species such as cattle, pig and chicken, with a high abundance and prevalence 151 
of the Firmicutes and Bacteroidetes-associated tetracyclines resistance genes tet(W), tet(Q), 152 
tet(O), tet(40) and MLS resistance genes lnu(C) and mef(A) 28–30. Of note, we detected the 153 
extended spectrum of β-lactamase (ESBL) blaACI-1 in 10 of the 11 horses. This AMR gene, 154 
found in several Negativicutes (Gram negative Firmicutes), is only rarely detected in animal 155 
or human gut microbiomes 31. Such unusual prevalence is likely linked to the presence of two 156 
Negativicutes genera, Phascolarctobacterium and Selenomonas, in the core microbiome of 157 
the studied horses (Fig 1d). 158 
 159 
Lastly, a set of 372 non-redundant prokaryotic MAGs were constructed from the 160 
metagenomic sequencing at a threshold of > 50% completeness and contamination ≤ 10% 161 
(Suppl Table S7). Among these, 121 MAGs were estimated to be near complete; MAGs in 162 
this subset had minimal contamination (≤ 5%), high completeness (> 95%; Suppl Table S7). 163 
This MAG repertoire was assigned to 361 bacteria and 11 archaea, involving bacteria from 164 
the Bacteroidetes and Firmicutes phyla, followed by Spirochaetes, Euryarchaeota, 165 
Verrucomicrobia, Fibrobacteres and Cyanobacteria phylum (Suppl Fig S3ab). The abundance 166 
of genomes pertaining to Cyanobacteria, Proteobacteria and Verrucomicrobia phylum 167 
showed high rates of divergence between hosts (Suppl Fig S3c). This trend was bolstered at 168 
the lower taxonomic level, except for MAGs assigned to Fibrobacter spp. (Suppl Fig S3d).  169 
Of note, most MAGs (n = 369) have never been described before in horses to date 32,33, 170 
increasing the mappability of metagenomes and expanding our understanding of the horse 171 
microbiomes. 172 
 173 
Altogether, the building of the gut gene catalog and MAGs repertoire expands current 174 
understanding of the equine gut microbiome. Its complexity and the abundance of genes 175 
associated with complex carbohydrate fermentation underscores the adaptation to a terrestrial 176 
herbivorous lifestyle while reminding the pervasive presence of AMR genes. Additionally, 177 
the identification of metagenome functional capacity primed for host health likely reflected 178 
the significant energy demands and tissue adaptations that occur during endurance exercise.  179 
 180 
Basal gut metagenome composition discriminates cardiovascular fitness  181 
Building on the dominant microbial phylotypes, we investigated whether diversity, 182 
compositional and functional differences could classify samples according to athletic 183 
performance. First, the ordination of individual horse metagenomes using a non-metric 184 
multidimensional scaling of the dominant phylotypes identified two distinct groups of 185 
samples that recapitulated variation along the first axis (Fig 2a). A similar pattern was 186 
obtained with a principal coordinate analysis (PCoA, Suppl Fig S4a) and the two groups were 187 
also supported by permutational analysis of variance (PerMANOVA; p = 0.01, R2 = 0.3715). 188 
Cluster 1 (n = 3 horses) was represented by multiple taxa, involving ciliophora, methanogenic 189 
archaea as well as rare bacterial species from the Proteobacteria and Verrucomicrobia phylum 190 
(Fig 2b-c) and exhibited higher α-diversity (Shannon and inverse Simpson indices; p = 191 
0.0134, Mann-Whitney U test, Fig 2d-e) despite the small sample size considered. In contrast 192 
to the overwhelming diversity observed in cluster 1, a skewed species abundance distribution, 193 
with predominance of phylotypes from the Firmicutes phylum (mainly Lachnospiraceae 194 
taxa) and Fibrobacter and Treponema genera defined cluster 2. Similarly, the sample 195 
distribution based on KOs and CAZymes profiles echoed that of the dominant phylotypes 196 
composition (Suppl Fig S4b-c, respectively). 197 
 198 
The macronutrient intake was not statistically different between horses from the two clusters 199 
(p > 0.05; Suppl Table S1). Therefore, we next tested the extent to which any horse 200 
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physiological, metabolic or performance indicators best captured the distributions of 201 
microbial taxa. Host-centered omic and phenomics data, including transcriptomics, 202 
metabolomics, acylcarnitines and blood biochemical assay profiles as well as cardiovascular 203 
fitness parameters were used (Suppl Tables S8-S11, respectively). The cardiovascular fitness, 204 
a composite of post-exercise heart rate, cardiac recovery time and average speed during the 205 
race, was the principal contributor to the metagenome heterogeneity (envfit, R2 = 0.9192, 206 
adjusted p = 0.005; Suppl Table S12), outperforming the expression of several mitochondrial 207 
genes (Fig 2f-g). This composite parameter aggregated 39.64% of fecal microbiome 208 
community variation. Horses from cluster 1 had significantly higher cardiovascular fitness 209 
relative to that of cluster 2 members (p = 0.0484, Wilcoxon rank-sum test, Fig 2h) without 210 
incurring dramatic increases in blood lactate concentration (p = 0.9212, Wilcoxon rank-sum 211 
test), a proxy for glycolytic stress and disturbance in cellular homeostasis 1. The results hence 212 
indicated that - under the same prevailing environmental conditions and nutrient availability - 213 
individuals harboring cluster 1 type communities achieved improved cardiovascular capacity, 214 
that is lower post-exercise heart rates and faster cardiac recovery time at the veterinary 215 
inspection compared to individuals with cluster 2 type microbial communities. The cluster 2 216 
individuals were harboring a less diverse gut microbiota with only a few rare species 217 
involved. 218 
 219 
An independent validation of findings confirms that Lachnospiraceae bacteria was 220 
associated with cardiovascular fitness and in highly trained equine athletes 221 
To further confirm the association between the cardiovascular fitness and the gut microbiome 222 
composition found in the 11 elite horses based on their metagenome data, we analyzed the 223 
16S rRNA sequence data from the gut microbiota of 22 independent highly trained endurance 224 
horses (Suppl Table S13 and S14). As with the study cohort, the microorganisms’ community 225 
profiles could be distinguished based on the horse’s cardiovascular fitness (adjusted p = 0.05; 226 
pairwise comparisons using PerMANOVA on a Bray-Curtis distance matrix, Suppl Fig S5a-227 
c). Individuals with lower cardiovascular fitness harbored a few players belonging to 228 
Firmicutes phylum with higher abundance (adjusted p = 0.024, Tukey’s Honest Significant 229 
test; Suppl Fig S5d), namely Clostridiales, Erysipelotrichaceae and butyrate-producing 230 
bacteria from the Lachnospiraceae family. For instance, taxa such as Barnesiella, Blautia, 231 
Butyrivibrio, Coprococcus, Dorea, Desulfovibrio, Hespellia, Lachnospira, Myroides and L-232 
Ruminococcus (all pertaining to the Lachnospiraceae family) were commonly found in less 233 
fit athletes in both discovery and validation sets. Contrastingly, individuals with improved 234 
