bioRxiv preprint doi: https://doi.org/10.1101/2022.01.24.477461; this version posted January 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The first horse gut microbiome gene catalog reveals that rare microbiome ensures
better cardiovascular fitnessin endurance hor ses

Nuria Mach®', Cédric Midoux®>*, Sébastien Leclercg®, Samuel Pennarun®, LaurenceLe
Moyec”®, Olivier Rué**, Céline Robert™®, Guillaume Sallé”’, Eric Barrey™'

!GABI UMR 1313, INRAE, Université Paris-Saclay, AgroParisTech, Jouy-en-Josas, France

2 Université Paris-Saclay, INRAE, MalAGE, 78350, Jouy-en-Josas, France

3Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics
10 facility, 78350, Jouy-en-Josas, France

11 *Université Paris-Sacl ay, INRAE, PROSE, 92761, Antony, France

12  °UMRISP, INRAE, Université Frangois Rabelais de Tours, F-37380 Nouzilly, France

13 SINRAE, USUMR 1426, Genomic platform, 31326 Castanet-Tolosan, France

14 ’Université d’Evry Val d Essonne, Université Paris-Saclay, Evry, France

15 3MCAM UMR7245, CNRS, Muséum National d'Histoire Naturelle, Paris, France

16  °Ecole Nationale Vétérinaire d Alfort, Maisons-Alfort, France

O©CoO~NOOUILA, WN -

18  "These authors contributed equally

20 * Materials and correspondence:
21 NuariaMach
22  nuriamach@inrae.fr

24  ABSTRACT

25 Emerging evidence indicates that the gut microbiome contributes to endurance exercise performance,
26  but the extent of their functional and metabolic potential remains unknown. Using elite endurance
27  horses asamodel system for exercise responsiveness, we built the first equine gut microbial gene
28  catalog comprising more than 25 million non-redundant genes representing 4,696 genera spanning
29 95 phyla. The unprecedented resolution unrevealed functional pathways relevant for both the

30  structure of the microbiome and the host health and recovered 369 novel metagenome-assembled
31 bacteria genomes, providing useful reference for future studies. Integration of microbial and host
32  omic datasets suggested that microbiomes harboring rare species were functionally dissimilar from
33  those enriched in Lachnospiraceae taxa. Moreover, they offered expanded metabolic pathways to
34  fine-tune the cardiovascular capacity through mitochondria-mediated mechanisms. The results

35 identify an associative link between horse endurance capability and its microbiome gene function,
36 laying the basis for nutritional interventions that could benefit endurance athletes.

38 Keywords: athletic performance, endurance exercise, holo-omics, horse, microbial gene catalog

40 INTRODUCTION

41  Endurance athletes undergo prolonged cardiovascular exercise and withstand physiological
42  dressthat disrupts the body's homeostasis. This, in turn, overwhelms organs and the system's
43 norma function *2. The ability to run for long distances at high speed is scarcely distributed
44  across land mammals. Through years of selective breeding, Arabian horses have gained built-
45  inbiological mechanismsto run at more than 160 km at 20 km/h, an effort comparable to that
46  of marathon or ultra-marathon runners °. The effective body heat dissipation and the ability to
47  endure extreme exercise enable this breed to have outstanding endurance capabilities *.

49  Endurance exercise performance is primarily limited by cardiovascular fitness, exercise
50 economy and the ability to sustain work without either excessive blood lactate levels or
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51 fatigue . The athletes with the greatest improved cardiovascular fitness and fatigue resistance
52  often succeed in competitions °.
53
54  Undoubtedly, endurance exercise performance entails complex multifactorial processes
55  whose mechanisms are still not fully understood. New evidence has shown that the gut
56  microbiome and its associated metabolites impact host athletic performance during endurance
57  racing in humans ®’. The gut microbiome produces thousands of unique small molecules that
58  can potentially affect many aspects of physiology such as regulating immunity, hydration and
59  redox reactions as well as shaping the gut-brain axis that affects fatigue and stress perception
60 >®'2 These metabolites can act locally in the intestine or can accumulate up to millimolar
61  concentrations in different body fluids **. Higher microbial diversity has been correlated with
62 improved cardiorespiratory fitness and performance in marathon runners regardless of the
63  sex, age, body mass index and diet **. Other reports have also found significant associations
64  between the cardiovascular capacity, as assessed by the maximum oxygen consumgti on and
65 the Firmicutes-Bacteroidetes ratio > or reduced levels of fecal Eubacterium spp. *°. Deeper
66 characterization of the links between athletic performance and the gut microbiome revealed
67 that the single bacterium Veillonella atypica is required to enhance athletic performance in
68  treadmill mice experiments ®’.
69
70  While current knowledge of the relationships between gut microbiome and endurance
71  performance arein their infancy in humans, controlling for known confounding factors (such
72  asdiet, training loads, medications, occurring illnesses, environment and genetic background)
73 has proven difficult. In this respect, Arabian horses emerge as a suitable in vivo model for
74  characterizing the microbiome adaptations to endurance exercise due to their natural aptitude
75 for athletic performance, the homogeneity of their genetic and environmental backgrounds
76 and the relative ease of sampling during endurance races. Furthermore, recent findings
77  suggest that gut microbial metabolites in endurance horses act as mitochondria function
78  regulators that prevent hypoglycemia **, which is the limiting factor for fatigue onset and
79  thus, performance.
80 Despite these findings, if and how gut microbiome functions are responsible for better
81 adaptations to fatigue resistance, as well as success in athletic performances are not well
82 understood. To address this gap, we have built the first gene catalog of the equine gut
83 microbiome in elite endurance horses. Our results expanded the current representation of the
84  equine gut microbiome with more than 25 millions of non-redundant genes identified and 369
85 new metagenome-assembled genomes (MAGS). Moreover, by using the holo-omic approach
86 that incorporates multi-omic data from host and microbiome domains we have shown that the
87 gut microbiome composition and functions and the mitochondria activity are key
88 determinants for cardiovascular fitness. Rare microbes and their pool of genetic resources
89 likely offered metabolic pathways that fine-tuned mitochondrial function and consequently
90 confer enhanced cardiovascular capacity compared to microbial ecosystems with reduced
91 diversity but higher abundance of the Lachnospiraceae family.
92
93 RESULTS
94
95 Building thefirst horse gut microbiome gene catalog
96 We constructed amicrobia gene catalogue from the feces of 11 highly trained endurance
97  horses (Suppl Table S1). After quality filtering and host sequences decontamination, 1,124
98 millions of high-quality clean paired reads were available, with an average sequencing depth
99  per sample similar to that used for the construction of chicken *® and bovine *° gut gene

100 catalog (n = of 102 millions of paired reads per sample on average; Suppl Table S2). These
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101 datawere de novo assembled (total assembly size of 21.68 Gb; Suppl Fig S14) to build anon-
102 redundant gene catalog of 25,250,066 genes with an average length of 618 bp (Suppl Table
103  S2 and Fig Slaf). Individual horses harbored around half of these genes (n = 11,809,713

104  genes) on average (Fig 1a).

105

106 Taxonomic assignments were made from clean read pairs searching for maximum exact
107  matches between translated sequences and a reference database %. This approach yielded an
108 annotation for 61% of all sequences (Fig 1b) and revealed a diverse community of 95 phyla
109 encompassing 1,110 families and 4,696 genera. Bacteria (95%) defined most of the
110 assemblage in terms of abundance and diversity, followed by a handful of eukaryotes
111 (3.27%), archaea (1.14%) and viruses (0.15%). At the phylum level, the bacterial phyla
112  Firmicutes (44.3%) and Bacteroidetes (26.5%) greatly outnumbered Proteobacteria (7.5%),
113  Spirochaetes (6.2%), Actinobacteria (4.6%), Euryarchaeota (1.1%), Ciliophora (0.90%) and
114  Ascomycota (0.90%; Fig 1c). Consistent with a recent metagenomic study in the wild
115 Przewalski’s horses #!, Ascomycota and Basidiomycota were among the top Eukaryota
116  phylum in the gut.

