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Abstract

Cancer cells in similar functional states are found in all glioblastoma, despite the genomic heterogeneity observed
between and within these brain tumors. Metabolism being downstream of all signaling pathways regulating cell behaviors, we
looked for metabolic weaknesses in link with motility, a key functional state for glioblastoma aggressiveness. A signature-driven
data reduction approach highlighted motile cells present in thirty tumors from four independent single-cell transcriptomic
datasets. Analyses integrating trajectory modeling disclosed, as characteristic of motile cells, enhanced oxidative stress coupled
with mobilization of the cysteine metabolism enzyme 3-Mercaptopyruvate sulfurtransferase (MPST). The soundness of this
prediction was verified using migration and invasion assays with patient-derived cells and tissue organoids. Pharmacological and
genetic manipulations showed that enhanced ROS production and MPST activity are required for the cells’ motility. Biochemical
assays indicated that MPST acts by protecting protein cysteine residues from dismal hyperoxidation. In vivo, MPST knockdown
translated in reduced tumor burden, and a robust increase in mice survival. These results show that enhanced oxidative stress

coupled with MPST mobilization plays a key role in glioblastoma cell motility.
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Introduction

Glioblastoma (GB) cell heterogeneity is now recognized as a major issue to overcome in order to develop more efficient
therapies for this primary brain tumor that remains with a very poor prognosis. The median survival of patients does not exceed
twenty months despite aggressive treatments combining surgical removal of the tumor with chemotherapy and radiotherapy
(Stupp et al 2017). GB is a paradigm of intra-tumor heterogeneity. Normal and cancerous cells intermingle, and tumor territories
differing in tumor cell densities, vascular perfusion and necrosis, entangle (Hambardzumyan & Bergers 2015). Genome-wide
DNA and RNA sequencing at the tissue and single cell levels have further illustrated GB heterogeneity. They showed the co-
existence, within each tumor, of cancer cells bearing differing mutational loads and genomic rearrangements and varying
ontogenic similarities with neuro-developmental lineages (Snuderl et al 2011) (Sottoriva et al 2013) ((Lee et al 2017), (Puchalski
et al 2018) (Neftel et al 2019) (Couturier et al 2020) (Bhaduri et al 2020) (Wang et al 2020) (Richards et al 2021).
Notwithstanding these variable mutation loads, chromosome rearrangements, and developmental-like profiles, we reasoned
that GB heterogeneity would appear less overwhelming when considering the behavior or functional state of tumor cells in link
with their underlying metabolic pathways. Tumor cells in identical functional states can be detected within each GB and across
patients, regardless of their genomic backgrounds. Downstream of all signaling pathways regulating cell functional states is
metabolism. Studies have shown that changes in metabolic activity not only accompany changes in cell functional states but can
also drive changes as well (EI-Habr et al 2017) (Flavahan et al 2013) (Oizel et al 2017). Thus, metabolic enzymes playing key roles
in the adoption and/or maintenance of cell functional states crucial for tumor development, as observed at the time of patients’
diagnosis, constitute therapeutic targets able to overcome tumor heterogeneity.

Cell motility is a key contributor to GB malignancy and poor prognosis. GB cells are highly infiltrative, making complete
surgical resection of the tumor impossible. Moreover, currently used irradiation and chemical therapies have been shown to
promote GB cell invasiveness (Huber et al 2013) (Lu et al 2012). Cell motility encompasses two processes: migration, i.e. the
cell’s ability “to move around in a space that is freely available”, and invasion, a process involving microenvironment remodeling
by the cells (de Gooijer et al 2018). Motile cells have to develop protrusions in the direction of migration, disrupt adhesion sites
at the cell rear, degrade and remodel the extracellular matrix (ECM) and ultimately make new connections at the cell front by
remodeling their cytoskeleton so that they are pushed forward, making cell motility a highly integrated process (Armento et al
2017). Three major migration/invasion routes have been described: the narrow and tortuous extracellular space of the brain
parenchyma (Scherer 1938), the perivascular spaces surrounding blood vessels (Scherer 1938) (Montana & Sontheimer 2011)
(Watkins et al 2014) (Cuddapah et al 2014) and white matter tracts, notably the corpus callosum, used as a highway for bilateral
brain hemisphere invasion (Scherer 1938) (Pedersen et al 1995). Both single cell and collective migration have been reported
(Vollmann-Zwerenz et al 2020) (Volovetz et al 2020), the latter appearing to be facilitated by the formation of an interconnected
network of tumor microtubes (Osswald et al 2015). So far, an integrated view of the metabolic pathways at play in a motile GB
cell is lacking.

Here, we applied a signature-driven data reduction approach to highlight subpopulations of cells in a motile state present
in thirty tumors from four independent single-cell transcriptomic datasets. We previously demonstrated that such an approach
allows to uncover cell functional states and their associated key metabolic players from transcriptomes of single cells derived
from surgical resections of the patients’” tumors (Saurty-Seerunghen et al 2019). Computational analyses integrating cell
trajectory modeling characterized cells with high motile potential as endowed with higher energetic needs and oxidative stress
than their more static counterparts, and highlighted the 3-Mercaptopyruvate sulfurtransferase (MPST) enzyme at the crossroad
of the path from low to high motility. Requirement of this element of the cysteine metabolism for GB cell motility was

experimentally demonstrated. Mechanistically, MPST acts by protecting protein cysteine residues from hyperoxidation. Our
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findings uncover a previously unsuspected involvement of MPST in the switch from low to high cell motility and maintenance of

GB cell motility.

Results
Grouping cells according to their potential motile state

We used four independent publicly available single-cell transcriptome datasets generated from surgical resections of
patients bearing IDH-wild-type GB. Two were obtained with the SMART-seq2 technology (Neftel et al 2019) (Darmanis et al
2017) and two with the 10X Genomics technology (Neftel et al 2019) (Pombo Antunes et al 2021). They are hereafter designated
as N-S, D-S, N-10X and PA-10X, according to the initials of the first author of the paper reporting its first description and the
technology used. The computational analyses were first performed using the N-S dataset, and the robustness of the results
evaluated by repeating the analyses with each of the other three datasets. This choice stems from the deeper sequencing depth
of SMART-seq2 data compared to 10X Genomics data, and the higher number of malignant cells and distinct patient tumors in
the N-S dataset compared to the D-S dataset.

For clustering cells in a motile state, we implemented a data reduction approach driven by a molecular signature (Fig.1a),
a previously reported approach grouping cells from distinct tumors according to their functional state (Saurty-Seerunghen et al
2019). Here, cells were grouped based on the combined expression levels of each gene in a motility signature, using the HCPC
algorithm (Hierarchical Clustering on Principal Components) (Husson et al 2010) modified to integrate also UMAP components
(Uniform Manifold Approximation and Projection) (Supplementary Figure 1A). The genes composing the motility signature were
selected based on the in vitro and in vivo experimental demonstration of their requirement for GB cell motility using recent
patient-derived GB cells (PDC) cultured in defined media. Thus, these inducers and effectors of GB cell motility are involved in
pro-motile autocrine signaling (TGFB1, SMAD3, THBS1 (Joseph et al 2014) (Daubon et al 2019) (Joseph et al 2021)),
morphological rearrangements undertaken by motile cells and linking extracellular guidance signals with the remodeling of the
cytoskeleton (ACTN4 (Sen et al 2009) (Ji et al 2019) (Tentler et al 2019), PTK2 (Xia et al 2016) (Frolov et al 2016), PXN (Frolov et al
2016) (Sun et al 2017) (Lopez-Colome et al 2017), TLN1 (Kang et al 2015), VCL (Xia et al 2016)) and the remodeling of the matri-
cellular environment (TNC (Xia et al 2016), SPARCL1 (Gagliardi et al 2017)). Expression of each gene of the signature is most
often positively correlated with expression of the other signature genes across all cells (Fig.1b, Supplementary Table 1).

This clustering analysis resulted in six cell clusters (Fig.1c) with distinct combinations of expression of the signature genes
(Fig.1d). Of note, hierarchical clustering of UMAP components led to groups of cells with transcriptomic profiles more
homogeneous than when using Hierarchical Clustering of Principal Components (HCPC), as shown by increased Silhouette width
(Supplementary Figure 1B). The Normalized Mutual Information (NMI) value was then calculated to determine the contribution
of different tumors to each cluster, in order to demonstrate that cell clustering is driven by functional state rather than tumor of
origin as described (Saurty-Seerunghen et al 2019). A NMI value of 1 implies that clusters gather cells corresponding to a single
tumor, whereas a value of 0 denotes that each tumor contributes to each cluster. As indicated by the low NMI value (NMI =
0.11), each cluster was composed of cells coming from distinct tumors (Fig.1le). Using the geometric mean of the signature gene
expression levels as a motility score, we retained the two cell clusters with the highest (MH'GH) and lowest (MLOW) motile

HIGH

potential, respectively (Fig.1f). Differential expression analysis between M and M"Y cell groups (Mann Whitney, BH-adjusted

p-value < 0.01) highlighted the genes overexpressed in M™M cells (Supplementary Table 2-sheet 2).