cardiovascular fitness harbored a multitude of minor players, as observed in the discovery set. 235 
Although larger cohorts are required to clearly validate the relationship between athletic 236 
performance and gut microbiome, these data do, however, confirm the association between 237 
Firmicutes (notably Lachnospiraceae taxa) and cardiovascular fitness.  238 
 239 
Holo-omics: rare microbiomes with lower abundances of Lachnospiraceae taxa 240 
associated with improved cardiovascular fitness and points toward enhanced 241 
mitochondrial capacity  242 
To characterize the microbiome-host crosstalk and identify molecular differences between the 243 
two types of cardiovascular outcomes in elite horses, we integrated multi-omic datasets from 244 
host and associated gut microorganisms through a multivariate matrix factorization approach 245 
using DIABLO (Data Integration Analysis for Biomarker discovery using Latent 246 
Components). To achieve this integrated perspective coined as holo-omics34, we combined 247 
pair host-centered omic and phenomics data with the shotgun metagenomics, fecal SCFAs 248 
composition and the concentrations of bacteria, anaerobic fungi and protozoa. 249 
 250 
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First, we observed strong covariation between the dominant phylotypes and the genetic 251 
functionalities derived from both KOs (r2 = 0.99) and CAZymes (r2 = 0.98). This clear 252 
correlation supports the added value of microbiome functionalities for status prediction rather 253 
than composition alone, as noted previously in human athletes 14,35. Concomitantly, the 254 
microbiome composition highly covaried with the mitochondrial transcriptome (r2 > 0.8) and 255 
the loads of fecal bacteria, anaerobic fungi and protozoa (r2 > 0.8; Fig 3a). Second, to add 256 
biological meaning to the predicted model, we investigated the relationship between the 257 
DIABLO-selected features with highest covariation (Suppl Fig S6a-c). The first latent 258 
variable of the predicted model indicated that athletes with higher cardiovascular fitness 259 
harbored a wide range of multi-kingdom and relatively low abundant species (Fig 3b). It 260 
included the facultative bacterial predator Lysobacter36, the health-promoting Akkermansia, 261 
which resides in the mucus layer of the gut and has been already reported in elite athletes 39–262 
43, along with anaerobic fungi (Ophiocordyceps, Cryptococcus, Pseudogymnoascus, 263 
Trichoderma, Talaromyces), methanogens (Methanothermobacter, Methanothrix) and algae 264 
(Emiliania and Porphyra). Coupled with these rare yet highly active microbes, the first latent 265 
variable spanned CAZymes involved in the extraction of energy from recalcitrant 266 
polysaccharides and endogenous host glycans (GH99, GT10; Fig 3c). Conversely, less fit 267 
horses harbored higher amounts of core species, that is, dominant Firmicutes taxa 268 
(Clostridiales, Erysipelotrichaceae and multiple members of the family Lachnospiraceae), 269 
Treponema and Prevotella. Paired to it, the latter were characterized by functionally 270 
redundant enzymes with respect to lignocellulosic carbohydrate catabolizing machinery 271 
(GH8, GT36, GH51, GH28, GT2, GH5, GH3; Fig 3c). Although intestinal microbiota 272 
members belonging to the Lachnospiraceae family are known to produce significant amounts 273 
of acetate and butyrate 37, none of these SCFA were significantly increased in the feces or 274 
plasma of these athletes (p > 0.05) and the fecal pH remained unchanged (Suppl Table S15).  275 
 276 
An impairment rather than improvement of metabolic flexibility in the less fit individuals was 277 
supported by the reduced expression of genes in β-oxidation (ECI1, SCP2, ACLY), the 278 
electron transport chain (TMEM242, NDFB4, TMEM126B, NDUFV3, NDUFA1, NDUFA10, 279 
SURF1, NDUFV1, DLD), Ca2+ translocation (PMPCA, VDAC2, PHB), protein (MRPL2, 280 
PPA1, MRPL49, MRPL17, VDAC2, TARS2, MRPL24, FBXL4, MRPS18C, PSTK), 281 
mitophagy (TOMM40) and mitochondrial biogenesis (SSBP1, ACSS2) (Suppl Fig S6d). The 282 
fact that adipose tissue lipolysis likely exceeded uptake and oxidation mitochondrial capacity 283 
in less fit individuals was confirmed by reduced concentrations of glucose (p = 0.0484, 284 
Wilcoxon rank-sum test), increased accumulation of long-chain acyl-carnitines (i.e., oleoyl 285 
carnitine, p = 0.0484; hydroxy oleoyl carnitine, p = 0.0242, Wilcoxon rank-sum test) and a 286 
tendency for augmented non-esterified fatty acids in plasma (p = 0.0848, Wilcoxon rank-sum 287 
test, see Suppl information). Additionally, less fit individuals showed depletion of 288 
metagenomic KOs involved in the mitochondrial biogenesis (K03593, K07152) and energy 289 
resilience (peroxisome proliferator-activated receptor (PPAR); K00029, K01596, K01897; 290 
see Suppl information). This could consequently decrease fatty acids oxidation but also 291 
increase glucose catabolism and progressively impede longer running times.  292 
 293 
It is worth noting that the ciliate protozoal biomass, at up to about 18% of the biomass (~109 294 
cells/g of stool), was representative of more fit individuals (Suppl Fig S6e). The main 295 
observed genera were Stentor, Stylonychia, Pramecium and Tetrahymensa, although their 296 
abundance and composition were much more variable than bacteria and their role is not well 297 
understood. 298 
 299 
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Altogether, less diverse microbial ecosystems dominated by few Firmicutes-derived phylum 300 
(mainly Lachnospiraceae) appear to set an upper-bound to the host metabolic response to 301 
exercise because of reduced mitochondrial energy production and biogenesis that ultimately 302 
constrain aerobic ATP production and extended cardiovascular fitness. 303 
 304 
Frenemies: Lachnospiraceae and rare phylotypes in athletes 305 
To gain insight into the co-occurrence and co-exclusion relationships between multi-kingdom 306 
microbial genera, including organizational features that may contribute to host adaptation to 307 
exertion, we applied an inverse covariance estimation for ecological association inference 308 
between microbiome (at the genus level) and its metabolic potential, regardless of the 309 
cardiovascular fitness. This approach identified 12 modules. Among them, we uncovered two 310 
extreme assortative modules which were characterized by strong within microbe-microbe or 311 
microbe-functions interactions (Fig 3d) and recalled the features identified using DIABLO. 312 
The first module was mostly characterized by bacterial interactions within commensals from 313 
the Firmicutes phylum (mostly from Lachnospiraceae family) sharing similar phylogenetic 314 
and functional properties, along with CAZy families that can target the substrate of plant 315 
structural polysaccharides (GH3, GH39, GH51, GH82, GH84). On the other hand, the second 316 
extreme network encompassed widespread yet minor bacteria from the Proteobacteria, 317 
Actinobacteria, Planctomycetes, Verrucomicrobia (including Akkermansia sp.) and rare 318 
phyla, together with CAZymes active on degradation of complex structure of plant cell-wall 319 