117

118  We then identified the most dominant microbia phylotypes. Dominant phylotypes (top 25%
119 most common phylotypes sorted by their abundance and found in more than half of the
120 samples) accounted for ~94% of the total annotated sequences on average and were
121  represented by 1,146 unique genera (Suppl Table S3). The great mgjority of these dominant
122 microbes (85%) closely matched the most abundant bacterial genera recovered using 16S
123  rRNA based prediction (relative abundance > 0.1%; Suppl Table $4 and Fig S1g). The core
124 microbiome (Fig 1d) was defined by a narrow section of the phylomes (less than 0.15% of
125 the overall microbial genera) that were highly abundant (38 to 54% of the sequences). Along
126  with Bacteroides (6.66% + 0.57) and Prevotella (9.41% + 1.54), which have been found to be
127  dominant genera in the gut of marathon and triathlon athletes, respectively %, this core
128 microbiome included species from Fibrobacter (9.44% + 3.71), Treponema (5.96% + 1.59),
129  Clostridium (4.91% + 0.49) and Ruminococcus (4.04% + 0.79). All of them are in full
130 agreement with the core microbiome of endurance horses inferred from 16S rRNA-based
131  sequencing 2.

132

133 To gain functional insights, genes and functional modules were annotated using the non-
134  supervised orthologous groups (EggNOG) database. We identified a total of 12,060 KEGG
135 orthologous groups (KOs) and 137 different carbohydrate-active enzymes (CAZymes), which
136 encompassed 44% (n = 11,132,404) and 3.38% (n = 665,235) of the gene catalog,
137  respectively. The majority of KOs had functions related to essential microbial gut functions,
138 including genetic information processing and signaling, carbohydrate and amino acid
139  metabolism. However, we aso identified a number of pathways (i.e., drug resistance,
140 biosynthesis of secondary metabolites, endocrine system and neurodegenerative diseases)
141  relevant for both the structure of the microbiome and the host health (Suppl Fig S2a). Most of
142 the CAZYmes (85.4%; n = 568,462 genes) pertained to glycoside hydrolase (GH) and
143  polysaccharide lyases (PL) families, highlighting the indispensable role of gut metagenome in
144  complex dietary glycans metabolism (Suppl Fig S2b and Table S5).

145

146  Taking advantage of this deep shot-gun sequencing of the microbiome, we investigated the
147  presence of antimicrobia resistance (AMR) genes. Considered horses harbored 57 clusters of
148 AMR genes representing the major antibiotic classes, including tetracycline (n = 20),
149  aminoglycosides (n = 20) and macrolides, lincosamides and streptogramins (MLS, n = 9; Fig
150 1e Suppl Table S6). The overall AMR gene composition was similar to those of human *
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151 and livestock species such as cattle, pig and chicken, with a high abundance and prevalence
152  of the Firmicutes and Bacteroidetes-associated tetracyclines resistance genes tet(W), tet(Q),
153  tet(O), tet(40) and MLS resistance genes Inu(C) and mef(A) 2. Of note, we detected the
154  extended spectrum of B-lactamase (ESBL) blaaci-1 in 10 of the 11 horses. This AMR gene,
155 found in several Negativicutes (Gram negative Firmicutes), is only rarely detected in animal
156  or human gut microbiomes *. Such unusual prevalenceis likely linked to the presence of two
157  Negativicutes genera, Phascolarctobacterium and Selenomonas, in the core microbiome of
158 thestudied horses (Fig 1d).

159

160 Lastly, a set of 372 non-redundant prokaryotic MAGs were constructed from the
161 metagenomic sequencing at a threshold of > 50% completeness and contamination < 10%
162  (Suppl Table S7). Among these, 121 MAGs were estimated to be near complete; MAGs in
163  this subset had minimal contamination (< 5%), high completeness (> 95%; Suppl Table S7).
164  This MAG repertoire was assigned to 361 bacteria and 11 archaea, involving bacteria from
165 the Bacteroidetes and Firmicutes phyla, followed by Spirochaetes, Euryarchaeota,
166  Verrucomicrobia, Fibrobacteres and Cyanobacteria phylum (Suppl Fig S3ab). The abundance
167 of genomes pertaining to Cyanobacteria, Proteobacteria and Verrucomicrobia phylum
168 showed high rates of divergence between hosts (Suppl Fig S3c). This trend was bolstered at
169 thelower taxonomic level, except for MAGs assigned to Fibrobacter spp. (Suppl Fig S3d).
170  Of note, most MAGs (n = 369) have never been described before in horses to date 3,
171  increasing the mappability of metagenomes and expanding our understanding of the horse
172  microbiomes.

173

174  Altogether, the building of the gut gene catalog and MAGs repertoire expands current
175 understanding of the equine gut microbiome. Its complexity and the abundance of genes
176  associated with complex carbohydrate fermentation underscores the adaptation to a terrestrial
177  herbivorous lifestyle while reminding the pervasive presence of AMR genes. Additionaly,
178 the identification of metagenome functiona capacity primed for host health likely reflected
179 thesignificant energy demands and tissue adaptations that occur during endurance exercise.
180

181 Basal gut metagenome composition discriminates cardiovascular fitness

182 Building on the dominant microbial phylotypes, we investigated whether diversity,
183 compositional and functional differences could classify samples according to athletic
184  performance. First, the ordination of individual horse metagenomes using a non-metric
185 multidimensional scaling of the dominant phylotypes identified two distinct groups of
186 samples that recapitulated variation along the first axis (Fig 2a). A similar pattern was
187  obtained with aprincipal coordinate analysis (PCoA, Suppl Fig $4a) and the two groups were
188  aso supported by permutational analysis of variance (PerMANOVA; p = 0.01, R“ = 0.3715).
189  Cluster 1 (n = 3 horses) was represented by multiple taxa, involving ciliophora, methanogenic
190 archaeaaswell asrare bacterial species from the Proteobacteria and Verrucomicrobia phylum
191 (Fig 2b-c) and exhibited higher o-diversity (Shannon and inverse Simpson indices; p =
192  0.0134, Mann-Whitney U test, Fig 2d-e) despite the small sample size considered. In contrast
193  to the overwhelming diversity observed in cluster 1, a skewed species abundance distribution,
194  with predominance of phylotypes from the Firmicutes phylum (mainly Lachnospiraceae
195 taxa) and Fibrobacter and Treponema genera defined cluster 2. Similarly, the sample
196 distribution based on KOs and CAZymes profiles echoed that of the dominant phylotypes
197  composition (Suppl Fig $4b-c, respectively).

198

199  The macronutrient intake was not statistically different between horses from the two clusters
200 (p > 0.05; Suppl Table S1). Therefore, we next tested the extent to which any horse
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201 physiological, metabolic or performance indicators best captured the distributions of
202 microbial taxa Host-centered omic and phenomics data, including transcriptomics,
203  metabolomics, acylcarnitines and blood biochemical assay profiles as well as cardiovascular
204  fitness parameters were used (Suppl Tables S8-S11, respectively). The cardiovascular fitness,
205 acomposite of post-exercise heart rate, cardiac recovery time and average speed during the
206  race, was the principal contributor to the metagenome heterogeneity (envfit, R = 0.9192,
207  adjusted p = 0.005; Suppl Table S12), outperforming the expression of several mitochondrial
208 genes (Fig 2f-g). This composite parameter aggregated 39.64% of fecal microbiome
209  community variation. Horses from cluster 1 had significantly higher cardiovascular fitness
210 relative to that of cluster 2 members (p = 0.0484, Wilcoxon rank-sum test, Fig 2h) without
211  incurring dramatic increases in blood lactate concentration (p = 0.9212, Wilcoxon rank-sum
212  test), aproxy for glycolytic stress and disturbance in cellular homeostasis *. The results hence
213 indicated that - under the same prevailing environmental conditions and nutrient availability -
214 individuals harboring cluster 1 type communities achieved improved cardiovascular capacity,
215 that is lower post-exercise heart rates and faster cardiac recovery time at the veterinary
216  inspection compared to individuals with cluster 2 type microbial communities. The cluster 2
217 individuals were harboring a less diverse gut microbiota with only a few rare species
218 involved.

