

1 **Widespread transposon co-option in the *Caenorhabditis* germline regulatory**
2 **network**

3 Francesco Carelli^{1,2}, Chiara Cerrato^{1,2}, Yan Dong^{1,2}, Alex Appert^{1,2}, Abby Dernburg^{3,4,5,6}, and
4 Julie Ahringer^{1,2*}

5 ¹Wellcome Trust/Cancer Research UK Gurdon Institute; Cambridge, UK

6 ²Department of Genetics, University of Cambridge; Cambridge, UK.

7 ³Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA
8 94720-3200, USA.

9 ⁴Howard Hughes Medical Institute; 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA.

10 ⁵Biological Sciences and Engineering Division, Lawrence Berkeley National Laboratory;
11 Berkeley, CA 94720, USA.

12 ⁶California Institute for Quantitative Biosciences; Berkeley, CA 94720, USA.

13 *Corresponding author. Email: ja219@cam.ac.uk.

15

Abstract

The movement of selfish DNA elements can lead to widespread genomic alterations with potential to create novel functions. Here we show that transposon expansions in *Caenorhabditis* nematodes led to extensive rewiring of germline transcriptional regulation. We find that about one third of *C. elegans* germline-specific promoters have been co-opted from two related Miniature Inverted Repeat Transposable Elements (MITEs), CERP2 and CELE2. The promoters are regulated by HIM-17, a THAP domain-containing transcription factor related to a transposase. Expansion of CERP2 occurred prior to radiation of the *Caenorhabditis* genus, as did fixation of mutations in HIM-17 through positive selection, whereas CELE2 expanded only in *C. elegans*. Through comparative analyses in *C. briggsae*, we find evolutionary conservation of most CERP2 co-opted promoters, but a substantial fraction of events are species specific. Our work reveals the emergence of a novel transcriptional network driven by TE co-option with a major impact on regulatory evolution.

28
29

30

Introduction

Cis-regulatory elements play fundamental roles in gene expression yet can undergo remarkably rapid evolutionary turnover (1–3). Transposable elements (TEs) are a potential source of novel regulatory elements as they harbor regulatory sequences recognized by the host machinery. If moved to an appropriate location, such sequences may affect the expression of host genes, and clear evidence for co-option of some TE insertions into host regulatory networks has been documented (4, 5). It has been suggested that the amplification of a TE family could lead to the co-option of many TEs, dramatically changing whole regulatory networks (e.g. (6–9)), but the demonstration of such events is a challenging task. Ancient co-options would likely be masked by mutations that obscure their repetitive origin, while the functional relevance of recent co-options can be hard to determine on a large scale. As a result, there is limited functional evidence *in vivo* to support widespread or concerted transcriptional rewiring. Here we show through genomic and functional analyses in *Caenorhabditis* that two independent TE expansions gave rise to promoters that control the expression of a large fraction of germline-specific genes.

44

Results and Discussion

To investigate transcription regulation in the *C. elegans* germline, we first identified germline-specific accessible chromatin sites (N=2316) based on the presence of a strong ATAC-seq signal in wild-type young adults but not in *glp-1* mutants lacking a germline (10)(Fig S1A). Using chromatin-associated RNA-seq patterns to link open chromatin regions to annotated genes, we then classified 782 sites as germline-specific promoters (Fig 1A; Table S1; see Methods). Sequence analysis of these promoters revealed the enrichment of two motifs (m1 and m2; Fig 1B) that do not share significant similarity with other eukaryotic regulatory motifs, but were previously identified upstream of genes with germline expression (11). We found that an m1m2 pair is present in 36.3% (284/782) of all germline-specific promoters. These motifs were more commonly found in divergent orientation (29.8% of promoters), while the other 6% showed a tandem arrangement (m2m1, Fig 1C). Promoters containing m1m2 motifs were also found upstream of 177 genes expressed in both germline and soma, which predominantly show ubiquitous accessibility by ATAC-seq (Fig S1B). Genes associated with m1m2-containing promoters are more highly expressed than other germline genes, and their promoters show greater accessibility in primordial germ cells (PGCs) as well as in late larvae, which contain many germline cells (Fig S1C,D).

While m1m2 pairs were strongly associated with germline promoters, many additional copies of these motifs were also found in non-accessible regions of the *C. elegans* genome in both divergent (n=1458) and tandem (n=2566) orientations, and were characterised by distinct m1-m2 spacing distributions (Fig S1F). These predominantly corresponded to the positions of CERP2 and CELE2 elements, respectively, which are also the most highly enriched repeat classes at germline-specific promoters (Fig S1E,G; Table S1). These comprise two families of Miniature Inverted Repeat Transposable Elements (MITEs), small, non-autonomous elements derived from autonomous DNA transposons (12, 13). The inverted repeats of both elements contain m1 and m2 motifs, oriented divergently in CERP2 and tandemly in CELE2 (Fig 1D). The similar structure, and the presence of the motif pair suggests an evolutionary relationship between CERP2 and CELE2, yet their origin is unclear since they do not share any similarity with annotated autonomous transposons. We found that m1m2 promoters matched CERP2 and CELE2 consensus sequences with similar identity scores to non-promoter m1m2 pairs, supporting derivation of m1m2 promoters from MITE elements (Fig S1H). Both promoter- and non-promoter-associated copies

75 of CERP2, and to some extent the CELE2 family, also contain a region of 10-bp periodic TT bias.
76 This feature was recently shown to be associated with nucleosome positioning in *C. elegans*
77 germline promoters (14)(Fig S1I), and may have facilitated the co-option of these MITEs by
78 creating a chromatin environment which facilitates transcription in this tissue. These results show
79 that a large fraction of *C. elegans* germline-specific promoters are derived from CERP2 and
80 CELE2 MITEs.

81 To understand the relevance of the m1 and m2 motifs in MITE-derived promoters for germline
82 transcription, we introduced wild-type and mutant transgenes into *C. elegans*. CELE2 and CERP2
83 derived promoters with wild-type m1m2 sequences drove germline-specific expression of a
84 histone-GFP reporter (Fig 1E, Fig S1J). We found that both motifs were required for promoter
85 activity, as GFP was not detectable after scrambling m1 or m2 (Fig 1E, Fig S1J). In addition,
86 scrambling the motif sequences in the endogenous CERP2-associated T05F1.2 promoter using
87 CRISPR-Cas9 editing reduced expression by 5.9-fold (Fig S1K). These results strongly support
88 the idea that CERP2 and CELE2 elements were co-opted as germline-specific promoters, and show
89 that the m1 and m2 motifs are required for their regulatory activity.

90 To identify a potential transcription factor that might regulate these co-opted promoters, we
91 analysed modENCODE transcription factor binding data (15) for enrichment at co-opted versus
92 non-co-opted germline promoters. We found that HIM-17 showed the highest enrichment (>7.6-
93 fold, Fig S2A). HIM-17 is a germline chromatin-associated factor important for meiosis and
94 germline organization (16, 17). It has six THAP domains, putative DNA binding domains shared
95 by P-element family transposases (18).

96 As the HIM-17 ChIP-seq modENCODE data were from a mutant background, we generated new
97 HIM-17 ChIP-seq data from wild-type adults, which identified 3539 HIM-17 peaks (Fig 2A, Table
98 S1). HIM-17 binding was strongly associated with m1m2 motifs; all but one of the 284 co-opted
99 germline-specific promoters were associated with a HIM-17 peak, as were 80.8% of non-germline
100 specific m1m2-containing promoters (Fig 2B). HIM-17 peaks were also associated with non-
101 promoter m1m2 pairs, including sites in closed chromatin environments (Fig 2C, Fig S2B). The
102 m1m2 pair is the likely determinant of HIM-17 binding, as HIM-17 enrichment at a co-opted
103 promoter was abolished when either m1 or m2 was mutated (Fig S2C).

104 To determine whether HIM-17 plays a role in the expression of co-opted promoters, we analyzed
105 gene expression in the strong loss-of-function mutant *him-17(me24)*. Comparison of RNA-seq data
106 between mutant and wild-type animals indicated that HIM-17 acts as a transcriptional activator,
107 because only genes showing lower expression in the mutant were significantly associated with
108 HIM-17 binding at their promoters (Fig 2D, Fig S2D, Table S1). Based on HIM-17 binding, we
109 defined 304 genes as direct targets (Table S1). Gene ontology analysis revealed a strong
110 enrichment for genes affecting meiosis and reproduction among direct targets of HIM-17, in line
111 with meiotic defects documented in *him-17* mutants (16)(Fig 2E). Notably, among the genes
112 strongly downregulated in *him-17(me24)* mutants were *him-5* and *rec-1* (Fig S2E), two paralogs
113 that promote double-strand break (DSB) formation during meiosis (19). Downregulation of these
114 HIM-17 targets likely accounts for the strong reduction in DSBs and the resulting High incidence
115 of males (Him) phenotype associated with mutations in *him-17* (16, 20)(Fig S2E). The large
116 number of genes regulated by HIM-17 also explains the pleiotropic effects of such mutations on
117 meiosis and other germline processes (16, 17, 20–22). These findings indicate that HIM-17 acts as
118 a transcriptional activator that regulates genes whose promoters were co-opted from MITEs.