materials (GH28) and host glycans (GH20, GH18, GH33; Fig 3d).  320 
 321 
These results suggested again that ecosystems enriched in rare microorganisms are 322 
functionally different from Firmicutes dominant ones and cluster into segregated and distinct 323 
communities reflecting an ecological or evolutionary selective advantage to the microbiome. 324 
 325 
DISCUSSION 326 
The current study presents the first horse gut microbiome gene catalog and its association 327 
with endurance performance. We have generated a catalog representing over 25 million non-328 
redundant genes, expanding the current state of diversity for the equine gut microbiome. The 329 
building of this gene catalog has also widened twenty-fold the number of genera known to 330 
reside in the gastrointestinal tract of horses 12,38,39, uncovering an unprecedented number of 331 
prokaryota and eukaryota species mainly coming from the Ascomycota, Ciliophora, 332 
Basidiomycota, Chytridiomycota, Evosea and Apicomplexa phyla. Interestingly, this catalog 333 
captured a wide array of specific functions, suggesting that athlete gut microbiomes possess 334 
functional capacities primed for a greater ability to exploit energy from dietary, microbial and 335 
host resources and tissue repair as previously posited 22. Moreover, we identified 372 MAGs, 336 
most of which appear to be novel species. Although much of the gut microbiome likely 337 
represented unobserved diversity as our samples contained a significant proportion of 338 
unclassified sequences, the availability of so many novel genes and MAGs represents a 339 
significant step forward in understanding the composition and function of the horse gut 340 
microbiome.  341 
 342 
Along with fatigue resistance, cardiovascular fitness is a key indicator of endurance 343 
performance in human athletes 5. Comparably, in horses, the cardiovascular capacity based 344 
on heart rate, heart recovery time after exercise and average speed across the race is 345 
considered to be a good indicator of the degree of peripheral and central fatigue during 346 
endurance exercise and thus, athletic performance 40. In our cohort of elite horses, ~40% of 347 
the variation in the gut microbiome composition was accounted for by this parameter in 348 
absence of significant variation in dietary intake and across homogeneous genetic 349 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.24.477461doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477461
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

backgrounds. This finding was validated in an independent cohort of elite horses and echoes 350 
the association found between the cardiovascular fitness of marathon runners and their 351 
microbiota (~ 22% of explained variance 15). Taking a closer look, less fit individuals were 352 
associated with Firmicutes taxa and particularly, the dominance of tightly related 353 
Lachnospiraceae spp. which are able to break down plant polysaccharides easily available in 354 
the gut. While this family is abundant in the adult human 41 and horse gut microbiome 11,42,43; 355 
its abundance can be rapidly altered by changes in diet 44. Therefore, in light of these 356 
findings, nutritional interventions to reduce Lachnospiraceae taxa abundance and functions 357 
while creating more space for rare species will be likely required to increase microbiome 358 
diversity and athletic performance. Some possible nutritional interventions could include 359 
probiotics and dietary fibers with higher specificity (i.e., accessible and fermentable by a 360 
limited range of microbes). On the other hand, a recent study proposes that fecal microbiome 361 
transplantation 6 as a means to increase exercise performance in athletes, raising the 362 
possibility of fecal modulation as a way to gain an athletic advantage.  363 
 364 
Interestingly, the deep phenomics applied to these horses highlighted the microbiome-365 
mitochondria axis as one of the most effective ways to modulate the cardiovascular capacity. 366 
Metagenomic and mitochondrial genes involved in the mitochondrial biogenesis and energy 367 
resilience were all simultaneously upregulated in more fit individuals, suggesting improved 368 
exercise economy and fuel sparing during endurance. Additionally, their gut microbiomes, 369 
characterized by a greater α-diversity and a vast range of rare genera, showed highly 370 
functional capabilities, spanning many aspects of breaking down plant polysaccharides and 371 
animal glycans such as glycosaminoglycan substrates (i.e., mucins, hyaluronan, heparin and 372 
chondroitin). Conceptually, individuals with improved cardiovascular fitness shifted the 373 
burden of microbiome nutritional support to host mucus glycans, hyaluronic acid and other 374 
glycoproteins from the intestinal environment and thus offer complementary or unique 375 
metabolic pathways to enhance the mitochondrial functioning and meet the high energy needs 376 
during exertion. Thus, it is speculative but not implausible that rare species (other than 377 
Akkermansia) might be able to degrade and consume mucus-like glycoproteins that reside 378 
near the gut mucosa, which allows them to influence the host adaptation to endurance 379 
exercise. In endurance horses, the consumption and catabolism of N-acetyl moieties of 380 
glycoproteins during intense exercise has already been observed 45. Yet, the role of the 381 
bacterial predator Lysobacter, the one with highest discriminative power in our DIABLO 382 
model, is not well understood; however, ecosystems enriched with predatory bacteria are 383 
known to be metabolically more active than other ecosystems and that they have important 384 
roles in regulating nutrient fluxes in microbial food webs 52. 385 
 386 
The PPAR pathway might be the main mechanism through which SCFAs and secondary 387 
microbial metabolites from glycans and protein degradation in the lumen engage in multiple 388 
converging pathways to regulate mitochondrial functions in different tissues, including the 389 
heart. For example, PPAR-α is highly expressed in heart tissue where high levels of 390 
mitochondrial fatty acid oxidation occur 53. In line with the increased PPAR metagenomic 391 
pathway, more fit athletes showed increased expression of mitochondrial-related genes 392 
belonging to energy mitochondrial metabolism and biogenesis, Ca2+ cytosolic transport as 393 
well as inflammation, all of which are necessary to improve aerobic work capacity, spare 394 
glycogen usage and reduce peripheral fatigue 54. Mitochondria are essential for the 395 
physiological activity of the cardiovascular system due to their crucial role in bioenergetic 396 
and anabolic metabolism and their regulation of intracellular Ca2+ fluxes, which contribute to 397 
cardiac muscle contraction 55. Even the slightest decrease in their efficiency can have a 398 
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profound impact on cardiovascular capacity 56. Despite this data, the role the microbiome 399 
directly has in mitochondrial function and density during exercise has yet to be elucidated.  400 
 401 
This study has revealed for the first time the enormous levels of untapped microbial diversity, 402 