HIGH
cells

Enrichment of motility-related genes in M
We evaluated the coherence of our findings by confronting them with previous experimentally-acquired knowledge. In

gene ontology (GO) enrichment analyses, we found an enrichment of motility-related terms among the genes overexpressed at
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least two-fold in M"™"

cells (log2 fold-change>2), providing a first support to the relevance of our approach (Fig.1g,
Supplementary Table 3-sheet2). To further probe this relevance, we applied the same analytical strategy to the other three
selected datasets. THBS1 being detected in <1% malignant cells in the PA-10X dataset, it was excluded from the motility
signature for that dataset. Each of these analyses resulted in clusters composed of cells coming from different tumors (NMI

HIGH and M"Y cell clusters (Mann Whitney,

=0.058-0.15) (Supplementary Figure 1C-E). Differential expression analysis between M
BH-adjusted p-value < 0.01) (Supplementary Table 2-Sheet3-5), followed by GO enrichment analyses of the most overexpressed
genes, again highlighted enrichment in motility-related terms (Supplementary Figure 2, Supplementary Table 3-sheet3-5). To

determine the similarities of M"°"

cell transcriptional profiles from distinct datasets, we compared the lists of their
overexpressed genes. The highest overlaps were found between lists of genes derived from datasets obtained with the same

sequencing technology. 69.2% (4852/7010) of the genes overexpressed in M™® cells from N-S dataset were also overexpressed

HIGH HIGH

inM cells from D-S dataset, and 86.0% (6627/7707) of the genes overexpressed in M cells from N-10X dataset were also

overexpressed in M™" cells from PA-10X dataset (Supplementary Figure 1F). Comparing the four lists of genes overexpressed in

M"™" GB cells, we found that 43 to 53% of the genes overexpressed in men

GB cells from one dataset were also overexpressed
in M™®" cells from the three other datasets (Supplementary Figure 1F, Supplementary Table 2-Sheet6). These results indicate
that our analytical strategy captures cells with similar transcriptional profiles in distinct datasets.

To further determine the extent to which our analytical approach captures cells in a motile state, we selected three gene
modules previously found to be associated with GB cell motility (Supplementary Table 2-Sheet7), and determined their

. . HIGH
enrichment in M

cells and their correlation with the motility score. Most motile cells, including GB cells have been shown to
undergo transcriptional reprogramming akin to the so-called epithelial-mesenchymal transformation (EMT) process. We
therefore used an EMT gene module of 14 genes associated with mesenchymal transformation of neural cells and GB cell
motility (Carro et al 2010) (Armento et al 2017). We also sought for enrichments in two other gene modules mobilized in
invasive GB cells. One consists of 36 genes highlighted by Bhaduri and colleagues with highly correlated expression in an outer
radial glia (0RG)-like malignant cell population with increased invasive behavior in GB (Bhaduri et al 2020). The other consists of
32 genes involved in the regulation of GB cell motility and driven by TEAD transcription factors (Tome-Garcia et al 2018). Each of

HIGH

these three gene modules was found to be enriched in M cells in all analyzed dataset (Fig.1h). We also observed a positive

linear relationship between the motility score and the EMT, oRG and TEAD scores (Fig.1i, Supplementary Figure 3). As expected

HIGH LOwW

from these correlations, the EMT, oRG and TEAD scores were significantly higher in M cells compared to M~ cells from each
dataset (Fig.1j, Supplementary Figure 3).
Altogether, these results support the relevance of the analytical strategy implemented for capturing cells with high motile

potential from distinct datasets.

Metabolic characteristics of cells with high motile potential
We went on to identify metabolic pathways deregulated in GB cells with high motile potential. The genes coding for

HSH cells were identified in each dataset using the 2019

enzymatic components of the metabolic pathways overexpressed in M
KEGG list of 1586 metabolic elements (Kanehisa et al 2017) (Supplementary Table 4-Sheet2). KEGG pathway enrichment
analyses highlighted metabolic pathways related to extracellular matrix (ECM) modeling (e.g. glycosaminoglycan
synthesis/degradation) and membrane composition rearrangements (e.g. unsaturated fatty acids (FA), FA elongation, GPI-
anchor biosynthesis) (Fig.2a, Supplementary Table 4-Sheet3-6). In addition to these metabolic pathways expected to be active in
motile cells, we also observed enrichment in pathways involved in energy production (Fig.2a, Supplementary Table 4-Sheet3-6).

The upregulation of genes involved in glycolysis, amino acid catabolism, fatty acid degradation, protein recycling (lysosome), TCA

cycle, oxidative phosphorylation, suggests that GB cells with high motile potential have higher energetic needs than cells with
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low motile potential. Enrichment in oxidative phosphorylation, a term gathering elements of the electron transport chain (ETC),

associated with enrichment in TCA cycle components, suggests in addition a higher mitochondrial load in e

cells. Finally, we
observed enrichment in pathways involved in anti-oxidative processes, such as the pentose phosphate pathway (PPP), and the
cysteine, sulfur and glutathione metabolisms (Fig.2a, Supplementary Table 4-Sheet3-6). Enrichment in pathways or organelles
involved in ROS scavenging and/or production of anti-oxidants (porphyrin and selenocompound metabolisms, peroxisome), as
well as enrichment in purine/pyrimidine metabolism, required for DNA/RNA repair, are also compatible with enhanced
responses to oxidative stress. Overall, the results of this analysis point to an enhanced mobilization of anti-oxidative pathways
counteracting the deleterious actions of oxidative compounds derived from the over-mobilization of energy production
pathways.

Trajectory modeling was used next to delineate the acquisition of metabolic components potentially crucial for a motile cell
state. Trajectory reconstruction based on expression of the motility signature genes was achieved with the STREAM python
software using the N-S dataset which has the highest sequencing depth. The inferred trajectory corresponded to a branched
path, highlighting an intermediary branch (S3-S1 branch) linking cells with low motile potential to cells with high motile potential
(Fig.2b). Among the metabolic enzymes overexpressed in S3-S1 branch compared to each of the other branches, characterizing
therefore the switch between low and high motile states (Supplementary table 5), two were overexpressed in M™M" cells of all
datasets considered. NIT2 encodes an omega-amidase involved in anaplerosis through shuttling of a-ketoglutarate and
oxaloacetate from the glutamine and asparagine metabolisms into the TCA cycle (Cooper et al 2016). MPST (Mercaptopyruvate
Sulfurtransferase) encodes an enzyme involved in cysteine metabolism and is part of anti-oxidative cell defenses. MPST converts
3-mercaptopyruvate, derived from cysteine transamination, to pyruvate while transferring a sulfur to a thiophilic acceptor,
thereby forming a persulfide (Filipovic et al 2018). MPST was selected for further studies based on the following rationale. MPST
is overexpressed in GB tissues compared to normal brain tissues (Fig.2c). Mitochondria-located GOT2, an aminotransferase
which ensures the formation of the MPST substrate 3-mercaptopyruvate, is overexpressed in GB cells with high motile potential
(Supplementary table 2). MPST participates to anti-oxidant defenses, notably through persulfidation (also known as S-
sulfhydration) of proteins (P-SSH), a post-translational modification of reactive cysteine residues that protects proteins from
irreversible cysteine hyperoxidation (Filipovic et al 2018) (Pedre & Dick 2021). Persulfidated MPST (MPST-SSH) has also been
proposed as a key intermediate in production of GSH-persulfides (GSSH) (Kimura et al 2017). Although MPST participation in the
control of GB cell properties is unknown, evidences have been provided for its stimulatory effect on the migration of endothelial
cells (Tao et al 2017) (Abdollahi Govar et al 2020) and murine colon cancer cells (Augsburger et al 2020). Taken with the results
from our in silico analyses, these data led us to postulate that enhanced oxidative stress coupled with MPST mobilization plays a

key role in GB cell motility (Fig.2d).

Enhanced ROS production in cells with high motile potential

The predictive values of the results from the computational analyses were experimentally evaluated using GB patient-
derived cells (PDC). PDC relative migratory and invasive properties, as determined using spheroid-on-Matrigel migration assays,
invasion-across-collagen assays and Matrigel-coated transwell assays showed 5706**-PDC to be the most motile, followed by
R633- and P3-PDC (Supplementary Figure 4A-C).

We first determined whether Reactive Oxygen Species (ROS) affect GB cell motility. Intracellular ROS levels were
evaluated with CellROX Green or Deep red fluorogenic probes. Cell exposure to the anti-oxidant N-Acetyl Cysteine (NAC) or the
ROS generator menadione resulted in decreased or increased fluorescent signals detected by FACS, thereby confirming CellROX’

suitability for detecting ROS in GB PDC (Fig. 3a). Microscopic observation of PDC-spheroids first seeded on Matrigel and then
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labeled with CellROX Green probe showed a higher ROS signal in GB cells migrating out of the spheroids compared to their
static counterparts (Fig.3b).

Considering this result with our prior observation of enriched expression in genes involved in the TCA cycle and the ETC,
we measured mitochondrial mass using the MitoTracker Green reagent. An increased mitochondrial load was detected in cells
migrating out from cell spheroids (Fig. 3c). FACS was then used to isolate PDC according to their CellROX or Mitrotracker signals.
Cells with high ROS production exhibited a 2.1-2.6 times higher mitochondrial mass than cells with low ROS production (Fig.3d).
Conversely, cells with high mitochondrial mass exhibited higher ROS production than cells with low mitochondrial mass (1.9-3.2
times more) (Fig.3e). We next assessed the invasive potential of GB PDC with high ROS production. To do so, we FACS-sorted GB
PDC according to their basal ROS production, as detected with CellROX" probe (Fig.3f). Evaluation of the ability of each cell
population to invade through Matrigel-coated transwells showed a 1.4-7.7-fold increase in invasiveness of GB cells with high
ROS levels compared to cells with low ROS levels (Fig.3f). Finally, we examined the effects of decreasing ROS levels on cell
motility by exposing the most motile PDC (5706** and R633) to NAC. Decreasing ROS levels with NAC treatment resulted in
decreased GB cells’ ability to invade through Matrigel-coated transwells (Fig.3g). These results indicate that motile GB cells
exhibit enhanced ROS production, as predicted by the results of the computational analyses, and that ROS participate to GB cell

motility.