219

220 An independent validation of findings confirms that Lachnospiraceae bacteria was
221 associated with cardiovascular fitnessand in highly trained equine athletes

222  To further confirm the association between the cardiovascular fitness and the gut microbiome
223  composition found in the 11 elite horses based on their metagenome data, we analyzed the
224 16STrRNA sequence data from the gut microbiota of 22 independent highly trained endurance
225  horses (Suppl Table S13 and S14). As with the study cohort, the microorganisms’ community
226  profiles could be distinguished based on the horse’'s cardiovascular fitness (adjusted p = 0.05;
227  parwise comparisons using PerlMANOVA on a Bray-Curtis distance matrix, Suppl Fig Sba-
228 ¢). Individuals with lower cardiovascular fithess harbored a few players belonging to
229  Firmicutes phylum with higher abundance (adjusted p = 0.024, Tukey’s Honest Significant
230 test; Suppl Fig Sbd), namely Clogtridiales, Erysipelotrichaceae and butyrate-producing
231  bacteria from the Lachnospiraceae family. For instance, taxa such as Barnesiella, Blautia,
232  Butyrivibrio, Coprococcus, Dorea, Desulfovibrio, Hespellia, Lachnospira, Myroides and L-
233  Ruminococcus (al pertaining to the Lachnospiraceae family) were commonly found in less
234 fit athletes in both discovery and validation sets. Contrastingly, individuals with improved
235 cardiovascular fitness harbored a multitude of minor players, as observed in the discovery set.
236  Although larger cohorts are required to clearly validate the relationship between athletic
237  performance and gut microbiome, these data do, however, confirm the association between
238  Firmicutes (notably Lachnospiraceae taxa) and cardiovascular fitness.

239

240 Holo-omics: rare microbiomes with lower abundances of Lachnospiraceae taxa
241 associated with improved cardiovascular fitness and points toward enhanced
242  mitochondrial capacity

243  To characterize the microbiome-host crosstalk and identify molecular differences between the
244 two types of cardiovascular outcomes in elite horses, we integrated multi-omic datasets from
245  host and associated gut microorganisms through a multivariate matrix factorization approach
246 using DIABLO (Data Integration Anaysis for Biomarker discovery using Latent
247  Components). To achieve this integrated perspective coined as holo-omics®, we combined
248  pair host-centered omic and phenomics data with the shotgun metagenomics, feca SCFAs
249  composition and the concentrations of bacteria, anaerobic fungi and protozoa.

250
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251  First, we observed strong covariation between the dominant phylotypes and the genetic
252  functiondlities derived from both KOs (r* = 0.99) and CAZymes (r? = 0.98). This clear
253  correlation supports the added value of microbiome functionalities for status prediction rather
254  than composition alone, as noted previously in human athletes **®. Concomitantly, the
255  microbiome composition highly covaried with the mitochondrial transcriptome (r* > 0.8) and
256  the loads of fecal bacteria, anaerobic fungi and protozoa (r? > 0.8; Fig 3a). Second, to add
257 biological meaning to the predicted model, we investigated the relationship between the
258 DIABLO-selected features with highest covariation (Suppl Fig S6a-c). The first latent
259 variable of the predicted model indicated that athletes with higher cardiovascular fitness
260 harbored a wide range of multi-kingdom and relatively low abundant species (Fig 3b). It
261 included the facultative bacterial predator Lysobacter®, the health-promoting Akkermansia,
262  which resides in the mucus layer of the gut and has been already reported in elite athletes **
263 %, adong with anaerobic fungi (Ophiocordyceps, Cryptococcus, Pseudogymnoascus,
264  Trichoderma, Talaromyces), methanogens (Methanothermobacter, Methanothrix) and algae
265 (Emiliania and Porphyra). Coupled with these rare yet highly active microbes, the first latent
266 variable spanned CAZymes involved in the extraction of energy from recalcitrant
267 polysaccharides and endogenous host glycans (GH99, GT10; Fig 3c). Conversely, less fit
268 horses harbored higher amounts of core species, that is, dominant Firmicutes taxa
269 (Clostridiaes, Erysipelotrichaceae and multiple members of the family Lachnospiraceae),
270 Treponema and Prevotella. Paired to it, the latter were characterized by functionally
271 redundant enzymes with respect to lignocellulosic carbohydrate catabolizing machinery
272 (GH8, GT36, GH51, GH28, GT2, GH5, GH3; Fig 3c). Although intestinal microbiota
273  members belonging to the Lachnospiraceae family are known to produce significant amounts
274  of acetate and butyrate *, none of these SCFA were significantly increased in the feces or
275  plasmaof these athletes (p > 0.05) and the fecal pH remained unchanged (Supp! Table S15).
276

277  Animpairment rather than improvement of metabolic flexibility in the lessfit individuals was
278 supported by the reduced expression of genes in B-oxidation (ECI1, SCP2, ACLY), the
279  electron transport chain (TMEM242, NDFB4, TMEM126B, NDUFV3, NDUFA1, NDUFAL0,
280 SURF1, NDUFV1, DLD), Ca** translocation (PMPCA, VDAC2, PHB), protein (MRPL2,
281 PPAl, MRPL49, MRPL17, VDAC2, TARR?, MRPL24, FBXL4, MRPSI8C, PSTK),
282  mitophagy (TOMMA40) and mitochondrial biogenesis (SSBP1, ACSS2) (Suppl Fig S6d). The
283 fact that adipose tissue lipolysis likely exceeded uptake and oxidation mitochondrial capacity
284 in less fit individuals was confirmed by reduced concentrations of glucose (p = 0.0484,
285  Wilcoxon rank-sum test), increased accumulation of long-chain acyl-carnitines (i.e., oleoyl
286 carnitine, p = 0.0484; hydroxy oleoyl carnitine, p = 0.0242, Wilcoxon rank-sum test) and a
287  tendency for augmented non-esterified fatty acids in plasma (p = 0.0848, Wilcoxon rank-sum
288 test, see Suppl information). Additionaly, less fit individuals showed depletion of
289  metagenomic KOs involved in the mitochondrial biogenesis (K03593, KO7152) and energy
290 resilience (peroxisome proliferator-activated receptor (PPAR); K00029, K01596, K01897;
291 see Suppl information). This could consequently decrease fatty acids oxidation but also
292  increase glucose catabolism and progressively impede longer running times.

293

294 It isworth noting that the ciliate protozoal biomass, at up to about 18% of the biomass (~10°
295 cells/g of stool), was representative of more fit individuals (Suppl Fig S6e). The main
296 observed genera were Sentor, Sylonychia, Pramecium and Tetrahymensa, athough their
297  abundance and composition were much more variable than bacteria and their role is not well
298  understood.

299
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300 Altogether, less diverse microbia ecosystems dominated by few Firmicutes-derived phylum
301 (mainly Lachnospiraceae) appear to set an upper-bound to the host metabolic response to
302 exercise because of reduced mitochondrial energy production and biogenesis that ultimately
303  constrain aerobic ATP production and extended cardiovascular fitness.