119 To gain further insights into CERP2 and CELE2 co-option and their regulation by HIM-17, we
120 investigated their evolution through comparative analyses in nematodes. We first sought to
121 determine the timing of the co-option process by dating the TE expansion events. CERP2 elements
122 were abundant in the genomes of all *Caenorhabditis* species we analyzed, but not in other
123 nematodes (Fig 3A). In contrast, CELE2 elements were detected only in *C. elegans*, suggesting a
124 recent, species-specific expansion of this repeat family (Fig 3B). The earlier expansion of CERP2
125 is also reflected in the higher proportion of truncated CERP2 copies compared to CELE2 in *C.*
126 *elegans* (Fig S3A). In addition, we detected a high number of tandem m2m1 pairs in *C. becei* and
127 *C. monodelphis* with distinct spacing of the m1 and m2 sequences relative to CELE2, suggesting
128 that other related TEs likely underwent expansion in these *Caenorhabditis* species (Fig S3B).
129 These data indicate that the CERP2 and CELE2 expansions took place at different times in the
130 *Caenorhabditis* clade, seeding thousands of m1m2 sequences and generating a large reservoir of
131 potential regulatory elements.

132 HIM-17 predates the *Caenorhabditis*-specific expansions of CERP2 and CELE2, as orthologs
133 could be identified not only in *Caenorhabditis* genomes, but also in other Eurhabditis
134 nematodes, with the exception of *Diploscapter* species (Fig 3C, Fig S3C,D). In light of the
135 regulation of m1m2-associated promoters by HIM-17, we speculated that HIM-17 sequence might
136 have undergone changes in line with the timing of the *Caenorhabditis* CERP2 expansion.
137 Evolutionary analyses indicate that *him-17* underwent positive selection prior to divergence of the
138 *Caenorhabditis* genus (branch-site test, $P = 0.0007$), as did expansion of the CERP2 sequence.
139 14/34 of the sites under positive selection are located within its 6 THAP domains (Fig 3D), which
140 are related to the DNA-binding domain of the *Drosophila* P-element transposase (18) and
141 conserved in almost all HIM-17 orthologs. Moreover, compared to the sister Strongylida clade,
142 the fourth THAP domain in all *Caenorhabditis* species is more similar to the Pfam THAP
143 consensus, while the second THAP domain is more divergent (Fig 3D). These conserved changes
144 in putative DNA binding domains occurred in parallel with the CERP2 expansion, and we
145 speculate that they may have enhanced HIM-17 recognition of the MITE-derived m1m2 motifs.

146 A large fraction of co-opted CERP2 sequences showed evidence of evolutionary conservation, as
147 indicated by peaks of phyloP scores, a measure of sequence conservation across multiple species
148 (Fig 4A). To directly evaluate and quantify whether co-option events in the *Caenorhabditis* genus
149 have given rise to shared and/or lineage-specific regulatory elements, we analysed germline
150 promoters in *C. briggsae*, which diverged from *C. elegans* ~20 million years ago (23). As we did
151 for *C. elegans*, we identified *C. briggsae* germline specific promoters by generating ATAC-seq
152 and nuclear RNA-seq data from wild type and a germline-less *C. briggsae glp-1* temperature-
153 sensitive mutant that we generated using CRISPR editing (see Methods; Fig S4A).

154 We observed that *C. briggsae* germline-specific promoters, like those in *C. elegans*, are enriched
155 for m1m2 pairs (Fig 4B, Fig S4B). To evaluate the evolutionary conservation of the CERP2 co-
156 opted promoters, we identified 1:1 orthologs associated with a co-opted promoter in *C. elegans*
157 ($n=327$) or in *C. briggsae* ($n=322$; Table S1). We found that 53% of the orthologs in each species
158 were regulated by an evolutionary conserved co-opted promoter, and a further 22-27% had some
159 evidence of conservation, indicated either by a promoter with only m1 or m2, or by an m1m2 pair
160 not annotated as a promoter (see Methods). Thus, 53 - 80% of CERP2 co-option events are
161 conserved in *C. elegans* and *C. briggsae* (Fig 4C, S4C and Table 1). The remaining 20-25% of the
162 ortholog pairs had a co-opted promoter in only one species (Fig 4D, S4C and Table 1). This
163 considerable evolutionary turnover could be explained either by the species-specific co-option of
164 new or ancestral MITEs, or by the degeneration of ancestral m1m2 sequences.

165 Our work provides functional evidence of a large-scale concerted co-option of transposable
166 elements as tissue-specific regulatory sequences. By uncovering hundreds of co-opted promoters
167 preserved by selection for millions of years, we demonstrate that TEs can have a profound impact
168 on the host regulatory landscape. Our identification of this co-option was possible because the
169 promoters still share significant sequence similarity to the MITE elements, whereas the origin of
170 more degenerate or shorter regulatory sequences would be more difficult to trace. Our discovery
171 of widespread co-option of TE sequences as promoters in *Caenorhabditis* supports the possibility
172 that a significant fraction of regulatory sequences in all organisms may originate from transposable
173 elements.

174

175 **Materials and Methods**

176 Strains and growth conditions

177 *C. elegans* strains were cultured using standard methods (24). A complete list of strains is
178 presented in Table S1.

179

180 Generation of a *C. briggsae* *glp-1*(ts) allele

181 CRISPR-Cas9 genome editing was used to generate the *C. briggsae* *glp-1*(*we58*) strain. Injections
182 were performed using gRNA-Cas9 ribonucleoprotein (RNP) complexes preassembled in vitro with
183 in-house made Cas9 protein (25, 26). tracrRNA and crRNAs were purchased from Integrated DNA
184 Technologies and repair templates were Ultramer oligonucleotides from IDT. crRNAs were
185 designed using the online CRISPOR tool (27). We engineered two different mutations in the *C.*
186 *briggsae* *glp-1* gene, R955C (GCA -> TCT) and G1036E (GGA -> GAA), to attempt to mimic the
187 *C. elegans* temperature-sensitive e2141 and q231 alleles, respectively. Single mutants did not
188 display germline defects, but each produced some dead eggs at 27°C. We thus generated a double
189 mutant, *glp-1*(*we58*) (carrying both R955C and G1036E). Double mutants were maintained at
190 16°C and failed to develop a germline when grown from starved L1s at 27°C.

191

192 Generation of *C. briggsae* ATAC-seq and nuclear RNA-seq data

193 Wild-type AH16 *C. briggsae* or *glp-1*(*we58*) mutants were grown in liquid culture from the starved
194 L1 to the young adult stage using standard S-basal medium with HB101 bacteria (wt at 20C, *glp-*
195 1 at 27C), frozen in liquid nitrogen, and stored at -80C until use. Nuclei were isolated and ATAC-
196 seq and nuclear RNA-seq libraries generated from wild-type and *glp-1*(*we58*) *C. briggsae* young
197 adults as in (14). ATAC-seq and RNA-seq libraries were generated using one million nuclei and
198 for two biological replicates for each *C. briggsae* strain.

199

200 Processing of sequencing data

201 ChIP-seq data generated in this study, ATAC-seq data from isolated L1 PGCs (GEO accession:
202 GSE100651)(28), and ATAC-seq data from adult germlines (GEO accession: GSE141213)(14)
203 were preprocessed using trim galore (available at <https://github.com/FelixKrueger/TrimGalore>,
204 version 0.6.4) and mapped using bwa mem (29)(version 0.7.17). Read depth-normalised coverage
205 tracks from mapq10 reads were generated using MACS2 (30)(version 2.1.2; for ATAC-seq data
206 processing, we used the following parameters: --nomodel --extsize 150 --shift -75), converted to

207 bigWig, and replicate pairs were used as input to identify peaks with the yapc software
208 (<https://github.com/jurgjn/yapc>)(31), with --smoothing-window-width set to 100. Peaks passing
209 an IDR cutoff of 0.00001 (for ChIP-seq) or 0.001 (for ATAC-seq) were used in this study. RNA-
210 seq data were aligned on the genome using STAR (32)(version 2.7.5a) to generate coverage tracks.
211 Gene expression was estimated using kallisto (33)(version 0.46.2).

212

213 Genome annotation

214 Genome, gene and protein annotations were downloaded from the repositories listed in Table S1.
215 For each protein coding gene, we extracted the genomic and protein sequences of its longest
216 transcript. Repeats from Dfam (34)(release 3.1) were annotated in the *C. elegans* genome using
217 the dfamscan.pl script available on the Dfam website. Repeat coordinates are available in Table
218 S1.

219

220 Identification of germline-specific accessible sites in *C. elegans* and *C. briggsae*

221 Accessible sites in *C. elegans* and *C. briggsae* were identified using ATAC-seq data generated
222 from wt and *glp-1* mutant strains. Single-end ATAC-seq reads were mapped on the respective
223 genome assembly (WS275 for both *C. elegans* and *C. briggsae*) using bwa-backtrack (35), keeping
224 only reads mapped with high-quality (MAPQ > 10) on fully assembled chromosomes. Coverage-
225 normalised tracks generated using MACS2 were used as input for yapc to identify open chromatin
226 regions. To annotate germline-specific accessible sites in each species, we compared ATAC-seq
227 signals in wt and *glp-1* data using DiffBind (36)(version 2.10.0). We defined sites as germline
228 specific when the *glp-1* vs wt LFC < -2 and the adjusted p-value < 0.01.