MPST enzymatic activity is required for GB cell motility

To determine if MPST is necessary for GB cell motility, we first assessed MPST protein levels in motile GB cells by
immunocytochemistry. We observed higher MPST protein levels in cells that migrated out of spheroids or GBO (Fig. 4a). We next
knocked down MPST expression in the three GB PDC with high and intermediate motile potential, using lentiviral transduction of
small hairpin (sh) RNA. Cell transduction with shMPST lentiviral constructs led to decreased MPST mRNA and protein levels with
no major cytotoxic effect (Supplementary Figure 4D-F) Similar results were obtained with another shMPST construct
(Supplementary Figure 4G-l). Knocking down MPST expression resulted in a sharp decrease in cell migration (51-86%) as
determined with spheroid-on-Matrigel assays (Fig.4b). Monitoring cells’ ability to move across micro-channels with periodic 3um
mechanical constraints in a microfluidic chip further showed that MPST knockdown also impaired GB cells’ ability to change their
shape so as to migrate through narrow and tortuous spaces (Fig.4c). Cell invasion was also decreased by 44-95% upon MPST
knockdown as observed using spheroid-in-collagen (Fig. 4d) and Matrigel-coated transwells invasion assays (Fig.4e). The
observed decrease in cell motility can be due to an inhibition of MPST catalytic activity or to defects in other MPST functions
independent from its enzymatic activity. To distinguish between these two possibilities, we treated cells or GBOs with 200 uM
13-MT-3, a selective pharmacological inhibitor of MPST enzymatic activity (Hanaoka et al 2017). Spheroid-on-Matrigel assays
showed that I3-MT-3 decreased PDC migration compared to vehicle-treated cells (Fig.4f). Alike PDC, cell migration out of GBOs
was also inhibited by 13-MT-3 (Fig.4f). 13-MT-3 inhibited also PDC migration through constraining microfluidic chip channels (Fig.
4g). These results indicated that MPST catalytic activity was required for GB cell motility. Given that MPST participates to the
cells’ anti-oxidative defenses through its role in protein persulfidation, we further determined protein persulfidation levels in GB
PDC with decreased MPST expression or activity using the recently published Dimedone-Switch method (Zivanovic et al 2019).
Decrease in the global protein persulfidation levels upon MPST knockdown (Fig.5a), and upon MPST enzymatic inhibition
(Fig.5b), showed that MPST participates to protein persulfidation in GB cells.

Finally, we evaluated the consequences of MPST knockdown on overall tumor burden using orthotopic xenografts of PDC
stably expressing luciferase and either shControl or shMPST. Bioluminescence imaging showed cell engraftment and initial
tumor development whether the cells expressed shControl or shMPST, with delayed tumor formation observed for one cell line

(Fig.5c). In all cases, we observed a reduced tumor burden in mice grafted with shMPST-PDC, compared to mice grafted with
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shControl-PDC up to the experiment end-points (Fig.5d, Supplementary Figure 4J). Mice survival monitoring showed that mice

xenografted with shMPST-PDC survived on average twice longer than mice xenografted with shControl-PDC (Fig.5e).

Discussion

The diversity of cancer cells populating GB is a major challenge in treating these brain cancers. Understanding the
molecular basis of the varying functional cell states that co-exist within GB at the time of patients’ diagnosis and are commonly
shared across tumors, opens a path to overcome this challenge. A way to access such information is coupling experimental
validations with computational modeling of transcriptomes of single cells sorted from patient GB, which offer the closest
possible map of the patients’ tumor cells. Following this blueprint led to circumscribing the overall metabolic characteristics of
motile cells across thirty patients’ GB, and to identifying MPST as a metabolic enzyme crucial for GB cell motility and tumor
development.

Our results suggest that GB cells with high motile potential are characterized by greater energetic production than cells
with low motile potential, as shown by the enrichment in multiple energetic pathways. This is in agreement with motile cells
needing more energy to colonize surrounding brain tissue and adapt to new microenvironments with unique nutrient and
oxygen availability, thereby mobilizing different pathways to meet their high energetic needs (Garcia et al 2021). Of note, this
overall energetic mobilization appears to converge towards the TCA and the ETC, a modeling result supported by the
experimental demonstration of enhanced ROS production and higher mitochondrial mass load in motile GB cells. These results
are in coherence with previous studies on epithelial cancer cells showing that an ETC overload with preserved mitochondrial
functions and an increased mitochondrial superoxide production promote tumor cell migration and invasion (Porporato et al
2014). Results from previous studies, using GB cell lines cultured in serum, highlight also a role for mitochondria in cell motility.
An example is the trafficking of energetically active mitochondria to membrane protrusions accompanying enhanced invasive
properties of the LN229 GB cell line (Caino et al 2015). Another is the inhibitory effect of ROS scavenging on EGF-stimulation of
T98G cell migration (Pudelek et al 2020). More broadly, ROS are known to promote activity of pro-migratory signaling pathways
by direct redox modification of their protein components (Weng et al 2018) (Dustin et al 2020).

Intracellular ROS levels must however be tightly controlled since ROS overload can have severe deleterious consequences
on cancer as well as on normal cell properties and viability. Coherently, our results indicate that GB cells with high motile
potential are enriched in anti-oxidant pathways capable of counteracting oxidative stress. We observed an upregulation of the
pentose phosphate pathway (PPP) that implicates enhanced NADPH production necessary for the function of several antioxidant
proteins. We also observed enhanced glycine, glutamate and cysteine metabolism together with enhanced glutathione
metabolism that implicates enhanced availability of the major anti-oxidant compound GSH. Cysteine metabolism involvement in
the anti-oxidative process extends beyond supporting GSH synthesis. The CSE (Cystathionine Gamma-Lyase also known as CGL,
encoded by CTH), CBS (Cystathionine Beta-Synthase) and MPST (also known as MST) enzymes of the cysteine metabolism
participate to protein protection from detrimental hyperoxidation of their reactive cysteine residues (Zivanovic et al 2019).

MPST was the only metabolic enzyme participating in protection from oxidative stress predicted by trajectory modeling
to be at the crossroad of the path leading GB cells from low to high motility. Our results demonstrate the biological validity of
this prediction. MPST knockdown resulted in a robust inhibition of GB cell motility. The cells exhibit a decreased ability to move
around in a freely available space, as shown with spheroid-on-Matrigel migration assays and microfluidics assays. The latter
shows in addition that the sharp reduction in the cells’ ability to migrate through narrow spaces is associated with impairment in
cell deformability. MPST facilitation of cell migration might extend to cell types other than GB cells, MPST inhibition having
previously been involved in the migration of a mouse carcinoma cell line (Augsburger et al 2020), and endothelial cells (Tao et al

2017) (Abdollahi Govar et al 2020). We also observed a robust decrease in GB cell invasiveness upon MPST knockdown, GB cells
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exhibiting an impaired ability to remodel the ECM so that they can move into their surroundings as shown with spheroid-in-
collagen and Matrigel-coated transwell assays. In coherence with these in vitro results, alteration of GB cell properties by MPST
knockdown translates in vivo into reduced tumor burden, and a robust increase in mice survival, albeit the cells retain their
tumor-initiating properties. MPST enzymatic activity is required for its pro-motile effects, the MPST pharmacological inhibitor 13-
MT-3 (Hanaoka et al 2017) having the same consequences as MPST knockdown on GB cell migration. MPST catalyzes stepwise
the desulfuration of 3-mercaptopyruvate that generates an enzyme-bound persulfide, and the transfer of the persulfide’s outer
sulfur atom to proteins or small molecule acceptors (Pedre & Dick 2021). MPST knockdown was accompanied with reduced
persulfidated protein levels in GB cells, indicating that protein persulfidation is part of the mechanisms by which MPST affects
GB cell motility. Whether the advantage conferred by this post-translational modification stems from a mere overall protection
of proteins from hyperoxidative damage or from more specific consequences remains to be determined. The few surveys of
persulfidated proteins performed without exogenous dihydrogene sulfide (H,S) supply showed that persulfidation affected
proteins involved notably in energetic pathways (Ida et al 2014) (Gao et al 2015) and migration and associated signaling
pathways (Zivanovic et al 2019) (Murphy et al 2019) (Zuhra et al 2021). For instance, proteins of the glycolysis pathway were
reported to be persulfidated in a human pancreatic beta cell line (Gao et al 2015). The resulting increase in glycolytic metabolic
flux could stem from enhanced catalytic activity of glycolytic enzymes such as GAPDH or LDHA under their persulfidated form
(Mustafa et al 2009) (Gao et al 2015) (Untereiner et al 2017). Persulfidation studied in HEK293 cells has also been reported to
enhance actin polymerization and alter actin-dependent cytoskeletal rearrangements (Mustafa et al 2009). Interestingly, several
proteins pertaining to migration, including the focal protein kinase encoded by PTKN2, have also been found to undergo
persulfidation in Hela cells treated with EGF, a known pro-migratory signaling factor (Zivanovic et al 2019). Most of these
increases in protein persulfidation are presumably mediated by CBS and/or CSE activity, as supported by studies implementing
inactivation of these enzymes and/or by their conspicuous expression in the biological systems under scrutiny (Mustafa et al
2009) (Gao et al 2015) (Untereiner et al 2017) (Zivanovic et al 2019) (Zuhra et al 2021). MPST-mediated protein persulfidation
has so far been reported for only two proteins, the sulfurtransferase Mocs3 and thioredoxin (Trx). Through Mocs3, it is involved
in a cascade leading to protein urmylation and tRNA thiolation, and through Trx in H,S generation (Pedre & Dick 2021). The
overall decrease in protein persulfidation levels we observed in GB cells upon MPST knockdown indicates that MPST affects a
wider range of proteins.

