

A Genome-wide CRISPR Screen Identifies WDFY3 as a Novel Regulator of Macrophage Efferocytosis

Jianting Shi,^{1#} Xun Wu,^{1#} Ziyi Wang,¹ Fang Li,¹ Yujiao Meng,^{1,2} Rebecca M. Moore,¹ Jian Cui,¹ Chenyi Xue,¹ Katherine R. Croce,³ Arif Yurdagul Jr,⁴ John G Doench,⁵ Wei Li,⁶ Konstantinos S. Zarbalis,^{7,8,9} Ira Tabas,¹⁰ Ai Yamamoto,¹¹ Hanrui Zhang^{1*}

1. Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
2. Beijing University of Chinese Medicine, Beijing, China
3. Department of Pathology and Cell Biology, Columbia University, New York, NY USA
4. Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
5. Broad Institute of MIT and Harvard, Cambridge, MA, USA
6. Center for Genetic Medicine Research, Children's National Hospital; Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
7. Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Davis, CA, USA
8. Shriners Hospitals for Children, Northern California
9. UC Davis MIND Institute
10. Department of Medicine, Departments of Pathology & Cell Biology and Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
11. Department of Neurology, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA

These authors contributed equally.

*** Corresponding author:**

Hanrui Zhang MB PhD
Cardiometabolic Genomics Program,
Division of Cardiology, Department of Medicine
Columbia University Irving Medical Center
630 West 168th Street, P&S10-401
New York, NY 10032
Tel: (212) 304-7905
Email: hz2418@cumc.columbia.edu

Key words: macrophage, efferocytosis, autophagy, atherosclerosis, CRISPR

Abstracts

Phagocytic clearance of dying cells, termed efferocytosis, must occur efficiently to maintain homeostasis and prevent disease. Yet, our understanding of this important biological process remains incomplete. To search for novel regulators of efferocytosis, we performed a FACS-based genome-wide CRISPR knockout screen in primary murine macrophages. We identified a novel role for WDFY3 in efferocytosis by macrophages. WDFY3 deficiency in macrophages specifically impaired uptake, not binding, of apoptotic cells due to defective actin depolymerization. We further revealed that WDFY3 directly interacts with GABARAP, thus facilitating LC3 lipidation and subsequent lysosomal acidification to permit the degradation of apoptotic cell components. Although the C-terminus of WDFY3 was sufficient to rescue impaired degradation, full-length WDFY3 is still required for regulating uptake. Finally, WDFY3 is required for efficient efferocytosis *in vivo* in mice and in primary human macrophages. The work expands our knowledge of the mechanisms of macrophage efferocytosis, and more broadly, provides a general strategy for genome-wide CRISPR screen to interrogate complex functional phenotypes in primary macrophages.

Highlights

- Functional readout for pooled genome-wide CRISPR screen in primary macrophages.
- WDFY3 is discovered as a regulator of macrophage efferocytosis *in vitro* and *in vivo*.
- WDFY3 deficiency led to impaired uptake, as opposed to binding, of apoptotic cells due to defective actin depolymerization.
- WDFY3 directly interacts with GABARAP, facilitating LC3 lipidation and subsequent lysosomal acidification to permit the degradation of apoptotic cell components.
- C-terminal WDFY3 is sufficient to regulate the degradation of engulfed apoptotic cells while full-length WDFY is required for regulating uptake.

1 Introduction

2
3 Phagocytic clearance of dead or dying cells by phagocytes, a process known as efferocytosis, is
4 important in embryogenesis and development, and the resolution of pathological events¹⁻⁴. Impaired
5 efferocytosis lessens the effective clearance of dying cells, causing secondary necrotic cell death and
6 damages¹⁻⁴. Efferocytosis is performed by macrophages and to a lesser extent by other professional
7 phagocytes (such as monocytes and dendritic cells), non-professional phagocytes and specialized
8 phagocytes¹. Because of the fundamental role of efferocytosis, dysregulation of this process is associated
9 with many pathological states, including autoimmune diseases, atherosclerosis, and cancers². Given the
10 importance of this biological process and the therapeutic potential of targeting genes regulating
11 efferocytosis, identifying novel regulators and mechanisms of this biological process has broad impacts
12 on many diseases relevant to defective efferocytosis⁵⁻⁸.
13

14 Hypothesis-driven approaches have successfully identified many key regulators for the removal of dying
15 cells via efferocytosis¹⁻⁴. Yet, an unbiased approach to screening regulators of efferocytosis of apoptotic
16 cells (ACs) on a genome-wide scale is lacking. Unbiased screenings allow the identification of new
17 regulators from diverse and unexpected gene classes. Genetic screens of efferocytosis of ACs have
18 been performed in *Drosophila*⁹, but not in mammalian cells. Genome-wide CRISPR knockout screens
19 have recently been applied in macrophages differentiated from human U937 myeloid leukemia cell line
20 to identify regulators for phagocytosis of diverse substrates, including zymosan, myelin, red blood cells
21 with or without opsonization, and beads ranging from 0.3 μ m to 4 μ m^{10,11}; and in J774 murine
22 macrophage-like cell line to identify regulators for phagocytosis of cancer cells¹², illuminating both
23 universal and substrate-specific principles of phagocytosis. However, a screening platform using ACs as
24 the substrates and in primary macrophages is critical because efferocytosis involves AC-specific
25 recognition receptors¹³, stiffness and size-dependent engulfment mechanisms¹⁴, and cellular response
26 to degradation⁴, all of which cannot be recapitulated by phagocytosis of beads. In addition, immortalized
27 or tumor-derived monocytic cell lines often lack physiological relevance to fully resemble the spectrum of
28 physiological function in primary macrophages¹⁵.
29

30 To address this gap, we established and performed a pooled genome-wide CRISPR knockout screen for
31 efferocytosis in primary murine bone marrow-derived macrophages (BMDM) derived from the Rosa26-
32 Cas9 knock-in mice constitutively expressing Cas9 endonuclease. Our screen has successfully identified
33 well-known key regulators responsible for the recognition and uptake of ACs, supporting the screen's
34 performance. Individual validation of the strongest hits has uncovered WDFY3 (WD repeat and FYVE
35 domain containing 3), also known as Alfy (Autophagy-linked FYVE Protein), as a novel regulator
36 previously not implicated in the regulation of efferocytosis or phagocytosis. We further uncovered the
37 novel mechanisms by which WDFY3 regulates the uptake and degradation of ACs during efferocytosis
38 and demonstrated the role of WDFY3-mediated efferocytosis in mice *in vivo* and in primary human
39 macrophages *in vitro*. Our study also establishes a broadly-applicable platform for the genome-wide
40 screen of complex functional phenotypes in primary macrophages for unbiased novel discoveries.
41
42

43 **Results**

44

45 **A pooled, FACS-based genome-wide CRISPR knockout screen in primary macrophages identified
46 known and novel regulators of macrophage efferocytosis.**

47

48 Genome-wide forward genetic screens have the capacity to examine a biological process in an unbiased
49 manner and allow for novel discoveries. We first determined the proper cell types for a genome-wide
50 CRISPR screen of macrophage efferocytosis. Human monocytic cell lines, including U937 and THP-1,
51 can be differentiated to macrophage-like cells, which have previously been used for genome-wide
52 screening^{10,11}. Yet, we confirmed that U937 and THP-1 derived macrophages were not a proper model
53 for screening of efferocytosis as monocytic cell line-derived macrophages showed poor efferocytosis
54 capacity. Specifically, upon up to 24 hours of AC incubation, only less than 1-3 % of either U937-derived
55 or THP-1-derived macrophages were able to engulf ACs (**Supplementary Fig. 1a**). The results highlight
56 the importance of using physiologically relevant primary macrophages for screening of efferocytosis
57 regulators.

58

59 We thus leveraged the Rosa26-Cas9 knock-in mice constitutively expressing Cas9 endonuclease (JAX
60 #026179)¹⁶ and established a workflow for CRISPR gene editing in primary bone-marrow-derived
61 macrophages (BMDMs). Specifically, lentiviral gRNA libraries were transduced to isolated bone marrow
62 (BM) cells, which were then differentiated to BMDMs using L cell-conditioned media that provide
63 macrophage colony-stimulating factor (M-CSF) for macrophage differentiation. As illustrated in **Fig. 1a**
64 and **Fig. 1b**, for each replicate, 400-500 million BM cells were isolated and seeded. The lentiviral Brie
65 library¹⁷ (Addgene 73633) including 78,637 gRNAs targeting 19,674 mouse genes and 1,000 non-
66 targeting control gRNAs was transduced on day 1 with a low MOI to ensure that majority of the BM cells
67 integrate one viral particle for gene editing of a single gene. 48 hours after transduction, puromycin was
68 applied to select BM cells with successful lentiviral integration.

69

70 The success of the screening relies on the effective enrichment of macrophages with high vs. low
71 efferocytosis capacity. Since efferocytosis is a binary event, to facilitate an effective separation and
72 enrichment, we performed two rounds of efferocytosis sequentially. Specifically, human Jurkat cells (~10
73 μ m in diameter), an acute T cell leukemia cell line routinely used for *in vitro* efferocytosis assays, were
74 treated with staurosporine to induce apoptosis, followed by labeling with fluorescent linkers, PKH67
75 (Ex/Em: 490/502 nm) or PKH26 (Ex/Em: 551/567 nm), that incorporate into the cell membrane lipid
76 bilayer for stable labeling of the cell membrane. BMDMs were first incubated with PKH67-labeled ACs at
77 a ratio of 5:1 for AC : BMDM and allowed for efferocytosis. After 45 minutes, the unbound PKH67-labeled
78 ACs were washed away and BMDMs were cultured for two hours without ACs to allow degradation of
79 the engulfed cargo. BMDMs were then fed with PKH26-labeled ACs also at a ratio of 5:1. After 90 minutes,
80 unbound ACs were washed away and BMDMs were collected for flow cytometry sorting to separate the
81 BMDMs that engulfed both PKH67⁺ and PKH26⁺ ACs, i.e., the efficient eater (~5%), and BMDMs that did
82 not engulf any ACs, i.e., the non-eater (**Fig. 1c** and **Supplementary Fig. 1b**). Two independent replicates
83 were performed (**Supplementary Fig. 1c**). For each replicate, efferocytosis was performed in ~80 million
84 BMDMs on day 9 (**Supplementary Fig. 1b**). After sorting, we obtained ~3 million efficient eaters and ~16

85 million non-eaters. We have also collected 40 million BMDMs on day 9 without performing efferocytosis,
86 i.e. the input samples (**Supplementary Fig. 1b**).
87

88 We sequenced the sorted non-eaters, efficient eaters, and the input samples for each of the two replicates
89 and performed MAGeCK analysis¹⁸⁻²¹ to identify the top hits. We analyzed three comparisons: input vs.
90 non-eaters (**Supplementary Table 1**), input vs. efficient eaters (**Supplementary Table 2**), non-eaters
91 vs. efficient eaters (**Supplementary Table 3**). We expect that the comparison of input vs. non-eaters will
92 identify positive regulators whose knockout impairs efferocytosis, while the comparison of input vs.
93 efficient eaters will identify negative regulators whose knockout enhances efferocytosis. The comparison
94 of non-eaters vs. efficient eaters likely further improves the power to identify enriched gRNAs. As
95 expected, the analysis comparing non-eaters vs. efficient eaters was able to identify more known
96 regulators (**Fig. 1d**, **Supplementary Table 3** for the complete MAGeCK output). Non-targeting gRNAs
97 did not show enrichment in either sample (**Supplementary Fig. 1d**).
98

99 The non-eaters are expected to enrich for gRNAs targeting positive regulators essential for efferocytosis,
100 i.e., knockout would impair efferocytosis. Indeed, we identified many genes involved in actin
101 polymerization that is known to be essential for phagocytic cup formation, including *Rac1*, four members
102 of the five-subunit SCAR/WAVE complex (*Nckap1l*, *Wasf2*, *Abi1*, *Cyfip1*) and five members of the seven-
103 subunit ARP2/3 complex (*Actr2*, *Actr3*, *Arpc3*, and *Arpc4*) (**Fig. 1d**). We performed pathway analysis
104 using Ingenuity Pathway Analysis (IPA). The top-ranked positive regulators (negative score < 0.002, 163
105 genes) were enriched for pathways including “Fcγ Receptor-mediated Phagocytosis in Macrophages and
106 Monocytes”, “Actin Cytoskeleton Signaling” etc. (**Fig. 1e** and **Supplementary Table 4**), supporting the
107 screening performance in identifying well-known positive regulators. The results also showed that many,
108 but not all, genes involved in actin cytoskeleton remodeling and general phagocytosis are among the
109 most highly ranked screen hits (**Supplementary Fig. 2**).
110

111 Using high-content imaging analysis, we selectively validated *Arpc4* (top-2 ranked) and *Nckap1l* (top-14
112 ranked) using the gRNAs from the original screening library. gRNAs targeting *Arpc4* or *Nckap1l* led to
113 ~50% reduction in the efferocytosis of PKH26-labeled ACs by BMDM (**Supplementary Fig. 1e**). *Hacrv2*,
114 also known as TIM3, is one of the PtdSer-specific receptors involved in AC recognition and efferocytosis²².
115 *Hacrv2* was ranked at top-7 and was also validated with ~30% reduction in efferocytosis capacity
116 (**Supplementary Fig. 1e**).
117

118 The efficient eaters are expected to enrich for gRNAs targeting negative regulators, i.e. knockout would
119 enhance efferocytosis. Efferocytosis needs to be tightly controlled and there are very few known negative
120 regulators. While this manuscript is being prepared, the top-2 ranked hit for negative regulators, *Cd300a*
121 (**Fig. 1d**), was identified as a novel negative regulator²³. Specifically, the binding of an AC with *Cd300a*
122 and the activation of downstream signaling suppresses efferocytosis by myeloid cells, thus the blockage
123 of *Cd300a* enhanced efferocytosis²³. We were also able to validate the results in BMDM using a gRNA
124 targeting *Cd300a* (**Supplementary Fig. 1e**). Pathway analysis of top-ranked negative regulators (positive
125 score <0.001 for a total of 96 genes) implies that genes involved in cell cycle control and chromosomal
126 replication were enriched for top hits for negative regulators (**Fig. 1f** and **Supplementary Table 5**).