biotic interactions and functional gene potential in the gut of horse athletes. Using this 403 
unprecedented catalog of genes, our findings suggest that the variability of the gut 404 
microbiome composition and functions were associated with cardiovascular fitness in two 405 
ways. First, less diverse microbial ecosystems comprising high amounts of Lachnospiraceae 406 
taxa showed lower expression of metagenomic and mitochondrial related-genes assicuated 407 
with mitochondrial energetic activity, thereby leading to reduced amounts of aerobic ATP 408 
and impaired cardiovascular function and thus reduced athletic performance. Second, 409 
ecosystems harboring a large range of rare phylotypes, including the promising probiotic 410 
Akkermansia, were found to be metabolically more active and thus offer complementary or 411 
unique metabolic pathways to enhance the physiological activity of the cardiovascular system 412 
via crosstalk between mitochondria in peripheral tissues. Functional studies of gut 413 
microbiome species that are intimately connected with mitochondria function will be 414 
instrumental for the development of novel dietary strategies toward optimized cardiovascular 415 
capacity and therefore athletic performance.  416 
 417 
METHODS 418 
 419 
Ethics approval 420 
The study protocol was reviewed and approved by the local animal care and use committee 421 
(ComEth EnvA-Upec-ANSES, reference: 11-0041, dated July 12th 2011) for horse study. All 422 
the protocols were conducted in accordance with EEC regulation (no 2010/63/UE) governing 423 
the care and use of laboratory animals, which has been effective in France since the 1st of 424 
January 2013. In all cases, the owners and riders provided their informed consent prior to the 425 
start of sampling procedures with the animals. 426 
 427 
Animals 428 
Eleven pure-breed or half-breed Arabian horses (3 females, 1 male and 7geldings; mean ± SD 429 
age: 10 ± 1.69) trained for endurance were selected from a cohort previously used in our team 430 
17,57–59. All equine athletes started their training for endurance competitions at the age of 4 431 
and presented a similar training history, level of physical fitness and training environment. 432 
The 11 horses were selected due to the following these criteria: 1) enrollment in the same 160 433 
km endurance category; 2) blood sample collection before and after the race; 3) feces 434 
collection before the race; 4) absence of gastrointestinal disorders during the four months 435 
prior to enrollment; 5) absence of antibiotic treatment during the four months prior to 436 
enrollment and absence of anthelmintic medication within 60 days before the race; and 6) a 437 
complete questionnaire about diet composition and intake.  438 
 439 
Subject metadata, including morphometric characteristics and daily macronutrients diet 440 
intake records are depicted in Suppl Table S1. Daily nutrient intakes calculations are 441 
described elsewhere 57. 442 
 443 
Performance measurement 444 
The endurance race was split into successive phases of ~30 – 40 km. At the end of each 445 
phase, horses were checked by veterinarians (referred to as a vet gate). The heart recovery 446 
time was the primary criterion evaluated at the vet gate as it is shown to be a remarkable 447 
complement to a physical assessment of an individual. At each vet gate, the heart rate was 448 
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measured by the riders and a veterinarian using a heart rate meter and a stethoscope, 449 
respectively. Any horse deemed unfit to continue (due to a heart rate above 64 bpm after 20 450 
min of recovery) was immediately withdrawn from the event. It should be noted that the time 451 
interval between arrival at the vet gate and the time needed to decrease the heart rate below 452 
64 bpm was counted as part of the overall riding time. Therefore, the cardiac recovery time 453 
was calculated as the difference between the arrival time (at the end of the phase) and the 454 
time of veterinary inspection (referred to as the “time in” by the FEI endurance rules). The 455 
average speed of each successive phase was calculated at the vet gate.  456 
Changes in these three variables during endurance events have shown to predict whether a 457 
horse is aerobically fit or not 40. In an attempt to estimate cardiovascular capacity, which is 458 
linked to performance capability and achievement, we consider all these variables together. 459 
Therefore, these three variables were first scaled through a Z-score, that is, the number of 460 
standard deviation units a horse’s score is below or above the average score. Such a 461 
computation creates a unitless score that is no longer related to the original units of analysis 462 
(i.e., minutes, beats, Km/h) as it measures the number of standard deviation units and 463 
therefore can more readily be used for comparisons. A composite based on such Z-scores was 464 
then created to estimate cardiovascular fitness. Specifically, the “composite” function 465 
(multicon R package, v.1.6) was used to create a unit-weighted composite of the three 466 
variables listed above. 467 
 468 
Transcriptomic microarray data production, pre-preprocessing and analysis 469 
The transcriptome microarray data production, pre-processing and analysis is depicted in 470 
Plancade et al. (20219) and 17. Briefly, blood samples for RNA extraction were collected 471 
from each animal at T0 and T1 using Tempus Blood RNA tubes (Thermo Fisher).  472 
Total RNAs were then isolated using the Preserved Blood RNA Purification Kit I (Norgen 473 
Biotek Corp., Ontario, Canada), according to the manufacturer’s instructions. Transcriptome 474 
profiling was performed using an Agilent 4X44K horse custom microarray (Agilent 475 
Technologies, AMADID 044466). All of the steps were conducted as described previously 476 
60,61. We refer to our previous work for more details on the pre-processing, normalization and 477 
the application of linear models 17. Given our interest in understanding the role played by 478 
mitochondria during exercise, the set of 801 differentially expressed mitochondrial genes 479 
reported by our team 17 was selected for the downstream steps of analysis (Suppl Table S8). 480 
 481 
Proton magnetic resonance (1H NMR) metabolite analysis in plasma 482 
As described elsewhere 57,58, the plasma metabolic phenotype of endurance horses was 483 
obtained from 1H NMR spectra at 600 MHz. Blood was collected from each horse the day 484 
before the event and within 30 minutes from the end of the endurance race using sodium 485 
fluoride and oxalate tubes in order to inhibit further glycolysis that may increase lactate levels 486 
after sampling. The 1H NMR spectra were acquired at 500 MHz with an AVANCE III 487 
(Bruker, Wissembourg, France) equipped with a 5 mm reversed QXI Z-gradient high-488 
resolution probe. Further details on sample preparation, data acquisition, data quality control, 489 
spectroscopic data pre-processing and data pre-processing including bin alignment, 490 
normalization, scaling and centering are broadly discussed elsewhere 62. Details on 491 