Sulfur metabolism, considered from the perspective of H,S levels detected in tumor tissue homogenates, has been
reported to be lower in GB than in normal brain tissues, and controlled H,S production appears to be necessary for tumor fitness
as increasing H,S levels with H,S donors decreases GB cell viability, and development of subcutaneous mouse GB cell grafts
(Silver et al 2021). Finding decreased H,S production upon inhibition of CBS expression or activity in mouse GB cells (Silver et al
2021), and in a serum-cultured cell line (Takano et al 2014), point to CBS as the mediator of H,S production in GB as in other
cancer cells studied so far. In this context, our results unravel a novel role for sulfur metabolism in the control of GB
development through MPST. Demonstration of the participation of MPST in the control of GB cell motility was made possible by
taking into account GB heterogeneous populations through the consideration of the cell functional state in link with its
metabolic underliers. Only single cell data allow analysis at this level of granularity, avoiding confusion brought up by averaging
different cell types and functional states in a whole tissue or cell culture. However, it remains unknown whether our modeling
results pertain to a specific mode of cell motility and/or path of migration. Both individual and collective migrations have been

HIGH
cells

identified in GB (Vollmann-Zwerenz et al 2020) (Volovetz et al 2020). Enrichment of oRG-like gene modules in M
suggests that the motile cells we captured move in a solitary fashion like oRGs in the developing cortex. However, it is yet to be
demonstrated that gene markers for oRG-like GB cells are indeed supporting individual migration rather than collective

migration. With respect to the path of migration, we found that MPST knockdown impaired cell invasiveness not only through
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collagen, a major component of the tumor ECM, but also through Matrigel, whose composition mixes its major laminin
component to collagen IV and heparan sulfate proteoglycans, similar to the blood vessels’ basement membrane found in GB
(Ljubimova et al 2006). These results suggest that MPST could be necessary for GB cells moving along blood vessels as well as
through the brain parenchyma. In the different datasets considered in this study, the edge or core origin of the cells is most
often unknown, though they are most likely coming from dense tumor cell regions. Removal of the surrounding parenchyma is
usually undertaken with great care by neurosurgeons in order to spare at the best motor and cognitive functions. Although
Darmanis and colleagues distinguished malignant cells isolated from the tumor core and the periphery, the cancer cells isolated
from the latter are too few to authorize robust computational analyses. It is therefore very likely that our findings relate to
dense tumor areas’ cells, moving either along the blood vessel network that characterize these highly angiogenic tumors, or

across the tumor parenchyma enriched in components favoring cell displacement.

Methods
Schemes were created with BioRender.com. All bicinformatics analyses were performed using the R software version > 3.6.1
(https://cran.r-project.org/) or Python 3.7.9 (https://www.python.org/). All resources and materials, R packages, corresponding

websites and references are listed in Supplementary Table 6.

scRNA-seq data pre-processing

Four publicly available single-cell transcriptomic datasets from GB patient tumors were downloaded, including the only two
publicly-available datasets obtained with the SMART-seq2 technique (Neftel et al 2019) (Darmanis et al 2017), and two datasets
obtained with the 10X Genomics technique (Neftel et al 2019) (Pombo Antunes et al 2021) (Supplementary Table 6). The last
two datasets were selected among possible others because of the availability of the raw UMI counts. We designated them as N-
S, D-S, N-10X and PA-10X, respectively. Outlier cells with low-complexity transcriptomes, revealed by plotting the graphical
distribution of the number of detected transcripts and genes per cell, were excluded from the analyses as described (Saurty-
Seerunghen, 2019). For 10X datasets, detection of over 20% mitochondrial genes per cell was considered as indicative of dying
cells leading to their exclusion from the analyses. Therefore, we retained for further analyses 4916 malignant cells from twenty
adult GB patients in the N-S dataset, 1033 malignant cells from four adult GB patients in the D-S dataset, 5797 malignant cells
from six adult GB patients in the N-10X dataset and 8666 malignant cells from six adult GB patients in the PA-10X dataset. Log,-
transformed Counts Per Million (log,(CPM+1)) were used for D-S and the 10X datasets, unless otherwise specified. CPM
corresponds to the counts of gene-mapped reads normalized by the total number of mapped reads per cell divided by one
million, thus allowing comparison of read abundance across libraries of different sizes. For the N-S dataset, gene expression data
currently available are in log,((TPM/10) + 1). TPM (Transcripts Per Million) normalization takes into account an eventual biased
estimation of long transcript numbers, by dividing the number of mapped reads by the transcript’s length. Since expression
values in CPM could not be calculated from these data, log,((TPM/10) + 1) values were just transformed into log,(TPM + 1) to
optimize the comparison between the different datasets. To avoid potential analytical bias due to scarcely detected genes,
genes detected in less than 1% cells were filtered out.

Malignant and normal cells were distinguished either according to the cell annotations provided for both SMART-seq2 datasets,
or when absent as for 10X Genomics datasets, based on inference of copy-number variations (CNVs), a hallmark of malignant
cells. Expression data in log,(CPM/100 + 1) values were used, which shrinks expression ranges, allowing to keep only the major
gene expression variations, based on which malignant and normal cells can be distinguished. Data were processed using a three-
step approach: CNV inference, marker gene expression and unsupervised cell clustering. CONICSmat R package used to infer

CNVs has the advantage of not requiring an a priori reference cell dataset (Muller et al 2018). The default filtering and
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normalization procedures were followed, as outlined in https://github.com/diazlab/CONICS/wiki/Tutorial---CONICSmat;---
Dataset:-SmartSeq2-scRNA-seq-of-Oligodendroglioma. CONICSmat fits a two-component Gaussian Mixture Model (GMM) to the
average gene expression across all cells within each chromosomal region. As a result, genes of a given region present a lower
expression in cells with a deletion of this region than cells without the deletion. The opposite is observed for genes of amplified
regions. The posterior probabilities of belonging to one of the two components of the model are then calculated for each cell.
The copy number status across cells is predicted by the posterior probabilities for each cell belonging to the component with the
higher mean. For each region, a CONICSmat likelihood ratio test adjusted p-value <0.001 and a difference in Bayesian Criterion
>300 were retained as CNVs. The GMM-based CNV predictions were then used to group cells into potential malignant and non-
malignant groups and were visualized using heatmaps (ComplexHeatmap R package (Gu et al 2016)) and UMAP (umap R
package) plots based on 500 most variable genes (Supplementary Figure 5A-B, Supplementary Figure 6A-B). Second, expression
of marker genes for pan-immune cells (PTPRC/CD45), macrophages (ITGAM, FCGR3A/CD16A, CD14), microglia (CSF1R,
TMEM119), T-cells (CD2, CD3D) and oligodendrocytes (MOG, MAG) was highlighted on UMAP plots (Supplementary Figure 5C,
Supplementary Figure 6C). Finally, a hierarchical clustering followed by a K-means clustering on the UMAP components
(FactoMineR R package (Husson et al 2010)) was applied to identify cell groups that were most similar or different to one
another (Supplementary Figure 5D, Supplementary Figure 6D). Using CNV status predictions, marker gene expressions and the
clustering result, the cells were marked as malignant when they harbored CNVs, clustered together on UMAP and were devoid
of normal cell markers (Supplementary Figure 5E, Supplementary Figure 6E).

R scripts used are provided in Supplementary Datafile 1.

Cell grouping analyses

Clustering analysis was based on a molecular signature of ten elements (see results) and achieved using the Hierarchical
Clustering on Principal Components (HCPC) approach (FactoMineR package (Husson et al 2010) modified to implement in a
stepwise manner four methods for multivariate data analyses: Principal Component Analysis (PCA), Uniform Manifold
Approximation and Projection (UMAP), hierarchical clustering, and partitioning clustering by the k-means (Supplementary Figure
1A). The ten principal components (PCs) identified by PCA were reduced non-linearly to two dimensions using UMAP. Euclidean
distance was used to construct a cell-to-cell distance matrix based on the two UMAP components. Hierarchical clustering was
then performed on this distance matrix using the Ward’s criterion (ward.D2 algorithm) in order to determine the number of
clusters. The resulting partitioning of the cells was improved by a K-means clustering with ten iterations. The cell grouping was
visualized using UMAP (umap R package) or chord plots (circlize R package (Gu et al 2014)). A Normalized Mutual Information
(NMI) score (ClusterR package (Manning et al 2008)) was calculated to determine the contribution of cells issued from distinct
tumors to each cluster, as described (Saurty-Seerunghen et al 2019). Of note, THBS1 was excluded from the motility signature
when applied to PA-10X dataset due to its detection in <1% GB cells in that dataset.

Motility and other scores were obtained by computing the geometric mean of the expression values per cell of each element of
the molecular signature corresponding to a given score. For each signature, only genes detected in > 1% cells in >3 datasets
were considered. When null, expression values were imputed with a value of 1.

R scripts used are provided in Datafile S1.

Analyses of genes differentially expressed between cell groups
Genes differentially expressed between cell groups with differing scores were identified using a Mann-Whitney (Wilcoxon Rank
Sum) test with p-values adjusted for multiple testing (Benjamini-Hochberg (BH), adjusted p-value <0.01) (Soneson & Robinson

2018). Fold change (FC) was calculated as follows: FCi=xi-yi, where xi and yi are the log2 expression levels of gene i in conditions
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x and vy, respectively. Only genes detected in at least 3% of GB cells were considered for this analysis. Genes coding for
metabolism enzymes were identified using the list from KEGG (Kanehisa et al 2017).

Comparing list of differentially expressed genes between distinct datasets was performed with the venn R package on genes
detected in 23% malignant cells in all datasets, and after updating gene symbols based on gene metadata files downloaded from
HGNC and NCBI websites (Supplementary Table 6). Genes absent from these metadata files, or with ambiguous symbols (e.g.
genes whose current approved symbol is the previous symbol of another gene), or whose symbol was previously associated with
more than one gene were excluded from the lists.