304

305 Frenemies: Lachnospiraceae and rar e phylotypesin athletes

306 Togaininsight into the co-occurrence and co-exclusion relationshi ps between multi-kingdom
307 microbial genera, including organizational features that may contribute to host adaptation to
308 exertion, we applied an inverse covariance estimation for ecological association inference
309  between microbiome (at the genus level) and its metabolic potential, regardless of the

310 cardiovascular fitness. This approach identified 12 modules. Among them, we uncovered two
311 extreme assortative modules which were characterized by strong within microbe-microbe or
312  microbe-functions interactions (Fig 3d) and recalled the featuresidentified using DIABLO.
313  Thefirst module was mostly characterized by bacterial interactions within commensals from
314  the Firmicutes phylum (mostly from Lachnospiraceae family) sharing similar phylogenetic
315 and functional properties, along with CAZy families that can target the substrate of plant

316  structural polysaccharides (GH3, GH39, GH51, GH82, GH84). On the other hand, the second
317  extreme network encompassed widespread yet minor bacteria from the Proteobacteria,

318  Actinobacteria, Planctomycetes, Verrucomicrobia (including Akkermansia sp.) and rare

319 phyla, together with CAZymes active on degradation of complex structure of plant cell-wall
320 materias (GH28) and host glycans (GH20, GH18, GH33; Fig 3d).

321

322 These results suggested again that ecosystems enriched in rare microorganisms are
323 functionally different from Firmicutes dominant ones and cluster into segregated and distinct
324  communities reflecting an ecological or evolutionary selective advantage to the microbiome.
325

326 DISCUSSION

327  The current study presents the first horse gut microbiome gene catalog and its association
328  with endurance performance. We have generated a catalog representing over 25 million non-
329 redundant genes, expanding the current state of diversity for the equine gut microbiome. The
330 building of this gene catalog has also widened twenty-fold the number of genera known to
331 reside in the gastrointestinal tract of horses >®*° uncovering an unprecedented number of
332 prokaryota and eukaryota species mainly coming from the Ascomycota, Ciliophora,
333 Basidiomycota, Chytridiomycota, Evosea and Apicomplexa phyla. Interestingly, this catalog
334  captured a wide array of specific functions, suggesting that athlete gut microbiomes possess
335 functional capacities primed for a greater ability to exploit energy from dietary, microbia and
336  host resources and tissue repair as previously posited %2. Moreover, we identified 372 MAGs,
337 most of which appear to be novel species. Although much of the gut microbiome likely
338 represented unobserved diversity as our samples contained a significant proportion of
339 unclassified sequences, the availability of so many novel genes and MAGs represents a
340 dgnificant step forward in understanding the composition and function of the horse gut
341  microbiome.

342

343 Along with fatigue resistance, cardiovascular fitness is a key indicator of endurance
344  performance in human athletes °. Comparably, in horses, the cardiovascular capacity based
345 on heart rate, heart recovery time after exercise and average speed across the race is
346  considered to be a good indicator of the degree of peripheral and central fatigue during
347  endurance exercise and thus, athletic performance “°. In our cohort of elite horses, ~40% of
348 the variation in the gut microbiome composition was accounted for by this parameter in
349 absence of significant variation in dietary intake and across homogeneous genetic
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350 backgrounds. This finding was validated in an independent cohort of elite horses and echoes
351 the association found between the cardiovascular fitness of marathon runners and their
352  microbiota (~ 22% of explained variance *°). Taking a closer look, less fit individuals were
353 associated with Firmicutes taxa and particularly, the dominance of tightly related
354  Lachnospiraceae spp. which are able to break down plant Polysacchari des easily available in
355  the gut. While this family is abundant in the adult human ** and horse gut microbiome 23,
356 its abundance can be rapidly atered by changes in diet *. Therefore, in light of these
357  findings, nutritiona interventions to reduce Lachnospiraceae taxa abundance and functions
358 while creating more space for rare species will be likely required to increase microbiome
359 diversity and athletic performance. Some possible nutritional interventions could include
360 probiotics and dietary fibers with higher specificity (i.e., accessible and fermentable by a
361 limited range of microbes). On the other hand, a recent study proposes that fecal microbiome
362 transplantation ® as a means to increase exercise performance in athletes, raising the
363  possibility of fecal modulation as away to gain an athletic advantage.

364

365 Interestingly, the deep phenomics applied to these horses highlighted the microbiome-
366  mitochondria axis as one of the most effective ways to modulate the cardiovascular capacity.
367 Metagenomic and mitochondrial genes involved in the mitochondrial biogenesis and energy
368 resilience were al simultaneously upregulated in more fit individuals, suggesting improved
369 exercise economy and fuel sparing during endurance. Additionally, their gut microbiomes,
370 characterized by a greater o-diversity and a vast range of rare genera, showed highly
371 functiona capabilities, spanning many aspects of breaking down plant polysaccharides and
372 anima glycans such as glycosaminoglycan substrates (i.e., mucins, hyaluronan, heparin and
373  chondroitin). Conceptually, individuals with improved cardiovascular fitness shifted the
374  burden of microbiome nutritional support to host mucus glycans, hyaluronic acid and other
375 glycoproteins from the intestinal environment and thus offer complementary or unique
376  metabolic pathways to enhance the mitochondrial functioning and meet the high energy needs
377 during exertion. Thus, it is speculative but not implausible that rare species (other than
378 Akkermansia) might be able to degrade and consume mucus-like glycoproteins that reside
379 near the gut mucosa, which alows them to influence the host adaptation to endurance
380 exercise. In endurance horses, the consumption and catabolism of N-acetyl moieties of
381 glycoproteins during intense exercise has already been observed . Yet, the role of the
382  bacteria predator Lysobacter, the one with highest discriminative power in our DIABLO
383 model, is not well understood; however, ecosystems enriched with predatory bacteria are
384  known to be metabolically more active than other ecosystems and that they have important
385 rolesin regulating nutrient fluxesin microbial food webs *2.

386

387 The PPAR pathway might be the main mechanism through which SCFAs and secondary
388 microbial metabolites from glycans and protein degradation in the lumen engage in multiple
389  converging pathways to regulate mitochondrial functions in different tissues, including the
390 heart. For example, PPAR-a is highly expressed in heart tissue where high levels of
391  mitochondrial fatty acid oxidation occur 2. In line with the increased PPAR metagenomic
392 pathway, more fit athletes showed increased expression of mitochondrial-related genes
393  belonging to energy mitochondrial metabolism and biogenesis, Ca®* cytosolic transport as
394 wel as inflammation, all of which are necessary to improve aerobic work capacity, spare
395 glycogen usage and reduce periphera fatigue **. Mitochondria are essential for the
396 physiological activity of the cardiovascular system due to their crucial role in bioenergetic
397  and anabolic metabolism and their regulation of intracellular Ca®* fluxes, which contribute to
398 cardiac muscle contraction *°. Even the slightest decrease in their efficiency can have a
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399  profound impact on cardiovascular capacity . Despite this data, the role the microbiome
400 directly hasin mitochondrial function and density during exercise has yet to be elucidated.
401

402  This study has revealed for the first time the enormous levels of untapped microbial diversity,
403 biotic interactions and functional gene potential in the gut of horse athletes. Using this
404  unprecedented catalog of genes, our findings suggest that the variability of the gut
405 microbiome composition and functions were associated with cardiovascular fitness in two
406  ways. First, less diverse microbial ecosystems comprising high amounts of Lachnospiraceae
407 taxa showed lower expression of metagenomic and mitochondrial related-genes assicuated
408  with mitochondrial energetic activity, thereby leading to reduced amounts of aerobic ATP
409 and impaired cardiovascular function and thus reduced athletic performance. Second,
410 ecosystems harboring a large range of rare phylotypes, including the promising probiotic
411  Akkermansia, were found to be metabolically more active and thus offer complementary or
412  unique metabolic pathways to enhance the physiological activity of the cardiovascular system
413 via crosstalk between mitochondria in peripheral tissues. Functiona studies of gut
414  microbiome species that are intimately connected with mitochondria function will be
415  instrumental for the development of novel dietary strategies toward optimized cardiovascular
416 capacity and therefore athletic performance.