127
128 The screen has revealed many top-ranked hits that promise to inform novel biology and warrant further
129 validation and functional interrogation. Among the top hits for positive regulators, *Wdfy3*, the top-10
130 ranked, is a novel one that has not been implicated in the regulation of efferocytosis or phagocytosis, nor
131 identified in previous screens in non-mammalian cells or using other substrates (**Supplementary Fig. 2**
132 and **Supplementary Table 6**). Using two individual gRNAs, one from the Brie library and one designed
133 independently, and quantitative imaging analysis, we validated that knockout of *Wdfy3* in BMDMs led to
134 impaired efferocytosis of PKH26-labeled ACs (**Fig. 1g**). The defects were more significant when BMDMs
135 were challenged with higher AC to BMDM ratio, i.e., a condition mimicking high-burden efferocytosis.
136
137 Altogether, our group is the first to establish a CRISPR screen for regulators of efferocytosis, a complex
138 functional phenotype, in primary macrophages at genome-wide coverage. *WDFY3* is uncovered as a
139 novel regulator that we focus on determining the mechanisms.
140
141
142 **WDFY3 deficiency led to impaired uptake, as opposed to binding, of apoptotic cells due to**
143 **defective actin depolymerization.**
144
145 *WDFY3* encodes a highly conserved, large 400 kDa protein with 3526 amino acids. Similar to mouse²⁴,
146 *WDFY3* mRNA is the most abundantly expressed in the brain (**Supplementary Fig. 3a**). Consistently, at
147 the single-cell level, *WDFY3* is most abundantly expressed in multiple brain cell types (**Supplementary**
148 **Fig. 3b**). Among immune cells, *WDFY3* is abundantly expressed in myeloid cells, including macrophages,
149 neutrophils, and monocytes, but not T cells (**Supplementary Fig. 3b** and **Supplementary Fig. 3c**).
150
151 To further validate the role of *Wdfy3* knockout in efferocytosis *ex vivo*, we obtained *Wdfy3*^{fl/fl} mice created
152 by insertion of two *loxP* sites flanking exon 5 on a 129/SvEv x C57BL/6 background as previously
153 described²⁴. Myeloid-specific *Wdfy3* null mice were generated by breeding *Wdfy3*^{fl/fl} mice with LysMCre
154 mice (JAX 004781), i.e. *LysMCre*^{+/+}*Wdfy3*^{fl/fl} mice (Cre⁺) while using *LysMCre*^{-/-}*Wdfy3*^{fl/fl} littermates (Cre⁻)
155 as the controls (as illustrated in **Fig. 2a**). We confirmed efficient knockout by western blotting of *WDFY3*
156 in BMDMs from the Cre⁺ mice (**Fig. 2b**). Although global deletion of *Wdfy3* led to perinatal lethality²⁴,
157 myeloid-specific loss of *Wdfy3* did not affect body weight (**Supplementary Fig. 4a**) or organ weight,
158 including that of heart, liver, and spleen (**Supplementary Fig. 4b**). Moreover, the mice did not show
159 changes in circulating levels of neutrophils and monocytes, confirming that myelopoiesis was not affected
160 (**Supplementary Fig. 4c**).
161
162 We used flow cytometry to quantify the percentage of BMDMs with engulfed PKH26-labeled ACs. With
163 lower AC : BMDM ratio or at relatively early time points, efferocytosis of Cre- and Cre⁺ BMDMs appeared
164 similar (**Fig. 2c** and **Fig. 2d**). The defects were more significant with a high ratio of AC : BMDM that
165 resembles high-burden efferocytosis (**Fig. 2c**). Consistently, with an AC : BMDM ratio at 5:1, the defective
166 efferocytosis in Cre⁺ BMDMs was the most significant at later time points (**Fig. 2d**), also supporting more
167 pronounced defects over prolonged periods of challenges.
168

169 Efferocytosis involves the finding, recognition and binding, uptake, and subsequently the degradation of
170 the engulfed cargos^{1,2}. Our screen is designed to identify regulators essential for the binding and/or
171 uptake of ACs. The screen will not identify genes only regulating the degradation without affecting the
172 binding or uptake of ACs. The screen will also not identify genes specifically responsible for the
173 chemotactic cues termed “find-me” signals because the pooled design masks the defective secretion by
174 a small subset of edited cells. Yet, genes regulating the finding or degradation of ACs can be identified if
175 they also regulate the binding or uptake of ACs. We next set out to determine the molecular steps
176 regulated by WDFY3. We first aimed at determining if *Wdfy3* knockout affected binding and/or uptake
177 during efferocytosis. TAMRA-labeled apoptotic murine thymocytes were incubated with CellTracker-
178 labeled BMDMs pretreated with cytochalasin D that prevents actin polymerization thus the uptake of ACs.
179 Following incubation, unbound ACs were washed away and BMDMs were fixed and imaged. The
180 numbers of TAMRA-labeled ACs bound with each BMDM were counted and the percentage of BMDMs
181 with none, one, or two and more bound ACs was quantified for Cre⁻ and Cre⁺ BMDMs. The results support
182 that *Wdfy3* knockout did not affect the ability of BMDMs to bind ACs (**Fig. 2e**), suggesting that the uptake,
183 as opposed to binding, of ACs was impaired due to *Wdfy3* deficiency.

184
185 Indeed, time-lapse live-cell imaging confirmed that the time required for complete internalization of ACs
186 was longer in *Wdfy3* knockout BMDM compared with control (**Fig. 2f**), suggesting delayed phagosome
187 formation. Phagosome formation during phagocytosis of large particles requires the coordination of actin
188 polymerization and depolymerization, permitting the continual restructuring of the actin cytoskeleton¹⁴. It
189 has been described that complete internalization of the cargo is synchronized with actin depolymerization,
190 allowing subsequent phagosome maturation²⁵ (as also visualized in **Supplementary Video 1**). We thus
191 asked if *Wdfy3* knockout affected actin polymerization and/or depolymerization. We labeled BMDMs with
192 siR-actin, a fluorogenic, cell-permeable probe based on an F-actin binding natural product jasplakinolide,
193 and determined F-actin levels at baseline and upon efferocytosis of Hoechst-labeled ACs by flow
194 cytometry. F-actin signals at baseline were similar between Cre⁻ and Cre⁺ BMDMs (**Fig. 2g, left panel**).
195 Upon efferocytosis, BMDMs that had not engulfed ACs also showed comparable F-actin levels between
196 Cre⁻ and Cre⁺ BMDMs (**Fig. 2g, middle panel**). Yet, in BMDMs that engulfed ACs, *Wdfy3* knockout
197 BMDMs showed higher F-actin signals (**Fig. 2g, right panel**, $P = 0.34$). Although not statistically
198 significant, the observed trend led us to hypothesize that potential defects in actin depolymerization exist
199 in *Wdfy3* knockout BMDMs. Indeed, in *Wdfy3*-deficient BMDMs that had successfully internalized an AC,
200 we observed that many engulfed ACs were surrounded by F-actin rings (**Fig. 2h**). Confirming our
201 subjective observations, the percentage of BMDMs with F-actin surrounded cargos over all BMDMs that
202 had engulfed ACs was greater in Cre⁺ vs. Cre⁻ BMDMs (**Fig. 2h**). In Cre⁻ control BMDMs, the percentage
203 of BMDMs with F-actin surrounded cargos was the highest at 10 min after adding ACs and then
204 decreased over time (**Fig. 2h**). Yet, in Cre⁺ BMDMs, the percentage further increased and peaked at 20
205 min after adding ACs and remain greater than the percentage in Cre⁻ BMDMs (**Fig. 2h**), supporting
206 defective actin depolymerization.

207
208 Thus, defective actin depolymerization in *Wdfy3* knockout macrophages led to impaired uptake and
209 delayed phagosome formation during efferocytosis. The defects were specific to efferocytosis of ACs
210 because the phagocytosis of other substrates, including beads of different sizes (4 μ m and 10 μ m,

211 **Supplementary Fig. 5a and Supplementary Fig. 5b**), sheep red blood cells (RBCs) that were untreated,
212 stressed by heat treatment, or IgG-opsonized (**Supplementary Fig. 5c**), zymosan particles (500 nm,
213 **Supplementary Fig. 5d**), was not impaired in *Wdfy3* knockout BMDM. Consistently, previous screens
214 using the above-mentioned substrates in U937 monocytic line-derived macrophages¹¹, or using cancer
215 cells in J774 macrophages¹² did not uncover *Wdfy3* as a hit (**Supplementary Fig. 2** and **Supplementary**
216 **Table 6**). Thus, we discovered and validated a novel regulator specifically required for the uptake of ACs
217 during efferocytosis.

218
219 We have also validated the role of *Wdfy3* in macrophage efferocytosis in *Wdfy3*^{fl/fl} mice generated by the
220 Knock-Out Mouse Project (KOMP) with two *loxP* sites flanking exon 8, and maintained on C57BL/6N
221 background²⁶. Breeding to LysMCre mice led to efficient knockout of WDFY3 though a small amount of
222 residual protein remained detectable (**Supplementary Fig. 6a**). Consistently, we have observed impaired
223 uptake of ACs in Cre⁺ BMDMs (**Supplementary Fig. 6b**), further confirming that the role of *Wdfy3* in
224 macrophage efferocytosis is independent of the genetic strain or specific gene-inactivating mutation of
225 the mouse models.

226
227

228 **WDFY3 deficiency led to impaired degradation of engulfed ACs.**

229
230 Sustained accumulation of periphagosomal F-actin prevents efficient phagosome-lysosome fusion²⁵. We
231 thus reasoned that defective actin depolymerization may impair the degradation of the engulfed cargos.
232 To test the hypothesis, we determined the degradation of the engulfed ACs by Cre⁺ and Cre⁻ BMDMs.
233 We first incubated BMDMs with PKH26-labeled ACs for efferocytosis. After 60 minutes of incubation,
234 unbound ACs were washed away and BMDMs were returned to the incubator for three hours to allow
235 degradation of the engulfed cargos. BMDMs were then fixed and imaged. We counted the percentage of
236 AC⁺ BMDMs that showed non-fragmented PKH26 staining implicating impaired degradation. Indeed, the
237 percentage of BMDMs with non-fragmented ACs was greater in Cre⁺ vs. Cre⁻ BMDMs (**Fig. 3a**),
238 confirming impaired degradation in *Wdfy3*-deficient BMDMs.

239
240 To dissect if the impaired degradation in *Wdfy3* knockout BMDMs was also linked with impaired
241 lysosomal acidification, we dual-labeled ACs with Hoechst that stains DNA and is pH-insensitive, and
242 pHrodo-Red that is pH-sensitive and shows fluorescent signals only under an acidified environment in
243 the phagolysosome. *Wdfy3* knockout BMDMs showed impaired efferocytosis of Hoechst-labeled ACs
244 (**Fig. 3b, left panel**), consistent with the results when using PKH26-labeled ACs (**Fig. 2c**). For BMDMs
245 with engulfed Hoechst⁺ ACs, the percentage of pHrodo⁺/Hoechst⁺ BMDMs in Hoechst⁺ BMDMs is lower
246 in Cre⁺ BMDMs vs. Cre⁻ BMDMs, supporting impaired acidification in *Wdfy3* knockout BMDMs (**Fig. 3b,**
247 **right panel**). We observed consistent results using peritoneal macrophages (PMs) (**Fig. 3c**). Thus,
248 WDFY3 is required for both the uptake and the degradation of engulfed ACs during efferocytosis, and
249 *Wdfy3*-deficiency led to impaired acidification of the phagolysosome.

250
251

252 **WDFY3 deficiency led to defects in LAP.**

253

254 We next asked if the impaired degradation in *Wdfy3* knockout BMDMs was merely a consequence of the
255 defects in actin depolymerization during phagosome formation or mediated by other potentially
256 independent mechanisms. We first considered whether WDFY3 is involved in LC3-associated
257 phagocytosis (LAP), a process by which LC3-II conjugation to phagosomes enables phagosome-
258 lysosome fusion and AC corpse degradation²⁷⁻³². Our hypothesis is built on the known role of WDFY3 in
259 autophagic clearance of aggregated proteins, i.e. aggrephagy^{33,34}. Specifically, The C-terminus of both
260 mouse and human WDFY3 contains several functional domains (as illustrated in **Fig. 3d**)³⁵. Co-
261 immunoprecipitation and colocalization studies indicated that WDFY3 scaffolds a complex containing the
262 p62-positive, ubiquitinated, aggregation-prone protein and the core autophagy proteins ATG5, ATG12,
263 ATG16L1 and LC3/GABARAP^{33,36}. The human ortholog of the yeast *Atg8* includes the LC3 family (LC3A,
264 LC3B, LC3B2 and LC3C) and the GABARAP family (GABARAP, GABARAPL1 and GABARAPL2).
265 During aggrephagy, the WD40 repeats of WDFY3 are essential for its colocalization and interaction with
266 ATG5³³. The ATG5-ATG12 complex is required for an early stage of autophagosome formation, and
267 together with the membrane-bound ATG16L1 facilitate the conjugation of LC3/GABARAP proteins to
268 phosphatidylethanolamine, i.e. LC3 lipidation to form LC3-II, for autophagosome formation^{37,38}. Recent
269 work using HEK293T cells further revealed that WDFY3 has a conserved LIR (LC3-interacting region)
270 motif in its WD40 region that directly binds to GABARAP, responsible for its recruitment to LC3B during
271 aggrephagy³⁶.

272

273 We first set out to determine if endogenous WDFY3 interacts with GABARAP in macrophages. Whole-
274 cell lysates from *Cre*⁻ and *Cre*⁺ BMDMs were incubated with anti-GABARAP antibodies and were
275 immunoprecipitated using protein A/G beads. WDFY3 can be found in a complex with endogenous
276 GABARAP in *Cre*⁻ BMDMs, confirming WDFY3 and GABARAP interactions (**Fig. 3e**). No precipitation
277 was observed in *Wdfy3* knockout BMDMs, confirming the specificity of the antibody (**Fig. 3e**).

278

279 We thus reasoned that WDFY3 interacts with GABARAP, regulating the recruitment and lipidation of LC3
280 during LAP for subsequent cargo degradation. Consistent with previous literature³⁹, AC engulfment led
281 to increased LC3-II as determined by western blot (**Fig. 3f**). The increase was blunted in *Wdfy3*-deficient
282 BMDMs (**Fig. 3f**). We further confirmed the results using a flow cytometry-based assay as described⁴⁰.
283 Specifically, BMDMs were incubated with Hoechst-labeled ACs to allow efferocytosis. After removal of
284 unbound ACs, BMDMs were collected, fixed, and treated with digitonin to remove non-membrane bound
285 LC3, and then immunostained for LC3 that is lipidated and membrane-bound, i.e. LC3-II. As quantified
286 by flow cytometry, for BMDMs that had engulfed Hoechst-labeled ACs, *Wdfy3*-deficient BMDMs had
287 lower membrane-bound LC3-II (**Fig. 3g**), supporting impaired LC3 lipidation.