Gene ontology analyses were carried out on the enrichR website (Chen et al 2013) (Kuleshov et al 2016) (Xie et al 2021). We
considered BH-adjusted p-value < 0.05 (Fisher's Exact test) as the cut-off criterion for significance. Redundant terms were
excluded. Graphs were generated using ggplot2 R package.

R scripts used are provided in Datafile S1.

Trajectory inference analysis

To model the path taken by cells with low motile potential to reach a high motile potential, STREAM python package was used
(Chen et al 2019). Briefly, the expression values of the ten elements of the motility signature were first extracted. Next,
dimensions were reduced to four components using the spectral embedding algorithm (dimension_reduction STREAM function,
other parameters are set to default). The components were then used for simultaneous tree structure learning and fitting using
EIPiGraph (seed_elastic_principal_graph STREAM function, default parameters). The resulting trajectory structure was
represented in a 2D subway map plot, where straight lines represent branches and each dot represents a single cell
(plot_stream_sc STREAM function, dist_scale = 0.5 and root = ‘S5’, other parameters to default). To identify genes differentially
expressed between cell populations from two adjacent branches, the detect_de_markers STREAM function was used. The mean
of scaled gene expressions in each branch was calculated. Then, the fold change (FC) of mean expression between pairs of
branches was computed, and Mann-Whitney U test performed. The U statistic was then standardized to Z-score to assess in
which branch the gene is overexpressed. Genes with Z-score greater than 1 and log,FC greater than 0.15 are considered as
overexpressed between two adjacent branches. Multiple testing correction was performed using the Benjamini-Hochberg

method. Significance level was set at q value < 0.05.

Biological material, lentiviral transduction and pharmacological treatment

Patient-derived cells (PDC) R633, 5706** and P3 obtained in our and other laboratories from neurosurgical biopsy samples of
distinct primary GB were cultured in defined medium containing bFGF and EGF or bFGF only (P3), as described (El-Habr et al
2017) (Rosenberg et al 2017) (Eskilsson et al 2016). The PDC stably express luciferase, and 5706**-PDC express GFP as well. Cells
were transduced with lentiviral vectors encoding a shRNA construct either neutral (shControl) or targeting MPST transcripts
(shMPST) (Supplementary Table 6). Non-transduced cells were eliminated following a 1-2 week treatment with puromycin (1-2
pg/mL). The lentiviral particles were produced by the Plateforme vecteurs viraux et transfert de génes (Necker Federative
structure of research, University Paris Descartes, France). GBOs were generated and cultured from a primary GB patient tumor
(Supplementary Table 6) following the method developed by Jacob and collaborators (Jacob et al 2020). In relevant experiments,
cells were treated with 200uM 13-MT-3 or ImM NAC (MedChemExpress and Sigma respectively) or their vehicles (DMSO and

culture media respectively).
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Cell migration and invasion assays

Cell migration was assessed using spheroid-on-Matrigel assay, as described (Guyon et al 2020). Briefly, cells were counted as
described (El-Habr et al 2017), and cell spheroids generated by seeding 2500 cells/100uL 0.4% methylcellulose (Sigma) in a U-
bottom well (96 wells plate, Falcon). After a 24-48 hours culture, the spheres were seeded on Matrigel (0.2mg/mL culture
media, Corning), and cell migration assessed after 7 hours (5706**) or 24 hours (R633, P3), unless specified otherwise. Images
were acquired with a fluorescent microscope (Zeiss). The total area covered by GB cells migrating from a spheroid or GBO, as
well as the central spheroid core area, were delineated and measured with FlJI software. The migratory index calculated
corresponds to the ratio between the total area and the spheroid core area. Values were normalized to shControl or Vehicle.
Microfluidic chips were designed and fabricated, as described (Courte et al 2018). Briefly, PDMS (Polydimethylsiloxane) blocks
were modeled from a SU8 wafer encoding two 3mm-long 1mm wide and 50 um-high cell culture chambers separated by 4.5um-
high arrays of archlike microstructures that encode successive mechanical constraints. The resulting SU8 wafers were used to
cast polydimethylsiloxane (PDMS Sylgard, Ellsworth Adhesives) mixed at a 10:1 w:w ratio of base to curing agent. PDMS was
cured 3 h minimum at 70 °C. The resulting chips were unmolded, and inlets were punched with a surgical biopsy punch (4 mm
diameter) at both extremities of each compartment. The PDMS blocks were bonded to 130-160 um thick glass coverslips (Fisher
Scientific 11767065) after plasma surface treatment with an Atto plasma cleaner (Diener). Culture compartments were then
immediately filled with deionized water. Devices were placed in individual Petri dishes for easier handling, and each of the
resulting culture system was sterilized by exposure to a UV lamp for 30 min before use. 2*10° cells PDC expressing shControl or
shMPST were seeded at a 1:1 ratio into the cell reservoirs. The shMPST construct encoding GFP in addition to the shRNA allowed
distinction between shControl and shMPST cells. Seven days post-seeding, cells were fixed with 4% paraformaldehyde, and
nuclei stained using DAPI (Sigma). Cells were visualized with a fluorescent microscope (Zeiss). The distance travelled by the cells
that moved away from the channel entrance was quantified using FlJI software. For the shMPST condition, only rare cells moved
away from the channel entrance. We therefore considered all of them. For the shControl condition we considered an equivalent
cell number among those having migrated the furthest away. For comparing 13-MT-3 effect on cell migration, 2*10° vehicle- or
13-MT-3-treated cells were seeded in microfluidic chips. Cell migration was quantified by measuring the distance traveled by the
ten cells having migrated the furthest away from the channel entrance.

Cell invasion was assessed using spheroid-in-collagen assay (Guyon et al 2020) and Matrigel-coated transwells (Renault-Mihara
et al 2006). Spheroids generated as described above, were seeded in collagen (1mg/mL culture media, Corning), and cell
invasion assessed 24 hours later. Images were acquired with a Zeiss microscope. The total area covered by GB cells leaving the
spheroid and invading the collagen, as well as the central spheroid core area, were delineated and measured with FlJI software.
The invasive index calculated corresponds to the ratio of the total area and the spheroid core area. Values were normalized to
shControl or Vehicle. Transwells (8um pores, Corning) were coated for 30min with Matrigel (0.2mg/mL culture media, Corning).
They were then placed in wells containing culture media with growth factors. 40000 (R633 and P3) and 20000 (5706**) cells
were seeded in 100ul media without growth factors into the transwells, and further cultured for 24 hours. Cells having invaded
the bottom part of the membrane were counted after paraformaldehyde fixation and nuclei staining with DAPI (Sigma), as

described (Renault-Mihara et al 2006).

Detection of intracellular ROS levels

Cells or spheroids were incubated at 37°C for 30min with CellROX Green (5uM/R633, 10uM/P3) or Deep Red reagent
(1.25uM/P3, 2.5uM/R633 and 5706**) (ThermoFisher, France). Fluorescence signal was then assessed by microscopy (CellROX
Green, Zeiss microscope) or by FACS (CellROX Deep Red, ARIA II, BD Biosciences). When indicated, cells were treated with a ROS

scavenger, N-Acetyl Cysteine (NAC, 1h, 37°C) and/or a ROS generator, Menadione (Mena, 30min, 37°C), and ROS levels were
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measured by FACS analysis. The latter was performed on 10000-gated events using Vdye-labeled cells for detecting any non-
viable cell (1uL/4-5*105 cells/mL, 30min, 4°C, eBiosciences). Violet laser (405nm) and Pacific Blue filter were used for Vdye
detection, Blue laser (488nm) and FITC filter for CellROX Green reagent detection, and Red laser (640nm) and APC filter for
CellROX Deep Red reagent detection. Data analysis and figure generation were performed using the FACS Diva software (BD

Biosciences).

Measure of mitochondrial mass

Cells, spheroids or GBO were incubated with 1uM MitoTracker Green reagent (Invitrogen) at 37°C for 30min and the
fluorescence signal was assessed by microscopy or FACS. For FACS analysis, it was performed on 10000-gated events. Violet laser
(405nm) and Pacific Blue filter were used for Vdye detection, and Blue laser (488nm) and FITC filter for MitoTracker Green

reagent detection. Data analysis and figure generation were performed using the FACS Diva software (BD Biosciences).

RT-QPCR assay of gene expression

Gene expression knockdown in response to shRNA expression was verified by RT-QPCR as previously described (Saurty-
Seerunghen et al 2019) using the LightCycler480 (Roche, France) and the SYBR Green PCR Core Reagents kit (Bimake.com). The
thermal cycling conditions comprised an initial denaturation step at 94°C for 5 min, and 40 cycles at 94°C for 30sec, 60°C for
30sec and 72°C for 30sec. Transcripts of the TBP gene encoding the TATA-box binding protein (a component of the DNA- binding
protein complex TFIID) were quantified as an endogenous RNA control. Quantitative values were obtained from the cycle
number (Cq value), according to the manufacturer’'s manuals. Sequences of primers used for Q-PCR are given in Supplementary

Table 6.