417

418 METHODS

419

420 Ethicsapproval

421  The study protocol was reviewed and approved by the local animal care and use committee
422  (ComEth EnvA-Upec-ANSES, reference: 11-0041, dated July 12" 2011) for horse study. All
423  the protocols were conducted in accordance with EEC regulation (n° 2010/63/UE) governing
424 the care and use of laboratory animals, which has been effective in France since the 1% of
425  January 2013. In all cases, the owners and riders provided their informed consent prior to the
426  start of sampling procedures with the animals.

427

428 Animals

429  Eleven pure-breed or half-breed Arabian horses (3 females, 1 male and 7geldings; mean + SD
430 age: 10 * 1.69) trained for endurance were selected from a cohort previously used in our team
431 Y% All equine athletes started their training for endurance competitions at the age of 4
432  and presented a similar training history, level of physical fitness and training environment.
433  The 11 horses were selected due to the following these criteria: 1) enrollment in the same 160
434  km endurance category; 2) blood sample collection before and after the race; 3) feces
435 collection before the race; 4) absence of gastrointestinal disorders during the four months
436 prior to enrollment; 5) absence of antibiotic treatment during the four months prior to
437  enrollment and absence of anthelmintic medication within 60 days before the race; and 6) a
438 complete questionnaire about diet composition and intake.

439

440 Subject metadata, including morphometric characteristics and daily macronutrients diet
441  intake records are depicted in Suppl Table S1. Daily nutrient intakes calculations are
442 described elsewhere *'.

443

444  Perfor mance measurement

445  The endurance race was split into successive phases of ~30 — 40 km. At the end of each
446  phase, horses were checked by veterinarians (referred to as a vet gate). The heart recovery
447  time was the primary criterion evaluated at the vet gate as it is shown to be a remarkable
448  complement to a physical assessment of an individual. At each vet gate, the heart rate was
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449 measured by the riders and a veterinarian using a heart rate meter and a stethoscope,
450 respectively. Any horse deemed unfit to continue (due to a heart rate above 64 bpm after 20
451  min of recovery) was immediately withdrawn from the event. It should be noted that the time
452  interval between arrival at the vet gate and the time needed to decrease the heart rate below
453 64 bpm was counted as part of the overal riding time. Therefore, the cardiac recovery time
454  was calculated as the difference between the arrival time (at the end of the phase) and the
455  time of veterinary inspection (referred to as the “time in” by the FEI endurance rules). The
456  average speed of each successive phase was calculated at the vet gate.

457  Changes in these three variables during endurance events have shown to predict whether a
458  horse is aerobically fit or not “°. In an attempt to estimate cardiovascular capacity, which is
459 linked to performance capability and achievement, we consider all these variables together.
460 Therefore, these three variables were first scaled through a Z-score, that is, the number of
461 standard deviation units a horse’s score is below or above the average score. Such a
462 computation creates a unitless score that is no longer related to the original units of analysis
463  (i.e., minutes, beats, Km/h) as it measures the number of standard deviation units and
464  therefore can more readily be used for comparisons. A composite based on such Z-scores was
465 then created to estimate cardiovascular fitness. Specifically, the “composite” function
466  (multicon R package, v.1.6) was used to create a unit-weighted composite of the three
467  variables listed above.

468

469  Transcriptomic microarray data production, pre-preprocessing and analysis

470  The transcriptome microarray data production, pre-processing and analysis is depicted in
471  Plancade et al. (20219) and *". Briefly, blood samples for RNA extraction were collected
472  from each animal a TO and T1 using Tempus Blood RNA tubes (Thermo Fisher).

473  Total RNAs were then isolated using the Preserved Blood RNA Purification Kit 1 (Norgen
474  Biotek Corp., Ontario, Canada), according to the manufacturer’s instructions. Transcriptome
475  profiling was performed using an Agilent 4X44K horse custom microarray (Agilent
476  Technologies, AMADID 044466). All of the steps were conducted as described previously
477 %% We refer to our previous work for more details on the pre-processing, normalization and
478  the application of linear models . Given our interest in understanding the role played by
479  mitochondria during exercise, the set of 801 differentially expressed mitochondrial genes
480  reported by our team *” was selected for the downstream steps of analysis (Suppl Table S8).
481

482  Proton magnetic resonance (*H NMR) metabolite analysisin plasma

483  As described elsewhere °"* the plasma metabolic phenotype of endurance horses was
484  obtained from 'H NMR spectra at 600 MHz. Blood was collected from each horse the day
485  before the event and within 30 minutes from the end of the endurance race using sodium
486 fluoride and oxalate tubes in order to inhibit further glycolysis that may increase lactate levels
487  after sampling. The *H NMR spectra were acquired at 500 MHz with an AVANCE Il
488  (Bruker, Wissembourg, France) equipped with a 5 mm reversed QXI Z-gradient high-
489  resolution probe. Further details on sample preparation, data acquisition, data quality control,
490 spectroscopic data pre-processing and data pre-processing including bin alignment,
491 normalization, scaling and centering are broadly discussed elsewhere ® Details on
492  metabolite identification are described in our previous work .

493

494  Biochemical assay data production

495  Blood samples for biochemical assays were collected before and after the race using 10 mL
496 BD Vacutainer EDTA tubes (Becton Dickinson, Franklin Lakes, NJ, USA). As detailed in *,
497  after clotting the tubes were centrifuged and the harvested serum was stored a 4 °C until
498 analysis. Sera were assayed for total bilirubin, conjugated bilirubin, total protein, creatinine,
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499 creatine kinase, B-hydroxybutyrate, aspartate transaminase (ASAT), y-glutamyltransferase
500 and serumamyloid A levels on a RX Imola analyzer (Randox, Crumlin, UK).

501

502 Blood acylcarnitine profiling

503 The serum acylcarnitine profiles, as a proxy for mitochondrial 3-oxidation, were produced
504 and analyzed as described elsewhere *°. Briefly, blood samples were collected in plain tubes
505 prior to and within 30 minutes of the end of the ride. After clotting, the tubes were
506 centrifuged and the harvested serum was stored at 4 °C for no more than 48 hours and
507  subsequently stored at -80 °C. Free carnitine and atotal of 27 acylcarnitines in plasma were
508 analyzed astheir butyl ester derivatives by electrospray tandem mass spectrometry (ESI-MS-
509 MS) in the positive mode and detected on atriple quadrupole mass spectrometer (Xevo TQ-S
510 Waters, Milford, MA, USA) using deuterated water.

511

512  Fecal measurements. SCFA, DNA extraction and microor ganism concentrations

513 Fresh fecal samples were obtained while monitoring the horses before the race. One feca
514 sample from each animal was collected off the ground immediately after defecation as
515  described previously >"® and three aliquots (200 mg) were prepared. Since most of the horses
516 experienced dehydration after the race, the gastrointestinal emptying was significantly
517 delayed and therefore it was not possible to recover the feces immediately after the race.
518 Aliquotsfor SCFA analysis and DNA extraction were snap-frozen.

519

520 GS4CFAS levels were determined by gas chromatography using the method described elsewhere
521

522

523  Total DNA extraction from the 11 samples was performed as previously described *'. Briefly,
524  DNA was extracted from ~200 mg of fecal material using the EZNA Stool DNA Kit (Omega
525 Bio-Tek, Norcross, Georgia, USA) and following the manufacturer’s instructions. DNA was
526  then quantified using a Qubit and adsDNA HS assay kit (Thermo Fisher).