288

289 Taken together, WDFY3 regulates LAP-mediated degradation of engulfed ACs through interacting with
290 GABARAP and facilitating LC3 lipidation and the subsequent phagolysosomal degradation.

291

292

293 **A C-terminus fragment of WDFY3 is sufficient for regulating degradation yet the full-length protein
294 is required for the AC uptake during efferocytosis.**

295

296 It has previously been shown that a 1000 amino acid C-terminus fragment, that contains the PH-BEACH,
297 WD40, LIR, and FYVE domains of WDFY3 or the *D. melanogaster* ortholog, Bluecheese, was sufficient
298 to enhance the degradation of aggregated proteins in otherwise wild-type cells^{33,41}. We therefore asked
299 if this fragment was sufficient to regulate uptake and/or degradation during efferocytosis. We used
300 lentiviral transduction to express C-terminal WDFY3 in both Cre⁻ and Cre⁺ BM cells that were then
301 differentiated to BMDMs (as illustrated in **Fig. 4a**). Although expression of C-terminal WDFY3₍₂₅₄₃₋₃₅₂₆₎ did
302 not rescue the defective uptake in Cre⁺ BMDMs (**Fig. 4b**), it was sufficient to partly rescue the defects in
303 the acidification of the engulfed ACs (**Fig. 4c**). Mechanistically, expression of C-terminal WDFY3 restored
304 LC3 lipidation as quantified by both western blot (**Fig. 4d**) and flow cytometry (**Fig. 4e**). Thus, C-terminal
305 WDFY3 is sufficient to facilitate LC3 lipidation and subsequent phagosome-lysosome fusion and
306 phagolysosomal acidification, however, full-length WDFY3 is required for the regulation of efficient uptake
307 during efferocytosis.

308

309

310 **WDFY3 deficiency subtly affects the transcriptome of BMDMs without affecting macrophage**
311 **differentiation**

312

313 To gain an unbiased view of how *Wdfy3* knockout affects the transcriptomic signature of macrophages,
314 we performed RNA-seq in Cre⁻ and Cre⁺ BMDMs (n = 4 male mice, **Supplementary Fig. 7**). We first
315 confirmed that many receptors responsible for efferocytosis and phagocytosis, including *Fcgr1*, *Fcgr2b*,
316 *Fcgr3*, *Mertk*, *Timd4*, and many macrophage marker genes, were expressed at similar levels between
317 Cre⁻ and Cre⁺ BMDMs (**Supplementary Table 7**). Using a FDR-adjusted P value < 0.05 and absolute
318 fold-change > 1.5, only a small number of genes were identified as differentially expressed (DE) between
319 Cre⁻ and Cre⁺ BMDMs, i.e., 23 genes were upregulated while 31 genes were downregulated in Cre⁺ vs.
320 Cre⁻ BMDMs (**Supplementary Fig. 7a** and **Supplementary Table 7**).

321

322 We reasoned that modest changes in the expression of genes belonging to the same pathway may imply
323 functional impact. We thus performed gene-set enrichment analysis to determine which gene sets or
324 pathways were enriched in upregulated or downregulated genes due to *Wdfy3* knockout. The upregulated
325 genes in Cre⁺ BMDM were enriched for Human Reactome Pathways, including “IL-4 and IL-13 Signaling”
326 and “Collagen Formation”, and GO Biological Process term “Regulation of Chemotaxis” (**Supplementary**
327 **Fig. 7b** for representative plots, and **Supplementary Table 8** and **Supplementary Table 9** for the
328 complete GSEA output). The downregulated genes in Cre⁺ BMDM were enriched for Human Reactome
329 Pathway “Peroxisomal Lipid Metabolism” and Gene Ontology (GO) Biological Process “Fatty Acid
330 Catabolic Process” (**Supplementary Fig. 7c** for representative plots, and **Supplementary Table 10** and
331 **Supplementary Table 11** for the complete GSEA output). Overall, no clear pro-inflammatory or anti-
332 inflammatory gene signatures were identified in Cre⁺ BMDMs.

333

334 We thus confirmed that: (1) Despite the profound role of WDFY3 in AC uptake and degradation, the
335 observed transcriptomic modifications by *Wdfy3* knockout were only modest; (2) *Wdfy3* knockout did not
336 affect macrophage maturation, as macrophage marker genes were not differentially expressed. We

337 further confirmed that the percentage of F4/80⁺ macrophages in BMDMs and PMs was comparable
338 between Cre⁻ and Cre⁺ mice (**Supplementary Fig. 8a**). Population doubling during BMDM differentiation
339 was not different between Cre⁻ and Cre⁺ mice, supporting comparable differentiation and proliferation
340 capacity (**Supplementary Fig. 8b**).
341
342

343 **Mice with myeloid *Wdfy3* deficiency show impaired efferocytosis *in vivo*.**

344

345 To determine if *Wdfy3* regulates efferocytosis *in vivo*, we performed two *in vivo* efferocytosis assays in
346 Cre⁻ and Cre⁺ mice as illustrated in **Fig. 5a** (thymus efferocytosis) and **Fig. 5g** (PM efferocytosis).
347

348 For thymus efferocytosis (**Fig. 5a**), we treated Cre⁻ and Cre⁺ mice with dexamethasone that induces
349 apoptosis of thymocytes, using PBS as the control. 18 hours after injection, thymi were isolated and
350 weights were measured. The total number of cells per thymus was determined by dissociating one lobe
351 of the thymus to count the cell number and then normalized to the weight of both lobes of the thymus.
352 The dissociated cells were stained for Annexin V, a marker of apoptosis, and macrophage marker F4/80,
353 for quantification by flow cytometry (gating strategies were shown in **Supplementary Fig. 9a**). As
354 expected, in dexamethasone-treated mice, coupled processes of thymocyte apoptosis and phagocytic
355 clearance of dead cells led to reduced thymus weight (**Fig. 5b**) and the total number of cells per thymus
356 (**Fig. 5c**), accompanied by increased macrophage infiltration (**Fig. 5d**) and a remarkably higher
357 percentage of Annexin V⁺ cells in the thymus (**Fig. 5e**). We did not observe a significant change in thymus
358 weight or the total number of cells in *Wdfy3* knockout mice compared to controls, yet myeloid *Wdfy3*-
359 deficiency led to an increased percentage of Annexin V⁺ cells, implying impaired efferocytic clearance of
360 apoptotic thymocytes (**Fig. 5e**). Note that the impaired efferocytic clearance in Cre⁺ mice was unlikely to
361 be caused by reduced macrophage availability because the percentage of macrophages per thymus was
362 comparable between Cre⁻ and Cre⁺ mice treated with either PBS or dexamethasone (**Fig. 5d**). To assess
363 efferocytosis in the thymus *in situ*, thymus sections were labeled and fluorescently imaged for TUNEL⁺
364 cells (ACs) that were either associated with CD68⁺ macrophages as a result of efferocytosis, or not
365 associated with macrophages, i.e. “free” ACs, indicating inefficient efferocytic clearance. The ratio of
366 macrophage-associated vs. free ACs was significantly lower in Cre⁺ mice, further supporting impaired
367 efferocytosis in *Wdfy3* knockout mice (**Fig. 5f**).
368

369 For PM efferocytosis (**Fig. 5g**), TAMRA-labeled apoptotic thymocytes were injected intraperitoneally into
370 Cre⁻ and Cre⁺ mice. 15 minutes after injection, peritoneal exudate was collected and stained for F4/80 to
371 identify macrophages. The percentage of TAMRA⁺ PMs was quantified by flow cytometry (gating
372 strategies were shown in **Supplementary Fig. 9b**). Consistent with thymus efferocytosis, the percentage
373 of TAMRA⁺ PMs was significantly lower in Cre⁺ mice (**Fig. 5h**), supporting reduced AC efferocytosis by
374 PMs *in vivo*.
375
376

377 **WDFY3 is required for efferocytosis in human macrophages**

378

379 We further confirmed that in human macrophages, knockdown of WDFY3 by transfection of small
380 interfering RNA (siRNA) led to impaired uptake and degradation of engulfed ACs during efferocytosis
381 (**Fig. 6a-6e**). Human CD14⁺ monocytes were isolated from buffy coats of three independent subjects and
382 differentiated to macrophages (human monocyte-derived macrophages, HMDMs) using M-CSF. On day
383 5, non-targeting control siRNA pool or WDFY3-targeting siRNA pool were transfected using
384 Lipofectamine RNAiMAX (**Fig. 6a**). At 48-hour post-transfection, efficient knockdown of WDFY3 was
385 confirmed at both mRNA (**Fig. 6b**) and protein levels (**Fig. 6c**). We then performed efferocytosis of human
386 Jurkat cells labeled by both Hoechst and pHrodo. Consistent with the results in murine macrophages,
387 both uptake and acidification (**Fig. 6d**) of ACs were impaired in HMDMs with siRNA-mediated *WDFY3*
388 knockdown. The percentage of HMDMs with non-fragmented ACs was greater with *WDFY3* knockdown
389 (**Fig. 6e**), confirming impaired degradation. The results support the role of *WDFY3* in efferocytosis by
390 human primary macrophages. This result is consistent with *WDFY3*'s level of conservation across
391 mammalian species.
392

393 We also set out to determine how *WDFY3* may be regulated during inflammation using our previously
394 published RNA-seq data of human HMDMs, either unstimulated (M0) or stimulated with LPS and IFNy
395 (M1-like) for 18-20h⁴². M1-like inflammatory stimulation reduced *WDFY3* mRNA (**Fig. 6f**). Thus, reduced
396 *WDFY3* during inflammation and subsequently impaired *WDFY3*-mediated macrophage efferocytosis
397 may contribute to impaired efferocytic clearance of ACs *in vitro* and *in vivo*, exacerbating inflammation.
398
399

400 Discussion

401 We developed a genome-wide CRISPR screen in primary macrophages. By focusing on efferocytosis, a
402 complex macrophage functional phenotype, we illustrated the versatility of pooled screens and provided
403 an effective approach for genome-wide CRISPR screening in primary macrophages derived from Cas9
404 transgenic mice. We have identified many known genes regulating efferocytosis and general
405 phagocytosis, illuminating the most important genes essential for the uptake of ACs during efferocytosis.
406 We have also uncovered and validated *WDFY3* as a novel regulator specifically regulating the
407 phagocytosis of dying cells, but not other substrates, using orthogonal assays *in vitro* and *in vivo*.
408 Mechanistically, *WDFY3* deficiency led to impaired phagosome formation due to defects in actin
409 depolymerization. We further revealed that *WDFY3* directly interacts with GABARAP, one of the seven
410 members of the LC3/GABARAP protein family, to facilitate LC3 lipidation and the efficient degradation of
411 the engulfed cargo (**Fig. 7** for a schematic summary). Further, *WDFY3* expression was suppressed by
412 inflammatory stimulation. Thus, *WDFY3* regulates multiple steps during efferocytosis. Targeting *WDFY3*
413 may have therapeutic implications for diseases related to defective efferocytosis.
414

415 We unexpectedly uncovered a novel role of *WDFY3* in LAP. The detailed molecular mechanisms require
416 further investigation. FYVE domain is known to bind phosphatidylinositol 3-phosphate (PI3P). PI3P is
417 produced during both autophagosome and phagosome formation and is required for the recruitment of
418 autophagic machinery for downstream fusion with lysosomes. It is therefore plausible that during
419 efferocytosis, *WDFY3* may be recruited through its known PI3P binding domain and acts as a scaffold
420

421 that bridges ACs and autophagic machinery to regulate phagosome-lysosome fusion and lysosomal
422 degradation of the engulfed cargos. Other questions remain unanswered, e.g. whether identical or
423 different functional domains and binding partners have been involved in efferocytosis vs. in WDFY3-
424 mediated aggrephagy; what is the function of N-terminal WDFY3; which molecular domains are required
425 and sufficient for the role of WDFY3 in uptake and/or degradation and what are their protein-protein
426 interaction partners. Pull-down experiments using specific domains of WDFY3 followed by quantitative
427 proteomic screening, and live-cell imaging of endogenously tagged WDFY3 at baseline and during
428 efferocytosis will further uncover these molecular mechanisms.

429

430 WDFY3 was highly expressed in myeloid cells compared with other immune cells. WDFY3 expression in
431 HMDM was reduced by proinflammatory stimulation with LPS and IFNy. The role of WDFY3-mediated
432 efferocytosis in inflammation resolution and the therapeutic potential to enhance WDFY3 in diseases
433 related to defective efferocytosis warrant further investigation. Indeed, overexpression of C-terminal
434 WDFY3 (WDFY3₂₉₈₁₋₃₅₂₆) can enhance aggrephagy in neurons as indicated by increased aggregate
435 clearance^{33,41}, supporting the therapeutic premise to target macrophage WDFY3 to stimulate
436 efferocytosis. Therapeutic activation of WDFY3 may represent a pro-efferocytotic therapy in
437 atherosclerosis and other diseases related to defective efferocytosis.

438

439 The screen has implied many highly ranked, potentially novel regulators of macrophage efferocytosis.
440 Among the top-ranked positive regulators, in addition to *Wdfy3*, *Sh3glb1*, *Snx24*, and *Vps33a* are
441 annotated in autophagy-related pathways (**Supplementary Table 3**). The generation of PI3P on the
442 phagosomal membrane recruits LC3-conjugation machinery, and abrogation of LC3 lipidation at the
443 membrane impairs phagosome maturation and lysosome-mediated degradation^{1,28}. *Sh3glb1* activates
444 lipid kinase activity of PIK3C3 during autophagy by associating with the PI3K complex II (PI3KC3-C2)⁴³.
445 *Snx24* contains a PX domain that mediates specific binding to membranes enriched in PI3P⁴⁴. *Vps33a*
446 is required for lysosome fusion with endosomes and autophagosomes⁴⁵. These top screen hits may
447 represent additional novel components of the cellular machinery that regulates efferocytosis. These
448 promising targets and other potential novel regulators as uncovered by the screen have tremendous
449 potential for additional novel discoveries. In our genome-wide screen, we employed a strategy of
450 interpreting the results with a relatively permissive FDR threshold. Secondary screens with an increased
451 number of gRNAs per gene and the number of cells infected per gRNA are expected to further improve
452 the specificity and sensitivity for pooled screens in primary cells⁴⁶.