Protein analyses

Cells were lysed using HEN Buffer (0.5M EDTA, 20% SDS, 1% NP-40, 10mM Neocuproine and 0.1M HEPES, pH 7.4) supplemented
with 5mM 4-chloro-7-nitrobenzofurazan (NBF-CI, Sigma-Aldrich), as described (Zivanovic et al 2019). Proteins were then
precipitated twice in the presence of methanol and chloroform at 14000rpm for 15min at 4°C, the pellets being resuspended in
50mM HEPES (pH 7.4) supplemented with 2% SDS. Once completely dissolved, protein concentration was determined by BCA
assay and adjusted to 3mg/mL. For detection of MPST protein levels, 30ug protein extracts were separated by SDS-PAGE using
4-12% (w/v) NuPAGE gels (Invitrogen, France) and transferred to Transblot nitrocellulose membranes (Biorad, USA). MPST
detection was achieved using immunoblotting with anti-MPST (Sigma, 1:4000). The secondary antibody was anti-rabbit 1gG (GE
Healthcare, 1:30000). Signal detection was performed with SuperSignal™ West Femto Maximum Sensitivity Substrate
chemiluminescence detection system (ThermoFisher, France). Densitometric analysis was achieved using ImageJ software. MPST
levels were assessed by normalizing the chemiluminescent signal by the amount of proteins loaded assessed using Red Ponceau.
Persulfidated protein levels were assessed following the Dimedone-Switch protocol, as described by Zivanovic and colleagues
(Zivanovic et al 2019). Briefly, this method relies on the indiscriminate labeling of persulfides, thiols, sulfenic acids, and amino
groups with 4-chloro-7-nitrobenzofurazan (NBF-Cl, the NBF-adducts yielding a fluorescent signal detected at 488nm). Upon
incubation with dimedone-based probes, only the persulfides exchange their labeling, thus enabling their identification (red
signal detected at 800nm). The protein extracts previously prepared in presence of NBF-Cl were incubated for 30min at 37°C
with 25uM click mix provided by Dr Milos Filipovic (1ImM Daz-2, 1mM Cy7.5 alkyne, 2mM TBTA Cu Complex, 4mM L-ascorbic
acid, 30% acetonitrile and 20mM EDTA in PBS) and precipitated as described above. Proteins were subsequently resuspended in
50mM HEPES supplemented with 2% SDS and separated using SDS-PAGE on 4-12% (w/v) polyacrylamide gels. Gels were fixed in

12.5% methanol and 4% acetic acid for 30min. The Cy7.5 signal corresponding to persulfidated proteins was recorded at 800nm
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and the NBF-adducts signal was recorded at 488nm on a Chemidoc Imager (BioRad, France). Persulfidation levels were assessed

by normalizing the Cy7.5 intensity to Alexa488 (NBF-adducts) intensity.

Immunocytochemistry

Cells were harvested, PBS washed, smeared on SuperFrost slides (ThermoScientific, France), and fixed with 4%
paraformaldehyde at room temperature. Following fixation, cells were washed with PBS, and incubated for 60 min at room
temperature in Antibody blocker/diluent (Enzo). MPST primary antibody (Sigma, 1:50) was incubated overnight at 4°C.
Secondary antibody anti-rabbit A555 was incubated at room temperature for 1 h (1:500, Life Technologies). Nuclei were stained
using DAPI (Sigma). Immunostaining was analyzed with a fluorescent microscope equipped with an ApoTome module (Zeiss).

Immunofluorescent signals were analyzed with Zen software (Zeiss) using 2.5 um optical sections.

Intracerebral xenografts

The animal maintenance, handling, surveillance and experimentation were performed in accordance with and approval from the
Comité d’éthique en expérimentation animale Charles Darwin N°5 (Protocol #5379). 5706** and P3 PDC transduced with
lentiviruses encoding either a shControl or a shMPST, were used. 1.5%10° cells were injected stereotaxically into the striatum of
anesthetized 8-10 weeks-old Nude female mice (Janvier Laboratories, France), using the following coordinates: Omm posterior
and 2.5mm lateral to the bregma, and 3mm deep with respect to the surface of the skull. Tumor formation and development
were monitored by bioluminescence imaging performed on a Photon Imager Biospace (Biospace Lab, France), after intra-
peritoneal injection of 150uL luciferin (20mM, ThermoFisher, France). Bioluminescent signals were visualized with M3 Vision

software (Biospace Lab, France).

Statistical analyses
R version 3.6.1 or Prism 7.0 software (GraphPad) were used to generate plots and for statistical analyses. Significance level was
set at p < 0.05, unless otherwise indicated. The type of statistical test used is provided in the figure legends. All experiments

were performed using independent biological samples. Mean + SD are shown.
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Figure legends

Fig.1 Capturing glioblastoma cells with high and low motile potential

a. Schematic outline of the computational analytical strategy. See text for details.

b. Correlations between expression of the ten genes of the motility signature. Only significant correlations are shown (p < 0.01).
c. Malignant cell clustering based on the motility signature. UMAP representation.

d. Different combinatorial expressions of the signature genes characterize each cluster. Heatmap representation of the relative
expression of each signature element per cluster.

e. Contribution of each tumor to identified clusters. Each cell cluster contains cells coming from distinct tumors (NMI score =

0.11).

HIGH LOW

f. Identification of cell groups with the highest and lowest mean motility scores (C6: M, C2: M~ 7). *: Clusters with mean
motility score statistically different from each of the other clusters, p-value < 0.01, one-way ANOVA, Tukey’s multiple

comparisons test. NS: non-significant. M: Motile potential of Glioblastoma cells.

HIGH LOow

g. Motility-related terms highlighted by ontology analysis of genes overexpressed in M versus M cells. Dot plot
representation. Genes overexpressed with fold change >2. Benjamini-Hochberg (BH)-adjusted p-value < 0.05. KEGG: Kyoto
Encyclopedia of Genes and Genomes, BP: Biological processes, CC: Cellular components, MF: Molecular functions.

HGH cells. EMT: genes associated with epithelio-

h. Enrichment in gene modules previously associated with GB cell motility in M
mesenchymal transformation and GB cell motility. oRG: genes signing for outer Radial Glia (0RG)-like malignant cell population
with increased invasive behavior in GB. TEAD: TEAD1-regulated genes involved in GB cell motility. p < 0.001, hypergeometric
test.

i. Linear regression model between motility score and EMT, oRG and TEAD scores. p < 0.0001.

j. Higher EMT, oRG and TEAD scores in M™®" versus M"°" cells. *: p < 0.0001, Mann-Whitney test.

b-g, and i-j: Results from N-S dataset analysis.

Fig.2 Metabolic characteristics of glioblastoma cells with high motile potential

HIGH LOow

a. KEGG pathway analysis of metabolism genes overexpressed in M cells compared to M cells highlights enrichment in
metabolic pathways involved in energy production, oxidative stress response, extracellular matrix (ECM) modeling and
membrane composition rearrangements. BH-adjusted p-value < 0.05. Results from N-S dataset analysis.

b. Inferred trajectory of glioblastoma cells from low to high motility. Cells colored by motility clusters (top panel) and motility
score (bottom panel). MPST (Mercaptopyruvate Sulfurtransferase) marks the path crossroad between low and high motile
potential. Results from N-S dataset analysis.

c. MPST overexpression in GB tissues compared to normal brain tissues. Expression in 163 glioblastoma (GB) versus 207 normal
brain (Normal) tissues. Boxplot representation from GEPIA2 website. TCGA RNA-seq dataset. One-way ANOVA test, *: BH-

adjusted p-value < 0.05.

HIGH LOowW

d. Schematic representation of the metabolic pathways over-mobilized in M cells compared to M~ cells, as inferred from

the KEGG pathway and trajectory modeling analyses.

Fig.3 Motile glioblastoma cells exhibit enhanced ROS production and higher mitochondrial mass than their static counterparts
a. FACS analysis of CellROX signal in basal conditions, and following cell treatment with the anti-oxidant N-Acetyl Cysteine (NAC,
1mM, 1h) or the ROS generator menadione (Mena, 0.1mM, 30min). 5706** PDC. Note the decrease in fluorescent signal in NAC-
treated PDC and the increased fluorescent signal in Menadione-treated PDC. Mean % SD, n = 3 independent biological samples,

*: p <0.05, unpaired t-test with Welch’s correction.
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b. Higher ROS production detected in cells migrating out of spheroids. ROS levels assessed using CellROX Green reagent. R633
and P3 PDC. Brightfield (top panel) and CellROX fluorescence signal (488nm, bottom panel) imaging. Scale bars = 50um (R633)
and 200um (P3).

¢. Microscopic visualization of mitochondrial mass using MitoTracker Green reagent. Scale bars = 200um.

d. Higher mitochondrial mass in cells with high ROS production compared to cells with low ROS production. R633 and P3 PDC.
FACS analysis of ROS levels using CellROX Deep Red reagent and mitochondrial mass using MitoTracker Green reagent. Cells
classified based on their basal ROS levels. Mean * SD, n = 3 independent biological samples, *: p < 0.05, unpaired t-test with
Welch’s correction.

e. Cells with high mitochondrial mass have higher ROS production than cells with low mitochondrial mass. R633 and P3 PDC.
FACS analysis of ROS levels using CellROX Deep Red reagent and mitochondrial mass using MitoTracker Green reagent. Cells
classified based on their mitochondrial mass. Mean + SD, n = 3 independent biological samples, *: p < 0.05, unpaired t-test with
Welch’s correction.

f. Cells with high ROS production have higher invasive properties than cells with low ROS production. 5706**, R633 and P3 PDC.

% and ROS™® fractions. Right panel: Cell invasion across Matrigel-coated

Left panel: Example of FACS-sorting of PDC into ROS
transwells. Mean £ SD, n = 3-4 independent biological samples, *: p < 0.05, unpaired t-test with Welch’s correction.
g. Decreasing ROS levels in GB-PDC using 1ImM NAC decreases cell invasion. 5706** and R633 PDC. Cell invasion across Matrigel-

coated transwells. Mean £ SD, n = 4-7 independent biological samples, *: p < 0.05, unpaired t-test with Welch’s correction.