229

230 Annotation of germline-specific promoters in *C. elegans* and *C. briggsae*

231 Germline-specific accessible sites were annotated as promoters in the *C. elegans* or the *C. briggsae*
232 genomes, using a slightly modified version of the annotation pipeline from (31), based on patterns
233 of nuclear RNA-seq data, which identifies regions of transcription elongation, and thus marks the
234 outron regions before trans-splicing. In this work, mapped RNA-seq reads from both replicates of
235 each strain were randomly and evenly distributed in two pseudoreplicates to compensate for lower
236 sequencing depth. Accessible sites were annotated as promoters when a) chromatin-associated
237 RNA-seq signal connected the site to an annotated first exon, allowing gaps in RNA-seq signal of
238 up to 200bp; and b) where a significantly higher RNA-seq signal was present in the regions +75bp
239 to +350bp from the midpoint of an open chromatin region (relative to the downstream gene)
240 compared to the -75 to -350bp sequence.

241

242 Motif enrichment and motif pair annotation

243 We used the MEME suite (37)(version 5.0.5) to identify motifs enriched in germline-specific
244 promoters in *C. elegans* or *C. briggsae* (enrichment compared to non-GL-specific promoters,
245 MEME-ChIP parameters used: -meme-nmotifs 6 -meme-minw 5 -meme-maxw 20).

246 Enriched motifs were mapped on the genomes of different species with FIMO ($P < 0.0005$). We
247 annotated all occurrences of m1 and m2 motifs separated by 10-30bp - a range including the most
248 frequently observed m1-m2 spacings - as m1m2 motif pairs, and distinguished them based on the

249 relative motif orientation into 4 arrangements: convergent_m1m2, divergent_m1m2,
250 tandem_m1m2 and tandem_m2m1 (Table S1).

251

252 Assessment of CERP2 and CELE2 derived promoter activity

253 Transgenes containing the annotated CERP2-associated promoter of *C16A11.4* or the CELE2-
254 associated promoter of *fat-1* upstream of *his-58::gfp::tbb-2* 3'UTR were generated using mosSCI
255 (38). Wild-type and mutant versions in which motifs were scrambled were generated. Promoter
256 sequences used are given in Table S1.

257 Synthesised promoter sequences were ordered as plasmids containing att sites for Gateway cloning
258 from GenScript, and reporter transgenes constructed using three-site Gateway cloning
259 (Invitrogen), using vector pCFJ150, which targets Mos site Mos1(ttTi5605) on chromosome II
260 (38), the promoter to be tested in site one, *his-58* in site two (plasmid pJA357), and *gfp-tbb-2*
261 3'UTR in site three (pJA256) (39). GFP signal was assessed using a Zeiss Axioplan microscope
262 equipped with wide-field fluorescence microscopy. At least 20 individuals were scored per strain.

263

264 *T05F1.2* promoter mutation

265 We used CRISPR-Cas9 to scramble the m1 and m2 sequences in the endogenous CERP2-
266 associated promoter of *T05F1.2*. *T05F1.2* expression in the wild-type and mutant strain (*we59*)
267 was quantified by qPCR using two different sets of primers and compared to *cdc-42* expression.
268 Primer sequences used are available in Table S1.

269

270 Association of co-opted promoters with TF binding sites

271 ChIP-seq data from 283 *C. elegans* TFs were downloaded as aggregated peaks from the modERN
272 website (<https://epic.gs.washington.edu/modERN/>)(15), and from these we extracted only data
273 from 73 factors which were generated from young adult animals. We further included data from a
274 single HIM-17 ChIP-seq replicate (3916_SDQ0801_HIM17_FEM2_AD_r1) available in
275 modENCODE (40) but not included in modERN. The HIM-17 ChIP-seq reads were mapped on
276 the ce11 genome using bwa-mem, and peaks were called using mapq10 reads with MACS2. For
277 each factor we compared the ratio of peaks overlapping germline-specific co-opted and non-co-
278 opted promoters.

279

280 HIM-17 ChIP-seq

281 HIM-17 ChIP-seq libraries were prepared from two biological replicates following the protocol
282 described in (41). Heatmaps of HIM-17 ChIP-seq profiles, and its association to CERP2 or CELE2
283 repeats, m1m2 pairs, and regulatory elements were generated using the computeMatrix and
284 plotHeatmap functions from the deepTools2 suite (42)(version 3.4.3).

285

286 Testing requirement for m1m2 motifs in HIM-17 chromatin association

287 To test if HIM-17 requires motifs m1 or m2 for chromatin association at a co-opted promoter,
288 three variants of the transgene driven by the CERP2-derived *C16A11.4* promoter were generated
289 using MosSCI: scrambled m1, scrambled m2, or scrambled m1 and m2. ChIP-qPCR was

290 performed for HIM-17, testing enrichment for the transgene promoter, for the co-opted *ztf-15*
291 promoter as a positive control, and for two negative control loci showing no ChIP-seq enrichment
292 for either factor. Experiments were done on three technical replicates from two biological
293 replicates.

294

295 him-17 gene expression analysis

296 For each of two replicates, approximately 100 wild-type and *him-17(me24)* (m+z-) young adults
297 grown at 20°C from the starved L1 stage. *him-17(me24)* were derived from *him-17(me24)/tmC12*
298 [*tmIs1194*] mothers. Total RNA was extracted using Trizol. poly A was isolated using the
299 NEBNext Poly(A) mRNA Isolation kit and libraries were prepared using the NEBNext Ultra
300 Directional RNA Library Prep Kit (E7760S).

301 DESeq2 (43)(version 1.22.1) was used to identify significantly upregulated (LFC > 0, p.adj <
302 0.001) or downregulated (LFC < 0, p.adj < 0.001) genes in him-17 mutants compared to wild-type.
303 GO enrichment analysis on differentially expressed genes was performed with clusterProfile (44).
304 Direct targets were defined as differentially expressed genes that have a HIM-17 ChIP-seq peak
305 on their promoter.

306

307 Annotation of CERP2 and CELE2 in different species

308 We extracted sequences from all CERP2 and CELE2 elements in *C. elegans* to refine HMM
309 models of these repeats using the HMMER3 suite (<http://hmmer.org/>). Fasta sequences of all
310 repeats from each family were aligned against the CERP2 or CELE2 Dfam HMM using hmmlalign
311 (with parameter --trim). The resulting alignment was used to define new HMMs using hmmbuild.
312 The HMMs were then used to annotate CERP2 and CELE2 repeats in nematodes with
313 chromosome-level genome annotations (Table S1) using nhmmer and requiring a minimal E-value
314 of 0.001.

315

316 HIM-17 evolution and structure

317 HIM-17 orthologs were identified using BLASTP (E-value < 0.00001) on the protein annotation
318 from a number of nematode species. To test the *him-17* sequence for positive selection, HIM-17
319 orthologs were aligned using MAFFT (45) with the L-INS-i method, then the output alignment
320 was used to guide a codon-based alignment using PAL2NAL (46). The resulting alignment was
321 used to test for positive selection acting on the common *Caenorhabditis* branch using the branch-
322 site test (47) implemented in codeml from the PAML package (48). THAP domains in HIM-17
323 orthologs were annotated with hmmsearch using the THAP profile HMMs from the Pfam database
324 (49).

325

326 Analysis of co-opted promoters conservation

327 Sequence conservation of m1m2 pairs located in CERP2-derived germline-specific promoters was
328 assessed using phyloP scores from 26 nematodes (phyloP26way from the ce11 release) available
329 from the UCSC genome browser.

330 To evaluate the conservation of individual CERP2 promoters in *C. elegans* and *C. briggsae*, we
331 extracted all 1-to-1 orthologs (obtained from Wormbase) regulated by a co-opted promoter in at
332 least one species, i.e. associated to at least one promoter containing an m1m2 pair in divergent
333 orientation and spaced by 12 to 16 bp (CERP2-like arrangement). Co-opted promoters were
334 defined as conserved when both orthologs were associated with a co-opted promoter. We
335 considered co-opted promoters as potentially conserved when the ortholog in the other species was
336 either a) associated with a promoter containing at least m1 or m2; b) when an m1m2 pair was
337 located in the putative promoter region (-1000bp/+200bp) of the orthologs' TSS but was not in an
338 annotated promoter. When none of the criteria were met, we defined the co-opted promoter as
339 species-specific.

340

341 Data availability

342 ATAC-seq, ChIP-seq and RNA-seq data generated during this study are available at NCBI Gene
343 Expression Omnibus (GEO) under accession code GSE192540. The code used for the analysis is
344 available on GitHub (<https://github.com/fcarelli/glre>).

345

346 **Acknowledgments**

347 The authors thank current and former members of the Ahringer lab for helpful discussions and
348 Jürgen Jänes and Andrea Frapperti for experimental assistance.

349

350 **Funding**

351 This work was funded through the following sources: Wellcome Senior Research Fellowship
352 101863 (JA), Wellcome Investigator award 217170 (JA), Wellcome core grant 092096 (Gurdon
353 Institute), CRUK core grant C6946/A14492 (Gurdon Institute), Swiss National Science
354 Foundation Postdoc Mobility Fellowship P400PB_180795 (FNC), EMBO Long-Term Fellowship
355 ALTF 936-2017 (FNC).

356

357 **Author contributions**

358 Conceptualization: FNC, JA; Methodology: FNC, JA; Investigation: FNC, CC, YD, AA;
359 Visualization: FNC, JA; Funding acquisition: JA; Project administration: JA; Supervision: JA;
360 Writing – original draft: FNC, JA; Writing – review & editing: FNC, JA, AD.