453

454 Furthermore, this screening platform can be adapted to screen for phagocytic regulators of distinct
455 substrates, e.g. bacteria and amyloid- β aggregates, for which the engulfment by physiologically-relevant
456 primary macrophages will be more informative, and to study gene pairs with epistatic interactions using
457 libraries with multiplexed gRNAs. Our platform will facilitate the identification of efferocytosis regulators
458 affecting distinct molecular steps, including recognition and degradation. For example, by applying
459 different selection strategies to separate macrophages with engulfed and acidified cargos from those with
460 engulfed yet non-acidified cargos, genes specifically regulating the intracellular processing and
461 degradation can be systematically interrogated. Further, screening for regulators responsible for
462 efferocytosis of dying cells undergoing different modes of cell death can be studied. Since the number of

463 macrophages required for genome-wide coverage and the required Cas9 transgenic expression makes
464 it impractical for genome-wide pooled screens to be performed in human primary macrophages, screens
465 in primary murine macrophages provide opportunities for physiologically-relevant discoveries of novel
466 biology, which can then be validated in human macrophages. Our experimental framework also provides
467 a general strategy for systematic identification of genes of interest and uncovering novel regulators of
468 complex macrophage functions, such as lipid uptake and foam cell formation. This genetic platform
469 promises to accelerate clinically relevant, mechanism-based translational research projects in
470 macrophage biology and related human diseases.

471

472 **In summary**, we have established a pooled genome-wide CRISPR knockout screen in primary
473 macrophages for discoveries of novel regulators of macrophage efferocytosis. The screen has revealed
474 WDFY3 as a novel regulator of efferocytosis *in vitro* and *in vivo*, in the mouse and in human cells. The
475 findings advanced our understanding of fundamental mechanisms of efferocytosis regulated by WDFY3.
476 The screen top hits may likely contain additional novel regulators that can be further validated and
477 promise to yield insights into diseases manifested by dysregulated efferocytosis. The innovative screen
478 approaches established in this project are of broad and fundamental value to the community for
479 conducting functional screens of novel regulators of complex macrophage function.

480 **Methods**

481

482 The source of cell lines, mouse strains, gRNA sequences, siRNAs, primers, plasmids, antibodies,
483 chemicals, and other assay kits and reagents were summarized in the Supplemental Information.

484

485 **Cell Lines**

486 Cell lines, including Jurkat (lymphocytes, human acute T cell leukemia), THP-1 (monocytes, human acute
487 monocytic leukemia), U937 (monocytes, human histiocytic lymphoma), and L-929 (mouse fibroblasts)
488 were obtained from ATCC and handled according to the instructions provided on the ATCC product sheet.

489

490 **Bone Marrow Isolation and Differentiation to Bone Marrow-Derived Macrophages (BMDMs)**

491 Bone marrow (BM) cells from 8-12 week old mice were isolated by flushing femurs and tibia with DMEM
492 basal medium using 10 mL syringes with 22G needles. The isolated BM cells were cultured at 37°C, 5%
493 CO₂ on non-tissue-culture-treated vessels for 7-10 days in BMDM culture medium containing DMEM
494 supplemented with 10% (vol/vol) heat-activated fetal bovine serum (HI-FBS), 20% (vol/vol) L-929
495 fibroblast conditioned medium, and 2 mM L-Glutamine. During differentiation, the growth medium was
496 replaced with fresh medium 96 h after seeding and then every 2-3 days. In vitro assays were performed
497 in BMDMs from day 8 to day 10.

498

499 **Peritoneal Macrophage (PM) Isolation**

500 Cold PBS was injected into the peritoneum of donor mice for a 10-min incubation. Peritoneal exudates
501 were then collected using 10 mL syringes with 21G needles and plated on non-tissue-culture-treated
502 vessels. Floating cells were removed 6 h after plating and the attached cells were used as resident
503 peritoneal macrophages (PMs). PMs were maintained in DMEM supplemented with 10% (vol/vol) HI-
504 FBS, 20% (vol/vol) L-929 fibroblast conditioned medium, and 2 mM L-Glutamine for 24 h at 37°C, 5%
505 CO₂ before indicated assays⁴⁷.

506

507 **Human Monocyte Derived Macrophages (HMDMs)**

508 Buffy coats of anonymous, de-identified healthy adults were obtained from the New York Blood Center
509 (NYBC) for isolating peripheral blood mononuclear cells (PBMCs). Buffy coats were diluted with 1X DPBS
510 supplemented with 2 mM EDTA at a 1:1 ratio, i.e. 8 mL buffy coats were diluted with 8 mL DPBS to a
511 total volume of 16 mL. The diluted buffy coats were carefully laid on 9 mL Ficoll-Paque solution, i.e. a 4:3
512 ratio in 50-mL conical tubes and centrifuged at 400 x g for 40 min at 20°C without brake. PBMC layer
513 was transferred and washed with washing buffer (1X DPBS, 2% (vol/vol) HI-FBS, 5 mM EDTA, 20 mM
514 HEPES and 1 mM sodium pyruvate), centrifuged at 500 x g for 10 min at 4°C. The PBMC pellets were
515 washed again in RPMI-1640 medium containing 20% (vol/vol) HI-FBS. The pellets were then
516 resuspended and cultured in RPMI-1640 medium supplemented with 20% (vol/vol) HI-FBS and 100
517 ng/mL human macrophage colony-stimulating factor (M-CSF) for 7-10 days⁴⁸. The growth medium was
518 replaced with fresh medium 96 h after seeding and then every 2-3 days.

519

520 **THP-1 and U937 Differentiation to Macrophages**

521 THP-1 human acute monocytic leukemia cell line was obtained from ATCC and grown in suspension in
522 THP-1 culture medium containing RPMI-1640 supplemented with 10% (vol/vol) HI-FBS, 1 mM Sodium
523 Pyruvate, 10 mM HEPES, and 50 μ M 2-Mercaptoethanol. THP-1 macrophages were differentiated from
524 THP-1 cells in the above culture media supplemented with 100 nM Phorbol 12-myristate 13-acetate (PMA)
525 for 24 h at a seeding density of 1×10^6 cells per well of a 6-well tissue culture plate. PMA-containing
526 media was then removed and replaced with THP-1 culture media for 48 h culture. The same seeding
527 density was used for U937 differentiation to macrophages with 50 nM PMA for 3 days¹¹.
528

529 **Experimental Animals**

530 Animal protocols were approved by Columbia University's Institutional animal care and use committee.
531 All animals were cared for according to the NIH guidelines. Mice were socially housed in standard cages
532 at 22°C under a 12-12 h light-dark cycle with *ad libitum* access to water and food provided by the mouse
533 barrier facility. Rosa26-Cas9 knockin mice were obtained from the Jackson Laboratory (Cat# 026179)
534 (female mice were used for the CRISPR screen and validation). *Wdfy3*^{fl/fl} mice were obtained from Dr. Ai
535 Yamamoto's lab³⁴ and Dr. Konstantinos Zarbalis's lab²⁶. Myeloid-specific *Wdfy3* knockout mice were
536 created by crossing LysMCre^{+/−} mice with *Wdfy3*^{fl/fl} mice. LysMCre^{+/−}*Wdfy3*^{fl/fl} mice (Cre⁺) had myeloid-
537 specific knockout of *Wdfy3*, while LysMCre^{−/−}*Wdfy3*^{fl/fl} littermates (Cre[−]) served as controls (both male and
538 female mice were used).
539

540 **Lentiviral Plasmid Construction**

541 The Brie murine CRISPR knockout pooled library in the lentiGuide-Puro backbone was obtained from
542 Addgene (#73663)¹⁷. To validate the top screen hits using individual gRNAs, pairs of oligonucleotides
543 with BsmBI-compatible overhangs were separately annealed and cloned into the lentiGuide-Puro vector
544 (Addgene #52963) using standard protocols available via <https://www.addgene.org/52963/>. To validate
545 the role of *Wdfy3* using a separate plasmid platform, gRNA targeting *Wdfy3* was selected from the murine
546 Sanger lentiviral CRISPR library (Sigma) and the *Wdfy3*-targeting lentiviral vector, as well as the non-
547 targeting control vector, were obtained (Sigma). To overexpress C-terminal WDFY3, pLE4-WDFY3₂₅₄₃₋
548 ₃₅₂₆ was constructed by inserting Myc-WDFY3₂₅₄₃₋₃₅₂₆, which was from pcDNA-myc-WDFY3₂₅₄₃₋₃₅₂₆
549 provided by Dr. Ai Yamamoto³³, into the pLE4 lentiviral backbone. eGFP was then inserted into the N-
550 terminal of WDFY3 to generate pLE4-eGFP-WDFY3₂₅₄₃₋₃₅₂₆ to allow the identification of WDFY3-
551 overexpressing population by flow cytometry upon transduction.
552

553 **Lentiviral Packaging and Transduction**

554 Lentivirus particles were generated from HEK293T cells (ATCC CRL-3216) by co-transfection of lentiviral
555 vectors with the packaging plasmid psPAX2 (Addgene #12260) and envelope plasmid pMD2G (Addgene
556 #12259) using FuGene 6 transfection reagent (Promega). The medium was changed 18 h after
557 transfection. 48 h after transfection, lentiviral supernatants were harvested and filtered through 0.45- μ m
558 SFCA filters (Corning). Lentiviral particles were further concentrated using Lenti-X concentrator
559 (Clontech) following the manufacturer's instructions.
560

561 Mouse BM cells were isolated and plated (day 0). On day 1, BM cells were virally transduced in BMDM
562 culture medium supplemented with 10 μ g/mL polybrene. On day 2, half of the medium was replenished

563 with fresh BMDM culture medium. On day 6, the transduced cells underwent puromycin selection at 5
564 $\mu\text{g}/\text{mL}$ for 48 h. On day 9, i.e. 24h after removing puromycin, BMDMs were used for efferocytosis assays.
565 The pLE4 lentiviral vector does not have a puromycin-resistant gene, thus no antibiotics selection was
566 performed.

567

568 **Induction of Apoptosis and Fluorescent Labeling of Apoptotic Cells (ACs)**

569 Apoptotic Jurkat cells were generated by treating Jurkat cells with 5 $\mu\text{g}/\text{mL}$ staurosporine in RPMI-1640
570 medium for 3 hours at a density of 2.5×10^6 cells/mL at 37°C, 5% CO₂. The method routinely yields
571 greater than 90% Annexin V-positive apoptotic Jurkat cells. After washing in 1X DPBS, apoptotic Jurkat
572 cells were resuspended at a concentration of 2×10^7 cells/mL in Diluent C with either PKH67 (green
573 fluorescence) or PKH26 (red fluorescence) per the manufacturer's instruction. After labeling, the cells
574 were rinsed twice with DMEM basal medium containing 10% HI-FBS and immediately used for
575 efferocytosis assay. For labeling with other fluorescent probes, ACs were resuspended at a density of
576 2.5×10^6 cells/mL and incubated with 20 ng/mL pHrodo red (Life Technologies) and Hoechst 33342
577 (Invitrogen) for 30 min in 1X DPBS.

578

579 To isolate mouse thymocytes and induce apoptosis, thymi were dissected from C57BL/6J mice and were
580 grounded and filtered through a 40 μm cell strainer to obtain single-cell suspension. The induction of
581 apoptosis was initiated by incubating the thymocytes with 50 μM dexamethasone in DMEM at 37 °C, 5%
582 CO₂ for 4 h. The cells were then stained with 10 $\mu\text{g}/\text{mL}$ TAMRA (Invitrogen) at a concentration of 2×10^7
583 cells/mL in serum-free DMEM for 25 min.

584

585 **Preparation of Sheep Red Blood Cells (RBCs) for Efferocytosis**

586 Sheep red blood cells (RBCs) (Rockland) were obtained. For heat-shock treatment, RBCs were
587 incubated under 56°C in a water bath for 5 min⁴⁹. For IgG-opsonization, RBCs were incubated with 1
588 $\mu\text{g}/\text{mL}$ anti-RBCs antibodies in DMEM basal medium containing 10% (vol/vol) HI-FBS to conjugate with
589 IgG at 37°C, 5% CO₂ for 1.5 h⁴⁹. The non-treated, heat-shock treated or IgG-conjugated RBCs were
590 labeled with PKH67 following the same procedures for the labeling of apoptotic Jurkat cells.

591

592 **In Vitro Efferocytosis and Phagocytosis Assays**

593 For imaging-based quantification, macrophages were plated in 96-well plates at a density of 0.3×10^5
594 per well. For flow cytometry-based quantification, macrophages (BMDMs, PMs, or HMDMs) were plated
595 in 6-well or 24-well plates at a density of 1.5×10^6 per well or 0.2×10^6 per well, respectively.
596 Fluorescently-labeled apoptotic cells were co-incubated with macrophages at a 5:1 AC : macrophage
597 ratio for 1 h (or as described in Figures) at 37°C, 5% CO₂. Macrophages were then washed with 1X DPBS
598 gently to remove unbound targets. For imaging-based quantification, macrophages were fixed with 2%
599 PFA for 30 min, rinsed 3 times with 1X DPBS, and counterstained by DAPI. For flow cytometry-based
600 quantification, macrophages were lifted using CellStripper, a non-enzymatic cell dissociation solution, for
601 live cell analysis. The phagocytosis of beads, RBCs, and zymosan particles by BMDMs was determined
602 upon incubation for 1 h at the specific ratio or concentration as specified in the respective figures.