Fig.4 MPST is required for glioblastoma cell migration and invasion

a. MPST immunolabeling of GB cells migrating out of PDC spheroids or GBOs. MPST signal in red. Nuclei DAPI staining in blue.

b. MPST knockdown decreases cell migration on Matrigel. 5706**, R633 and P3 PDC. Microphotographs: examples of cell
migration assays, scale bars = 200um, solid line = spheroid core, dotted line = migration area. Graph: quantification of the
migration 7h (5706**) or 24h (R633 and P3) post-seeding. Mean * SD, n = 10-41 independent biological samples, Mann-Whitney
test, *: p < 0.05. Inset above graph illustrates decreased MPST protein levels (MW: 33/35 kDa) in PDC expressing shMPST.
Western Blot analysis.

c. MPST knockdown decreases cell migration into microfluidics chips. PDC expressing shMPST and GFP, were loaded together
with equal numbers of shControl-PDC. Only rare shMPST-PDC (green cells) cross the microchip channels, contrary to shControl-
PDC (white cells). Scale bar = 200um. Graph: distances travelled by the cells over 24hrs. Mean * SD, n = 32-40 from 4
independent biological samples, *: p < 0.05, Mann-Whitney test. P3 PDC.

d. MPST knockdown decreases cell invasion into collagen. Microphotographs: examples of invasion assays, scale bars = 200um.
Graph depicts the quantification of the invasion after 24h (R633- and P3-PDC) or 40h (5706**-PDC). Mean + SD, n = 4-8
independent biological samples, *: p < 0.05, Mann-Whitney test.

e. MPST knockdown decreases cell invasion across Matrigel-coated transwells. 5706**-, R633- and P3-PDC invasion assessed
24h post-seeding. Mean * SD, n = 4-8 independent biological samples, *: p < 0.05, Mann-Whitney test.

f. Inhibiting MPST enzymatic activity using the pharmacological inhibitor 13-MT-3 decreases cell migration. Cells treated with
200uM 13-MT-3 or vehicle for 72h (R633, P3) or 45h (GBO), and migration assessed 48h (R633, P3) and 45h (GBO) post-seeding
on Matrigel. Mean % SD, n = 5-8 independent biological samples, *: p < 0.05, Mann-Whitney test.

g. Inhibiting MPST enzymatic activity with 13-MT-3 decreases cell migration into microfluidic chips. Graph: greatest distances
travelled by the cells 24hr post-seeding. 5706**-PDC,. Mean + SD, n = 20 from 2 independent biological samples,* p < 0.05,
Mann-Whitney test.
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Fig.5 MPST knockdown decreases protein persulfidation, decreases tumor burden, and increases mice survival expectancy.

a. Decreased protein persulfidation levels in shMPST-PDC vs shControl-PDC. R633 and P3 PDC. In-gel detection of protein
persulfidation (P-SSH) using the dimedone switch method with Cy7.5 as a reporting molecule and fluorescent signal of the NBF-
adducts (488nm). P-SSH levels calculated as a ratio of Cy7.5/488 fluorescent signals. Mean + SD, n= 3 independent biological
samples, *: p < 0.05, unpaired t-test.

b. Decreased protein persulfidation levels upon cell treatment with the MPST inhibitor 13-MT-3. R633 PDC. In-gel detection and
calculation of P-SSH levels as in i. Mean + SD, n= 3 independent biological samples, *: p < 0.05, unpaired t-test.

¢. MPST knockdown delays tumor development. Bioluminescent analyses of tumor growth initiated by grafting PDC transduced
with a luciferase construct and either shControl (shCTL) or shMPST constructs. 5706** and P3 PDC. n = 6 mice per group. DPG:
days post-graft.

d. MPST knockdown decreases tumor burden as shown by quantification of the tumor bioluminescent signals. 5706** and P3
PDC. DPG: days post-graft. Mean + SD, n = 6 mice per group, *: p < 0.01, Mann-Whitney test.

e. Kaplan-Meier survival curves demonstrating a significant survival benefit of mice grafted with PDC expressing shMPST

compared to mice grafted with PDC expressing shControl. 5706** and P3 PDC. n =6 mice per group. Log-rank (Mantel-Cox) test.

Supplementary Figure legends

Supplementary Figure 1, related to Fig.1.

A-B. Grouping strategy A. Schematic representation of HCPC clustering strategy integrating UMAP components. comp:
components, HCPC: Hierarchical clustering on principal components, PCA: Principal component analysis, PC: Principal
components, UMAP: Uniform Manifold Approximation and Projection. B. Integrating UMAP components results in more
homogeneous clusters, as shown by elimination of cell outliers on the UMAP representations (compare upper left and right
panels) and the increase in the Silhouette width index (compare lower left and right panels). Clustering based on expression of
the ten elements of the motility signature, and performed using 4916 glioblastoma cells from N-S dataset.

C-F. Motility signature captures cells with similar profiles in independent datasets.

Clustering malignant cells from D-S (C), N-10X (D) and PA-10X (E) datasets based on the motility signature genes. From left to

right subpanels: UMAP representation; identification of cell groups with the highest and lowest mean motility scores (m™e",

My Heatmap representation of the relative expression of each signature element per cluster, Contribution of each tumor to

identified clusters. *: Clusters with mean motility score statistically different from each of the other clusters, p < 0.01, one-way

ANOVA, Tukey's multiple comparisons test, NS: non-significant. F. Overlaps between lists of genes overexpressed (OEG) in meH

compared to MY cell groups from distinct datasets. High overlap between lists from datasets obtained with the same

HIGH HIGH

sequencing techniques, with 69.2% of OEG in M cells from N-S dataset also overexpressed in M cells from D-S dataset

HIGH HIGH

(4852/7010), and 86% of OEG in M cells from N-10X dataset also overexpressed in M cells from PA-10X dataset

(6627/7707). When comparing N-S, D-S, N-10X and PA-10X to the 3 other datasets, lists of OEG in M™'®"

cells overlap by 56.6%
(3590/6348), 53.2% (3590/6750), 48.4% (3590/7418) and 43.0% (3590/8348), respectively. Due to graphical constraints, two
overlaps are not shown on the third venn diagram: 119 genes were identified as overexpressed in M™" cells in the two SMART-

seq2 datasets only, and 241 overexpressed in M™®" cells from N-S, D-S and N-10X datasets (not from PA-10X).
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Supplementary Figure 2, related to Fig.1. Motility-related terms highlighted by ontology analysis of genes overexpressed in

HIGH Low

M " versus M cells from independent datasets

Dot plot representation of enriched terms related to motility. Analyses performed using genes overexpressed with fold change
>2 (A, D-S dataset, 1486 genes) and (B, N-10X dataset, 600 genes), and fold change >1.5 (C, PA-10X dataset, 338 genes).
Benjamini-Hochberg (BH)-adjusted p-value < 0.05. KEGG: Kyoto Encyclopedia of Genes and Genomes, BP: Biological processes,

CC: Cellular components, MF: Molecular functions.

Supplementary Figure 3, related to Fig.1. Enrichment in EMT (A), oRG (B) and TEAD (C) gene modules previously associated

HISH cells. EMT: genes associated with epithelio-mesenchymal transformation and GB cell

with glioblastoma cell motility in M
motility. oRG: genes signing for outer Radial Glia (0RG)-like malignant cell population with increased invasive behavior in GB.
TEAD: TEAD1-regulated genes involved in GB cell motility.

Upper subpanels: Linear regression models between motility score and EMT, oRG and TEAD scores. p < 0.0001. Lower

HIGH Low

subpanels: Higher EMT, oRG and TEAD scoresin M versus M cells. *: p < 0.0001, Mann-Whitney test.

Supplementary Figure 4, related to Fig.3-5.

A-C. Comparative migratory and invasive properties between glioblastoma PDC. A. Cell migration on Matrigel assessed after
24h (5706**, R633 and P3). The microphotographs illustrate examples for each PDC. Scale bar = 200um. A solid and dotted line
delineate the spheroid core and the migration area, respectively. The dot plot depicts the quantification of the migration. Mean
+SD, n = 6-12 independent biological samples, *: p < 0.05, Tukey's multiple comparisons test. B. Cell invasion into collagen
assessed after 40h (5706**) and 23-25h (R633, P3). Microphotographs provide examples of a cell invasion assay for each PDC.
Scale bars = 200um. A solid and dotted line delineate the spheroid core and the invasion area, respectively. The bar graph
depicts the quantification of the invasion. Mean + SD, n = 4-5 independent biological samples, *: p < 0.05, Tukey's multiple
comparisons test. C. Quantification of cell invasion across Matrigel-coated transwells after 24 hours. 5706**, R633, and P3 PDC.
Mean £ SD, n = 4-5 independent biological samples.

D-l. MPST knockdown. D. Decreased MPST mRNA levels in PDC expressing shMPST-139. Mean + SD, n = 5-6 independent
biological samples. *: p < 0.05, Mann-Whitney test. E. Decreased MPST protein levels in shMPST expressing PDC. Western Blot
analysis. MPST MW: 33/35 kDa. *: p < 0.05, one-sample t-test. F. No major impact of MPST knockdown on cell viability. Cell
viability assessed using Trypan Blue exclusion test. Mean + SD, n = 5-12 independent biological samples, *: p < 0.05, Mann-
Whitney test. 5706**, R633 and P3 PDC. G. Decreased MPST mRNA levels in shMPST142-PDC compared to shControl-PDC. Q-
PCR assay. Mean = SD, n = 2-3 independent biological samples. H. No change in cell viability upon shMPST-142 expression
assessed using Trypan Blue exclusion test. Mean + SD, n = 3-5 independent biological samples, unpaired t-test with Welch
correction. I. Decreased cell migration upon MPST knockdown. Cell migration assessed on Matrigel 7h post-seeding. Mean £ SD,
n = 8-9 independent biological samples, *: p < 0.05, Mann-Whitney test. Quantification of cell invasion across Matrigel-coated
transwells after 24 hours. 5706**, R633, and P3 PDC. Mean + SD, n = 3-5 independent biological samples.