metabolite identification are described in our previous work 17,57.  492 
 493 
Biochemical assay data production 494 
Blood samples for biochemical assays were collected before and after the race using 10 mL 495 
BD Vacutainer EDTA tubes (Becton Dickinson, Franklin Lakes, NJ, USA). As detailed in 57, 496 
after clotting the tubes were centrifuged and the harvested serum was stored at 4 °C until 497 
analysis. Sera were assayed for total bilirubin, conjugated bilirubin, total protein, creatinine, 498 
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creatine kinase, β-hydroxybutyrate, aspartate transaminase (ASAT), γ-glutamyltransferase 499 
and serum amyloid A levels on a RX Imola analyzer (Randox, Crumlin, UK).  500 
 501 
Blood acylcarnitine profiling 502 
The serum acylcarnitine profiles, as a proxy for mitochondrial β-oxidation, were produced 503 
and analyzed as described elsewhere 59. Briefly, blood samples were collected in plain tubes 504 
prior to and within 30 minutes of the end of the ride. After clotting, the tubes were 505 
centrifuged and the harvested serum was stored at 4 °C for no more than 48 hours and 506 
subsequently stored at -80 °C. Free carnitine and a total of 27 acylcarnitines in plasma were 507 
analyzed as their butyl ester derivatives by electrospray tandem mass spectrometry (ESI-MS-508 
MS) in the positive mode and detected on a triple quadrupole mass spectrometer (Xevo TQ-S 509 
Waters, Milford, MA, USA) using deuterated water.  510 
 511 
Fecal measurements: SCFA, DNA extraction and microorganism concentrations  512 
Fresh fecal samples were obtained while monitoring the horses before the race. One fecal 513 
sample from each animal was collected off the ground immediately after defecation as 514 
described previously 57,63 and three aliquots (200 mg) were prepared. Since most of the horses 515 
experienced dehydration after the race, the gastrointestinal emptying was significantly 516 
delayed and therefore it was not possible to recover the feces immediately after the race. 517 
Aliquots for SCFA analysis and DNA extraction were snap-frozen.  518 
 519 
SCFAs levels were determined by gas chromatography using the method described elsewhere 520 
64.  521 
 522 
Total DNA extraction from the 11 samples was performed as previously described 17. Briefly, 523 
DNA was extracted from ~200 mg of fecal material using the EZNA Stool DNA Kit (Omega 524 
Bio-Tek, Norcross, Georgia, USA) and following the manufacturer’s instructions. DNA was 525 
then quantified using a Qubit and a dsDNA HS assay kit (Thermo Fisher). 526 
 527 
As detailed in our previous studies 17,57, concentrations of bacteria, anaerobic fungi and 528 
protozoa in fecal samples were quantified by qPCR using a QuantStudio 12K Flex platform 529 
(Thermo Fisher Scientific, Waltham, USA). Primers for real-time amplification of bacteria 530 
(FOR: 5’-CAGCMGCCGCGGTAANWC-3’; REV: 5’-CCGTCAATTCMTTTRAGTTT-3’), 531 
anaerobic fungi (FOR: 5’-TCCTACCCTTTGTGAATTTG-3’; REV: 5’-532 
CTGCGTTCTTCATCGTTGCG-3’) and protozoa (FOR: 5’-533 
GCTTTCGWTGGTAGTGTATT-3’; REV: 5’-CTTGCCCTCYAATCGTWCT-3’). Details 534 
of standard dilutions series, the thermal cycling conditions and the estimation of the number 535 
of copies are detailed in 57 and 17.  536 
 537 
Fecal microbiota: V3–V4 16S rRNA gene sequencing and data pre-processing  538 
Detailed description of the DNA isolation process, V3-V4 16S rRNA gene sequencing-PCR 539 
amplification is presented by our group 11,12,17,57,63,65,66.  540 
The Divisive Amplicon Denoising Algorithm (DADA) was implemented using the DADA2 541 
plug-in for QIIME 2 (v. 2021.2) to perform quality filtering and chimera removal and to 542 
construct a feature table consisting of read abundance per amplicon sequence variant (ASV) 543 
by sample 67. Taxonomic assignments were given to ASVs by importing Greengenes 16S 544 
rRNA Database (release 13.8) to QIIME 2 and classifying representative ASVs using the 545 
naive Bayes classifier plug-in 68. The phyloseq (v.1.36.0) 69, vegan (v.2.5.7) 70 and 546 
microbiome (v.1.14.0) packages were used in R (v.4.1.0) for the downstream steps of 547 
analysis. A total of 364,026 high-quality sequence reads were recovered for the 11 horses of 548 
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the study (mean per subject: 33,093 � 17,437, range: 12,052 – 62,670). Reads were clustered 549 
into 5,412 chimera- and singleton-filtered ASVs at 99% sequence similarity. The ASV 550 
taxonomic assignments and ASV counts for each individual are presented in the Suppl Table 551 
S4).  552 
 553 
Fecal metagenome: Shotgun sequencing data production and analysis 554 
Metagenomic sequencing was performed using the same DNA extractions. For each 555 
individual, a paired-end metagenomic library was prepared from 100 ng of DNA using the 556 
DNA PCR free Library Prep Kit (Illumina, San Diego, CA, USA) and size selected at about 557 
400 bp. The pooled indexed library was sequenced in an Illumina HiSeq3000 using a paired-558 
end read length of 2x150 pb with the Illumina HiSeq3000 Reagent Kits at the PLaGe facility 559 
(INRAe, Toulouse).  560 
 561 
MAG assembly and annotation 562 
Raw metagenomics reads were quality-trimmed, assembled, binned and annotated using the 563 
ATLAS pipeline, v. 2.4.4 71. In short, using tools from the BBmap suite v.37.99 72, reads 564 
were quality trimmed and contamination from the horse genome were filtered out (available 565 
at NCBI sequence archive with the accession number GCA_002863925.1; 566 
Equus_caballus.EquCab3.0). Reads were error corrected and merged before assembly with 567 
metaSPAdes v.3.13.1 73. Since a high diversity between individuals was described through 568 
16S rRNA amplicon analysis, we first assembled each sample independently. QUAST 5.0.2 569 
74 was used to evaluate the quality of each sample assembly. Contigs from single samples 570 
were binned using MetaBAT 2 (v.2.14) 75 and Maxbin 2.0 v.2.2.7 76 and their predictions 571 
were combined using DAS Tool v.1.1.2-1 77.  572 
The quality of the metagenome-assembled genomes (MAGs) was then assessed using 573 
checkM v.1.1.3 78. The predicted MAGs presented at least 50% completeness and < 10% 574 
contamination. Because the same MAG may be identified in multiple samples, dRep v.2.2.2 575 
79 was used to obtain a non-redundant set of MAGs by clustering genomes to a defined 576 
average nucleotide identity (ANI, default 0.95) and returning the representative with the 577 
highest dRep score in each cluster. dRep first filtered genomes based on genome size (default 578 
> 5,000 bp) and quality (default > 50% completeness, < 10% contamination). MAGs were 579 
scored on the basis of completeness, contamination, genome size and contig N50, with only 580 
the highest scoring MAG from each secondary cluster being retained as the winning genome 581 
in the dereplicated set. The abundance of each MAG was then quantified across samples by 582 
mapping the reads to the non-redundant MAGs and determining the median coverage in 1 Kb 583 
windows along each genome.  584 
 585 
For the taxonomic annotation, ATLAS predicted the genes of each MAG sequence using 586 