603

604 **CRISPR-Cas9 Screen for efferocytosis in BMDMs**

605 CRISPR-Cas9 screens were performed using the Brie library¹⁷. BM cells isolated from *Rosa-Cas9*
606 knockin mice were virally transduced at a low multiplicity of infection (MOI) of 0.3 and targeting ~1,000
607 fold coverage of the library. After puromycin selection, BMDMs were dissociated and replated in 10-cm
608 tissue culture plates at a density of 6×10^6 per plate for two-round efferocytosis. For the 1st round, PKH67-
609 labeled ACs were incubated with BMDMs at a 5:1 ratio for 45 min. After removing the unbound ACs,
610 macrophages were rested for 3 h before the 2nd round, in which PKH26-labeled ACs were incubated with
611 BMDMs at a 5:1 ratio for 90 min. Unbound ACs were removed and BMDMs were collected for sorting on
612 BD Influx. The sorted populations were processed individually for genomic DNA extraction using DNeasy
613 Blood and Tissue Kit (Qiagen) and subjected to PCR reactions to generate the libraries. The purified
614 PCR products were sequenced on Illumina NextSeq500 system to determine gRNA abundance in two
615 independent replicates. Data were analyzed using MAGeCK (Model-based Analysis of Genome-wide
616 CRISPR-Cas9 Knockout²¹ to obtain ranked lists of screen hits. Independent validation of top screen hits
617 by individual gRNAs was performed by lentiviral transduction of gRNA in *Rosa-Cas9* knockin BM cells
618 and differentiation to BMDM followed by efferocytosis assays and quantification²³.
619

620 **Analysis of Macrophage Capability of Binding**

621 BMDMs were stained with 0.5 μ M CellTracker Green CMFDA (5-chloromethylfluorescein diacetate) for
622 60 min. The CellTracker dye freely passes through cell membranes and is well-retained in cells, allowing
623 labeling of cytoplasmic area. BMDMs were then treated with 5 μ M cytochalasin D for 30 min. Cytochalasin
624 D blocks the assembly and disassembly of actin monomers, thus preventing internalization of ACs. The
625 treated BMDMs were then incubated with TAMRA-stained apoptotic mouse thymocytes for 30 min at
626 37°C, 5% CO₂ to allow binding. The unbound ACs were extensively washed with 1X DPBS, BMDMs were
627 fixed with 2% PFA for 30 min and washed with 1X DPBS for 3 times, followed by imaging with
628 ImageXpress Micro 4 High-Content Imaging System with a Nikon Plan Apo λ 20x/0.75 objective lens to
629 analyze the percentage of macrophages with bound ACs.
630

631 **Time-lapse Imaging of Phagosome Formation**

632 BMDMs cultured on chambered coverslips with 8 individual wells (ibidi) at a density of 0.12×10^6 were
633 stained with 0.5 μ M CellTracker Green CMFDA Dye (Invitrogen) in DMEM and 10% (vol/vol) HI-FBS for
634 60 min. The medium was replaced with fresh DMEM containing 10% HI-FBS and apoptotic Jurkat cells
635 were added at a 5:1 AC : BMDM ratio. BMDMs were imaged with Nikon Ti Eclipse inverted microscope
636 for spinning-disk confocal microscopy equipped with a 60x/1.49 Apo TIRF oil immersion lens. Images of
637 the same fields were recorded at 30 s intervals for 20 min.
638

639 **Visualization and Quantification of F-actin Dynamics during Efferocytosis**

640 BMDMs plated on 96-well plates were stained with 0.5 μ M CellTracker Green CMFDA Dye (Invitrogen)
641 and 1 μ M SiR-actin (Cytoskeleton) for 60 min. ACs labeled by NCS-nucleomask blue (Invitrogen) were
642 added to the macrophages to replace the staining medium at a 5:1 AC : macrophage ratio for 1 h
643 efferocytosis. Macrophage monolayer was then vigorously washed with 1X DPBS to remove unbound
644 ACs, fixed with 2% PFA for 30 min and washed with 1X DPBS for 3 times, and imaged by ImageXpress
645 Micro4 high content microscopy (Molecular Device) with a Nikon Plan Apo λ 40X/0.95 objective lens. The

646 percentage of macrophage with bright F-actin ring, as an indicator of F-actin polymerization, was
647 quantified.

648

649 To quantify F-actin intensity by flow cytometry, BMDMs plated on 6-well non-tissue culture plates were
650 incubated with Hoechst-labeled ACs for 1h. Unbound ACs were washed away and BMDMs were
651 collected and fixed by 2% PFA for staining with 1 μ M siR-actin in washing buffer (1X DPBS, 2% (vol/vol)
652 HI-FBS, 5 mM EDTA, 20 mM HEPES and 1 mM sodium pyruvate). siR-actin-labeled F-actin levels were
653 quantified as the mean fluorescence intensity (MFI) of siR-actin in BMDMs with or without engulfment of
654 ACs.

655

656 **Analysis of Fragmentation of Engulfed AC Components**

657 PKH26-labeled ACs were added to BMDMs or HMDMs and incubated for 45 min. Unengulfed ACs were
658 removed by vigorous rinsing with 1X DPBS. After being cultured for an additional 3 hours, the
659 macrophages were fixed with 2% PFA and counterstained with DAPI. Images were captured using
660 ImageXpress Micro4 high content microscopy (Molecular Device) with a Nikon Plan Apo λ 40X/0.95
661 objective lens. The percentage of macrophages containing non-fragmented AC-derived fluorescence,
662 which is a measure of AC corpse degradation, was quantified⁵⁰.

663

664 **Membrane-bound LC3 Detection Assay**

665 BMDMs were incubated with Hoechst-labeled ACs at a 5:1 AC : BMDM ratio at 37°C, 5% CO₂ for 1 h
666 efferocytosis. Unbounded ACs were washed away. BMDMs were collected and resuspended in 300 mL
667 cold PBS with 20 μ g/mL digitonin, and incubated on ice for 10 min to permeabilize cells and allow non-
668 membrane bound LC3 to be removed from cells. Permeabilized BMDMs were then centrifuged for 5 min
669 at 750 x g, followed by incubation with anti-LC3A/B-AF488 antibody diluted 1:500 in cold washing buffer
670 (1X DPBS, 2% (vol/vol) HI-FBS, 5 mM EDTA, 20 mM HEPES and 1 mM sodium pyruvate) for 15 min on
671 ice to stain the membrane-bound lipidated LC3-II within the cells. After staining, macrophages were
672 washed with 1 mL cold washing buffer and were centrifuged for 5 min at 750 x g. Cell pellets were
673 resuspended in washing buffer and acquired on a flow cytometer⁴⁰.

674

675 **RNA Sequencing and Gene Set Enrichment Analysis**

676 Total RNAs were extracted from BMDMs (male mice: 4 Cre⁺ and 4 Cre⁻) using the Quick-RNA miniprep
677 plus kit (Zymo). With a minimum of 300 ng input RNA, strand-specific, poly(A)+ libraries were prepared
678 and sequenced at 20 million 100-bp paired-end reads per sample. Raw sequencing reads were mapped
679 to the mouse genome version GRCm39 (M27) using Salmon⁵¹ (version 1.5.1) to obtain transcript
680 abundance counts. MultiQC was used to generate quality control reports based on Salmon read mapping
681 results. The transcript-level count information was summarized to the gene level using tximport⁵² (version
682 1.20.0). Differential expression was assessed using DESeq2⁵³ (version 1.34.0). Genes with an absolute
683 fold change > 1.5 and false discovery rate (FDR)-adjusted P value < 0.05 were considered as differentially
684 expressed (DE). The output of DESeq2 were scored and ranked based on P value and shrunken log₂
685 fold change by apeglm⁵⁴ using ranking metrics “-log10 P value multiplied by the sign of log-transformed
686 fold-change”⁵⁵. The ranked gene list was then used for Gene Set Enrichment Analysis (GSEA)⁵⁶ (version
687 4.2.0) to identify the gene sets overrepresented at the top or bottom of the ranked list using the Human

688 Reactome Pathway (the most actively updated general-purpose public database of human pathways)
689 and the Gene Ontology Biological Process annotation (the most commonly used resource for pathway
690 enrichment analysis) within the Molecular Signatures Database.

691

692 **Ingenuity Pathway Analysis**

693 Ingenuity pathway analysis (IPA) software using build-in scientific literature based database (according
694 to IPA Ingenuity Web Site, www.ingenuity.com) was used to identify canonical pathways,
695 overrepresented in top-scored CRISPR screen hits.

696

697 **Quantitative RT-PCR**

698 Total RNA was extracted using Quick-RNA Miniprep Kit (Zymo) and cDNA was synthesized using High-
699 Capacity cDNA Reverse Transcription Kit (Applied Biosystems) as per the manufacturer's instructions.
700 To measure gene expression, quantitative RT-PCR was performed using POWERUP SYBR Green
701 Master Mix by QuantStudio™ 7 Flex Real-Time PCR System (Applied Biosystem, 4485701). $\Delta\Delta CT$
702 method was used to analyze the relative levels of each transcript normalized to human ACTB.

703

704 **Immunoblotting and Immunoprecipitation**

705 Macrophages were harvested and lysed in RIPA lysis buffer (Millipore) supplemented with protease
706 inhibitor cocktail (Roche) and phosphatase inhibitor cocktail (Roche). Protein concentration was
707 quantified using Pierce BCA protein assay kit (Thermo Fisher). Equal amount of protein were mixed with
708 5X SDS sample buffer [5%(vol/vol) β -Mercaptoethanol, 0.02%(vol/vol) Bromophenol blue, 30%(vol/vol)
709 Glycerol, 10%(vol/vol) Sodium dodecyl sulfate, 250 mM Tris-Cl, pH 6.8] (or 4X Bolt LDS sample buffer)
710 and loaded onto a 3-8% Tris-Acetate NuPage gel (for WDFY3) or 10-20% Tris-glycine gel (for LC3) and
711 then electro-transferred to a 0.45 μ m (or 0.2 μ m) PVDF membrane (Thermo Scientific). After blocking
712 with 5% milk, the membrane was incubated with the indicated primary antibody overnight at 4°C. The
713 membrane was then washed for 3 times in TBST and incubated with HRP-conjugated goat anti-rabbit
714 IgG (1:5000 dilution) for 1 h at room temperature. After the final wash to remove unbound antibodies, the
715 protein expression was detected by SuperSignal™ West Pico PLUS Chemiluminescent Substrate
716 (Thermo Scientific) and imaged using ChemiDoc Imaging System (Bio-rad). Band intensity was quantified
717 using the software FIJI.

718

719 For immunoprecipitation, 100 μ g total cell lysates were incubated with 4 μ g anti-GABARAP antibodies in
720 500 RIPA buffer. A pool of 2 μ g Rabbit anti-GABARAP (Cell Signaling Technology 13733S) and 2 μ g
721 Rabbit anti-GABARAP (N-term) (Abgent AP1821a) targeting different regions of the GABARAP protein
722 were used to improve pull-down efficiency. The lysate and antibody mix was incubated overnight at 4°C,
723 followed by a 1 h-incubation with 100 μ L protein A/G agarose beads (Thermo Scientific Pierce) at 4°C.
724 Immunoprecipitants were washed 3 times with lysis buffer and eluted with 4X LDS sample buffer
725 (Invitrogen) by boiling at 70°C for 10 min. Immunocomplexes were subjected to 3-8% Tris-glycine gel
726 and immunoblotting analysis for WDFY3.

727

728 **In Vivo Thymus Efferocytosis Assay**

729 Cre⁺ and Cre⁻ mice of 8-12 weeks old were injected intraperitoneally with 200 μ L PBS or 200 μ L PBS
730 containing 250 μ g dexamethasone. Dexamethasone was prepared freshly by diluting 4X stock in DMSO
731 with sterile PBS. 18 h after injection, mice were weighed and euthanized, and thymi were harvested and
732 both lobes were weighed. One lobe was immersed in OCT and snap-frozen for immunohistochemical
733 staining to determine efferocytosis *in situ*, while the other lobe was mechanically disaggregated into
734 single-cell suspension for flow cytometry⁵⁰.

735
736 To evaluate *in situ* efferocytosis⁵⁰, frozen thymus specimens were cryosectioned at 4- μ m and placed on
737 Superfrost plus microscope slides. Sections were fixed in 4% PFA for 10 mins and permeabilized in 1%
738 Triton X-100 for 15 mins. After rinsing with PBS for three times, sections were incubated with TUNEL
739 staining reagents at 37°C for 60 min and then washed three times with PBS. Sections were then blocked
740 with 5% goat serum for 60 min at room temperature, followed by overnight incubation at 4°C in anti-CD68
741 antibodies (Abcam) diluted in PBS supplemented with 5% BSA to label macrophage area. After washing
742 in PBS, sections were incubated with fluorescently-labeled secondary antibodies and counterstained with
743 DAPI. Images were captured using ImageXpress Micro4 with a Nikon Plan Apo 40X/0.95 objective lens.
744 For quantification, the TUNEL+ nuclei in close proximity or in contact with CD68+ macrophages were
745 counted as macrophage-associated ACs, indicative of efferocytosis. The TUNEL+ nuclei without
746 neighboring macrophages were counted as free ACs. The ratio of macrophage-associated ACs to free
747 ACs was calculated to represent the capability of efferocytosis by thymus macrophages.
748

749 To evaluate the percentage of Annexin V⁺ ACs by flow cytometry, mechanically disaggregated thymus
750 cells were rinsed twice with cold PBS containing 2% HI-FBS and 1 mM EDTA. Cells were then stained
751 with AF647-conjugated Annexin V (Thermo Fisher) in Annexin V binding buffer (Invitrogen) at a
752 concentration of 5×10^6 cells/mL for 15 min at room temperature, followed by analysis flow cytometry.
753

754 **In Vivo Peritoneal Macrophage Efferocytosis Assay**

755 Cre⁺ and Cre⁻ mice of 12 weeks old were injected intraperitoneally with 1×10^7 TAMRA-stained apoptotic
756 mouse thymocytes in 300 μ l PBS. 15 min after injection, mice were euthanized and peritoneal exudates
757 were collected. The pelleted cells were stained by FITC-conjugated F4/80 antibody (BioLegend) to label
758 macrophages. The percentage of TAMRA+ PMs was determined by flow cytometry⁴⁷.
759

760 **siRNA-Mediated Gene Silencing and Transfection**

761 Non-targeting siRNA and WDFY3-targeting siRNA (Dharmacon) were transfected using Lipofectamine
762 RNAiMAX (Invitrogen) as per the manufacturer's recommendation. Briefly, human PBMCs were seeded
763 at 4×10^5 per well of 24-well culture dish for differentiation to HMDMs for 7 days with ~70% confluence.
764 HMDMs were then transfected with a final concentration of 25 pmol siRNA and 1 μ L Lipofectamine
765 RNAiMAX in 500 μ L Opti-MEM (Invitrogen) for 6 h. A second transfection with the same condition was
766 performed 18 h after the completion of the first transfection. HMDMs were collected 48 h from the start
767 of the first transfection for assessing mRNA and protein expression, and efferocytosis capacities.
768

769 **Mouse Complete Blood Cell Count (CBC) and Differential Count**

770 Retro-orbital bleeding was performed to collect ~500 μ L blood per mouse for complete blood count and
771 differential count using a Heska Element HT5 by the diagnostic lab at the Institute of Comparative
772 Medicine, Columbia University Irvine Medical Center.