361

362 **Competing interests**

363 Authors declare that they have no competing interests.

365

References

- 366 1. R. K. Bradley, X.-Y. Li, C. Trapnell, S. Davidson, L. Pachter, H. C. Chu, L. A. Tonkin, M.
367 D. Biggin, M. B. Eisen, Binding site turnover produces pervasive quantitative changes in
368 transcription factor binding between closely related *Drosophila* species. *PLoS Biol.* 8, e1000343
369 (2010).
- 370 2. D. Villar, C. Berthelot, S. Aldridge, T. F. Rayner, M. Lukk, M. Pignatelli, T. J. Park, R.
371 Deaville, J. T. Erichsen, A. J. Jasinska, J. M. A. Turner, M. F. Bertelsen, E. P. Murchison, P.
372 Flieck, D. T. Odom, Enhancer evolution across 20 mammalian species. *Cell.* 160, 554–566 (2015).
- 373 3. R. S. Young, Y. Hayashizaki, R. Andersson, A. Sandelin, H. Kawaji, M. Itoh, T. Lassmann,
374 P. Carninci, FANTOM Consortium, W. A. Bickmore, A. R. Forrest, M. S. Taylor, The frequent
375 evolutionary birth and death of functional promoters in mouse and human. *Genome Res.* 25, 1546–
376 1557 (2015).
- 377 4. E. B. Chuong, N. C. Elde, C. Feschotte, Regulatory activities of transposable elements:
378 from conflicts to benefits. *Nat. Rev. Genet.* 18, 71–86 (2017).
- 379 5. R. L. Cosby, N.-C. Chang, C. Feschotte, Host-transposon interactions: conflict,
380 cooperation, and cooption. *Genes Dev.* 33, 1098–1116 (2019).
- 381 6. E. B. Chuong, M. A. K. Rumi, M. J. Soares, J. C. Baker, Endogenous retroviruses function
382 as species-specific enhancer elements in the placenta. *Nat. Genet.* 45, 325–329 (2013).
- 383 7. V. J. Lynch, M. C. Nnamani, A. Kapusta, K. Brayer, S. L. Plaza, E. C. Mazur, D. Emera,
384 S. Z. Sheikh, F. Grützner, S. Bauersachs, A. Graf, S. L. Young, J. D. Lieb, F. J. DeMayo, C.
385 Feschotte, G. P. Wagner, Ancient transposable elements transformed the uterine regulatory
386 landscape and transcriptome during the evolution of mammalian pregnancy. *Cell Rep.* 10, 551–
387 561 (2015).
- 388 8. E. B. Chuong, N. C. Elde, C. Feschotte, Regulatory evolution of innate immunity through
389 co-option of endogenous retroviruses. *Science.* 351, 1083–1087 (2016).
- 390 9. A. Sakashita, S. Maezawa, K. Takahashi, K. G. Alavattam, M. Yukawa, Y.-C. Hu, S.
391 Kojima, N. F. Parrish, A. Barski, M. Pavlicev, S. H. Namekawa, Endogenous retroviruses drive
392 species-specific germline transcriptomes in mammals. *Nat. Struct. Mol. Biol.* 27, 967–977 (2020).
- 393 10. J. Austin, J. Kimble, *glp-1* is required in the germ line for regulation of the decision
394 between mitosis and meiosis in *C. elegans*. *Cell.* 51, 589–599 (1987).
- 395 11. C. Linhart, Y. Halperin, A. Darom, S. Kidron, L. Broday, R. Shamir, A novel candidate
396 cis-regulatory motif pair in the promoters of germline and oogenesis genes in *C. elegans*. *Genome*
397 *Res.* 22, 76–83 (2012).
- 398 12. C. Feschotte, C. Mouchès, Evidence that a family of miniature inverted-repeat transposable
399 elements (MITEs) from the *Arabidopsis thaliana* genome has arisen from a pogo-like DNA
400 transposon. *Mol. Biol. Evol.* 17, 730–737 (2000).
- 401 13. C. Feschotte, E. J. Pritham, DNA transposons and the evolution of eukaryotic genomes.
402 *Annu. Rev. Genet.* 41, 331–368 (2007).
- 403 14. J. Serizay, Y. Dong, J. Jänes, M. Chesney, C. Cerrato, J. Ahringer, Distinctive regulatory
404 architectures of germline-active and somatic genes in *C. elegans*. *Genome Res.* 30, 1752–1765
405 (2020).

406 15. M. M. Kudron, A. Victorsen, L. Gevirtzman, L. W. Hillier, W. W. Fisher, D. Vafeados, M.
407 Kirkey, A. S. Hammonds, J. Gersch, H. Ammour, M. L. Wall, J. Moran, D. Steffen, M. Szynkarek,
408 S. Seabrook-Sturgis, N. Jameel, M. Kadaba, J. Patton, R. Terrell, M. Corson, T. J. Durham, S.
409 Park, S. Samanta, M. Han, J. Xu, K.-K. Yan, S. E. Celniker, K. P. White, L. Ma, M. Gerstein, V.
410 Reinke, R. H. Waterston, The ModERN Resource: Genome-Wide Binding Profiles for Hundreds
411 of *Drosophila* and *Caenorhabditis elegans* Transcription Factors. *Genetics*. 208, 937–949 (2018).

412 16. K. C. Reddy, A. M. Villeneuve, *C. elegans* HIM-17 links chromatin modification and
413 competence for initiation of meiotic recombination. *Cell*. 118, 439–452 (2004).

414 17. P. M. Meneely, O. L. McGovern, F. I. Heinis, J. L. Yanowitz, Crossover distribution and
415 frequency are regulated by him-5 in *Caenorhabditis elegans*. *Genetics*. 190, 1251–1266 (2012).

416 18. M. Roussigne, S. Kossida, A.-C. Lavigne, T. Clouaire, V. Ecochard, A. Glories, F.
417 Amalric, J.-P. Girard, The THAP domain: a novel protein motif with similarity to the DNA-
418 binding domain of P element transposase. *Trends Biochem. Sci.* 28, 66–69 (2003).

419 19. G. Chung, A. M. Rose, M. I. R. Petalcorin, J. S. Martin, Z. Kessler, L. Sanchez-Pulido, C.
420 P. Ponting, J. L. Yanowitz, S. J. Boulton, REC-1 and HIM-5 distribute meiotic crossovers and
421 function redundantly in meiotic double-strand break formation in *Caenorhabditis elegans*. *Genes*
422 *Dev.* 29, 1969–1979 (2015).

423 20. S. Nadarajan, E. Altendorfer, T. T. Saito, M. Martinez-Garcia, M. P. Colaiácovo, HIM-17
424 regulates the position of recombination events and GSP-1/2 localization to establish short arm
425 identity on bivalents in meiosis. *Proc. Natl. Acad. Sci. U. S. A.* 118 (2021),
426 doi:10.1073/pnas.2016363118.

427 21. J. B. Bessler, K. C. Reddy, M. Hayashi, J. Hodgkin, A. M. Villeneuve, A role for
428 *Caenorhabditis elegans* chromatin-associated protein HIM-17 in the proliferation vs. meiotic entry
429 decision. *Genetics*. 175, 2029–2037 (2007).

430 22. X. She, X. Xu, A. Fedotov, W. G. Kelly, E. M. Maine, Regulation of heterochromatin
431 assembly on unpaired chromosomes during *Caenorhabditis elegans* meiosis by components of a
432 small RNA-mediated pathway. *PLoS Genet.* 5, e1000624 (2009).

433 23. A. D. Cutter, Divergence times in *Caenorhabditis* and *Drosophila* inferred from direct
434 estimates of the neutral mutation rate. *Mol. Biol. Evol.* 25, 778–786 (2008).

435 24. S. Brenner, The genetics of *Caenorhabditis elegans*. *Genetics*. 77, 71–94 (1974).

436 25. A. Paix, A. Folkmann, D. Rasoloson, G. Seydoux, High Efficiency, Homology-Directed
437 Genome Editing in *Caenorhabditis elegans* Using CRISPR-Cas9 Ribonucleoprotein Complexes.
438 *Genetics*. 201, 47–54 (2015).

439 26. A. Paix, A. Folkmann, D. H. Goldman, H. Kulaga, M. J. Grzelak, D. Rasoloson, S.
440 Paidemarry, R. Green, R. R. Reed, G. Seydoux, Precision genome editing using synthesis-
441 dependent repair of Cas9-induced DNA breaks. *Proc. Natl. Acad. Sci. U. S. A.* 114, E10745–
442 E10754 (2017).

443 27. M. Haeussler, K. Schönig, H. Eckert, A. Eschstruth, J. Mianné, J.-B. Renaud, S. Schneider-
444 Maunoury, A. Shkumatava, L. Teboul, J. Kent, J.-S. Joly, J.-P. Concorde, Evaluation of off-target
445 and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR.
446 *Genome Biol.* 17, 148 (2016).

447 28. C.-Y. S. Lee, T. Lu, G. Seydoux, Nanos promotes epigenetic reprogramming of the germline
448 by down-regulation of the THAP transcription factor LIN-15B. *Elife*. 6 (2017),
449 doi:10.7554/eLife.30201.