Prodigal v.2.6.3 80 with default parameters. Robust taxonomic annotation was assigned to 587 
bins according to the genome taxonomy database (GTDB-tk 81) release 95, v.5.0 (July 17, 588 
2020). As such, GTDB-Tk taxonomy names are used throughout this paper. In addition, 589 
MAG phylogenetic trees were built based on markers from GTDB-Tk and CheckM and 590 
visualized using ggtree (v.3.0.2) in R package.   591 
To assess the contribution of the constructed MAGs to the functional potential of the gut 592 
microbiome, the predicted gene and proteins extracted by Prodigal during the CheckM 593 
pipeline were compared to the EggNOG database 5.0 using eggnog-mapper (v2.0.1). From 594 
this output, KEGG annotation (Kyoto Encyclopedia of Genes and Genomes) and CAZymes 595 
annotation (Carbohydrate-active Enzyme) were extracted. Since the detection of KOs and 596 
CAZymes families are likely to be influenced by sequencing depth, we first normalized their 597 
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abundance relative to the abundance of the MAG they derived from. Pathways attributed to 598 
each KO were annotated from the KEGG 599 
Database (downloaded 23-October-2021; https://www.genome.jp/brite/ko00001).  600 
The uniqueness of our predicted MAG catalog was confirmed by dereplicating them with the 601 
121 MAGs produced by (Gilroy et al., 2021) and 3 reported by (Youngblut et al., 2020) using 602 
dRep v.3.2.0 79. dRep performed pairwise genomic comparisons by sequentially applying an 603 
estimation of genome distance and an accurate measure of average nucleotide identity. The 604 
visualization and comparison of highly similar genomes were performed using the CGView 605 
family of tools (http://wishart.biology.ualberta.ca/cgview/). 606 
 607 
Construction of the integrated gene catalog 608 
The establishment and assessment of the quality and representation of the microbiome gene 609 
catalog was performed through the metagenomic ATLAS pipeline (v.2.4.4) 71. As described 610 
above, we first assembled the clean reads into longer contigs.  611 
Genes were predicted by Prodigal v.2.6.3 and then clustered using linclust 82 to generate a 612 
non-redundant gene catalog. Redundant genes were removed (≥ 95% identity and ≥ 90% 613 
overlap) with linclust. The quantification of genes per sample was done through the 614 
“combine_gene_coverages” function in the ATLAS workflow, which aligned the high-615 
quality clean reads to the gene catalog. Taxonomic and function annotations were done based 616 
on the EggNOG database 5.0 using eggnog-mapper (v.2.0.1). From these, the eggNOG 617 
numbers corresponding to CAZymes based on homology searches to the CAZyme database 618 
were retrieved. We used the derived eggNOG abundance matrix to obtain a CAZyme profile 619 
per sample. Similarly, KEGG annotation was retrieved from the EggNOG output. KEGG 620 
gene IDs were mapped to KEGG KOs and used to obtain the KEGG functional pathway 621 
hierarchy. 622 
 623 
Annotation of metagenome using Kaiju 624 
The k-mer-based kaiju v. 1.8.0. (https://github.com/bioinformatics-centre/kaiju) 20 approach 625 
was used for microbial taxonomic profiling of the shotgun metagenomes. Paired reads after 626 
quality trimmed and decontamination from the horse genome were used and annotated 627 
against the NCBI nr reference database (released on May 25th 2020) containing all proteins 628 
belonging to archaea, bacteria, eukaryota and virus for classification in Greedy run mode 629 
with -a greedy -e 3 allowing for maximum three mismatches. By default, Kaiju returned a 630 
“NA” if it could not find a taxonomic classification at certain ranks.  631 
 632 
Resistome 633 
The high-quality clean paired reads were aligned to the ResFinder database (accessed March 634 
2018, v.4.0) using bowtie2 (v.2.3.5). ResFinder is a manually curated database of 635 
horizontally acquired antimicrobial resistance (AMR) genes and contains many genes with 636 
numerous highly similar alleles (i.e., β-lactamases). To avoid random assignment of read 637 
pairs on these high-identity alleles, the database was clustered at 95% of identity level, over 638 
200 bp using CDHIT-EST (options -G 0 -A 200 -d 0 -c 0.95 -T 6 -g 1) 83 and a reference 639 
sequence was attributed to each cluster. Two successive mappings were done: (i) a first 640 
mapping with standard parameters (bowtie2 --end-to-end --no-discordant --no-overlap --no-641 
dovetail --no-unal) on the complete ResFinder database and (ii) a second mapping on the 642 
clustered database using the reads from the first mapping, with less stringent parameters 643 
(bowtie2 --local --score-min L,10,0.8). More than 99% of the reads from the first mapping 644 
correctly aligned on a cluster reference sequence in the second mapping. 645 
Counts from the second mapping were normalized by computing the RPKM (reads per 646 
kilobase reference per million bacterial reads) value for each ResFinder reference sequence. 647 
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The RPKM values were computed by dividing the mapping count on each reference with its 648 
gene length and the total number of bacterial read pairs for the samples and multiplying by 649 
109. A minimum of 20 mapped reads was considered to validate the presence of an AMR 650 
gene cluster. 651 
 652 
Biodiversity and richness analysis: α- and β-diversity 653 
The microbiome R package allowed us to study global indicators of the gut ecosystem state, 654 
including measures of evenness, dominance, divergences and abundance. Comparison of the 655 
gut α-diversity indices between groups was performed by two-tailed Wilcoxon test (pairwise 656 
comparison). Benjamini-Hochberg multiple testing correction p�<�0.05 was set as the 657 
significance threshold for the comparisons between groups. 658 
 659 
To estimate β-diversity, Bray-Curtis dissimilarity was calculated using the phyloseq R 660 
package. All samples were normalized using the “rarefy_even_depth” function in the 661 
phyloseq R package, which is implemented as an ad hoc means to normalize features that 662 
have resulted from libraries of widely differing sizes. The PerMANOVA test (a non-663 
parametric method of multivariate analysis of variance based on pairwise distances) 664 
implemented in the “adonis2” function from the vegan R package allowed testing the global 665 
association between ecological or functional community structure and groups. 666 
The core microbiome of individual samples was calculated using a detection threshold of 667 
0.1% and a prevalence threshold of 95% in the microbiome R package. 668 
 669 
The inter-individual variations in the gut microbiome composition and function 670 
The inter-individual variations in the gut microbiome composition and function were studied 671 
based on the conceptual framework of community types 84. According to this framework, the 672 
samples were clustered into bins based on their taxonomic similarity 85. Briefly, clustering 673 
was performed with PAM 86 using Bray-Curtis distance of the normalized feature counts. The 674 
optimal number of communities was chosen by the maximum average silhouette width, 675 