773

774 **Statistical Analyses**

775 Statistical analyses were performed using GraphPad Prism 7. Nonparametric tests were used when
776 sample size (n) was less than or equal to 5. When n > 6, data were first tested for normality using the
777 D'Agostino-Pearson test (when n \geq 8) or Shapiro-Wilk test (when n < 8). F-test of equality of variances
778 was performed to compare the two sample variances. Data that passed normality tests were presented
779 as mean \pm standard error of mean (SEM) and analyzed using Student's t-test for two groups with one
780 variable tested and equal variances (or with Welch's correction if F-test was not satisfied); one-way
781 ANOVA with Tukey's post-hoc analysis for more than two groups with one variable tested; or two-way
782 ANOVA with Tukey's post-hoc analysis for more than two groups with two independent variables tested.
783 Data that were analyzed using nonparametric tests were presented as median \pm 95% confidence interval.
784 Statistical significance of difference was accepted when P values were < 0.05. The specific P values, the
785 number of independent experiments or biological replicates, and the number of technical replicates per
786 independent experiment and biological replicate were specified in figures and figure legends.

787 **Data availability**

788 The authors declare that all data supporting the findings of this study are available within the paper and
789 its supplementary information files. Source data are provided with this paper. The datasets generated
790 during the current study, including RNA-seq and CRISPR screening sequencing data will be deposited
791 in the Gene Expression Omnibus (GEO) upon acceptance of the manuscript. The human macrophage
792 RNA-seq data was previously published and are available at DRYAD with identifier
793 doi:[10.5061/dryad.866t1g1nb](https://doi.org/10.5061/dryad.866t1g1nb).

794

795

796 **Code availability**

797 All code for data analysis associated with the current submission will be available at
798 <https://github.com/hanruizhang/> upon acceptance of the manuscript. Any updates will also be available
799 via the above GitHub repository.

800

801

802 **Acknowledgments**

803 The authors' research work has received funding from R00HL130574 and R01HL151611, and the Irving
804 Scholar award through UL1TR001873 by the National Center for Advancing Translational Sciences
805 (NCATS) and National Institutes of Health (NIH) (to HZ), R00HL145131 (to AYJ), R21MH115347 and
806 grant by Shriners Hospitals for Children (to KSZ), R35HL145228 (to IT), R01NS077111 and
807 R01NS101663 (to AY), the Russell Berrie Diabetes Foundation Diabetes Scholar Program (to XW),
808 American Heart Association Postdoctoral Fellowships (to XW, FL), and an NSF predoctoral fellowship
809 (to KRC). The content in this manuscript is solely the responsibility of the authors and does not
810 necessarily represent the official views of the NIH.

811

812 We would like to acknowledge the NIH funding sources to the Columbia Center for Translational
813 Immunology (CCTi) Flow Cytometry Core by grant number S10OD020056 and S10RR027050 and
814 P30DK063608; the NIH-supported microscopy resources in the Center for Biologic Imaging, specifically
815 the confocal microscope supported by grant number 1S10OD019973-01; the NIH/NCI Cancer Center
816 Support Grant P30CA013696 for the use of resources at the Columbia Genome Center; the Columbia
817 Stem Cell Initiative (CSCI) Flow Cytometry Core under the leadership of Michael Kissner; and the High-
818 Throughput Screening Facility at the JP Sulzberger Columbia Genome Center under the leadership of
819 Dr. Charles Karan.

820

821 FACS cell sorting was performed with great help from Dr. Caisheng Lu, the Technical Director of the
822 CCTi Flow Cytometry Core. We thank Ms. Xiaoli Sky Wu and Dr. Kenneth Chang at the Cold Spring
823 Harbor Laboratory for their technical inputs for CRISPR screening design. We thank Dr. Oren Parnas at
824 the Hebrew University of Jerusalem for his inputs on genome-wide CRISPR screening in primary cells.
825 We thank Dr. Young Joo Yang for technical advice on the characterization of WDFY3.

826

827 Schematic figures were created with BioRender.com.

828

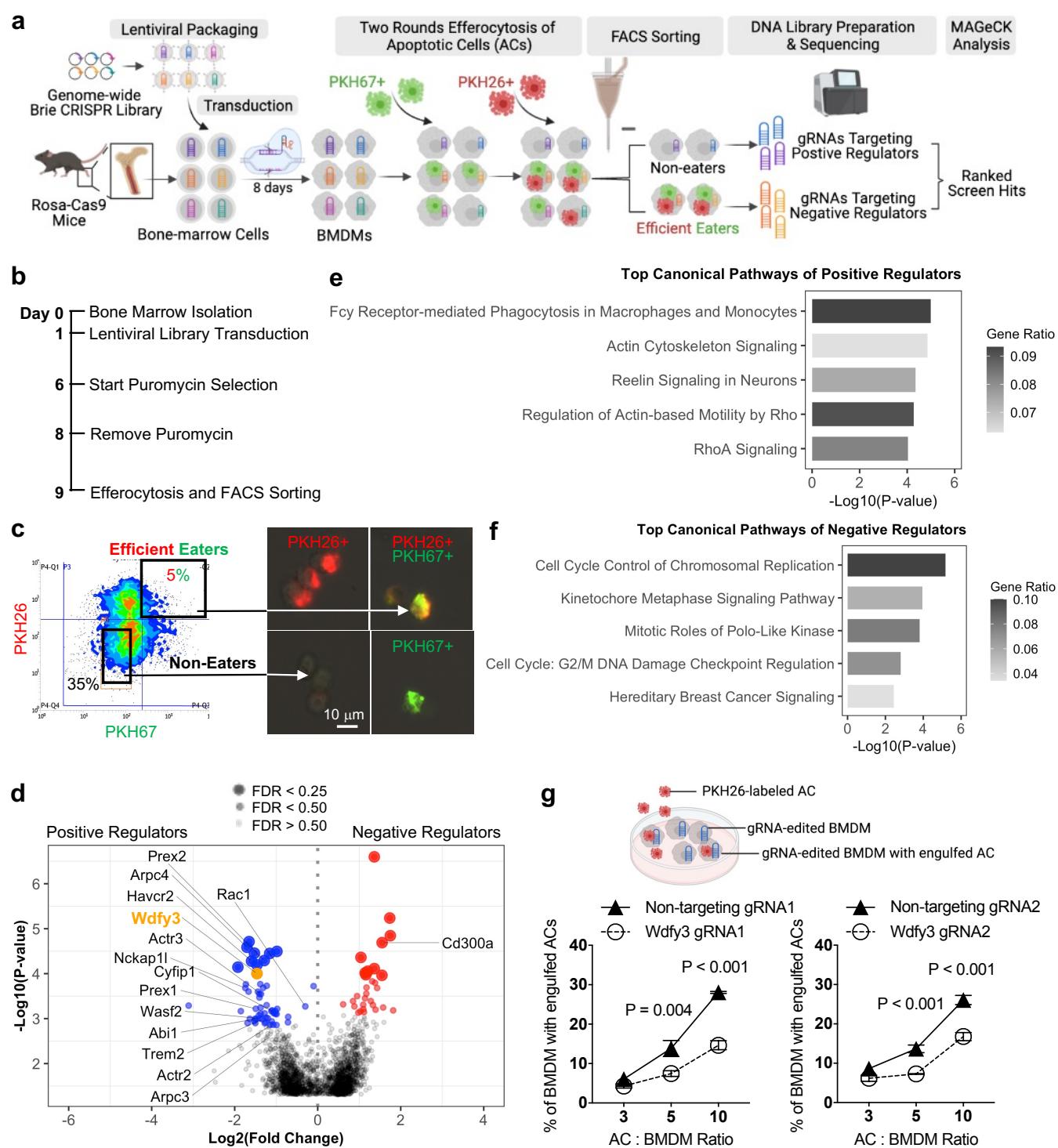
829

830 **Author contributions**

831 J.S., X.W., and H.Z. conceived and designed the study. J.S., X.W., Z.W., F.L., Y.M., R.M.M., J.C., H.Z.
832 performed experiments. J.S. X.W., Z.W., H.Z. analyzed the data and prepared the figures. J.S. and H.Z.
833 performed CRISPR screening, and the bioinformatic analyses of CRISPR screening and murine RNA-
834 seq data. C.X. performed bioinformatic analyses of human macrophage RNA-seq data. J.S. and H.Z.
835 wrote the paper with inputs from all authors. K.R.C., A.Y. Jr, J.G.D., W.L. provided guidance for key
836 techniques. K. S. Z. and A.Y. provided key reagents, mice, and critical technical inputs. I.T., A.Y. advised
837 on the project and critically reviewed the paper. H.Z. mentored the performance of the work and
838 supervised the funding.