450 29. H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
451 arXiv [q-bio.GN] (2013), (available at <http://arxiv.org/abs/1303.3997>).

452 30. Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nusbaum,
453 R. M. Myers, M. Brown, W. Li, X. S. Liu, Model-based analysis of ChIP-Seq (MACS). *Genome*
454 *Biol.* 9, R137 (2008).

455 31. J. Jänes, Y. Dong, M. Schoof, J. Serizay, A. Appert, C. Cerrato, C. Woodbury, R. Chen,
456 C. Gemma, N. Huang, D. Kissiov, P. Stempor, A. Steward, E. Zeiser, S. Sauer, J. Ahringer,
457 Chromatin accessibility dynamics across *C. elegans* development and ageing. *Elife*. 7 (2018),
458 doi:10.7554/eLife.37344.

459 32. A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M.
460 Chaisson, T. R. Gingeras, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*. 29, 15–21
461 (2013).

462 33. N. L. Bray, H. Pimentel, P. Melsted, L. Pachter, Near-optimal probabilistic RNA-seq
463 quantification. *Nat. Biotechnol.* 34, 525–527 (2016).

464 34. R. Hubley, R. D. Finn, J. Clements, S. R. Eddy, T. A. Jones, W. Bao, A. F. A. Smit, T. J.
465 Wheeler, The Dfam database of repetitive DNA families. *Nucleic Acids Res.* 44, D81–9 (2016).

466 35. H. Li, R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform.
467 *Bioinformatics*. 26, 589–595 (2010).

468 36. C. S. Ross-Innes, R. Stark, A. E. Teschendorff, K. A. Holmes, H. R. Ali, M. J. Dunning,
469 G. D. Brown, O. Gojis, I. O. Ellis, A. R. Green, S. Ali, S.-F. Chin, C. Palmieri, C. Caldas, J. S.
470 Carroll, Differential oestrogen receptor binding is associated with clinical outcome in breast
471 cancer. *Nature*. 481, 389–393 (2012).

472 37. T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W. Li,
473 W. S. Noble, MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res.* 37,
474 W202–8 (2009).

475 38. C. Frøkjær-Jensen, M. W. Davis, C. E. Hopkins, B. J. Newman, J. M. Thummel, S.-P.
476 Olesen, M. Grunnet, E. M. Jorgensen, Single-copy insertion of transgenes in *Caenorhabditis*
477 *elegans*. *Nat. Genet.* 40, 1375–1383 (2008).

478 39. E. Zeiser, C. Frøkjær-Jensen, E. Jorgensen, J. Ahringer, MosSCI and gateway compatible
479 plasmid toolkit for constitutive and inducible expression of transgenes in the *C. elegans* germline.
480 *PLoS One*. 6, e20082 (2011).

481 40. M. B. Gerstein, Z. J. Lu, E. L. Van Nostrand, C. Cheng, B. I. Arshinoff, T. Liu, K. Y. Yip,
482 R. Robilotto, A. Rechtsteiner, K. Ikegami, P. Alves, A. Chateigner, M. Perry, M. Morris, R. K.
483 Auerbach, X. Feng, J. Leng, A. Vielle, W. Niu, K. Rhissorakrai, A. Agarwal, R. P. Alexander,
484 G. Barber, C. M. Brdlik, J. Brennan, J. J. Brouillet, A. Carr, M.-S. Cheung, H. Clawson, S.
485 Contrino, L. O. Dannenberg, A. F. Dernburg, A. Desai, L. Dick, A. C. Dosé, J. Du, T. Egelhofer,
486 S. Ercan, G. Euskirchen, B. Ewing, E. A. Feingold, R. Gassmann, P. J. Good, P. Green, F. Gullier,
487 M. Gutwein, M. S. Guyer, L. Habegger, T. Han, J. G. Henikoff, S. R. Henz, A. Hinrichs, H.
488 Holster, T. Hyman, A. L. Iniguez, J. Janette, M. Jensen, M. Kato, W. J. Kent, E. Kephart, V.

489 Khivansara, E. Khurana, J. K. Kim, P. Kolasinska-Zwierz, E. C. Lai, I. Latorre, A. Leahey, S.
490 Lewis, P. Lloyd, L. Lochovsky, R. F. Lowdon, Y. Lubling, R. Lyne, M. MacCoss, S. D.
491 Mackowiak, M. Mangone, S. McKay, D. Mecenas, G. Merrihew, D. M. Miller 3rd, A. Muroyama,
492 J. I. Murray, S.-L. Ooi, H. Pham, T. Phippen, E. A. Preston, N. Rajewsky, G. Rätsch, H.
493 Rosenbaum, J. Rozowsky, K. Rutherford, P. Ruzanov, M. Sarov, R. Sasidharan, A. Sboner, P.
494 Scheid, E. Segal, H. Shin, C. Shou, F. J. Slack, C. Slightam, R. Smith, W. C. Spencer, E. O.
495 Stinson, S. Taing, T. Takasaki, D. Vafeados, K. Voronina, G. Wang, N. L. Washington, C. M.
496 Whittle, B. Wu, K.-K. Yan, G. Zeller, Z. Zha, M. Zhong, X. Zhou, modENCODE Consortium, J.
497 Ahringer, S. Strome, K. C. Gunsalus, G. Micklem, X. S. Liu, V. Reinke, S. K. Kim, L. W. Hillier,
498 S. Henikoff, F. Piano, M. Snyder, L. Stein, J. D. Lieb, R. H. Waterston, Integrative analysis of the
499 *Caenorhabditis elegans* genome by the modENCODE project. *Science*. 330, 1775–1787 (2010).

500 41. A. N. McMurchy, P. Stempor, T. Gaarenstroom, B. Wysolmerski, Y. Dong, D.
501 Aussianikava, A. Appert, N. Huang, P. Kolasinska-Zwierz, A. Sapetschnig, E. A. Miska, J.
502 Ahringer, A team of heterochromatin factors collaborates with small RNA pathways to combat
503 repetitive elements and germline stress. *Elife*. 6 (2017), doi:10.7554/eLife.21666.

504 42. F. Ramírez, D. P. Ryan, B. Grüning, V. Bhardwaj, F. Kilpert, A. S. Richter, S. Heyne, F.
505 Dündar, T. Manke, deepTools2: a next generation web server for deep-sequencing data analysis.
506 *Nucleic Acids Res.* 44, W160–5 (2016).

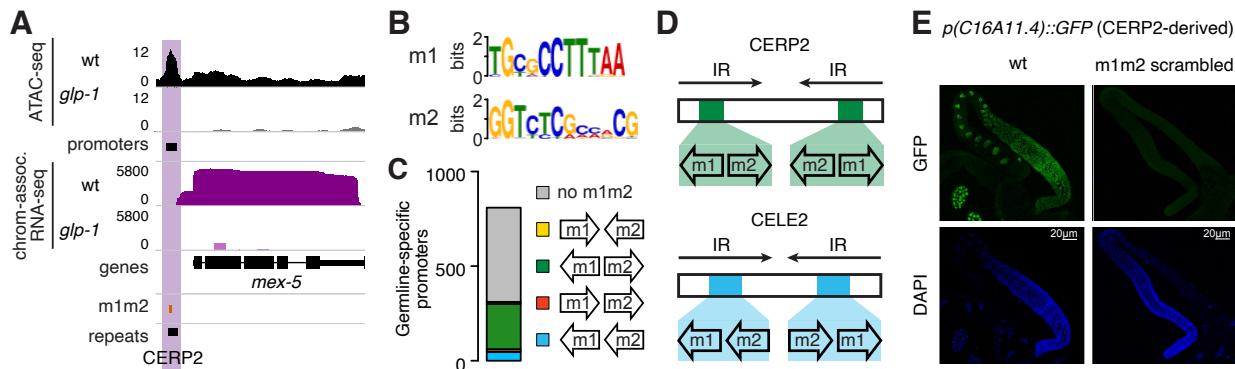
507 43. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
508 RNA-seq data with DESeq2. *Genome Biol.* 15, 550 (2014).

509 44. G. Yu, L.-G. Wang, Y. Han, Q.-Y. He, clusterProfiler: an R package for comparing
510 biological themes among gene clusters. *OMICS*. 16, 284–287 (2012).

511 45. K. Katoh, K.-I. Kuma, H. Toh, T. Miyata, MAFFT version 5: improvement in accuracy of
512 multiple sequence alignment. *Nucleic Acids Res.* 33, 511–518 (2005).

513 46. M. Suyama, D. Torrents, P. Bork, PAL2NAL: robust conversion of protein sequence
514 alignments into the corresponding codon alignments. *Nucleic Acids Res.* 34, W609–12 (2006).