known as the silhouette coefficient (SC) 87.  676 
 677 
Inference and Analysis of SPIEC-EASI Microbiome Networks 678 
The SParse InversE Covariance Estimation for Ecological Association Inference method 679 
(SPIEC-EASI) 88 was used to identify sub-populations (modules) of co-abundance and co-680 
exclusion relationships between dominant phylotypes and CAZy classes abundances 681 
matrices. Specifically, the method allows microorganisms and functions to interact in a 682 
number of different ways, from bidirectional competition to mutualism or to not interact at 683 
all. The statistical method SPIEC-EASI comprises two steps, first a transformation for 684 
compositionality correction of the feature matrices and second an estimation of the 685 
interaction graph from the transformed data using sparse inverse covariance selection. The 686 
sparse graphical modeling framework was constructed using the “spiec.easi” function of the 687 
SpiecEasi package (v.1.1.1). The features were clustered using the method = mb, 688 
lambda.min.ratio = 1e-5, nlambda = 100, pulsar.params=list (thresh = 0.001). Regression 689 
coefficients from the SPIEC-EASI output were extracted and used as edge weights to 690 
generate a feature co-occurrence network R igraph package (v.1.2.6) and Cytoscape (v.3.8.2). 691 
 692 
Integrative statistical analysis 693 
Data integration was carried out using several approaches and different combinations of data 694 
sets. Prior to the integration, we applied some additional pre-processing steps on our 695 
explanatory data sets. In particular, to eliminate intra-individual variability and focus on the 696 
respective differential signals between T1 and T0, we considered Δ values (T1–T0) for each 697 
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of these data sets, namely biochemical assay data, metabolome data, acylcarnitine profiles 698 
and gene expression data, as previously described 17. For the transcriptome, we constructed a 699 
matrix of log-transformed expression values between T1 and T0 (i.e., the difference in log2-700 
normalized expression between T1 and T0, equivalent to the log2 value of the T1/T0 ratio) for 701 
the differentially expressed mitochondrial-related genes (Suppl Table S8).  702 
 703 
The integration of data was then performed using complementary methods and working with 704 
different data sets available, namely: (1) Δ values of mitochondrial-related genes; (2) Δ 705 
values of 1H NMR metabolites; (3) 

Δ values of the biochemical assay metabolites; (4) Δ 706 
values of plasmatic acylcarnitines; (5) the fecal SCFAs at T0; (6) the bacterial, ciliate 707 
protozoal and fungal loads at T0; (7) the dominant gut phylotypes at T0; (8) the CAZymes 708 
profiles at T0; (7) the KOs at T0 and the (8) athletic performance data. 709 
 710 
As a first integration approach, a global non-metric multidimensional scaling (NMDS) 711 
ordination was used to extract and summarize the variation in microbiome composition using 712 
the “metaMDS” function in the vegan R package. To determine the number of dimensions for 713 
each NMDS, stress values were calculated.  714 
The explanatory data sets were then fit to the ordination plots using the “envfit” function in 715 
the vegan R package 89 with 10,000 permutations. The effect size and significance of each 716 
covariate were determined and all of the p-values derived from the “envfit” function were 717 
Benjamini-Hochberg adjusted. Variation partitioning was performed using the “varpart” 718 
function in vegan in R. The “varpart” function uses linear constrained ordination to assess 719 
the shared and independent (partialling out the others) contributions (adjusted R2) of several 720 
covariates on microbiome composition variation.  721 
As a second integrative approach, the N-integration algorithm DIABLO of the mixOmics R 722 
package (http://mixomics.org/, v6.12.2) was used. It is to be noted that, in the case of the N-723 
integration algorithm DIABLO, the variables of all the data sets were also centered and 724 
scaled to unit variance prior to integration. In this case, the relationships existing among all 725 
data sets were studied by adding a further categorical variable, i.e., the cardiovascular fitness 726 
of horses. Horses that had poor cardiovascular fitness (n = 8) were compared to horses that 727 
had enhanced cardiovascular fitness (n = 3). DIABLO seeks to estimate latent components by 728 
modelling and maximizing the correlation between pairs of pre-specified datasets to unravel 729 
similar functional relationships between them 90. A full weighted design was considered. To 730 
predict the number of latent components and the number of discriminants, the “block.splsda” 731 
function was used. In both cases, the model was first fine-tuned using the leave-one-out 732 
cross-validation by splitting the data into training and testing. Then, classification error rates 733 
were calculated using balanced error rates (BERs) between the predicted latent variables with 734 
the centroid of the class labels using the “max.dist” function. 735 
Additionally, the DESeq2 (v. 1.32.0) 91 R package was used to test for differential 736 
abundances analysis between groups for each independent omic dataset. DESeq2 assumes 737 
that counts can be modeled as a negative binomial distribution with a mean parameter, 738 
allowing for size factors and a dispersion parameter. Next to the group, the horse dependency 739 
was included in the generalized linear model. The p-values were adjusted for multiple testing 740 
using the Benjamini-Hochberg procedure. DESeq2 comparisons were run with the 741 
parameters fitType�=�“parametric” and sfType�=�“poscounts”. 742 
 743 
The validation cohort 744 
The validation set consisted of 22 pure-breed or half-breed Arabian horses (12 females, 3 745 
male and 7 geldings; age: 9.2 ± 1.27) not included in the experimental set to ensure that the 746 
observed effects were reproducible in a broader context (Suppl Table S13). Among the horses 747 
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in the validation set, five animals were enrolled in a 160 km endurance competition, while 17 748 
horses were enrolled in a 120 km race. The management practices throughout the endurance 749 
ride and the International Equestrian Federation (FEI) compulsory examinations, as well as 750 
the weather conditions, terrain difficulty and altitude were that of the experimental set. In 751 
fact, all the participants enrolled in the study (experimental and validation set) competed in 752 
the same event during October 2015 in Fontainebleau (France). The cardiovascular capacity 753 
was created as described in the “Performance measurement” section, that is, as a composite 754 
of post-exercise heart rate, cardiac recovery time and average speed during the race. Then 755 
after, the HIGH, MEDIUM and LOW groups were determined according to the interquartile 756 
range of the composite cardiovascular fitness values, where HIGH included individuals with 757 
cardiovascular fitness values above the 75th percentile, LOW below the 25th percentile and 758 
MEDIUM the individuals ranging in between. 759 
 760 