527

528 As detailed in our previous studies , concentrations of bacteria, anaerobic fungi and
529  protozoa in fecal samples were quantified by qPCR using a QuantStudio 12K Flex platform
530 (Thermo Fisher Scientific, Waltham, USA). Primers for real-time amplification of bacteria
531 (FOR: 5-CAGCMGCCGCGGTAANWC-3'; REV: 5'-CCGTCAATTCMTTTRAGTTT-3),
532  anaerobic fungi (FOR: 5-TCCTACCCTTTGTGAATTTG-3'; REV: 5-
533 CTGCGTTCTTCATCGTTGCG-3) and protozoa (FOR: 5-
534 GCTTTCGWTGGTAGTGTATT-3'; REV: 5-CTTGCCCTCYAATCGTWCT-3'). Details
535 of standard dilutions series, the thermal cycling conditions and the estimation of the number
536  of copiesaredetailedin >’ and '’

537

538 Fecal microbiota: V3-V4 16SrRNA gene sequencing and data pre-processing

539 Detailed description of the DNA isolation process, V3-V4 16S rRNA gene sequencing-PCR
540  amplification is presented by our group *+1417°7.636566

541  The Divisive Amplicon Denoising Algorithm (DADA) was implemented using the DADA2
542  plug-in for QIIME 2 (v. 2021.2) to perform quality filtering and chimera removal and to
543  construct a feature table consisting of read abundance per amplicon sequence variant (ASV)
544 by sample ®’. Taxonomic assignments were given to ASVs by importing Greengenes 16S
545 rRNA Database (release 13.8) to QIIME 2 and classifying representative ASVs using the
546 naive Bayes classifier plug-in ®®. The phyloseq (v.1.36.0) ®, vegan (v.2.5.7) ™ and
547  microbiome (v.1.14.0) packages were used in R (v.4.1.0) for the downstream steps of
548 analysis. A total of 364,026 high-quality sequence reads were recovered for the 11 horses of

17,57
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549 the study (mean per subject: 33,093 + 17,437, range: 12,052 — 62,670). Reads were clustered
550 into 5,412 chimera- and singleton-filtered ASVs at 99% sequence similarity. The ASV
551 taxonomic assignments and ASV counts for each individual are presented in the Suppl Table
552 ).

553

554  Fecal metagenome: Shotgun sequencing data production and analysis

555 Metagenomic sequencing was performed using the same DNA extractions. For each
556 individual, a paired-end metagenomic library was prepared from 100 ng of DNA using the
557 DNA PCR free Library Prep Kit (Illumina, San Diego, CA, USA) and size selected at about
558 400 bp. The pooled indexed library was sequenced in an Illumina HiSeq3000 using a paired-
559  end read length of 2x150 pb with the Illumina HiSeq3000 Reagent Kits at the PLaGe facility
560 (INRAg, Toulouse).

561

562 MAG assembly and annotation

563 Raw metagenomics reads were quality-trimmed, assembled, binned and annotated using the
564 ATLAS pipeline, v. 24.4 ™. In short, using tools from the BBmap suite v.37.99 ", reads
565  were quality trimmed and contamination from the horse genome were filtered out (available
566 a NCBI sequence archive with the accesson number GCA_002863925.1;
567 Equus caballus.EquCab3.0). Reads were error corrected and merged before assembly with
568 metaSPAdes v.3.13.1 ™. Since a high diversity between individuals was described through
569 16S rRNA amplicon analysis, we first assembled each sample independently. QUAST 5.0.2
570 " was used to evaluate the quality of each sample assembly. Contigs from single samples
571  were binned using MetaBAT 2 (v.2.14) " and Maxbin 2.0 v.2.2.7 " and their predictions
572  were combined using DAS Tool v.1.1.2-1 ”".

573 The quality of the metagenome-assembled genomes (MAGSs) was then assessed using
574 checkM v.1.1.3 “® The predicted MAGs presented at least 50% completeness and < 10%
575  contamination. Because the same MAG may be identified in multiple samples, dRep v.2.2.2
576 " was used to obtain a non-redundant set of MAGs by clustering genomes to a defined
577 average nucleotide identity (ANI, default 0.95) and returning the representative with the
578 highest dRep score in each cluster. dRep first filtered genomes based on genome size (default
579 > 5,000 bp) and quality (default > 50% completeness, < 10% contamination). MAGs were
580 scored on the basis of completeness, contamination, genome size and contig N50, with only
581 the highest scoring MAG from each secondary cluster being retained as the winning genome
582 in the dereplicated set. The abundance of each MAG was then quantified across samples by
583  mapping the reads to the non-redundant MAGs and determining the median coveragein 1 Kb
584  windows along each genome.

585

586 For the taxonomic annotation, ATLAS predicted the genes of each MAG sequence using
587  Prodigal v.2.6.3 ® with default parameters. Robust taxonomic annotation was assigned to
588  bins according to the genome taxonomy database (GTDB-tk ') release 95, v.5.0 (July 17,
589  2020). As such, GTDB-Tk taxonomy names are used throughout this paper. In addition,
500 MAG phylogenetic trees were built based on markers from GTDB-Tk and CheckM and
591 visualized using ggtree (v.3.0.2) in R package.

592  To assess the contribution of the constructed MAGs to the functional potential of the gut
593 microbiome, the predicted gene and proteins extracted by Prodigal during the CheckM
594  pipeline were compared to the EggNOG database 5.0 using eggnog-mapper (v2.0.1). From
595 this output, KEGG annotation (Kyoto Encyclopedia of Genes and Genomes) and CAZymes
506 annotation (Carbohydrate-active Enzyme) were extracted. Since the detection of KOs and
597 CAZymes families are likely to be influenced by sequencing depth, we first normalized their
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5908 abundance relative to the abundance of the MAG they derived from. Pathways attributed to
599  each KO were annotated from the KEGG

600 Database (downloaded 23-October-2021; https.//www.genome.jp/brite/lko00001).

601 The uniqueness of our predicted MAG catalog was confirmed by dereplicating them with the
602 121 MAGs produced by (Gilroy et al., 2021) and 3 reported by (Y oungblut et a., 2020) using
603 dRep v.3.2.0 ”°. dRep performed pairwise genomic comparisons by sequentially applying an
604 estimation of genome distance and an accurate measure of average nucleotide identity. The
605 visualization and comparison of highly similar genomes were performed using the CGView
606 family of tools (http://wishart.biology.ualberta.ca/cgview/).

607

608 Construction of theintegrated gene catalog

609  The establishment and assessment of the quality and representation of the microbiome gene
610 catalog was performed through the metagenomic ATLAS pipeline (v.2.4.4) ™. As described
611 above, we first assembled the clean reads into longer contigs.

612  Genes were predicted by Prodigal v.2.6.3 and then clustered using linclust ® to generate a
613 non-redundant gene catalog. Redundant genes were removed (> 95% identity and > 90%
614 overlap) with linclust. The quantification of genes per sample was done through the
615 “combine_gene coverages’ function in the ATLAS workflow, which aligned the high-
616 quality clean reads to the gene catalog. Taxonomic and function annotations were done based
617 on the EggNOG database 5.0 using eggnog-mapper (v.2.0.1). From these, the eggNOG
618 numbers corresponding to CAZymes based on homology searches to the CAZyme database
619 were retrieved. We used the derived eggNOG abundance matrix to obtain a CAZyme profile
620 per sample. Smilarly, KEGG annotation was retrieved from the EQgNOG output. KEGG
621 gene IDs were mapped to KEGG KOs and used to obtain the KEGG functional pathway
622  hierarchy.

623

624  Annotation of metagenome using Kaiju

625 The k-mer-based kaiju v. 1.8.0. (https:/qithub.com/bioinformatics-centre/kaiju) ° approach
626  was used for microbial taxonomic profiling of the shotgun metagenomes. Paired reads after
627 quality trimmed and decontamination from the horse genome were used and annotated
628  against the NCBI nr reference database (released on May 25™ 2020) containing all proteins
629 belonging to archaea, bacteria, eukaryota and virus for classification in Greedy run mode
630 with -a greedy -e 3 allowing for maximum three mismatches. By default, Kaiju returned a
631 “NA” if it could not find a taxonomic classification at certain ranks.