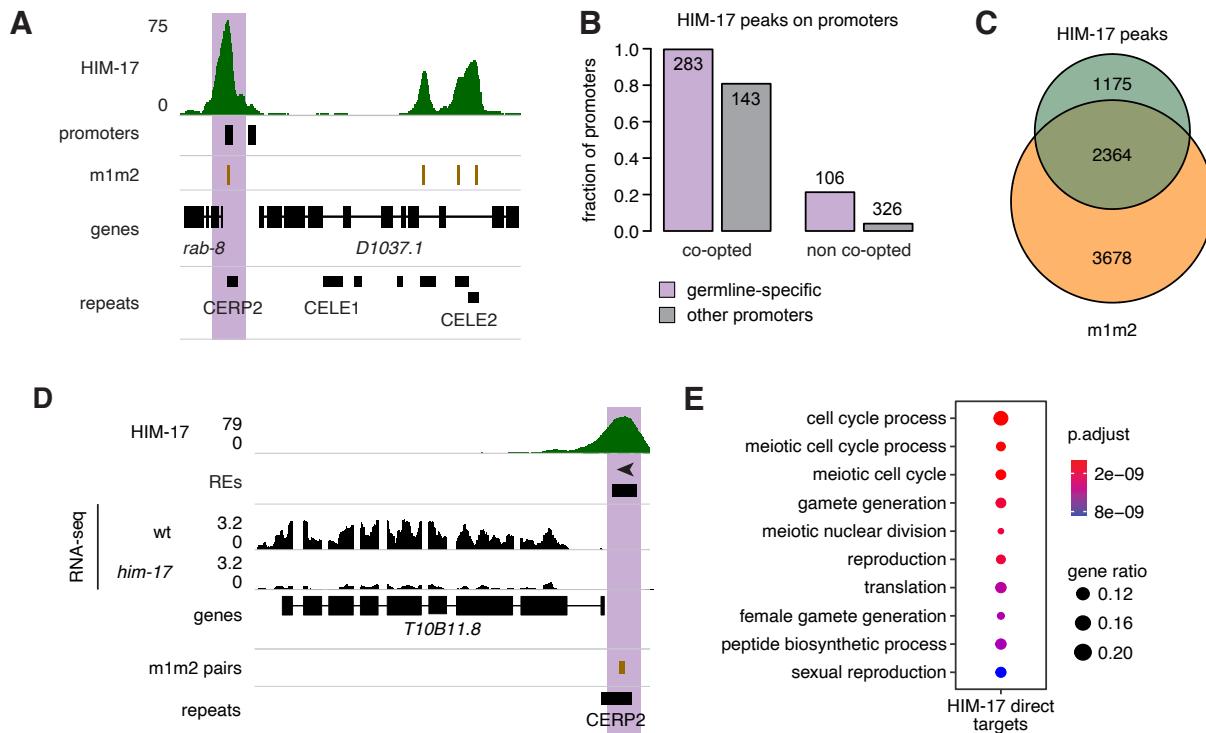
515 47. J. Zhang, R. Nielsen, Z. Yang, Evaluation of an improved branch-site likelihood method
516 for detecting positive selection at the molecular level. *Mol. Biol. Evol.* 22, 2472–2479 (2005).


517 48. Z. Yang, PAML 4: phylogenetic analysis by maximum likelihood. *Mol. Biol. Evol.* 24,
518 1586–1591 (2007).

519 49. J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G. A. Salazar, E. L. L. Sonnhammer,
520 S. C. E. Tosatto, L. Paladin, S. Raj, L. J. Richardson, R. D. Finn, A. Bateman, Pfam: The protein
521 families database in 2021. *Nucleic Acids Res.* 49, D412–D419 (2021).

522

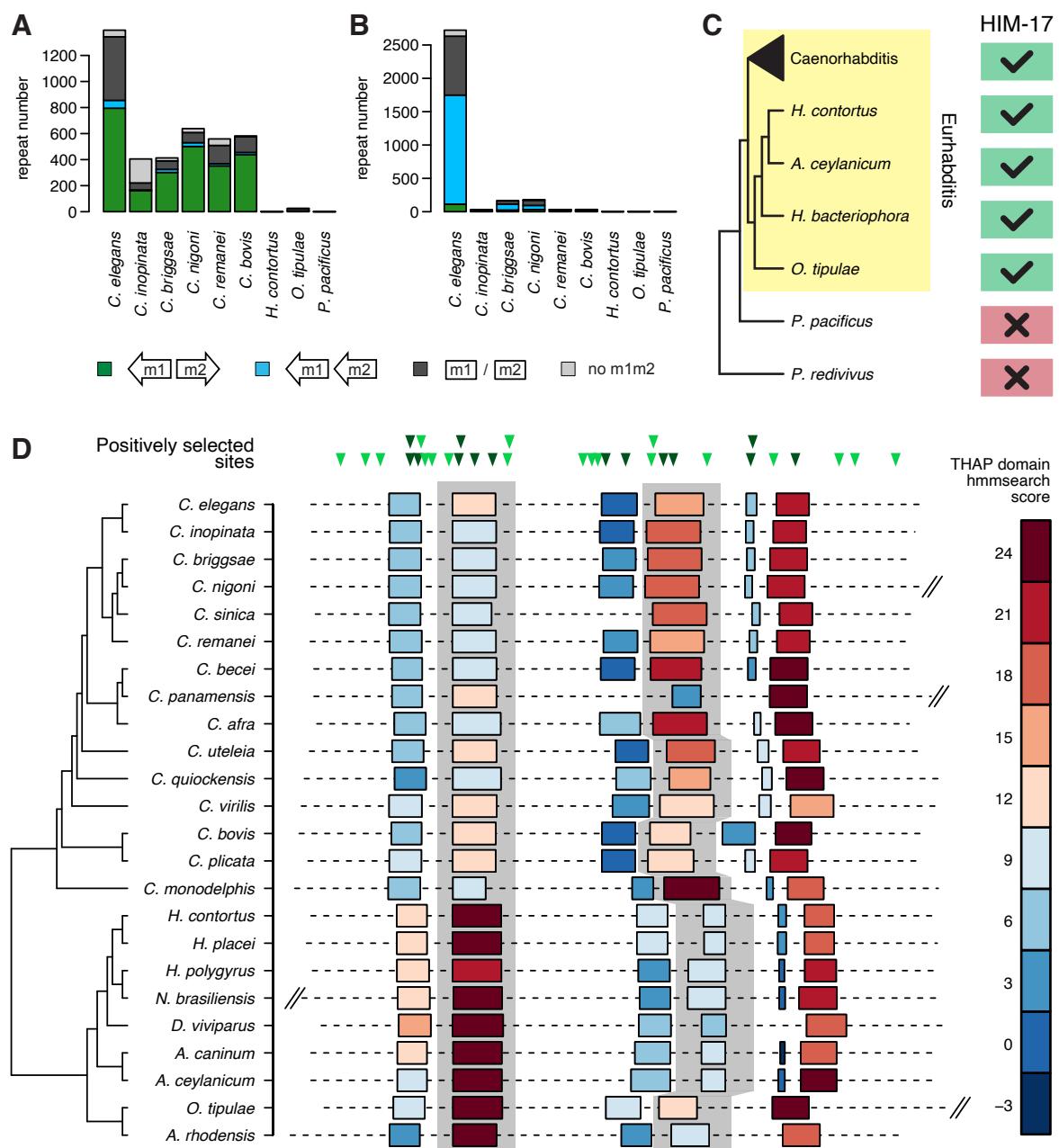
523


Figure 1

524

525 **Fig. 1. TE enrichment at germline-specific elements in *C. elegans*.** (A) Example of germline-
526 specific (purple) promoter in *C. elegans*. (B) Sequence logos of the m1 and m2 motifs. (C) Number
527 of m1m2 pairs overlapping germline-specific promoters, color-coded based on their relative
528 orientation. (D) Location of m1m2 pairs in CERP2 and CELE2 consensus. IR: inverted repeats.
529 (E) GFP and DAPI signals from CERP2-derived wt *p(C16A11.4)::his-58::gfp* and m1m2-
530 scrambled *p(C16A11.4)::his-58::gfp* in adult gonads (scale bar 20 μ m).
531