839

840

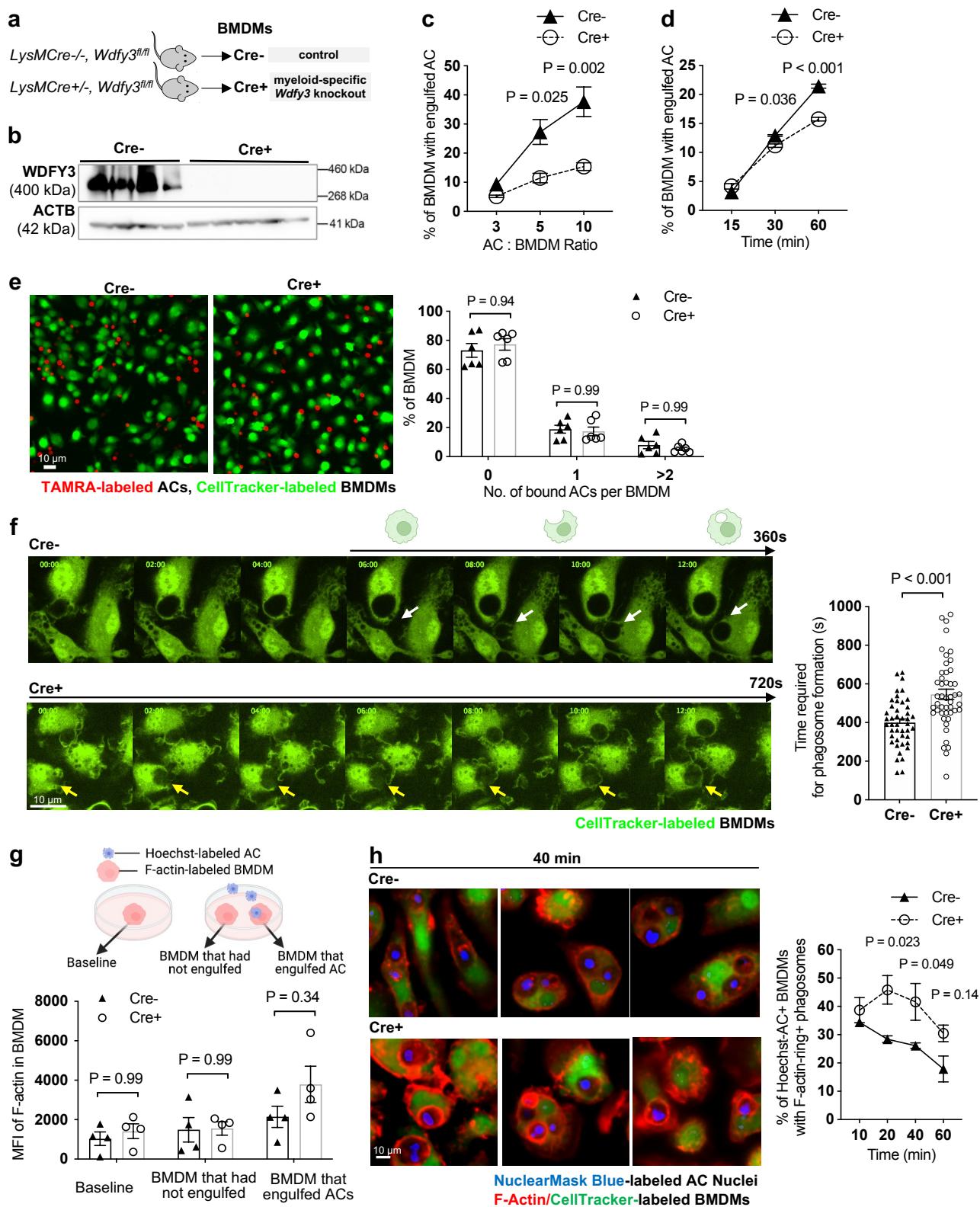

841 **Competing interests**

842 The authors declare no competing interests.

843

Figures and Figure Legends

Fig. 1

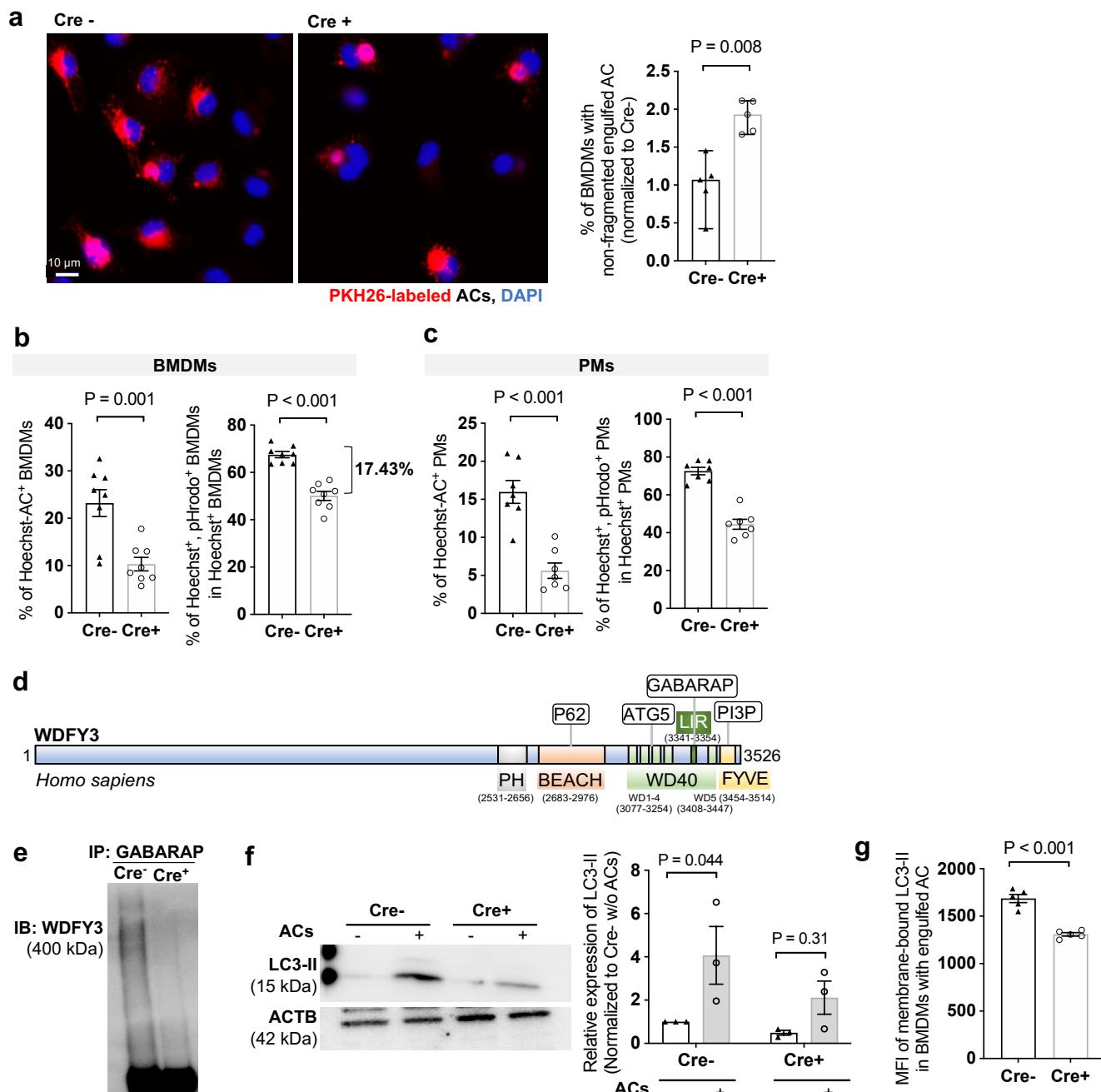

844

845 **Fig. 1 A pooled, FACS-based genome-wide CRISPR knockout screen in primary macrophages**
846 **identified known and novel regulators of macrophage efferocytosis.**

847

848 **(a)** Schematics of the CRISPR screen workflow. **(b)** Timeline of bone marrow isolation, lentiviral library
849 transduction, puromycin selection, efferocytosis, and cell sorting. **(c)** Visualization of gating strategy for
850 separation of non-eaters and efficient eaters. Successful separation was confirmed by fluorescent
851 microscopy. **(d)** Volcano plot highlights the top-ranked screen hits that are known positive and negative
852 regulators of macrophage efferocytosis. **(e)** Canonical pathways enriched in top-ranked positive
853 regulators by Ingenuity Pathway Analysis (IPA). **(f)** Canonical pathways enriched in top-ranked negative
854 regulators by IPA. **(g)** Validation of *Wdfy3* as a positive regulator required for macrophage efferocytosis
855 ($n = 4$ independent experiments).

Fig. 2

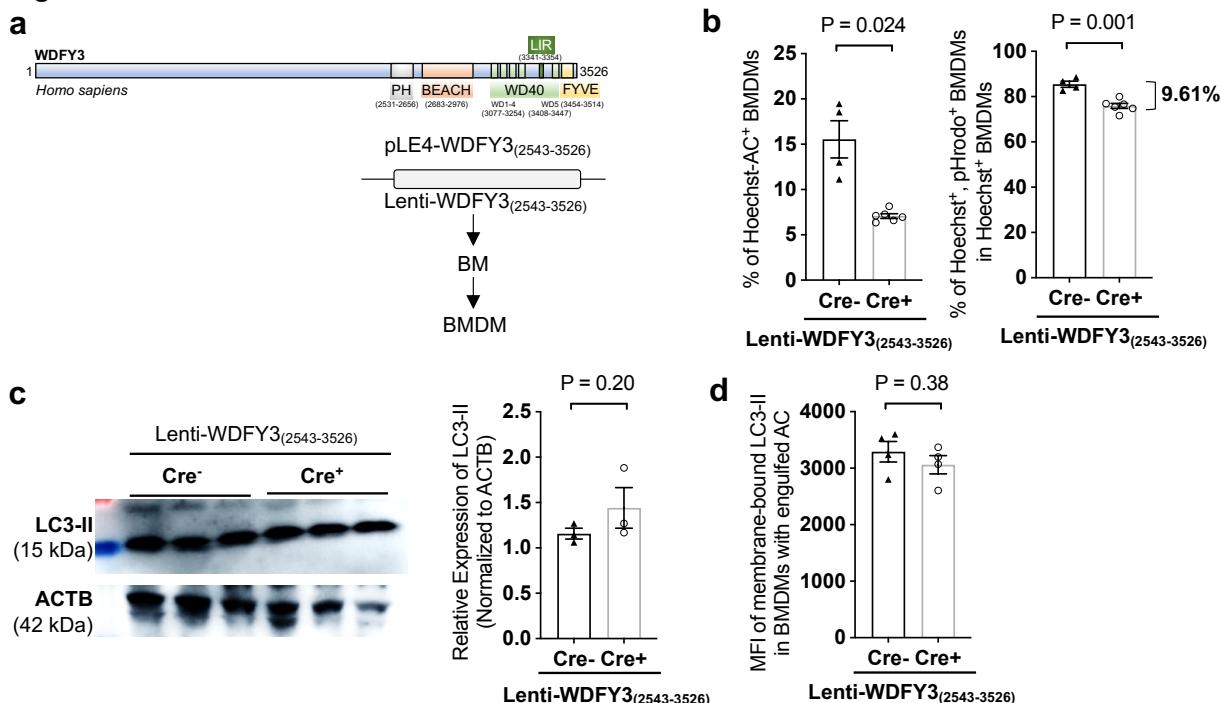


857 **Fig. 2 WDFY3 deficiency led to impaired uptake, as opposed to binding, of apoptotic cells (ACs)**
858 **due to defective actin depolymerization.**

859

860 **(a)** Schematics of breeding LysMCre mice with *Wdfy3*^{f/f} mice to obtain myeloid-specific knockout of
861 *Wdfy3*. **(b)** Validation of efficient knockout in BMDMs by Western Blot of WDFY3 (n = 4 biological
862 replicates; the plot shown is a representative image of three independent experiments). **(c)** Cre⁻ and Cre⁺
863 BMDMs were incubated with PKH26-labeled ACs at various AC : BMDM ratios of 3:1, 5:1, 10:1
864 respectively for 1 hour and analyzed by flow cytometry (n = 3 biological replicates, each from the average
865 of 2 technical replicates). **(d)** Cre⁻ and Cre⁺ BMDMs were incubated with PKH26-labeled ACs at various
866 time points of 15 min, 30 min, and 60 min at a AC : BMDM ratio of 5:1 and analyzed by flow cytometry (n
867 = 3 technical replicates). **(e)** Cre⁻ and Cre⁺ BMDMs were pre-treated with cytochalasin D for 30 min to
868 block polymerization and elongation of actin, thus testing the binding of ACs with BMDMs. The treated
869 BMDMs were then incubated with TAMRA-stained apoptotic mouse thymocytes at 37 °C for 30 min and
870 then extensively washed with PBS to remove unbound ACs for imaging and quantification after fixation
871 (n = 6 biological replicates). **(f)** Cre⁻ and Cre⁺ BMDMs were stained with CellTracker and incubated with
872 ACs. Efferocytosis of ACs by BMDMs were observed using time-lapse confocal microscopy. The time
873 required for phagosome formation was measured and recorded (n = 4 biological replicates, each data
874 point represents one BMDM with engulfed ACs). **(g)** F-actin labeled by siR-actin in Cre⁻ and Cre⁺ BMDMs
875 was quantified by flow cytometry (n = 4 biological replicates, each from the average of 3 technical
876 replicates). **(h)** BMDMs were stained with CellTracker and siR-actin, then incubated with NuclearMask
877 Blue-labeled apoptotic Jurkat cells for various time points (10 min, 20 min, 40 min, and 60 min). For each
878 time point, unbound ACs were removed and BMDMs were fixed. BMDMs were imaged and the
879 percentage of BMDMs with engulfed cargos surrounded by F-actin rings in all BMDMs with engulfed
880 cargos was quantified (n = 3 biological replicates, data are representative of two independent
881 experiments).

Fig. 3



884 **Fig. 3 WDFY3 deficiency led to defects in LC3-associated phagocytosis (LAP) and the**
885 **degradation of engulfed ACs**

886

887 (a) Cre⁻ and Cre⁺ BMDMs were incubated with PKH26-labeled ACs for one hour. After washing away the
888 unengulfed ACs, BMDMs were placed back to the incubator for another three hours. BMDMs were then
889 fixed and imaged. The percentage of BMDMs showing non-fragmented PKH26 signals in the total
890 number of PKH26⁺ BMDMs was quantified (n = 5 biological replicates, each from the average of 3
891 technical replicates). Cre⁻ and Cre⁺ BMDMs (b) and PMs (c) were incubated with ACs labeled by Hoechst,
892 which stains DNA and is pH-insensitive, and pHrodo, which is pH-sensitive and shows fluorescent signal
893 only under an acidified environment in the phagolysosome. The percentage of Hoechst⁺ BMDMs
894 indicates uptake. The percentage of Hoechst⁺/pHrodo⁺ BMDMs in Hoechst⁺ BMDMs indicates
895 acidification of the engulfed cargos (n = 8 biological replicates, each from the average of 2 technical
896 replicates). (d) Schematics of known functional domains and binding partners of human WDFY3. (e) The
897 interaction between WDFY3 and GABARAP was assessed by co-immunoprecipitation. Cre⁻ and Cre⁺
898 BMDMs cell lysate were incubated with anti-GABARAP antibody-conjugated agarose beads. Beads-
899 bound proteins were detected with anti-WDFY3 antibodies. (f) Cre⁻ and Cre⁺ BMDMs were incubated
900 with ACs for one hour. Unbound ACs were washed away and BMDMs were collected for measurement
901 of LC3-II by western blot (n = 3 independent experiments). (g) BMDMs were incubated with Hoechst-
902 labeled ACs to allow efferocytosis. After removal of unbound ACs, BMDMs were collected, fixed, and
903 treated with digitonin to remove non-membrane bound LC3, and then immunostained for LC3 that is
904 lipidated and membrane-bound. LC3-II staining was then quantified by flow cytometry for BMDMs that
905 had engulfed Hoechst-labeled ACs (n = 5 biological replicates).

Fig. 4

906
907
908
909
910

Fig. 4 The C-terminal WDFY3 is sufficient for regulating degradation yet the full-length WDFY3 is required for the uptake of ACs during efferocytosis.

911 (a) Schematics of lentiviral overexpression of C-terminal WDFY3 in BMDMs of Cre- and Cre+ mice. (b) 912 C-terminal WDFY3 did not restore uptake, yet partially rescued the defects in cargo acidification (n = 4 913 biological replicates, each from the average of 2 technical replicates). (c) and (d) C-terminal WDFY3 914 restored LC3-II levels as determined by western blot (n = 3 biological replicates, each from the average 915 of 2 technical replicates) and by flow cytometry (n = 4 biological replicates, each from the average of 2 916 technical replicates).

Fig. 5

917
918

919 **Fig. 5 Mice with myeloid *Wdfy3* deficiency show impaired efferocytosis *in vivo*.**

920

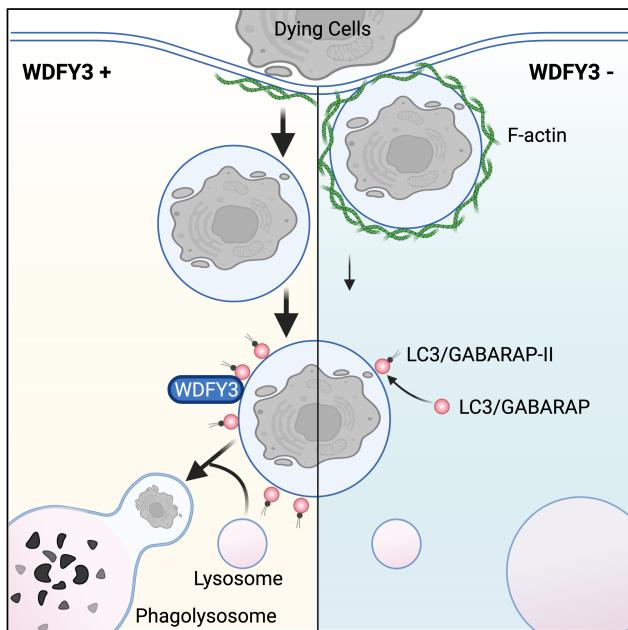
921 (a) Schematics of experimental design for *in vivo* thymus efferocytosis assay. (b) Thymus weight. (c) Total number of cells per thymus. (d) Percentage of F4/80⁺ macrophages in the thymus determined by flow cytometry. (e) Percentage of Annexin V⁺ apoptotic cells per thymus determined by flow cytometry. A higher percentage implies impaired efferocytic clearance (n = 9 or 14 biological replicates for panel b, c, d, and e). (f) Thymic sections were stained with TUNEL for ACs, and CD68 for macrophages. The ratio of macrophage-associated TUNEL⁺ cells vs. free TUNEL⁺ cells was quantified and summarized. The white and yellow squares highlight the macrophage-associated and free TUNEL⁺ cells, respectively (n = 5 biological replicates). (g) Schematics of experimental design for *in vivo* peritoneal macrophage efferocytosis assay. (h) Peritoneal exudates were stained for F4/80 and the percentage of TAMRA⁺ peritoneal macrophages was determined by flow cytometry (n = 5 biological replicates).

Fig. 6

931

932

933


Fig. 6 WDFY3 regulates efferocytosis in human macrophages.