632

633 Resistome

634 The high-quality clean paired reads were aligned to the ResFinder database (accessed March
635 2018, v.4.0) using bowtie2 (v.2.3.5). ResFinder is a manually curated database of
636 horizontally acquired antimicrobial resistance (AMR) genes and contains many genes with
637 numerous highly similar alleles (i.e., B-lactamases). To avoid random assignment of read
638 pairs on these high-identity alleles, the database was clustered at 95% of identity level, over
639 200 bp using CDHIT-EST (options -G 0 -A 200 -d 0 -c 0.95 -T 6 -g 1) ® and a reference
640 sequence was attributed to each cluster. Two successive mappings were done: (i) a first
641 mapping with standard parameters (bowtie2 --end-to-end --no-discordant --no-overlap --no-
642  dovetail --no-unal) on the complete ResFinder database and (ii) a second mapping on the
643 clustered database using the reads from the first mapping, with less stringent parameters
644  (bowtie2 --local --score-min L,10,0.8). More than 99% of the reads from the first mapping
645 correctly aligned on a cluster reference sequence in the second mapping.

646 Counts from the second mapping were normalized by computing the RPKM (reads per
647  kilobase reference per million bacterial reads) value for each ResFinder reference sequence.
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648 The RPKM vaues were computed by dividing the mapping count on each reference with its
649 gene length and the total number of bacterial read pairs for the samples and multiplying by
650 10°. A minimum of 20 mapped reads was considered to validate the presence of an AMR
651 genecluster.

652

653 Biodiversity and richness analysis: a- and B-diversity

654 The microbiome R package allowed us to study global indicators of the gut ecosystem state,
655 including measures of evenness, dominance, divergences and abundance. Comparison of the
656  gut a-diversity indices between groups was performed by two-tailed Wilcoxon test (pairwise
657 comparison). Benjamini-Hochberg multiple testing correction pi<(10.05 was set as the
658  significance threshold for the comparisons between groups.

659

660 To estimate B-diversity, Bray-Curtis dissimilarity was calculated using the phyloseq R
661 package. All samples were normalized using the “rarefy even depth” function in the
662 phyloseq R package, which is implemented as an ad hoc means to normalize features that
663 have resulted from libraries of widely differing sizes. The PerMANOVA test (a non-
664 parametric method of multivariate analysis of variance based on pairwise distances)
665 implemented in the “adonis2” function from the vegan R package allowed testing the global
666  association between ecological or functional community structure and groups.

667 The core microbiome of individua samples was calculated using a detection threshold of
668 0.1% and a prevalence threshold of 95% in the microbiome R package.

669

670 Theinter-individual variationsin the gut microbiome composition and function

671 Theinter-individual variations in the gut microbiome composition and function were studied
672  based on the conceptual framework of community types 3. According to this framework, the
673  samples were clustered into hins based on their taxonomic similarity ®. Briefly, clustering
674  was performed with PAM # using Bray-Curtis distance of the normalized feature counts. The
675 optimal number of communities was chosen by the maximum average silhouette width,
676  known as the silhouette coefficient (SC) ¥.

677

678 Inference and Analysis of SPIEC-EASI Microbiome Networks

679 The SParse InversE Covariance Estimation for Ecological Association Inference method
680 (SPIEC-EASI) ® was used to identify sub-populations (modules) of co-abundance and co-
681 exclusion relationships between dominant phylotypes and CAZy classes abundances
682 matrices. Specifically, the method allows microorganisms and functions to interact in a
683 number of different ways, from bidirectional competition to mutualism or to not interact at
684 all. The statistical method SPIEC-EASI comprises two steps, first a transformation for
685 compositionality correction of the feature matrices and second an estimation of the
686 interaction graph from the transformed data using sparse inverse covariance selection. The
687  sparse graphical modeling framework was constructed using the “spiec.easi” function of the
688 SpiecEasi package (v.1.1.1). The features were clustered using the method = mb,
689 lambdamin.ratio = 1€, nlambda = 100, pulsar.params=list (thresh = 0.001). Regression
690 coefficients from the SPIEC-EASI output were extracted and used as edge weights to
691 generate afeature co-occurrence network R igraph package (v.1.2.6) and Cytoscape (v.3.8.2).
692

693 Integrativestatistical analysis

694 Dataintegration was carried out using several approaches and different combinations of data
695 sets. Prior to the integration, we applied some additional pre-processing steps on our
696 explanatory data sets. In particular, to eliminate intra-individual variability and focus on the
697  respective differential signals between T1 and TO, we considered A values (T1-TO) for each

14


https://doi.org/10.1101/2022.01.24.477461
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.24.477461; this version posted January 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

698 of these data sets, namely biochemical assay data, metabolome data, acylcarnitine profiles
699  and gene expression data, as previously described . For the transcriptome, we constructed a
700 matrix of log-transformed expression values between T1 and TO (i.e., the difference in log,-
701 normalized expression between T1 and TO, equivalent to the log, value of the TL/TO ratio) for
702  thedifferentially expressed mitochondrial-related genes (Suppl Table S8).

703

704  The integration of data was then performed using complementary methods and working with
705 different data sets available, namely: (1) A values of mitochondrial-related genes; (2) A
706  values of 'H NMR metabolites; (3) A values of the biochemica assay metabolites; (4) A
707  values of plasmatic acylcarnitines; (5) the fecal SCFAs at TO; (6) the bacterial, ciliate
708 protozoal and fungal loads at TO; (7) the dominant gut phylotypes at TO; (8) the CAZymes
709  profilesat TO; (7) the KOs at TO and the (8) athletic performance data.

710

711  As a firgt integration approach, a global non-metric multidimensional scaling (NMDS)
712  ordination was used to extract and summarize the variation in microbiome composition using
713  the“metaMDS’ function in the vegan R package. To determine the number of dimensions for
714  each NMDS, stress values were calcul ated.

715 The explanatory data sets were then fit to the ordination plots using the “envfit” function in
716  the vegan R package ® with 10,000 permutations. The effect size and significance of each
717  covariate were determined and al of the p-values derived from the “envfit” function were
718 Benjamini-Hochberg adjusted. Variation partitioning was performed using the “varpart”
719  function in vegan in R. The “varpart” function uses linear constrained ordination to assess
720  the shared and independent (partialling out the others) contributions (adjusted R?) of several
721  covariates on microbiome composition variation.

722  Asasecond integrative approach, the N-integration algorithm DIABLO of the mixOmics R
723  package (http://mixomics.org/, v6.12.2) was used. It is to be noted that, in the case of the N-
724 integration algorithm DIABLO, the variables of all the data sets were also centered and
725 scaled to unit variance prior to integration. In this case, the relationships existing among al
726  data sets were studied by adding a further categorical variable, i.e., the cardiovascular fitness
727  of horses. Horses that had poor cardiovascular fitness (n = 8) were compared to horses that
728  had enhanced cardiovascular fitness (n = 3). DIABLO seeks to estimate latent components by
729  modelling and maximizing the correlation between pairs of pre-specified datasets to unravel
730  similar functional relationships between them ®. A full weighted design was considered. To
731  predict the number of latent components and the number of discriminants, the “block.splsda”
732  function was used. In both cases, the model was first fine-tuned using the leave-one-out
733  cross-validation by splitting the data into training and testing. Then, classification error rates
734  were calculated using balanced error rates (BERS) between the predicted latent variables with
735  thecentroid of the class labels using the “max.dist” function.

736  Additionaly, the DESeq2 (v. 1.32.0) * R package was used to test for differential
737  abundances analysis between groups for each independent omic dataset. DESeq2 assumes
738 that counts can be modeled as a negative binomial distribution with a mean parameter,
739 allowing for size factors and a dispersion parameter. Next to the group, the horse dependency
740 wasincluded in the generalized linear model. The p-values were adjusted for multiple testing
741 using the Benjamini-Hochberg procedure. DESeq2 comparisons were run with the
742  parametersfitTypel =" “parametric’ and sfTypel =" “poscounts’.