Data Availability  761 
The datasets presented in this study can be found in different online repositories. Microarray 762 
expression data are available in Gene Expression Omnibus (GEO) repository under the 763 
accession number GSE163767 764 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163767). Metabolomic data are 765 
available in the NIH Common Fund’s Data Repository and Coordinating Center UrqK1489; 766 
(http://dev.metabolomicsworkbench.org:22222/data/DRCCMetadata.php?Mode=Study&Stud767 
yID=ST000945).  768 
The gut metagenome 16S rRNA targeted locus data are available in the 769 
DDBJ/EMBL/GenBank under the accession KBTQ00000000.1; (locus KBTQ01000000). 770 
The corresponding BioProject is PRJNA438436 and the accession numbers of the 771 
BioSamples included in here are SAMN08715729, SAMN08715728, SAMN08715727, 772 
SAMN08715725, SAMN08715723, SAMN08715721, SAMN08715719, SAMN08715718, 773 
SAMN08715714, SAMN08715713, SAMN08715710. The validation set data is available 774 
under the same BioProject ID. Moreover, the raw metagenomic sequence data of the 11 775 
athletes reported in this paper have been deposited in the NCBI short read archive (SRA) 776 
under the same BioProject ID PRJNA438436. The temporary submission ID is 777 
SUB10812702. All metagenome assemblies and sequences of MAGs have been deposited in 778 
NCBI under the same BioProject ID PRJNA438436. The temporary submission ID is 779 
SUB10812003. All other data is available in the Supplementary Data and upon reasonable 780 
request to the corresponding author. 781 
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FIGURES 1025 
 1026 
Figure 1 - Description of the first horse gut gene catalog: core microbiome and 1027 
taxonomic annotation 1028 
(a) Contribution of different sample sources to gene content of the horse gut catalog. Vertical 1029 
purple and blue bars represent the number of genes present in only one sample or shared 1030 
between pairs of samples, respectively. Horizontal orange bars in the lower panel indicate the 1031 
total number of genes contained in each sample; (b)Visualization of the taxonomic 1032 
assignment of Illumina reads in a Krona plot using the software tool Kaiju; (c) Lollipop plot 1033 
showing the read counts identified by the Kaiju resolved at the phylum level. Dots are 1034 
colored by kingdom; (d) Heatmap depicting the core phylome and their prevalence at 1035 
different detection thresholds (relative abundance). The percentage of shared items and the 1036 
proportion of shared samples are represented on the y- and x-axis, respectively; (e) Heatmap 1037 
showing the normalized counts of antimicrobial resistance (AMR) genes for each individual 1038 
based on ResFinder database 1039 
 1040 
Figure 2 - Gut microbiome composition and structure in endurance horses 1041 
(a) NMDS ordination analysis (Bray-Curtis distance) of dominant phylotypes composition. 1042 
Points denote individual samples which are colored according to the clustering group. The 1043 
shape of the dots indicates the competition level of horses; (b) Biplot values of the dominant 1044 
phylotypes driving the NMDS ordination. The phylotypes contributing to the distinction 1045 
between groups on at least one axis are depicted. Points are colored by phylum; (c) 1046 
Taxonomic distribution of the relative abundance of phyla in each individual. Individuals are 1047 
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split by cluster; (d-e) Violin plot representing Shannon Diversity Index and inverse Simpson 1048 
index, respectively. In all cases, colors indicate community classification, the community 1049 
type 1 (red color) and community type 2 (blue color). Boxplots show median, 25th and 75th 1050 
percentile, the whiskers indicate the minima and maxima and the points lying outside the 1051 
whiskers of boxplots represent the outliers. Adjusted p values from Wilcoxon rank-sum tests; 1052 
(f) NMDS ordination plot showing the covariates that contribute significantly to the variation 1053 
of dominant phylotypes determined by “envfit” function. The arrows for each variable show 1054 
the direction of the effect and are scaled by the unconditioned r2 value. Dots represent 1055 
samples, which are colored according to the type of community: the community type 1 (red 1056 
color) and community type 2 (blue color); (g) Effect sizes of the main variables affecting the 1057 
NMDS ordination. The length of the horizontal bars shows the amount of variance (r2) 1058 
explained by each covariate in the model. Covariates are colored according to the type of 1059 
dataset: athletic performance are in green and mitochondrial related genes in blue; (h) Violin 1060 
plot representing the cardiovascular fitness, which was calculated as a composite of post-1061 
exercise heart rate, cardiac recovery time and average speed during the race. Colors indicate 1062 
community classification, the community type 1 (red color) and community type 2 (blue 1063 
color) and boxplots show median, 25th and 75th percentile, the whiskers indicate the minima 1064 
and maxima and the points lying outside the whiskers of boxplots represent the outliers. 1065 
Adjusted p values from Wilcoxon rank-sum tests. 1066 
 1067 
Figure 3 - Sportomics: data integration supports the link between cardiovascular fitness 1068 
and microbiome composition and functionality 1069 
(a) Matrix scatterplot showing the correlation between the first components related to each 1070 
dataset in DIABLO according to the input design; (b) Microbial genera contributing to the 1071 
separation along with component 1 of the microbiome dataset. Microbiome data are centered 1072 
log-ratio-transformed and bar length indicates loading coefficient weight of selected 1073 
phylotypes, ranked by importance, bottom to top. Columns on the left depict the kingdom and 1074 
phylum of each discriminant phylotype; (c) CAZymes contributing to separation along with 1075 
component 1 of (d). CAZymes profiles are log-transformed median-scaled values. Bar length 1076 
indicates loading coefficient weight of selected CAZymes, ranked by importance, bottom to 1077 
top. In all cases, colors indicate community classification, the community type 1 (red color) 1078 
and community type 2 (blue color). Column in the left depict the CAZy class; (d) Co-1079 
occurrence network analysis of dominant phylotypes and carbohydrate-active enzymes 1080 
(CAZy) classes datasets using sparse inverse covariance estimation for ecological association 1081 
inference (SPIEC-EASI). Louvain clustering was able to generate 12 feature co-occurrence 1082 
modules. The two extreme assortative modules are depicted in detail using Cytoscape. A 1083 
positive correlation between nodes is indicated by red connecting lines, negative correlation 1084 
by blue. Species and CAZymes features are denoted by a circle or triangle, respectively. 1085 
Nodes are colored by phyla. Features with higher text size are those revealed as discriminant 1086 
along with component 1 by the MixOmics approach. Edge width corresponds to the strength 1087 
of the association between features. 1088 
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