J. MPST knockdown decreases tumor burden until experiment end-points. DPG: days post-graft. Mean + SD, *: p < 0.01, Mann-
Whitney test. 5706**-PDC: 86 DPG, n = 6 mice per group; 148 DPG, n =5 shCTL and n = 6 shMPST. P3-PDC: 28 DPG, n = 5 mice

per group; 67 DPG, n = 6 mice per group.

Supplementary Figure 5, related to Methods. Identification of malignant and normal cells in N-10X dataset
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A. Cell clustering based on GMM-based CNV predictions. Heatmap representation of CNV (copy number variations) predictions
(A1). Potential malignancy status assigned, following cell clustering based on CNV predictions, highlighted on UMAP
representation (A2).

B. CNV predictions at canonical glioblastoma loci (Chr7 and 10). UMAP representation.

C. Expression of marker genes of normal cell types. Pan-immune cells (PTPRC), macrophages (ITGAM, FCGR3A, CD14), microglia
(CSF1R, TMEM119), T-cells (CD2, CD3D) and oligodendrocytes (MOG, MAG). UMAP representation.

D. Cell clusters identified based on their repartition on UMAP plot. Hierarchical clustering followed by K-means clustering on
UMAP components.

E. Cell malignancy status assigned based on CNV status prediction, marker gene expression and clustering results. UMAP

representation.

Supplementary Figure 6, related to Methods. Identification of malignant and normal cells in PA-10X dataset

A. Cell clustering based on GMM-based CNV predictions. Heatmap representation of CNV (copy number variations) predictions
(A1). Potential malignancy status assigned, following cell clustering based on CNV predictions, highlighted on UMAP
representation (A2).

B. CNV predictions at canonical glioblastoma loci (Chr7 and 10). UMAP representation.

C. Expression of marker genes of normal cell types. Pan-immune cells (PTPRC), macrophages (ITGAM, FCGR3A, CD14), microglia
(CSF1R, TMEM119), T-cells (CD2, CD3D) and oligodendrocytes (MOG, MAG). UMAP representation.

D. Cell clusters identified based on their repartition on UMAP plot. Hierarchical clustering followed by K-means clustering on
UMAP components.

E. Cell malignancy status assigned based on CNV status prediction, marker gene expression and clustering results. UMAP

representation.

Supplementary Datafile 1: Rscripts used in this study

Supplementary Tables

Supplementary Table 1, related to Figl and Supplementary Fig. 1. Motility signature genes
Sheet 1: description of the contents
Sheet2: list of genes in the motility signature and the articles experimentally demonstrating its implication in GB cell motility.

Sheet3: results of the Pearson correlation analysis between the motility signature genes in the N-S dataset.

Supplementary Table 2, related to Fig. 1 and Supplementary Fig. 1-3. Differential expression analysis results between mHeH

Low

and M cells (sheets 2-6) and list of genes in the oRG, EMT and TEAD-induced migration signatures (Sheet 7).

Sheet 1: description of the contents

HIGH

Sheet2: list of genes differentially expressed between M and M"Y cells from N-S dataset

HIGH

Sheet3: list of genes differentially expressed between M and M*®" cells from D-S dataset

HIGH

Sheet4: list of genes differentially expressed between M and M"Y cells from N-10X dataset

HIGH LOwW

Sheet5: list of genes differentially expressed between M and M~ cells from PA-10X dataset
Sheet6: list of genes overexpressed in M™% versus M"Y cells from the 4 datasets

Sheet7: list of genes in the oRG, EMT and TEAD-induced migration signatures used
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Supplementary Table 3, related to Fig. 1 and Supplementary Fig. 2. Results of gene ontology (GO) and KEGG pathway analyses

HIGH Low

preformed with the list of genes overexpressed in M versus M cells

Sheet 1: description of the contents

Sheet 2: results obtained using genes overexpressed in M™ " versus M"Y cells with FC >2 (N-S dataset)
Sheet 3: results obtained using genes overexpressed in M™ " versus M"Y cells with FC >2 (D-S dataset)
Sheet 4: results obtained using genes overexpressed in M"™ " versus M"Y cells with FC >2 (N-10X dataset)

HISH Versus MY cells with FC >1.5 (PA-10X dataset)

Sheet 5: results obtained using genes overexpressed in M
Supplementary Table 4, related to Fig. 2. KEGG pathway analysis of metabolism genes overexpressed in glioblastoma cells
with high motile potential

Sheet 1: description of the contents

"Sheet2: list of metabolism genes upregulated in M-HIGH versus M-LOW cells from each dataset"

Sheet3: results of the KEGG pathway analysis performed on metabolism genes upregulated in M-HIGH versus M-LOW cells from
N-S dataset (BH-adj pval < 0.05)

Sheet4: results of the KEGG pathway analysis performed on metabolism genes upregulated in M-HIGH versus M-LOW cells from
D-S dataset (BH-adj pval < 0.05)

Sheet5: results of the KEGG pathway analysis performed on metabolism genes upregulated in M-HIGH versus M-LOW cells from
N-10X dataset (BH-adj pval < 0.05)

Sheet6: results of the KEGG pathway analysis performed on metabolism genes upregulated in M-HIGH versus M-LOW cells from

PA-10X dataset (BH-adj pval < 0.05)

Supplementary Table 5, related to Fig. 2. Metabolism genes overexpressed in $3-S1 branch compared to each other branch

Supplementary Table 6, related to methods
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Fig.1 Capturing glioblastoma cells with high and low motile potential
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Fig.2 Metabolic characteristics of cells with high motile potential
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Fig.3 Motile glioblastoma cells exhibit enhanced ROS production and higher mitochondrial mass than their
static counterparts
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Fig.4 MPST is required for glioblastoma cell migration and invasion
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Fig.5 MPST knockdown decreases protein persulfidation, decreases tumor burden, and increases mice
survival expectancy.


https://doi.org/10.1101/2022.01.21.477271
http://creativecommons.org/licenses/by-nc-nd/4.0/

A HCPC clustering strategy integrating UMAP components

Hierarchical Determine K-means
Expres§|on > PCA == 10 PCs UMAP 2 UMAP clustering number of clustering
matrix comp on UMAP on UMAP
clusters
comp comp
B HCPC HCPC with UMAP
components
51 54
(o] (g\]
a 0 a 0
: :
S -9 S 5
16 6 "3 -5
-107 ‘ ee -101 ‘ *C3 C
.10 - 5 -0 - 5
UMAP 1 10 UMAP 1
<10 .
5 £
50.5 20.5
2 e .
: WWEnN
300 Lhuin 20.0/#
< 2
L”-0.5— o5
1 3 4 5 12 3 456
Cluster Cluster
C D-S dataset
MWW VHIGH uster High NMI score =0.15
w o /E)lcotﬂify score g Tumor of origin
5 T GBM2
3 PTK2 S
@ PXN Low GBM4
= SMAD3 GBM1
= SPARCL1 cHigh ,\ /| G6BM6
B TGFB1 o ,\
VY c1g2:miow § THBS1 a c6 \ ' l T |
101 ol camrc Thet 4 \ Vs =
"4 0 4] I vCL 3 C5 Nmmme? (3
UMAP 1 Cells W ow Cluster ca
D N-10X dataset
° C8:Mow MHIGH  \Low High NMI score=0.13
10 C6:MHIGH os ¥ mmsmemmpCusten o g Tumor of origin
~ ot S, ACTNA4 5] MGleMGﬂESMGlee
o R X a D Low
< e AYP e > PXN MGH1157°C MGH143
= 0p af 30, £3 SMAD3 MGH10sf
S bl 1, = SPARCL1 CHigh — —
o o S 0 2 % TGFB1 S iy /}‘ o
101 eatc 0 S |* THBS1 @ 10 o
Jlte 11— = It ] 9N ’c3
: : ‘ ‘ s s '
10 0 10 20 1234567891011 T D ver S T
UMAP 1 Cluster Cells oy  [Cluster
E PA-10X dataset
1 - Cc1:M©oW * NS MW (HIGH High NMI score=0.058
10 o yld came g NS o &éﬁlﬁv score & Tumor of origin
, o o - NS ND4
<0 \l\)' Y £ 1‘" ° >4 # PXN NDZ/ \
s Sy = SMAD3 ) 4
) = SPARCL1 ~ SHigh ¥
“10] <§> é %J TGFB1 -;Ig
TLN1 @
20 0 20 132324567 TNC 5
(LT VCL 2
UMAP 1 Cluster Cells W iow
F N-S D-S N-10X PA-10X

Supplementary Figure 1, related to Fig.1.

A-B. Grouping strategy.

C-F. Motility signature captures cells with similar profiles in
independent datasets.
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Supplementary Figure 2, related to Fig.1 Motility-related terms highlighted by ontology analysis of genes
overexpressed in MH'6H versus M'OW cells from independent datasets
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Supplementary Figure 3, related to Fig.1. Enrichment in EMT (A), oRG (B) and TEAD (C) gene
modules previously associated with glioblastoma cell motility in MH'GH cells.
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Supplementary Figure 4, related to Fig.3-5.
A-C. Comparative migratory and invasive properties between glioblastoma PDC.

D-l. MPST knockdown.

J. MPST knockdown decreases tumor burden until experiment end-points.
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Supplementary Figure 5, related to Methods. Identification of malignant and normal cells in N-10X dataset
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Supplementary Figure 6 related to Methods- Identification of malignant and normal cells in PA-10X dataset
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