743

744  Thevalidation cohort

745  The validation set consisted of 22 pure-breed or half-breed Arabian horses (12 females, 3
746 male and 7 geldings; age: 9.2 + 1.27) not included in the experimental set to ensure that the
747  observed effects were reproducible in a broader context (Suppl Table S13). Among the horses
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748 inthe validation set, five animals were enrolled in a 160 km endurance competition, while 17
749  horses were enrolled in a 120 km race. The management practices throughout the endurance
750 ride and the International Equestrian Federation (FEI) compulsory examinations, as well as
751 the weather conditions, terrain difficulty and altitude were that of the experimental set. In
752 fact, al the participants enrolled in the study (experimental and validation set) competed in
753  the same event during October 2015 in Fontainebleau (France). The cardiovascular capacity
754  was created as described in the “Performance measurement” section, that is, as a composite
755  of post-exercise heart rate, cardiac recovery time and average speed during the race. Then
756  after, the HIGH, MEDIUM and LOW groups were determined according to the interquartile
757  range of the composite cardiovascular fitness values, where HIGH included individuals with
758  cardiovascular fitness values above the 75" percentile, LOW below the 25" percentile and
759 MEDIUM theindividuals ranging in between.

760

761 Data Availability

762  The datasets presented in this study can be found in different online repositories. Microarray
763 expresson data are available in Gene Expression Omnibus (GEO) repository under the
764  accession number GSE163767
765  (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi7acc=GSE163767). Metabolomic data are
766  available in the NIH Common Fund’s Data Repository and Coordinating Center UrgK 1489;
767  (http://dev.metabolomicsworkbench.org:22222/data/ DRCCM etadata. phpM ode=Study& Stud
768  yIlD=ST000945).

769 The gut metagenome 16S rRNA targeted locus data are available in the
770 DDBJEMBL/GenBank under the accesson KBTQ00000000.1; (locus KBTQO01000000).
771 The corresponding BioProject is PRINA438436 and the accession numbers of the
772  BioSamples included in here are SAMNO08715729, SAMNO08715728, SAMNO08715727,
773  SAMNO08715725, SAMNO08715723, SAMNO08715721, SAMNO08715719, SAMNO08715718,
774  SAMNO08715714, SAMNO08715713, SAMNO08715710. The validation set data is available
775 under the same BioProject ID. Moreover, the raw metagenomic sequence data of the 11
776  athletes reported in this paper have been deposited in the NCBI short read archive (SRA)
777 under the same BioProject ID PRJINA438436. The temporary submission ID is
778  SUB10812702. All metagenome assemblies and sequences of MAGs have been deposited in
779 NCBI under the same BioProject ID PRINA438436. The temporary submission ID is
780 SUB10812003. All other data is available in the Supplementary Data and upon reasonable
781  request to the corresponding author.
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1025 FIGURES
1026
1027 Figure 1 - Description of the first horse gut gene catalog: core microbiome and
1028 taxonomic annotation
1029 (&) Contribution of different sample sources to gene content of the horse gut catalog. Vertical
1030 purple and blue bars represent the number of genes present in only one sample or shared
1031  between pairs of samples, respectively. Horizontal orange bars in the lower panel indicate the
1032 total number of genes contained in each sample; (b)Visualization of the taxonomic
1033  assignment of Illumina reads in a Krona plot using the software tool Kaiju; (c) Lollipop plot
1034 showing the read counts identified by the Kaiju resolved at the phylum level. Dots are
1035 colored by kingdom; (d) Heatmap depicting the core phylome and their prevalence at
1036 different detection thresholds (relative abundance). The percentage of shared items and the
1037  proportion of shared samples are represented on the y- and x-axis, respectively; (€) Heatmap
1038  showing the normalized counts of antimicrobial resistance (AMR) genes for each individual
1039  based on ResFinder database
1040
1041  Figure 2 - Gut micr obiome compaosition and structurein endurance horses
1042 (a) NMDS ordination analysis (Bray-Curtis distance) of dominant phylotypes composition.
1043  Points denote individual samples which are colored according to the clustering group. The
1044  shape of the dots indicates the competition level of horses; (b) Biplot values of the dominant
1045 phylotypes driving the NMDS ordination. The phylotypes contributing to the distinction
1046  between groups on a least one axis are depicted. Points are colored by phylum; (c)
1047  Taxonomic distribution of the relative abundance of phylain each individual. Individuals are
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1048  gplit by cluster; (d-€) Violin plot representing Shannon Diversity Index and inverse Simpson
1049 index, respectively. In all cases, colors indicate community classification, the community
1050 type 1 (red color) and community type 2 (blue color). Boxplots show median, 25" and 75™
1051 percentile, the whiskers indicate the minima and maxima and the points lying outside the
1052  whiskers of boxplots represent the outliers. Adjusted p values from Wilcoxon rank-sum tests;
1053  (f) NMDS ordination plot showing the covariates that contribute significantly to the variation
1054  of dominant phylotypes determined by “envfit” function. The arrows for each variable show
1055  the direction of the effect and are scaled by the unconditioned r? value. Dots represent
1056  samples, which are colored according to the type of community: the community type 1 (red
1057  color) and community type 2 (blue color); (g) Effect sizes of the main variables affecting the
1058 NMDS ordination. The length of the horizontal bars shows the amount of variance (r?)
1059 explained by each covariate in the model. Covariates are colored according to the type of
1060 dataset: athletic performance are in green and mitochondrial related genesin blue; (h) Violin
1061 plot representing the cardiovascular fitness, which was calculated as a composite of post-
1062  exercise heart rate, cardiac recovery time and average speed during the race. Colors indicate
1063 community classification, the community type 1 (red color) and community type 2 (blue
1064  color) and boxplots show median, 25" and 75" percentile, the whiskers indicate the minima
1065 and maxima and the points lying outside the whiskers of boxplots represent the outliers.
1066  Adjusted p values from Wilcoxon rank-sum tests.

1067

1068 Figure 3 - Sportomics: data integration supports the link between cardiovascular fitness
1069 and microbiome compaosition and functionality

1070 (a) Matrix scatterplot showing the correlation between the first components related to each
1071 dataset in DIABLO according to the input design; (b) Microbial genera contributing to the
1072  separation along with component 1 of the microbiome dataset. Microbiome data are centered
1073 log-ratio-transformed and bar length indicates loading coefficient weight of selected
1074  phylotypes, ranked by importance, bottom to top. Columns on the left depict the kingdom and
1075 phylum of each discriminant phylotype; (c) CAZymes contributing to separation along with
1076  component 1 of (d). CAZymes profiles are log-transformed median-scaled values. Bar length
1077 indicates loading coefficient weight of selected CAZymes, ranked by importance, bottom to
1078  top. In al cases, colors indicate community classification, the community type 1 (red color)
1079 and community type 2 (blue color). Column in the left depict the CAZy class; (d) Co-
1080 occurrence network analysis of dominant phylotypes and carbohydrate-active enzymes
1081 (CAZy) classes datasets using sparse inverse covariance estimation for ecological association
1082 inference (SPIEC-EASI). Louvain clustering was able to generate 12 feature co-occurrence
1083 modules. The two extreme assortative modules are depicted in detail using Cytoscape. A
1084 posditive correlation between nodes is indicated by red connecting lines, negative correlation
1085 by blue. Species and CAZymes features are denoted by a circle or triangle, respectively.
1086 Nodes are colored by phyla. Features with higher text size are those revealed as discriminant
1087  aong with component 1 by the MixOmics approach. Edge width corresponds to the strength
1088  of the association between features.
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