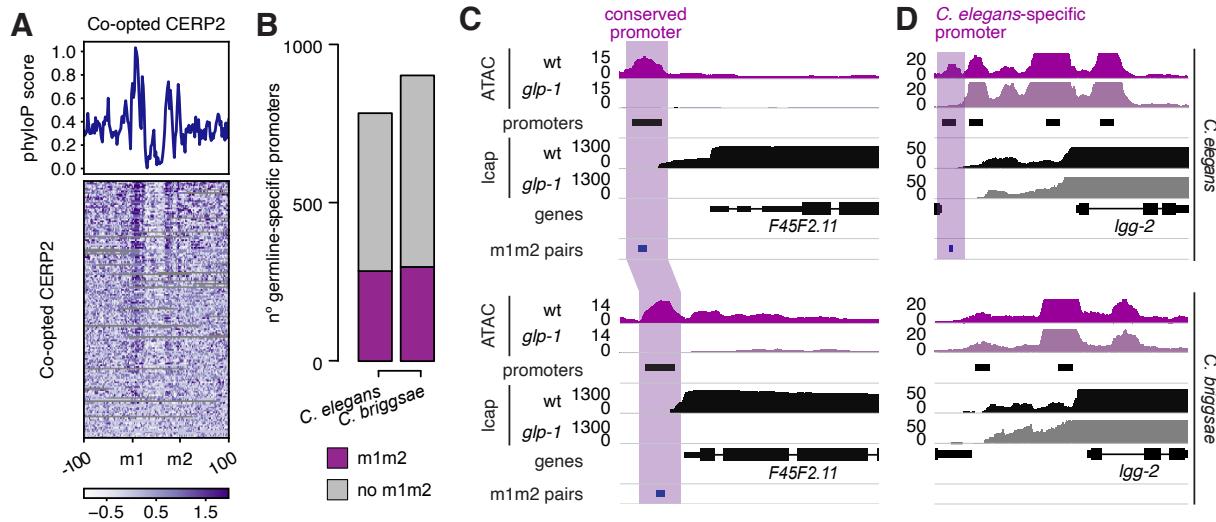
Figure 2



532

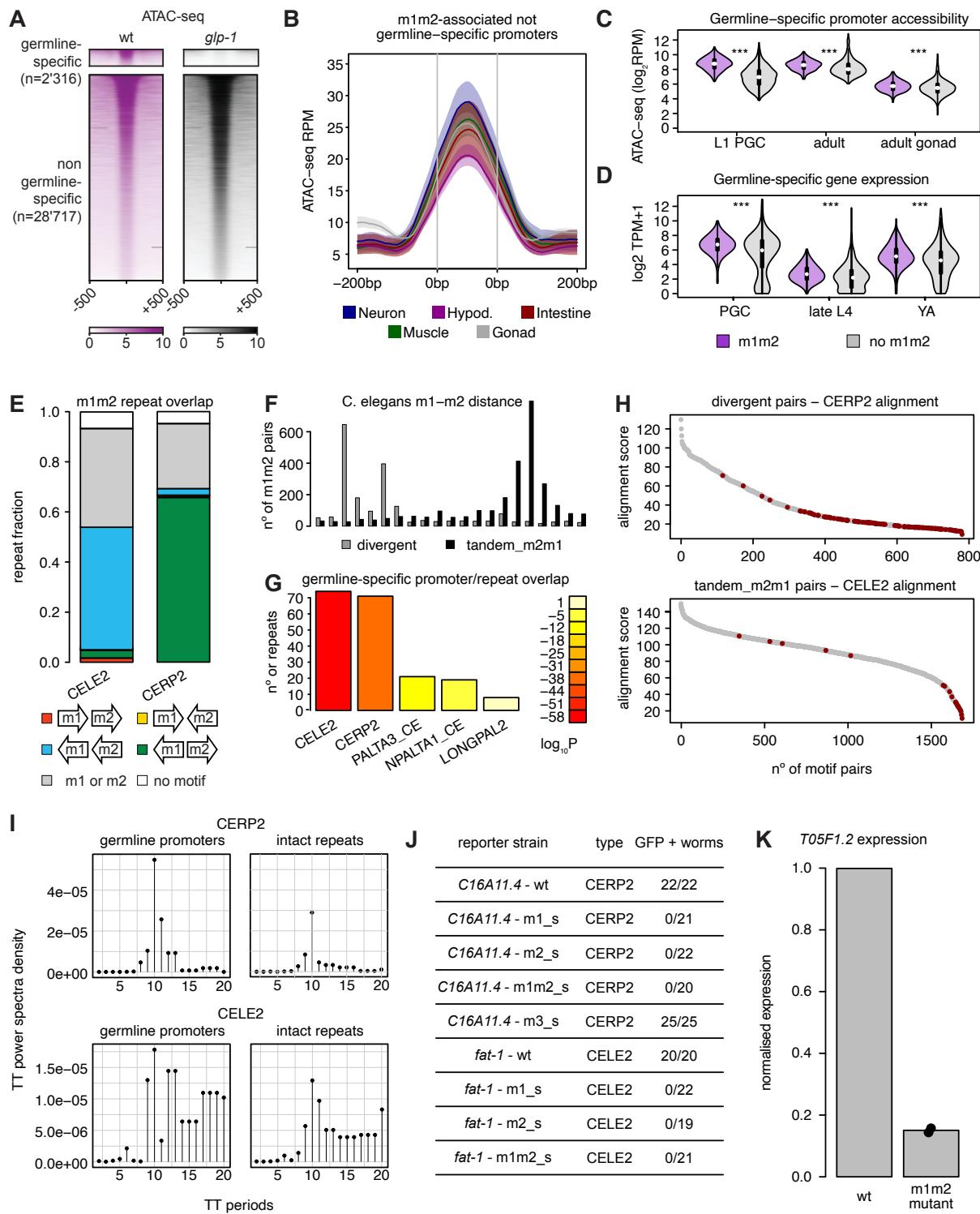
533 **Fig. 2. HIM-17 binds and regulates co-opted MITEs.** (A) Example of HIM-17 ChIP-seq binding
534 profile. (B) Fraction of promoters overlapped by HIM-17 peaks. (C) Overlap between HIM-17
535 peaks and m1m2 pairs. (D) Example of a gene downregulated specifically in *him-17* mutants.
536 (E) GO terms enrichment of HIM-17 downregulated direct targets.

537


Figure 3

538

539 **Fig. 3. Evolution of m1m2 pairs and their binding factors in nematodes. (A,B)** Number of
540 CERP2 (A) and CELE2 (B) elements annotated in the genomes of different nematode species, and
541 fraction of divergent_m1m2 pairs, tandem_m2m1 pairs, and other m1 and or m2 motifs
542 overlapped. (C) Evolutionary conservation of *him-17*. (D) Top: location of sites under positive
543 selection with respect to the *C. elegans* HIM-17 protein. In dark, sites located in a THAP domain.
544 Bottom: location of THAP domains in HIM-17 orthologs. Color code reflects their similarity to
545 the canonical THAP domain (based on the hmmscore score). Second and fourth THAP domains
546 are highlighted in grey. Protein length is drawn to scale, and truncated for longer orthologs.
547


Figure 4

548

549
550 **Fig. 4. Evolutionary conservation and turnover of co-opted MITEs.** (A) phyloP score profile
551 (top) and heatmap (bottom) measured at germline-specific promoters associated to a
552 divergent_m1m2 pair in *C. elegans*. Elements not aligned to other species were removed from the
553 heatmap. (B) Number of germline-specific promoters annotated in *C. elegans* and *C. briggsae*.
554 (C,D) Examples of orthologs with a germline-specific CERP2-derived promoter in *C. elegans*
555 conserved in *C. briggsae* (C) or *C. elegans*-specific (D).