934

935 (a) Schematics of human monocyte differentiation to macrophages (HMDMs) and knockdown of WDFY3
936 with Lipofectamine RNAiMAX-mediated transfection of siRNAs targeting WDFY3, or non-targeting
937 siRNAs as the control. (b) Validation of knockdown efficiency at mRNA level by qRT-PCR (n = 3 biological
938 replicates, each from the average of 3 technical replicates). (c) Validation of knockdown efficiency at
939 protein level by western blot (n = 2 biological replicates, data are representative of three independent
940 experiments). (d) Efferocytosis of apoptotic Jurkat cells labeled by both Hoechst and pHrodo. The
941 percentage of HMDMs with Hoechst-labeled ACs (indicating uptake), and the percentage of
942 Hoechst+/pHrodo+ HMDMs in Hoechst+ HMDMs (indicating acidification upon uptake) were quantified by
943 flow cytometry. Both uptake and acidification of ACs were impaired in HMDMs with siRNA-mediated
944 WDFY3 knockdown (n = 3 biological replicates, each from the average of 2 technical replicates). (e)
945 Fragmentation of engulfed ACs was assessed three hours after washing away the unengulfed ACs. The
946 percentage of HMDMs with non-fragmented PKH26 staining in all PKH26+ HMDMs was determined (n =

947 3 biological replicates). **(f)** RNA-seq was performed for HMDMs either unstimulated (M0) or treated with
948 LPS and IFN γ for 18-20 hours (M1-like). The expression of *WDFY3* was visualized (n = 48 biological
949 replicates).

Fig. 7

950
951

952 **Fig. 7 Schematic figure summarizing how WDFY3 regulates efferocytosis by macrophages.**

953

954 WDFY3 was discovered as a new regulator of efferocytosis by macrophages. WDFY3 deficiency in
955 macrophages specifically impaired uptake, not binding, of apoptotic cells due to defective actin
956 depolymerization, thus phagosome formation. WDFY3 directly interacts with GABARAP, one of the seven
957 members of the LC3/GABARAP protein family, to facilitate LC3 lipidation and the subsequent phagosome
958 lysosome fusion and degradation of the engulfed AC components.

959 **References**

960 1 Boada-Romero, E., Martinez, J., Heckmann, B. L. & Green, D. R. The clearance of dead cells by
961 efferocytosis. *Nat Rev Mol Cell Biol*, doi:10.1038/s41580-020-0232-1 (2020).

962 2 Doran, A. C., Yurdagul, A., Jr. & Tabas, I. Efferocytosis in health and disease. *Nature reviews.*
963 *Immunology*, doi:10.1038/s41577-019-0240-6 (2019).

964 3 Morioka, S., Maueroder, C. & Ravichandran, K. S. Living on the Edge: Efferocytosis at the
965 Interface of Homeostasis and Pathology. *Immunity* **50**, 1149-1162,
966 doi:10.1016/j.immuni.2019.04.018 (2019).

967 4 Trzeciak, A., Wang, Y. T. & Perry, J. S. A. First we eat, then we do everything else: The dynamic
968 metabolic regulation of efferocytosis. *Cell metabolism*, doi:10.1016/j.cmet.2021.08.001 (2021).

969 5 Greenlee-Wacker, M. C. Clearance of apoptotic neutrophils and resolution of inflammation.
970 *Immunological reviews* **273**, 357-370, doi:10.1111/imr.12453 (2016).

971 6 Kojima, Y., Weissman, I. L. & Leeper, N. J. The Role of Efferocytosis in Atherosclerosis.
972 *Circulation* **135**, 476-489, doi:10.1161/circulationaha.116.025684 (2017).

973 7 Yurdagul, A., Jr., Doran, A. C., Cai, B., Fredman, G. & Tabas, I. A. Mechanisms and
974 Consequences of Defective Efferocytosis in Atherosclerosis. *Frontiers in cardiovascular medicine*
975 **4**, 86, doi:10.3389/fcvm.2017.00086 (2017).

976 8 Hayat, S. M. G. et al. CD47: role in the immune system and application to cancer therapy. *Cell*
977 *Oncol (Dordr)* **43**, 19-30, doi:10.1007/s13402-019-00469-5 (2020).

978 9 Silva, E., Au-Yeung, H. W., Van Goethem, E., Burden, J. & Franc, N. C. Requirement for a
979 Drosophila E3-ubiquitin ligase in phagocytosis of apoptotic cells. *Immunity* **27**, 585-596,
980 doi:10.1016/j.immuni.2007.08.016 (2007).

981 10 Sedlyarov, V. et al. The Bicarbonate Transporter SLC4A7 Plays a Key Role in Macrophage
982 Phagosome Acidification. *Cell host & microbe* **23**, 766-774.e765,
983 doi:10.1016/j.chom.2018.04.013 (2018).

984 11 Haney, M. S. et al. Identification of phagocytosis regulators using magnetic genome-wide
985 CRISPR screens. *Nature genetics* **50**, 1716-1727, doi:10.1038/s41588-018-0254-1 (2018).

986 12 Kamber, R. A. et al. Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis.
987 *Nature* **597**, 549-554, doi:10.1038/s41586-021-03879-4 (2021).

988 13 Penberthy, K. K. & Ravichandran, K. S. Apoptotic cell recognition receptors and scavenger
989 receptors. *Immunological reviews* **269**, 44-59, doi:10.1111/imr.12376 (2016).

990 14 Schlam, D. et al. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating
991 actin assembly through Rac/Cdc42 GTPase-activating proteins. *Nature communications* **6**, 8623,
992 doi:10.1038/ncomms9623 (2015).

993 15 Andreu, N. et al. Primary macrophages and J774 cells respond differently to infection with
994 *Mycobacterium tuberculosis*. *Scientific reports* **7**, 42225, doi:10.1038/srep42225 (2017).

995 16 Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. *Cell* **159**,
996 440-455, doi:10.1016/j.cell.2014.09.014 (2014).

997 17 Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects
998 of CRISPR-Cas9. *Nature biotechnology* **34**, 184-191, doi:10.1038/nbt.3437 (2016).

999 18 Li, W. *et al.* MAGeCK enables robust identification of essential genes from genome-scale
1000 CRISPR/Cas9 knockout screens. *Genome biology* **15**, 554, doi:10.1186/s13059-014-0554-4
1001 (2014).

1002 19 Li, W. *et al.* Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR.
1003 *Genome biology* **16**, 281, doi:10.1186/s13059-015-0843-6 (2015).

1004 20 Chen, C. H. *et al.* Improved design and analysis of CRISPR knockout screens. *Bioinformatics*
1005 (Oxford, England) **34**, 4095-4101, doi:10.1093/bioinformatics/bty450 (2018).

1006 21 Wang, B. *et al.* Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute.
1007 *Nature protocols* **14**, 756-780, doi:10.1038/s41596-018-0113-7 (2019).

1008 22 Zhao, D. *et al.* Frontline Science: Tim-3-mediated dysfunctional engulfment of apoptotic cells in
1009 SLE. *J Leukoc Biol* **102**, 1313-1322, doi:10.1189/jlb.3H10117-005RR (2017).

1010 23 Nakahashi-Oda, C. *et al.* CD300a blockade enhances efferocytosis by infiltrating myeloid cells
1011 and ameliorates neuronal deficit after ischemic stroke. *Sci Immunol* **6**, eabe7915,
1012 doi:10.1126/sciimmunol.abe7915 (2021).

1013 24 Dragich, J. M. *et al.* Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal
1014 connectivity in the mammalian brain. *eLife* **5**, doi:10.7554/eLife.14810 (2016).

1015 25 Lerm, M., Brodin, V. P., Ruishalme, I., Stendahl, O. & Särndahl, E. Inactivation of Cdc42 is
1016 necessary for depolymerization of phagosomal F-actin and subsequent phagosomal maturation.
1017 *Journal of immunology* **178**, 7357-7365, doi:10.4049/jimmunol.178.11.7357 (2007).

1018 26 Orosco, L. A. *et al.* Loss of Wdfy3 in mice alters cerebral cortical neurogenesis reflecting aspects
1019 of the autism pathology. *Nature communications* **5**, 4692, doi:10.1038/ncomms5692 (2014).

1020 27 Martinez, J. *et al.* Molecular characterization of LC3-associated phagocytosis reveals distinct
1021 roles for Rubicon, NOX2 and autophagy proteins. *Nature cell biology* **17**, 893-906,
1022 doi:10.1038/ncb3192 (2015).

1023 28 Martinez, J. LAP it up, fuzz ball: a short history of LC3-associated phagocytosis. *Current opinion*
1024 in *immunology* **55**, 54-61, doi:10.1016/j.coi.2018.09.011 (2018).

1025 29 Cunha, L. D. *et al.* LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor Immune
1026 Tolerance. *Cell* **175**, 429-441.e416, doi:10.1016/j.cell.2018.08.061 (2018).

1027 30 Heckmann, B. L. & Green, D. R. LC3-associated phagocytosis at a glance. *Journal of cell science*
1028 **132**, doi:10.1242/jcs.222984 (2019).

1029 31 Heckmann, B. L., Boada-Romero, E., Cunha, L. D., Magne, J. & Green, D. R. LC3-Associated
1030 Phagocytosis and Inflammation. *Journal of molecular biology* **429**, 3561-3576,
1031 doi:10.1016/j.jmb.2017.08.012 (2017).

1032 32 Green, D. R., Oguin, T. H. & Martinez, J. The clearance of dying cells: table for two. *Cell death*
1033 and *differentiation* **23**, 915-926, doi:10.1038/cdd.2015.172 (2016).

1034 33 Filimonenko, M. *et al.* The selective macroautophagic degradation of aggregated proteins
1035 requires the PI3P-binding protein Alfy. *Molecular cell* **38**, 265-279,
1036 doi:10.1016/j.molcel.2010.04.007 (2010).

1037 34 Fox, L. M. *et al.* Huntington's Disease Pathogenesis Is Modified In Vivo by Alfy/Wdfy3 and
1038 Selective Macroautophagy. *Neuron* **105**, 813-821.e816, doi:10.1016/j.neuron.2019.12.003
1039 (2020).

1040 35 Simonsen, A. *et al.* Alfy, a novel FYVE-domain-containing protein associated with protein
1041 granules and autophagic membranes. *Journal of cell science* **117**, 4239-4251,
1042 doi:10.1242/jcs.01287 (2004).

1043 36 Lystad, A. H. *et al.* Structural determinants in GABARAP required for the selective binding and
1044 recruitment of ALFY to LC3B-positive structures. *EMBO reports* **15**, 557-565,
1045 doi:10.1002/embr.201338003 (2014).

1046 37 Hanada, T. *et al.* The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in
1047 autophagy. *The Journal of biological chemistry* **282**, 37298-37302, doi:10.1074/jbc.C700195200
1048 (2007).

1049 38 Fujita, N. *et al.* An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in
1050 autophagosome closure. *Molecular biology of the cell* **19**, 4651-4659, doi:10.1091/mbc.E08-03-
1051 0312 (2008).

1052 39 Martinez, J. *et al.* Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated
1053 phagocytosis is required for the efficient clearance of dead cells. *Proceedings of the National
1054 Academy of Sciences of the United States of America* **108**, 17396-17401,
1055 doi:10.1073/pnas.1113421108 (2011).

1056 40 Martinez, J. Detection of LC3-Associated Phagocytosis (LAP). *Curr Protoc Cell Biol* **87**, e104,
1057 doi:10.1002/cpcb.104 (2020).

1058 41 Eenjes, E., Dragich, J. M., Kampinga, H. H. & Yamamoto, A. Distinguishing aggregate formation
1059 and aggregate clearance using cell-based assays. *Journal of cell science* **129**, 1260-1270,
1060 doi:10.1242/jcs.179978 (2016).

1061 42 Fan, J. *et al.* ASEP: Gene-based detection of allele-specific expression across individuals in a
1062 population by RNA sequencing. *PLoS genetics* **16**, e1008786, doi:10.1371/journal.pgen.1008786
1063 (2020).

1064 43 Takahashi, Y. *et al.* Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and
1065 tumorigenesis. *Nature cell biology* **9**, 1142-1151, doi:10.1038/ncb1634 (2007).

1066 44 Chandra, M. *et al.* Classification of the human phox homology (PX) domains based on their
1067 phosphoinositide binding specificities. *Nature communications* **10**, 1528, doi:10.1038/s41467-
1068 019-09355-y (2019).

1069 45 Wartosch, L., Gunesdogan, U., Graham, S. C. & Luzio, J. P. Recruitment of VPS33A to HOPS by
1070 VPS16 Is Required for Lysosome Fusion with Endosomes and Autophagosomes. *Traffic
1071 (Copenhagen, Denmark)* **16**, 727-742, doi:10.1111/tra.12283 (2015).

1072 46 Doench, J. G. Am I ready for CRISPR? A user's guide to genetic screens. *Nature reviews.
1073 Genetics* **19**, 67-80, doi:10.1038/nrg.2017.97 (2018).

1074 47 Moon, H. *et al.* Crbn modulates calcium influx by regulating Orai1 during efferocytosis. *Nature
1075 communications* **11**, 5489, doi:10.1038/s41467-020-19272-0 (2020).

1076 48 Zhang, H. *et al.* Functional analysis and transcriptomic profiling of iPSC-derived macrophages
1077 and their application in modeling Mendelian disease. *Circulation research* **117**, 17-28,
1078 doi:10.1161/circresaha.117.305860 (2015).

1079 49 Chang, C. F. *et al.* Erythrocyte efferocytosis modulates macrophages towards recovery after
1080 intracerebral hemorrhage. *The Journal of clinical investigation* **128**, 607-624,
1081 doi:10.1172/jci95612 (2018).

1082 50 Wang, Y. *et al.* Mitochondrial Fission Promotes the Continued Clearance of Apoptotic Cells by
1083 Macrophages. *Cell*, doi:10.1016/j.cell.2017.08.041 (2017).

1084 51 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-
1085 aware quantification of transcript expression. *Nature methods* **14**, 417-419,
1086 doi:10.1038/nmeth.4197 (2017).

1087 52 Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level
1088 estimates improve gene-level inferences. *F1000Res* **4**, 1521, doi:10.12688/f1000research.7563.2
1089 (2015).

1090 53 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-
1091 seq data with DESeq2. *Genome biology* **15**, 550, doi:10.1186/s13059-014-0550-8 (2014).

1092 54 Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data:
1093 removing the noise and preserving large differences. *Bioinformatics (Oxford, England)* **35**, 2084-
1094 2092, doi:10.1093/bioinformatics/bty895 (2019).

1095 55 Reimand, J. *et al.* Pathway enrichment analysis and visualization of omics data using g:Profiler,
1096 GSEA, Cytoscape and EnrichmentMap. *Nature protocols* **14**, 482-517, doi:10.1038/s41596-018-
1097 0103-9 (2019).

1098 56 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
1099 interpreting genome-wide expression profiles. *Proceedings of the National Academy of Sciences
1100 of the United States of America* **102**, 15545-15550, doi:10.1073/pnas.0506580102 (2005).

1101