Figure S1

556

557

558

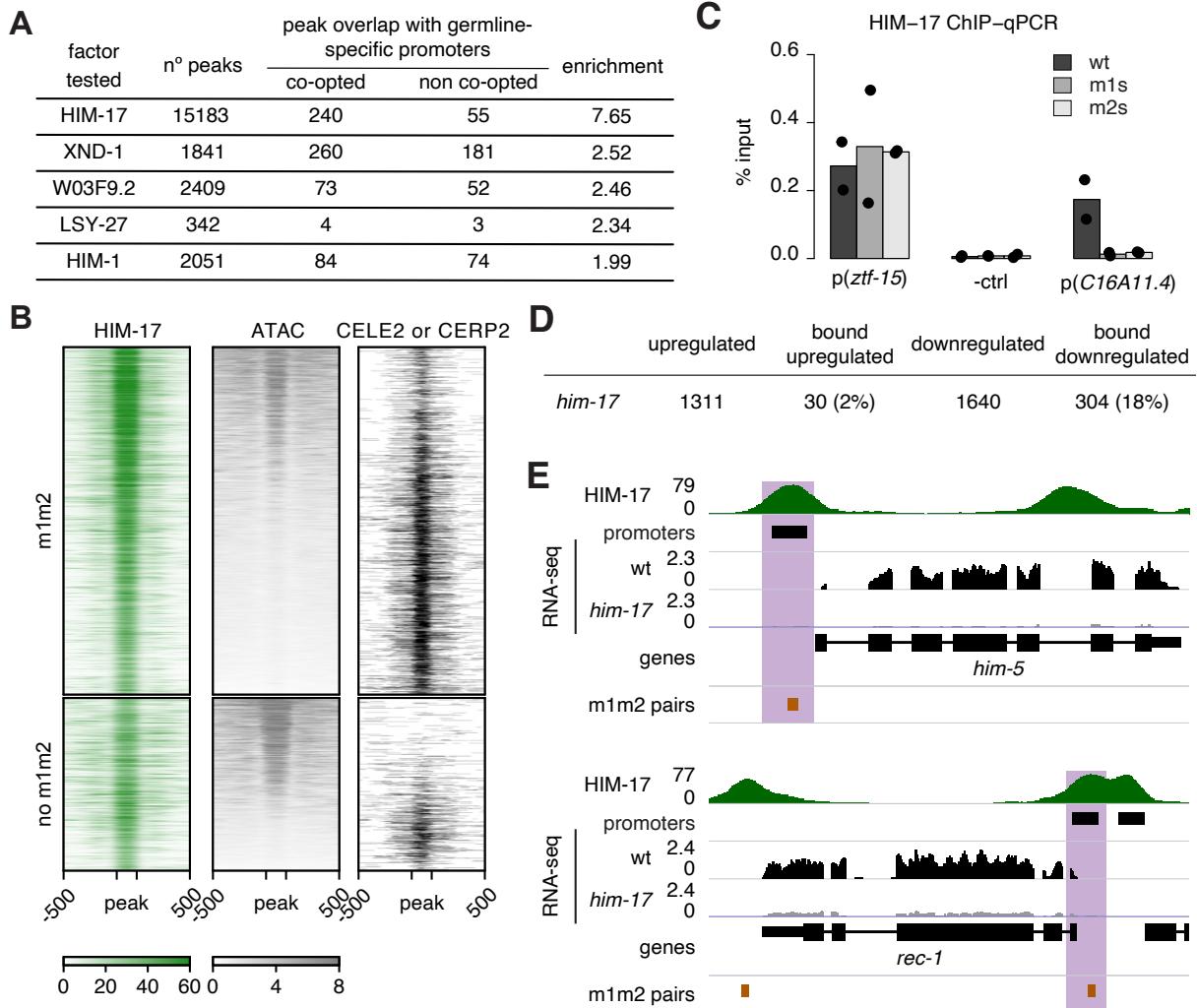
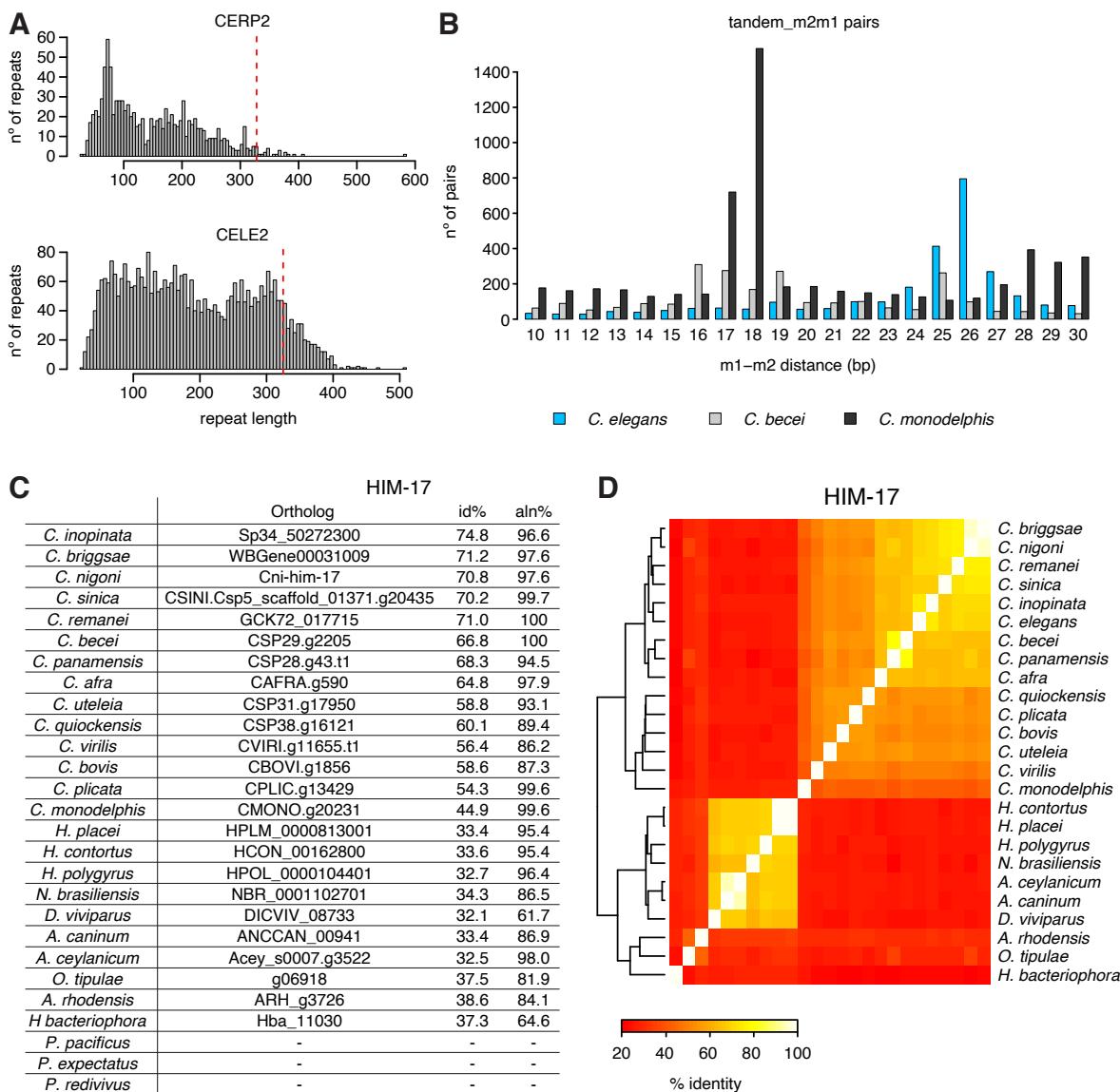

559

Fig. S1. TE enrichment at germline-specific elements in *C. elegans*. (A) ATAC seq signal at *C. elegans* open chromatin regions. (B) ATAC-seq coverage from individual tissues (from Serizay et al.) over non-germline-specific promoters associated with an m1m2 pair. (C) ATAC-seq coverage

560 at germline-specific promoters. **(D)** Expression levels of genes regulated by a unique germline-
561 specific promoter. **(E)** Fraction of CERP2 and CELE2 elements overlapping m1m2 pairs in any
562 arrangement. **(F)** Spacing between m1 and m2 motifs in divergent and tandem_m2m1 pairs. **(G)**
563 Enrichment of repeats families in germline-specific vs non germline-specific promoters. Only
564 families with a significant enrichment above 1 were depicted. **(H)** Alignment score of m1m2 pairs
565 in divergent or tandem_m2m1 arrangement to the CERP2 or CELE2 repeat model, respectively.
566 Motifs in promoters are depicted in red. **(I)** Power Spectral Densities of TT dinucleotides measured
567 downstream of intact and germline-specific promoter-associated divergent_m1m2 and
568 tandem_m2m1 pairs. **(J)** Fraction of young adult hermaphrodites carrying indicated transgenes
569 with GFP expression in the germ line. **(K)** Fold-change (measured by qPCR) in expression of the
570 *T05F1.2* gene after mutating its promoter compared to wt.

571


Figure S2

572
573
574
575
576
577
578
579
580
581
582
583
584
585

Fig. S2. HIM-17 and XND-1 bind co-opted and inactive MITEs. (A) Summary statistics of top overlaps between co-opted and non-co-opted germline-specific promoters and the modERN/modENCODE peaks set. (B) HIM-17, ATAC-seq and CERP2 or CELE2 enrichment over HIM-17 peaks. Top, peaks overlapping an annotated m1m2 pair (n=2364); bottom, peaks without an annotated m1m2 pair (n=1175). (C) ChIP-qPCR enrichment of HIM-17 as % of input in strains containing the wt, m1 and m2 scrambled versions of the *C16A11.4* promoter integrated in the chrII MosSCI site (see Methods). Signal at endogenous co-opted promoter *p(ztf-15)* is shown as a positive control. (D) number of upregulated (up) and downregulated genes (down) in *him-17* mutants. When the factor (in wt) overlapped any of the genes differentially expressed in the corresponding mutant, the gene was considered a direct target. Percentages: fraction of direct targets over all DE genes. (E) HIM-17 binding profile and RNA-seq profiles in wt and *him-17* mutants at the *him-5* and *rec-1* loci.

Figure S3

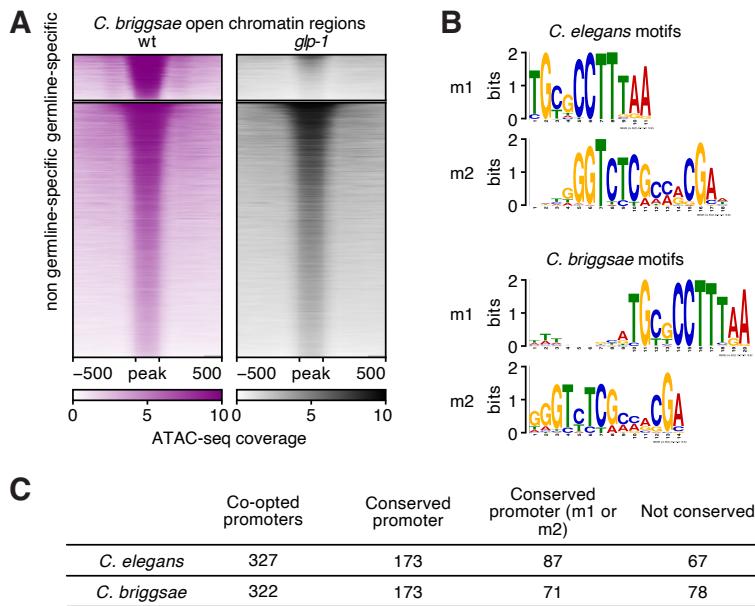
Fig. S3. Evolution of m1m2 pairs and their binding factors in nematodes. (A) Length of annotated CERP2 and CELE2 elements in *C. elegans*; red dashed line indicates length of consensus repeat sequence. (B) Spacing between m1 and m2 motifs in tandem_m2m1 in a subset of species. (C) HIM-17 orthologs in different nematodes, with % identity and % of alignment length with the corresponding *C. elegans* protein. (D) pairwise % identity across HIM-17 orthologs.

586

587

588

589


590

591

592

593

Figure S4

594
595 **Fig. S4. Evolutionary conservation and turnover of co-opted MITEs.** (A) ATAC-seq signal (in
596 RPM) from wild-type and *Cbr-glp-1* mutant over *C. briggsae* open chromatin regions. (B)
597 comparison of m1 and m2 motif logos in *C. elegans* and *C. briggsae*. (C) summary of CERP2
598 promoter conservation between *C. elegans* and *C. briggsae* orthologs.
599

600